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Abstract

This study treats the high accuracy tracking of a satellite from an air-

craft. The purpose is to evaluate the feasibility of several reduced order

system models for implementation in an extended Kalman filter formulation

whose estimates would be used to aid the tracker. The first filter model is

a twelve state model in which filter estimates of the satellite inertial posi-

tion and velocity are obtained and used in the estimation of the tracker

states. A second, six state—model deletes these six satellite states, and

tracker state estimation is accomplished by exploiting the information

already available in the tracking geometry, dominant modes of satellite

dynamics, and the range measurement. Tracker state estimation is accomplished

in the line of sight coordinate frame for both filter formulations. A

covariance analysis was performed, evaluating each filter against a 42 state

truth model. The tracking profile used in the study was specifically

designed to evaluate each filter’s state estimation capability when faced

with a highly nonlinear tracker angular rate history. It was concluded

that the six state filter is a viable alternative, and, with some proposed

modifications, is preferable (because of its simplicity and lower computa-

tional burden) and warrants further study.
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HIGH ACCURACY AIRCRAFT TO SATELLITE TRACKING:
AN EVALUATION OF TWO PROPOSED FILTER MODELS

I. Introduction

Problem Statement and Study Objectives

The high resolution tracking of one accelerating vehicle from another

(possibly) accelerating vehicle has many military applications — aircraft

to aircraft tracking, aircraft to missile tracking, missile to aircraft

tracking, etc. The use of linear or nonlinear system analysis techniques

to obtain the state estimate of the target and/or tracker and subsequent

use of this information to aid the tracking device is well documented in

the literature (see, for instance Ref 1) and (Ref 2). In this work, the

case of tracking a satellite from an aircraft will be studied.

The purpose of this study is to develop a reducad order system model

to be used in an extended Kalman filter to aid a typical tracking system.

The work is to be viewed as a feasibility study and not a complete perform-

ance analysis. To accomplish this end, two reduced order system models

will be studied using a covariance analysis as an evaluation tool. The

reduced order system model must be of low enough dimension to be readily

implemented on currently available digital flight computers — on the order

of 20 or fewer states (Ref: ).

To develop and evaluate a reduced order system model using a covar—

iance analysis computer program [supplied by the U. S. Air Force Avionics

Laboratory (AFAL)], requires that the following general objectives be met:

1. Develop the truth model representation of the actual system

dynamics.

2. Generate a tracking profile generation program to provide nominal

• data for an aircraft to satellite tracking scenario.

1
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3. Develop a reduced order system model — usually, but not always,

the truth model with certain states removed or combined.

4. Using the truth model and the nominal tracking profile, perform

a covariance analysis on the filter based upon the proposed

reduced order system model.

5. Adjust the filter system model until the desired performance is

obtained.

The objectives of this study are somewhat different than the general

guidelines listed above. Originally, the work of Mitchell (Ref 4) was to

be used as a baseline for the evaluation of a new reduced order system

model. However, close examination of his study revealed several serious

errors in the formulation of the truth model and in the generation of the

nominal tracking profile. With this in mind , the first objective of this

study then became to reaccomplish Mitchell’s work by

1. Correcting the errors in the truth model.

2. Correcting the errors found in the profile generation program.

3. Reaccomplishing the evaluation of the 12 state reduced order

filter proposed by Mitchell.

The second objective of this study remained the same: to develop

and evaluate (against the same corrected truth model) a second reduced

• order (6 state) system model proposed by Captain (Dr.) J. Gary Reid of

-~ 
-
. the AFAL. The final objective is to compare the performance of the two

• proposed suboptimal filters and to make recommendations concerning possible

• implementation and follow—on work. Because of the time limitations in

the accomplishment of this work, and the inherent limitations in applying

• 
- 

a covariance analysis to an extended Kalman filter (discussed in Chapter IV),

no attempt was made to “tune” either reduced order filter “perfectly” to

obtain the best possible performance. This philosophy is consistent with

2
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the objective of performing a feasibility study of the two proposed

filters. Sufficient tuning will be accomplished to discern differences

in performance (if any) between the two models.

Assumptions and Limitations

Because the system dynamics and measurements are nonlinear for the

aircraft to satellite tracking problem, the basic linear Kalman filter

formulation cannot be applied in this study. Several nonlinear estima-

tion techniques are available to handle problems of this type. The ex—

tended Kalman filter formulation, which linearizes the state equations

about the most recent state estimate, was chosen because of its simplicity

and low computational burden . Inherent in the application of an extended

Kalman filter, is the assumption that due to relinearizations, a linear

perturbation model driven by white Gaussian noise in an additive fashion

is adequate.

For a truly linear system, the results of a well tuned covariance

analysis depict the true behavIor of a proposed filter. For a linear

Kalman filter, the covariance propagation is not dependent on the measure—

— ments or the state estimate. Such is not the case when this evaluation

tool is used with an extended Kalman filter. Because of the nature of

the covariance analysis, the state estimate is not propagated and is Un—

4 available for the linearization process discussed above. Therefore, the

linearized state and measurement equations are evaluated along an apriori

nominal trajectory — the nominal tracking profile discussed in the objec-

tives section of this chapter. Thus, an inherent limitation of applying

a covariance analysis to an extended Kalman filter is that the apriori

nominal must be close to the actual state estimate. Otherwise, what might

occur is that a proposed suboptimal filter may perform quite well in a
fr : - -

3
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covarlance analysis and quite poorly when implemented. For the above

reasons, the results of a covariance analysis for an extended Kalman filter

must be viewed as tentative or as a small perturbation analysis. One

method — usually more expensive in terms of computer time and manhours —

for obtaining a better indication of expected filter performance is to per-

form a Monte Carlo analysis of the filter. This is most often performed

after the feasibility of a filter design has been shown with a covariance

analysis.

Due to time limitations, only one nominal tracking profile was employed

in this study. The profile which was used represents one of the worst case

conditions in that, at the beginning of the simulation, the tracker (air-

craft) lies in the orbit plane of the satellite and as the simulation

progresses, the aircraft moves orthogonal to the orbit plane. - -

Thus, the tracking geometry in this study restricts the flow of “informa-

tion” about some of the states in the filter and observability problems

are created .

The assumptions made concerning the instrumentation of the aircraft!

tracker system are as follows:

1. Essentially perfect measurements of the tracker acceleration with

respect to inertial space, coordinatized in the tracker frame are

available as the derived (specific force minus computed gravity)

output from three accelerometers, one mounted along each tracker

axis.

2. The tracking system will provide noise—corrupted measurements of

the inertial angular rates of the tracker, small angle deviations

between the boresight and line—of—sight frames (discussed in

Chapter II), and range. It is also assumed that the system has

4 
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the capability of instantaneous correction driven by the state

error estimates from the extended Kalman filter.

3. The tracker Y axis will be inertially stabilized such that it

always lies parallel to the geocentric equatorial X—Y plane

(see Figure 1, Chapter II).

4. The second proposed reduced order system model (Filter II) requires

that an inertial navigation system be on board the aircraft to

provide high precision (essentially perfect relative to other errors

inherent in the problem) measurements of the inertial position

velocity of the tracker crigin.

t 5. Essentially perfect measurements of the tracker elevation and azi—

muth angles will be available from resolvers.

5
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II. System State Equations

Introduction

In this chapter, the satellite (target) and tracker state and measure-

ment equations will be developed for the system (truth) model. Because the

initial part of this study is a follow—on to the work of Mitchell (Ref 4),

much of what follows in this chapter parallels his developments. One

modification to his truth model is in the modeling of acceleration measure-

ments. The system state equations model (as accurately as desired) the true

system dynamics. On the other hand , the reduced order system model (filter)

state equations are implemented using the best information available. Thus,

while the true acceleration of the tracker with respect to the inertial frame,

coordinatized in the tracker frame, is used in the truth model, the filter

model obtains this information from accelerometers mounted on the tracker

axes (sensed specific force minus computed gravitational acceleration).

As mentioned in the Introduction, an assumption of this study is that the

acceleration information received by the filter is essentially uncorrupted .

This assumption negates the need to model accelerometer noises in the truth

model.

Before continuing, a few words concerning the notation adopted in this

study will be considered. The matrix which transforms a vector coordina—

tized in the “i” frame into a vector coordinatized in the “j” frame will

be denoted by C~. Unless otherwise indicated , letter superscripts on

vectors will indicate coordinatization in the frame indicated by the

superscript. Where it is necessary to address individual components of

vectors coordinatized in specific frames, subscripts will be used to

indicate individual components i.e.

6 
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(
~

)‘= j  A~

LAZ

The superscript “I” indicates that the vector A is expressed in the inertial

frame. The subscripts X, Y, and Z indicate the components of A along the

X, Y, and Z axes of the “I” frame.

The remainder of this chapter will cover the physical description of

the total system and major modeling assumptions made in this study , the

development of the satellite and tracker state equations, and the system

measurement equations. The satellite state equations will not be formally

derived, as the approach taken is straightforward and the derivations of

the models of individual perturbative effects may be found by the interested

reader in any good astrodynamics book (see for instance Ref 5). On the

other hand, a complete derivation of the tracker state equations will be

given, as they reflect the modeling assumptions made in this study .

Configuration of System and Modeling Assumptions

U Physically, the system consists of a satellite (target) and an air-

craft equipped with a radar tracking device. The radar system is equipped

with three rate gyros to measure the three components of the tracker

inertial angular velocity. For the purposes of this study, it is assumed

I , that the tracker base is inertially stabilized such that the tracker Y

axis always lies parallel to the inertial X—Y equatorial plane (see Figure 1

and discussion in the next section). In addition, it is assumed that

uncorrupted tracker inertial position and velocity information is avail—

• able from an inertial navigation system (INS) on the aircraft. (This

implies that the aircraft is assumed to be a rigid body, non—collocation

7
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errors are negligible, and INS errors are small enough to be neglected.)

It is assumed that the tracking system has a control loop capable of

instantaneously correcting the tracker angular velocities according to

the optimal estimates of the rate errors provided by the extended Kalman

Filter. Imperfect measurements of the range to the target and the small

angular deviations between the tracker boresight and the true line of

sight will also be available from the radar system.

Satellite State Equations

The system model for the satellite will be presented in this section.

The dynamics model used in Mitchell’s earlier work was designed to account

for all accelerations greater than io~~
2 Km/sec2 (Ref 4:7). Because of

limitations in the standardized computer program used to perform this

covariance analysis, the solar pressure perturbative acceleration was

deleted from the system model. To account for this uninodeled effect, the

strengths of the driving noises on the satellite state equations were

increased by an appropriate amount.

The target state equations are expressed in the geocentric equatorial

nonrotating coordinate system with the X—axis lying along the line of

the mean vernal equinox (Figure 1). This coordinate system will be

considered to be an inertial frame for this application.

I
i —

- 
- / ( Figure 1. Inertial and

Rotating (R) Coordinate

- 

~
. / Systems
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The state equations describing the satellite’s motion are

*1 
=

x2 x
5

k
3 = x 6

X = A  + A + A  + A  + W
~ g~ m

1 S
1 

d1 1

* = A  + A  + A  + A  + w
~ g2 m2 ~2 

d2 
2

* = A  + A  + A  + A  + W  (2-2)
6 g

3 
m3 s2 d2 3

where

X1, X2, X3 
represent the target inertial position components along

the X, Y, Z axes respectively

X4, X5, X6 represent the target inertial velocity

A is the earth’s gravitational acceleration vector-g

A is the lunar gravitational perturbation vector
-In

A is the solar gravitational perturbation vector-s

is the atmospheric drag acceleration vector

W1, W2, W3 are zero—mean Independent white Gaussian noises included

to account for unmodeled effects such as solar pressure

perturbations and higher order gravitational terms, and

uncertainties In the models used in this study, such as

deviations in the atmospheric density .

In order to determine the strengths of the white noises, consider

the following. For a relatively small satellite — In a 200 Km circular ,

- 

~• near polar orbit — with a solar pressure coefficient equal to that of a

vehicle with a projected surface towards the sun of 10m2 and a ballistic

~~
- • coefficient of 1.5, the terms of have deterministic values of:

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- ~~~
—-
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A = —7.55 x lO~~ Km/sec
2 

— acceleration due to full gravity

10 2
A = +5.0 x 10 Km/sec — lunar perturbative accelerationm1

= +2.0 x io~~
2 Km/sec

2 
— solar gravitational perturbative

1
acceleration

Ad = —9.0 x l0 12 Km/sec2 — drag acceleration.

These values have been determined using the models proposed later in this

S section with the satellite at 30° north latitude and the sun and moon

positioned for worst case effects. The unmodeled solar pressure perturba-

tion or the satellite under these assumptions would be —2.0 x lo
.42 

Km/sec2.

Because of the aforementioned criteria of modeling all perturbative

accelerations of magnitude greater than io 12 Kin/sec2, a reasonable value

for the contribution to the distribution standard deviation of W1 due to

—12 2modeling uncertainty and higher order effects is 1 x 10 Km/sec . Taking

into account the unmodeled effects due to the solar pressure perturbations,

W1, W2, 
and W

3 
are modeled a zero mean independent white Gaussian noises

with distribution one ~ values of 3 x 10
12 

Km/sec
2.

Gravitational Field Modeling

Modeling of the earth’s gravitational field is accomplished in a

geocentric, equatorial, rotating coordinate frame. The relationship

between this frame R(X.~, ~R’ 
Z
R
) and the inertial I(X, Y, Z) coordinate

frame used in the previous section is shown in Figure 1. The transforma—

tion matrix from the rotating (R) to the inertial (I) frame C~ is defined

as

rcose —sinG 0

I I
C
R 

sinG cos8 0 (2—3)

[o 0 1

10

. 

.

. .~~~~~— iI~I~
-
~ !L.

i
I.i~I. 1L . ... ~ 

-
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U where

and

8 = local sidereal time at t = 0

w = earth’s angular rotation rate (7.292 x lO~~ rad/sec)

t = time.

The potential model that was chosen includes tesseral, zonal, and

sectorial harmonics up to and including (6,6) (Ref 5:173—180).

