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Preface

This report presents the results of my attempts to

relate modal and linear optimal control theories so that

weighting matrices could be specified which would provide a

stable set of system eigenvalues. Ultimately, the objective

of the research was to determine weighting matrices which

would provide an optimal controller generating a specified

set of eiaenvalues. The investigation was limited to systems

described by linear , time—invariant, deterministic matrix

differential equations; and assumed full state feedback

availability.

This project required that I become fairly deeply

involved in the concepts of modal control theory ; linear,

steady—state optimal control theory; and generalized inverses

of real and complex matrices. For supplying both background

and real—time assistance with regards to these areas, I am

indebted to Professors J.J. D’Azzo , C.H. Houpis , and D.G.

Shankland of the Air Force Institute of Technology .

While the specific outcomes of this project in regards

to the stated objectives were not entirely satisfactory,

several areas with interesting possibilities were encountered ,

evaluated , and understood . The learning process I underwent

during this project was sometimes trying, usually illuxninat—

ing, and always beneficial.

The encouragement and support I received from many

during this project are gratefully acknowledged; three in
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particular I wish to single out: Capt. Thomas E. Moriarty ,

my thesis advisor; my wife , Gladys; and Edmund Hillary , for

his ever—present watchfulness.

Richard P. Dechance
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Operational Notation and Symbols

• Operational Notation

transpose of vector ~
—* • —x . . . complex conjugate transpose of vector x
TA . . . transpose of matrix A

A ’ . . . inverse of the square matrix A
At . . . pseudoinverse of the matrix A
det A . . . determinant of the square matrix A

diag [cz11 a2, . . ., a~~] . . . diagonal matrix with
diagonal entries a1,a2, . . .,

M>0 , M>O . . . the real symmetric or Hermitian matrix 11

is positive definite or positive semi—definite ,

• respectively

• . time derivative of the time—varying vector, ~ (t)
1

l i i i  . . . norm of vector~~ , ~ ~~~~~

Symbols

A . . . n x n plant matrix of a linear , time—invariant

differential system

B . . . n x r input matrix, r < n, of a linear time—invariant

differential system

F . . . gain matrix of optimal controller
Ii . . . unit identity matrix of order i

t K . . . gain matrix of modal controller

P . . . solution to the steady—state Riccati equation

viii
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P1 . . . terminal—state weighting matrix

weighting matrix of the state vector

weighting matrix of the ~nput vector

t . . .t i m e

x(t) . . . state variable , state vector (n x 1)
~~( t)  . . . input variable, input vector (r x 1)

U . . . n x n matrix of eigenvectors (modal matrix) of

plant matrix A

i—th eigenvector of modal matrix U

i—th characteristic value (eigenvalue )

A . . . diag[X 1,A 2, . . . X ]

p .  . • . i—th desired closed—loop eigenvalue

R . . . diag[p 1,p 2 ,  • • p~~1

t(t) . . . state vector of diagonalized plant matrix A
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Abstract

An investigation was made of a relationship between

modal and linear optimal control theories to determine

whether the modal feedback gain matrix would be of help in

f inding  the weighting matrices of the optimal steady-state

criterion. Modal and optimal control theories are reviewed ,

and the concepts of steady-state optimal control, and single—

input and multiple-input modal control are developed .

A general matrix solution , using a matrix pseudoinverse ,

determines a unique modal feedback gains matrix which pro-

vides a set of specified closed—loop eigenvalues for a

linear , time-invariant , deterministic system. The modal

gains matrix is used as an input to a modified form of the

algebraic Riccati equation. A perturbation search technique

is applied in an attempt to find the state and control weight-

• ing matrices which simultaneously satisfy the Riccati equa-

tion and the optimal control postulates.

T~ie procedure is applied to a numerical control problem ,

with the results indicating the search technique is not fully

effective in establishing the optimal weighting matrices.

It is concluded that a new and useful modal design

technique has been developed utilizing the pseudoinverse

L of a real matrix , and that a valid relationship exists (in

theory) between modal and optimal control theories.

Recommendations are made to pursue the modal design

technique further; to further analyze the characteristics

x
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determining Herr~i t ian  matrix definiteness; and to evaluate

other types of search techniques capable of f inding the

optimal weighting matrices.

xi 
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I. Introduction

This thesis presents the results of a research project

to determine whether feedback gain matrices obtained from

the application of modal control theories to linear, time-

invariant, controllable systems can serve as inputs to a

search for weighting matrices of a quadratic performance

criterion for an optimal controller design. Initially the

objective is to obtain weighting matrices which satisfy

the postulates of optimal control theory and provide stable

closed—loop controllers for realistic systems. Ultimately ,

the objective of the research project is to develop a rela-

tionship such that weighting matrices could be specified

which would provide an optimal controller generating

specified closed—loop pole locations.

This chapter presents the general philosophies of

optimal and modal control, a statement of the specific prob—

lem addressed by this thesis, the scope of the problem, and

assumptions pertinent to the problem. The chapter concludes

with the sequence of presentation for the remainder of the

report.

Control Philosophy

The underlying philosophy for both optimal control and

modal control stems from the area of control theory commonly

called “modern control.” As D’Azzo and Houpis have stated ,

the state—space concept is the essential contribution of

modern control [Re f 5:xvi]. However, optimal and modal

1
I 
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techniques each treat the state—space from a different view-

point. A general discussion of these differing viewpoints

follows.

Optimal Control. Current optimal control deals with

problems formulated in state-space , in that the response of

• the system is viewed in terms of the trajectory the state vec-

tor x(t), describes in the state-space . However, optimal

control is not directly concerned with the variations over

time of the individual components of the state vector.

Rather, the “optimal” trajectory is chosen to be that tra-

jectory which minimizes a performance criterion composed of

the weighted states and weighted inputs (and in general , the

weighted terminal states) over a specified time interval.

Optimal control design is thus dependent on the ability

of the control engineer to specify suitable weightings on

the various states and inputs: each variation in the

weightings creating a different “optimal” controller. The

task of the designer then becomes one of selecting from

among an infinite number of optimal controllers one which

causes the system to be controlled to behave in a specified

manner over the time interval of interest. In general , in—

sight into the choice of weightings is gained by analysis of

the physical relationships within a system and experience on

the part of the designer. A search of the applic~b1e liter-

ature indicates that some analytical aids have been developed

to assist the designer [Ref 5:Chap 15; 14; 171, but these

techniques involve certain restrictive conditions on either

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ •. ~~~~~~~~~~~~~~~~~~~~~ ~- 4
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the number of inputs allowed or, in the case of sequential

input design , the sequence in which the inputs are applied ,

or are ad hoc procedures.

Modal Control. Modal control, like optimal control,

deals with the trajectory of the state vector in state-

space. Modal control however, is not concerned with per-

formance criteria, but rather with the concepts of eigen—

values and eigenvectors of the plant matrix: concepts with

which it is assumed the reader is familiar. The “shape” of

a dynamical mode of a system is described by the associated

eigenvector , while the time-domain characteristics are

described by the associated eigenvalue [Re f 12:8].  Thus ,

the free (undriven) motion of a system which has been dis-

placed from its equilibrium condition is described by a

linear combination of the dynamic modes of the system. The

stability characteristics and speed of convergence or

divergence of the states of the system may be determined

by an analysis of the “eigenproperties” of the plant matrix.

Modal control provides the designer with a method of

pole—shifting to stabilize an unstable system (or in the

• case of a stable system, to improve the speed of response

of the system to disturbances from its reference position).

In general , it may be a d i f f i cu l t  task to select the proper

pole locations so that system specifications are met, but

this aspect of the design problem lies beyond the scope of

• 
the modal design area of interest.

