AD=AD34 228

UNCLASSIFIED

BDM CORP EL PASO TEX
DATA BASE MANAGEMENT SYSTEmM REFERENCE MANUAL, (U)
AFWL=TR=75=159

OCT 76 J M PHELAN

F/6 9/2

F29601=74=C=0017
NL

T — —




1.0

e

29

“IS

L nee




F) AFWLTR-75-159 ) : AFWL-TR-

N
G\

34

e

ADA U

75-159

/

DATA BASE MANAGEMENT SYSTEM REFERENCE
MANUAL

BDM Corporation
6070 Gateway East
El Paso, TX 79925

October 1976

Final Report

Approved for public release; distribution unlimited.

This research was sponsored by the Defense Nuclear Agency under
Subtask Z99QAXTC022, Work Unit 52, Work Unit Title: Interface
Program for Circuit Analysis.

Prepared for

Director
DEFENSENUCLEAR AGENCY
Washington, DC 20305

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command

Kirtland Air Force Base, NM 87117




——

AFWL-TR-75-159

This final report was prepared by the BDM Corporation, E1 Paso, TX, under
Contract F29601-74-C-0017, Job Order WDNE1308, with the Air Force Weapons Lab-

oratory, Kirtland AFB, NM. Mr. A. Brent White (ELP th j
Sk Methnd (ELP) was the Laboratory Project

When US Government drawings, specifications, or other data are used for any
purpose other than a definitely related Government procurement operation, the
Government therby incurs no responsiblility nor any obligation whatsoever, and
the fact that the Government may have formulated, furnished, or in any way
supplied the said drawings, speicifications, or other data is not to be. regarded
by implication or otherwise as in any manner locensing the holder or any other
person or corporation or conveying any rights or permission to manufacture, use,
or sell any patented invention that may in any way be related therto.

This technical report has been reviewed and is approved for publication.

This report has been reviewed by the Information Office (0I) and is releas-
able to the National Technical Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations.

@ Bt Ll
: o

A. BRENT WHITE %
Project Officer '

FOR THE COMMANDER

1 3

ikl
Laref W, ﬁm/' \\\'\/ gé“l.“’mzc:’:cso:é[“,

Lt Colonel, USAF olonel, USAF
Chief, zhenomenology/Technology Chief, Electronics Division
Branc

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

oNa

103:

~e T




SECUR|TY MFI(‘A TION OF TH!S PAGE (When Date Fntered

l _ UNCLASSIFIED

(/7 /REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

;,'t
& —
. 2 S ciP ™
* /g [ m- T2 GOVT AccEssion ~?ﬁ PIENT'S CATALOG NUMBER

4. Tl sand Subiiie) 0 \ TYPFE O RAFPORT ¥ PERIOD COVERED
DATA BASE vAwAGrMFNr svsrm R[FERENCE MANUALc Final Rep/\t.p'/

PERFORMING-RO—REPOR T NUMBER
Bt s 8 CONTRACT OQ GRANT NUMBER(s)
J : 4)
/0 |) dames M/{”‘e‘"”/ O/ | Fov6-74-c gcm'
S FERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
BDM Corporation 5270
6070 Gateway East Boulevard, Suite 411 wqy(%gap
E1 Paso, TX 79905 /
11 CONTROLLING OFFICE NAME AND ADDRESS N[ T2 REPORT DATE
} Director /// Octeber W76
Defense Nuclear Agency AR
Washington, D.C. 20305 142

14 WMONITORING AGENCY NAME & ADDRESS(If different frga

1S. SECURITY CLASS. (of this report)

Air Force Weapons Laboratory (ELP) UNCLASSIFIED
Kirtland Air Force Base, NM 87117

15a. DECLASSIFICATION DOWNGRADING |
SCHEDULE

- S Ber—
16 DISTRIBUTION STATEMENT (of this Report)

é Approved for public release; distribution unlimited.

[ 17, “I’;IST RIBUTION STATEMEN Y_'nl the abstract entered in Block 20, if different from Report)

18 SUPPLEMENTARY NOTES

This research was sponsored by the Defense Nuclear Agency under Subtask
Z990AXTC022, Work Unit 52, Work Unit Title: "Interface Program for Circuit

Analysis".
'75 ¥ EY WORDS (Continue an reverse side if necessary and identify by block number)
‘ Analysis CADA
\ Computer Aided Analysis Network Simulation

\\ ‘Data Management
\\ Data Base Systems

JN‘ ABSTRACT /Continue on reverss side If necessary and identity by block number)

The Data Base Management System (DBMS) is a computer program which creates and
maintains a hierarchical set of data bases and data base entries in which both
the data base structure and the data itself may be defined and controlled by-
the user. Information stored in the data base is stored as entity attributes.
These entities may be placed into ordered sets and inverted linked lists as well
as beina organized along the normal hierarchical Tines of the data base. In-

| formation may be retrieved to core storage, system files, and output devices.?t‘

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Ent

B39/ 55 ¢ Y

DD ,"%u"s 1473  EOITION OF 1 NOV 65 15 0BSOLETE \
ere




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




Section

CONTENTS

INTRODUCTION
BASIC DATA BASE STRUCTURE
STRUCTURE LEVEL 1.0:

STRUCTURE LEVEL 1.1:

STRUCTURE LEVEL 1.2:

STRUCTURE LEVEL 1.3:

STRUCTURE LEVEL 1.4:

STRUCTURE LEVEL 1.5:

OVERVIEW OF DBMS

BASIC COMMANDS TO THE
DBMS

DATA BASE STRUCTURE

SPECIFYING A SPECIFIC
NODE

ATTRIBUTE VALUES

LINKED LISTS

INTERNAL DATA STRUCTURES USED BY DBMS

STRUCTURE LEVEL 2.0:
STRUCTURE LEVEL 2.1:
STRUCTURE LEVEL 2.2:
STRUCTURE LEVEL 2.3:
STRUCTURE LEVEL 2.4:
STRUCTURE LEVEL 2.5:

STRUCTURE LEVEL 2.6:

STRUCTURE LEVEL 2.7:
DBMS ALGOR ! THMS

STRUCTURE LEVEL 3.0:

STRUCTURE LEVEL 3.1:

STRUCTURE LEVEL 3.2:

DATA BASE BUILDING BLOCKS
CELLS

INTERNAL [INPUT FORM

SN CONSTRUCTION DETAILS
LLH CONSTRUCTION DETAILS
DBE CONSTRUCTION DETAILS

LINKED LIST CHAIN (LLC)
NODES

THE DATA BASE NODE

DBMS MAINTENANCE
LONG INPUT DECOMPOSITION

UTILITY FUNCTIONS

20
22
25
29
29
29
29
50
5k
55

62
62
6l
6b
64
64



SECTION

STRUCTURE LEVEL 3.3: STRUCTURE FUNCTIONS

STRUCTURE LEVEL 3.4: DATA CONTROL FUNCTIONS

STRUCTURE LEVEL 3.5: RAGGED TABLE NODE

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

GENERATION
DBMS COMMANDS AND CARD FORMATS
NODE NAME AND MOTION PHRASE CONVENTIONS
DBMS EXAMPLES

A SCHEMATIC DIAGRAM OF DBMS NODE
STRUCTURES

THE DATA BASE MACRO PROCESSOR

GLOSSARY

68

99

o

120
122

128




Figure

3a
3b
3c

19a

19b

ILLUSTRATIONS

Command Communication Paths for DBMS
Generalized View of a Data Base
Structure Nodes

I11egal Structure Nodes

Structure Nodes

Basic Structure of a Data Base Without Sets

or Lists

Data Base Entries

Sets and Lists

Another Use of Sets

A Simple Ragged Table

A Ragged Table Shown as a Tree
Linked Lists

Linked Lists After Modifications

Multiple Linked Lists on a Structure Node
Linked Lists Which Will Never Occur

SN 'SYS.SIMS.XTORS'

General Structure Node Format

Linked List Header Format

Data Base Entry Node Format

Alpha Type Attribute Value Format

Array Description

Array Values

20
23
23
26
26

27
51
53
54
55
56
57
5




Figure
20

21
22
23
24
25a
25b
26
27

Data Base Name Attribute Value Format
Example of Ragged Table Construction
Ragged Table Storage Format

Linked List Chain Format

Data Base Node Format

Pointer to an Out of Data Cycle
Pointer to the Current Cycle

Own Node Format

Scattered Ragged Table Node




Table

10

1

13
14
15
16
17
18
19
20
21
&2

23

TABLES

Cell Types

DBMS Commands

Attribute Value Types
DBMS Keywords

Logical Expression Value and Operator Codes
Motion and Ordering Codes
BNF for DBMS

DBMS Function Initial
DBMS Function Retrieve
DBMS Function Copy

DBMS Function Cycle
DBMS Function Restore
DBMS Function List

DBMS Function Display
DBMS Function Compress
DBMS Function Link

DBMS Function Structure
DBMS Function Unlink
DBMS Function Create
DBMS Function Enter
DBMS Function Find

DBMS Function Return

DBMS Function Delete

Page
30

31
33
36
39
4
70
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91




Table

2l
25
26
27
28

29

DBMS Function Remove

DBMS Function Store

DBMS Function Unfile

DBMS Ragged Table Generation
DBMS Ragged Table Compaction

Motion Phrase Construction

Page

93
94
a5
97

113




SECTION |

INTRODUCTION

This report discusses the Data Base Management System (DBMS) which has
been developed as a component program for a systems analysis program to be
used in the vulnerability assessment of weapons systems to nuclear radiation
effects. The DBMS has been developed along very general lines so that it is
not oriented in any way towards the systems analysis application. The DBMS
is organized as a hierarchical data base and supports ordered sets and linked
lists. Several kinds of data types are supported and information may be

retrieved to core storage, system files, and output devices.

The DBMS is able to operate as a stand alone program, or, with a suitable
executive controller, in concert with other programs. Input to the DBMS may
be provided in a user language which specifies basic DBMS operations, or
through a list of bit-packed computer words. The bit-packed words are
available for inter-program communication and accomplish the same operations

as the commands in the user language.

Since the DBMS operates on basic commands it is convenient to have a
higher level user language through which the user can issue macro commands
to the DBMS. These macro commands are composed of other more primitive
macro commands and basic DBMS commands. Appendix E discusses the concept of
a Data Base Macro Processor (DBMP) which would implement such a feature.
Figure 1 illustrates the data and command communication paths which are

used by the DBMS and the proposed DBMP.

The DBMS performs the bookkeeping function in a data base. These book-
keeping functions are divided into four categories: functions which perform
general utility tasks, functions which create and maintain the hierarchy of
a data base, functions which control the fine structural detail of a data
base as well as enter and retrieve data from the data base, and functions
which control the operation of the DBMS. Section || describes all of the
DBMS commands in each of the four categories. Section |l also describes the

general structure of a data base as created by DBMS. The details of how




the information is stored in the data base and the format of commands
to DBMS are discussed in Section Ill. The primary algorithms used in

the DBMS are presented in Section IV.

Sections Il, Ill, and IV are organized as structure levels, each
successive structure level presenting a more detailed discussion of the
DBMS. Therefore, the reader is advised to read as many structure levels
as necessary to understand, in sufficient detail, how to accomplish his

current goals.

Independent
Program

DBMS
Commands

DBMS Commands

User

DBMS
Commands

Figure 1. Command Communication Paths for DBMS.




STRUCTURE LEVEL 1.0:

SECTION [

BASIC!DATA BASE STRUCTURE

OQVERVIEW OF DBMS

The basic structure of the DBMS will support multiple data bases.

data base will support an unlimited number of data cells ordered in a tree

of any level.

Although the cells of

any level need not contain the same

type of data, all the cells on any level are arranged into groups of like

structure (same tvpe and number of data fields called attributes).

Each

Figure 2

is a generalized picture of a data base demonstrating the tree structure and

DATA BASE |
o e e e —— — e e — e N E O,
| 1
| Group 1 Group 2
| 7 —r

000

: e _i[ [ 1 i
| 000 — 000 —= f—000—+
|
i
, —
I
| t——————— 000 ——————
|
I
I
|
I
I

000~ -ooo-l 000~
R, W o e TS FE R SN
e
| |
l 54 | | {
| £ | | |
SR W R Spmnryapa——— TR
Data Base | Data Base 2 Data Base N

Figure 2. Generalized View of a Data Base




— g

B it

the generality obtainable with DBMS. Data may be stored at any level in the
data base in the form of attribute values. An attribute consists of a name
and a value which define a state of an entity. The attribute name may be
from 1 to 9 characters and the attribute values may be stored as single
variables, as simple arrays or as ragged tables (see Structure Level 1.2).

A variable may be stored as any of the following:

Alpha string of from 1 to 649 characters
Real

Integer

Complex

Double precision

A bit string of arbitrary length
Description of another data base

Ragged table

The total data base is designed to be self archiving through the use of
cycle numbers. Each cycle corresponds to a date and time the cycle was
'frozen'. The generation of a new cycle is controlled by the DBMP or a
user. Besides cycle numbers, all the nodes in the data base are tagged to
further the system sanity at all times, in particular during a system
failure. This tagged architecture also leads to easy portability of data

bases.

The nodes may be placed into predetermined sets the order of which
depends on attribute values of the members. Any node may have associated
with it, one or more ordered sets. Set membership is restricted in that
the members of a set associated with a node A must be a subset of all

the nodes in the subtree with root node A.

The commands to the DBMS are of four types and in two modes. The four

types of commands are:

1) Utility (initialization, copying, cycle control, etc.)

2) Structure (generate and control the overall structure/shape
of a data base)

3) Data (enter data into data base)

4) DBMS Control




o

The two modes consist of pure alphanumeric commands for human use and short

commands for use by interprogram communications.

A data base is intended for primary storage on a random access device
during creation, modification and referencing. The data base is readily
stored on tape and may be easily transferred from tape to a random access
device of a different brand computer. During modification, the DBMS references

the data base through a paging algorithm.

Structure level | discusses the basic structure of the data base as a tree

and the generation and control of a data base. |In particular, the commands and

their usage are discussed along with the data base tree and grouping of data items

into sets and inverted linked lists. This discussion is intended as an introduction.

The casual user of DBMS may, however, find this introduction adequate.

STRUCTURE LEVEL 1.1: BASIC COMMANDS TO THE DBMS

The commands to the DBMS are of four types: wutility, data base
structuring, data entry/retrieval, and DBMS control. A general description
of the commands and their effects are discussed here. Subsequent structure
levels contain more details, and Appendix A contains command syntax (note
commands are listed in a logical order here, but are listed alphabetically

by type in Appendix A).
1) Utility Functions:

A) INITIALize a data base - performs file opening and establishes
the basic structure of & data base.

B) RETRIEVE an existing data base - validates permission keys to
prevent accidental destruction of an existing data base.

C) COPY a data base from random access device to random access device
or to tape. Also allows deletion of superfluous cycles of a
data base.

D) RESTORE a data base from tape to random access. The tape may
have been generated on a different brand of computer with
compatible tape transports.

E) LIST out date and time of all cyc'es currently archived in the
data base.




~—T—

F) DISPLAY structure and/or attribute values of all or part of
the current or previous cycles of a data base.

G) COMPRESS a data base on a random access device by removing wasted
space caused by fragmentation.

H) increment the current CYCLE number by one, thus archiving a copy
of the data base.

2) Structure Functions:

A) Add a STRUCTURE group to the current data base. This command is
used to describe the characteristics of a group (e.g. Group |1
of Figure 2). The information required is: the groups of
nodes which are siblings; the groups of nodes which may belong
to sets of this group; and the attributes of the members of this
group.

B) LINK/UNLINK a group of nodes into an ordered list.

3) Data insertion, modification and retrieval functions:

A) CREATE a new data node

B) ENTER a data node into a set.

C) DELETE and/or RETURN a data node and its attributes.

D) STORE an attribute value of a DBE.

E) FIND a data node.

L) DBMS Control
A) END of DATA
B) Change MODE of input

Upon examining functions of Type 2 (structure functions) and Type 3
(data functions) it can be seen that the data base is intuitively divided
into two sections. One half contains general structure information and
the second half contains stored data in a compacted form and specific details
of structure, namely set membership and ordering within sets and lists.

Both sets and lists will be discussed in subsequent structure levels, but

the following comparison of the two will be useful now. Both sets and lists




—_——

y

have data nodes as members, and both may be ordered according to a queueing
discipline or by ranking cf attribute values. A set contains only data nodes

which have been entered thru an ENTER function. An ordered list contains all

data nodes on a subtree which satisfy a specific attribute relational expression.

This distinction is important, since both concepts are very useful, as will

become evident in subsequent structure levels.

STRUCTURE LEVEL 1.2: DATA BASE STRUCTURE

For every group of data nodes (e.g., Group 1, Figure 2) there corresponds
one and only one structure node (SN), hence SN will be used henceforth in
place of group. The structure nodes form a tree from which the data base
derives its hierarchical structure. Each structure node is given an alpha-
numeric name consisting of from one to ten characters starting with any
letter. The root of the SN tree is always named 'SYS'. The SN called 'SYS'
is primarily generated and manipulated by the DBMS and the DBMP (see level 3,
Data Base Maintenance). There is only one restriction on the name of a SN:
the names of SNs within a structure set and within the siblings of any node
must be unique. The meaning of the term 'structure set' will be defined
below; for now a structure set can be considered as a user defined subset
of SNs on any subtree of the data base tree. Duplications are allowed any-
where else. Any SN can be uniquely defined by its generic name (the names
of all its ancestors separated by periods). |In Figure 3a the leftmost bottom
node is 'SYS.A.B' and the right most bottom node is 'SYS.A.A.B'. Nodes
'SYS.A' and 'SYS.A.A' cannot be in the same structure set since their names
are both 'A'. Similarly the nodes 'SYS.A.B' and 'SYS.A.A.B' cannot be in
the same structure set since they are both named 'B'. Figure 3b shows
another naming error, in particular SN'A' has two siblings named 'B'. The
naming of SNs in Figure 3c avoids the probiems of Figure 3a and 3b. Note
that the naming of SNs in Figure 3a will not cause problems as long as the

structure sets are properly chosen.

With each SN there can be associated zero or more data base entries

(DBE). It is the data base entries which contain the attribute values.

13



Figure 3a. Structure Nodes

Figure 3b. Illegal Structure Nodes

Figure 3c. Structure Nodes




Each SN acts as a template for its associated DBEs. Figure 4 shows an ideal-
ization of a data base limited to the structure previously discussed. Each
SN is shown as the left column of a block and the DBEs associated with a SN
are attached as columns to the right of the SN. The SN names are at the

top of a SN column and attribute names are shown below the SN name. The
attribute values are shown for each DBE (e.g. the first SN below 'SYS' is
'SIMS' which has two DBEs). The attribute values indicate two simulations,
'SIMI' and 'SIM2' which were originated by organizations 'A' and 'B'
respectively. The next level of SNs corresponds to the type of devices (tran-
sistors and diodes) which are input to the simulations. Note that the two
siblings of SN 'SYS.SIM' (named 'XTORS' and 'DIODE') have different attri-
butes. All of the transistor models could be referenced by 'SYS.SIMS.XTORS'.
The attribute DOMCODE is assumed to be 'l' for frequency domain and '2'

for time domain. By listing out (or searching through) all the attribute
values for 'SYS.SIMS.XTOR.MODELS' a user can locate an existing transistor
model which can be input to simulation 'SIMI' or 'SIM2'. Note that by

using the structure presented so far some information had to be duplicated
in the DBEs associated with SN 'SYS.SIM.XTORS.MODELS'. |In particular the
attributes 'SIMS' and 'DOMCODE' contain information corresponding to

SN 'SYS.SIMS' and the attribute 'DOMCODE' in SN 'SYS.SIMS.XTORS'. Since
there would probably be many transistor models in the data base, much space
would be needlessly wasted. This duplication could have been avoided had
'SIMI' and 'SIM2' been SN's instead of 'SIMS', and 'DOM!' and 'DOM2' been
SNs just after SN 'SYS.SIMS.XTORS', but then the listing out of all the
transistor models would have been more difficult. The problem is simplified
with the concept of sets and lists. For example all the transistor models
associated with SN 'SYS.SIMS.XTORS' can be entered into one of four sets
according to which simulation and domain is appropriate. Also the user

has the ability to define a transistor model and not have it considered as
input to either simulation until he is satisfied with the model's accuracy,
at which time he enters it in the appropriate set. The concept of sets will

be presented next; the concept of lists is discussed somewhat later.




SKWIS

S3S!7 40 sS313S 1noyliM aseg ejeq e 30 24n3dnJ3g di1seg 4 aunby4
4 Z 4 l 3002W0Q
1ZWIS, SWIS i LWIS, i IWIS, 1ZWIS, 1 LWIS, SWIS
(ANIS, 3INNYYY &y i e S 1300w
o 1300W | |1 10€8-995-£6G, | (10€8-925-€65, | ,10£8-995-£6S, 1ZH56-L24-£89, INOHd
1 10€8-925-€65, INOHd (HLIWS g08§, 'HLIWS 30r, tHLIWS 808, 1NMO¥E WIT, NOS¥3d
(HLIWS 30r, NOSY3d 1 8E9ENT, 18E9ENT, 18E9ENT, 18E9ENT, IWYN
[ 3002wW0Q Py 1 L 1OW S43q3, X . 4 i IN3WWO0D
9E9ENI IWYN  IV¥3N39,  TVY¥INID, IVYINGY, 13131233453, 39VYSn
S1300W S1300W
Z l 300JW0Q
L 3NT4, T HINOY, T 37ANVYED ELIPY 1AIN3IND3IY4, N1¥W0Q
S3golaq SYOLX
H _ 1|
8 WY NIDI¥0
1 ZWIS, VLWIS, 3009

16




The level of any SN is the number of his ancestral nodes. Considering
Figure 3b, the level of SN 'SYS' is 0, the level of SN 'SYS.A' is 1, the
level of SN 'SYS.A.B' is 2, and the level of SN 'SYS.A.B.C.' is 3. The
level of any DBE is the level of its associated SN. Considering Figure 4,

all the DBEs for transistor models are of level 3.

Intuitively, a DBE set belongs to a DBE called the owner, and a DBE may
own at most one DBE set. The members of a DBE set are specified individually
by a user (see Type 3 function ENTER in structure level 1.1) and must consist
of DBEs having a lower level than the DBE set owner. The DBE set members are
said to belong to the DBE set owner. A DBE may belong to more than one DBE
on higher levels, but must belong to no more than one DBE of a given level.