The gravitational potential U(X.
~
,YR,

Z
R
) in the R frame is (Ref 5,175)

U = + Z 

( 

~ ~ (m) 
~~
!
~±cCk m  

cos(mX
E
)

L k 2m ’O

+ 5k,m sin(mXE)])
] 

(2-4)

where the terms In Equation (2—4) are defined as follows:

P
(m)

(Sifl~) are Legendre functions:

~(m)(1~~) — (1 — 1 4~)
m/2 dm 

m ~
P
k
(sin

~
Y

d(sin4)

and Pk(sin4) is the Legendre polynomial with argument sin~
.

m Is the mass of the earth (5.983 x lO24Kg)

ke 
is the gravitational constant for the earth (k

2 3.986 x lO~ Kxn3/sec2)

U r Is the radial distance from the earth’s center to the satellite

:4 

Is the geocentric declination angle of the satellite

11
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X
E 
is the longitude of the satellite with respect to the prime

meridian.

S and C are the harmonic coefficients for the gravitational
k,m k,ni

potential such that Ck O  = _J~
O) 

and Sk O  0 and

the J~
O) 

coefficients are the zonal harmonics.

C and S are termed tesseral harmonics if in # k , m > 0 andk,m k,tn

sectorial harmonics if m = k (Ref 4:115—117).

The components of the gravitational acceleration vector along the

~~~~
‘ 
~~ 

Z
R 
axes — Ag . Ag 

A~ — can now be determined by

A r ~L

( A ) R A  A = 
~~~~~

— (2—5)

A

and the gravitational acceleration vector in the inertial frame can be

determined from

(~g
)1 = C~(~~)

R 
(2—6)

Lunar and Solar Perturbative Accelerations

The perturbative accelerations on the satellite due to the lunar and

solar gravitational fields will be discussed In this section. Because

the time elapsed during a complete tracking pass is small when compared

to the inertial dynamics of the moon and sun, they will be considered

• stationary for the purposes of this study.

‘ I
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The lunar perturbative acceleration vector in the inertial frame is

denoted by (A) 1
, with the components along the inertial X, Y, and Z axes

denoted by Am1, 
~~2’ 

and Am
3 
respectively. The position vector of the

moon in the inertial frame is denoted as

xml
(Rm)1 = Yin (2—7)

Zu~J

The position vector of the moon relative to the vehicle is denoted by

(Rms)1 — (Rm)
1 

(Rs)
1
~~ ~ Ym — X 2

[Z
m _ X

3

and the perturbative acceleration on the vehicle (satellite) due to the

moon’s gravitational field is

X m - X
1 ~~

3 3r rins m

(Pj~)
1 

~~ 

Ym - 
- 

Yin (2-8)
3 3r rins in

Zin - X
3 Zm

3 3r rins m

where

gravitational parameter of the moon ( 4 .903 x lO~ Kin3/sec2)
- - Kiss Xm - X

1

13
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Yms = Yin - X2

Zms = Zm — X
3

r = (Xis + Yi~s + Z~s)
l
~
’2

2 2 2 1/2
r = (Xm+Ym+Zm )
in

X1, X2, X3 
= the satellite position in inertial frame.

In an entirely analogous manner the perturbative acceleration due to

the sun’s gravitational field is

A

~~sun~
’ 

~~ 
(2-9)

The position vector of the sun In inertial frame is defined as

sun

(R )I = y (2—10)—sun sun

I z
L sun

and the perturbative acceleration on the vehicle due to the sun’s

gravitational field is

x - x  xsun 1 sun
3 3r r
ss 5

~ -sun~
’ 

~ ~ 
~um 

1 
2 

— ~sun (2-fl) 

Usun 3 sun
3 3r r- • ss 5

14 



_ _ _  
-—5-- 

-=-~~~~~~~ -S~~-

where

= gravitational parameter of the sun (1.327 x lo
ll Km3/sec2)

x = X  — x
sS sun 1

y Y -xss sun 2

z = Z  — xss sun 3

2 2 2 1/2r =(x +y +z )ss ss ss ss

2 2 2 1/2
r = (x + y  + z )

5 5 5 5

Acceleration Due to Drag

Drag accelerations on the satellite are modeled as a function of

the height above the earth’s surface, the velocity of the satellite

relative to the rotating atmosphere and the vehicle ballistic coefficient :

(Ad )~~ = -
~~ pBJV~~ (!A)’ (2—12)

where

(Ad) 1 = drag acceleration vector in inertial frame

+ w xe 2

( V ) T 
= x5 

— w x 1 
= velocity of satellite relative to rotating

[ x6 atmosphere

B = ballistic coefficient of the satellite

• p = atmospheric density, modeled as p =

= mean s~a level atmospheric density (1.376229 Kg/Kin
3)

6 = altitude atmospheric density decay rate (1.395 x 1O 4/Km)

• h = (x~ + x~ + x~)~
I’2 

— R = height above mean earth radius

R = mean earth radius (6.37817 x 1O3 Kin)

— angular rotation rate of the earth.

4~~~~ ;
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While the ballistic coefficient of the vehicle is generally not

known, it is known that for a nonthrusting vehicle it will not change

significantly ‘1uring the time of a tracking pass (an attitude maneuver

could affect it by changing the surface area along the velocity vector).

It is assumed in this study that the ballistic coefficient can be

adequately modeled as a random bias (a random variable that has 1OO7~

correlation in time) U

= 0 (2—13)

with an initial condition as a Gaussian random variable.

Tracker State Equations

While the target state equations are straightforward and represent

a commonly used model for satellite dynamics, the tracker state dynamics

and measurement equations are very dependent upon the modeling assump—

tions made in this study. Therefore, a full development of the tracker

dynamic state equations and then the tracking system measurement equa—

tions will be given in this section.

The geometry of the tracker is shown in Figure 2.

L 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

TARGET

Figure 2. Tracker and Line—of—Sight Geometry

16
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It is assumed that the tracker base is inertially stabilized such

that the tracker elevation axis, 
~T’ 

always lies in the inertial X—Y

plane. The axis is along the boresight of the tracker and the Z,,1~

axis completes a right—hand orthogonal system. Assuming that the tracker

base is inertially stabilized as above, the two Euler angle rotations

needed to go from the inertial to the tracker frame are dependent only

upon the relative position vector from the tracker to the target, ex-

pressed in inertial coordinates. The first Euler angle rotation is by

an angle 8 about the inertial Z axis as shown in Figure 3.

Z

/x~~~~~~~~~~~~~~~

Y

Figure 3. First Euler Angle Rotation

The subscript “a” indicates an intermediate frame and the transformation

a
U matrix C1 is

cosG sinG 0

C~ = — sin G cosG 0 (2— 14)

L o  0 1]

Because of the constraint on the 
~T 

axis, the next Euler angle rotation

is by an angle 4 about the Y axis — leaving the axis in the inertial

17
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XY plane. A planar view of this rotation is shown in Figure 4.

Z~~~~ Z
I Z

T

Figure 4. Planar View of Second Euler Angle Rotation

The transformation matrix between the intermediate “a” frame and the

tracker “T” frame is

CO5I~I 0 -Sj flI~

c
T

= 0 1 0 (2—15)

s1n4 0 cos4

Therefore , the Euler angle transformation from the inertial to the tracker

(T) frame is given by C~ as is shown in Figure 5.

[cosGcos~ cos4sinG _sin4l

C~~ 
= cT c~~ —sinG cos8 0 (2—16)

[cosesinc~ sinc~stnO cos4 ]

The line—of—sight (LS) coordinate frame, though not directly discernible

to the user, is widely used in pointing and tracking problems. The LS

and T frames have the same origin; however, the LS frame has one axis

18
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Y~~~~ Y~

x

Figure 5. Inertial and Tracker Frame Orientations

pointing exactly at the target while the T frame is misaligned from

this line—of—sight. In this study we will assume that the LS X—axis

points directly at the target as was shown in Figure 2. For perfect

tracking, the LS and T frames are aligned i.e. C~ = c~f. Let

denote the position vector of the satellite with respect to the tracker

expressed in the inertial frame:

[Rx

- -
. 

(!ST )’ 

~ 
R~ (2—li)

LRZ

Coordinatizing this vector in the LS frame

— C
~~
(
~~T
)’ (2—18)

19
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[Ri
However, by definition of the LS frame 

~~~~~~ 
= 
[0 

where R is the

- LS Trange between the target and the tracker. Remembering that C1 C1

(for perfect tracking C~~ 
= C~ )

R cosGcosc~ sinOcos4 —sine

O —sinG cosG 0 R~ (2—19)

0 cos8sin4 sinGsinc~ cosp Rz

then

~
R
~
sinG ÷ R~cosO = 0 - -  ç = tanG

or

8 = tan~~(~~) > 0

( Quadrant 
~2—2ODetermination

G = t a n ~~~~~~+7r R
x

< O  5
Also,

R
xcosGsin$ + R.1

sinOsinlf + R2cos4 
= 0

which implies,aafter some algebraic manipulation, that

-Rztanq = 
2 2 1/2 (2—21)

- - (R~~+ R y )

- 
- 

and therefore

-l [(
~~~~~~~~~ 2 1

= ~~~ L~ 
+ 4 + R~)l/2J 

Rz 0 
(~ Quadrant (2-22)Determination

Rz
> O  )
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For the suboptimal filter models used in this study it is assumed

that the angles ~ and 0 will be obtained directly from resolvers. How-

ever, the relationships derived above are used in the linearized equa-

tions used for the extended Kalman Filter formulation and in generating

simulated resolver data in the covariance analysis of the proposed sub—

optimal filters.

In practice, perfect tracking in which the tracker X axis aligns

perfectly with the LS X axis will not be possible. The misalignment

between the tracker and LS frames can be defined in terms of two Euler

angle rotations. In a manner entirely similar to the previous deriva—

tion, the Euler angle rotations are ~n about the ZT axis and ~c about

an intermediate 
~~ 

Y
15) axis as shown in Figure 6 and,

[cos~ncoscsc sincs~cossc _sincscl
C~~ = —sin Sn coscS ri 0 (2—2 3)

[cosisnsinc sincSrlsinlSc cosSc J
ZT z

¼ LS

~LS

Figure 6. Tracker and Line—of—Sight Frame Orientations

21
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It is reasonable to assume that ISc and c5 ,i are suff icient ly sm all — even

at the beginning of the track — to use the small angle approximations

sinI~C IS~~ sincS~

coslS c 1 costSn 1

In which case , Equation (2—23) becomes

1 ~~TI —~c

C~~ = —~n 1 0 (2— 2 4 )

~5c 0 1

We now seek relations for the t ime rate of change of ~~ and Sc .

The cross product matrix for writing [W LS]! ~~~ 
X V is descr ibed

in terms of the angular velocity of the LS frame with respect to the

inertial frame coordinatized in the LS frame as the following skew

symmetric form

0 
~~

LSz 
WLS

(W LS] = WLS 0 uLS

WLS WLS 0

where the elements of the matrix represent angular velocities about the

particular axes subscripted . In a similar manner, [WT
], in terms of the

angular velocity of the T frame with respect to inertial space coordi—

natized in the T frame is

22
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From Broxmeyer ’s work we know that (Ref 13:26—27)

T TCLS 
= CLS [uLS ] — [

~ T ]CLS

Premultiplying by C~~ yields

= E W LS I - C
~
5
twT)C~S 

(2-25)

where — using Equation (2— 24)

[0  —cS~ 6c

~~s 
151) 0 0

F L~ 
0 0

Then

15n15n + 15c15c -15n 15c 1
C~

SC~ S 
= 

~~~~~~~~~~ —6rp5 c ( 2— 2 6 )

— t S€ — 
~~~~~ ISC 15c ~cJ

If second order terms are neglected then Equation (2—26) becomes

0 -15~n 15c

C~:
S
~~ s 

— 1ST) 0 0

0 0

23
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which is equal to

O —
~~~ w 1 15~

W
LS~

CT W
T
CLS 

= 

~~:: -WLs] - H ~
o WT 1 —151 ) 156

Z Y
0 —w 15~ 1 0

z Tx
—w 0 — cS c 0 1Tx

0 (w + SCW T —w (WLS WT + 15T)W
T ~Tz x z y y x

= — (w +15cw —w ) 0 ( 15nwT 15CWT ~~T WLS 
)

Z X Z Y Z X X
(WLS ~T 

+IST1WT ~ ( tS n wT ISEu
T ~~T 

WLS 
) 0

Y Y X Y Z X X

Using the above equation with Equation (2—26) it is evident that

151) = WLS 
— WT 

—

z z x

156 = wLS 
— (kI

T + IST IuT (2—27)
Y Y X

wLS 
(kI
T 

+ 151)W T — 15CW
Tx x Y Z

The first two equations of Equations (2—27) describe the time propagation

of the error misalignment angles 15c and 51). The last equation in (2—27)

will prove useful in the following development of the time evolution of

the line—of—sight angular velocity vector

In order to determine expressions for the time rate of change of the

line—of—sight angular velocity vector, consider the position vector of

24
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the satellite with respect to the aircraft 
~~~ 