3
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Statement and Scope of the Problem

Problem Statement. The problem addressed by this

thesis is to determine whether modal control theories can

be applied to obtain suitable starting weighting matrices

for an optimal performance criterion. Specifically, can the

modal gain matrix provide a suitable starting point from

which to search for the weighting matrices of a quadratic

performance criterion of a linear optimal controller of

systems described by the following matrix differential

equation:

~ (t) = A x (t )  + B z ( t )  (1)

where 5~(t) is an n x 1 state vector

~ (t) is an r x 1 input vector

A is an n x n plant matrix

B is an n x r control matrix

Scope of the Problem. The investigation into this

problem was limited to permit a reasonable analysis to be

• made of a small, defined area, rather than attempt a shallow

analysis of a broad area. Specifically, the systems ana-

lyzed consist of those which could be modeled as linear,

time—invariant, and deterministic. Thus the matrices A and

B of Eq ( 1) are composed of real , constant elements ; and no

corruptive signals of sufficient magnitude to affect the

system are present. Obviously, more complicated (and less

restrictive) conditions could be placed on the systems to

4
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be examined. However, to permit mathematical tractability

and facilitate interpretation of results, the first attempt

on the problem area was restricted as stated.

The project consisted of:

1. A literature search, primarily using Defense Document

Center (DDC) facilities, to determine if any previous

work had been published in the area.

2. An analysis of the applicable modal and optimal control

theories to gain a working understanding of these areas

and how they interrelate.

3. An investigation of suitable techniques to obtain the

feedback gain matrix from modal theory.

4. An attempt to use the modal gain matrices thus deter-

mined to establish weighting matrices for a quadratic

optimal performance criterion.

Assumptions

The main assumption underlying all work done on this

project was that the systems to be analyzed were of the

form of Eq (1), with linear , time—invariant, deterministic

characteristics. Full state feedback is assumed to circum—

• vent the necessity of including state observers (e.g.

Luenberger) in the analysis. Thus , no mention is made of

output measurement vectors nor controlled variables, since

it is assumed that all states are measurable and it is the

state vector which is to be controlled. Additionally,  the
• system models were assumed to be completely controllable and

5
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observable, and plant matrices were assumed to have distinct

eigenvalues.

Sequence of Presentation

The remainder of this report is organized as follows.

Chapter II presents the applicable control theory background

necessary to understand the development of optimal and modal

control theory given in this paper. Chapter III describes

the research procedure followed in the analysis of the

problem, starting with a general matrix approach to the

solution of the modal gain matrix , followed by the concept

of the “pseudoinverse ” of a matrix, a discussion of the

application of the modal gain matrix to the search for the

• weighting matrices of the quadratic performance criterion ,

and concluding with the results of a numerical example.

Chapter IV, the last chapter , presents conclusions and

recommendations. The recommendations primarily emphasize

the need for a more efficient, powerful search technique

to determine the weighting matrices of the quadratic per-

formance criterion.

- 3
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II.  Applicable Control Theory

The theories necessary to understand the developments

in this paper are presented in this chapter. The optimal

control theory is developed and discussed , followed by the

theory of modal control. Modal control is presented first

as basic concept, then the necessary refinements for single—

input systems are developed . The chapter concludes with a

development and discussion of modal control applied to

multi—input systems.

Optimal Control Theory

The optimal control theory necessary to the develop-

ments in this paper is stated completely in Linear Optimal

Control Systems by Kwakernaak and Sivan [Ref 8]. The

interested reader is referred to this text for additional

information. The material necessary for present purposes

is reproduced here as a restatement of Theorem 3.7, with

• changes in notation.

Steady-state Properties of the Time—invariant Optimal

Regulator. Consider the time-invariant regulator problem

for the system described by the matrix differential equation
~ 

•

4 I

~ (t) = A~~( t )  + B~~( t) (1)

and the criterion

l b

I~~~~
T(t l~~ t + ~

T(t)R2~~(t)Jdt + ~
T(t1)P1~~(t1) (2)

0

I t

- 
~~~~~~i .~~~~~

_ _ _ 
_ S_1__S --- 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~



r -- —-_______ 
- ---• •

--

(where t1 is allowed to approach infinity), with R1 
> 0 ,

R2 
> 0 , P1 > 0. (The notation used here indicates the

symmetric matrices R1 and P1 are positive semi—definite ,

while the symmetric matrix R2 is positive—definite .) The

associated Riccati equation is given by

—P(t) = R1 
— P(t)BR;’BTP(t) + ATP(t) + P(t)A (3)

with the terminal condition

P(t1) = P1 ( 4 )

a) Assume that P1 > 0. Then as t
1
-*.co the solution of the

Riccati equation approaches a constant steady-state value

P if and only if the system possesses no poles that are at

the same time unstable, uncontrollable, and observable.

b) If the system, Eq (1), is both controllable and observ-

able, the solution of the Riccati equation, Eq (3), ap-

proaches the unique value P as t1 
-

~~~~ for every P1 
> 0.

c) If P exists, it is a positive semi—definite symmetric

solution of the algebraic Riccati equation

0 = R1 
- PBR2 

1BTP + PA +ATP (5)

If the system, Eq (1), is controllable and observable , P is

the unique positive semi—definite symmetric solution of the

algebraic Riccati equation , Eq (5).

d) If P exists, it is positive—definite if and only if

the system is completely observable.

• • •
• e) If P exists, the steady—state control law

U.

8
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~ (t) = — F x ( t )  (6 )

-lTwhere F R 2 B P  (7)

results in an asymptotically stable response if and only if

the system, Eq (1), is controllable and observable.

f) If the system, Eq (1), is controllable and observable ,

the steady—state control law minimizes

~L J~: T t ) R l~
t) 

+ ~
T(t)R2~~(t)]dt + 

~

T(tl)Pl~~
(tl)1 

(8)

for all P1 
> 0. For the steady—state control law, Eq (6),

the criterion , Eq (8), takes the value

xT (t 0) P x ( t 0) (9 )

[Re f 8:2 3 7 — 2 3 8 ] .

Essentially Theorem 3.7 states: Given a system whose

modes are controllable and observable, a full—state feed-

back according to the steady—state control, Eq (6),

will provide a closed—loop system that is asymptotically

stable and optimal in the sense that the performance

criterion, Eq (8), is minimized.

Note that an “optimal” system is not “best” in any

absolute sense. It is merely a system designed such that

a specified performance criterion is minimized by a full-

state feedback as the input to the plant for any initial

state vector. In other words, “ . . . we now have the means

to devise linear feedback systems that are asymptotically

9 
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stable and at the same time possess optimal transient

properties in the sense that any nonzero initial state is

reduced to the zero state in an optimal fashion [Ref 8:222].”

Discussion. The form of the quadratic performance

criterion used i~’ this paper is composed of two quadratic

terms: ~~ (t)R1~~(t) and ~~ (t)R2~~(t). The state weighting

matrix R1 must be positive semi—definite , while the input

(or control) weighting matrix R2 must be positive—definite

(and with no loss of generality , both can be assumed sym-

metric) to satisfy the postulates of the optimal regulator

problem. Each weighting matrix, considered alone, specifies

the relative weight each state or input combination has with

respect to the other state or input combinations. Considered H
together , the relative magnitude of the two weighting matri-

ces specifies the amount the states and inputs collectively

contribute to the value of the performance criterion at any

time, and thus act to establish upper limits to the values

the states and inputs may take on.