A structure set of SN 'A' consists of nodes on the structure subtrees with
the children of SN 'A' as roots. Similar to a DBE set, a SN may own at most
one structure set. Structure set members must be of a lower level, and a SN
may belong to at most one SN of a given level. The members of a structure
set are specified when the structure set owner or member is described (Type 2
function STRUCTURE). A structure set defines potential members of a DBE set.
DBE 'Al' with associated SN 'A' may only own DBEs whose associated SNs are in

the structure set of SN 'A'. A structure set differs from a DBE set in the

types of nodes which are members, and each SN owns all of its children by default.

Figure 5 shows a group of SNs (squares) and DBEs (circles). Here SN 'A' may

own a structure set of ('B') or ('BY, *C'), or ('8, "D}, or (“B, “€*, "0").

Figure 5. Data Base Entries




SN 'D' may not own a structure set. If SN 'A' has a structure set of ('B', 'D'),
then DBE 'Al' may own a DBE set but DBE 'Cl' may not belong. DBE '‘Dl1' and/or 'D2'
and/or 'D3' may belong to the DBE set owned by 'Al', but if DBE 'Dl' belongs to

the DBE set of 'Al' then 'Dl' may not belong to the DBE set of 'A2' or 'A3'. In
the future the phrase 'the DBE set belonging to the DBE A' will be shortened to
'the set of A'. The concept of set is in keeping with the general data base

philosophy of keeping the DBEs small by placing as much structure information
into SNs which then act as templates for the DBEs. The members of a set may
be ordered by queueing discipline (FIFO or LIFO) and/or ranked by a numeric
attribute value (increasing or decreasing). As such, the set information (who
may belong to whom, etc) is passed to the DBMS as a structure set definition
when a SN is defined (see Type 2 command STRUCTURE). The same is true for

linked list definition which will be defined later.

Figure 6 is a copy of Figure 4 with set relations emphasized. For the
sake of argument, assume SN 'SYS' owns SN 'SIMS' and 'XTORS', and further
assume all other SNs besides SN 'SYS' only own their children. In Figure 6,
the SNs are to the left of the double line and their associated DBEs are

connected by a dashed line. Note that the SN 'SYS' has a corresponding DBE

which may own any DBE associated with SN 'SIMS' or SN 'XTORS'. In Figure 6
SN 'SIMS' owns SN 'XTOR' and SN 'DIODES'. The first DBE of SN 'SIMS'
(Code = 'SIM1') owns two DBEs of SN 'XTOR'. Now it is very easy to locate

all transistor models or just those for simulation 'SIMI' in the time domain.

Another use of sets might be to simplify the bookkeeping of problems
and corresponding solutions. In particular, a problem might be defined and
placed into a set of unsolved problems. When a solution is found the solution
is filed with the problem definition and the problem definition is moved to

the set of solved probiems. Figure 7 shows this.




1 10€8-925-€65
HLIWS 30r,

|
19E9ENL

| | 10€g-995-¢65,
, ‘HLIWS 804,
18E9ENTZ,

N IVYINIY,

!

LR

S——

8.
_Nz_m_

S1s!7 pue s33§ g a.nb)4
1300W
INOHd
NOS¥3d
3002W0Q
. o 0 0 . T it it B
$1300W
) _ 1300W
1 10€8-9959-£65, 1 10£8-925-£65, 1THhS6=L2Zh-£89 | INOHd
tHLIWS 808, 'HLIWS 30r, (NMO¥E WIr NOS¥3d
1BE9ENT, 1 BE9ENT, 18E9ENT , IWYN
Tahan i L LOW s42q3, SN IN3WWOD
—- - IV¥INID L f- o IveIN3D, b 1 014193ds--+----{  39vsn
_mqucoz
m el _
e e e e t R Ll
$300lq
| w
z L 300IW02
TTT T oo mmoo WL, pm— == === = AININDIYY, JF--= ==—==—4 NIVWOG
bl L e M SYOLX
, | :
7 19140 .
ettt ettt 1 (1) TE titater Gt .
_ SWIS o
380 || NS ¥l

2




3@

PRO
SOLVED YES [ NO |

DEFS] {
DEF "def 1' |
I

SOLS ]
RESULTS rsoLUTIONT' | [ 'soLuTionn' |

Figure 7. Another Use of Sets

Cycle information is kept on all SNs and DBEs. As such previous states
of a data base may be recreated using the Type 1 function COPY. The Type |
function CYCLE causes a state of a data base to be saved. Both of these

functions are discussed in Appendix A.

Structure level 1.3 discusses a mode of describing a specific data base
NODE which enhances the use of sets. Level 1.5 will return to discussing
lists and sets. It should be pointed out now that although lists are easier
to use they are somewhat limited in their usefulness and efficiency which is

why their definition was placed at a later level than set definition.

STRUCTURE LEVEL 1.3: SPECIFYING A SPECIFIC NODE

This section describes how a user can refer to a specific SN or DBE.
The reference to a SN or DBE is by name. As was mentioned in Structure Level
1.2 for SNs, one form of a SN name is the SN's ancestors separated by
periods (in the example given it was 'SYS.A.B.'). In general a node name
starts with the SN 'SYS' followed by motion phrase(s). A motion phrase
consists of a motion symbol ('$', '*' '/' or '.') followed by a motion

specifier. Since structure sets and sets are ordered we can move from any

20




node to the first or last member of the node's set, denoted 'SF' and 'SL'
respectively. Also while in a DBE set or a STRUCTURE set we can move to
the preceding or succeeding node, denoted 'SP' and 'SS' respectively.

Attribute values may be used to specify a particular member of a DBE set;

this is denoted by a dot followed by a relational expression.

In the DBMS a relational expression can have one of two forms. “The
first form consists of only the attribute name; it has a value of true if

and only if the attribute name is present in the DBE being considered.

The second form consists of a standard ANSI FORTRAN logical expression.
The relational operators .EQ., .NE., .GT., .GE., .LT., and .LE. may be used;
however, when non numeric attribute types are involved only .EQ. and .NE.
are permitted, and all operators in the expression must be of the same
attribute value type. Logical expressions may utilize the Ingical operators
.AND., .OR., and .NOT., and parentheses may be used for grouping purposes.

The entire logical expression must be enclosed by parentheses.

Another motion is from a SN to its associated DBEs, which is denoted '*'.
The symbol '*' is followed by 'SF', 'SL', or '/'. Whereas the '.' produced
motion into a set or list, the '/' produces motion within a set or list
(if '/'" follows '*' the motion is within all DBEs associated with the SN being
left). The symbol '$B' moves from a SN to its parent or from a DBE to its
associated SN. As a final note before the examples, the ordering of DBEs
was specified by their associated SNs (Type 2 function STRUCTURE which
created the SN). As such, the ordering of DBEs determine which DBE is used

when more than one DBE would satisfy an attribute relational specification.

The reader is referred to Figure 6 for the following examples. The

following all specify the SN for transistor models:

1)  SYS.SIMS.XTORS.MODELS
2) SYS.SIMS.XTORSSF
3) SYS.SIMSSLSP.MODELS

21




The following all specify the transistor model written by 'BOB SMITH' for
simulation 'SIMI' (third from left):

1) SYS.SIMS.XTORS.MODELS*/(PERSON.EQ./BOB SMITH/)
2) SYS*/SYS. (CODE.EQ./SIM1/).(DOMCODE.EQ.2)SL
3) SYS.SIMS.XTOR*/(DOMAIN.EQ./TIME/)SL

If just any 2N3638 time domain transistor models is desired then we can

use
SYS.SIMS.XTOR*/ (DOMAIN.EQ./TIME/) . (NAME.EQ./2N3638/)

A short node naming technique is also possible. Type 2 functions can
specify a SN name, and the DBMS remembers the current SN name. A SN name is
considered current for the Type 2 command specifying it and all the commands
prior to the next Type 2 command. Similarly for all Type 3 commands except
CREATE, the DBMS keeps track of the current DBE. For the CREATE command
the DBE created is considered the current DBE and the associated SN is con-
sidered the current SN. Thus the short form for specifying a SN field or
DBE field starts with a motion phrase and may be followed by more motion
phrases as needed. As an example, if in Figure 3 the current SN is 'SYS.A',

then SN 'SYS.A.A' may be referenced in short form by '.A'.

Appendix B gives the result of motion phrases for SNs, DBEs, structure
setc, DBE sets and linked lists. At this time it suffices to mention that

motion in a linked list is similar to motion in a set.

STRUCTURE LEVEL 1.4: ATTRIBUTE VALUES

The form of storing an attribute value must be specified when the
attribute is defined (See Appendix A, Type 2 function STRUCTURE). However,
array dimensional information may also be defined (or redefined) when a

DBE is created or altered.

The dimensionality of a static (or simple or FORTRAN) array is defined
dynamically (Type 3 function SET) by stating the dimension(s). For array X,
one could say X(*,*) = 3, 4 which would set the attribute X in the DBE to a

three by four array.

22




A ragged table is more versatile. First of all, the information stored
does not have to be of all the same kind, and the number of columns does not
remain constant. Figure 8 is an example of a two dimensional ragged table.

For more dimensions than three it is easier to show a ragged table as a tree,

o[ 12] 83 [ 36 |
4.8 |1 5.6

72

9.5 7. }u.5 ) .15}
17

22 .} 3 38

Figure 8. A Simple Ragged Table

as in Figure 9. Note the leaves of a ragged table (tree) do not need to

be of the same level or of the same type (integer, etc). Although the
number of nodes in a ragged table is iimited to about 20000, the leaves

of a ragged table can be any type of attribute value including other ragged

tables. Thus a ragged table, as seen by a user, is of unlimited size.

X
1 2 3
A ,2)] o o) H
B ||c i
.
E 2

Figure 9. A Ragged Table Shown as a Tree

23




Similarly, although the maximum number of DBEs permitted in a data base is
about 107, the DBMP can use a ragged table of data bases to create a data

base of unlimited size.

Referring to Figures 8 and 9, some efficiency is gained if the leaves

of a ragged table are static arrays. The specifying of dimensions in a

ragged table is different from static arrays, in that the number of branches

at any node must be defined.

and attribute value type of the leaves of Figure 9 are as follows:
X ()

X(1,*

I w

Thus the required definitions for the dimensions

X(1,
il
XCl,
X (1,
x(2,
X(2,
x(3,

— SENNN —~— |
e et e e

—_—— N

@

Xx(3,
x(3,
X(3,
x(3,
x(3,
x(3,
X(3,
X (3,

. v e e e e

DiS et il it et e N

R
~—

where A, B, C, D, E, F, G are attribute value descriptors (see Appendix A,
Type 2 function STRUCTURE). The dimensions of a static array or ragged
is true for
Thus all
three of the above may be set with the Type 3 function SET or the Type 2
function STRUCTURE. in the FORTRAN

If A is a single integer and B is a two by three array, A and B(1,3)

table are attribute values of the array or table. The same

the attribute value description for the leaves of a ragged table.
The variables are stored into an array
sense.

could be set by the Type 3 function SET referenced as

x(1, 1) =100
%{1, 2, 1, ¥, 3) = 101.

24




T

An atiribute value entity of type alpha (or bit) string may be of any

length up to about 30000 characters (or bits).

The dimensions of a static array or ragged table may be referenced in

the relational expressions mentioned in Structure Level 1.3.

An application of ragged tables is the storage of sparse matrices.

STRUCTURE LEVEL 1.5: LINKED LISTS

Whereas a set is attached to (owned by) a DBE, a linked list (LL) is
attached to a SN. The membership is defined by attribute names being present
and/or attribute value relational phrases (See Structure Level 1.4). All
DBEs which 1) meet the attribute requirements on names and values, and 2)
which are associated with any SN which is a descendent of the linked list's
SN, are automatically members of the list. The list is ordered by numerical
attribute values and/or a queueing discipline. Further, list membership is
independent of when a DBE is created. Ordering of a LL is specified by a
series of ordering phrases. The first phrase is used for primary ordering.
Subsequent phrases are used to break ties. Unless a 'LIFO' discipline is
specified, the final ordering phrase is assumed to be a 'FIFO'. If a '"LIFO'
or 'FIFO' discipline is used for DBEs present before the LL is created, the
queueing discipline becomes cycle no., then level no., and then relative
time of original association with a SN (See Appendix A, Type 2 function LIST
and Type 3 function CREATE). Note when a DBE is created its attribute values
are flagged as non existent until a value is entered. Finally, a SN may

have zero or more lists.

As an example, Figure 10 shows a data base with a LL. The LL is called
L1 and contains DBEs 'BI', 'Cl', 'C2', 'B3', and 'B2'. Figure 11 shows the
same LL after DBE 'B3' has been removed and DBE 'E3' has been added. Note
that 'C3' fits between 'Cl' and 'C2' in the list ranking. Note that DBE 'Al‘
is not a candidate for LL 'L1' and that SN 'SYS' may have LLs attached. Figure
12 shows the same data base with a second LL attached to SN 'A'. The second

LL is called 'L2' and its members are linked together with a squiggly line.

25



el

SYs @

Ll -

R

Figure 10. Linked Lists

% &

Figure 11. Linked Lists After Modifications

26



Bl B2

Gl C2 C3

Figure 12, Multiple Linked Lists on a Structure

Node
SYS <:::>
1
f A Al
L4
\
| C Cl c2 c3
’ " LS
’ - 2 B3
B
‘ L6 Bl

Figure 13. Linked Lists Which Will Never Occur

27




Figure 13 demonstrates two LLs, 'L4', and 'L5', which cannot legally occur.
LL 'L5' is attached to SN 'C' and contains DBEs which are associated with

a SN that is not a descendent of SN 'C' (SN 'B' and SN 'C' are on different
branches). Similarly LL 'L6' contains a DBE of SN 'A' which is an ancestor

instead of a descendent of SN 'B'.

When to use a set and when to use a list is dependent on the specific

situation. The following guidelines should clarify most situations.

1) Sets require more effort of the DBMP and/or the user, but lists
require more bookkeeping by the DBMS. Thus large lists should be avoided
when a set will do. Lists are also expensive with respect to computer
resource time when their range spans many SNs. It should be kept in mind

that the DBMS is not assumed to be 'smart', whereas the DBMP is.

2) Large lists are advisable (contrary to 1) when all the elements

would always be in one corresponding set (membership is static).

3) Small sets are advisable if member DBEs are frequently moved

from set to set (membership is very dynamic).

4) Sets are advisable when attribute values referenced in ordering

are frequently changed.

The characteristics of lists and sets may be summarized by:

lists sets
easy to use versatile
no limit to no. of lists efficient
static dynamic
28




SECTION 111

INTERNAL DATA STRUCTURES USED BY DBMS

STRUCTURE LEVEL 2.0: DATA BASE BUILDING BLOCKS

Internally the data base is a tagged architecture. |In particular,
any entity which can have a pointer to it has a header describing the contents
of the information contained in the entity. The header is called the tag
and the information is called the text. The text may contain other nested
entities which have tags and text. |In the data base, the principal tagged
entities are called nodes. The nodes may contain entities called cells,
some of which are tagged. Structure Level 2 describes the internal repre-

sentation of nodes as stored in the data base.

STRUCTURE LEVEL 2.1: CELLS

The smallest module of information storage in the data base is a cell.
Table 1 lists the various cell types and formats for CDC 6600/7600 and
IBM 360/370. Note that except for Types 2 and 7, the cell size remains
constant from one machine to another with only the internal representation
varying. This enhances the data base's portability. The cells have been
defined primarily for the CDC 6600/7600 with consideration given to the
IBM 360/370 and the UNIVAC 1108/1110.

STRUCTURE LEVEL 2.2: INTERNAL INPUT FORM

When the input mode is LONG the input formats are shown in Appendix A.
DBMS converts the LONG input to a SHORT internal form. When the input mode
is SHORT, DBMS uses the internal form without any conversion. The internal
form consists of from one to seven arguments per DBMS command: command
identifier, up to five keyword descriptions, and, if the input device is core,
a flag indicating an argument has tried to reference a nonexistent node or

nonexistent entry in a ragged table. The command identifier is a cell of

29




sedAl |12) | 2|98l

i

*saoeds 311q paubisse 413yl uy paisnipe 3ybia aue swaii eiep ||V

(s319# S! s31q jo 4aquny) Buisis 11g = S1I9

‘ydee siiq :N pue wN 40 sp|=atj oMl mc_L_acmL si3aldedqeyd (gig DmmmULQEOU m = SYVHI
(pe3edipul si paainbaus si1iq j0 "ON) P31} 49b23u| = VA
(s319 0€) 433ulod = YINd
$3Y3IHM
[mvaT CwvaT zavaTrava)  [(SORwAT (SHEIvA] (S1)2TvA] (S1) 1TVA] 6
gIVAL * ° * [ LIVA [eiwafziava | ™ ° " ] tTvA | [Gosowa T (x)ziava] "~ 1 () 17vA] 8
SLi§
SLI8# Siid
(Y LNd | sLigz ]| L¥INd [(sLig#)sL18 ] (Z1)SLI8% | 1¥INd] L
SYYHIS |
SUYHIHPALIVA [Savhay [saveas [va] [(8) 1va] (15)suvHa} 9
L4LNd L
L1VA [ (dING]] (VA | {(8) tvA ] 141Nd] E
[9.LNd
LA [raing Jravn ] Ltuend | (0€) tval f
ZY.LNd
€IvA | zava | LIvA [raing ] €va] zava | 1ava | [taing [ (zu)€ava | (21)ZTVA | (9) LTVA] £
[(va] [v] (09-2€) 1 VA z
2Y.LNd
tMLINd { 2HINd | 1¥ING | [ Z¥INd ] 1¥INd] 1

39Y401S Wal 39v¥04S 30D SIN3LINOD 113D 3dAl 113D

30



-
-

the following format:

[ cHeck T FLAG | #PARAMS. | COMMAND# | Cell Type 9

where:
CHECK = 15 bit low order check sum of cells for sanity check only

FLAG = 1 if an argument references a nonexistent node or nonexistent
entry in a ragged table.

#PARAMS = the number of keyword fields present

COMMAND# = the identification number for the command.
(See Table 2).

Number Command Number Command
| COMPRESS 11 UNLINK
2 COPY 12 CREATE
3 CYCLE 13 MODE
4 DISPLAY 14 ENTER
5 INITIAL 15 END DATA
6 LIST 16 FIND
7 RESTORE 17 STORE
8 RETRIEVE 18 RETURN
9 LINK 19 DELETE

10 STRUCTURE 20 REMOVE
21 UNFILE

Table 2. DBMS Commands

The keyword descriptions are tagged cells in the form of an array of one
or more cells called a keyword packet. The first cell is Type 9 (See Table
1) and the first cell's rightmost field identifies which keyword phrase
the array represents. The interpretation of the remaining information depends
upon the keyword phrase. All the keywords (and thus keyword packets) fall
into one of seven classes. Before showing the format of each case, some
general comments about the keyword packets are in order. Keyword packets
may be of an indefinite length. They may be written on a sequential FORTRAN
file blocked with MPARRAY cells per logical record. The first four classes

31




of keyword packets (simple keywords, file definition, core definition, and
linkage saving) require a few cells at most. The last three classes of

keyword packets (expression, motion, and lists) are constructed of primary
cells. These cells are presented before the keyword packets. Then formats

of all seven keyword packets are presented, followed by a number of examples.

There are three classes of primary cells. They are given below, with

the primary cell name listed first followed by the cell description.

Class | Cells: Class | cells are simple primary cells. There are four

types:

(1) N [ naMe  (BcD) | Cell Type 6

(2) AN NAME (BCD) | Type | Cell Type 6
#D I MS Cell Type 2
DIM]

DIMN Cell Type 2

where Type = the attribute type (See Table 3)
or 0. If not of type bits, array,
or ragged table only the first cell
is present.

#DIMS
DIMi

number of dimensions

the ith dimension (for attribute type

"

bits, Ist dimension is width)

(3) ACONST 0‘1’#Ce||s ] 0 ]’#Chars Cell Type 9
Chars Cell Type 2

where f#Cells the number of cells required for

the alpha string plus 1.

#Chars the number of characters in the

string.

32




NUMBER ATTRIBUTE TYPE

0 INTEGER
| REAL
2 DOUBLE PRECISION
3 COMPLEX
4 ALPHA
5 BITS
6 DATA BASE DEFINITION
7 RAGGED TABLE
Notes: 1) Number +32 implies an array

2) 64 implies an attribute name

Table 3. Attribute Value Types

33




Chars = machine dependent character
string must be an even number
of words for I1BM 360/370 or
Univac 1108/1110.

(4) CONST Cell Type 2

where Text = a numeric constant

Class Il Cells: There are five Class Il cells. They are compound primary

cells used in building keyword packets. They are:

(1) v AN
CONST
(2} Y2 AN
AN
(3) v3 AN
ACONST
() v AN
Loc#

where LOC is a class 2 (file definition) or
class 3 (core definition) attribute keyword

packet (See below).

(5) v5 AN
DBDESC

whe-e DBDESC is composed of 5§ ACONS fields (in order they
represent data base name, systkey, rkey, wkey, and

akey)

Class [Il Cells: There are two Class |1l cells. These are complex primary

cells representing a list of variables:

(1) Vi up to 12 SUBMODES #Cells/seq Cell Type 8

up to 12 Cells of
Type VI, V2, V3, V4 or V5§

34




where SUBMODES =1, 2, 3, 4 or § for V1, V2, V3,
Vh or V5 respectively

#Cells/seqg = number of cells required for this

VL (not including header).

(2) OAN up to 12 SUBMODES #Cells/seq Cell Type 8

up to 12 cells of Type AN

where SUBMODES =1, 2, 3 or 4 for HIGH, LOW, LIFO and
FIFO

#Cells/seg = number of cells required for this

0AN (not including header).

The seven classes of keyword packets (or keyword classes for short) are:

(1) Simple Keywords (CARD, DELETE, LISTS, LONG, PRINT, SETS and SHORT).

! 0 0 KEY # Cell Type 9

where KEY # = the identification number of the keyword phrase

(See Table 4 below).




T

NUMBER

oW ooO~NOWVI W —

WWWNNRNRNRNNNNNNDN - e o o
N—-0OWVWONOWVIETWN—~0QWoo~NOWV SWN —

KEYWORD

ABOVE
ALL
ATTRIBUTE
BELOW
CARD
CLASS
CORE
DBE
DBN
DELETE
EXCLUDE
FILE
FROM
INCLUDE
KEY

L INKS
LISTS
Kt
LONG
MEMBER
NAMES
ORDER
OWN
PRINT
RANK
SET
SETS
SHORT
SN
SYSKEY
TAPE
T0

NUMBER

33
34
35
36
37
38
39
40
4
42
43
s
45
16
47
48
49
50
51
52
53
54
55
56
57
58

DBMS Keywords

36

KEYWORD

VALUE
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
(NOT DEFINED)
AFTER

ALPHA

BEFORE

BITS

COMPLEX
DOUBLE

DB

DELETE

FIFO

FIRST

HIGH

INTEGER

LAST

LOW

LIFO

RAGGED

REAL

SAVE

SCORE

SFILE




(2) File Definition (DBN, FILE, FROM, TAPE and TO):

#CELLS | CYCLE# ] #CHARS | KEYZ/ Cell Type 9
FILE NAME Cell Type 2

where #CELLS = the number of cells required for the file name + |

KEY# = the identification # for the keyword phrase
(See Table 4)

CYCLE#

data base cycle number if specified (-1 is default)

#CHARS

]

the number of characters in the file name

(3) Core Definition (CORE):

3 f 3 1. G F KEY £ Cell Type 9

location Cell Type 2

length Cell Type 2

where KEY# = the identification number for the keyword phrase
(See Table U4)

LOCATION = an integer specifying starting location of commands

LENGTH = the number of cells in the command string.