Differentiating

twice with respect to time and applying Coriolis ’ Theorem each time

yields

_ _ _  = 

::
~~

T
~ 

+ ~~~~ X ~~~~~ + 

~LS 

~

+ 
~LS ~ ~~LS ~ ~-ST~ 

(2-28)

where the vertical bar indicates the frame in which the differentiation

takes place. Coordinatizing Equation (2—28) in the LS frame and defining

the inertial acceleration of the satellite relative to the tracker along

the line—of—sight X, Y, and Z axes as

(:~~sT ~ LS 

rAre~ ~ ~~~~~~~ ~~~atellite~~

5 
- 

~~racker~~
8

LA~~1Z

and 

R

A [:1
[d

~~T~~~

] 

LS A 

[

u/

ri where V
r ~ 

= range rate

1- ‘
- the following is obtained

F-
25
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A 0 1 
- 

o -R(w2 + w 2 )
rely r LS~ LSz

Arely 
= 0 + 2 V

r
WLSZ 

+ RwLSZ 
+ RW

LSX
W

LSY 
( 2—29 )

ArelZ 
0 V

r
wLSy~ 

_Rw
LS~ 

- 

RWLSX
wLSZ 

-

Examination of Equation (2—29) yields the following scalar state equa—

tions

-A 2Vw
rel rLS

~LS~ 
= 

R 
- — 

R + WLS WLS 
(2-30)

A 2 V wrely r LSz
WLS 

= 
R 

- 

R 

— wLS wLS 
(2-31)

R =- V (2—32 )

= A 1 + R(w~5 + w~5 ) 
(2-33)

Defining (A)
T as the inertial acceleration of the satellite rela-

tive to the tracker, coordinatized in the tracker frame, Equation (2—24)

can be used to obtain

A

(A ) LS 
= cLS(A )T = cLS A

rX 
(2—34)

—rel T —r T

Ar
~

thus, it follows that

A = A + cS~A — ISCA ( 2— 3 5

- 4  rel r r rx x Y Z

26 
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A = A — 15r~A (2—36)rely r~ r
~

A = A + ócA (2—37)
rel7 r

~ 
r
~

Equations (2—30,31,33) now become

-A - 15cA 2Vw

~LS~ 
— 

rZ 
R 

r
~ - + WLS wLS (2— 38 )

A - 1 5~A -2V wr~ r
~ 

r L S
w
LS 

= 
R 

— 

R 
— WLS WLS (2—39)

V = A + 15~ A — 15cA + R( w 2 
+ w2 ) ( 2— 4 0 )r~ r

~ 
LS~ LS

~

Using the third of Equation (2—27) to eliminate W
LS 

from Equatiots (2—38,39)
x

yields

A 2Vwr rLS

~LS~ 
= - 

R 
- 

R 
+ wLS WT + { A

+ t
~
1LS t t S T.l w

T 
— 15ew ]} ( 2— 4 1 )

z y Tz

A -cSrA

= 
R 

- 2
~
T
rwLSZ 

— WLSY
wTX 

+ ~ R

— W
LS 

[15flwT 
— ISCW

T 
]} (2—42)

Y Y Z

The bracketed {
~

} terms in Equations (2—41,42) represent effects

k due to the misalignment between the tracker and LS frames. For the case

of perfect tracking (ôc—15n—0) these terms equal zero.

27
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Measurement Equations

The tracking system has the capability of measuring the inertial

angular velocity of the tracker, the two angular deviations 15c and 15~ ,

and the range between the tracker and the target. The models used in

the measurement equations are developed in References 1, 6, and 7.

The inertial angular velocity of the tracker is measured in the

tracker coordinate frame by three rate gyros, one mounted along each

tracker axis. While the system (truth) model propagates the true line—

of—sight angular velocities and 
~~ 

[Equations (2—41,42)1, meas-
Y z

urements are available only in the tracker frame of W
T ~

1T 
and w

T- x Y Z
Therefore, measurements of (kI

T 
and w

T 
are considered by the ~i1ter to

Y Z
be pseudo—measurements of and WLS which are not available. The

Y Z

dominant effects which contribute to errors in the rate gyro measure-

ments are scale factor errors, drift errors, g—sensitive mass unbalance

errors, misalignment errors, and white noise (V1). A suggested gyro

rate measurement model (Ref 7:300) is given as (tracker x—axis only)

3
= w + B w + Z B A + C + [~C w ] + V (2—43)wMX Tr

~ ~sf~ Trx 
~ 1 

~\ 
gma—Tr x 1

where

= measured angular velocity along axis.

~
mT 

= true angular velocity along XT axis.K
B = constant bias gyro scale factor.

Bg 
= coefficients (along x, Y, Z directions in tracker frame)

of the g—sensitive mass unbalance to which the gyro is subject.

Ai 
= accelerations (A,~ A,~ , AT ) of the tracker origin with respect

K Y
to inertial space.

C = gyro drift rate along X
T axis.
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AC = the error angle transformation matrix resulting from the
gina -

misalignments of the three gyros.

0 —B B 1gina 12 gina13
AC B 0 —B Igina gina21 gina23

-B B 0gina31 gina32

B a 
= gyro misalignment error angles between the desired gyrogm

coordinates and the actual gyro coordinates (mounting

errors).

[ . ]~~, i = x,y,z = i
th component of the vector f

V1 
= additive zero mean white Gaussian noise to account for unmodeled

effects such as aniso—elastic drift, quantization error, etc.

Because it shows a certain degree of time correlation, C , the gyro

dr i f t  component along the tracker X—axis , is mode led as an exponentially

time—correlated random process.

Suppose that the gyro in question has been studied in the laboratory

and the drift along the X—axis has been determined to have a steady state

standard deviation of radians per second , with a process correlation

time of -t
4 
seconds. The question then becomes one of modeling this random

variable as the output of a linear system driven by white Gaussian noise.
U 

After this is accomplished , this model is augmented to the previously

modeled satellite and tracker state equations. A zero—mean exponentially

time—correlated Gaussian random process of variance and correlation

time can be modeled as the ou tput of a f i rst order lag with lag

parameter 64 
= 1/T4, dr iven by a zero mean wh ite Gaussian noise of unit

strength, as shown in Figure 7:

29 
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Initial Condit ion

U

4 
- 4 __ 

c 
U

L 1641 1

Figure 7. Gyro Drift Modeling

The state equation fo r C is

C = -6
4

C + ~~~~~~~~~~~ c1~~ U~~ 
(2-44)

The autocorrelation f unction of C is the desired decreasing exponential

2

EfC (t)C (t + r ))  = ~4
e (2—45)

The remaining coefficients in the rate gyro measurement equation are

modeled as random biases.

Initial Condition

~~~~~~~~~~~~
Figure 8. Random Bias Modeling

By using this model, the filter is “told” that the value of the variable

does not change in time, although you do not know its magnitude apriori

(Ref 3:204). This represents a reasonable model for the remaining

coefficients because while they may not be constant on a long terms basis ,

they will remain essentially constant during a ten minute tracking pass.

: 
30
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As seen from Figure 8, the general form of the state equation for these

coefficients is X = 0. The equation which desc r ibes the way the

cova riance propagates in time is

P = 0 (2— 46)

This indicates that the variance of the coefficient does not change in

time and that the initial co’~iition on P represents the variance of the

coefficient about its mean.

The measurements of the tracker angular velocity about the tracker

Y and Z axes are modeled in a manner identical to w . The values used

for the standard deviations and the process correlation t ime in the gyro

rate measurement model are representative of a typical aircraft rate

gyro (Ref 7:302):

Steady State Process
Ouantity Standard Deviation Correlation Time

Gyro drift 1 x lO
_ 6 

rad/sec 3600 sec

Gyro scale factors 5 mc l0~~
—6Gyro mass unbalance 3 x 10 rad—sec/m

coefficients

Gyro misalignment 1 x l0~~
U coefficients

Additive white 1 mc ~~~ rad/sec 0
Gaussian noise (V

1
)

The error misalignment angles 15e and 15n are measured in the tracking

coordinate frames. Effects which can degrade these measurements are:

deterministic scale factors , scale factor errors , angle track biases ,

and angle track scintillation noises. No attempt has been made to model

- - 

- :. noises that are specific to a typical radar or laser ranger. Rather,

31
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the measurement model proposed below is representat ive of a large class

of measurement devices (Ref 6 :14)

= K
l
(156T 

÷ + CSF 
156
T ÷ BAT + V4 (2—47)

= K
2
(1511T ÷ S ) + CSF 15

~T 
+ BAT + V

5 
(2—48)

11 1)

where

= deterministic scale factors.

15CTr~ 1SflT = true misalignment angles .

S ,S = angle track scintillation noises .
£ 1 1

CSF ,CSF 
= scale factor errors.

BAT ,BAT 
= angle track biases.

V
4
,V

5 
= zero mean wh ite Gaussian noises to account fo r unmodeled

ef fec ts .

1~oth the angle track scintillation noises and the scale factor errors

are modeled as exponentially time correlated random variables. Scintilla-

tion noise is dependent upon various factors such as atmospheric propaga—

tion, and amplifier characteristics which change as a function of time

during a typical tracking pass. Scale factor errors are a function of

certain tracker variables that undergo a change with respect to time

(Ref 6:15). Therefore, in a manner similar to Equation (2—44), we write

S = — 6
1
S
6 

+ ~~~~

+ ~~~~~~ a2U2
(2—4 9 )

CSF 
= _ 6

7
CSF + v’~~ a7U7

CSF = _B
B
CSF + J26~ a8U8

32
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Where U1, U2, TJ
7
~~ U

8 
are zero mean white Gaussian noises with unit

variance, and the 6’s and a’s represent the inverse of the process

correlation time and the standard deviation of the process respectively.

The angle track bias coefficients BAT and BAT are modeled as random
C - l I

biases — initial value unknown but describable as a Gaussian random

variable with mean zero and a known variance. The values used for the

process standard deviations and correlation times are given below. For

the purposes of this study K
1 
and K

2 
are assumed to equal one. (Ref 4:149)

Steady State Process
Quantity Standard Deviation Correlation Time

Angle track 1 mc 10 6 rad 10 sec
scintillations (S , S )

C T )

Angle measurement 300 sec
scale factor errors
(C8~ ,CSF 

)
C ~ —6Angle track bias 2 x 10 rad

(BAT ~~
BAT ~

C ~ —6
Additive white noise 1 x 10 rad 0

The model of the measurement of range is very similar to those of

the angular deviations. Uncertainties in the measurement of r ange ar e

due primarily to scintillation noise and bias errors .

RH = KR~~Tr 
+ 5R~ 

+ B
R + V5 (2— 50 )

• where

= deterministic scale factor.

= range scintillation noise.

RTr 
= true range.

BR 
= range bias.

:, 
V
6 

= zero mean white Gaussian noise to account for unmodeled effects.

U r .  ~~~~~~~~~~~~~~~~~~~~~~~ - - -
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The range scintillation noise is due to atmospheric effects and

errors in the digitization of the returned signal . The atmospheric

ef fec ts  in particular are a direct function of the elevation angle of

the tracker — less scintillation error when the satellit e is direct ly

“overhead” and greater errors at the horizon. The scintillation error

will show a degree of time correlation during a tracking pass and an

exponentially time correlated random var iable is used to model this

state:

= 83
5R 

+ /i~•ij 1Y3U 3 (2—5 1)

where U 3 is a zero mean white Gaussian noise with unit variance, and

63 and 03 are the inverse of the process correlation time and its standard

deviation respectively. The range bias is modeled as a random bias .

(Initial value unknown, but describable as a zero mean Gaussian random

variable and known variance.) Values used for the standard deviations

and correlation times are shown below (Ref 4:150).

Steady State Process
Quantity Standard Deviation Correlation Time

Range Scintillation .020 Kin 10 sec

Range bias .005 Km

Additive white noise .005 Km 0

• Summary of State and Measurement Equations

After augmenting the satellite and tracker state equations with the

noise states needed to define the measurements, the truth model contains

a total of 42 states. They are repeated here for clarity.
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State Equations

(1) k1
=x 4

(2) x2 = x5 
Satellite inertial position

(3) k3
= x

6 /

(4) * = A  + A  + A  + A  + W4 g1 
151 ~l 

d1 
1

(5) * = A + A + A + A + w Satellite inertial velocity

~ g~ in
2 ~2 

d2 
2

(6) * = A  + A  + A  + A  + W
6 g3 

in
3 

53 
d
3 

3 /
-A 2Vw

(7) 
~~LS~~ 

= 
R 

- + WLS W
T +fZ~ A + wLS

— 15CW
T I Tracker angular velocity

y z)

A 2V w (-cS~Ar.1~ 
r L S

~ 
r~

(8) uLS 
= 

R 
- 

R 
- wLS wT R 

- (IlLS

[15nwT 
— ISCW

T 
I ~ - Tracker angular velocity

y z )

(9) 15n = — wT — 66wT 
Error misalignment angle

z z x

(10) 6c = ILS 
— W

T 
+ 15nwT 

Error misalignment angle
y y x

(11) ~ 
= V Range

(12) ‘~T = A + 15T)A — 15cA + R(w
~~ 

+ w25 ) Range rate
r r~ 

r~ r~ 
,,
~ 

L z
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(13) X
13 

= 0 Satellite ballistic coefficient

(14) = — 6i
S + /1~~ a1U1

Angle track scintillation

(15) S = -62S1) 
+ V’~~~~~~~ a

2
U
2 
)

(16) 5R 
= _6

3SR 
+ ~~~ a3U3 

Range scintillation

(17) ~ 
= — 8

4
C + ~~ a~~U

(18) 
~g 

= ~65
C
g 

+ V’~~~ a5U 5 Gyro d r i f t

(19) Cg = 66Cg~ 
+ ~~~~ a6U6

(20) CSF 
= 
~
67CSF 

+ i~ç a7U7 
-

Angle measurement scale f ac tor s

(21) CSF 
= 68CSF + /~~~~~

-

~~

- 

a
8
tI

8 
- 

U

(22) ~~ = 0  
-

Coefficients of gyro mass unbalance (nine equations)

(30) 
~ = 0

(31)

(32) ~ ma 
= 0 Gyro misalignment coefficientsg 

13 (cont’d on next page)

(33) 
~~~21 

= 
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(34) B = 0
gina23 

)
(35) ñ = 0 Gyro misalignment coefficients (cont’d)

gina31

(36) ~ = 0
gina32

(37) BR = 0 Range bias

(38) BAT O 
-

Angle track bias

(39) BAT = 0  )
1)

(40) B = 0

(41) B = 0 Gyro scale factors
gs

(42) ~ = 0

Measurement Equations

3

- (1) = w  + B  w + E B A + CwMX Tr
~ 

gsf ~ Tr
~ ~~~ i

1=1 i

-
, I + [AC w I + V measurement of w

gma—Tr X 1 Tx

3
(2) w = w  + B  w + I B  A + C

M.~ Tr~ gsf~ Tr~ gm~ i
i=l i

+ fA C gmaS~~ l y + V
2 

measurement of

37
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3
(3) w = (Ii + B  w + E B A + C

Mz Tr
~ 

gsf~ Tr~ 
i

i=l i

+ [AC w ] + V measurement of wgina—Tr Z 3 Tz

U where

‘ 1 
A1 

=

A2 
= AT Acceleration of tracker origin in tracker coordinates

Y

A3
= A .1

(4) ~~~~ = K
l

(15n
T 

+ S )  + CSF 15
~~~ T 

+ BAT + V4 measurement of 15~
- 1) 1)

(5) 15C
M 

= K2
(156

T + S ) + C8~ 15C
TT 

+ BAT + V5 measurement of 15c
C C

(6) RH I<R~~rr 
+ SR) + BR + V6 measurement of R

Only measurements (2) — (6) above correspond to measurements of

states of the system. There is no state equation relating the motion

of the tracker about the line—of—sight X—axis.because angular velocity

about the line—of—sight has no significance for purposes of tracking.

