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FOREWORD

This report was prepared for the Federal Aviation Administration
(FAA) under the Post-Doctoral Program of the Rome Air Development
Center (RADC) via the Reliability and Compatibility branch of RADC.
The responsible persons are Mr. Fred Sakete at the FAA, Mr. Ed
0'Connell at RADC, and Mr. Jacob Scherer of the Post-Doctoral Program.
Dr. Henry Domingos of Clarkson College of Technology is the group
leader for evaluation of a series of integrated circuit technologies
under this program, including silicon on sapphire (SOS), Emitter Coupled
Logic (ECL), Integrated Injection Logic (IZL), and Charge-Coupled
Devices (CCD's).

The RADC Post-Doctoral Program is a cooperative venture between
RADC and some sixty-five universities eligible to participate in the
program. Syracuse University (Department of Electrical and Computer
Engineering), Purdue University (School of Electrical Engineering),
Georgia Institute of Technology (School of Electrical Engineering), and
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Academy (Department of Electrical Engineering), Air Force Institute of
Technology (Department of Electrical Engineering), and the Naval Post
Graduate School (Department of Electrical Engineering) also participate
in the program.

The Post-Doctoral program provides an opportunity for faculty
at participating universities to spend up to one year full time on
exp!oratory development and problem-solving efforts with the post-
doctorals splitting their time between the customer location and their
educational institutions. The program is totally customer-funded with
current projects being undertaken for Rome Air Development Center (RADC),
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1, INTRODUCTION

Charge-coupled devices (CCD's) and bucket-brigade devices (BBD's)
are subsets of a class commonly known as charge transfer devices (CTD's).
The basic principle of charge transfer devices involves the movement of
charge from one physical location of a semiconductor substrate to another
in a controlled manner with the use of properly sequenced clock pulses.
With properly designed charge injection and detection, CTD's are capable
of performing numerous electronic functions such as image sensing, data
storage, signal processing, and logic operations since the CTD is an ana-
log shift register in its basic form.

Charge-coupled devices can be classified (Fig. 1.1) as surface charge-
coupled devices (SCCD's) in which the signal charge is transferred along
the Si surface (or, more accurately, the Si/SiO2 interface), or bulk charge-
coupled devices (BCCD's) in which the signal charge is transported within
the Si.

1.1, History and Development of CCD's

The concept of storing information via charge in a capacitor is not
new. The concept of connecting a series of storage capacitors with perfect
switches was adapted to provide a variable analog delay line. However, the
charge transfer concept lacked an effective vehicle to develop and utilize
these ideas. With the recent significant process and material improvements
associated with MOS technology, and control of Si/SiO2 interface properties,
it became possible to translate these ideas into physically realizable devi-
ces. The first modern implementations of the charge transfer concept employed
bipolar transistors as switches (1,2), The bipolar transistors were later
replaced by MOS transistors (3,4) and the form now known as bucket-brigade
devices was developed (4).

The CCD concept was initially developed in 1969 by Boyle and Smith (6)
and was later verified in 1970 (5). According to this concept, the switches

between the storage capacitors were removed by placement of adjacent capaci-




CCD’S

SCCD’'S
CTD'S - CHARGE TRANSFER DEVICES
BBD'S - BuckeT BricaDE DEVICES

CCD'S - CHarGE-CoupLED DEViICES
SCCD’S Surrace CHarRGe-CourLED Devices
BCCD'S BuLk CHARGE CoupLED DEVICES

Figure 1.1. Family of Charge Transfer Devices
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tors in close proximity of each other. The stored charge is maintained in
the surface layer of silicon in inversion regions, which are induced by
electrodes located on top of a thin (100nm) silicon dioxide layer. By a
proper sequence of voltage pulses on adjacent electrodes, the inversion
region under the first electrode can be made to collapse as the next in-
version region expands. Thus the potential well and its associated minor-
ity signal charge is effectively passed on to the next electrode. A 3-

phase p-channelL CCD (6) was investigated theoretically following the ini-
tial concept but the first CCD circuit actually incorporating these concepts
was an 8-bit shift register (7). To increase the efficiency of charge trans-
fer and to decrease the required number of clocks, differing forms of CCD's
were independently devised. Placing a transfer electrode between, and over-
lapping, the two storage electrodes reduced the effective signal charge

loss during charge transfer (8). Numerous contributors have since attempted
to devise improved structures from the basic CCD concept,

From the initial simple 8-bit shift register, the first major appli-
cation of the CCD technology was in signal processing because these devices
can provide accurate, clock-controlled time delays of analog signals. Sig-
nal processing circuits such as analog delay lines, multipliers, recursive
filters, transversal filters, correlators, etc. have been developed which
utilize the analog delay effects. It was later realized that image sensors
could also be constructed by generating the minority signal charge by opti-
cal means, Both linear and area image sensors have been developed which are
capable of detecting visible light. With slight modifications, the image
sensor concept was extended to the infrared spectrum. The CCD concept was
further adapted to generate large digital memory arrays for medium speed,

mass storage applications.