(4)  Linkage Saving (LINKS):

] L INKS 0 16 Cell Type 9

where LINKS =1 if linkage is to be retained and 0 otherwise

16 = the identification number for the keyword LINKS

37




(5) Single expression (CLASS and SYSKEY)

#CELLS MPARRAY UNIT KEY # Cell Type 9

up to 12 SUBMODES #SUBCELL Cell Type 8

up to 12 AN, ACONST or CONST Cells

(Above two blocks repeated
as many times as necessary)

where #CELLS = the number of cells required for the expression

MPARRAY = file blocking for keyword array (also number of

words in core - 1)

UNIT = unit number for FORTRAN binary file containing
the remainder of the keyword packet.
KEY# = the identification number for the keyword phrase

(See Table 4)

-

SUBMODES = 4 bit tags describing the expression (See
| Table 5). Note the expression represented

in Polish notation.

#SUBCELLS = total number of AN, ACONST or CONST cells

(6) Single motion (ABOVE, ALL, BELOW, DBE, LL, ORDER, SET, and SN):

¥CELLS MPARRAY UNIT KEY # Cell Type 9

up to 12 SUBMODES #SUBCELLS Cell Type 8

up to 12 N or EXP cells

(Above two blocks repeated
as many times as necessary)

38




(NOISI1334¥d 318n04Q)

910N 99§ - °2po) odedsy

QYOMA N/ (3A0WENS)

S9p0o) J03lesad(Q pue an|ep UOISSIIdX]

apod

Sl
1
el
4

0l

d3gWNN

|esa1boy °g

‘7 = 9pod

.ur.
D3

‘37

7

(NY)
(v3y)
(43V3LNL)
(eydyy)

LNy

QYOMA M/ (300WENS)

|eD1a3wnu 3xau
|ed1J2wnu 3IX3U 41 (X31dW0J) S!

39

N ™M & W O PN ©




——r

(7)

where

Lists

#CELLS = the number of cells required for the motion phrase

MPARRAY = file blocking for keyword array (also number of

words in core - 1).
UNIT = unit number for FORTRAN binary file containing the
remainder of the keyword packet.
KEY# = the identification number for the keyword phrase

(See Table 1)
SUBMODES = 4 bit Tags describing the motion (See Table 6)

#SUBCELLS = Total number of N or EXP cells (Note that EXP cells

are class 5 packets).

(ATTRIBUTE, EXCLUDE, INCLUDE, KEY, MEMBER, NAMES, OWN, RANK
and VALUE).

#CELLS MPARRAY UNIT KEY# Cell Type 9

0 MODE ALIST 0 Cell Type 9

LIST ELEMENTS

where #CELLS = the total number of cells required by all '
the LIST ELEMENTS

MPARRAY = file blocking for keyword array (also number

of words in core - 1).

UNIT

unit number for FORTRAN binary file containing

the remainder of the keyword packet.

KEY#

the identification number for the keyword phrase

(See Table 4)

MODE

basic mode of the list elements:

AN

ACONST

M (single motion)
« VL

OAN

WM EWwWnN —
| O

Lo




sopo) buiiapup pue uolloy

¥314Y
340439
LSV
15414
(dx3)
(N)

GYOMAIN/ (300WENS)

Sl
1
€l
¢l
Ll
ol
6

8

YIGWAN

JupT—

"9 21qeyL

8s
ds
S$
HS
8
EN

1Ny

N MM T N O~

GYOMAIN/ (300WENS) Y3IGWNN

b



#LIST = number of elements in the list

LIST ELEMENTS = primary cells of Type N, VL or OAN,

or class 6 packets for type M.

A class 6 keyword packet may contain many class 5 keyword packets.
Similarly a class 7 keyword packet may contain many class 6 and/or class 5
keyword packets. As is the case for all packets, contained packets may
specify a unit (FORTRAN binary file) which contains the text of the packet.
Since the header of a packet is easier to complete after the text is com-
pleted, the unit specified for a contained packet should be different from
the unit of the parent packet. It is expected that up to three units may
be required for a class 7 packet (1 for the class 7 packet text, | for all
the class 6 texts, and 1 for all the class 5 texts). Since keyword packets
are not afways specified by the user in the order DBMS uses them, the units
required for different keyword packets must be distinct. The Type 2 function
STRUCTURE, requires the most units; in particular, 10 units may be required
(2 units for the keyword SN, | unit each for the keywords ATTRIBUTE and RANK,
and 3 units each for the keywords MEMBER and OWN.

L2




The following examples will illustrate each of the specific constructs.
(The octal codes in the name fields of Type 6 cells are BCD character repre-

sentat ions) .
Example 1.
The keyword Packet for the keyword phrase

LIESTES

Ll o [ o] 17] cell Type 9, Keyword Class |

Example 2.
The kéyword packet for the keyword phrase

FROM = DOG

2 ~1 3 13 Cell Type 9, Keyword Class 2
Q4 17 07 ('p0OG") Cell Type 2

Example 3.
The keyword packet for the keyword phrase

FROM = CATS(6)

: e 13| Cell Type 9, Keyword Class 2
s 03 01 24 23 ('cATS') Cell Type 2

Example 4.
The keyword packet for the keyword phrase

CORE = 1261 (25)

is:
< l, 2 ] 0 ] o Cell Type 9, Keyword Class 3
1261 Cell Type 2
L3 Cell Type 2

lg3




Example 5.
The keyword packet for the keyword phrase

LINKS = SAVE

] ] 0 16 Cell Type 9, Keyword Class 4

Example 6.
The keyword packet for the keyword phrase
CLASS = (LNGTH.GT.100 .AND. .NOT. WDTH.EQ.10)

#93

6 5 0 6 Cell Type 9, Keyword Class 5
4i2]9 sl 2T 7T13T12Jo--0]% Cell Type 8
14 16 07 24 10 (‘LNGTH') | o Cell Type 6
100 Cell Type 2
27 ok 24 10 ('wotH') T o Cell Type 6
10 Cell Type 2

Example 7.
The keyword packet for the keyword phrase

SYSKEY = /TK=120396854//1D=600D/

- 4 [ 0 30 Cell Type 9
] JUr=sanemomavate s 013 Cell Type 8
' VR N W 20 Cell Type 9
2k 13 54 34 35 33 36 44 41 43 ('TK = 1203968')|cCell Type 2
40 37 50 11 Ob 54 07 17 17 04('54/1D = G00D')|Cell Type 2

L




Example 8.

The keyword packet for the keyword phrase

DBE = SYS.TOWN.HOUSE*/SMITH. (FIRST.EQ./SALLY/)S$F$5$S

is:

. l T Cell Type 9
10f7110]7110]819j10f7fij1]4 11 Cell Type 8
23 31 23 ('sys' | @ Cell Type 6
2 17 27 16 ('"TOWN') | © Cell Type 6
10 17 25 23 05 ("HOUSE' 0 Cell Type 6
23 15 11 24 10 ('SMITH') | © Cell Type 6

5 | 4 1 0 8 Cell Type 9

RYVY 7 | O---=r=cree=e- 0 3 Cell Type 8

06 11 22 23 24 ("FIRST') | © Cell Type 6

g 1 1 1 0 5 Cell Type 9

23 01 14 14 3) _('SALLY') Jcell Type 2

0 ==-=====--c-—emme—eo 0 0 Cell Type 8

Example 9.
The keyword packet for the keyword phrase

ORDER = BEFORE SYS.*/SYS . (COLOR .EQ./GREEN/)
is:

8 1 g 1. 2 Cell Type
14io]708f 9 tio] 71t]o----0 | 7 Cell Type
23 31 23 ('sys') 0 Cell Type

5 4 0 22 Cell Type
bJ1]7]0-===m=-moceceecacaaa. 0 2 Cell Type
03 17 14 17 22 (‘coLor') | 0 Cell Type

0 1 | 1 0 5 Cell Type
07 22 05 05 16 ('GREEN')| cell Type

L5

Keyword Class 6

Subclass §

9 Keyword Class 6

NW oMW O

Subclass 5




Example 10.
The keyword packet for the keyword phrase

ATTRIBUTE = (ALPHA(DOG, CAT), INTEGER HOUSE, REAL PRICE(4,5))

9 3 0 3 Cell Type 9 Keyword Class 7
0 ] 4 0 Cell Type 9
ol 17 07 ('D0G") I Cell Type 6
03 01 2% CEEAT " L Cell Type 6
10 17 25 23 05 ("HOUSE ") 0 Cell Type 6
20 22 11 03 05 ("PRICE") 33 Cell Type 6
2 Cell Type 2
L Cell Type 2
5 Cell Type 2

Example 11.
The keyword packet for the keyword phrase

OWN = (SYS.STATE.CITY,.DIST,.SCHOOL,$B.HOSPITAL)

16 15 0 23 JCell Type 9 Keyword Class 7
0 3 Iy 0 ICell Type 9
5 4 0 23 | Cell Type 9 Subclass 6
10[7] 1o 710 0---------------- 0 1 3]cell Type 8
23 3T 23 (ISYSty 0 lcell Type 6
23 24 01 24 05 CISTRTEY) 0 JCell Type 6
03 vy 2k 3 CECITY ) 0 Jcell Type 6 .
3 | g ¥ 0 1 23 JCell Type 9 Subclass 6
7 10 0=-=-=-=====ecamcmcememae 0 1 ICell Type 8
ok 11 23 25 ("DIST") 0 Jcell Type 6
3 1 5 | 0 i 23 Jcell Type 9 Subclass 6
I 0 ] 1 Jcell Type 8
303 10 17 17 1k ("sCHOOL ') 0 Jcell Type 6
i 3 23 JCell Type 9
7 | 10]0---=-cocencaaaano T |_JCell Type 8
10 17 23 20 11 24 o1 14 ("HOSPITAL') | 0 Jceltl Type 6

46




Example 12.

The keyword packet for the keyword phrase

Cell
Cell
Cell
Cell
Cell
Cell
Cell

Type
Type
Type
Type
Type
Type
Type

RANK = (HIGH OHMS (10,12) LOW WATTS LIFO)
iis's
8 7 0 25
0 5 2 0
PJ2] 3] OGuearedi e 5
17 10 15 23 ("OHMS ') 37
7
10
12
27 01 24 24 23 ('watts') | o

Example 13.

Cell

The keyword packet for the keyword phrase

KEY = DOGS//CAT
IS
7 6 0 15
0 7] 3 0
0 ] 0 L
o 17 .07 23 {“DOGS"')
0 0 0 0
0 ] 0 3
03 01 24 ('CAT')

L7

Cell
Cell
Cell
Cell
Cell
Cell
Cell

Type

Type
Type
Type
Type
Type
Type
Type

9
S,
8
6
s
2
2
6

Keyword Class 7

Keyword Class 7



Example 14,

The keyword packet for the keyword phrase

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

VALUE = (CAT = 13.5, CAR(*) = 3, CAR(2)
iS3

]3 12 0 33
4 3 0
1[‘[2]0 -------------- 1]
03 01 24 ('CAT‘) \
13.5

03 01 22 ('CAR') [ 32
1

0

3

03 ol 22 ("CAR') 32
1

2

15 01 13 05 ("MAKE') [ ©

Example 15.

The keyword packet for the keyword phrase

VALUE = (DBI = *SYSI1*SREAD//ALTER)
15

12 1 0 33

0 1A I 0
5!0[ Q ---=eeceeccennaa-- it
04 02 3 ‘pB1' | 6
0 T | 1 0 || 4
23 31 23 34 1SYS 1!

0 | ] 1 0 1 L
22 05 Ol ok "READ'

0 0 0

0 | 0 g

0l 14 24 05 22 'ALTER'

L8

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

MAK

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

E)
9 Keyword Class 7
9
8
9
2
9
2
2
2
9
2
2
9
9 Keyword Class 7
g
8
6
9
2
9
2
q
)
2




When the input medium is core, the flag indicating an illegal node
reference is a single cell of Type 4 containing a pointer to the beginning
of the offending motion description (Keyword Class 6 array) and the number

jdf successful motion phrases. Similarly, if an illegal ragged table index
is detected, the flag will be a single Type 4 cell pointing to the beginning
of the offending attribute reference and the number of the index which

caused the fault.

As mentioned a command may be submitted to DBMS in a long or short
mode from cards, from a file or from a core array. The format used in
conjunction with the long mode from cards is detailed in Appendix A. The
format used in conjunction with the long mode from a file or core array
is simply 80 column card images. It is assumed the tape was created with
a formatted FORTRAN write which creates a machine dependent tape (the format

is 7A10, A2 for cDC, 18Ak4 for IBM, and 12A6 for UNIVAC or equivalent).

The format of the short mode strongly resembles the internal form
just discussed but is dependent upon the input medium. When the input
medium is a core array the command identifier, all five keyword packets
(a header of zero is a null keyword) and the illegal node flag are located
sequentially in core. The user is required to set proper values into the
fields MPARRAY and UNIT. Thus the examples 1, 2 and 6 of keyword packets

iust presented would have octal representation in CDC core as:

'?' Example la:
00001000000000000021
Example 2a:

00003000020000000015
00000777770000300000
04170755555555555555

49




——

Example 6a:

00006000050000000006

20512047670000000004

00037076131023306635

000000000000000001 44

00072347265523306635

0000000000000000001 2
When the input medium is cards or a file, the command identifier and all
five keyword packets appear sequentially as in the case for core, but
portions of large keyword packets cannot reside on auxilary files. For
card input or file input, the keyword packets must be complete and DBMS
may place portions of large arrays onto fiies and set MPARRAY and UNIT in
the tag of the keyword packet to appropriate values. |f a file is the
input medium, it is assumed to be a FORTRAN binary file blocked with 63
cells to a logical record. If;cards are the input medium, it is assumed
to be base 32 (0 represented by A, 25 represented by Z and 31 represented

by 5) with 6 cells on each card in columns 1 - 72. The key word packets

in Examples 1, 2 and 6 would appear on cards as:
Example 1b:
AABAAAAAAAAR
Example 2b:
AADAACAAAAANAAASS5AADAAACOY L INWINWIN
Example 6b:

AAGAAFAAAAAG | KKCPXAAAAAEAASD2LEE | DM3AAAAAAAAAADEABOBAWWA | DM3AAAAAAAAAAAK

STRUCTURE LEVEL 2.3: SN CONSTRUCTION DETAILS

All SNs are tagged entities, and as mentioned before, the SNs form the
skeleton of the data base giving the data base a hierarchy and acting as a
template for associated DBEs. Figure 14 presents a model of SN 'SYS.SIMS.XTORS'

of Figure 6. In Figure 14 the symbol '@' is interpreted as 'a pointer to'.

50




Frequently a '@' is followed by a qualifier such as 'B;, 'F', 'L', 'P' or

'S" which have the same connotation as in Structure Level 1.3. The qualifiers
have a period separating them from the pointer name. Thus in cell | of Figure
14, the pointer @B.STRUCT is a pointer to the parent of the current SN

(i.e. SN 'SYS.SIMS'). The first cell (cell no. 0) of a SN is typical of nodes
which are retained by cycle numbers. The first cell contains the node type

(3 for a current SN, 35 for an old cycle of a SN), the number of cells reqdﬁ}ed
to store this node (10 in this example), the cycle this node was created (in
this example, CYC = 0), and a pointer to the next cycle or to the original
cycle of this node (in this case @CYC LINK points to itself since this is

the only cycle of 'XTORS'). The second SN cell contains a backwards pointer
(to SN 'SYS.SIMS') and a string of item present bits (IPB). In our example,
the number of bits is 2 and the IPB field is 7777g since all of the possible
cells are present (Structure Level 3 will discuss generation and control of

abbreviated nodes).

Cell No. Cell Type
0 3 50 FEENESEIRITNEYE 1 @CYC LINK
1 7 @B.STRUCT #BITS IPB
7 9 #ATTRIBUTES[HEIH ~ #DBE #INWARD @
3 6 XTORS LEVEL#
4 1 @F .DBE WL .DBE
5 ] @F.SUB @L.SUB
6 1 @F .LLH @L.LLH
7 ] @P.STRUCT 0 @S.STRUCT O
8 ] @P.STRUCT 1 @S.STRUCT 1
9 6 DOMA IN I
10 6 DOMCODE 0

Figure 14. SN 'SYS.SIMS.XTORS'

In general the IPB field is interpreted from left to right with a one bit
implying a cell is present and a zero bit implying a cell is absent. The
third cell contains the number of attributes that the associated DBE contains,

the number of linked lists attached to this run, the number of DBEs associated




.

with this SN, and the number of pointers which point to this SN (in this case
this cell contains the values 2, 0, 3, 5). The first four cells form the
tag for SN 'SYS.SIMS.XTORS'.

The next three cells (4, 5 and 6) contain pointers to the first and
last DBEs associated with SN 'SYS.SIMS.XTORS', the first and last SN in the
structure set of SN 'SYS.SIMS.XTORS', and the first and last LLH attached
to SN 'SYS.SIMS.XTORS'. In particular the following is true:
@F.DBE points to the DBE with 'DOMCODE = 1' under ‘SIMI' in Figure 6.
@L.DBE points to the DBE with 'DOMCODE = 2' under 'SIM2' in Figure 6.
@F.SUB points to the SN 'SYS.SIMS.XTORS.MODELS"'.
@L.SUB points to the SN 'SYS.SIMS.XTORS.MODELS'.
@F .LLH points to an order defining node containing 'FIFO' only.
@L.LLH points to an order defining node containing 'FIFO' only.
It is worth noting that the LLHs are chained together and the first entry
always contains the set ordering for DBEs associated with this SN only.
Cells numbered 7 and 8 in Figure 14 are the structure set membership pointers.
There is one pointer cell (2 pointers) corresponding to each ancestor in
the SN tree (in this case SN 'SYS' and SN 'SYS.SIMS'). Thus for SN 'SYS.SIMS
XTORS' in Figure 6, the subset pointers have the following values:
@P.STRUCT O points to SN 'SYS.SIMS'.
@S.STRUCT O points to SN 'SYS' (i.e. end of chain).
@P.STRUCT | points to SN 'SYS.SIMS' (i.e. beginning of chain.
@S.STRUCT | points to SN 'SYS.SIMS.DIODES'.
The last two cells (9 and 10) are the attribute names and value types. In
particular one cell indicates an attribute name 'DOMAIN' which is stored
as an alpha string (Type = 4), and the other celi indicates an attribute

named 'DOMCODE' which is stored as an integer (Type = 0).

The attribute definition cells are used directly as a template for
interoreting attribute values stored in the DBE. Thus the attribute
definition cells and the attribute value cells are always the same size
and in the same order. Because of this, descriptor cells for attribute

Types 2 and 3 (double precision and complex) are followed by a void cell
>

52




and descriptor cells for arrays are Type 5 cells containing an attribute
type and a pointer to an 'AN' primitive cell. The 'AN' cell will follow
all the attribute descriptor cells. As an example, the integer array
attribute named 'INT', followed by the complex attribute 'COMP' which is
itself followed by the real attribute named 'REAL' would have the following

attribute descriptor cells:

Cell Type

6 BINT 32
6 COMP 3
6 O-=-=-=c-cccceeceee—- 0 0
6 REAL ]
6 INT 32

2 #D IMS

2 DIMI

Figure 15 shows the general format of a SN.

Cell Type
3 3or 35 | AFCELLS A | @CYC LINK
7 ®B.STRUCT 7BITS(8) | IPB
9 [~ AATTRIBUTES[ #LLH #DBE | ZINWARD®
6 NAME [ LEVELY
] @F.DBE ®L.DBE
] g @L.SUB
] @F.LLH eL.LLH
] ®P.STRUCT O @S.STRUCT 0
6 I ATTRIBUTE NAME TYPE
2 ARRAY ATTRIBUTE DESCRIPTOR

Figure 15. General Structure Node Format

53




The algorithms required to create and use SNs can be found in Structure
“Level 3. A node which is attached to a SN (an own node) will be discussed in

Structure Level 3.3, since it only deals with construction of SNs.

STRUCTURE LEVEL 2.4: LLH CONSTRUCTION DETAILS

The linked list headers (LLHs) are chained to a SN and they contain either
information regarding the ordering of sets, or the membership and ordering
of linked lists (LL). The general form of a LLH is displayed in Figure 16.
The first cell of a LLH is similar to the first cell of a SN (The node type
is 2 for a current cycle and 34 for an out of date cycle). The second cell
contains the LL name and the number of pointers which point to this LLH.
The third cell of a LLH contains the predecessor and successor pointers for
LLHs attached to the same SN. The next two cells (3 and 4) point to the
first and last DBE in the LL. The chain pointers within a LL are stored
with each linked DBE node. Since there can be many LL chains passing through
any DBE the fields FPTR# and LPTR# (relative location in list of LL chain
pointers in the first and last DBEs of the LL) are required to identify a

particular chain pointer (see Structure Level 2.6). Cell number 5

Cell No. Cell Type
0 3 2 | #CELLS | cYC ] @CYC LINK
] 6 LLH NAME | #INWARD
2 1 @S.SLINK @P.SLINK
3 5 @F , SLINK FPTR#
L 5 @L.SLINK LPTR#
5 9 #CLASST# RANK]  #LIST]#DBE
6 KClass 5 CLASS EXPRESSION
6+#CLASS KClass 7 RANK ORDERING
5+#CLASS+#RANK

Figure 16. Linked List Header Format

54




contains the number of cells required to store the CLASS and RANK expressions,
the number of ranking phrases in the RANK expression, and the number of DBEs
currently in the LL. The LLH ends with two groups of cells. The format of
the first group of cells is keyword packet class 5 without the first two cells
and contains the class list. The format of the second group of cells is key-
word packet class 7 without the first two cells and contains the ranking
phrases. (Note the mode of the list is always OAN). Appendix D contains an
example of a LLH and Structure Level 3 contains the algorithms for creating

and maintaining linked lists.

STRUCTURE LEVEL 2.5: DBE CONSTRUCTION DETAILS

The DBEs are the working part of the data base since all user information

is stored in them.