Thus , WT is not measured because it is considered to be a system

parameter.

F:, 
38
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III. Kalman Filter Formulation

Introduction

In this chapter, the propagation and update equations for both linear

and extended Kalman filtering will be presented . Listed below are some of

the definitions used in this chapter.

X(ti) 
= system state at time t~ (n—vector)

X(t ) = filter estimate prior to incorporating a measurement at

time t~~ (n—vector)

X(4) = filter estimate after incorporating a measurement at time

(n—vector)

~~
(t i+i, t j ) = state transition matrix from time t~ to time t~41

P(t ) = filter covariance matrix of state X(ti), 
also of the error

in the estimate of X(t~)~ prior to incorporating a measure-

ment at time t~ (nxn matrix)

P(t~) = filter covariance matrix of state X(ti
), also of the error

-
- in the estimate of X(ti), 

after incorporating a measurement

at time t~~ (nxn) matrix

F(t) — system dynamics matrix (nxn), defined for all time

G(t)  — system input matrix (nxs), defined for all time

39
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w ( t )  = system dynamics white Gaussian noise s—vector , independent

of X(t ), where E[w(t)] = 0, E[w(t)W
T(T)] ~ Q(t)S(t 

— r).

w(t) is assumed to be zero mean, Gaussian, and white

(uncorrelated in time) with Q(t) an sxs positive semidefinite

symmetric matrix that is in general piecewise continuous in t.

H(t~) = system observation matrix at time t~ (mxn)

R(t
i
) = positive definite measurement noise covariance matrix (mxiii)

Z(t
1
) = m vector of measurements at time

K(t
i) 

= Kalman gain matrix (nxm) defined at time t~~

V(t
1
) = zero mean , white Gaussian , measuremen t noise sequence

independent of w(t) and X(t ) for all time (m vector). The

statistics of V(t1) are E[V(ti)} 
= 0, and

~) R(ti) t~ =

Et !(t i)1(t j )I  = ) 0 otherwise

U Linear Kalinan Filter Formulation

The linear Kalman filter formulation presented in this section is

for a continuous time system model with discrete time updates. Assume

that the system modeling has been completed and that the state vector

X(t) satisfies the vector stochastic differential equation

*(t) F(t)x(t) + G(t)w(t) (3—1)
- - 
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The state equation is propagated forward in time from the initial condi-

tion X(t ). Since the exact initial condition may not be known, it is

modeled as being a Gaussian random variable with mean X and covariance

P .
0

E[X(t )] = X~~ EUX(t )— ~ ,] [X( t ) — ~~)
T} = P

0 
(3—2)

It can be shown (Ref 3:157—163) that, under the assumption that X(t )

is either deterministic or a Gaussian random variable, the solution

X(t) to linear stochastic differential equations such as Equation (3—1)

is a Gauss—Markov process , i.e. the conditional density of X at time

based upon all realizations of X through time t~~ 1 is both Gaussian an d

completely determined by the process value at t~~1. Because the condi-

tional density is Gaussian, it is completely specified by its mean and

covariance (Ref 8:92). The initial covariance matrix P may be positive

semidefinite, admitting exact knowledge of the initial conditions of

some of the states.

Measurements are available at discrete time points and are assumed

to be of the form of a linear combination of the states and corrupted

by a white Gaussian sequence (Ref 9:2):

z(t
i) 

= H(t i) X (t i
) + V(t i)

The state estimate propagates between measurements (from tIme t~_1

to time t )  according to

- X( t ) = ~(t~ ,t~~1)X(41) (3-4)
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and the covariance propagates according to

P(t~) = 
~
(tj,ti l )P(4l

)1
~
1T(ti

,tjl)

ti T T
+ 
~~ 

~(t1,-r)G(-r)Q(r)G (r)~ (t1,r) dT (3—5)
i—i

At measurement time t~ , the estimate is upd ated according to (Ref 3 :233 )

X(4) = x(t~) + K(t1
)[~~ — H(ti

)X(t
~
)I (3—6)

P(4) = P(t1
) — K(ti)H(ti)P(tj) (3—7)

where

K(t i) = P (t~ )H T(t i) (H ( t i)P(t ~ )H T (t i) + R(t
i

) 1
~~~~~ 

(3—8)

where [ I
l indicates the inverse of the bracketted matrix and the

realized value of the measurement Z( t 1) at time t~ .

Under the assumption that the adequate system model is linear, and

that the dynamic driving and measurement noises are Gaussian and white ,

the Kalman f i l ter  provides the optimal estimate X(4) of the state of

the system (Ref 3:66 ,214), relative to many optimality criteria , i.e.

is the mean, mode, and median of the conditional density of

conditioned on the entire measurement history through time t~~~. The

covariar1ce of the error committed by using X(4) as the estimate of the

state at time t~ is denoted by P(4). It should be noted that for a

- - - linear estimation prob lem , the covariance propagation [Equations (3—5 ,7 ) ] ,
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while depending on R(ti
) ,  is independent of the measurements ~~~~~~. This

will no longer be the case in the extended Kalman filter formulation.

The assumption that the system can be modeled as being driven by

white Gaussian noise is often well founded on two accounts. First, it

has been foun d from practical experience that the Gaussian distribution

provides a reasonable approximation to observed random behavior in certain

physical systems (Ref 8:92) . Secondly, the central limit theorem

(Ref 8:96) states that if the random phenomenon that we observe at the

macroscopic level, is due to the superposition of an extremely large

number of independent random processes on the microscopic level, then the

macroscopic phenomenon can be adequately modeled as a Gaussian random

variable (Ref 3:40).

Extended Kalman Filter Formulation (Ref 9:179—189)

The extended Kalman Filter formulation is commonly used in estima-

tion problems in which the adequate state and/or measurement equations

are nonlinear rather than linear. Consider , as before , a system that is

continuous in time with measurements at discrete sampling times. Assume

that the system state satisfie.s the following nonlinear vector stochastic

differential equation

*(t) = f [X ( t ) , t I  + G(t ) u( t )  (3—9)

where f (X ,t) is a nonlinear function of the states and time (in general

f could also be a function of deterministic control inputs u ( t ) ] ,  and

. the vector u(t) of zero mean white Gaussian driving noises enters in a

linear additive manner. The initial condition of X(t ) is modeled as a
- 

Gaussian random variable with mean X and covariance P . Noise corrupted
—0 0
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vector measurements of a (possibly) nonlinear function of the states and

time are available at discrete times t~~ as

Z ( t
i
) = h[X(tj),til + v(ti

) (3—10)

where V (t~ ) is a zero mean white Gaussian sequence with covar iance kernel

(Ref 9:180).

(R(t ) i j
E(V(t

1
)V(t~ )] = 1 ~ (3—li)

0 otherwise

To better understand the concepts upon which the extended Kalman

f i l ter is based , let ’s f i rs t  look at the derivation of a linearized Kalman

filter. There exists a deterministic nominal trajectory ~~~~~ ( t )  such that

X(t) = X + ~5X(t) (3—12)

where ~X(t) represents the perturbation of the state from the nominal and

* (t) satisfies U-n

* = f [X (t), t ) ;  x (t ) = X (3—13)5-n — —n —n 0

and X represents the initial condition of the state on the nominal
0

trajectory X(t ). Associated with the nominal trajectory is a set of

deterministic measurements at t~~.

z(ti
) h[X (t

i),ti] 
(3—14)

— __
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From Enuations (3—9,12,13) it is evident that

(*(t) — * (t ) I  = f (X(t),t] — f [x  (t) , t I  + G ( t )u ( t )  (3—15 )

The variational equation, which is a first order approximation to

Equation (3—15), is found by expanding Equation (3—15) in a Taylor series

about the nominal trajectory and neglecting all but first order terms

(Ref 8:58).

I5*(t) = F [t;X ( t f l S X( t )  + G(t)w (t) (3—16)

where F [t ;X ( t ) 1  is the matrix of partial derivatives of f with respect

to x evaluated along the nominal trajectory X (t)

~f[X (t),tJ
F(t;X (t)] (3—17)

X(t )  = 
~~~(t)

Note that F is dependent upon X because it is evaluated along X (t).-n -n
- 

0
In an entir ely similar manner , the linearized measurement equation for

U the error in the measurement at time t
1 
is developed in the following

l equations

Z ( t i) = Z ( t i) + SZ( t
1) 

(3—18)

then from Equations (3—10,14)

[z(ti
) — Z ( t

i

) ]  = h(X(t
i
),ti] 

— h[x (t i) , t i l + v(ti) (3—19)

.1
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and

Sz( t i
) = H( t

1
~~X(t ~~ ) I~~

(t
i) + V(t

i
) (3—20)

where H [ t
1
,X(t

i
)] is the matrix of partial derivatives of h with respect

to X evaluated along the nominal tralectory X (t ) (Ref 9:182).- m l

A Th[X(t1),t1
]I

H [t i ,x(t i) I  = — (3—21)

X(t1) 
=

As long as the partial derivative matrices H and P exist, one can

apply linear filtering theory to the linearized perturbation equations,

Equations (3—16 ,20).  However , it must be kept in mind that this linearized

system of equations is only valid for small perturbations about the nominal

trajectory (Ref 8:59). A rule of thumb which is often applied in defining

“small” perturbations is that there be approximately an order of magnitude

difference between the first and second terms in the Taylor series expan-

sions which led to Equations (3—16 ,20) (Ref 9:183). If the nonlinearities

are too pronounced , a higher order filter incorporating more terms in the

Taylor series and using higher moments of X(t) may be applied (Ref 8:190—

192).

In the extended Kalman filter formulation , the validity of the

assumption that deviations from the nominal trajectory are “small” is

maintained by relinearizing about the trajectory emanating from X(4)

once it has been computed (Ref 9:183—184). After relinearizing about

this new “nominal”
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~X (t~) = 0 (3—22)

Letting SX(tIt 1
) = the estimate of ISX(t) at time t, t~ < t < 

~~~~~ 
based

upon the realizations of measurements Z(t
i
), through time t~ , the

optimal estimate of the state error (SX(t~t1)] propagates forward in

time according to

~
X(tlti) 

= F[t;X (t,t~
)]
~$X (t!t~

) (3—23)

subject to the initial condition

- 
- 

6x(t~It 1) = c~X(4) = 0 (3—24)

wher e F (t ; X  ( t !t 1)I  = the relinearized evaluation of F, where X (tIt 1)

is the solution to the deterministic differential equation, X (t~t~) =

f(X (tIt~ ) , t] propagated from the new initial condition of X(4). Thus,

the solution to Equation (3—23) is &X(tIt~) 
= 0 over the entire interval

[ti,tj+i) ,  and 5X(t~+1
) = 

~
X(t i+1j t i) = 0 (Ref 9:185). This follows from

the fact that Equation (3—23) is linear.

From Equations (3—6,16), the linearized system is updated at meas-

urement time t~~~ according to

— 

-

. 

~x(4~1) = ~X (t~~ 1) + K(t
i+i

)[
~~~+i 

-

= K(t i+l)Sji+l = K(t
i+1

)[j
j+i 

— h[x (ti+1It j),ti+1]I (3—25)

Matrices evaluated along the most recent nominal trajectory 
~~

(tIt i
) are

used to compute the Kaitnan filter gains K(t 1+1).
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We now combine these results to achieve the final extended Kalman

filter algorithm. Because ISX(t It 1) = 0 over the interval from t~~ to t~~1

the best estimate of X(t) over this interval is the solution to (Ref 9:185)

x (tlt1) 
= f[x(tIt~

)
~ t] (3—26)

with initial condition

x(t1lt i) = 
~~~(t~~~) (3—27)

At the next update time, t1~1, from Equation (3—12)

&x(ti+i) = X(t
1
~~~
1
) 

— x(ti÷1) (3—28)

and the estimate of c5X(ti+i) is given by

= X(t i+i) — x(ti+iIt i) (3—29)

where X(t
i+iIt i) is the solution to Equation (3—26) integrated forward

from the initial condition of X(4). Using the fact that the update for

the state perturbation is given by Equation (3—2 5) ,  the update equation

for the state estimate at time t~41 is given by (Ref 9:186)

= x(ti+1It i) + K(t~~÷1)[j ~~÷1 
- h[X( t

i+1It i
),ti+1]] (3-30)

The covariance is propagated between t~~~ and t~~1 by integrating

48 
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P (tIt
1
) = F [t;X (t!t

i
) ]P  + PFT[t;X(t ,tj)]

+ G (t)Q(t)G
T
(t) (3—31)

from the initial conditions

X(t
i

lt
j
) ~~ X (4), P(t

1
it~~) ~~ P(4)

and is updated according to

P(4~~
1

) = P(t ~~~~
1
) — K(ti+1)H[ti+i,X(t~+i

)IP(t1+1) 
(3—32)

where

— 

K(t i+1) = P(t~+l)H
T
[ti+l,x(t +l )]{ H[ ti+l,x(t~+l)]P(t~+l)

HT[ti+l,X(tI+l) I  + R(t 1+1
) }

~~~~ (3-33)

I 

Note that the Kalman gains and covariance propagation are no longer

I independent of the state estimate — and thus of the measurements — as

they were in the linear estimator.

The next chapter of this study will present the devel~gm~~~~~~~~i

I covariance analysis as a method for evaluating t erforinance of a

reduced order filter. In a covarianc~ -~halysis, the covariances of the

- filter and truth mod2~ a -p opagated without generating the actual

filter est _X(t5. However, as shown previously, the covariance

~~~~peg~~~on in an extended Kalman filter is dependent upon the state

estimate through the partial deri::tive matrices F and H An approximate
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covariance analysis can be accomplished by linearizing instead along a

nominal reference trajectory X (t), i.e. F and H are evaluated using

X (t) (Ref 9:186). Because a covariance analysis is viewed as a first

step (to be followed by a Monte Carlo analysis) in determining the feasi—

bility of a filter for a linear system model, it is of utmost importance

that the results obtained using a linearized system model be viewed as

tentative because deviations between X (t) and X(tlt
i
) may lead to a

significant degradation in actual performance.