In the usual approach to the synthesis of an optimal

regulator, one specifies the values of the various elements

in R1 and R2 using a “best guess” based on previous experi—

ence, or engineering judgment. The resulting Riccati

equation may then be solved by any one of several currently

available techniques [Ref 7; 16]. The resulting time

response of the closed-loop system may then also be

10
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determined [Ref 16] .  The time response may or may not be

satisfactory , depending on the suitability of the weighting

matrices chosen initially. An iterative process usually

ensues, to obtain a satisfactory time response by adjusting

the values of the elements in the weighting matrices.

An alternative method of control system design exists

which allows one to be very specific regarding time responses,

but which does not address the question of optimality. This

alternative is discussed further under Modal Control theory.

Modal Control Theory

The material for the development of modal control theory

is taken primarily from the text Modal Control: Theory and

Applications by Porter and Crossley [Ref 12]. In partic-

ular , the development of a closed—form solution for the

linear feedback gains matrix of both single-input and

multiple-input systems is specifically credited to this

text.

The entire development will not be presented here. In-

stead , the basic equations necessary to substantiate the

development of this paper will be presented and discussed ;

the interested reader may then refer to the referenced text

for further information.

Basic Concept. In the words of Porter and Crossley:

The central concept of modal control is very simple :
It is merely that of generating the input vector of a

- 
• system by linear feedback of the state vector in such a

way that prescribed eigenvalues are associated with the
dynamical modes of the resulting closed—loop system
[Ref 12:2].

11 
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Thus , given a linear, time—invariant system described by the

matrix differential equation

x ( t )  = Ax(t) + B z ( t )  (1)

the use of a linear feedback control law

~ (t) 
= K~~(t) - (10)

can provide the prescribed closed- ‘oop eigenvalues if K is

chosen using the methods of modal c~’ntro1. Substitution

of Eq (10) into Eq (1) yields

x ( t )  = (A + BK)x (t )  (11)

as the matrix differential equation of the closed-loop

system. This is demonstrated in Figure 1, where the

operations indicated are matrix operations.

Figure 1. Cloced—loop System of State Feedback

12



Dynamic Characteristics of an tJndriven System. When no

input is present, the system represented by Eq ( 1) become s

x ( t )  = Ax(t) (12)

The (n x 1) vector ~ (t) defines the free motion of the sys-

tem as a function of time. The specific response of the

~ 
S
.

system, Eq ( 1 2 ) ,  to any nonzero initial condition can be

found by examination of the eigenvalues and eigenvectors of

the plant matrix A [Ref 12:5]. It has been assumed that the

plant matrix has n distinct eigenvalues; the corresponding

n eigenvectors must be linearly independent [Ref 9:108].

These eigenvectors may be found from the relationship

Au
~ 

= ~~~~~ i = 1, 2, . . ., n (13)

Since the n eigenvectors are linearly independent, they

form a basis for an n-dimensional “state space” for the

system modeled by Eq (12). The motion of the system can

be described by the trajectory of the state vector, x(t),

generated in the state space as a function of time.

The eigenvalues of A are found from the roots of the

characteristic equation of A

det [XI — A] = 0 ( 1 4 )

The roots, which may be real or complex conjugate pairs, of

this polynomial equation are then substituted into Eq (13)
- ~~. . to solve for the eigenvectors of A.

• For the situation considered here , where the eigenvalues

13
f
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are assumed dist inct, the eigenvectors of A may be arranged

to form an (n x n) “modal matrix ,” U

where U = [u
1, u2, . . ., u ]  (15)

The modal matrix U, which will be complex if the plant

-~~~ matrix A has complex conjugate eigenvalues, is a non—

singular, square matrix and therefore its inverse exists.

The modal matr ix has the useful  property of “ uncoupling”

the differential equations embodied in the plant matrix A.

In terms of the modal matrix , Eq (13) becomes

AU = Ui (16)

where A = d i a g [ A
1, X~~, . . ., A ]  (17)

Eq ( 16) also implies U 1AU = A (18)

If the transformation x(t) = U~~( t )  (19)

is substituted in Eq (12) along with the relationship

expressed in Eq (18) ,  one obtains

~~(t )  = A~~( t )  ( 2 0 )

Eq (2 0 )  is a matrix statement of the uncoupled differential

equations embodied in the plant matrix A. If Eq ( 2 0 )  is

stated in scalar form as

= X
~~~~

(t), i = 1, 2 , . . • ,  n (2 1)

the solution to the i—th differential equation is

= 
~~

( 0) (
~~~

p (x
~
t)1, i = 1, 2 . . . ,  n ( 2 2 )

14
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Therefore , from Eq (19)

n
x ( t )  = ~ u1~~~(0) [e x p ( A . t ) J  (23)

i=l 1

This states that the undriven response of a system described

by Eq (12) is a linear combination of the “dynamical modes”

of the system , where each mode is a function of the form

i = 1, 2 , . . .,  n [Re f 12:8] .

Whe n considering forced responses of a system, two

broad categories of forcing input arise: single—input and

mult iple—input .  The necessary theories concerning each of

these categories is discussed in the following two sections

of this chapter.

Single-input Modal Control. Systems driven by a single

input may be modeled as a modification of Eq (1) where the

control matrix B is replaced by the control vector b.

~~( t )  = A x ( t )  + ~ z ( t )  ( 2 4 )

The closed—loop form of Eq ( 2 4 )  will possess the desired

• -
. 

I eigenvalues if a control law of the form

m Tz ( t )  = ~~ K . v .~~( t )  , 1 < m < n (25)
j = 1 ~~~ —

is chosen , where is the j - th eigenvector of the matrix

A , and
m
II

k=l
= m , j 1, 2 , . . . ,  m (26)

~ k— i 
( X k

_ X
j )

—
. [Ref 12 :70] .• k~ j  -

15
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Note the presence of the P~ term in the denominator of Eq

( 2 6 ) .  This is the j—th  element of the mode—controllability

matrix , U 1b , and must be nonzero if the j -th mode is to be

controllable. The mode-controllability matrix is further

discussed in Chapter III under the development of modal

theory .

Eigenvalues of any or all of the controllable modes of

the plant may be shifted using just the single feedback loop

determined by Eq (25), and since only one input is available

no question of priorities arises regarding which modes will

be shifted by a particular input. However, this question

does arise in at least one application of modal ccntrol when

multiple inputs are available. This problem will be fur ther

amplified in later sections of this paper.

Multiple-input Modal Control. The basic concepts of

modal control developed in the single input approach may be

extended to cover systems having multiple inputs. Several

methods of achieving the desired set of closed—loop eigen—

values for a system are available, since many solutions

exist to the underdetermined set of non—linear algebraic

equations which arise in the multiple input case. Four

methods discussed in Ref 12 are: 1) minimum-gain modal

controllers, 2) prescribed—gain modal controllers, 3) dyadic

modal controllers, and 4) multi—stage design procedure for

modal controllers. The minimum—gain approach provides

modal controllers which minimize the sum bf the squares

I
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of the feedback gains, however a restriction exists regard-

ing the class of applicable systems. The modes to be con-

trolled in the system must be controllable by every input

variable , which is too restrictive to be considered as a

general approach. Similarly, the prescribed—gain controller

is only applicable to a limited class of systems, eliminating

it from consideration. The dyadic controller has the effect

of changing a multiple input system to a single input form

with each of the original inputs contributing a fixed amount

of the equivalent single input. Implicit in this approach

is a requirement for no inherent coupling in the system

inputs , a requirement which is not met by a large class of

interesting systems including airframes. The multi-stage

design approach is generally applicablc to aany systems of

interest, and further is well—suited to presenting the

theory of multiple-input modal control. Therefore the only

method to be further developed here is the multi—stage de-

• sign procedure for modal control.