The DBEs contain very little structure information in order to keep
them as small as possible. As such the DBEs have a complex tag, and the
associated SN must be referenced in order to interpret most of the infor-
mation contained in a given DBE. The general form of a DBE is presented
in Figure 17. The first two cells of a DBE are similar to the first two
cells of a SN. Here the node type is 5 (37 for an outdated DBE). The
pointer '@B.STRUCT' points to the SN associated with this DBE. Cell

number 2 contains the sibling ring pointers. |In particular '@P.DBE' points
Cell No. Cell Type
0 3 5 #CELLS CcYC | @CYC LINK
1 i @B.STRUCT #BITS | |PBs
2 | @P.DBE @S.DBE
3 4 #LLCHAINS @LLCHAIN
b I @F.SUB @L.SUB
5 1 @P.SUBI @S.SUBI
L + N 1 @P.SUBN @S.SUBN
ATTRIBUTE VALUES

LeN+#Attributes 1

Figure 17. Data Base Entry Node Format

55




i

to the particular DBE associated to the same SN which was created just prior

to this DBE. Similarly '@S.DBE' points to the DBE created just after this

DBE which is associated with the same SN. Cell number 4 contains pointers

to the first and last DBE in the ordered set belonging to this DBE. The fourth
cell of a DBE contains the number of LL chain slots and a pointer ('GLLCHAIN')
to a node containing the LL chain pointers. The next N cells contain pointers
for each of the possible sets this DBE may belong to (N is the level of this
DBE). This association of nodes to sets has been discussed in Structure

Level 2.3.

Single attribute values of type INTEGER or REAL are stored in Type 2
cells. Single DOUBLE PRECISION and COMPLEX values each require two Type 2
cells. Alpha values are stored in the internal character code of the
machine on which the data base resides. |If the string requires less than
52 bits, (6 or 8 characters) the string is stored along with the number of
characters in a Type 6 cell. Otherwise the number of characters and a
pointer to the character string are stored in a Type 5 cell. The alpha
string is placed in an alpha node as displayed in Figure 18. The first
two cells are of a familiar format. Note the ncde types for current and

outdated alpha nodes are 9 and Ll respectively.

Cell Type

3 9 #CELLS cyc @CYC LINK

ALPHA STRING

(format is machinc
dependent)

Figure 18. Alpha Type Attribute Value Format

56




A bit string is stored in the same fashion as an alpha string except it is
not machine dependent. Any of the attribute value types mentioned so far
may be stored as arrays. For an array the following Type ! cell, called an

array entry, is stored in the DBE node:

|_©ARRAY DESCRIPTION ]| @ARRAY VALUES ]

Here the 'ARRAY DESCRIPTION' and 'ARRAY VALUES' are nodes of the form shown
in Figures 19a and 19b respectively. The first cell of both nodes is the
standard cycle description. Note an array description node is Type 7 (and

39). In Figure 19a the number of indices and the length of each dimension

are expressed as integers.

Cell Type Cell Type
3 [T7 1 JCELLS T CYC] GCYC LINK 3[4 [ #ceres | cvelecye Link
2 NUMBEK OF INDICES 2 Value 1
LENGTH 1
Figure 19a. Array Description Figure 19b. Array Values

The values for data base name attributes are stored as a singly indexed

array of length 5. The five alpha strings represent the file name (i.e. DBN),

read key, write key, alter key, and system key. As an example, if the data
base name is 'TEST', the write key is 'DONT', and the remaining keys are

unspecified. The attribute value would be represented by Figure 20.

DBE 'SYS'

TSP N T

e -

7l}l-L; : 4 1 6 - ]

TTEST
5 Q-----o-oo-oo 0o ]o
'DONT ' 4
O---zo----on- 0 |o
Oc-cooooooo-- 0 10

Figure 20. Data Base Name Attribute Value Format

57




The most complex attribute type is a ragged table. The method of
constructing a ragged table will not be discussed until Structure Level 3;
however, the general form of a ragged table will be discussed presently.
Similar to all attribute types, a single Type | cell is included in the
DBE node. This cell points to a Ragged Table Node (RTN). The RTN is a
contiguous group of Type 9 cells. Considering the ragged table of Figure 9,
the RTN is intuitively constructed as follows:

(1) Perform a pre-order traversal of the ragged table (tree)

writing down the number of outgoing branches. For our
example this resuits in the following sequence

320200010211 20629000
(2) Scan the list of numbers from left to right and
(a) for a number greater than zero leave a slot

(b) for a zero put in the type of leaf and a pointer to the
leaf value

Step 2 results in the following lists:
32020010211202000 (copies from step 1)
_ _#A _#BHC _#D _ _ #E _ HFHG#H

where #A represents both the attribute type and the pointer to
the attribute value of A.

(3) Scan the list of Step 2 from left to right and for each empty slot
find the element in the list of Step | which caused the empty slot,
calling this the starting point. Starting with the value in the
starting point and proceeding to the right add each value minus
one. Stop when this sum is zero and call the next element the
stopping point. Now in the list of Step 2 set the offset of the
stopping point into the ermpty slot corresponding to the starting
point. For example, the first blank slot in the list from Step 2

58




When this
(15 bits)

for the attribute type followed by two consecutive subcells (30 bits total)

for a pointer to the attribute value.

corresponds to the 3 in the list of Step 1. Summing each of

the elements to the right we obtain the following sequence:
3,0,3,4,3,2,2,1,2,2,2,3,2,3,2,1,0.

Thus the stopping point is just past the end of the list (#H),

and the list of Step 2 becomes:

#A_#B #C_#D HE_HFHGHH
y B raPaLismas by 00 7

Figure 21 shows the resultanc list.

___fA_ﬁB”C #D_______ﬂE #FHGHH
\V——+ by e i

Figure 21. Example of Ragged Table Construction

list is stored into a table each slot corresponds to one subcell

of a Type 9 cell, and each leaf consists of one subcell (15 bits)

22. The first two cells of a RTN as shown in Figure 22 form the header.

first cell contains type, size and cycle information which has been discussed

previously.

date cycle. The second cell will be discussed in detail in Structure

Level 3, but for now it suffices to mention the second cell is used to

control overhead during construction and alteration of a ragged table.

Subcell No. Cell Type
B ] FCELLS | cYe | @CYC LINK 3
#Subcells]#* ~# ?]Max_Subs 9
0 33 T2 7A DA (1/2) 9
4 wA(2/2) |12 #B @B(1/2) v,
8 wB(2/2)]#C aC 9
12 16 #D @D 9
16 33 30 30 30 9
20 7E WE 30 9
24 #F oF #G 9
28 oG 7H GH(172) 9
32 eH(1/2)]

Figure 22. Ragged Table Storage Format

59

The resultant table is shown in Figure

Here the 8 implies a current RTN and a 40 would imply an out-of-




A tabular representation of Figure 21 is shown starting with the third cell.
The cells containing numbers correspond to the pointers of Figure 21. #A is
the complement of the attribute type of leaf A, and @A (requiring two sub-
cells) is a pointer to the value cells of leaf 'A'. During construction

of a ragged table, subtrees are not always nested in the RTN; this occurrence
is flagged by an attribute type of 256 (complemented). Also if a ragged
table exceeds its allocated space, DBMS attaches new ragged tables to the

original tree with an attribute type of 512.

Before continuing, it is necessary to examine the properties of the
RTN of Figure 22. Notice that each branch of the ragged table appears
sequentially. For example, the leftmost branch of the ragged table (with
leaves A, B and C) is contained in subcells 1 through 11 and the branch
with leaves B and C is contained in subcells 5 through 11. Also each
branch (excluding leaves) is preceded by a pointer to the first cell
of the next branch. |In order to demonstrate this better, let us follow
the branches to leaf C. Starting at node 0 we find a pointer to subcell
33 (or 'a pointer to 33' for short). If we follow this pointer we will skip
over the entire ragged table (considered as one large branch). Ignoring
the first pointer we go to subcell |1 and find a pointer to 12. Following
this pointer would skip over the leftmost branch, but since C is on the
leftmost branch we also ignore this pointer and move on. Subcell 2 is
flagged as being a leaf, but we need to take the second branch so we ignore
the leaf and come to subcell 5. Here again is a pointer to skip over the
branch we want, so we ignore it and move on to subcell 6. This is also a
leaf we don't want (B), so ignoring it we come to subcell 9 which is leaf C.

The following points are now apparent:
(1) Motion in the table is always down (increasing subcell numbers).

(2) Motion in the tree is accomplished by finding the proper branch
and then moving down a level. Then repeat until the desired node

is reached.

(3) The pointers which are not taken provide a decreasing maximum

subcell number. For example, when 'C' was found this maximum

60




¥

was 12; if we had tried to skip 'C', we would have been at sub-
cell 12 which is an error. Thus requesting a non existent branch

is detectable.

(4) Since leaves are distinct, an attempt to consider a leaf as a
branch node is detectable. This would correspond to moving

down a non-existent branch.

Branch and leaf nodes are referenced in the same format as simple arrays.
This notation can be converted to an intuitive notation consisting of com-
binations of the operators +1 (move down a level) and * (skip a branch)

by the following algorithm:
Move through indices from left to right and for each index

(a) Place a +1 at end of current expression and enclose the
result in parentheses.

(b) Place (index-1) *'s in front of the current expression.
As an example the leaves of Figure 6 would be:
(1) leaf A with indices (1,1) becomes ((+1)+1)
(2) 1leaf B with indices (1,2,1) becomes (*((+1)+1)+1)
(3) leaf C with indices (1,2,2) becomes *(*((+1)+1)+1)
(4) 1eaf D with indices (2,1) becomes (*(+1)+1)
(5) leaf E with indices (3,1,1,1,1) becomes ((((**(+1)+1)+1)+1)+1)
(6) leaf F with indices (3,1,1,1,2,1) becomes (*((((*x(+1)+1)+1)+1)+1)+1)
(7) leaf G with indices (3,1,1,1,2,2) becomes *(*((((**(+1)+1)+1)+1)+1)+1)
(8) leaf H with indices (3,2) becomes *(¥x(+1)+1)

The motion produced by +1 and * would be:

current subcell + )| if the current subcell is a pointer (not a leaf)
error if current subcell is a leaf

A indirect address if current subcell is a pointer (not a leaf)
current subcell + 3 if current subcell is a leaf

Note that DBMS performs the above ragged table algorithms in a much condensed
form.

61




STRUCTURE LEVEL 2.6: LINKED LIST CHAIN (LLC) NODES

Figure 17 contains the pointer '@LLCHAIN' which points to a LLC node.
The general format of a LLC node is displayed in Figure 23. The first two
cells are standard and will not be discussed. The chain links require a
pointer to LLC node and a pointer number (or offset). Thus if we have a
pointer to the LLC node of Figure 23 and an offset of 3 the next element in

the chain will be the LLC node pointed by '@LLC3' and the new offset wi!l

be '#LLC3'. Each offset and pointer is considered a single item in a LLC
node.
Cell Type
3 6 | ACELLS | cYC | @cyc LINK
7 WB.DBE #BITS | 1PB
9 FLLCT | ALLC2 #LLC3  J4LLCh
] BLLCT eLLC2
] TTLC3 iLLCh
9 FLLCS | ALLCG FLLC7 JZLLCE
] SLLCS WLLCb
] @LLC7? @LLC8

Figure 23. Linked List Chain Format

STRUCTURE LEVEL 2.7: THE DATA BASE NODE

Ihe first three cells of a data base are always of the format repre-
sented in Figure 24. The first cell identified the file as a data base

generated on a CDC 6600/7600. The left half of the second cell contains

a pointer to SN 'SYS'. The remaining fields are discussed in Structure
Level 3.
CELL TYPE
6 *DBXCDC* 0
] @STRUCT-TABLE [ ®@SYS
L #TYPE 2 0

Figure 24, Data Base Node Format

62




ksl

63

are

included to

ions o

§

DBMS.




~zT——

SECTION |V

DBMS ALGORITHMS

STRUCTURE LEVEL 3.0: DBMS MAINTENANCE

Structure Level 3 contains the DBMS algorithms and functional
descriptions of the main procedures used by DBMS. As such structure
level 3 can be used by a knowledgeable systems programmer to perform
maintenance tasks on DBMS and associated data bases. Although DBMS
maintains a high level of system sanity within a data base, a data base
can nevertheless be partially destroyed by a hardware failure during a
disk write, to name only one example. Conceivably the systems programmer
can detect and correct the incorrect data and thus save a large data base.
Similarly, in a data base which has a large number of 'bad areas', a systems
programmer can transfer valid information to a new data base. Also, as
will be seen, the knowledgeable systems programmer can determine which
pointers are saved in a data base (i.e. '@F.SUB' might be stored in a
DBE and '@L.SUB' is not). Data bases remain compatible with DBMS regardless
of which pointers are saved in the data bases and which pointers are used
by DBMS.

STRUCTURE LEVEL 3.1: LONG INPUT DECOMPOSITION

When the input mode is LONG, the card images are translated to the
internal command form by a table driven LR(k) parser which calls a table
driven lexical analyzer. The BNF grammar for the DBMS is presented in
Table 7. The format of the translator output is presented in Structure

Level 2.2.

STRUCTURE LEVEL 3.2: UTILITY FUNCTIONS

The algorithms for the Type 1 (utility) functions are presented in
Tables 8 through 15. Subtleties of the Type | functions are discussed

below.

Pointers in the data base may point to an out of date cycle of a node,

in which case the cycle link must then be followed until the current node

64




is found. Figure 25a shows several cycles of a node and an out of date
pointer. Figure 25b shows the same pointer after updating. Before an out

of date node can be purged, the cycle links must be adjusted to bypass the
node and all inward pointers must be set to point at the current cycle of

the node. This restriction only affects the function COPY (Table 10) of

all the Type | functions. Because the data base is paged, the page containing
the tag of a node must be locked into core before any part of the node can

be referenced into core. Then if the node is out of date, the cycle link must
be followed. This is accomplished by determining the location of the next
cycle by unlocking the page of the out of date node and locking the new page
into core. This process is repeated until the current node is located.

It might then be necessary to lock an additional page to access the desired

part of a node.

STRUCTURE LEVEL 3.3: STRUCTURE FUNCTIONS

The algorithms for the three Type 2 functions are presented in Tables
16 through 18. These functions deal with the generation and control of
the structure tree and the generation and removal of linked list headers

and initial chains.

A structure node may be redefined by the structure function. This
results in a new cycle of the SN. If all the attributes of the out of
date SN are present and in the same relative location within the new
attribute list, the associated DBEs are retained as is. Otherwise, the
associated DBE are flagged for deletion. The resultant effect of flagging

DBEs for deletion is discussed further in Structure Level 3.4.

For each structure command which contains an own keyword, there is
created an own node. This node is used during the construction of a structure
tree and as such was not mentioned in Structure Level 2. Figure 26 shows the

general format of an own node (ON). The node type is | for an ON.

65




9|2A) Jua4un) Byl 01 JBIUIOg ‘GGz =4nbi4
9 a3
i - £h
] - th
’ JuL44n)
1z = ¢

ing ue 03 u3’a3ulog

‘egz 94nb) 4

£Y




Cell Type i
9 ] #CELLS #OWNED 0 ‘

CLASS 6 PACKETS

Figure 26. Own Node Format

A pointer to an ON is placed in a SN as @P.STRUCTN and @S.STRUCTN where N is
the level of the SN (See Figure 15).

As was mentioned in Structure Level 2.3, not all pointers must be

included in a given node. However, ali of the chains must be complete.
Thus if a SN has one or more DBE which do not have a @P.DBE, then all the
DBE associated with that SN must have @S.DBE present. Further, if in
specifying a node, a motion phrase requiring an absent chain pointer is
given, then DBMS will proceed in the reverse direction till the proper node
is found. Which pointers are to be placed in a node is specified in the
BLOCK DATA by setting logical variables. These variables are located under
the comment stating 'POINTER CONTROL'. When choosing these pointers, it

uld be remembered DBMS primarily uses forward (or downward) pointers with

> exception that SB is used frequently.

TRUCTURE LEVEL 3.4: DATA CONTROL FUNCTIONS

-

he algorithms for the eight Type 3 functions are presented in Tables

19 through 26. These functions deal with the storage and retrieval of

fata within the data base plus the control of DBE sets. The creation of a
new data node is simply tying an empty node into the chain of DBEs associated
with the specified SN. This new node has all of the attribute value I|PBs
turned off. These IPBs will be turned on as needed by the store function.

A similar action is performed for the set and link pointers in that they are
initially null and set as needed. Structure Level 3.5 will discuss the
generation of ragged table nodés. The other type of attribute values are

created in a straight forward manner.

67




T

STRUCTURE LEVEL 3.5: RAGGED TABLE NODE GENERATION

The algorithms for generating RTNs are presented in Tables 27 and 28,
During creation a RTN is stored in a scattered form which is compacted as
the RTN becomes unwieldy or when all of the RTN leaves become defined. |If
a RTN is archived by a cycle function before all the leaves have been defined
then that cycle is stored in the less efficient scattered form. When the
first node is defined, presumably a branch, a complete tree is defined with
a leaf for each subtree defined. The attribute type of these temporary
leaves is an undefined continuation. As subsequenf branches are defined
they are stored as complefe and disjoint subtrees and the corresponding
undefined continuation is converted to a defined continuation pointing to
the new subtree. Note however, if the leaf being continued is the last
leaf of the last subtree in the RTN, then the new definition is appended
directly to this last subtree. The number of defined continuations is
monitored there by giving a measure of the excess overhead in the RTN.

When the RTN overhead becomes too large, the RTN is compacted. When a leaf
of the RTN is defined, the corresponding undefined continuation is replaced
by the real leaf. Figure 27 shows the RTN as defined in Structure Level
1.4 just prior to compacting. Note that a leaf of type defined contin-

uvation is indicated by three cells, the first is an * and the last two

Subcell
0 10 k) 0 10
4 0 | 21
. 8 01 25 | 21 7A
\-.\ 12 [ A 21 #8
~6 @ B #C @
2 T | 25 | 7D o
E\ b 32 3 ]
28 | 70 3 2]
32 N 45 45 45 #E
36 @ E 45 #F
40 & F 79 3
‘4‘0 —C N = - -

Figure 27. Scatteréﬂ\ﬁagged Table Node

e
R

68




-

contain a pointer to the subtree. The compaction algorithm performs a
preorder transversal of the scattered tree and generates a compacted tree
as shown in Figure 22. As indicated in Tables 27 and 28, the process

is complicated by the fact that a RTN is allocated storage locations in
increments. These increments are treated as permanent subtrees and the
compaction algorithm only treats one of these trees at a time. The com-
plications caused by the incremental storage allocation is one of book-
keeping and is not discussed further here. The constants controlling the
generation of RTNs are located in the BLOCK DATA under the title 'RTN
DEFINITIONS'. These constants define the size of the incremental storage

used and the maximum overhead allowed.

69




cprog := coms EOF
coms := command

coms := coms command

command := function EOC
function := COMPRESS

function := COMPRESS dbnfields
function := COPY copfields
function := CYCLE

function := CYCLE dbnfields
function := DISPLAY

function := DISPLAY disfields
function := INITIAL

function := INITIAL dbnfields
function := LIST

function := LIST lisfields
function := RESTORE

function := RESTORE resfields
function := RETRIEVE

function := RETRIEVE dbnfields
function := LINK linfields
function := STRUCTURE strfields
function := UNLINK , 1lkey
function := CREATE crefields
function := ENTER entfields
function := FIND , dbekey
function := STORE

function := STORE stofields
function := rdr

function := rdr rdrfields

rdr := RETURN

rdr := DELETE

rdr := REMOVE

function := UNFILE

function := UNFILE unffields
function := END DATA

function := MODE

function := MODE modfields

copfields := copk

copfields := copfields cork
copk := , TO = filename
copk := , LINKS = SAVE

copk := , LINKS = DELETE
copk := , INCLUDE = snlist

copk := |, EXCLUDE = snlist
copk := copkf ( cycleno )
copk := copkf

copkf := , FROM = filename
copk := , KEY = rwakey
copk := , SYSKEY = syskeykey

Table 7. BNF for DBMS

70




disfields disk

disfields := disfields disk
disk := dbnfields

disk := disstart

disk := outloc

disk = , LISTS

disk := , SETS

disstart := , snkey
disstart := , BELOW = snnam
disstart := , ABOVE = snnam
disstart := , ALL = snnam
disstart := , dbekey
lisfields := lisk

lisfields := lisk lisk

lisk := dbnfields

lisk := outloc

resfields := resk

resfields := resk resk

resk := dbnfields

resk := , TAPE = filename
linfields := linke
linfields := linfields linke
linke := , 1lkey

linke := , CLASS = ( =xp )
linke := , rankey

strfields := strk

strfields := strfields strk
strk := , snkey

strk := , ATTRIBUTE = alistl]
alistl := ( alists)

alists := alists , alistelm
alists := alistelm

alistelm := aqual an

alistelm := aspecqual aspecn
alistelm := aqual ( alist2)
alistelm := aspecqual ( aspeclist )
aqual := |INTERER

aqual := REAL

aqual := COMPLEX

aqual := DOUBLE

aqual := ALPHA

aqual := bitqual

aqual := bitqual ( width )
bitqual := BITS

aspecqual := DB

aspecqual RAGGED

width := integer

strk := , MEMBER = snlist
strk := , OWN = snlist

Table 7. BNF for DBMS

71

(Continued)




strk := , rankey
strk := , DELETE

crefields := crek
crefields := crek crek
crek := , snkey

crek := , valuekey
entfields := entk
entfields := entfields entk
entk := , dbekey

entk := , orderkey

entk := , setkey
rdrfields := rdrk
rdrfields := rdrfields rdrk
rdrk := , dbekey

rdrk := , NAME = alist2
rdrk := outloc
stofields := stok
stofields := stok stok
stok := , dbekey

stok := , valuekey
unffields := unfk
unffields := unfk unfk
unfk := , orderkey

unfk := | setkey

modfields := modk

modk := , modein

modfields := modk modk

modein := LONG

modein := SHORT

modk := modloc

modloc := , CORE = location ( size )

modloc := , FILE = filename
modloc := , CARD

dbekey := DBE = dbenam
dbnfields := dbnk

dbnk := , DBN = filename

dbnk := , KEY = rwakey

dbnk := , SYSKEY = syskeykey
llkey := LL = llinam

1lnam := llprim S$H

llnam := llprim $H nodename
llprim := nodename

llprim := nodename samesides
llprim := samesides

1lprim := 1llprim Vlprimcomplex
llprimcomplex := 1ldbeside $B
11dbeside := SH

11dbeside := SH nodename

Table 7. BNF for DBMS (Continued)
72




l1dbeside := *
ORDER

orderkey := = FIRST
orderkey := ORDER = LAST

orderkey := ORDER = BEFORE dbenam
orderkey := ORDER = AFTER dbenam
outloc := , CORE = location ( size )
outloc := , FILE = filename
outloc := , PRINT

rankey := RANK = ( ranks )

ranks := ranks ranker

ranks := ranker

ranker := HIGH an

ranker := LOW an

ranker := FIFQ

ranker := LIFO

setkey := SET = dbenam

snkey := SN = snnam
valuekey := VALUE = ( vpairs )
vpairs := an = const
vpairs := vpairs , an = const

location := integer
size := integer

snlist := ( sns )
sns := snnam

sns := sSNns , snnam
cycleno := integer
const := integer
const := real
const := complex
const := double
const := dbname

const := alpha
dbname := filename
dbname := filename ( dbargl )

dbname := filename ( dbargl , dbarg2 )
dbargl := SYSKEY = syskeykey

dbarg2 := KEY = rwarey

rwakey := rkey wkey akey

rwakey := rkey wkey

rkey := nodename /

rkey := /

wkey := /

wkey := nodename /

akey := nodename

syskeykey := alpha

alist2 := an

alist2 := alist2 , an

aspeclist := aspecn

aspeclist := aspeclist , aspecn

Table 7. BNF for DBMS

73

(Continued)




snnam = constructname

snnam := constructname sames ides
snnam := samesides

snnam := sncomplex

snnam := snnam sncomplex

sncomplex := dbeside $B

sncomplex := dbeside samesides $B
dbenam := constructname

dbenam := samesides

dbenam := constructname samesides
dbenam := constructname samesides dbeside
dbenam := dbecomplex

dbenam := dbenam dbecomplex
dbecomplex := $B dbeside
dbecomplex := $B samesides dbeside
dbeside := listent

dbeside := listent constructname
listent := SH

dbeside := *

constructname := nodename
samesides := sameside

samesides:= samesides sameside
sames ide := SF

sameside := S$L

sameside := S$S

sameside := SP

sameside := preexp exp

prexp := ,

prexp := /

exp := nodename

exp := ( bolean )

bolean := bterm

bolean := bolean .0OR. bterm

bterm := bfactor
bterm := bterm .AND. bfactor

bfactor := rel

bfactor := ( bolean )
bfactor := .NOT. bfactor
rel := aexp relop aexp
aexp := alph

aexp := integer

aexp := real

aexp := complex

aexp := double

aexp := filename

aexp := an

an := nodename

an := namenode ( dims )
namenode := nodename
dims := integer

Table 7. BNF for DBMS

74

(Continued)




dims := dims , integer
aspecn := nodename

relop :

o &

relop := LE.
relop := .EQ.
relop := .NE.

relop := .GT.
relop := .GE.
Notes:

| ¥

el

The field 'filename' is defined in the general discussion of Type 1 functions
in Appendix A.