A covariance analysis costs much less in time and money than a

Monte Carlo analysis and, in light of the above discussion, it still

represents a viable first step in the analysis of a proposed extended

Kalman filter design. It is to be viewed as a small scale analysis,

assuming deviations from the a priori nominal are small —

X(tIt~~) X (t). The partial derivative matrices F and H [Equations

(3—16,20)] for the system model developed in Chapter II are described

in Appendix A.
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IV. Covariance Analysis of a Reduced Order Filter Model

In Chapter II the truth (system) model state and measurement equations

were developed for the satellite tracker. The term “truth” model , though

widely used in the literature, is slightly misleading in that it implies

that the true system dynamics and measurements are exactly modeled . This

i~~ of course, incorrect in that there is no way of predicting exactly what

the actual system performance will be. Rather, the 42—state “truth” model

is an attempt to account for the dominant system disturbances. When the

speed and memory capabilities of airborne computer systems are examined ,

it becomes readily apparent that it would not be possible to implement th e

filter based upon this truth model. Therefore, as in most Kalman filter

applications, suboptimal (reduced order) filter models are proposed to

perform the task within the existing hardware and software capabilities.

Several such designs are proposed in Chapter V. The obvious question

becomes, how do you evaluate a suboptiunal filter design? One widely used

method is the covariance analysis. A covariance analysis provides a

direct comparison between the covariance of the errors committed by the

reduced order filter and the filter based on the truth model for a linear

- 
system. It also provides a comparison for the errors that the filter

commits and the errors it “thinks” it commits.

However , a covariance analysis is -viewed as only a first step in

the evaluation of a proposed filter design. While the covar-iance equa—

tions provide RMS filter performance data directly, they do not represent 
- -

a system simulation (Ref 3:361). Once the covariance analysis has proven

the feasibility of the filter design, a Monte Carlo simulation is usually

- - 
performed which uses the f i l ter  mechanization equations to process

simulated data. While a Monte Carlo analysis is a better indicator of

51
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expected filter performance, it is more costly in terms of time and

money.

Covariance Analysis Equations

In this section, the covariance analysis equations will be briefly

presented . The error states will be formulated by subtracting value of

the optimal estimate of states in the filter from the values of these

same states as provided by the truth model. A new state vector will

then be formed by augmenting this error state vector with the suboptimal

f liter state vector. The result will be in the form of a linear system

driven by white Gaussian noise and will allow us to apply linear analysis

techniques to the augmented system to determine the covariance propaga-

tion and update equations for the augmented state. In practice , the

estimates from the fIlter would be used in a closed loop control system.

To simplify the developments presented here, control inputs will not be

considered. The developments are based extensively on several reports

prepared by Air Force Avionics Laboratory personnel (Ref 10,11).

Consider the truth model equations to be of the form

* (t) = F (t)X (t) + G (t)~~~~~(t) (4—1)

where

X is an n state vector for the truth model

F is an n
1xn1 system dynamics matrix

5-

~~~~~~~~~~~
- --

~~~
. ~~ G is an n

1xs1 gain matrix

w is an--s vector of zero mean white Gaussian noise inputs

with variance E[w (t)~~-(r)] 
- Q~~(t 

- T ) .

Equation (4—1) is considered to represent the linearized error state equa—

- .- tion — Equation (3—16) — for the truth model.
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Consider also a reduced order filter model that satisfies the

following state equation

~~~~
(t) = F

f
~~~~~(t) + Gf(t)~~ (t) 

(4—2)

where

is an n2 
vector denoting the filtex state (n2 

< n
1 
in general)

F
f 
is an n2xn2 filter dynamics matrix

G
f 
is an n2xs2 

gain matrix

is an 
~~2 

vector of zero mean white Gaussian noise inputs with

variance E(~~ (t)~~ (T)] 
= Qf~ (t 

- T ) .

System and filter model measurements will be considered to be avail-

able as discrete time sequences corrupted by zero mean white Gaussian

noise sequences. For the system, measurements are modeled as

Z(t~) = H (t
1
)X (t

1
) + v (t i) (4 3)

where

Z (t ) is an in vector of discrete time measurements
5 i 

U

H(t
i
) is an mxn.~ system measurement matrix

V (t ) is an m vector of zero mean white Gaussian noise sequences
S i

with variance E[!5(t1)!5
(t
~
)] = R

5(ti
) S jj

The filter’s model for these same measurements is

- Hf(ti)~~
(ti

) + ~~ (t1) (4-4)

where

is an in vector of discrete time measurements
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Hf(ti
) is an mxn

2 
filter measurement matrix

Y
f

(t~~) is an in vector of zero mean white Gaussian noise sequences

with variance E[~~~~~(t
i
)~~~~~(t

1
) ]  = R

f
1511

Because the covariance analysis equations are only applicable to a linear

system, Equation (4—4) is replaced by Equation (3—20), the linearized

measurement error equation for the filter. The filter state estimate

and covariance (Xf , Pf) are propagated and updated according to Equations

(3—4) to (3—8), with the exception that the filter state estimate uses

the realizations of the measurements provided by the system model —

= X
f

(t
i

) + K
f

(t
i
)[

~~~~~
(t
i
) — Hf (t i)

~~~
(t j ) ]  (4— 5)

In order to develop the equations relating the statistical behavior

of the actual error, the following definition of the actual € ~timation

error is made (Ref 10:16). The error e(t) is defined as an n
2 vector

expressing the error committed by using a particular filter and is

evaluated as

e( t )  X ( t) — T~~(t) (4—6)

where

T~~~~ []~
• 01

T

with

I = it xn identity matrix
— 2 2

0 (n1-n2 )xn 2 null matrix

54

- 5---- - - — — -- - - -5— - -



- —5----5- -- ---5- .--- - - - -5-

What Equation (4—6) implies, of course, is that the first n2 
states

of the system model are identical to the entire set of states in the

filter. In practice, the filter model is usually the truth model with

selected states removed. If this is not the case, T may be appropriately

redefined without changing the final results (Ref 4:56).

The objective of the covariance analysis is to examine the time

propagation of the covariance of e(t)

P (t) ~ E[e(t)e
T
(t)]

Defining the augmented state vector Y(t) as

A 
r e(t ) 1

Y(t) = I (4—7)
(t )J

then it can be shown that Y(t )  satisfies the following stochastic dif f—

erential equation

= F(t)Y(t) + G (t )w (t) (4—8 )

where

F(t) 
~ [F5

t F (t)T - TFf (t)1
[ 0 F

f
(t) J

rG
G(t)~~~~I 

~
Lo

and the second moment propagates according to

-5- _ - —  - - _ -
~~~

- -
~~~~~~ -

-.
~~~~~ —

-5 -- ~~~~~~~~~~~~~~~~~~~~ . 
- 
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= F(t)P(t) + P(t)P
T(t) + G(t)Q (t)G(t) (4—9)

where

P(t) A [
P (t) Pl2 (t) 1
[P21

(t) Pf(t) j 
- -

The augmented state vector Y(t) is updated at a measurement according to

(Ref lO ;l8)

Y(4) = 
re(4)1 [i - TK

f
(t ~~ )H (t ~~) TKf (t~ [H f (t i) - H (t

i
)T] 1

Lxf (t i~ LKf (t j )H s (t i~
) I + Kf(ti)H

s(ti
)T — Kf (t i)H f (t i)j

[e(tp ( r-TRf (~I + V (t ) (4—10 )

L~f
(t
~i LKf (t i) J 

_
~5

or

Y(4) = A(ti
)Y( t1) + B(ti)3~~(ti)

and the covariance is updated according to

I

P(4) = A(t~ )P(t )AT(t~) + B(t ~~ )R (t
1

)BT(t~~) (4—li)

As stated before, the state equations for both truth and filter models

must be linear before a covariance analysis can be performed . This is
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accomplished by linearizing about a nominal trajectory. The usefulness

of the results of the analysis depend upon the validity of assumption

of linearity. To preserve this assumption, it is important to keep the

interval between measurements small with respect to system time constants,

and to keep the perturbations small about the assumed nominal trajectory.

Effects of violating these conditions can be evaluated only through a

subsequent Monte Carlo analysis.

1 I
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U V. Reduced Order Filter Models

Introduction

The purpose of this chapter is to develop the two reduced order sys-

tem models for which covariance analyses were performed in this study.

In all cases, the reduced order system model should be computationally

simpler than the truth model, as this is usually the criterion which pre—

vents the implementation of the filter based upon the truth model. How

this simplification takes place is due to the decisions, skill, prior

experience, etc. of the designer. In many cases, simplificatior is

accomplished by deleting states from the truth model that represent non—

dominant effects in the problem under study. Typically, this is accom-

plished with a corresponding increase in strengths of noises driving

the system to account for the neglected effects. For instance, while

neglecting gyro drift rates as sources of error in a navigation filter

may significantly degrade performance of the filter, the deletion of

these states may not be deleterious in a tracking problem of ten minutes

of duration. In addition to the deletion of states, another technique

that is used is to delete terms in the state equations that are less

than a third or a quarter of the size of the other terms in the expression ,

i.e. in addition to deleting nondominant states, we also delete nondominant

terms in the remaining state equations. Careful judgment must be exercised

in this latter case because these small cross coupling terms may be

extremely important in meeting certain performance criteria for the system.

The first reduced order filter (hereafter referred to as Filter I)

model represents a simplification to the truth model based upon the two

criteria discussed above — deletion of states and nondotninant terms. The

L second reduced order filter (Filter II) was suggested by the Air Force
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Avionics Laboratory specifically for this study. The main thrust of

this filter is to use what is known about the dominant dynamical modes

of the vehicle being tracked to aid in the simplification of the truth

model.

Filter I State Equation Development

The truth model developed in Chapter II has 42 states. The first

12 of these states model the satellite and tracker dynamics. State 13

was included to model the effect of atmospheric drag and the remainder

of the states were included to model uncertainties in the measuring

devices for angular tracking rates, tracker angular deviations from the

line—of—sight and range.

Consider first the simplication of the first six of the state

equations. They are repeated below for convenience

*1 
= (5—1)

*2 
= X5 (5—2)

(5—3)

* = A  + A  + A  + A  + W  (5 4)

~ g
1 

m1 s1 d
1 

1

X = A  + A  + A  + A  + W  (5-5)
U 5 g2 in

2 ~2 
d2 

2

X = A  + A  + A  + A  + W (5-6)
6 g3 in

3 
S

3 
d
3 

3

where
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= acceleration due to full gravity

A = perturbative acceleration due to the moon ’s gravitational field
-m

A = perturbative acceleration due to the sun’s gravitational field —-s

= acceleration due to atmospheric drag

= zero mean white Gaussian driving noise, with variance

EfW
1
(t)W1

(r)} = (3 x 10 12 Km/sec2)2 ~(t —

As can be seen by the data presented on page 10 of this study, the

dominant effect is that of the earth’s gravitational field . The two

body point mass acceleration accounts for all but (—2.0 x l0~~ Kin/sec)

of the effect (—7.55 x i0 6 Km/sec2) due to full gravity (Ref 4:66).

Therefore, the filter model chosen for the satellite dynamics is the

basic two body point mass acceleration model. While this model would

certainly be a poor choice for long tracking passes (long in the sense

that the pass represents a significant portion of the orbital period),

it is a reasonable model for the profile under test for which the typical

tracking pass represents only 1/20th of the orbital period. The increase

in uncertainty due to the reduced accuracy in the dynamics model is

accounted for by increasing the strengths of the driving noises

W2, and W
3
. Thus, the following relations are obtained :

= X4 (5—7)

*2 X5 (5—8)
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*3 X
6 (5—9)

-~~xl
= 

r
3 + 

- - - 

(5—10)

- -5 - - - -~~x2
_

= 

r3 
+ (5—11)

- - . -~~x3X
6 

= 

r
3 + 

(5—12)

U 
where

= the earth’s gravitational constant

r = /x2 
+ x2 

+ X2 is the distance from the earth ’s center to the1 2 3
- 

- satellite

and W1, W2, W3 were initially assigned one sigma values of 2 x l0~~ Km/sec ,

based upon the above analysis of the size of the unmodeled acceleration

terms.

- Consider no~ the tracker angular velocity state equations

-A 2Vu ‘
Ur rLS- . Z Y

• 
WLS 

- 

R 
+ W

LSz
W
T
x 
+ 

~~~~ 
Ar

+ 

~LS ~~~~ 
- 

~
CWT ]} (5-13)z y

• A 2V w
r rLSY Z 15fl

uLS
Z 

R 
— 

R 
WLS W

T 
+ i—i- Arx

L
~ - — u [ISnw — ôcw ]} (5—14)LS~ T~ Tz
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The bracketted terms f’} result from the fact that the tracker and line—

of—sight frames are not coincident and differ by the two small Euler

angles 6e and IST~. For high accuracy tracking, the small angular devia—

- - - - - tions ~~ and tSc will have magnitudes on the order of 10~~ radians or

less (Ref 3:67). For the particular tracking profile used in this study,

the bracketted terms are on the order of 10
fl radians/sec2 while the

smallest values of WLS and are ~lo
6 radians/sec2. Thus, in theLS~

reduced order filter model the bracketted terms are neglected and replaced

by a zero mean white Gaussian driving noise to account for the increased

uncertainty in the dynamics model:

-Ar 2V
WLS 

= — 
R 

WLS~~ 
+ 

~LsZ
uT
X 
+ (5—15)

Ar 2V
W

LSZ 
= 

R 
— 

R 
°
~LS

2 

— WLS
y

W
T~~ 

+ W
5 

(5—16)

Initially, before the covariance analysis was tuned to give the best

performance, W4 and W5 were assigned one—sigma values of l0~~~ radians/sec
2,

based upon the values of the bracketted terms that were dropped .