1.2, Characteristics and Advantages of CCD's

The main tcature of CCD technology is its capability to provide accurate,

clock-controlled time delays of analog signals. Although bucket-brigade

devices can also perform this function, almost all CCD structures nave




inherently better performance than equivalent bucket-brigade devices,
especially in the areas of charge transfer efficiency and transfer
noise. Thus, even though bucket-brigade devices were developed before
CCD's, the CCD technology now dominates (except in very specific appli-
cations), and bucket-brigade device utilization has been rendered

insignificant in comparison to CCD usage.

As initially conceived, the CCD theory was relatively simple and

-

therefore fabrication was simple as compared to standard MOS technology.
However, as the concept matured, the CCD structure and fabrication process . |
evolved until now CCD processing is appreciably more involved than
silicon-gate MOS processing. Multiple silicon gate levels, diffused or
implant channel confinement structures, implanted barriers, etc. are now
commonly utilized in addition to standard silicon-gate MOS processing.
CCD processing does allow the usage of MOS circuits on the same chip for
clock, input, detection, etc. circuits. However, the simplicity of the
basic cell structure still remains and thus the circuit packing density
of a CCD is significantly higher than silicon-gate MOS circuits. Pro-
cessing 1s also simplified and yields are improved by the elimination of

intercell connections. CCD circuits offer low noise and low power
advantages where the power requirements are approximately 1-5 uW/bit
at IMHz. CCD cireuits are in the medium speed range with data shift
rates normally about 5-20 MHz with some special designs at 135 MHz.
However, CCD operation is dynamic in nature since thermal generation of
carriers will in time obliviate the signal charge.

E CCD image sensors have excellent low light level response, and cooled
CCD imagers are capable of detecting a very small number of photons.

| Ability to detect 1 photon has been predicted. Because of the high packing
density, the number of sensors per unit area is quite high, typically
one site per square mil. CCD imagers integrate the charge whicih is gener-

ated by the incoming light by collecting charge for a certain time and
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4 then reading it out. This accounts for its favorable low light level response.
In signal processing applications, CCD's use their variable input signal

charge and
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variable time delay to perform analog functions which are difficult if not
impossible to implement economically in other technologies. Transversal and {
recursive filters have been manufactured which can have electronically vari-
able bandwidth and center frequency, leading to spread spectrum communication
applications. Using the non-destructive data sampling which is possible with
CCD's, multiplexers, as well as other circuits such as correlators, shift
registers, etc. are simple to construct.

A more recent application of CCD's is in the area of large memory arrays.
CCD memories, organized in line or track form, consist of circulating serial
shift registers. Address circuitry is located on the chip, and addresses
each track which is then read out serially. Most line lengths are 64 or 128
bits long, and average access time for any bit is approximately 50 us for a
128 bit line. High packing density is of extreme importance, and currently
16K CCD memories are available in a single reasonably sized chip. CCD memor-

ies, which are volatile, need regenerative circuitry on chip to maintain the

data. Main competition for CCD memories come from magnetic bubble memories
and disc memories. Disc memories, while currently firmly established in this
memory area, are slower and less reliable than CCD memories. Furthermore,
they have extensive overhead equipment requirements which make the system
physically large and of high power consumption. Magnetic bubbles have low
power, data nonvolatility, non-diffusion or implant processing, and no stand-
by power requirements which are advantages as compared to CCD's. However,
magnetic bubble memories require high cost, complex materials, high perfor-

! mance sense amplifiers, and off-~chip input and detection circuitry, as well

as having slower speed capabilities than CCD's.
| 1.3. Scope of this Report

This report attempts to cover in some detail the current state-of-
the-art of charge-coupled device technology. It is obvious from the number
of references involving CCD's that the field has deyeloped rapidly since its
4 inception approximately six years ago, and a complete survey is therefore

difficult to achieve accurately. It should be noted that an excellent book (9)




of charge transfer device technology has recently been published and
complements this report in many areas.