The technique of multi—stage design for a modal con-

troller stems from the concept of sequentially applying the

various inputs available, thus forming a system composed

of several nested loops. Each loop may be designed to con-

trol part or all of any given subset of eigenvalues of the

original plant (subject  to certain constraints) , thus giving

rise to the previously mentioned question of input priorities

in the design sequence. Disregarding, for now, the question

of input priorities, the equations pertinent to thic technique

17
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are presented.

If the input matrix B is partitioned such that

B = 
~~l’ 

b2, • •~~ 
E l  (2 7 )

then the system modeled by Eq (1) wi l l  have the form

r
x ( t )  = A x ( t )  + ~ b1z . ( t )  (28)

i=l

where z~ is the i—th input , i = 1, 2 , . . . ,  r.

Each of the z1 in Eq (28) can be determined by treating

• it as a single input and requiring specified shifts of

any or all of the plant eigenvalues to be accomplished .

The specific equations used will not be repeated here; a

very clear and explicit application of this process can

• be found in Adams [Ref 1:27—31] , along with the appropriate

equations.

As was mentioned before , the question of input priori-

ties arises when using the multi—stage design procedure .

Porter and Crossley suggest a procedure of shifting eigen-

values based on the relative magnitudes of the terms in the
- 

. mode-controllability matrix [Ref 12:92].

This chapter has presented the pertinent theories of

optimal and modal control in an abbreviated fashion. The

basic theory underlying optima l control is embodied in a

statement of Theorem 3.7 [Ref 81; followed by a discussion

t 

of the significance of the theorem. Modal control was pre-

t:. sented in terms of the basic concepts , then amplified to

inc lude both single—input and :u1t~~1e-~~iut systems. 

— - - - - 5. .  - - -.•.- - --- .- .-- . -
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Since this thesis project intends to use modal control

theory only as a means of determining gains matrices which

serve as starting points to establish the weighting matrices

of an optimal performance criterion , the question of input

priorities should be avoided or eliminated to prevent later

questions of optimality from being raised. The method by

which this is accomplished is developed in Chapter III.

19
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I I I .  Research Procedure and Numerical Results

This chapter deals with the application of the pre-

viously developed modal and optimal control theories to

the specific problem stated for this thesis. The approach

in this chapter is essen t ial ly  a chronological record of

the various steps undertaken to solve the problem, the

results of each, and the rationale used in proceeding to

the following step.

The development began with the objective of using the

general matrix solution of the modal feedback gain matrix to

find the quadratic weighting matrices of the optimal con-

troller. This led to the requirement for a method to solve

underdetermined algebraic matrix equations and thus to the

generalized inverse (or “ pseudoinverse” )  of complex matrices.

The lack of satisfactory results using the above approach

then led to the use of “implicit—gain ” matrices in an effort

to circumvent the limitations uncovered in the early steps.

The relationship between the implicit—gain matrix and the

Riccati equation (used in the solution of the optimal con—

troller) is developed , followed by the development of an

iterative search technique to .detërmine the quadratic weight-

ing matrices which satisfy the requirements of optimal con—

trol theory.

Numerical examples were used in evaluating various

stages in the research. The theoretical development is

interspersed with these examples where they occurred and

the specific conclusions reached from the numerical

20
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examples are stated there . Various sources were used for

these numerical examples; since the intent of this project

was not to develop problems but to determine a method of

analyzing existing systems [Ref 4; 1l~ 15].

General Matrix Solution of the Modal Gain Matrix

The initial survey of the techniques available to

determine modal feedback gain matrices emphasized one

factor: When a multiple—input system was to be analyzed;

an underdetermined, nonlinear set of algebraic equations

must be solved [Ref 12:86]. The modal design techniques

mentioned in Chapter II, with the exception of the multi-

stage technique, are not applicable to general systems.

These techniques have restrictions on the degree of con-

trol a system must have on a given mode (minimum—gain

controllers), or restrictions on the degree of inter-

action existing between the various inputs to the system

(dyadic controllers). When beginning the mathematical

development of this paper it was decided to use a matrix

approach to the solution of the multiple input system

rather than the multi—stage technique. There were two

primary reasons for proceeding in this manner. First,

the question of optimality which arose, raised doubts

as to the feasibility of the multi—loop procedure ; specifi—

cally the fact that different feedback gain matrices were

generated for each input and pole-shift combination .

21
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Secondly, a matrix approach was better suited to the numer-

ical solutions contemplated , in that the modal feedback

gain matrix was to be only a first step in finding the

optimal weighting matrices, and the computer program

which existed to do multi-loop modal design was compli-

cated and time—consuming to use [Ref 1]. Accordingly,

the following development yielded a general matrix solu-

tion for the modal feedback gain matrix.

Applicable Theory and Equations. Given the matrix

differential equation describing a linear, time-invariant,

deterministic system

• x ( t )  = A x ( t )  + B z ( t )  (1)

where A is a (n x n) plant matrix

B is a (n x r) input matrix

~~( t )  is a (n x 1) state vector

z ( t )  is a (r x 1) input vector

and a linear feedback law of the form

1( t)  = K~~( t) (10)

• where K ix a (r x n)  real matr ix.

Substitution of Eq (10) into Eq (1) yields

~ ( t) = (A + BK) ~ ( t)  (11)

The original time—response of the open—loop plant ,

determined by the eigenvalues of the plant  matr ix A , are

22
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thus modified by the addition of the feedback of the

states of the system as inputs.

In order to deal effect ively with the modes of the

system, it is necessary to uncouple them. As was dis-

cussed in Chapter II, the modal matrix, U, of the plant

matrix does this, and can be readily determined by exist-

ing computer routines. As was done in the development of

the dynamics of the undriven system in Chapter II , when

the transformation

~ (t) = U~~(t) (19)

is substituted in Eq (11) and the resulting expression

is pre—multiplied by U 1, one obtains

t (t )  = U 1(A + BK) U~~( t) (2 9 )

= R ~~( t )  (3 0)

The term R = U 1(A+BK)U requires fur ther  examination . When

expanded it yields

U ’(A + B K ) U  = U 1AU + U 1BKU

= A + U~~ BKU ( 31)

The term U 1B has been called by Porter and Crossley the

“mode—controllability” matrix [Ref 12:45] ,  and is a key

factor in whether a given mode of a system may be con—

trolled . If all elements of any row of the matrix formed

by the product of U~~ and B are zero , the mode corresponding

• to that row cannot be controlled by any of the system inputs.

23
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Although complete controllability has been assumed in the

mathemat ical development in this paper , in actual practice

the mode-controllability matrix must be evaluated to avoid

violating this assumption.

The matrix R can be viewed as the diagonalized plant

of an augmented , undriven system; the dynamics of which are

specified as a set of desired eigenvalues. Thus , if the

diagonal matrix of desired eigenvalues is denoted as R = diag

[ç)
1~~

p 21 ‘‘
~~n’’ 

a matrix expression is obtained relating the

existing plant eigenvalues to the desired closed—loop eigen—

values

R = A + U 1BKU (32)

Since it was assumed that the plant eigenvalues [A
11 X2,

and the desired closed—loop eigenvalues [p 11p 2,

are known, it was possible to solve for the unknown

term , U 1BKU , which generated the apparent shift of the

system eigenvalues. Thus

U
1

BKU = R — A (33)

which was then solved for the feedback gain matrix K as

K = (U~~ B)~~~ (R — A)U~~ (34)

Eq (34) is the general matri:: solution of the modal-gain 
- -

matrix under the assumption that (U 1B)~~~ exists.  The

situation where this is not true is addressed later.