The remaining state equations are:

U 
= — WT 

— ISCu T (5—17)
z z x

-
~~ 

~

— WLS 
— WT + ISr iuT (5—18)

-~~~ Y Y X

it — V (5—19)

+ IS
~~ry 

- 

~~
A
r~ 

+ R(
~~s~ + ~~~~ 

(5-20)
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Equation (5—20) may be simplified using the same criteria as for

Equations (5—13,14). For high accuracy tracking, the terms contain~i~g_ —- ----~~~~~~~
‘5-  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o~~~~s of magnitude smaller than

~
1
r~ 

Therefore, in the proposed filter model, these two terms are dropped

and replaced by a zero mean white Gaussian driving noise (W6
) of strength

—16 2equal to (1 x 10 Km/sec ):

= A + R(u~~
5 

+ u~5
) + W

6 
(5—21)

Filter I Measurement Equation Development

The measurement equations for the truth model are summarized at the

end of Chapter II on page 37. In each case, the measurement is considered

to be the sum of the state which is a realization of one stochastic

process, and the noises are realizations or samples of other stochastic

processes by our model. For instance, consider the measurement of the

inertial angular velocity of the tracker along the tracker Y axis

3
= w + B L + E B A + C + [AC w ] + V (5—22 )

n~, Tr~ gsf~ Tr~ gm i g
~ 

gma—Tr Y 2

where 
~~~~ ~ ~~ 

u1~ WT 1
T represents the true angular velocity of the

r r
~~~

ry r
~ 

-
_

tracker coordinatized in the tracker frame (it should be recalled that

-

. I and are considered to be pseudomeasurements of the line—of—sight
z

angular velocities 
~LS and 11)18 which are not directly measurable).

Y Z
The second through fifth terms in Equation (5—22) are stochastic models

of the dominant noise processes that corrupt a rate gyro measurement.

The last term , V2, is a zero mean white Gaussian noise sequence added

to account for errors in the modeling assumptions and unmodeled higher
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order effects. B , B , B , B and the elements of the matrixgsf~ 
~~~ ~~~ ~~~

AC are all modeled as random biases, i.e. X(t) = 0. For lack ofgina
better information they are modeled as zero mean with a variance deter-

mined from experimental evidence. Each of these stochastic processes is

then multiplied times a deterministic quantity — the resulting product

in each case being a random process. 
~‘rr at a given time is modelable

as a sample value at that time from a stochastic process. The inertial

acceleration of the tracker origin in tracker coordinates

A1 
A
T

= A
2 

= AT

A3 
AT

is assumed to be a deterministic system parameter in this study for both

Filter I and II. Note that both filters would require “ownship”

accelerations in order to determine the relative acceleration in the

tracker frame. The component of the gyro drift along the tracker Y

axis, C , is modeled as an exponentially time—correlated random process.
In the filter measurement model, it is assumed that the total effect of

all of the corruptive effects in each of the truth model measurement

equations can be replaced by a single zero—mean white Gaussian noise

sequence. The filter measurement model, for each state, consists of

the “true value” plus an additive white noise to account for modeling

uncertainties. For the state we chose as an example,

- - ~~~ 
= 

~Tr~ 
+ V

2 
(5—23 )
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This approach to modeling the measurements leads to the simplest filter

implementation. If the performance should prove to be poor using this

model, the variance of V2 
could be increased to indicate additional

uncertainty in the assumed measurement model. If performance remains

poor, this would be an indication that some of the effects appearing in

— the truth model measurement equations must be added — at the expense

of a higher dimensioned filter — to the filter measurement equations.

Sumn~~y of Filter I State and Measurement Equations

The state and measurement equations for the Filter I redt~ced order

system model are summarized below. The development of the linearized

dynamics and measurement matrices F and H for FIlter I is given in

Appendix B.

State Equations

(1)

(2)

(3)

. —j*X
1(4) x4 — 
~r

- V

~ 1
. 

—~aX2

~~ X
5

= 
r3 

+ W 2
V

-j*X
3(6) x6 — 

~ 
+w 3

- 

- 

r
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-A 2V w

(7) WLS 
= - + 

~~LS~~~~T~~ 

+

A 2Vw

(~) 
~LS~ 

= 4 - R 
- ~Lsy

uT~ +

(9) IS’n = W
~~s 

— WT 
—

(10) ~~ = 

~LS 
- u

T 
+

Y Y X

(11) ~~= V

(12) 7 = A + R(w
~~s 

+ 
2

r r
~

Measurement Equations

(1) 
~My

11)
Try

+
~

h
1

(2) 
~~Z

uTrZ
+ V

2

(3) IS n =

(4) ISc

(5) R = R Tr + V
S

The original (untuned) one sigma of the measurement noises are:

F- -

66



r ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Noise One Sigma Value

V
1 

5.0 x 10 6 tad/sec

V
2 

5.0 x io
_ 6 

tad/sec

V
3 

2.5 x 10 6 rad

V
4 

2.5 x 10 6 rad

V
5 

2.2 x l O 2
Km

Filter II State Equation Development

The underlying concept for the development of the filter model pro—

posed in this section is to delete the satellite inertial position and

velocity states [X(l) X(6)]. Other information already available in

the remaining six states and INS data will then be used to determine the

acceleration of the satellite relative to the tracker (A)
T based upon

the knowledge that the dominant acceleration of the satellite can be

described by a two body point mass gravity model. This approach to the

satellite tracking problem was suggested for inclusion in this study by

U. S. Air Force Avionics Laboratory personnel.

-
- 

- 
Figure 9 represents a typical tracker line—of—sight—satellite

geometry.
z TRACKER

Z ORIGIN Z

/ 

EARTH CE~~ER 

U

Figure 9. Typical Tracker lire—of—Sight—Satellite Geometry
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where

(X,Y,Z) is the geocentric equatorial inertial frame

is the tracker line—of—sight frame, with pointing

at the satellite

is the vector from the center of the earth to the tracker

is the vector from the center of the earth to the satellite

is the vector from the origin of the tracker system to the

satellite along the line—of—sight X axis

When the satellite inertial position and velocity states are deleted

from the Filter I model, the following information remains available to

formulate a new filter model:

— precise resolver measurements of the tracker azimuth and

elevation angles.

c~~ (e ,~ ) — the transformation matrix from the inertial to the line—

of—sight frames as a function of 8 and ~~~.

(~~~)
T 

— high precision measurements of the tracker acceleration

with respect to inertial space in tracker coordinates, deter-

mined from the outputs of three accelerometers — one mounted

along each of the tracker axes.

~~~~~~~~~~~~~~~~~ 
— noise corrupted measurements of range, tracker

angular rates, and angular deviations as dis—

cussed in Chapter II.
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The formulation of the state equations for Filter II is different

from Filter I in that filter estimates of the satellite inertial position

are no longer available to calculate (~~)
T 

— the inertial acceleration

of the satellite with respect to the tracker in the tracker frame. The

components of (~~)
T along the tracker X, Y, and Z axes are used by the

filter in estimating the tracker angular rates and the range rate per

Equations (2—40 ,41,42). As in the Filter I formulation, terms containing

ISc and IS
~ , 

in these equations are neglected to yield

I
-A 2V

W
LS 

= - + + W
4 

(5—2

A 2 V u
r~ rLS

~(LJ
LSZ 

= 
R 

— 

R 
- WLS

Y
~~T

X 

+ W
5 

(5—25)

= A + R(u ~~
5 

+ (5—26)

Consider the following development of the acceleration of the satellite

U 
with respect to the tracker expressed in the line—of—sight frame.

From Figure

(
~~
)
I 

~~~~~ + ~~ST~ 
(5—27)

where the superscript “I” again indicates coordinatization in the inertial

— frame. From the definition of the line—of—sight (LS) frame (the line—of—

sight X axis — — points exactly at the target), we know that the posi—

tion vector of the satellite relative to the tracker 
~~~~~~ 

lies along

XLS
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- _

(~~T) LS 

[
~~]

where R is the range between the tracker origin and the satellite. It

follows that

= C~s(~~T)
LS (5-28) 

-
~

From Equation (5—27) is is seen that the inertial acceleration of the

satellite with respect to the tracker expressed in inertial coordinates
.. I

~~ST~ 
is

~~-ST~ 
= (~~)~ — (~~~)

I 
(5—29)

Elementary astrodynamics tells us that we can model the inertial

acceleration of the satellite (~~)1 as

I _ 
_ _ _ _ _ _(~~) — 

~ 13
. 1  - - I~~~~

)

and Equation (5—29) becomes

I
j  P.(~s

) .. 
i

(!ST
) = 

I 3 
— (5—30)

where from Equations (5—27,28)

(~~)~ - (~~)
I 
+ C~S(~~T)

LS (5-31)
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It is evident at this point that if the tracker inertial position

were made available from an INS on the aircraft, then the accelera-

tion of the satellite relative to the tracker expressed in LS coordinates

which is (A )LS I can be found by—rel

el ) LS 
~ ~~~T~

18 
= = CL8 [~~~ - (~~)

I]

LS I r(~
)1 

+ C
~s
(
~~T
)’
~~ 

..
= C1 

~~~ I(~~
)’I~

= 

—j~® C (~~)
’ + 

~ -ST~ — (~~ ) LS (5—32)
I~~~~~I~

Under out assumption that ~e and cSrj are small, the tracker and line—of—

sight frames are nearly aligned. It follows that the acceleration vector

of the satellite relative to the tracker coordinatized in the tracker

frame — ( A ) T 
— is well approximated by (A

1)
T
~~. Also, the acceleration

of the tracker with respect to inertial space expressed in the LS frame —

(~~)
LS 

— is well approximated by the inertial acceleration of the tracker

in the tracker frame (~~)T which is derived from the outputs of the

accelerometers. Equation (5—32) can now be expressed as

( A ) T (!sT )
~~~ - (~~~)T (5 33)

Equation (5—33) is readily implementable as all parameters in it are

available:
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C~
S is a known function of the resolver angles q and 0

is provided by the INS

= [] where R is the range
(

~~

)T is derived from the output of the accelerometers

( R ) 1 = (~~)~ + C~s(~~T)
’
~

Therefore, for Filter II, the form of the state equations for 
~LS

Y

~LS and Vr remain as given in Equations (5—24 ,25 ,26) with the components
z

of ( A ) T

A

T A
( A )=  A—r

Ar
~

determined by the corr esponding components of Equation (5—33).

Filter II Measurement Equations

The measurement equations for Filter II remain the same as for

Filter I.
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VI. Results and Discussion

Introduction

The purpose of this chapter is to present the results of the covariance

analysis performed on the Filter I and II models, and subsequently to dis-

cuss and interpret these results. Special emphasis will be given to expected

actual filter performance. Prior to presenting the results, the tracking

profile used in the covariance analysis and the philosophy used to tune the

filters will be discussed, since they have a direct bearing on the perform—

U ance achieved in the study.

At the initialization of the tracking profile, the aircraft/tracker

lies on the Greenwich meridian at a geocentric latitude of 300 north. For

the duration of the 200 second tracking pass, the tracker moves at a constant

speed of 0.3 Km/sec eastward while maintaining the same geocentric latitude.

- 

The satellite is in a 200 Km circular, near polar orbit , and it is a relatively

— small vehicle with a ballistic coefficient of 1.5 and a solar pressure co-

efficient equal to that of a vehicle with a projected surface area towards

- 

- the sun of 10m2. Initially, the satellite lies essentially on the prime

meridian and is approaching a descending node (descending towards the equator),

- as shown in Figure 10.

- ~ f—-
5-5- --- --_~~ Initial Subpoint of

\I
/ /<~---— z __ _

~--~—— Satellite

- 

— - Initial Locattgn
I - of Tracker

300 N - 

Equator

- --
-‘

- - .- — I - 
—‘v-— - - - Pr~me MeridianI ~~~~~~~~ 

_ - - 5-

Figure 10. Satellite/Tracker Geometry
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Pertinent tracking information for the profile used in this study is sum-

marized below. The angles 0 and 4,, which define the coordinate transforma-

tion from the inertial to the line—of—sight frame (see Chapter II), may also

be used to describe the tracker azimuth and elevation angles — (— 4, ) being the

elevation angle and 0 the azimuth ang le (0° azimuth being defined as the

condition In which the XLS axis is parallel to the inertial X axis).

Parameter Initial Value (t = 0) Final Value (t = 200 secs)

Elevation angle of 56.5° 74.7°
tracker (—41 )

Azimuth angle of 180.00 222 . 1°
tracker (0)

uLS —9.58 x lO~~ rad/sec —18.91 x l0~~ rad/sec
Y

WLS 2.57 x l0~~ tad/sec 55.9 x ~~~~ rad/sec
z

The time history of WLS and W
LS 

are given in Figures 11 and 12. Note
Y Z

that both curves are nonlinear with WLS being especially so. This is to be
z

expected f rom the geometry of this tracking profile. As the track progresses ,

the tracker moves in a plane perpendicular to the orbit plane of the satellite.

Therefore , it is expected that the inertial angular velocity about the line—

of—sight  Y axis — the elevation axis of the tracker — _W
LS would f i r st

Y
accelerate and then slow down as the satellite approaches its zenith with

respect to the tracker . On the other hand , the time r ate of change of the

tracker azimuth angle — 

~LS 
— is expected to continually accelerate until

z
the satellite is coplanar with the tracker — an azimuth angle of 270°.

Thus , while the tracking profile used was not representative of worst case

cond i t ion s, it does present a highly nonlinear angular rate history with

which to evaluate each filter’s estimation capability.

B r i e f l y  stated , for a fi]-i-er to be well “tuned” through a covariance

•n -’~~t ,  the  f i l t e r  error variance should follow the “true” system error
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variance as closely as possible without underestimating it. Typically ,

this results in the generation of the lowest possible system error variances.

This is accomplished by varying the strengths of the state dynamics and

- measurement noises in the filter until the desired “tuning” is achieved.