The field 'nodename' is defined in Structure Level 1.2.

The field 'integer' is defined in Appendix A in the discussion of the Type 3
function CREATE.

The field 'real' is any ANS] FORTRAN real constant.
The field 'complex' is any ANSI FORTRAN complex constant.
The field 'double' is any ANSI FORTRAN double precision real constant.

The field 'alpha' is defined in Appendix A in the discussion of the Type 3
function CREATE.

The fields 'EOF' and 'EOC' are automatically supplied by DBMS, and must not
be coded by a user.

Table 7. BNF for DBMS (Concluded)
75




SUBROUTINE INITIAL
*|F THERE 1S A CURRENT DATA BASE THEN CLEAN UP THE CURRENT DATA BASE
*1F DATA BASE NAME 1S PRESENT
*THEN
*ATTACH DATA BASE FILE TO CURRENT RUN
*|F FILE 1S ALREADY A DATA BASE AND ALTER KEY DOES NOT MATCH THEN ERROR
*ELSE
*ATTACH A TEMPORARY DATA BASE CALLED DBN
*GENERATE DATA BASE HEADER NODE AND SY'SYS'
*RETURN

Table 8. DBMS Function Initial




SUBROUTINE RETRIEVE

*IF THERE IS A CURRENT DATA BASE THEN CLEAN UP THE CURRENT DATA BASE
*|F DATA BASE NAME IS NOT PRESENT THEN USE DEFAULT = DBN

*ATTACH DATA BASE FILE TO CURRENT RUN

*|F THE FILE IS NOT A DATA BASE THEN ERROR

*COMPARE AND SET PERMISSION PARAMETERS

*RETURN

Table 9. DBMS Function Retrieve

77




SUBROUTINE COPY

“}F THE CURRENT DATA BASE NAME 1S DIFFERENT FROM THE NEW NAME (KEYWORD 'FROM')

“THEN
“PERFORM RETRIEVE FUNCTION ON NEW DATA BASE
“1F TO FIELD 1S A DATA BASE AND THE WRITE OR ALTER KEY DOES NOT MATCH THEN ERROR
“|F NO CYCLE NUMBER SPECIFIED
“THEN
‘SET CYCLE = CURRENT CYCLE
*ELSE
*VERIFY CYCLE GIVEN IS IN DATA BASE
*|F 'FROM' DATA BASE NAME IS NOT THE SAME AS THE 'TO' DATA BASE NAME
STHEN
SIF 'TO' FIELD IS TAPE THEN SUBSTITUTE TEMPORARY FILE FOR 'TO' D/ A BASE NAME
|F BOTH INCLUDE AND EXCLUDE FIELDS ARE PRESENT THEN ERROR
PERFORM PRE ORDER SCAN OF STRUCTURE TREE AND FOR EACH SN
IF((SN IS IN INCLUDE LIST OR AN ANCESTOR OF AN INCLUDED SN) AND (SN 1S
AN EXCLUDED NODE OR A DESCENDENT OF AN EXCLUDED NODE) OR (NO INCLUDE/EXCLUDE

NOT

ERSEL)
*THEN
*COPY SPECIFIED CYCLE(S) OF SN AND LLH IF PRESENT USING STRUCTURE LINE
FUNCT I ONS

“SCAN DBES ASSOCIATED WITH SN
*COPY SPECIFIED CYCLE(S) OF DBES IF PRESENT USING CREATE AND ENTEFR
FUNCTIONS
“FLAG ENTRY IN INCLUDE/EXCLUDE LIST IF FOUND
“PRINT NAME OF ALL SNS NOT FOUND IN INCLUDE/EXCLUDE LIST
vEF 0" FIEEDE ES A FAPE
“THEN
*PERFORM COPY FUNCTION FROM TEMPORARY FILE TO TAPE
*ELSE
*SCAN STRUCTURE TREE
*1F NOT EXCLUDED BY INCLUDE/EXCLUDE LIST
*THEN
*SCAN ASSOCIATED DBE
*UPDATE ALL POINTERS TO PROPER CYCLE
*DESIGNATE ALL UNWANTED CYCLES OF NODES AS AVAILABLE SPACE
*ELSE
“SCAN STRUCTURE SUBTREE WITH ROOT SPECIFIED BY KEYWORD 'SN'
*“FLAG NODE AS DELETED
“SCAN ASSOCIATED DBE
*PERFORM DELETE FUNCTION
*PERFORM COMPRESS OF DATA BASE
#RETURN

Table 10, DBMS Function Copy

78




SUBROUT INE CYCLE
“|F CURRENT DATA BASE NAME S DIFFERENT FROM NEW NAME
*THEN
*PERFORM RETRIEVE FUNCTION ON NEW DATA BASE
“*|F ALTER KEY NOT PROPER THEN ERROR
*FIND CYCLE ATTRIBUTE ARRAY ON DBE 'SYS'
®jiF CYELE TABLE 1S FULL
*THEN
“SCAN DATA BASE
“UPDATE ALL POINTERS
*|F CYCLE IS LESS THAN NUMBER CYCLES TO LOSE
“THEN
“*FLAG AS AVAILABLE
*ELSE
*REDUCE CYCLE NUMBER BY NUMBER CYCLES TO LOSE
“PRINT CYCLES TO BE PURGED
*ADJUST CYCLE TABLE TO SHOW CURRENTLY RETAINED CYCLES
“ENTER NEW CYCLE DATE AND TIME
*RETURN

Table 11. DBMS Function Cycle

79




SUBROUT INE RESTORE
*|F CURRENT DATA BASE NAME IS DIFFERENT FROM NEW NAME
*THEN

*PERFORM RETRIEVE FUNCTION ON NEW DATA BASE
*|F ALTER KEY DOES NOT MATCH NEW THEN ERROR
*READ SHORT HEADER (DATA BASE NODE)
*|F SAME MACHINE (1.E. IBM or CDC)
*THEN

*COPY TAPE TO DATA BASE
*ELSE

*COPY TAPE TO TEMPORARY RANDOM ACCESS

*SCAN RANDOM ACCESS AND

*RECREATE DATA BASE USING STRUCTURE, LINK, CREATE AND ENTER FUNCTIONS

*RETURN

Table 12. DBMS Function Restore

80




SUBROUTINE LIST
*|F CURRENT DATA BASE NAME IS DIFFERENT FROM NEW NAME
*THEN
*PERFORM RETRIEVE FUNCTION ON NEW DATA BASE
*|F READ KEY DOES NOT MATCH THEN ERROR
*FIND CYCLE ATTRIBUTE ARRAY FOR DBE 'SYS'
*PRINT TIME AND DAY OF LAST (SYSTEM SPECIFIED) CYCLES
*RETURN

Table 13. DBMS Function List

81




SUBROUTINE DISPLAY
*|F CURRENT DATA BASE NAME IS DIFFERENT FROM NEW NAME
“THEN
*PERFORM RETRIEVE FUNCTION ON NEW DATA BASE
“|F READ KEY DOES NOT MATCH THEN ERROR
*IF TWO OR MORE KEYWORDS FROM THE GROUP (SN, BELOW, ABOVE, ALL OR DBE) ARE
PRESENT THEN ERROR
*|F PRINT IS SPECIFIED
*THEN
*D0 CASE FOR KEYWORD CHOSEN
*CASE1 SN
*FIND SN
*FOLLOW CYCLE POINTER TO OLDEST CYCLE
*SCAN ALL CYCLES
“PRINT THE ATTRIBUTE NAMES AND VALUE TYPE
*PRINT THE NAMES OF THE SN'S CHILDREN
*PRINT THE NUMBER OF LINKED LISTS
*IF LISTS OPTION PRESENT
*THEN
*PRINT CLASS FIELD
“PRINT RANK FIELD
*CASE2 BELOW
*SCAN STRUCTURE TREE WITH ROOT SPECIFIED
*PRINT NODE NAME AND LEVEL
*PRINT CURRENT ATTRIBUTE NAME AND VALUE TYPES
*THE NUMBER OF LINKED LISTS
*CASE3 ABOVE
*FIND SN
*SCAN BACKWARDS POINTERS UP TO BUT NOT INCLUDING NODE SYS
*PRINT CURRENT ATTRIBUTE NAMES AND VALUE TYPE
*PRINT NODE NAME
*PRINT THE NUMBER OF LINKED LISTS AND DBE'S
*CASEL ALL
*FIND SN
“PRINT FIRST SIX ATTRIBUTE NAMES AND VALUE TYPES
*SCAN ASSOCIATED DBE
“PRINT FIRST SIX ATTRIBUTE VALUES
*CASES DBE
*ASSOCIATED SN'S GENERIC NAME
*FOLLOW CYCLE POINTER TO OLDEST CYCLE
*SCAN CYCLES
*PRINT CYCLE INFORMATION
*ATTRIBUTE NAME AND VALUE
*|F VALUE PRINT IS SMALL THEN PRINT ATTRIBUTE VALUE
*IF ALL OPTION IS PRESENT
*THEN
*SCAN DBE SET SPECIFIED
*PRINT FIRST SIX ATTRIBUTE NAMES
*|F VALUE PRINT IS SMALL THEN PRINT VALUE
*ELSE
*TRANSFER NODES TO SPECIFIED MEDIUM
*|F CORE OVERFLOW THEN ERROR

Table 14. DBMS Function Display

82




SUBROUTINE COMPRESS

*ATTACH TEMPORARY DATA BASE

*PERFORM COPY FROM SPECIFIED DATA BASE TO THE TEMPORARY DATA BASE
*BINARY COPY FILE BACK

*RETURN

Table 15. DBMS Function Compress

83




SUBROUTINE LINK

*|F THERE 1S NOT A CURRENT DATA BASE
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
*THEN
*PERFORM INITIALIZATION OF DEFAULT DBN
*FIND PARENT SN
*IF A LLH BY SAME NAME ALREADY PRESENT
*THEN
*CREATE NEW CYCLE OF LLH

*|F OLD CYCLE NUMBER IS SAME AS CURRENT AND NO INWARD POINTERS
*THEN
“*REMOVE OLD LLH FROM CHAINS
*SET STATUS OF NODE TO AVAILABLE
*ELSE
*CREATE NEW LLH ON THE END OF THE LLH CHAIN
*IF NO LLH NAME GIVEN THEN SET NAME TO DEFAULT
*PLACE NAME IN NEW LLH NODE
*PLACE CLASS EXPRESSION INTO LLH NODE
*SET LL CHAIN POINTERS TO THIS LLH
*PLACE RANK EXPRESSION INTO LLH NODE
*SCAN DESCENDANTS OF THE LLH'S PARENT SN
*COMPARE ATTRIBUTE NAME PRESENT WITH THOSE REQUIRED FOR CLASS EXP
“|F REQUIRED NAMES ARE PRESENT
*THEN
*SCAN ASSOCIATED DBE
*|F CLASS EXPRESSION MATCHES
*THEN
*FIND START OF CHAIN
*USE RANK EXPRESSION TO LOCATE POSITION IN LL FOR THIS DBE
*INSERT DBE INTO CHAIN
*PLACE NUMBER OF DBE INTO LLH HEADER

Table 16. DBMS Function Link

84



SUBROUTINE STRUCTURE
*)F THERE IS NOT A CURRENT DBN
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN 1S NON RETRIEVABLE
*THEN
*PERFORM INITIALIZATION OF DEFAULT DBN
*|F DELETE OPTION PRESENT
*THEN
*|F ATTRIBUTE, MEMBER, OWN OR RANK FIELD PRESENT THEN ERROR
*FIND SN
*SCAN STRUCTURE TREE WITH THIS NODE*AS A CHILD
*FLAG SN FOR DELETION
*SCAN ASSOCIATED DBE
*PERFORM DELETE FUNCTION
*SCAN LINKED LISTS HEADERS
*PERFORM UNLINK FUNCTION FOR THIS LLH
*)F THIS SN 1S NOT SAVED BY PREVIOUS CYCLE AND NO INWARD POINTERS
*THEN
*REMOVE THIS SN FROM CHAINS
*CHANGE THIS SN TO AVAILABLE STATUS
*ELSE
*FIND SN PARENT
*|F SN 1S ALREADY A CHILD
*THEN
*CREATE NEW SN AS A NEW CYCLE
*|F ATTRIBUTE NAMES DO NOT MATCH
*THEN
*SET @F.DBE AND @L.DBE TO NULL AND #DBE
*SCAN DBES
*PERFORM DELETE FUNCTION
*SET @F.LLH AND @L.LLH TO NULL AND #LLH
*SCAN LLH NODES
*PERFORM UNLINK FUNCTION
*ELSE
*TRANSFER DBE AND LL FIELDS AND SET # INWARDS TO #DBE +2, 3 or 4
*ELSE
*CREATE NEW SN AS A NEW CHILD
*INITIALIZE NEW SN HEADER EXCEPT #INWARDS, #LLH AND #DBE
*|INITIALIZE @F.SUB AND @L.SUB AS NULL
*INITIALIZE CURRENT POINTER TO SN'SYS'
*LOOP #STRUCT = 1, LEVEL #
*SCAN OWN NODE OF CURRENT SN FOR MATCH W!TH NAME OF NEW SN
*SCAN NEW MEMBER LIST FOR MATCH WITH NAME OF CURRENT SN
*|F MATCH IS FOUND THEN PLACE ENTRY IN @P.STRUCTI! (@S.STRUCTI)
*IF OWN FIELD PRESENT
*THEN
*CREATE OWN NODE
*SET #STRUCT = LEVEL#+]
*SET @P.STRUCT (#STRUCT) AND @S.STRUCT(#STRUCT) TO OWN NODE
*|INSERT ATTRIBUTE NAME LIST AND ARRAY DESCRIPTORS INTO NEW SN
*COMPLETE HEADER, (#CELLS)

#INWARDS = 0 IN NEW NODE

0 IN NEW NODE

Table 17. DBMS Function Structure
85




SUBROUTINE UNLINK
*|F THERE IS NOT A CURRENT DATA BASE
*THEN
“PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
*THEN
*PERFORM INITIALIZATION FUNCTION ON DEFAULT DBN
*FIND PARENT SN (NEW CURRENT SN)
*FIND LLH
*FLAG LLH FOR DELETION
“SCAN LINKED LIST CHAIN NODES
“CREATE NEW CYCLE SHOWING LOSS OF LINKED LISTS
*1F NO INWARD POINTERS TO OLD LLC AND IT IS NOT SAVED BY PREVIOUSG CYCLE
*THEN
*CHANGE STATUS OF OLD LLC NODE TO AVAILABLE
“IF THIS LLH NOT SAVED BY PREVIOUS CYCLE AND NO INWARD POINTERS
*THEN
“REMOVE THIS LLH FROM CHAINS
*CHANGE STATUS OF THIS LLH TO AVAILABLE

Table 18. DBMS Function Unlink

86




SUBROUTINE CREATE
“IF THERE IS NOT A CURRENT DBN
“THEN

*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN

“|F DEFAULT DBN IS NON RETRIEVABLE

“THEN

“PERFORM INITIAL FUNCTION ON DEFAULT DBN

“FIND SN AND CALL IT THE CURRENT SN
“ALLOCATE A NEW DBE AND CALL IT THE CURRENT DBE
“LINK THIS DBE ONTO CHAIN OF DBES ASSOCIATED TO THE CURRENT SN
*PERFORM STORE FUNCTION ON VALUE KEYWORD PACKET IF PRESENT

Table 19. DBMS Function Create

87




SUBROUTINE ENTER
*IF THERE IS NOT A CURRENT DBN
“*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
*THEN
*PERFORM [NITIAL FUNCTION ON DEFAULT DBN
*FIND DBE AND CALL IT CURRENT DBE
*IF NO SET OWNER SPECIFIED (MISSING SET KEYWORD PHRASE)
*THEN
*ERROR
*ELSE
*FIND DBE SET OWNER
*FIND LOCATION IN DBE SET
*CHAIN THIS DBE INTO SET

Table 20. DBMS Function Enter

88




SUBROUTINE FIND
*|F THERE IS NOT A CURRENT DBN
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
“THEN
*PERFORM INITIAL FUNCTION ON DEFAULT DBN
*FIND DBE AND CALL IT THE CURRENT DBE

Table 21. DBMS Function Find

89




SUBROUTINE RETURN
*1F THERE 1S NOT A CURRENT DBN
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
“THEN
*PERFORM INITIAL FUNCTION ON DEFAULT DBN
*FIND DBE AND CALL IT THE CURRENT DBE
*|F ATTRIBUTE LIST PRESENT (NAMES KEYWORD)
*THEN
*SCAN ATTRIBUTE LIST PRESENTED
*FIND THIS ATTRIBUTE
*|F PRINT SPECIFIED
*THEN
*PRINT WITH FORMAT CONSISTENT WITH ATTRIBUTE VALUE TYPE
*|F CORE SPECIFIED
*VERIFY ENOUGH CORE PROVIDED
*TRANSFER ATTRIBUTE NAMES AND VALUES
*IF A FILE IS SPECIFIED
*TRANSFER ATTRIBUTE NAMES AND VALUES
*ELSE
*SCAN LIST OF ATTRIBUTE ON SN ASSOCIATED WITH THE CURRENT DBE
*FIND THIS ATTRIBUTE
*QUTPUT AS ABOVE

Table 22. DBMS Function Return

90




SUBROUTINE DELETE
“|F THERE 1S NOT A CURRENT DBN
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT D8N
“|F DEFAULT DBN IS NON RETRIEVABLE
*THEN
*PERFORM INITIAL FUNCTION ON DEFAULT DBN
*FIND DBE AND CALL IT THE CURRENT DBE
*FLAG DBE FOR DELETION
*|F THIS DBE DOES NOT NEED TO BE SAVED AS A PREVIOUS CYCLE
*THEN
*REMOVE THIS DBE FROM CHAINS AND ASSOCIATED (SETS, LINKS, DBE)
*CHANGE STATUS THIS DBE TO AVAILABLE
*ELSE
*LEAVE DBE AS ARCHIVED COPY

Table 23. DBMS Function Delete

g1




SUBROUTINE REMOVE
*PERFORM RETURN FUNCTION WITH SPECIFIED PARAMETERS
*PERFORM DELETE FUNCTION FOR THIS DBE

Table 24. DBMS Function Remove

92




AD=A034 228 BOM CORP EL PASO TEX F/6 9/2
DATA BASE MANAGEMENT SYSTEmM REFERENCE MANUAL,. (V)
OCT 76 J M PHELAN F29601=74=C=0017
UNCLASSIFIED AFUL=TR=75=15%9 NL

202




1.0

A 20
S Esmie
Bz e pee




SUBROUTINE STORE
*IF THERE IS NOT A CURRENT DBN
*THEN
*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN
*|F DEFAULT DBN IS NON RETRIEVABLE
*THEN
*PERFORM INITIAL FUNCTION ON DEFAULT DBN
*FIND DBE AND CALL IT THE CURRENT DBE
*GENERATE NEW CYCLE OF CURRENT DBE ALLOWING SPACE FOR NEW VALE ENTRIES
*DELETE PREVIOUS COPY IF POSSIBLE
*SCAN LIST OF ATTRIBUTE VALUE ASSIGNMENTS IF PRESENT
“|F MULTI CELL VALUE
*THEN
*GENERATE VALUE NODE
*LINK TO DBE DATA NODE
*ELSE
*SET VALUE IN DBE DATA NODE
*SCAN PARENT SN'S
*SCAN LLH THIS SN IF PRESENT (IGNORE FIRST LLH)
*IF THIS DBE QUALIFIES (CLASS)
*THEN
*|F FIRST ENTRY IN LLC
*THEN
*CREATE A NEW LLC
*LINK TO DBE
*FIND LOCATION IN LINK LIST FOR THIS DBE
*CHAIN THIS DBE ONTO THE LINK LIST