This report is divided into three general sections. The first part,
consisting of chapters 2 and 3, describes the fundamental theory concerning
CCD technology and illustrates the variety of structural forms which are |
currently used. The methods of injecting and detecting the minority
signal charge are discussed as well as the processing techniques of CCD's
with MOS device processing used as reference. The capabilities and
limitations of CCD's are presented, and areas such as signal handling, ']
transfer inefficiency, noise and dark currents, and power are evaluated.
The following section, chapter 4, deals with the current utilization of
the CCD concept and investigates digital circuits, analog circuits, image
sensors, and their performance characteristics. In the third section,

chapters 5 and 6, the important areas of basic device costs, reliability,

industrial trends, and recommendations are offered to indicate where
CCD's are currently used and where the CCD technology can be used in the
future.

Schematic diagrams are used extensively in this report to indicate
the various physical structures of CCD's. To avoid confusion, the code
indicated in Fig. 1.2 is used throughout in hybrid schematic diagrams*.

Diagrams representing the topography or surface view do not use this code.

*By hybrid we refer to a schematic of the structured cross-—section on a
plane perpendicular to the surface. Superimposed on this are potential
wells for free electrons. The depth of the well indicates the minimum
potential energy in the Si.
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1.4. Definition of Terms

The following are typical definitions related to charge-transfer

devices which are currently in use.

1.4.1. Device names.

a) Charge-Transfer Device (CTD).

A device in which operation depends on the movement of
discrete packets of charge along or beneath the semicon-
ductor surface.

b) Bucket-Brigade Device (BBD).

A charge-transfer device that (1) stores charge as majority

carriers in doped regions in the surface of a semiconductor
that become reverse biased with respect to the substrate and
(2) transfers this charge as a packet along the surface
through a series of switching devices that Iaterconnect the
doped regions.

c) Charge-Coupled Device (CCD) .

A charge-transfer device that stores minoricy carriers in

potential wells and transfers this charge as a packet by
translating the potential minima.

d) Bipolar Bucket-Brigade Device.
A bucket-brigade device in which the switching devices are

bipolar transistors.
e) JFET Bucket-Brigade Device (JFET BBD) .
A bucket-brigade device in which the switching devices are

junction-gate field-effect transistors.

£) MOS Bucket-Brigade Device (MOS BBD).
A bucket-brigade device in which the switching devices are

MOS field-effect transistors.
g) Surface-Channel Charge-Coupled Device (SCCD) .
A charge-coupled device in which the potential wells are

created at the semiconductor-insulator interface and charge

is transferred along that interface.
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h)

i)

)

k)

1)

m)

n)

o)

p)

Buried-Channel Charge-Coupled Device (BCCD).

A charge-coupled device that confines the flow of charges
to a channel lying beneath the surface.

Bulk-Channel Charge-Coupled Device (BCCD).

A synonym for buried-channel charge-coupled device.,

Conductively-Connected Charge-Coupled Device (C4D).

A charge-coupled device that uses doped regions between the
potential wells and hence becomes a hybrid between a charge-
coupled device and a bucket-brigade device.

Junction-Gate Charge-Coupled Device.

A buried-channel charge-coupled device that uses a diffused
junction as the gate electrode.

Schottky-Barrier Charge-Coupled Device.

A buried-channel charge-coupled device that uses a Schottky
barrier junction as the gate electrode.

Charge-Coupled Image Sensor.

A charge-coupled device in which an optical image is con-
verted into packets of charge that can be transferred as the
electrical analog of the image.

N-Channel Charge—Coupled Device.

A charge-coupled device fabricated so that the charges
stored in the potential wells are electrons.

P-Channel Charge-Coupled Device.

A charge-coupled device fabricated that the charges stored
in the potential wells are holes.
Multiphase Charge-Coupled Device.

A charge-coupled device that requires more than one clock
applied sequentially to provide directionality to the trans-

fer of charge.




q) Uniphase Charge-Coupled Device; One-Phase Charge-Coupled Device.

A charge-coupled device that has asymmetric potential wells-
so that only a single clock is necessary to transfer the
charge in the desired direction.

r) Overlapping Gate Charge-Coupled Device.

A charge-coupled device formed so that adjacent gate elec- .

trodes overlap and are insulated from one another.

1.4.2. General Terms. .

a) Background Charge.

Synonym for circulating bias charge used mainly in imaging

devices.
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A quantity of electrical charge that is the sum of the signal
charge and bias charge (if used) and is stored in potential

wells.

c) Charge-Regeneration Stage.
A region of a charge-transfer device that is used to refresh

digital information stored in a bit location. b
d) Circulating Bias Charge.