By using constant noises in an extended Kalman filter, we are faced with

the possibility of divergence, in which the error variance of a filter state

approaches steady state while the error variance of the system

P5 (t)  = P (t) ~~ E{[~ç~ (t) — T~~~~ (t ) ] [~~~~~(t) — T~~ (t)] T}

grows without bound. This happens because the filter is weighting its

internal model too heavily. This is what Jazwinski has termed “learning

the wrong state too well” (Ref 14 :301—302) . Such divergence character—

istics can be remedied to some extent by admitting time varying (such as

piecewise—constant) noise strengths in the model upon which the filter

is based . However , as mentioned before , the scope of this study was

confined to achieving adequate tracking performance over a reasonable I -

t ime interval with the use of a single set of noise strengths . Decreased

dynamic noise strengths would allow a “ tighter” tuning during the initial

period while increased strengths would remove (or at least postpone) the

onset of divergence. In eventual implementation , time—varying strengths,

possibly set adaptively since their “best” evaluation would be trajectory

dependent , could enhance f i l ter  performance (Ref 9:155) . -

Filter I Results

This section will present the results of the covariance analysis

performed on Filter I. They should be considered as representative of

the f ilter ’s capabilities but not final.  Further tuning may be possible

and should be performed if sPecifi: limits of the capability of the

-5-- —U- - - — 5- -—- --S.---—- -~ _ -~~~ --_ -~-_- 5-- - 
5- - - - ~~~~--—- 5- -~~~~~~
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fil ter are under question. Moreover, a Monte Carlo analysis would be

required to evaluate large scale f i l ter  performance.

The one sigma values fo r the error s committed by the f i lter in the

estimation of the satellite inertial position and velocity (states -‘- X6
)

- ar e plotted in Figures 13—24. Each of the satellite inertial position

states exhibited an initial upward transient followed by a period in which

- 

S the error variance decreased . This very slow transient response was due

to the weak coupling between the satellite and tracker state equations (no

direct measurements of any of the satellite states were available in this

formulation) . The error plots for the satellite inertial velocity states

(Figures 19—24) show a steadily decreasing error for all states.

Figures 25 and 26 are the plots for the standard deviation of the

errors in the estimates of (1)
15 and W LS . The errors committed by the

Y Z
filter and the system are given on the same plot so as to facilitate

comparison. The filter ’s inability to follow the system closely when

t ime— invariant noises are employed is evident in Figure 25. However ,

this plot does indicate that the filter can provide a conservative esti-

mate (the filter overestimates its own errors) of ULS in spite of the
Y

nonlinear nature of the 
~LS time history . The filter performed nearly

Y
as well over the tracking period in estimating the error in its own

~LS estimate, again performing as a conservative estimator. Note, how—
z

ever, that divergence between the filter and system is very evident for

the last 50 seconds of the track. Though the filter ’s estimate of the

error is slowly increasing, it is placing too much emphasis on its

internal dynamics model and is not able to follow the highly nonlinear

behavior of WLS towards the end of the tracking profile.  As shown in

- - 
-~ Figures 27—30 , the filter follows the system very weil f or the error

misalignmen t- angles , range and range rate states. Divergence in the
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estimate of Sri can be seen near the end of the track. This is directly

attributable to the coupling between on and (1)
15 (the estimate of which
z

is diverging at the end of the track) in the state equation

= 

~LS 
— — OCW

T 
(6—1)

z z x

F 
- -
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Filter II Results

Plots of the standard deviation of the error estimates for the six

state Filter It model are shown in Figures 31—36. The filter was unable

to follow the system for the total tracking profile for any state. Con—

sequel ‘ ly, it was decided to tune the filter to provide the best possible

performance over the first 100 seconds of the tracking pass. The “best

possible performance” is defined here as minimizing the area between the

filter and system curves while insuring that the filter doesn ’t under—

estimate its own errors. These plots represent a fairly well tuned filter

in that every attempt by the author to force the filter to follow the sys-

tem’s initial transient resulted in divergence occuring before 100 seconds.

As in the case for uLS in Filter I, the results indicate that Filter II
z

can provide a conservative estimate of all of the states, i.e. with

computed error variances at least as large as “true” system errors, over

the f irst  100 seconds of the tracking profile. That the divergence of

this f i l ter  may not be due solely to the nonlinearities inherent in the

profile under study will be discussed in the next section.

98



r 
, 

~~~~~~~~~~~~~~~~ 

‘ 
-

- -

~~~ 

-

~~~~

- -

ID

0
4-i
a),
ID,

C--

(0’
U) ’

Cr)

(‘4.

0

11 ~~~~~SYSTEM

>- D

C--

• (0-

• U’

Cr,,

(‘4.

0
4-i-

0.00 40.00 80.00 120.00 160.00 200.00
TIME

Figure 31. Filter II, Erro: Standard Deviation of uLS Estimate 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~- ‘  _~~~~

0
4-i
a,-
ID-
C--
(0.

U) -

(7).

(‘4- -

(5

0
4-i

Ui 0,.

0 ( 0’
cc~~~

0’) ’ FILTER

r
bit.

0
SYSTEM

• C--
CD-

Cr,-

r ~

-

(‘4-

C
I I

0.00 40.00 80.00 120.00 160.00 200.00
TIME

Figure 32. Filter II, Error Standard Deviation of Estimate
100 z



— — ---—-- —

0

a,’
co

CD’
U) ’

ID’

I

(‘4’

0

U)-
ID’

(7) ’

0

IL!
ID

1
,- i

>< 0) .

~~~~~ FILTER

~~

04.
SYSTEM

(5

C
I I

0.00 40.00 80.00 120.00 160.00 200.00
T I M E

Figure 33. Filter II, Error Standard Deviation of ~~ Estimate-
~ 101

‘.4

____ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘••‘. - - - - ‘ • ‘•‘ - ‘ ‘  •



r ‘ _ “ _
~~~~

—-—-- _ ‘  — - - . - —_ --——--—---
~
-.-.- -- —_— .— .-- — - ‘

~T’ ’ ’~

0
4-i

0,-
ID-

C--

(0-

U)-

(7)-

(‘4-

‘4.

0
4-i

U)-
10-

‘1•-

Cr,-

Lu
lb

4-i

FILTER
*

SYSTEM

0
-4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I — I ‘1

0.00 40.00 80.00 120 .00  160.00 200.00
T I M E

Figure 34. Filter II, Error Standard Deviation of Sc Estimate
102

‘1

~ 

T :~~~~- -~~~~~~~~~~~ --~~~- --- L:: ’I~~
’
~~~~~~~~~. —-- .- - - 

- - ‘.4



_ _ _ _ _ _ _ _ _  - 

~~~~~~~~~~~~~~~~ 
--

CO
i-1

0

0

0 4 -
4-4

0

0

0

c~2.
L U0

LU

• cr~°c~9.
0

0

H
~~. FILTER

1%%444W4WMWW44W4~~~ flj i
0

SYSTEM

C)
0 ____________________

I — F I I - I
- - OQ Q Q  40.00 80.00 120.00 160.00 200.00

TIME
Figure 35. Filter II, Error Standard Deviation of Range Estimate

103

~ 

~~ ~~~:~~~~~
‘ ‘.“. 

~- -~~~~~
‘-“.- - ~~~~ - 4



CD

0

‘-4

0

004

C-)
LiJ c

‘U0

0

UJ W
0

0
6

(‘4
0
0 

~,PILTER

~\SYSTEM

~O.00 40.00 60.00 120.00 160.00 200.00
TIME

Figure 36. Filter II, Error Standard Deviation of Range Rate Estimate
104



- - -

Discussion and Interp~retation of Results

The author considers the results presented in the last section to be

Informative but rather misleading for both proposed filter models. The

above judgment is based upon a comparison of the results (which are dependent

upon the limitations inherent to a covariance analysis) with expected actual

filter performance.

Consider the calculation of the inertial acceleration of the satellite

with respect to the tracker, coordinatized in the tracker frame , ( A ) T,

f or Filter I. We know that

( A ) T 
= ( A ) T 

- (~~ )T 
- c~(~~)’ - (~~ ) T

= C~ X
5 

— (~~ ) T (6— 2)

X
6

where (A,r)
T is available to the filter from accelerometer measurements.

But, the accelerations X44 X5~ 
and X6 

are functions of -
~ X6 and in

actual implementation would be calculated using the most recent estimates,

X1
(t~) 

-
~ X6(4)

, provided by the filter. But, in fact, the estimates of

the satellite inertial position and velocity states will be rather poor

because of 1) the weak coupling with the tracker states, and 2) the in—

adequate satellite dynamics model used in the Filter I formulation. As

shown by Meyers (Ref 15:346) , a satellite dynamics model that does not

include at least the J2 gravitational potential term — which models the

effects of the earth’s oblateness — will cause rapid divergence of the

state estimate in an extended Kalman filter. The good results obtained

for Filter I, therefore, are in all likelihood due to the fact that for
- I
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a covariance analysis, X is not available and all time varying expres-

sions (X
4 

-

~ 

k6~ 
( A ) T, and ~( A ) T/~x + X

3
) are evaluated along a pre-

determined nominal trajectory X .  Therefore, if Filter I were implemented ,

one would expect that, on the average, the filter would perform worse

than the results of this study imply.

The results do indicate that we could expect this reduced order sys—

tern model to perform well if the satellite acceleration state equations

for X4, X5, and were more accurately modeled to insure that the filter

estimates X1 
-*- X

6 
do not diverge from the actual trajectory when the filter

is impl .~mented. Besides adding the J2 gravitational potential term, model-

ing of the atmospheric drag acceleration is suggested , since results have

shown that this effect is on the order of J2 when satellite orbital alti-

tudes are less than 500 miles (16,247). The ballistic coefficient need

not be added as another filter state. In most satellite tracking situa—

tions, a good estimate of this parameter will already be available and

can be entered by the operator from keyboard as a system parameter. Should

these changes be made to the Filter I model, a Monte Carlo analysis should

be performed to evaluate large—scale filter performance. A covariance

analysis would probably give results very similar to those presented here

for the tracker states and would prove very little about eventual actual

filter performance.

The results for Filter II were not as good as originally expected .

However, an examination of the Filter II formulation (see Chapter V)

reveals a probable cause for the divergence of this filter. Both filters

were evaluated using the same perturbation truth model, which itself was

evaluated along a highly accurate nominal trajectory — X .  Whereas

( A ) T in the Filter I and truth model representations were evaluated

along 4~ 
(which led to misleading results as discussed above) using a
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highly accurate model for X4, X5, and X6, ( A ) T in the Filter II formula-

tion was calculated online according to Equation (5—33)

( A ) T 
= ( A ) LS 

- (~~)
T 

= 
~~~~~~~~ 

[C~~ (~~ ) I + ( ~~ T)LS] 
- (p~)T (6-3)

In all likelihood the second fil ter formulation probably diverged in the

covariance analysis for the same reason that the f i rst  f i l ter  would

diverge if actually implemented — insufficient satellite dynamics informa-

tion. There exists a good possibility that Filter II

better if the 32 and atmospheric drag terms discussed earlier were added

to the onboard computation of (A)T; time limitations prevented the author

from exploring these possibilities. The addition of the atmospheric drag

terms to the filter would require a differencing technique applied to the

satellite inertial position information to obtain the inertial velocity

estimates since explicit estimates of these parameters are not available

in the Filter II formulation.

Recommendations for Future Study

Several simplifying assumptions were made in order to limit the

scope of this study and are candidates for inclusion in future work.

1. The resolver measurements of the angles ~ and 0 were considered

to be perfect. These parameters should be modeled stochastically and

included in a future filter analysis to determine the sensitivity of the

filter ’s performance to these variables.

2. The sensitivity of a f i l ter ’s performance to both accelerometer

and inertial position measurement noise corruption should be studied in

future work.
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3. A time varying Q profile as an ad—hoc function of the angular

rates and/or range data could be obtained after studying a number of

representative trajectories.

4. An adaptive Q technique based upon the real time evaluation of

the innovations (residuals) sequence(s) could be studied.

As a follow on to this work, the author highly recommends that the

Filter II formulation be reevaluated using the changes suggested in the

last section — the addition of J2 and possibly atmospheric drag acceler-

ations to the satellite dynamics model — in a Monte Carlo analysis. The

Filter II formulation may require as little as 50Z of the computer memory

requirements for Filter I (Ref 3:346) — though this may be increased a

little by the differencing technique required to determine X4, X5, and

X6. Should the Filter II formulation continue to diverge — as well it

might in a highly nonlinear angular rate scenario, time varying or adaptive

noise techniques should be explored.

The feasibility of the Filter II formulation has been proven in this

study. Any subsequent studies should necessarily contain tradeoff anal—

yses with the overall objective being to meet the required system perform-

ance specifications with the simplest (least demanding in terms of computa—

tion and memory requirements) filter model.
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Appendix A

Linearization of the Truth Model State and Measurement Equations

The purpose of this appendix is to develop the partial derivative

matrices, Fs rind Hs~ 
for the truth model dynamics and measurement equa-

tions defined in the summary to Chapter II. The results presented here

are different than those in Mitchell’s pre~’ious work (Ref 4) in four

respects.

1) The accelerometer measurement noise states and solar pressure

acceleration state have been deleted, reducing the number of states from

61 to 42.

2) The measurement equations have not been substituted into the

state dynamics equations before linearizing — in the truth model the

actual dynamics are modeled .

3) The partials of the drag acceleration have been changed to

reflect the fact that the inertial velocity vector of the satellite

relative to the atmosphere is

X + u X4 e 2
( V ) 1~~ X - u X—a 5 e l

A 

x6

and not

rx4 e 2
( V ) 1 = I X  — u X—a 5 e l

L x3
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as was used extensively in Appendix B of Mitchell’s work.

4) The gravitational forces in the rotating frame are calculated

according to

A

r

A

~~r ~~~

AgZ ~~~
r

where U is the gravitational potential defined in Equation (2—4).  The

gravitational forces in the inertial frame are then found by

(A )I = c1(A ) R
—g R — g

In order to linearize the state equations for the extended Kalman

filter formulation , the second partials U with respect toX1. X2, and X3
must be found. The method used to accomplish this is a one sided di f fe r—

encing technique suggested by Pollard (Ref 12) with a differencing step

size of one meter. The differencing is accomplished in the rotating

coordinate system. Letting U2 indicate the matrix of second partials
R

of the gravity potential with respect to the rotating frame

a2
U ~

2
U 

-

~4 ~XRYR
U = (A—i)2R
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th en the matrix of the second partial derivatives taken with respect to

the inertial nonrotating earth centered coordinate (I) frame U2 can be
I

foun d using the following similarity transformation (Ref 13:28)

U2 
= (C~)~ U2 C~ 

(A-2)
I R

This is as opposed to the following form that was used by Mitchell.