Table 25. DBMS Function Store

93




SUBROUTINE UNFILE
*|F THERE IS NOT A CURRENT DBN
*THEN

*PERFORM RETRIEVE FUNCTION ON DEFAULT DBN

*IF DEFAULT DBN IS NON RETRIEVABLE

*THEN

*PERFORM INITIAL FUNCTION ON DEFAULT DBN

*FIND DBE AND CALL IT THE CURRENT DBE (ORDER KEYWORD)
*UNCHAIN THIS DBE FROM SET

Table 26. DBMS Function Unfile

94



SUBROUTINE RAGGEN

*|F RAGGED TABLE DOES NOT ALREADY EXIST
“THEN
“|F FIRST SPECIFICATION 1S A LEAF
“THEN
“PRINT WARNING (SINGLE LEAF RTNS ARE NOT EFFICIENT)
“ALLOCATE INCREMENT OF RTN STORAGE
“GENERATE RTN OF ONE LEAF
“ELSE
“ALLOCATE INCREMENT OF RTN STORAGE
“INITIALIZE RTN HEADER
“GENERATE (#BRANCHLETS) CELLS OF UNDEFINED CONTINUATIONS (LEAVES)
*ELSE
“|F CYCLE OF RTN = CURRENT CYCLE
“THEN
*CREATE NEW CYCLE OF RTN
“FOLLOW TREE TO NEW NODE
“|F NEW NODE 1S TO BE A BRANCH
“THEN
“|F NODE ENTRY IS NOT UNDEFINED CONTINUATION
“THEN
‘PRUNE OLD BRANCH (LEAF)WHILE INSERTING UNDEFINED CONTINUATION NODE
“IF OLD NODE WAS A BRANCH THEN COMPACT NEW RTN
“|F NODE ENTRY 'S NOT THE LAST SUBCELL OF THE RTN
“THEN
“1F NOT ENOUGH SPACE FOR 3 “#BRANCHLETS
“THEN
“{F EFFICIENCY THIS CHUNK 1S HIGH
“THEN
“ALLOCATE INCREMENT OF RTN STORAGE
“|F NOT SEQUENTIAL PAGE THEN CHAIN AS PERM EXTENSION TO RTN
“ELSE
*COMPACT
“ELSE
“CHAIN DEFINED TEMPORARY CONTINUATION
“PLACE IN (#BRANCHLETS) CELLS OF UNDEFINED CONTINUATION

<ELSE
“IF NOT ENOUGH SPACE FOR 3+ (#BRANCHLETS-1)
*THEN
“IF EFFICIENCY THIS CHUNK 1S HIGH
“THEN

“ALLOCATE INCREMENT OF RTN STORAGE
“IF NOT A SEQUENTIAL PAGE THEN CHAIN AS PERM EXTENSION TO RTN
*ELSE
“COMPACT
*PLACE IN (#BRANCHLETS) CELLS OF UNDEFINED CONTINUATION
*ELSE (NODE ENTRY IS THE LAST SUBCELL OF THE RTN)

Table 27. DBMS Ragged Table Generation

95




*1F NODE ENTRY IS NOT UNDEFINED CONTINUATION
*THEN
*PRUNE OLD BRANCH (LEAF) WHILE INSERTING UNDEFINED CONTINUATION
*{F OLD NODE WAS A BRANCH THEN COMPACT NODE
*ELSE
*INSERT NEW LEAF
*|F # UNDEFINED CONTINUATIONS 1S ZERO
*THEN
*COMPACT RTN
*ELSE
*COMPUTE EFFICENCY AS (1 - 3 (#% - #2)/#Cells)
*|F # OF DEFINED CONTINUATIONS EXCEED MAXIMUM OR EFFICIENCY LESS THAN MINIMUM
*THEN
*COMPACT ALL RTN STORAGE INCREMENTS
*RETURN

Table 27. DBMS Ragged Table Generation (Concluded)

96



SUBROUTINE COMPACT RTN

*NOTE COMPACTS ONLY ONE INCREMENT OF STORAGE
%)F THERE ARE DEFINED CONTINUATIONS OR PERM CONTINUATIONS
*THEN
*ALLOCATE NEW INCREMENT OF RTN STORAGE
*PREORDER SCAN RTN KEEPING LEVEL POINTERS
*|F DEFINED CONTINUATION
*THEN
*FOLLOW LINK
*CALCULATE PTR OFFSET THIS LEVEL
*TRANSFER NODE AND BIAS PTRS
*|F PERM CONTINUATION
*THEN
*REMEMBER FIRST TWO
*SCAN TABLE OF TWO PERM CONTINUATIONS (IF PRESENT)

*TRANSFER NODES UNTIL ORIGINAL STORAGE INCREMENT FULL AS DEFINED CONTINUATION
*RETURN

Table 28. DBMS Pagged Table Compaction

97/98




APPENDIX A

DBMS COMMANDS AND CARD FORMATS

This appendix discusses the DBMS commands and card formats in detail.

Input cards to DBMS are free form in structure. Punching on a card
may begin in any arbitrary column for any command. The blank may be used
as an optional character which is ignored except when it occurs in an
alpha string or the text of a comment. Continuation from one card to the
next is accomplished whenever any of the characters +-,/*%(=. or $ appear as
the last non-blank character on the card to be continued (this rule does
not apply to comment cards). Only the first 72 columns of the card may be
used for keypunching commands.

Each command must start on a new card. Commands are executed in the
order in which they are encountered in the input stream.

Comment cards may be included in the input deck. They always start
with the S character and cannot be continued from one card to the next. As
many comment cards as desired may be included in the deck and they may be
arbitrarily inserted (except they may not be inserted in the middle of a
sequence of card continuations). Imbedded blanks in comment cards are
preserved.

A1l commands are of the form:
FUNCTION, PARAMETER LIST

The functions are outlined in Structure Level 1. A functional description

of each function is presented in Structure Level 3. The functional description
is intended for the interested reader and should not be considered a necessity
for using DBMS.

The parameter list is in the form of a keyword followed by necessary
parameters. Each keyword plus its parameters is called a field. |If more
than one field is present they must be separated by commas. The order of
fields is immaterial except as mentioned in the case of protection keys and
attribute values. Items which are optional are shown in brackets. |tems
in nested brackets may appear only if options in outer brackets are chosen.
Keywords are capitalized and default optional values are either underlined
or mentioned in the following text. {f one word is to be chosen from a
group of words, the possible words are listed in a column and enclosed in
parentheses. Fields and parts of fields will be enclosed by a single quote
(') when they appear as part of the following text, except where obvious.
When encoding a command all lists must be enclosed by parentheses.

99




I) Type 1 Functions

Type 1 functions are all utilities. Besides the tasks mentioned beiow

Type 1 functions identify the name of the current data base. |If a 'DBN =
name' (or 'FROM = name' on a COPY) field appears then the file called name
is the new data base. Note that the default data base name is DB. |If

another data base is current prior to the application of a utility function,
that data base is cleaned up and all DBMS internal references to the old
file are converted to the new file (e.g., see INITIAL).

The file names used must satisfy the local restrictions on file naming
conventions. When DBMS is used under CDC Scope 3.4, a catalogued file which
is not currently attached will be dynamically attached while it is required
for the DBMS and then returned to the system. |In order to dynamically attach
a catalogued file the subfield SYSKEY must contain the required system infor-
mation for the file. On many systems fewer characters are allowed for local
than for catalogued file names. The local file name used while dynamically
attaching a catalogued file will be the first n characters of the catalogued
file name, where n is the maximum number of characters allowed for a local file
name. |f the name given is neither a local nor a catalogued file name, DBMS
will attempt to attach a temporary file with the name given as a local file
name. Note that a dynamically assigned catalogued file is returned after use
but a dynamically assigned temporary file is retained. Under all operating
systems a file may be assigned before DBMS is called.

As mentioned the SYSKEY field is an alpha string which defines the
necessary system information to dynamically attach a catalogued file. To
encode an alpha string, choose a delimiter. The delimiter is placed imme-
diately before and after the alpha text. Anywhere in the text the delimiter
appears it must be replaced by two delimiters. Examples of alpha strings
are presented with the Type 3 function CREATE.

For each file referenced in a utility function, the DBMS determines if
the file device is tape or random access. |If random access, the DBMS further
determines if the file is already a data base.

The parameters 'rkey', 'wkey', and 'akey' are order dependent and any
combination of the three may be present. |If 'rkey' or 'wkey' are absent,
the delimiter '/' must still be included. The parameter 'rkey' represents
a request for permission to retrieve (read) data currently stored in the
data base. The parameter 'wkey' represents a request for permission to
store new data into a data base. The parameter 'akey' represents a request
to alter existing data in a data base. These keys are not intended to pro-
vide absolute security of data bases but rather reduce the possibility of
accidental destruction of a data base. These keys may be placed into the
data base only with the Type |1 function INITIAL. |f the field 'DBN = name'
is absent, the parameters 'rkey', 'wkey', and 'akey' are ignored.

100




The DBMS utility functions are:
A) COMPRESS a data base
COMPRESS {,DBN = name} {,KEY = rkey/wkey/akey} {,SYSKEY = syskey}

Following the procedure mentioned in the general discussion of Type 1 functions,
the file 'name' is attached if necessary.

The result of a successful COMPRESS function is to remove unused space
in a data base. This unused space is the result of scratch areas used by
DBMS while building nodes. Although DBMS attempts to use this space, some
fragmentation does ocrur (see also function CYCLE below).

B) COPY a data base from one file to another

; SAVE INCLUDE -
PY fiel = " = =
co dbn fields ,TO name {LINKS DELETE }{ EXCLUDE (snl |st)}

where the dbn fields are

{,FROM = name {(cycle number)}}{ ,KEY = rkey/wkey/akey} {,SYSKEY = syskey!

The default parameter list for a COPY card is 'FROM = current data base,
TO = current data base, LINKS = SAVE'. The parameters for the FROM and TO
fields are the names of local or catalogued files. Following the procedure
mentioned in the general discussion of Type | functions, the files are
attached if necessary. The SYSKEY subfields must be the same for both files
if they are dynamically attached.

The FROM file is verified to be a data base with matching 'rkey' field.
The 'wkey' and 'akey' are used to grant write and alter permissions of the
FROM data base. The DBMS determines if the TO file is tape or direct access.
If the TO file is a direct access and already a data base, the 'wkey' and
'akey' must match those given on the DBMS control card.

The result of a successful COPY function is to move all or part of a
data base from one file to another. |If the TO file is a tape, then the
data base is written in a standard format allowing for easy portability
(see the Type 1 function RESTORE). |If a cycle number is given for the FROM

data base, only that cycle is moved. |f the FROM name subfield is the same as
the TO name subfield only the cycle number specified (default is the current
cycle) is saved and all others are discarded. |If a cycle number is not

specified and the TO name subfield is different from the FROM name subfield,
all cycles are copied.

If LINKS = SAVE is specified, the link list information is copied. |If
the INCLUDE/EXCLUDE subfield is omitted all SNs and DBEs are copied. The
form of snlist is a list of SNs separated by commas and enclosed in paren-
theses. |f an INCLUDE subfield is present, only those SNs mentioned and

101




their ancestors are copied. |f an EXCLUDE subfield is present, the SNs
mentioned and their decendents will not be copied. The only DBEs that will
be copied are those associated with SNs that are copied.

C) Increment the CYCLE number of a data base (See structure level ?7)
CYCLE {,DBN = name} {,KEY = rkey/wkey/akey) {,SYSKEY = syskey!

Following the procedure mentioned in the general discussion of Type |
functions, the file 'name' is attached if necessary.

The result of a successful CYCLE function is to archive a copy of the
data base. Any future alterations to the data base will result in a copy
of the affected nodes to be made and alterations made to the copies. The
old nodes retain their information intact and can be retrieved by requesting
the proper cycle number. Where efficiency is of importance, it should be
noted that only two words in the data base are changed as a result of a
CYCLE function. When a node is altered (causing a new cycle) a copy of the
node is made, but all pointers to the node are left pointing to the old
cycle of the node. When a reference is made to an out of date node through
a pointer, the pointer is updated. As such the cycle information requires
more file space, but the other computer resources are kept to a minimum.

It is advisable to copy a data base to tape and set the data base cycle
back to zero occasionally.

The maximum cycle number is 4096, at which time the oldest cycle is
lost. The number of cycles saved may be reduced during site initialization

of DBMS.

D) DISPLAY a segment of a data base

SN = sn,LISTS

BELOW = sn
DISPLAY dbn fields {, | ABOVE = sn
DBE = dbe

where the dbn fields are:

{,DBN = name) [ ,KEY = rkey/wkey/akey) {,SYSKEY = syskey}

The default parameter list for a display card is 'DBN = current data
base, DBE = SYS*SYS'. Following the procedure mentioned in the general
discussion of Type 1 functions, the file 'name' is attached if necessary.

102




The result of a successful DISPLAY function is to output information
describing a specified SN or DBE. Note that both SNs and DBEs may not
be specified on the same card. |In either case, one node is specified
(SN 'sn' or DBE 'dbe').

A single SN can be selected with the option 'SN = sn' or a group of
SNs can be selected with the options BELOW, ABOVE, or LISTS. The SNs on
the subtree with root SN 'sn' can be selected with the option 'BELOW = sn'.
The ancestral SNs of a sn can be selected with the option 'ABOVE = sn'.
Pertinent information about the linked lists attached to SN 'sn' can be
output with the option 'SN = sn, LISTS'.

The format of the information output depends on the OUTPUT medium
(CORE, FILE or PRINT), the number of nodes selected, and the kind of nodes
selected.

1) If PRINT is specified the following information is printed for
each of the options listed below:

a) 'SN = sn':
i) Each attribute name and value type by retained cycle,
ii) The names of the SN's children,
iii) The number of linked lists and DBEs for this SN,
iv) If the LISTS option is chosen, the class attributes (which
DBE may belong to the list) and the order ranking definition
(See Type 2 function STRUCTURE).
b) 'BELOW = sn', or 'ABOVE = sn', for each SN:
i) The attribute names and value type for current cycle,
ii) SN name and SN tree level number,
iii) The number of link lists and DBEs for this SN.
c) 'DBE = dbe':
i) Associated SN's generic name (i.e., SYS., etc)
ii) Each attribute name and value by retained cycle number
(except values in ragged tables, arrays and alpha fields
containing more than 50 characters),

iii) Set ownership (yes or no),

iv) Levels of DBEs which own this DBE.

103




E) INITIALIZE a data base
INITIAL {,DBN = name} {,KEY = rkey/wkey/akey} {,SYSKEY = syskey!

The default parameter list for an INITIAL card is DBN = DB. The
parameter 'name' is the local or catalogued name of the direct access file
on which the data base is to reside. Following the procedure mentioned in
the general discussion of Type 1 functions, the file is attached if necéssary.
If the file was a data base prior to this call, the values of rkey, wkey, and
akey (read, write, and alter keys) on the control card must match the values

stored in the data base. If a match fails the program executes an error
exit.

The result of a successful INITIAL function is to generate a data base
header (Structure Level 2.7), the SN 'SYS', the DBE 'SYS', and then initialize

DBMS variables within DBE 'SYS' including rkey, wkey, and akey (See Structure
Levels 2.3 and 2.5).

F) LIST out the date and time of all cycles

LIST {,DBN = name} {,KEY = rkey/wkey/dkey} {,SYSKEY = syskey}

CORE = location(size)
,| FILE = fname
PRINT

The default parameter list for a LIST card is 'DBN = current data base
name, PRINT'. Following the procedure mentioned in the general discussion of
Type | functions, the file 'name' is attached if necessary.

The result of a successful LIST function is that the cycle date and time
information is transferred from the data base to the specified device. |If
PRINT is specified, the information is printed. |If 'FILE = fname' is speci-
fied, the file called 'fname' is attached and the information written to it
sequentially (See TYPE 1 function DISPLAY for format).

If 'CORE = location(size)' is specified the information is transferred
to the core location given (See Type 1 function DISPLAY for format). The
options FiLE and CORE are intended to be used with short commands for
interprogram communications (See Structure Level 1.0)

G) RESTORE a data base from tape to random access

RESTORE {,TAPE = name} {,DBN = name}{,KEY = rkey/wkey/akey!
{,SYSKEY = syskey!}

104




The default parameter list for a RESTORE card is 'TAPE = TAPE, DBN = DB'.
The parameters for the FROM and TO fields are the names of local or catalogued
files. Following the procedure mentioned in the general discussion of Type 1
functions, the files are attached if necessary. The SYSKEY subfields must
be the same for both files if they are dynamically attached. The TAPE file
is verified to be a tape and the DBN file is verified to be a random access
file.

The result of a successful RESTORE function is to copy a data base from
a tape to a random access device. The tape must have been written by the
DBMS function COPY. However, the machine used during the DBMS copy operation
may be of a different brand.

H) RETRIEVE an existing data base
RETRIEVE {,DBN = namel}{,KEY = rkey/wkey/akey}{,SYSKEY = syskey!}

The default parameter list for a RETRIEVE card is 'DBN = DB'. The
parameter 'name' is the local or catalogued name of the direct access file
on which the data base resides. Following the procedure mentioned in the
general discussion of Type 1 functions, the file 'name' is attached if
necessary. The file must be a data base or the job is put into an error
mode. The values of rkey, wkey, and akey are compared and the appropriate
permissions are granted. A permission violation (e.g. trying tc alter an
existing data base node when alter permission not granted) will cause the
job to be put into an error mode.

The result of a successful retrieve function is to verify that the data
base has at least a minimum structure. |In particular the header, the SN 'SYS',
the DBE 'SYS' and the internal variables are checked.

Il) Type 2 Functions

Type 2 functions deal with the generation and control of a data base's
structure. The data base is always the current data base name (See general
discussion of Type 1 function in this appendix). The two types of nodes
affected are SNs and link lists (LLs) (See Structure Levels 1.2 and 1.5).
In each case a required parameter field is 'SN = sn' or 'LL = sn' where sn
is the full name of a SN (See Structure Level 1.3).

The DBMS structure node functions are:

A) LINK a group of DBEs into an ordered list

LINK ,LL = sn $HLn {,CLASS = (expr)! {,RANK = (orderlist)}

LINK attaches a link list header (LLH) called Ln to SN 'sn'. The names
of linked lists attached to a SN must be unique. Link lists are internally

105




numbered sequentially starting with 1 for the oldest, 2 for the next to
oldest, etc. The LLH contains information describing which DBEs are in

the list (CLASS) and what determines the ordering (RANK). (See Structure
Level 1.5). The membership is defined by the parameter 'expr'. The ordering
algorithm is defined by the 'orderlist' parameter and is interpreted as

for the TYPE 2 function STRUCTURE. The form of 'expr' is the same as an

ANS| FORTRAN logical expression with the relationa! expression redefined.

The form of the DBMS relational expression is defined in Structure Level 1.3.

The field orderlist specifies how sets owned by any DBE associated with
the SN being defined are ordered. The format of an orderlist is a series of
order elements separated by commas and the list must be enclosed in paren-
theses. The form of an order element is:

HIGH) . . -
(Low attribute name (dimension)

LIFO
FIFO

where dimension is used to specify an array or ragged table element. The
order list is position dependent and is interpreted as:

order by (order element 1) and settle ties by
(order element 2) and settle remaining ties by
(order element 3) and so on

If a set member does not have an attribute required by an order element
it is considered last for that order element. |If a tie still exists after
all order elements have been considered, the tie is settled by FIF0 ordering.

The defaults for 'CLASS = (expr)' and 'RANK = orderlist' is for all the
eligible DBEs to be linked into a FIFO queue (See Structure Level 1.5)

B) Add or modify the data base structure

STRUCTURE {,SN = sn} 3(3533515){

where args are:
{ ATTRIBUTE = (alist)}{,MEMBER = (mlist)} {,OWN = ownlist)} {,RANK = orderlist

Since the STRUCTURE function deals with the heart of the data base orga-
nization, there are no defaults allowed. |f the DELETE option is chosen,
the SN 'sn' and all of its descendents plus their associated DBEs are flagged
as deleted as of the current cycle. Previous cycles of this node can be
retrieved by copying that particular cycle of the current data base to a new
data base (See COPY function).

106




(f the DELETE option is not selected a new SN is created (See Structure
Level 3.3). The parameter alist describes the names and value type of attri-
butes of the DBE associated with SN 'sn'. The format of alist is a series of
attribute definitions separated by commas (,). Note alist must be enclosed
in parentheses.

The form of an attribute definition is:

INTEGER name (dimensions)
REAL name (dimensions)
DOUBLE name (dimensions)
COMPLEX name (dimensions)
ALPHA name (dimensions)
BITS(width)name (dimensions)
DB name

RAGGED name

where name is a single name or a list of names separated by commas and
enclosed in parentheses. An attribute name may be from | to 9 alphanumeric
characters starting with a letter. Width is the number of bits per value
(default is 52) and 'dimensions' may be from one to three dimensions, in

ANS| FORTRAN format. |If the dimension is (1), (1,1) or (1,1,1) it is assumed
the dimensionality will be specified by a Type 3 function. In any case the
dimensionality of an array may be altered by a Type 3 function (see Type 3
functions SET and CREATE).

The member list 'mlist' and the own list 'ownlist' contain SNs and
define which DBEs may belong to a given set. |In particular a DBE associated
with the SN being defined may belong to any set attached to a DBE which is
associated with any SN in the member list. Further a DBE associated with
the SN being defined may own as a set any DBE associated with a SN in the
own list. Thus, there are two ways to define set membership and either
or both may be used. The parent of the SN being defined is always in the
member list by default. For details of set membership see Structure Level
1.2. The format for both 'mlist' and ‘ownlist' is a list of SNs separated
by commas (,) and the list must be enclosed in parentheses.

The meaning of orderlist is explained in the discussion of the Type 2
function LINK.

(C) UNLINK a linked list of DBEs
UNLINK, LL = SNSHIn
See Type 2 function LINK for the meaning of SNSHIn. The specified LL

is flagged for deletion. The link list will be available a» long as previous
cycles are.

107




111) Type 3 Functions

Type 3 functions deal with the generation and control of data entries
(DBE). Each Type 3 function except CREATE has an optional DBE name parameter
field. The data base maintains the identity of the most recently used DBE.
Thus the same DBE can be repeatedly accessed without specifying its name
each time. Further the Type 3 function FIND does nothing more than set the
most recently used DBE pointer (current DBE) to a particular DBE. Thus except
for CREATE, the discussion below assumes the most recent DBE is being accessed
unless the 'DBE = name' field appears.

The Type 3 functions are:
A) CREATE a DBE using a SN as a template
CREATE, SN = sn {,VALUE = (Vpairs)}

The CREATE function uses the template information from SN 'sn' to create
a DBE. All the attributes, except those mentioned in the VALUE field, are
flagged as undefined. The format of the field vpairs is a series of attribute
name/value pairs separated by commas and enclosed in parentheses. The
attribute name/value pairs are of the form 'attribute name = value'. The
form of value must agree with the attribute value type (See Structure
Level 1.0). The attribute value types are described below:

i) Alpha string of length smaller than 649 characters.