At this point , a specific numerical example was

employed to validate the matrix solution of the modal gain

matrix. The problem chosen was taken from a paper by

24
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Porter [Ref 11 :17—21]. This problem was chosen at this

point in the development to aid in validating a prelimi-

nary computer program for matrix eigenanalysis , as the

problem presented all the necessary matrices in numerical

form. Given the plant matrix

l . o7
A = I ( 35 )

L 0.5 _l.5J

and control matrix

f~ 1.0 0 .0~~j
B = I ( 36 )

L 0.0 O .SJ

The eigenvalues of A were X
1=— 0.5, A

2
=-2.0 with a modal

matrix

r 1.0 1.01
U = I I (37 )

L 0.5 —1.0]

Based on the problem statement, the desired eigenvalues

were p1 —lO .O , p2 -15.0. Substitution of the known matri-

ces into Eq (34), performing the indicated matrix multi-

plications and inversions resulted in

• E —10.67  2.33 1
• K = I (38 )

L • 2 .33

This result agreed exactly with the values determined by

: - Porter and thus validated the matrix approach concept to

25
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f inding the modal gain matr ix .

Eq (34) contained the term (U 1B) 1
. In the initial

development of this report, the form used by Porter and

Crossley [Re f 12:66—70 , 92—9 3] was followed. In that

development, the U 1B term was called the “mode-con-

trollability” matrix, discussed earlier. In the present

paper, the general matrix solution led to the requirement

for the inverse of the mode—controllability matrix . This

• required the inverse of a rectangular matrix (pseudoinverse)

• when r < n, and in general the rectangular matrix could H

be complex. A search of existing literature revealed that

routines existed to determine the pseudoinverse of a real

matrix, but apparently none existed for a complex matrix

[Re f 6; 7:16—17]. Thus the next step in the development

was undertaken to determine a method of generating the

pseudoinverse of a complex , rectangular matrix.

Complex Pseudoinverse. Since the concept of a matrix

pseudoinverse may be unfamiliar , a brief discussion follows.

The pseudoinverse (more formally known as the “Moore—

Penrose generalized inverse”) is the best approximation

(in a least—square—error sense) to a “true inverse ” for

those matrices which do not possess a true inverse [Ref 2:

44—45]. Specifically, only a non—singular , square matrix

possesses a true inverse [denoted as ( . ) 1] •  If the matrix

- • H is a non—singular , square matrix, there is a unique matrix

1 - -

H such that

L.
26
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H11 1 = H 1H = I (39 )

However, if H is any r x n matrix (singular or non—singular ,

rectangular or square), there is some conditional or gener-

alized inverse H~~ U which satisfied

HH~~
1
~H = ii (40)

S

If H is singular or rectangular , there are infinitely

many matrices H(U which satisfy Eq (40) [Ref 13:132].

However , there is one unique matrix which most closely

approximates the true inverse of a non—invertible matrix

in the following sense:

If Hp = q (41)

then p = Htq (42)

is the minimum norm vector among those vectors which

minimize

I I  q — H p  I I  (43 )

where H~ (an n x r matrix) is the pseudoinverse of II [Ref 2:

19]. The pseudoinverse of an arbitrary rectangular matrix

may be found from

H~ = (HTH)tHT (44)

or H~ 11
T(1111T)t (45)

[Re f 2:25].

The expressions HTH and HUT are always symmetric matrices,
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and the pseudoinverse of a symmetric matrix is easily

found . Since a symmetric matrix may always be diagonalized

I~IH
T 

= TDT 1 (46)

then (fl11T)t = TDtT 1

where D = diag[d1i...,d~ ,...,d~ 1 (48)

and d1f ••~~
dn are determined from 

roots of dl - HHT
I = 0

Dt = diag[l/d1,...~ l/d~ 1...~ l/d~ 1

or Dt diag [l/d11...
,0,...,l/d ] if d .0  (49)

n 1

(ii element) [Ref 2:22—23].

A numerical example may serve to clarify the above

development. Given the set of underdetermined simultaneous

equations

3u + 2v + w = 16

u + 4 v - w 6 (50)

ru

3 2 1

-l

Find p = H~~ (42)

28
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Using Eq (45) to determine H~ with the diagonalization

procedure mentioned above

= HT(HHT)t (45)

Evaluation of the term (HH T)t proceeded as follows

(HUT) =

• fl14 10
— Lia 18

(Note: The resultant matrix [HHT] was a square, non-

singular matrix, thus its pseudoinverse was equal to

its true inverse; however the diagonalization procedure

was followed to demonstrate its application.)

A straight-forward approach to matrix diagonalization

is the use of the modal matrix and its inverse; this was
I 

I 
the approach used here. Using standard eigenanalysis

techniques, the diagonal matrix , D, and modal matrix , T,

were found.

D r 0.0 1L 0.0 5.8O2J

E 1.0 1.0

L 1.2198 —0.8198
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In this problem, the D matrix had no zero diagonal entries,

thus from Eq (49) its pseudoinverse was

— 
rl/26.198 0.0 1 — 

r0.0382 0.0 1— L 0.0 1/5.802] 
— L-~.0 0.1724]

and the pseudoinverse of [HUT] was then found from Eq (47).
.

[HHTJ
t 

= TDtT 1

— 

ro.1184 —0.06581

• 

— 

L_0.0658 0.0921]

Substituting this result into Eq (45) yielded

ro.2895 —0.1053

= 1— 0 . 0 2 6 3  0 .2369 (51)

L0 1842 —0.1579

Thus p = H ~q

4.0

( 5 2 )

• Substitution of Eq (52) into Eqs (50) verified that this

was a valid solution to the system of equations. The
A

norm of p was found as

II ~~ II = / 4 2 
+ 12 + 2 2 

= 4 .58  (53)

30
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In generating this numerical example , an arbitrary p vector

was chosen as

1.0

• p 3.0 (5 4)

7 .0

which clearly satisfies Eqs (50). The norm of this vector

is found to be

H p H = 7.68 (55)

- While this was far from an exhaustive test, it did not dis-

prove the validity of the theory of the pseudoinverse in

providing the unique vector of minimum norm from the set

of vectors satisfying Eqs (50.

• The particular application of the pseudoinverse for

this paper required dealing with complex matrices. As

was mentioned earlier, no source of computational routines

was found to do this. Therefore a discussion ensued with

Dr. D.G. Shankland of the Air Force Institute of Tech-

nology, Wright—Patterson Air Force Base regarding the

feasibil i ty of developing the necessary routines. The

outcome of the discussion was the application of the

concept of pseudoinverses to complex matrices by employ—

ing the complex conjugate transpose in place of the matr ix

transpose. Thus , for a complex , rectangular matrix H

Ht (H*H)tH* (56)

L - -
31
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or H t 
= H*(HH*)t (57)

where H* is the complex conjugate transpose of H.

[Re f 10:4 08] .

Numerical tests run using a routine written to accomplish

the matrix operations indicated in Eqs (56) and (57) par-

tially validated the routine by pseudoinverting a complex

matrix H = Re M+jO and comparing the results with the pseudo—

inversion of Re M using LPSDOR (Re f 6] .  Additional verifi-

cation was obtained by noting product HH~ was an identity

matrix.