1J2 
= C~1J2 (C~ ) T

I R

— 
It is easy to become confused because Broxineyer defines C~ as the coor-

dinate transformation from the rotating to the inertial frame (Ref 13:22) —

the opposite of the convention used in this and Mitchell’s work. The

following definitions are used in this appendix.

X1, X2 , X3 = satellite inertial position vector

X4 1X5,X6 
= satellite inertial velocity vector

= moon ’s inertial (earth centered) position vector

XS, Y S ,ZS 
= sun ’s inertial (earth centered) position vector

a J
r~ = distance from earth center to satellite

= distance from earth center to sun

rM = distance from earth center to moon
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p atmospheric density of altitude h

p = mean sea level atmospheric density

V = velocity of satellite relative to the rotating atmosphere

r = distance from satellite to moonms

r = distance from satellite to sun
ss

= earth rotation rate
e

= sun ’s gravitational constant

= moon ’s gravitational constant

System F Matrix

Given the following nonlinear state equation

i(t) = f (x(t),t) + G5 (t) ~~ (t)

the matrix of partial derivatives of the dynamics with respect to the

states is def ined as

~f (t)
F ’ ’s”•’

_ 

~X

~~(t)
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where X (t) is the nominal reference state trajectory. The determination

• of this matrix is very straightforward except for the partials of the

relative acceleration vector. The inertial acceleration of the satellite

relative to the tracker expressed in tracker coordinates (A)
T is deter—

mined from

( A ) T 
~~ c~~

j
~~
’ — ~~

)‘i (A—3)

but

*4

(R ) 1 ~ X

x6

and

r ~~~1
xA(2)

— 

‘ 
Lx~ 3

- 
- and thus

( A ) T =~:: c~ ~ = ~~(2) (A-4)

• 
[~
r
~ 

X6 — XA(3)

- ~~
• - Choosing A

r 
as an example to work with , it follows that

X

115

I

~~~~~~~~~~~~~~~~~~ ~~~~~~
-
‘ •.—_ - ‘—  ‘ - • ‘  — ‘~~~~~~~~~



______ - ~-
-
-

- 
—__ - •

~~
-•— _

~~~~~~~~~~~~~
_ _  

~~~~~~~~~~~~~~~~~~~~ ‘ - -
~~~~~

-
~~~

-- — --- - -
~~

--- — - -

A = C~
5(l , l ) (X 4 

— XA (l ) ]  + C~~ (l ,2) [X
5 

— xA(2) ]

+ C~~ (l ,3) [X
6 

— XA(3fl

and

:: :
x 

= C~
5(1~l) [~~~]+ 

c~
s (l~2)[~~5]+ c~

S (l~ 3)[~~~
] 

(A-5)

~

where X4~ X5~ and *6 are defined in Equation (2—2) ,  and = 0,

9XA
0 because they are not functions of the states. The inertial X4

acceleration is defined as

* = A  + A  + A  + A  +w (A-6)
~ g1 d1 m

1 ~l 
1

then

• 3A 3A ~A aA
= + ax~~ 

+ ~~~~~~~~~~~ + 
S
1 (A—7)

The first term in Equation (A—4) can be determined using the relationship

previously derived that

U (cR)Tu cR
I R

• 9A
g1where in particular 

~~ 
= U2 

(1,1). Equation (A—7) can now be written as
1 1
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• ~A

= U
2

(l ,i) + + + __1

In a similar manner we define

• ~A ~A
—

~~~~~ 

U
2 
(2,1) + + + 

s
1

• ~A ~A

= U
2

(3,l) + + ~ —i +

r r
In the results that follow 

~~ 

X 
— , j = 1,3; = Q2 , j = 1,3;— j j j j

r

3X 
= ,j 1,3.

I

Now Fs for the truth model is

F1(13 x 13) 1 0(13 x 29)

( 8 x 8) 0(8 x 2l)

S 
0(29 x l3)

- 

0(21 x 8) I 0(21 x 21)

Where the figures in the brackets indicate the dimensions of the various

subinatrices .
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0(3 x 3) I 1(3 x 3) I 0(3 x 7)
- - 

f 2 f 3 f 4 f s ~6 
- —

f 8 f 9 f10 ~u ~i2 
f13 0(3 x 6)

f15 f16 f17 f18 flq f2~ I

F = 

—
~ .

—
~
-; 

~~ T~4 ~~~~ ~~ 
g
7 ~~~~~9 I O

g10 g11 g12 g
13 ~14 g15 g

16 ~~~ 
g18 0

O 0 0 0(6 x 3) 0 g
19 0 g20 0 0 0

O 0 0 521 0 g22 0 0 0 0

O 0 0 I  ‘ 0 0 0 0 0 0
1
0

~24 ~25 ~26f 
g27 g28 g29 g30 

g
31 0 0

0(1 x 13)

with

(O.5x13va~px1(x4 + WEX 2 )
u(l ,l) +~~~ r

- WEX1)(X 4 + WEX2 )

Va

- + 
3~~(x- X1

)2 

- + 
3~~ (x - X1

)2

vs vs vm vm

(0.5X13Va8pX2
(X
4 

+ WEX 2)
f
2 

= u(l ,2) +‘~ r

~~O.5X 13~~ p( X
4 + ~~X2) 2

~~ 
{0.5Xi3P~~ Va}

- - X
2
)~~~

{3
~~ (x - X

1
) (y  - X

2
)~~

vs vm
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(O.5X 13
VaBPX3

(X
4 

+
f
3 

u(l,3) + -t r

- X1)(z5 
_ X

~
)} [3v

~~~ X - X1)(z  - X
3
)~~

VS vm

((x 4 + wEx 2 ) 2
f
4 

= —O.5X1~
p~~ Va 

+ Va

— 
1 3 4  + 2 5  

— 

1

5 Va

- 

—o .5x13p (X4 
+ WEX2)X6

6 Va

= —O .5P V~ (X4 + WEX 2)

= u(2,l) +f 0.5x13V 1(X5 —

~ 0.5X13~~p(X5 - WEXl)
2}

— x
2
)(x

5 
-

- X
2

) (x
m - 

x1)}
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(0.5X13VaBPX2
(X
5 — 

WEX 1)
= u(2,2) +

~~ r

ç 0.5X 13WEp (X5 — 

WEX1)(X 4 + WEX 2)
Va

— ~~~~~~
_ + 

31ic~(y~~
_ X2)

2 

—

vs vs v-rn

— X2)2
+ 

r5

‘o.sx1 Va~pX 3(X5 — 

wEx )
= u(2 , 3) +~ r 

1

- X:)(z  — X
3)

,
1~.

- X2 ) (z  - X3 }
= 

—(X~ + WEX2 )(X 5 — 

WEX1)O.5X13
p

11 Va

((x 5 — WEX1) 2
= — 0.5X 13p Va + Va

= —0.5X13p(X5 
— WEX1)X 6

— -O.5pVa(X
5 

- wEX1)
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(o. 5X13~pX1VaXf15 
= u(3 ,l) 

~~~ r 
6

[O.SX 13
pWEX

6
(X
5 

- WEX1)~~

— X
3

) (x  - X1
)} +{

3
~~~~m - 

X
3

) (x  - X1)~~
r r

(0. 5X13
8pX

2 
VaX

6
= u(3,2) +~~ r

j0.5X13~WEX6(X
4 
+ WEX2 )

L Va

- X
3

)(y 
- 

X
2)~~

+ 
~~~ (z - X3

) (y~ - X2) 
‘

~

= u(3,3) +{0.5x
l3 vax3X

6} 

2 

+ 
3P

®
(Z

8
X

3
)

2

3Ud (z X )
~ m 3

• 3 5r r
• - vm vm

—0.5X13p(X4 + WEX 2 )X 6f —18 Va
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—0.SX13p (X5 — 

WEX1)X 6
Va

2
—0. 5X13

pX
5

— 
Va 

— O.5X 13pV

= —O.5pVaX 6

g — 

5CQ 11
1 R R

S — 
t5c Q12

2 R R

—Q33 ~cQ13
53 R  

— 

R

-2V
g
4
= -j--

55 
= WT 

+ IST1WT 
— ISCW

Tx Y Z

=

87 R WLS uT

A 2V u
r
~ 

rLSY r
~

2 + 2R R R
2uLS

g
9

= R
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g11 R R

- - 

6
~~l3

~12 R R

~l3 
= u

T 
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~
fluT +

x Y Z

-2Vr
g14 R

-Ar
~g15 = 

R 
— uLS uT

~l6 = W
LS WT

~
Ary 

2 V u LS ~
flArX

‘ 

~l7 R2 
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R2 
— 

R
2

~l8 R

~20

~
21 — 1
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g = 1
23

~24 = Q11+6nQ 21 
— 1ScQ 31

~ 25 ~ l2 + - ~cQ32

g26 Q13 + - 

~~Q33

~27 
= 21

~ LS~

g28 =

g29 A
Y

g =-A30

g31 WLS + w
~S~

B1 
—
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System H5 Matrix

Given the nonlinear measurement equation

— ~~[x(t1),t1] +

H5(t~
) is defined as

~ a~~ (X(t )~~~~t~~~~]i
S i  

~
X(t

1
)

where X(t1
) is the nominal reference trajectory. Assuming that the

constants K1, K2, and K~ are all unity, then H5(t 1) is given by

Hs(t) ~ [Hs (5 X 14) Hs (S x 14) Hs (S X 14)1

(1  0 0 0 0 0 0 0

1 0 0 0 0 0 0

H5 = O(6x6)~~~0 0 1 0 0 0 0 0
1

0 0 0 1 0 0 0 1

J o  o 0 0 1 0 0 0

0 0 0 1 0 0 0  0 0 0 A T
x ATy AT

2
O

0 0 0 0 1 0 0 0 0 0 0  0 0 ATx
H — 1 0 0 0 0 0  t S n 0 0 0 0  0 0 0S2

0 0 0 0 0 ~~~c o  0 0 0 0  0 0 0

0 1 0 0 0 0 0 0 0 0 0  0 0 0
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Appendix B

Linear iz ation of Fi lter I Mode l State and Measur ement Equations

The purpose of this appendix is to develop the F and H matrices for

the Filter I (12 state) model developed in Chapter V. The terms used

in this development are given in the beginning of Appendix A.

Filter I Model F—Matrix

F ti ~f[X(t),t)
3X

X ( t )-n

F1
(6 x 6) 0(6 x 6)

F =

L F2(6 x 6) F
3
(6 x 6)

where

0(3 x 3) 1(3 x 3)~

F
1~~

U2 
( 3 x 3) O(3 x 3)

I

and

- .
. 

__
~~~~ 

+ 
3u~X~ 3~~X1

X
2 

2 

3~~X3X1

- 
3uX 3

X1 ~~~~~~~ + _____ 

3 u X 2X1
2 5 3 5 5
I r r r r

V V V

3u
~
X3
Xl 3I

~
X2X3 +
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R I

R R R I
F
2
= — —  — --— — — 1

0(3 x 3) I 0(6 x 6)

—2V 
2V
~~LS 

+ Ar 2WLS
r Y Z Y

0 0 
R
2 R

_2V
r 

2VrWLSZ 
— Ary 

_2W
LS

WT 
0 0 —

0 1 0 u
T 

0 0

X

F
3 

=

1 0 0 0 0

x

- 

• 
I 

L
:WLSYR :WLSZ

R 
~~~ 

: 
~~~~~~~~~ 

I 

-

Filter I Measurement Matrix 11

~ 
Th(X(t1

) , t)
~~

H(ti
)

X(t )-~~~ i
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Append ix C

Linearization of the Filter II Model State and Measurement Equations

To develop the Filter II model, the first six states of the Filter I

model were deleted and the inertial acceleration of the satellite with

respect to the tracker in the tracker frame was defined as

( A ) T = 
~~~~~~~~~~~~~~~~~~~~~ 

— (~~)
T (C—l)

Defining

rXALS(1)1 R [AT X
(~~) I = xALS(2) , (!~~

)
~ 

= 0 (~~)T

XALS(3)J 0 LAT Z

= (~~) I + C~~(~~~)
L5 

= (R,~)1 + (Cr) T (~~T)~~

Therefore

[xALs(l) + c(l , l)R 1
( R ) 1 

= XALS(2) +

~~~~ + c(1,3)R

and

!(R )’1
3 

= {[xALS (1) + c(l,l)R12 + [XALS (2) + C(1,2)R] 2

+ [XALS(3) + C(l ,3)R] 2}3/2
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and

A 
—~~ [XALS(1) + Ri 

— AT 
(C—2)

A
ry 

= _________ — A.r~

A — 
—u XALS(3j 

— (C—4)
~ ID~~~I 3

It follows that

~~~~~~~~~ tmS 1 + [XALs(1) + RI

+ [XALS (1) + RI i— ( 
~~~~~ 

) ~~~ -p~ [XALS(1) + RI

-~~~ ‘S  / —S

1 - ~~~~~~~ + 
1.5~i~~( XALS(l) + RI

~R %~t(R )
I

t 3J k1~s
)’I3 l- cR 5 ”15

__-  

I 
+ 

1.5~~ (XALS(i) + RIP

1.5~~XALS (2)P
= 

15
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1.5ii~ XAL S(3)P
= 

,. ~~~I 5

where

P — 2[C(l,l) (XALS(1) + C(l,1)R) + C(l ,2) (XALS(2) + C(1,2)R)

I’ + C(l ,3) (XALS( 1) + C(l,3)R)I

Now, for Filter II

-A 2Vw

= 

~~~ 
= 

R 
— + WLS W T +

A 2V u

~LS~ 
— 

R 
— — WLS WT +

= A r~ 
+ R(W

~s 
+ 
~~~~ 

+

and therefore

~~ 
~~~~~ [A

(R) - + 2VW
LS]

~ . 

~~~~~~~~~~~ 

[Ary
(R) - ___ - 2 V w

LS1

- -~~~~~~~~~~~~~~~
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