To encode an alpha text into an alpha string, choose any
delimiter from the set ')', 's' '/' v v 1=!_ The delimter
is placed immediately before and after the alpha text string.
Anywhere in the text the delimiter appears it must be replaced
by two delimiters. As an example the text 'DOG*CAT' can be
represented by any of the following:

/DOG*CAT/
*DOG**CAT*

The following representations are in error:

DDDOG**CATD
CDOG*CCCATC
*DOG*CAT*
/DOG*CAT*

ii) Real constants are represented in the same fashion as ANSI
FORTRAN. Note when transferring from CDC 6600/6700 to IBM
360/370 or UNIVAC 1108/1110 all single precision variables
are converted to double.

108




iii) Integer constants may be represented as binary, octal, hex or
decimal numbers by preceding the number with '$BIN', 'SOCT',
'SHEX' or 'SDEC' respectively. Thus the number 65 may be repre-

sented as:

SBIN 1000001

SOCT 101

SHEX 41

SDEC 65

65

Note that the default is 'SDEC'. Truncations caused by trans-
ferring a data base from one system to another will be flagged.

iv) COMPLEX constants are represented in the same fashion as ANSI
FORTRAN. Loss of precision caused by transferring a data base
from one system to another will be flagged.

v) DOUBLE PRECISION constants are represented in the same fashion
as ANSI| FORTRAN. Loss of precision caused by transferring a
data base from one system to another will be flagged.

vii) A BIT STRING constant may be represented in the saie fashion as
INTEGER constants.

viii) Data base descriptors are in the form of

$Dname {({syskey} {srkey/wkey/akev}>}

These fields are identical to those mentioned in the Type |
function INITIAL.

The form of value may be a simple constant described above or the words
SFILE(name) or $CORE (location/length). These fields are the same as the
Type 1 function DISPLAY. The format must be in the form described in
Structure Level 2.2.

B) ENTER a DBE into a SET FIRST
LAST I
ENTER {,DBE = dbe} ,ORDER =| BEFORE dbel , SET = db2
l AFTER dbel ‘

The current DBE is filed into the set owned by DBE 'dbe2'. The normal
ordering for this set was defined in the Type 3 STRUCTURE function for the
SN associated with DBE 'dbe2'. This ordering can be overridden with the
ORDER parameter field. Here FIRST and LAST refer to the first and last DBE
in the set, and BEFORE and AFTER refer to DBE 'dbel'.

109




C) FIND a specific DBE
FIND ,DBE = dbe

This function is provided as a convenience and merely sets the internal
pointer ‘current DBE' to DBE 'dbe' (See general discussion of Type 3 functions).

D) RETURN, DELETE, or REMOVE a data node and/or any of its attributes

it

location(si7e)>'

RETURN ; : CORE
DELETE {.oaz = dbel! NAMES = (alist)y L[ FILE = fname ‘

REMOVE i l PRINT

RETURN will return the values of specific attributes, DELETE will
delete the specified DBE and REMOVE will return the attribute values then
delete the DBE. The attribute names are listed in alist and are separated
by commas. They are sent to CORE, FILE, or PRINT. |If PRINT is chosen then
the names of single elements and arrays are listed along with their values.
Ragged tables are listed in the format displayed in Structure Level 1.4,

The fields CORE and FILE have the same meaning as for the Type |
function DISPLAY. The form of the returned attribute values starts with
a cell of the format:

[ ATTRIBUTE NAME [VALUE TYPE |

which is cell Type 6 in Structure Level 2.1. This cell is followed by a copy
of the information stored.

E) STORE the value(s) of an attribute(s) in a DBE
STORE {,DBE = dbelt{,VALUE = vpairs!
where vpairs is defined as for the Type 3 function CREATE.

F) UNFILE a DBE from a set

UNFILE {,DBE = dbe}l , SET = dbe3

The DBE mentioned in the DBE parameter field (current DBE) is ~moved
from the set owned by DBE 'dbe3'. |If the current DBE is not a meroer of the
set owned by DBE 'dbe3', an error will result. The options in tke DBE
parameter field are the same as for the LINK function.

110



-

IV) Type 4 Functions
These two functions control the STATUS of the DBMS.
A) END DBMS's manipulation of a DATA base
END DATA
The function END DATA will clean up a data base and negate all internal
DBMS pointers to the data base. This is an optional function as the same
effect can be obtained with any Type 1 function (this function also occurs

automatically when the last command has been processed).

B) Change the MODE of the DBMS

‘ CORE = location(size) l
LONG FILE = fname
i % ’ ( SHORT)} |\ caro |

The result of a MODE function is to set the input format from alpha-
numeric to numeric short (See Structure Level 1.0). The input device for
the numeric short can be CORE, FILE or CARD. These parameters have the
same meaning as for Type 1 function DISPLAY, and indicate where future

commands will come from.

11




APPENDIX B

NODE NAME AND MOTION PHRASE CONVENTIONS

This appendix is intended to be a quick reference for node naming
conventions. The following paragraph represents a condensation of
Structure Level 1.3 (with motion in links and ancestorial SNs added).
It is followed by a table of the node naming conventions.

A full node name begins with 'SYS' and is followed by motion phrases
(a motion operator and required parameters). Each motion phrase is inter-
preted as moving from a starting node to a target node in the data base.
The motion phrases are interpreted from left to right. Thus 'SYS' is the
starting node for the first motion phrase, and the target node of the first
motion phrase is the starting node for the second motion phrase. Table 29
and its footnotes define the target node given the motion phrase and the
type of starting node (SN or DBE). The footnotes in Table 29 contain
pertinent information ‘regarding structure sets, DBE sets and link lists
(see Structure Level 1).

In the first column of Table 29 are the nine possible motion symbols.

The second column indicates which motion symbols require a parameter. The
parameters (if required) and resultant target nodes are dependent on the
type of starting node. Thus, for a SN as the starting node, the third and
fourth columns indicate the type of parameter (if required) and the target
node respectively. The third column also presents one or more examples of
allowable parameters. SNs are named sn, snl, sn2, ...; DBEs are named dbe,
dbel, dbe2, ..., and LLs are name LL, LLI, LL2, ... . The fifth and sixth
columns have the information for the case of a DBE as a starting node.

DBMS retains the most recent parameters for the function keywords 'SN'
and 'DBE' as the current SN and current DBE, respectively. Thus when
specifying a SN or DBE, if no starting node is given the current SN or
current DBE is assumed. As an example, if in Figure 3 the current SN is
SN 'SYS.A', then SN 'SYS.A.A' may be referenced in short form by '.A'.

112




U0 112N135U0) dSEUY4 UO|IOK

‘6l 2|qel

—.uww juausand

z%('39S 24n3dnu3s
3uUd44nd 03Ul ,|US, NS

Ul 3g9Q SNOIA3.y 4043q 1sn( pasaiua NS 3UON 4s
z¢| 39S @4nidnu3s
73St 40 38s juaJdnd ojul , |US, NS
JuaJ4und ul 380 IXaN J4a34e 31sn pasajua NS 3UON s$
17771
(H17) 3s!|
pamo| & 10N pamo| e 10N peul| e ul 380 3s4!4 ov_ ist| pa4inbay HS
m~_._—cm_ NS
|1 129pP, 380 40 19s 21n32nJ3s a3yl
40 19s ul 390 3iseq ul paljliuapl NS 3se] SUON s
m. —A_ —Cw_
NS 30 P[!y2d 3sdly
8q [[IM) ,|us, NS 30
_.._onu_ 3490 39S 9.4Nn3dN43S 9yl ul
40 33s Ul 3gQ 3Is414 Palj13uspl NS 3s414 SUuON EN
G 11 1US, NS Yiim
pamo| |e JOoN paie|20sse 3gg 3S4!4 QUON ¥
((x2us
((#dSV¥Lx ¥“3IN"Sweu) *QgNY®
¢ 1 129P, 380 3J0|°D3° Bweu) °gNY’ (w¥luss 3N"Sweu)) -7
19s Ul si| pue uaAibl(f g *37° swyo)) | , lUs, NS qus  *§
uo|$Sa4dxa |(euoije|ad JO 39S 24n3donJ3s ul
S914si3es ydiym 340 Nco_mm?_%a UsaA1b sweu yiim NS NS paJinbay :
300N L139¥VYL 3dALl Y¥3L3WVYY 300N 139¥Vl 3dAl ¥313WVd¥Vd Y313WVHVd TO8WAS

[29P S| 300N INIL1¥VlS |us

S| 300N ONILYVIS




114

*uolssasdxa |euOile|3dJ JO UOLllIUl4ap 3Yl JOJ HN|T uoll3duny z adA] ‘y xlpuadcy a5 [/

‘1S9MaU Y] JO4 N O] 3Isap(0 Byl 404 [ HIim
Buiiaeys A||e1juanbas pasaqunu aJe SIS|| PaUIT  "3ISI| PaqUl| B J0 JaqUnu DY JO 1S|| pIANUI| e JO Bweu Byl 9

‘po1eadd vy, NS 4O 3gQ 31se| @yl 03 sJaja4 1%, pue pajeasd ,y, NS
4O 39Q 3IS413 3Yl 03 S13492 , 46, YyoNs sy °,¥, NS Y3IIM paje|dosse sapou 3gg 40 dnoub e saij129ds ,x, |OQWAS Byl °¢
‘€1 |2A37 94n32nJ1g Ul Jewloy uo|ledly1dads apou I§ "4
*UO!SSaJdx@ |euojle|3a4 JO uUOlllUIJdp J0) HYN|T uotlduny gz adAl y xipuaddy ass ¢
*43pJ0o 0414 u! sbul|qIsuou AQ paMO| |04 J3pJO Q4|4 Ul sBul QIS :SMO||Oj SE PaidpJO B4 $13S BINIdNIIS 7

‘.8, 390 404 poJdpISUOD 3ie NS Bwes 3yl ylim paleidosse 3gQ a4l

pue ,y, NS J40j pa.4aplsuod ade SNS bBul|qIS 8yl 3SI| JO 39S JuUDJIND OU S| dudYl udym (,/, *,s$, ‘,d$,) °pew S|

9dUvJdjad 1s!| 40 38S B j| *SISIXd BUO j| 3SI| JO 33S JuaJJdnd Byl WOJL} 11Xl uUe JSNED | | 1M (g)5 PUB i, S|OQWAS

3yl °3S!| 4O 13S M3U e O3lu! (SISIXd BUO j4!) 3IS!| 40 33S IUBLJIND BY] WOy 11xd ue Agidads ,u§, pue * 73,

‘038, ‘47, S|OoqwAs Byl °3si| 4O 18S JuIJIND BY] Ul S3pOuU 3D3[3S [|IM ,/, pue ¢ 7§, ‘,d6, S|0qwAs 3yl 3si| 20

39S & oju! apew S) AJjud 8dup “‘*A|@A)3d9dSad 3IS)| JUs44ND 40 ‘33S JuILUND “33S BJNIDONULS JuUBIIND pI| [ED pue
patji1oads se 1s!| paxul| 40 ‘33S 3gQ ‘39S 24n3IdNJU3s B ojul Auajud Aj1dads HS, pue ‘IS5, ‘. 4%, ‘., S|oquwAs Byl |
:S330N

(PePN|2U0)) UO11DNIISUO) BSedyq UOIIOKW *HZ =2|9ey
,\, =4 | NS
g *ist| "D3‘dweu) 7
4O 39S jud44nd Ul Si pue | T39S us .y
uaA1b uoi1ssaudxs |euo!l 94N3O2N43S Jus44NndD :
-B|3J S3IjS13eS ydiym 3g@ m.nco_mmmLaxu ul uaAlb sweu yiim NS Rz_m paJ|nbay
“v1°9p, 380
yl!m palerdosse NS , LUS, NS 40 NS 3juauey SUON
300N 139¥Vl 3dAl ¥313WV¥Vd 300N 1399Vl 3dAl ¥313Wvdvd ¥313WVivd T0EWAS
129P S| 300N ONILYVLS {US S1 300N 9NILY¥VLS




APPENDIX C

DBMS EXAMPLES

1. Example 1.

SGENERATIUN OF FIGURE 6
$NUTE, EXCEPT IN ALPHA FIELDS HLANKS ARE 1GNORED,
INITIAL,DBN=FIGE
STRUCTYURE ,SN=SYS,SI S,
ATTRIBUTE = (AaLPHA CODE, ALPHA ORIGIN)
STRUCTURE ,Sx= XTUKS,
ATTRIBUTE = (ALPHA DOMAIN, INTEGER DUMCUDE)
STRUCTURE y SnE,MUDELS,
ATTHRIBUTE = (ALPrA USAGE, ALPHA COMMENT, ALPHA NAME, ALPHA PERSON,
ALPRA PHONE, ALPHA MODEL),
MEMHER = (SYSSIMS,XTURS)

CREATE,SN=SYS,SIMS, VALUE = (CODE=xS[™M1x,3RIGIN=*xAR)
ENTER)SET=SYSxbF

CREATE, Sz, x TURS, VALUE = (DUMAINS/FREGUENCY/,DOMCOOE=1)
ENTERISET=SYS,SImSndF

CREATE, VALUE = (DUOMAINS/TIME/Z,DUMCODE=?)
ENTER,SET=SYG,S[“15%%F

CREATE,SN=,vYUDELS, VALUE = (USAGE=#«SPECIFIC*,COMMENT=A,,,.x,

NAME %236 SKRR, PHUNESACE3al2?a95422 ,PERSINSAIIM RROUANR,MUDEL=%, %)
ENTER,SET=SYS, SIS KTURS®bF
CREATE, VALUE = (USAGE=*SPECIFIC*,COMMENT=
*EHERS “ULL*rBrE=A2N30638%,PERSONVSAJUE SMITH2,PHIONESR
259 3«S2b=b30l x,MyELER, ,  *)
ENTER,SET=SYS, SIMSXTURS23F $S
CREATE, VALUFR = ( USAGES#CENERAL®,COMMENTSA,, %,
NAMEZA2N30 8RR )PERS INSRAAUR S Tk, Ptz 39(=566=3021 2, MODEL=%qqe*)
ENTER,SET=8YS, SIS, XTURS*HF 58

CYCLE

$

$ CYCLE 0 OF THE DATA MASE nUOw CORRESPUNDS TO THE DBE'S FOR
% SIMULATION CODE =3I%1= IN FIGURE b,

CREATE ,SN=28YS,S1~S, yALUE = CHUDE=aS[M2a, JRIGIN=xBx)
ENTER,SET=SYSabF

CREATE Sz ,XTORS, VaLUE = (DUMAINS/TIME/Z,D0OMCUDE=R)

ENTER)SET=SYS,S14S*3F $S
STRUCTURE ; SneS5YS SIMS,LIOUES,

ATTRIBUTE = (ALPhA GRANILE )
CREATE, VAl i F sl GREnJLE=SAF INER)
ENTER,SET=83%823F §S
5
$ l"Er[r‘iNCl"h AFPE DT R ¢« 8 FITGINE &y (1% C~NRF 473 YRE pU]'i‘f’h 1S
. POINTING TO Tk iy kb ASSCIalEn ~lin 50 SYS,STS,DIODES
$ THUS THE FINST 10 -~ iT| Tasfs LS BACKX T Sy SYS,SIMS,PIODES, AND
$ SEC)N’) $H 'A’(Ef\ S HALK | | vk Q4 f\'y').f\l\ P THE N T"E % ‘AP\&S Js
. TO THE DBE AS50CIaTts »IT4 56 5YS.SInS o AnD THE RELATION FINDS
b Sime,
s

115




STRUCTUKE,SN=,“ODELS, ATTRIHNUTE = (ALPHA NAME, INTEGER OUMCOOE,
ALPHA PERSUN, ALPHA PHONE, ALPHA MOUEL)

CREATE, VALUF = (NAMES#IN3S362,00MCODE=L,
PERS In=aJuUt SMITAx,PHILEZ*594=526=B301%,mUDEL=%x,, . *)

ENTER)SET=SYS.SIMS3 VIUDESHRF

CREATE ,SN=SYS, SIS ATURS,“OIDELS,
VALUE = (USAGES®GENERALR,COMMENTSA, , &) VAMEZ22 3638,

PERSUNTRAG s SM T, P irnEsx593=5h6=53012, 40DELSAaee*)

ENTER,SET=SYS,SIM3 . ATURS*$F 5S35

CYCLE

3

L CYCLF 1 NJa CuntAln FIGURE a FUTIRELY,

S
ENDDATA
')

2. Example 2.
THIS EXAMPLE UScdS THE DAaTa HASE CREATED BY EXAMPLE 2,

ETRIEVE,DBv=SUPER

THE CURRENT STRUCTURE T FORSATLION FOR DBN=SUPER WILL 3 PRINTED,.

SYSTFM UNITS DEFLITlum,

B PAANA PP AN P

CREATE,SN=SYS,SYSTE™,

VALUE &(NA¥E = * OGIC MUDLULF A23.56N%)
CREATE,3nw=SIS.SYSTE~,

VALUE =(NAME = «MTOR SERVU SAG,N*)
CREATE,SN=SYS.SYSTEM,

VALUE =(NAME = ADOPPLER FILTER®)
$
$
$ BIX DEFINITIONS,
$
CREATE ,SNn=, 30X,

VALUE = (VAME = #P(WEK SURPPLY®)
ENTFR,SET=SYS,SYSTEMSF
CREATE,

VALUE = (NAMES*UR[VERw)
ENTER)SET=SYS, SYSTEMRSF
CREATE,

VALUE = (NAME=w_LUGTCS®)
ENTER)SET=SYS,SYSTEM#bF

$

)

3 CIRCJIT DEFINITIUNS,
3

CREATE,SNe ,CIRCUIT,

116




VALUE = (NAME
ENTER,SET=233388x$F
CREATE,

VALUE = (NAME = =BNARD 2x)
ENTER)SET=335R*xbF
CREATE,

VALUE = (NAME = &BNOARD 3x)
ENTER,SET=1%3 sB «bF
b ]

s

$ DISCRETE uUNIT DEFIMITINNS,

b )

CREATE ,SN=SYS ,SYSTEM,oUX,CIRCUITLISCRET,

*BOARD ()

VALUE = (NUMBEKX = ®3N3413«% ¢» VENDOR = aRELIA=TRANS*®
SIKUCTURF = xLAYERED=® » DATA = xN/A%
FUNCTIUN = 2PDLERN® ¢ PACKAGE = x*GREEN®
INvPUT = AVULTS/AMPSx » INMODELRR = aJAXEx®
JuTPUI = *3vOT wUCH= ¢ UUTMODELF = xIR3*xnyx
JUTMODELR = *BILL Won v
INvOLT s 12,)
$ NOTE THAY THFE VALUES FiJR JOUTCASETR, AND QUTJUNCAP ARE NOT
s PRESENT, THILS nwQuULD CORRESPOND TO THE VALUES NOT BEING KNUAN,
S THEY CAN B8t SPECIFIED LATER OR THEY MIGHT NEVER BE REWUIRED BY
L THE USER. IF THEY ARE REFERENCEOD THEIR ABSENCE WILL BE DETECTED
s AND FLAGGED BY 0BmS, THE NET RESJULT IS THEN DEPENDENT QN OBMP,
L
ENTER,SET=$83pusn$F S
b ;
$ TO AvJID REPETITIONS, [T IS ASSUMED THAT MANY ENTRIES ARE MaADE
$ INTY THE DATa BASE AND THEY ARE ALL ENTERED IN THE SAME MANNER
s AS TRANSISTOUR 334138 aBUVE,
s NUTE 1HAT THE DuBMP COULD SIMPLIFY THE SET MANIPULATION, IN
$ PARTICULAR DR™P COULD XEEP TRACK OF ORIGINS FOR INSERTING OBES
$ INTO SFiSe ALSU THE CREATIUN OF DBES CuUJLD BE AUTOMATED wlTh THE
$ HELP OF DOoMP,
$

ENDDATA
"ne

117

- % % W




3. Example 3.

¥ EXAMPLE 2
INITIAL/,DENZSUPEN
STRUCTURE 5N, SYSTEM,
ATTRIBUTE=(ALPHA NAME)
STRJCTUKE,S\=,80X,
ATTRISUTE=(ALPHA NAYE)
SNITE OwtnED BY SYSTE™M BY GEFAULT
STRUCTURE , Sn= CIKCYIT,
ATTRIRUTE=(ALPHA ANAME)
STRUCTURE» S =, DIGITALY
ATTRIQUTE=(

ALPHA(NUNBER) VENOUR,FUNCTION,ACTPRUS,PASPRIIS,PACKAGE,
GLASS,PINS,LOGIC,DATA,REFE RENCE o INwODEL,QUTMUDEL»
PaRMUIDEL»M1ISHMODEL),

REAL(POAER,UPFREJ,DELAY,RISETIME, NUISEREJP INVULTE,
INVOLTD 15 INSRGZ p TN 1o INK2pJUTVILT,GUTRGL, JUTK T,
JUTREyPrm VL T)PuSKOGLIPARKL)PARKZ pMISVILT p"ISZ,ISSRLL,
MISKL,pti[SK2))
STRUCTURE,Snz=3B ELEC TR,
ATTRIBUTES(

ALPHACNUMBER, vENI IR, FUNCTION,PACKAGE,RAYIN,PINS, INPUT,

REFERENCE ,UATA,FaJLMIDEL),
REAL(PUNERK,) WPFREN s o XFREG, M INFREG)RESIST,INDUCT,CAPAC,
VILTOS s CURRENT s ARCLVOLTCS»ACRVULTRF,FAILKIFATILKZ))
STRUCTURE »S =38, 0ISCHET,
ATTRIBUTE =(

ALPHA(NUNBER p VEMLUR,FUNCTTIUN) STRJICTUKE JPACKAGE,DATA,
REFERKENCE s IMPUTpINYODELF, INMODELRR,DUTPUT , DUTMULELF,
OUTMODELR),

REAL(POWER,,FRFUOUENCY,)RISETIME,UELAYTIME yCURRENT,GAIN,
INVOLT p TN L TNZBLAS,, INZBLKSO, INCASETR, INAMBTIR, INJUNCAP,
INKFL, T0unF2,THikRTpINKR2)»OUTVULT, JUTZRLKS,0UTZBLKRSU,
OQUTCASETR, UUTAMBTR,QUTJUNCAP JUTKF L1, LUTKF2,UUTKR],
Ouieke))
STRUCTUKE S =3B, LINEAR,
ATTRTIUTE=(