Once the above procedure had been coded and incor-

porated into the developing program to find the optimum

weighting matrices , specific numerical problems were run

F to evaluate the program capabilities. One of these problems

was concerned with the design for an F—4 aircraft lateral—

axis controller, discussed by Van Dierendonck [Ref 15:272—

273]. The problem as given incorporated a sixth-order plant,

which included actuator dynamics. Since it was not necessary

to deal with the poles of the actuators, the plant was reduced

to fourth-order with two inputs by eliminating the actuator

dynamics. The resulting plant and input matrices were

—1.7680 0.4125 —14.52  0 .0

— 0 . 0 007 —0.3831  6 .038 0.0
(58)

0.0016 —0.9975 — 0.155 0.0586

1.0000 0.0 0.0 0.0
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~1

2.031 8 .952

—3. 398 — 0 . 3 0 7 5
B 0 .028 — 0 . 0 0 3 6  (59)

L°°  0.0

Ei gertanalysis of the plant matr ix yielded the following

F system dynamics:

Spiral mode , A 1 = —0.0156

Roll subsidence , A 2 = —1.85 ( 60 )

Dutch roll mode, A 3 4  
= — 0 . 2 19 ±j 2 .4 8

From aerodynamic considerations, a desired set of system

eigenvalues was

Spiral mode , p 1 -0.0l5

Roll subsidence, p2 = —3.5 (61)

Dutch roll , p3 4  = —l.0±j2.29

- . 
so as to improve aircraft response to roll deviations

and increase damping of the Dutch roll. When the above

values were incorporated into the program designed to

evaluate Eq (34)  using the complex pseudoinverse routines ,

the resulting modal feedback gain matrix was

r-0.0l05 — 0 . 2 3 7 4  — 0 . 12 9 9  0.01411
K =  I ( 6 2 )

L°~
1468 0.1411 0.2677 ~-O.OO69J

Note the need for the pseudoinverse in this case due to

the U 1B matrix having dimensions ( 4 x 2 ) .

___________________________________  -
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When this matrix was substituted into the expression for

the augmented plant matrix

[A+BK I (63)

the closed—loop eigenvalue s were found to be

S Spiral mode , X 1 = —0.0156

Roll subsidence , A 2 = —3.12 (64)

Dutch roll, A 3 4  
= —0 .609±j2.35

Comparison of the open—loop and closed—loop dynamics,

Eq (60) and (64) respectively, indicated that the pseudo-

inverse technique was capable of providing reasonable

gain matrices for a pure modal design approach, in addi-

tion to providing a satisfactory starting point in the

search for the optimal quadratic weighting matrices.

Table I

A Comparison of System Dynamics
(F—4 Aircraft Lateral—Axis Controller)

System Dynamics

Spiral Roll Dutch Roll

- Ope n—loop — 0.0156 —1.85 — 0 . 2 19 ± j 2 . 4 8

• Closed—loop —0.0156 —3.12 —0.609±j2.35

Desired —0.0150 —3.50 —1.00 ±j2.29

As can be seen , the pseudoinverse approach to determining

the modal gain matrix succeeded in providing closed-loop

eigenvalue s “ closer ” to the desired values. In each

instance the modes were shifted in the correct direction ,

34
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but not by the entire desired amount. It is fel t  that this

is due to the nature of the pseudoin-verse , in that  it is

the closest unique approximation to a true inverse avail-

able, with the approximation becoming exact when the

original matrix is square and non—singular. Subsequently,

it was fe l t  that the possibility existed to determine tli~
modal feedback gain matrix more closely for a specified

set of desired eigenvalues by an iterative approach:

treating the augmented plant matrix , A+BK , as a basic plant

having unsatisfactory eigenvalues and re-entering the

design sequence with the same set of desired eigenvalues.

In this way, a second feedback gain matrix, K2, was deter-

mined. The resulting system would appear as

(A+BK 1) +BK 2 ( 65 )

or A+B (K 1+K 2 ) (66 )

In the general case of q iterations, the resulting

system would be

q
A+B I K -  ( 6 7 )

1

This concept was evaluated numerically through three

iterations (q=3) for the previous F—4 lateral control /

problem . The resulting feedback gain matrices are shown , —

followed by the closed-loop eigenvalues obtained from

each iteration, Table I I .

- :
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[— 0.0105 — 0 . 2 3 7 4  —0.1299  0.01411
I I (62 )

L 0.1468 0.1411 0.2677 _ 0 .0069]

[—0.0035 —0.1002 0.0384 0.00561
K 2 = I (68 )

L 0.0453 0 .0293  0.1494 ~0.0 0l6]

r—o.0006 —0.0484 0.0344 0.0027 1
K3 = (  (69)

L 0.0048 —0.0 13 1 0.0332 0.0007]

Table 11

Eigenvalues of Iterative Analysis
(F-4 Aircraft Lateral—Axis Controller)