A quantity of electrical charge that is inserted into the

potential well to define the low charge level.
e) Drift-Aiding Fringing Field. T

An electric field at the semiconductor-insulator interface

along the direction of charge propagation due to the potential
on adjacent gate electrodes and the potential on the gate
‘ electrode directly above.
f) Empty Zero.
A condition where there is zero circulating bias charge.

g) Fat Zero.

B et 1 T SR

Synonym for circulating bias charge and used mainly in digital

devices.
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h) Floating Diffusion.

A diffused area into which a charge packet can be introduced
thereby changing its potential.
Note: Typically used in detection or regeneration schemes.

i) Floating Gate.

An electrically floating gate (pad) on an insulating surface

over an active portion of the semiconductor surface.

Note: Typically used in detection or regeneration schemes.
j) Gate Electrode; Transfer Electrode.

A plate (pad) that is on an insulating surface over an
active portion of the semiconductor surface and to which
potential is applied.

k) Potential Minimum.
A local minimum of the electrostatic field.

1) Potential Well.
A spatially defined depletion region of a charge-coupled

device where a potential minimum exists.

m) Signal Charge.
A quantity of electrical charge in a potential well that,

in conjunction with the bias charge (if used), defines the
signal level.

n) Skinny Zero.
Synonym for circulating bias charge of smaller magnitude than

for Fat Zero (normally applied to BCCD's).

o) Transfer Channel.

The area of a charge-coupled device in which the charge

{ fliow is confined.

‘ Note: This is physically accomplished by means of an oxide
‘ step, a channel-stopping diffusion or implant, or by a special
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p) Stage
That part of a CCD which forms the smallest definable

operation. It consists of one storage gate and accessory
transfer gates, if used.

q) Element
The smallest portion in a CCD delay line which upon trans-
lation can generate the complete line. 1In a p-phase
system each element contains p stages.

r) Unit Cell
Synonym for element.

1.5 Notation

A Area
AB Area occupied by background charge
AS Area occupied by signal packet
ASt Area of storage electrode
Ak Feedback coefficient
B Bandwidth
bk Feedback coefficient
c Capacitance per unit area
L}
C Capacitance
C; (CD) Capacitance (capacitance per unit area) of depletion region
C;ff (Ceff) Effective capacitance (capacitance per unit area) of channel
C;D (CFD) Capacitance (capacitance per unit area) of floating diffmsion
C;G (CFG) Capacitance (capacitance per unit area) of floating gate
CGB Capacitance per unit area between gate and substrate
CM Capacitance per unit area of metering well
Cox Capacitance per unit area associated with oxide

12
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Oxide capacitance per unit area of storage electrode

Oxide capacitance per unit area of transfer electrode

Capacitance of source

Diffusion Coefficient

Diffusion Coefficient for electrons
pDiffusion Coefficient for holes

Depletion layer width
Thickness of n-type layer in BCCD

Thickness of oxide layer

Thickness of oxide layer of transfer gate

Thickness of oxide layer of storage gate

Frequency

Clock frequency

Nyquist frequency
Instantaneous transconductance
Reverse transfer conductance

Feedback coefficient
Weighting factor in transversal filter
Current

Signal Current

Current density

Hole current density
Electron current density

Dark electron current density
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K Feedback Coefficient
k Boltzmann's constant
L electrode length
Lb Length of stage in contact with bias charge (FAT ZEROS)
Ls Length of stage in contact with signal charge
- Length of storage electrode g |
Ltr Length of transfer electrode
M Number of parallel channels
Number of elements Unit Cells
NA Acceptor concentration
ND Donor Concentration
-1
eq (I/NA + 1/ND)
Nss Interface state density
Nt Concentration of bulk traps
L
Electron concentration. Also number of stages in a CCD
n1 Electron concentration in intrinsic Si
n; Number of signal electrons in a given well
P Number of phases
Q Charge per unit area
Q'b Total charge per packet
QB Bound charge per unit area in acceptor states in transition region
: Q; Dark charge in the 1i'th well
; ‘ QG Net charge per unit area in gate
; Qin Input charge per unit area
; l Qn Mobile charge per unit area (free electrons) in potential well
F 2
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Mobile charge in potential well
Maximum charge per unit area that well can accept
Charge handling capacity of BCCD
Charge handling capacity of SCCD
Initial sending charge
Net charge per unit area in S{
Net charge in Si in potential well area
Surface state charge per unit area

Frequency response function
Net recombination rate of electrons (holes)
Time delay

Time delay of each element in a transversal filter
Carrier transfer time

Minimum fall time
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