Iteration System Dynamics
Cycle Spiral Roll Dutch Roll

0 —0.016 —1.85 —0.2l9±j2.48
1 —0.016 —3.06 —0.663±j2.298

2 —0.016 —3.45 —0.83l±j2.288

3 —0.016 — 3 . 4 9 6  — 0 . 9 l 5 ± j 2 . 2 8 7

De sired —0.015  — 3 . 5 0 0  — l . 0 0 0 ± j 2 . 2 9 0

Examination of the corresponding elements in Eqs (62),

(68), and (69) indicates the magnitude of each element is

smaller for succeeding iterations, indicating a tendency

toward convergence of the sequence

lim q
K I K -  ( 70 )

~~~ i=l 1

where K is the modal feedback gain matrix which would pro-

vide the desired closed—loop eigenvalues for the system

A+BK. -

I--
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A further indicator of the usefulness of this pro-

cedure is shown by a comparison of the norm of the vector

difference, II , between the desired eigenvalues and

the system eigenvalues for each iteration, illustrated

in Table III,

where = — 

~ iJ ’ i=l , 2 , . . . ,n (71)

desired system eigenvalues

actual closed—loop eigenvalues

and j is the iteration index. Since may be complex,

the norm is given by

II II = (72 )

where is the complex conjugate transpose of

Table III

Vector Norm 
-

.

Iteration , j II II
0 2 . 0 0 4
1 0 .676
2 0 . 2 4 4
3 0.120

Determination of Quadratic Weighting Matrices
This segment of the report is concerned with the

procedures to determine quadratic weighting matrices,

H- using a modal gain matrix as a starting point. The

37
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mathematical development is given , incorporating the

optimal linear feedback law and the matrix Riccati equation

to solve explici t ly for the state weighting matrix R1,

given the feedback gain matrix and a posit ive—definite

control weighting matrix, R2, assumed as the identity matrix.

This development is followed by a discussion of the pertur-

bation search technique developed to find the weighting

matrices.

Mathematical Development. In the mathematical

development, it was assumed that the modal gain matrix

K used in the modal feedback control law dev eloped in

Chapter II

z(t) = K ~ (t) (10)

could be substituted for the optimal gain matrix F in

the optimal feedback control law also developed in

Chapter II

z(t) = —F ~ (t) (6)

where F = R 2
1 BT P (7)

Eqs (10), (6), and (7) were combined and manipulated to

solve explicitly for the Riccati matrix P

P = _ (BT)tR2K (73)

• (Note that at this point the pseudoinverse was again needed ,

this time for a real matrix.)
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Once the Riccati matrix corresponding to the modal gain

matrix had been found , it and the assumed R
2 matrix were

substituted into the algebraic Riccati equation , Eq (5),

which could then be solved explicitly for R1, the desired

state weighting matrix, as

R1 
= PBR

2 
1BTP - ATP - PA ( 7 4 )

Implicit in the preceeding development was the requirement

that P and R1 must be symmetric and positive semi-definite ,

as developed in Chapter II. From a mathematical matrix

viewpoint, this did not appear explicitly in the equations,

but these requirements must be considered in developing a

numerical search technique to find an acceptable set of

quadratic weighting matrices. The methods by which these

requirements were accommodated are included in the next

section of this report.

Development of a Search Technique. A recap of the

progress to this stage indicated the development of a

practical capability to find 3uitable modal feedback

gain matrices using a matrix solution , and the theoreti—

cal development of the relationships to determine the

quadratic weighting matrices using the modal gain matrix

as the input.

Initially, when the modal design phase had been

proven using numerical inputs, the search for quadratic

• weighting matrices was attempted using an assumed input

!
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weightii ~tr±x-,--R~-- --.1 ...~~~1ith this approach, the Riccati

matrix P was found using Eq (73), then this result was —- -5- - - --- 
—

substituted into Eq (74) to determine the corresponding

state weighting matrix R1. In this approach , the Riccati

matrix found from Eq (73) was generally non—symmetric.

Before substituting P into Eq (74) it was therefore

necessary to convert the non—symmetric form to an

equivalent symmetric form by replacing all sets of

elements p1~ 
and by the average value

[Ref 5:462]. This procedure was also followed after

determining the corresponding R1 matrix from Eq (74).

Early results of this technique failed to provide

usable results, in that either the Riccati matrix or the

state weighting matrix would not be positive semi-definite.

Therefore a rudimentary manual perturbation scheme was

tried , to determine the changes in the P and R1 matrices

when elements of the R2 matrix were varied. This approach

- 
• 

seemed to indicate a method of obtaining positive semi-

definite P and R1 matrices, providing the proper elements

of R2 were varied. The manual procedure used was very

time—consuming, but appeared to be a promising approach.

Therefore a perturbation scheme was devised which could be

implemented on a digital computer to vary sequentially

each of the elements of the R2 matrix and evaluate the

effect of the shift on the P and R1 matrices. The evalua-

tion consisted of determining the effect of the R2 element

perturbations on the eigenvalues of R1 and P, since the

40
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determination of positive semi-definiteness could be

— -- • - 5-. _ accomplished readily by an examination of the eigen-

values [Ref 3:34l]. After e-va-1-uat.jon of the most effec-

tive element of R2 (determined to be that element which ~~~~~~
- - ----- - . .~~

caused the largest magnitude change in the most negative

eigenvalue of either R1 or P), that element was then

changed by a small , variable amount. The sign of the

change was chosen to cause the mo~t negative eigenvalue

to become less net,..tive . The sequence of the search was

intended to ultimately force the most negative eigen-

value to zero, thereby causing both P and R1 to be at

least positive semi-definite , with R2 remaining positive-

definite.

A discussion of the outcome of the perturbation

search technique will be postponed , to permit discussion

of a concurrent development called the “implicit-gain

matrix ” approach.

The Implicit—Gain Matrix

Concurrent with the development of the perturbation

search procedure, an examination was conducted on a

• variation of Eq (73), the explicit solution of the Riccati

matrix.

P = _ ( B T )~~~R 2 K (73)

T-l - - -The term (B ) carried the implication that the control

matrix B was square and non-singular for the inverse of

41
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its trai~~pos~ to be defined. Obviously, this would not,

in genei~al, be valid. Thus, the pseudoinverse concept

again arose, to be applied to a real rectangular matrix.

At firs.t, it was felt this should pose no significant

problem since e~~a~ly results using the complex pseudo-

inverse were encouraging. - Problems occurring in deter-

mining suitable P and R1 matrices f o a ~io~s numerical

systems raised doubts as to the validity of the i~~~
5-— —~~~_

pseudoinverse approach, and a way was sought to circum-

vent this difficulty . A reappraisal of Eq (33) indicated

that an alternative solution could be found as

BK = U(R—A )U~~ (75)

where the term BK (the “implicit-gain matrix”) is a product

matrix of the n x r control matrix B, and the r x n feedback

gain matrix K. This eliminated the need for a complex

pseudoinverse (since the feedback gain matrix was not

explicit ly needed) as the following development demon-

strated. If the negative of the modal feedback gain matrix

were substituted for the optimal feedback gain in Eq ( 7 ) ,

and the result pre-multiplied by —B , one obtained

BK = -B R2
1 BT P ( 7 6 )

Equating Eqs (75) and (76) yielded

-B R2
1 BT P = U(R - A)U ’ (77)

• or , solving explicitly for P

* 42
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= —(BR~~~ B
T)t U(R — A)U 1 (78)

[Note again the use of the pseudoinverse in Eq (78)].

Eq (78) does not explicitly involve the modal feedback

gain matrix , and the right—hand side contains only one

variable , R 2~~~, for any given system. From this point on in

the development of the search for the quadratic weighting

matrices , Eq (78)  was used in lieu of Eq (73)  to determine

the Riccati matr ix.
.5

Perturbation Search Technique

At this point in t d~~elo ment, the entire approach

seemed promising . The procedure had evolv~Td~to—tbe_poir~t

where inputs were necessary to two equations [Eqs (74 )  --.5--- ---

and (78)] central to the determination of quadratic weight-

ing matrices incorporating a modal feedback gain matrix .

Initial numerical attempts generated negative results to

the search due to apparent conflicts in achieving simul-

taneous positive semi—definite P and R1 matrices.

A further modification was undertaken to eliminate

the search for a positive semi—definite Riccati matrix

and concentrate strictly on finding a positive semi—

definite state weighting matrix by combining Eqs (74)

and (78), eliminating all explicit reference to the

Riccati matrix. The resulting expression directly

related the state and input weighting matrices through

a combination of the algebraic Riccati equation, Eq (74),

the optimal feedback control law, Eq (6), and the modal

43
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gain matrix , Eq ( 3 4) .

R1=[ (BR~~B
T)tU(R—A)U~~ ] (BR2

1BT) [BR;
]
3T)tU (R_A )u

_ 1
]

+AT[(BR;
1BT)tU (R A)u l]+[(BR;

1BT)tu (R A)u
_l

]A (79)

The perturbation search technique was applied to Eq (79)

in a two-stage procedure. The elements of R;
1 were

sequentially perturbed by a small amount (typically

l.0x10 4
) to determine the most effective element in

forcing the most negative eigenvalue of R
1 to zero. This

procedure incorporated a test of the positive—definiteness

of R 1 at each step to avoid violating another constraint

of optimal control theory. The most effective element of

—l - -R2 was then shifted by a reasonable amount (typically
— - .5-----

~~~~~~-----.J~~~~~0
4 to 5.0x10 4) so as to force the most negative

eigenvalue of~~j 1e-s~~iiegative. Unfortunately , this search

procedure did not yield desired~~~~üTt-s—wh~_ applied to two

specific numerical systems, one of which is discussed he~~~—
_ _~~

A Numerical Example

As a specific system for evaluation, the F—4 lateral—

control problem discussed earlier was chosen. It was felt

• I that this system was typical of those which one might wish

to analyze using the procedure developed in this paper,

in that it represented a controllable, multiple—input

system whose time—responses were unsatisfactory. The

plant and input matrices are reproduced here for conve—

nience.
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—1.7680 0 .4125 —14.52 0 .0  
-

— 0 . 0 0 0 7  —0 .3831 6.038 0 0
A = (58)

0.0016 —0 .9975 — 0.155 0.0586

1.000 0 0 .0 0 .0  0 .0

2.03 1 8 .952

— 3 . 3 9 8  —0.3075
B = (5 9)

0.028 — 0 . 0 0 3 6

0.0 0 .0

The desired closed—loop eigenvalues were chosen , as before ,

to provide a faster response to roll perturbations and

• improve Dutch roll damping : p
1=—0.0l5

, p
2 -3.5,

p 3 ,4=—l .0±j2.29.

• Due to the requirement for eigenanalysis of the R1

and R2
1 matrices after each shift in the most effective

element of R2
1, the program developed to implement the

— ----_
~~~~

_ search for quadratic weighting matrices used a consider—

á~1e-~ajnount of computational time on the CDC 6600 computer.

A run involving three thousand iterations of the R2
1 element

shifts required on the average 280 seconds of central

processor time. A sequence of twenty runs, each involving

three thousand iterations, produced the eigenvalue shift

pattern illustrated in Figure 2. This demonstrated the

trend shown during runs with both numerical systems, and

emphasized an inherent weakness in the present search
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technique : the inability to obtain a positive semi-

- definite R1 matrix.

The numerical system analysis w~s terminated due to

lack of time remaining , and the apparent ine f fectiveness

• of the search technique developed to this point.

Summary

This chapter has presented the entire development

- • involved in the search for quadratic weighting matrices

derived from a modal feedback gain matrix. The develop-

- ment, essentially presented in chronological form,
-
• illustrated the various steps taken to solve sub—problems

— encountered in seeking the solution to the main problem

— 
- stated at the beginning of this report. The results of

each step were presented, and an attempt was made to

describe the rationale involved in proceeding to the next

step of the problem.

The areas covered were the general matrix solution

for the modal feedback gain matrix, the development of

I the complex pseudoinverse , and the development of an

iterative perturbation - search technique to obtain

• satisfactory weighting matrices for an optimal controller.

I Specific numerical examples were presented to sub-

stantiate various capabilities as they were developed ,

- —- &~~~ the f ina l  segment, to i l lustrate the shortcomings
-----.5------of the present sear~?r-p~ oL~e4~~ e.

The f inal  chapter of this report deiT~~wirtL.o~r~ rall
—5—

—-
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conclusions reached during the time spent on researching

the problem, and presents specific recommendations for

further work in this area.
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IV. Summary, Conclusions, and Recommendations

This chapter concludes this report. A summary of the

results obtained during the research is presented , fol lowed

by conclusions drawn from these results and certain observa-

tions noted during the research . The chapter concludes with

recommendations for further investigation along the lines

of this report.

Summary of Results

A review of Chapter III indicated four specific results

which were determined during the period of research and

analysis.  Each of these results is presented and discussed

below .

The first result was the successful solution to the

modal design aspect of the thesis. In this area , a pseudo—

inverse approach was used to determine the modal feedback

gain matrix which would provide a closed-loop set of eigen-

values. Used as a “one—shot” procedure , this method pro—

vides a closed—loop set of eigenvalues which are closer

to a desired set of eigenvalues than the basic plant, but

the “closeness” is dependent on how well the pseudoinverse

used approximates a true inverse.

The second result of the research was essentially an

outgrowth of the preceeding results: an iterative capability

to determine a modal feedback gain matrix which provides

closed—loop eigenvalues as close as desired to a specified

set of eigenvalues. This procedure involved the repeated

-‘ 49



use of the pseudoiriverse of a real matrix (the control

matrix B) to establish a modal feedback gain matrix which

is a summation of the individual gain matrices determined

for each iteration. A heuristic analysis of this approach

using the F—4 lateral axis controller indicated a tendency

toward rapid convergence of the system eigenvalues to the

desired set of eigenvalues ( specifically, three iterations

provided closed—loop eigenvalues within 10% of desired) .

A third result, one which ultimately proved of minimal
- 

- 
- 

value to the project however, was the development of an

algorithm to compute the pseudoinverse of an arbitrary

complex matrix. While subsequent developments eliminated

the need for the• complex pseudoinverse , at the point in the

research where it was• developed it satisfied a definite

requirement, and aided in-~identifying an unpromising aver .ie

of research. - - 
- •

The fourth , and final, result’- to be noted was the

development of a search procedure to ~~entify and shift

the eigenvalues of the quadratic weighting matrices , R1

and R2. As developed in Chapter III, this procedure was

capable of identifying the elements of R2 which had the

most significant effect on the eigenvalues of R1 and , on

an iterative basis, modified this element of the input

weighting matrix, R2. Based on the results of two numeri—

cal examples investigated , this search technique has had

limited success in modifying the weighting matrices.
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Conclusions

Certain conclusions have been drawn, based on the four

specific results stated above and observations made during

the course of the research , as to the validity of the

proposed method of solution to the initial problem of this

thesis and the significance of the solutions proposed to

the sub-problems described in the report. The original

statement of the thesis problem was: Can the modal feed-

back gain matrix provide a suitable starting point from

which to search for quadratic weighting matrices? Based

on the results of this report, it is felt the answer is a

qualified affirmative. The search technique developed for

this report was essentially ineffective in obtaining the

quadratic weighting matrices which would satisfy the postu-

lates of optimal control, but the theory developed in

Chapter III would indicate that the solution is feasible.

Specific results obtained during the research substantiated

this conclusion , and thus one might conclude that a more

powerful search technique could aid in obtaining the desired

results.

Additionally, it is felt the general matrix solution

to the modal design problem (incorporating the iterative

refinement to the feedback gain matrix) is a valid contri—

bution to modal analysis and design techniques in that it

provides an alternative solution to the designer.

The alternative design procedure for modal synthesis

appears to be a new application of the pseudoinverse. It
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should be noted that, due to the uniqueness of the pseudo-

inverse, it is felt the resultant feedback gain matrix,

Eq (70), is also unique. It is also believed that the least—

square-error characteristic of the pseudoinverse provides a

feedback gain matrix with desirable properties as regards

the magnitude of the feedback gains, however this belief

has not been investigated .

A final conclusion is concerned with the problems

encountered during the search phase of the project. It is

felt that the initial search, in which an attempt was made

to obtain both the Riccati matrix, P, and the state weighting

matrix , R1, positive semi—definite simultaneously, encountered

difficulties due to the dimensionality of the problem. That

is, with both P and R1 n x n matrices, n(n + 1) undetermined

elements existed; to be specified by m(m + 1)/2 elements

of the m x m R2 matrix. Thus, any search technique may

have been inadequate. In retrospect , one must feel that

further examination of the question of dimensionality was

definitely in order, but was not accomplished due to time

constraints.

Recommendations

It is recommended that further investigation be

accomplished in regards to the findings of this report.

Specifically, investigation of various methods of deter—

mining the quadratic weighting matrices, with the view of

finding a functional search technique, is a necessity if a
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fully successful conclusion to the primary problem is to be

reached. Additionally , the closed—loop systems generated

by the iterative , pseudoinverse modal design should be

investigated further-—primarily in comparison with both

optimal design results and other forms of modal designs--

with respect to time response, variations of the state

vector from nominal, and required input levels.

The questions of an analytic proof of the convergence

of Eq (70) must also rank high as an area of interest, not

specifically for solutions to the primary question of this

report, but rather as a fundamental basis for a strong

modal synthesis procedure.

As a final recommendation , a much deeper look at the

characteristics and conditions pertaining to positive-

definite and positive semi-definite matrices could indicate

a new tack to be followed in regards to the search procedures

and requirements. Specifically, the possibility of determin-

ing definiteness of a Hermitian matrix by investigation of

the properties of the vector whose outer product produces

the Hermitian matrix could provide useful results.

p
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It is concluded that a new and useful modal design
technique has been developed uti l izing the pseudoinverse
of a real matrix , and that a valid relationship exists (in
theory) between modal and optimal control theories.

Recommendations are made to pursue the modal design
technique further ; to further analyze the characteristics
determining Hermitian matrix definiteness; and to evaluate
other types of search techniques capable o finding the
optimal weighting matrices.
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