ALPHA(NUMBER, VERL UK FUNCTION,ACTPRUS,PASPRUS,PACKAGE
GLASS,PIS/DATA,REFERENCE, INMODEL » JUTHMODEL ,PakmMULEL
MIOMUDEL ),

KEAL(POUWER ) MAXFREG)MINFREW)RISETIME,GAT 4, INCHVOLT,
INCHMLy INCMSRG L, INCMRR)INSIGVULT ) INKL , INK2,OUTVULT,
OUTSRGZ, VTR, OQUTK2 e PARVILT yPRRSRGLE,PAREL,PrRK2,
MISVULT,m1SSRGZeMISKLI»%ISK2))
STRUCTUKE ,Sn=st8,PASSTIVE,
ATTRIBUTE=(

ALPHA(NUNBER  VENDOKpFUNCTION VE «Ji1gPACKAGE 4ENCAP,FINS,
DAaTaAsARCMUDEL#FATLMODEL)

REAL (TOLERANCE ,RESIST,CAPAC, INDJUCT,PONER, VOLT,CURRENT,
ARCK] ,ARCKZ,FAILMUDEL,FALILKL,FAILRZ))

118




STRUCTURE,Sv=%8.5UPPRLS,

ATTRIBUTE=(
ALPHA(NUMBER ) VENDOIR,FUSCTININGPACKAGE ,DATA,BRKMUDEL ,
SRGLMODEL o JFFEMIODEL FAILMIGEL)
REAL(PIAER,CAFBCTITY, BRAVILT/PROTECT ,BRrA1,bkK2, SHUNTLZ,
SRGZA1,SGrk2,NFFKY, .F:RI"FAI‘VlaF"IL"e))

STRUCTURE , S5v=388B.TUBES,

ATTRISUTES(
ALPHA(MUMBER, VE 0 YK, FLNCTIOH, PINS, REFERFNCE,DATR,
ANTDMUOEL »GRIDODEL) .,
REAL(POWNER,FRENUENCY »GAL Yy XCONDJICT, ANDOVULT,ANODI,

ANUULARP, ANIDR]L , ANDDRK2,GRIDVILT,GRIDI,GRIDCAP,GRIOKI,

GrRIUAZ))
CYELE
$
3 CYCLE G wJa CUNTAINS THE STRUCIIRE FuJR A DATA BASE SIMILAR TO
b 3 SUPEKRSAP, [HJS T GewERATE ANUTHESR JATA 3ASE UF THE SAME STRUCTURE
$ THE TYPE 1 FUNCTION COPY CAN BE USED 1) PULL CYCLE 0 FROM
% DBiv = SUPER (A3 LING AS CYCLE ZER) EXESTSE,
$ THE DATA SASE EVTRIES CaN NUW BE ENTEREDC anD ATTRIBUTE VALUES
b ASSTERED THIS Ca 3E DUNE BY A DHAP FUNCTIJN FROM PREDETERMINED
$ FILES, F¥l= CARDS, JX FRJA AVITHER PRIGKAA ~H4[CH DETERMINES THE
$ YALUES,
ENDDATA
L

119




APPENDIX D

A SCHEMATIC DIAGRAM OF DBMS NODE STRUCTURES

4DBACDCAA#]0
Jesys
10

SN'SYS!

next or

3 | #cenis | eve [Seeve 1ok . @

§B.STRUCT [ #8iis]| irs

FAttributes[#LLH | #DBE | #NWARDS
RARE

L
| eF.DBE eL.DBE —
I oF . SUB eL.SuB
- OF .LLH fL.LLH
©5.STRUCTO
[~ ©S.STRUCTI to page D-2 (B)

NAME TYPE

to page D-2 (A)

1 #cerrs]“0wned
OWNED SN

name | #1xwarDs
LIN LINK —
gk | teves G il
#L.LINK (TR —

IClasslllankllLlsg]lD!E,

Class Expression

@”'W‘QZIIQH!‘CW]GWC L @

Rank Ordering

to LLC node
similar to one shown
on page D-2

120




]:>_—9 ose] - - - [oee 5 J”"-trﬁs_‘“;;:]:;’!";im
N [_j TB,)T?«U(;I; ‘ _,‘ﬂ“}_.l ”Ifﬁs_‘/

oF DBE ¢S 08E —
To page 0-1 (&) Pucway | eucmy o g o 04 U0}
el [T SUB fL.suB

§P.SUBI £S.SUBl —

ATTRIBUTE VALUES 4

to successor
in set owned
by DBE 'SYS'

to predecessar
in set owned
by DBE 'SYS'

8 ff(-l‘ilfycll-(ycllin_ﬂ e
= e e
pis: (Similar to one
shown below),

7{#Cells Cch{-Cyc link l.]ﬂccnsk,;_]‘_nvc Link

[ number of indices Value |
tength T

WEVSEds b aes BE aan sRES

FPTRS g
e el eLLch
FITCS FITTET 7] 71icB
CrLes eLLce

gLley ] eutcs

121




APPENDIX E

THE DATA BASE MACRO PROCESSOR

This appendix discusses the Data Base Macro Processor (DBMP) concept.
The existing DBMS software does not include the DBMP features which are
presented here. The following discussion presents the features of the
DBMP which would provide the DBMS user with a more powerful, higher level
command capability for using the DBMS.

1. THE MACRO CONCEPT

Frequently a sequence of DBMS commands are used repeatedly. To simplify
the use of the DBMS, these commands may be grouped together. This group of
commands is given a unique name and called a macro. To further simplify the
use of DBMS, arguments may be passed to the macro as is done in a FORTRAN
subroutine. Macros are also similar to FORTRAN subroutines in that one macro
may call another. This is where the similarity between FORTRAN subroutines
and data base macros ends. Whereas FORTRAN subroutines reside in core and
the commands are executed there directly, macros reside in a data base and
only a copy of the macro is made available to the DBMP for executing the
contained commands. Although FORTRAN does allow subroutines to call other
subroutines thus creating a sequence of called subroutines, any given sub-
routine may be in the sequence only once. This process of 'nesting' sub-
routines is called recursion. Since copies of macros are used by the DBMP,
the macros may be used in a recursive fashion.

One final distinction between macros and FORTRAN subroutines is that
the arguments passed to a macro must be numeric constants, alpha constants,
node names, or attribute names.

2 THE LANGUAGE PRIMITIVES

The 12 DBMP commands are listed below followed by a definition of each
command. Note that the underlined items are to be supplied by the user.

a. |IDENT name
This command allocates (or retrieves) a section of storage

in a data base. This storage space is used by the DBMP to save
local origins (see functions SNORIGIN, DBEORIGIN, and ORIGIN

below), and macros defined by this user. This storage space
remains the property of a specific user in that each user has
his own storage space. The name field must be from | to 9
characters starting with a letter and is used to identify the
current user. The name DBMP is reserved for the storage of
macros which are shared by all users.

122




7

MACRO name (number)

The MACRO command is used to identify the beginning of a macro
definition. The number field contains an integer representing
the number of arguments in the macro call. The number field
(and parentheses) are optional. The name field specifies the
name used to reference this macro.

MEND
The MEND command indicates the end of a macro definition.

IF (logical) THEN (text)

This conditional execution command may only appear within a
macro definition. When this command is encountered, the next
commands are executed only if the logical expression is true.
The logical expression is an ANSI FORTRAN logical expression
between attribute values and constants. The text field is
composed of DBMS and DBMP commands except IDENT, MACRO and
MEND .

IF (logical) THEN (textl) ELSE (text)

This conditional execution command may appear only within a
macro defintion. When this command is encountered, the textl
commands are executed if the logical expression is true, other-
wise the text2 commands are executed. The form of the logical
expression and the two text fields is identical to the previous
command .

WHILE (logical) DO (text)

The WHILE command performs a sequence of commands as long as
the logical expression is true. The format of the expression
and text fields is the same as the corresponding fields in the
conditional execution commands.

SNORIGIN name

This command saves the name of the current structure node.

The name field may be any alphanumeric string and is the local
name of the current structure node. All future references to
structure nodes may be referenced to the current structure node
through the use of the command ORIGIN (see below).

DBEORIGIN name

This command serves the same purpose for data base entries
as the command SNORIGIN does< for structure nodes.




="

i. ORIGIN name

The ORIGIN command is used to establish a previously defined
structure node (data base entry) as the starting point for
future structure node (data base entry) references instead of
the structure node SYS. The origin specified by the name field
must have been defined by a SNORIGIN or DBEORIGIN command under
the same identifier as the current user.

j. CALL name (args)

The CALL command invokes a previously defined macro. The macro
specified by the name field must have been defined under the
same identifier as the current user. The argument field (args)
can be numeric constants, alpha constants, node names, or
attribute names. The argument field is optional.

k. DUP ident (origin), namel, name2

The DUP command is used to duplicate another user's structure
node data base entries. The other user's identity is given
by the ident field and the origin to be used to specify the
data base entry is given by the origin field. Using the
origin as a starting point the data base entry specified

by namel is copied as the current user's data base entry
specified by name2. The origin used for name2 is the origin
which was current just prior to the DUP command. The DUP
command will not copy linked lists.

. EXTERNAL (args)

The EXTERNAL command allows the serious systems programmer to
extend the capabilities of DBMP by allowing macros to readily
call FORTRAN subroutines. The user must supply a subroutine
called EXTERN. When DBMP executes this command, subroutine
EXTERN is called and the argument list passed to it.

In addition to the above DBMP special commands, any of the DBMS commands
may be used. A cell called S0 always contains the status of the last DBMS
command executed. The only restriction on the use of DBMS commands is that
all references to a data base name within a macro must be the same as the
currently used data base (i.e., the name of the data base being used cannot
be changed within a macro).

124




3. THE DBMP PROGRAM

The general form of a DBMP program consists of three sections. The ‘
first section identifies the user and contains a DBMS RETRIEVE or INITIAL |
function followed by a single IDENT command. The second section defines
the user macros (unless previously defined in the data base). The third
section of a DBMP program contains DBMP and DBMS commands. The only DBMP
commands allowed in the third section of a DBMP program are: SNORIGIN,
DBEORIGIN, ORIGIN, CALL, and DUP.

Although the three sections of a DBMP proegram must be in order, not
all the sections are required to be present in every DBMP program. The
first section is required only if the second section is present or if any
DBMP commands appear in the third section. The method of forming the three
sections into a DBMP program can be seen more clearly from the following
BNF description of the grammar for a DBMP program:

prog := id macros main

prog := id main

prog := id macros

prog := main

id := retorini IDENT name

main := texts

macros := macdef

macros := macros macdef

macdef := MACRO name ( integer ) mactext MEND
mactext := text

mactext := |F ( logicalexpression ) THEN ( texts )
mactext := IF (logicalexpression) THEN ( texts ) ELSE ( texts )
mactext := WHILE ( logicalexpression ) DO ( texts )

mactext := EXTERNAL ( integer )
mactext := EXTERNAL (integer , args )

texts := text

texts := texts text
text := CALL name

text := CALL name (args )
text := SNORIGIN name
text := DBEORIGIN name
text := ORIGIN name
text := FILE name

text := dbmscommand
args := arg

args := args , arg
args := args = arg

arg := number

arg := alpha

arg := name

125




In the above BNF description

1) the fields ‘integer', 'number', and 'alpha' are defined in Appendix A
in the discussion of the Type 3 DBMS function CREATE,

2) the field 'name' consists of | to 9 alphameric characters beginning
with a letter,

3) the field 'logicalexpression' is any DBMS relational expression,
L) the field 'dbms command' is any DBMS command,

and 5) the field '‘retorini' represents the DBMS command RETRIEVE or INITIAL.

Macros are defined in the second section of a DBMP program. The
sequence of commands to be placed in the macro are proceeded by a MACRO
command and followed by a MEND command. The MACRO command contains the
macro's name and the number of arguments to be passed to the macro.

The sequence of commands in the macro is called the macro text f{or
simply text). Within the text a passed parameter is referenced as $¥
where K is an integer specifying which parameter is being referenced.

The text of a macro may contain any DBMP or DBMS command except (DENT,
MACRO, and MEND, and the name of the data base being used by DBMS may not
be changed.

The following example will help to clarify the use of macros. It does
assume a knowledge of the data base construction and as such should not be
considered too strongly until the data base structure is understood. The
example is presented here for completeness. In particular consider the
data base created in Example 1 of Appendix C. Assume that a person named
Joe has established an origin called TRAN at SN 'SYS.SIMS.XTORS.MODEL*SF'.
The following macro will find and print all transistor models for a given
person (in this case Bob Smith):

RETRIEVE, DBN = FIGH Fival mantton
IDENT JOE
MACRO NAMES (1)

ORIGIN - TRAN

WHILE ($0.€£Q. 0) DO second section

IF (NAME.EQ.S1)
THEN (DISPLAY)
FIND,DBE = §S

MEND
CAL NAMES (/BOB SMITH/) third section

Note the use of the DBMP flag S0 to test when all the DBEs have been
examined (a nonexistent NBE is requested).

126




If at a later time Joe wishes to display all of Jim Brown's
transistor models, the following deck would be used:

Retrieve, DBN = FIG6

IDENT JOE first section

no second section
CALL NAMES (*JIM BROWN:*) third section

It is now apparent that when a new data base is being used and several
generally useful macros have been defined in another data base, the DBMS may
be used to copy the macros from the old data base to the new data base.

The origins copied in this fashion are no longer valid and should be updated
or discarded.

4. MACRO STORAGE AND EXECUTION

The macros are stored in DBMS short form as data base entries in the
current data base. ,The data base entries containing the macros are
asscciated with the structure node SYS.DBMP.ident.MACRO, where ident is
the current user's identity. Similarly the user's origins are saved in
data base entries associated with structure node SYS.DBMP.ident .ORIGINS,
where ident is the current users identity. Thus when DBMP is being used,
these two structure node names are reserved.

When a macro is called, a copy of the macro is saved. Included in
the copy is a return pointer to the calling macro or main program. Also,
311 passed arguments are substituted for dummy arguments in the macro.
When a macro terminates, the copy of the macro is destroyed and DBMP resumes
executing the calling macro or main program.

As a macro is being executed, DBMP passes DBMS commands directly to
DBMS. When |F THEN and WHILE DO commands are encountered, DBMS isolates the
expression and then evaluates it by retrieving the attribute values from the
data base with DBMS commands. When a condition is failed, DBMP proceeds to
the next command to be executed.

127




APPENDIX F

GLOSSARY

Alpha - An alpha numeric string (also called a constant). To encode an alpha
text into an alpha string, choose any delimiter from the set ( ) + *« /
, —or =. The delimiter is placed immediately before and after the alpha
text string. Anywhere in the text the delimiter appears it must be
replaced by two delimiters.

Ancestor - When referring to a node on a tree, the ancestors of the node are
the parent of the node plus the parent of the parent node (also known as
the grandparent), etc. The meaning of ancestor becomes clear when one
considers a family tree (a lineal chart).

ANS| FORTRAN - The standard FORTRAN language as approved March 7, 1966 by the
United States of America Standards Institute.

Array - An array (or a simple array) is any FORTRAN array. See Structure
Level 1.4 for an explicit definition.

Array Description Cell - A node attached to a structure node or a data base
entry containing the dimensionality of an array.

Array Value Cell - A node attached to a data base entry containing the values
of an array.

Attribute - An attribute is composed of a name part and a value part. One or
more attributes define the state of an entity.

Attribute Name - The name part of an attribute. See also Attribute.

Attribute Value - The value part of an attribute. See also Attribute.

Bit String - A series of bits with values 0 and 1, or the entire bit string
considered as having one or more substrings (also called subfields)

which are interpreted as integers, flags, etc.

BNF - Abbreviation for Backus-Naur Form, a concise notation for describina
the manner of constructing the allowable sentences of a language.

Branch - Refers to a non-leaf node in a tree (in this document branch strictly
refers to a ragged table subtree). See also Tree.

Branchlets - When considering a subtree of a tree the branchlets are the
immediate subtrees of the subtree being considered. When considering
a subtree with node A, the branchlets then are the subtrees of A (may
be a branch or a leaf).

128




Cell - A distinct non-disjoint, recognizable grouping of information. See
Structure Level 2 for a complete definition of cell and the formats of
cells used in DBMS.

Cell Type - Refers to the format and type of information contained in a cell.
See also Cell.

Chain - See Chain of Nodes.

Chain of Nodes - In a data base a group of similar nodes are frequently
connected by pointers. The nodes and pointers form a chain. |In
particular, a chain has a starting and ending node and all the nodes
in a chain can be visited by following a specific pointer in each of the
nodes. A chain is owned by a node which has a pointer to the starting
node of the chain; the ending node-of a chain normaily points to the
chain owner. For example a SN owns a chain of DBEs which are called
the SN's associated DBEs.

Children - Those nodes of a tree which are immediate descendents of a
particular node in the tree are called the children of that particular
node. See also Descendent below.

Class Descriptor - Refers to the format and information contained in cells
used to store any of the seven classes of keyword packets (see Structure
Level 2.3).

Cycle - The information in a data base is stored in nodes. The nodes may be
archived by cycle. A cycle then represents the state of a data base at
a user defined instant of time. The date and time a cycle was created
plus the information saved in any cycle can be retrieved with DBMS
commands (see Appendix A Type 1 functions LIST and COPY).

Current Data Base - The name of the data base which DBMS (or DBMP) is currently
working with. See Appendix A Type | functions for a definition of current
data base.

Current SN - The structure node DBMS (or DBMP) is referencing (or most recently
referenced). See the general discussion of Type 2 function in Appendix A
for a complete definition and default values.

Current DBE - The data base entry DBMS (or DBMP) is referencing (or most
recently referenced). See the general discussion of Type 3 functions
in Appendix A for a complete definition and default values.

Data Base Entry - The nodes in a data base which contain the attribute values
(user information). Structure Level 1.2 defines a data base entry (DBE)
and 2.5 presents the format of a DBE.

DBE - See Data Base Entry.

149




DBE set - A grouping of DBEs. The set membership is defined by entering
individual DBEs into the set. Structure Level 1.2 defines DBE set
(also called set).

DBMP - Data Base Macro Processor, a user interface with the DBMS.

DBMS - Data Base Management System, a program for managing the storage and
retr eval of information.

Descendents - When referring to a node of a tree, the descendents of the
node are all the children of the node plus all the children's children,
etc. The meaning of descendents becomes clear when one considers a
family tree (a lineal chart).

Defined Continuation - When DBMS constructs a ragged table, special nodes
are attached as each branch is defined. These special nodes are called
undefined continuation nodes and correspond to a branch or leaf which
has not been defined. |f and when undefined continuation is defined
(by the user) to be a branch, the new branch is generated as a disjoint
continuation of the tree. The undefined continuation is converted to a
defined continuation. Structure Level 3.5 gives a complete description
of this process.

Delimiter - Any of the symbols +-,/*()=. or $ (See Appendix A, see also Alpha)

FIFO - First in, first out; refers to the order of retrieving information
from a queue. In general, a method of storing objects fentities) where
the oldest object is always removed first.

Generic Name - A method of forming a SN's name where the names of all the
ancestors and the node are separated by periods. See Structure Level
1.2 for examples of generic names.

Header - Refers to the beginning cells of a node which identify what infor-
mation is contained in the node and the format of the information.
Structure Level 2 provides a definition of the term header along with
several examples.

Internal Form - Refers to the format into which DBMS translates commands
before using them, which is the same format used for interprogram commu-
nication between DBMP and DBMS. Structure Level 2.2 defines the internal
form for all commands to DBMS.

IPB - Item present bits, a group of bits included in most data base nodes to
indicate which items are present in the node. The primary function of
1PBs is to allow shorter nodes by not including pointers which will not
be used frequently and also to preserve data base sanity. Structure
Levels 2.3 through 2.6 present examples of |PBs.

130




Keyword - A word used to identify a field of a DBMS command while in the
long mode. Appendix A gives a list of the usage of the DBMS commands
which includes all keywords.

Keyword Class - See Class Descriptor.

Keyword Description - See Class Descriptor.

Keyword Packet - A cell used to store a keyword value in DBMS SHORT form
(see also Internal Form).

Keyword Phrase - A keyword and the value of the Keyword separated by an
equal sign (=).

Leaf - A terminal node on a tree. When referencing a ragged table leaf
refers to an attribute type and an attribute value (or values).

Level - Refers to SNs.or DBEs. The level of a structure node is the number
of its ancestors. The level of a DBE is the level of its associated
SN.

LIFO - Last in, first out; refers to the order of retrieving information from
a queue. In general, a method of storing objects (entities) where the
youngest object is always removed first.

Linked List - An inverted linked list of DBEs. Membership is determined by
attribute value (also relative position in the data base tree).
Structure Level 1.5 gives a complete definition of Linked Lists (LL).

Linked List Chain Node - A node attached to a DBE used to chain the DBE into
linked lists (also referred to as LLC). Structure Level 2.6 gives the
format for a LLC.

Linked List Header Node - A node attached to a SN which contains the membership
requirements and the ordering algorithm (also called a LLH). Structure
Level 2.4 gives the format for a LLH. See also Rank Ordering.

List - See Linked List.

LL - See Linked List.

LLC - See Linked List Chain Node.

LLH - See Linked List Header Node.

Long - See Long Mode.

Long Mode - The alpha numeric form of DBMS commands as presented in Appendix A.

Mode - See Long Mode and Internal Form.

131




Motion Phrase - A phrase included in the name of a node. The effect of a
motion phrase is to move from one node to another related node.
Structure Level 1.3 defines the term motion phrase and specifies
the results of various motion phrases. Appendix B gives a tabular
form of all the motion phrases.

Node - The primary building blocks in a data base. Structure Level 1.2
introduces two primary nodes, and Structure Levels 2.3 through 2.6
present the formats of the primary nodes. Structure level 3.3
presents the format of an own node which is used during data base
construction.

Parent - If one or more nodes are immediate descendents of a particular
node in a tree, that particular node is called the parent of the
descendent nodes.

Permission Parameter - A set of three keys stored in the data base. These
keys are intended for protection against accidental destruction of a
data base or part of a data base.

Pointer - An integer specifying the location of a node within the data
base file.

Predecessor - considering a node in a chain of nodes (linked by pointers),
the node containing a pointer to the considered node is the predecessor
in the chain.

Ragged Table - A method of storing data similar to arrays but differing
from arrays in that the number of entries in each row is not necessarily
the same. A ragged table is best viewed as a tree where the leaves are
the entries. Structure Level 1.4 defines a ragged table and Structure
Level 3.5 discusses the method of creating and storing ragged tables.

Rank Ordering - Linked lists and sets are both ordered. The specification
of the ordering is called the rank ordering of the list or set.

Root - The specific node of a tree which does not have a parent, considered
the origin or base of a tree.

Set - See DBE set.

Siblings - The children of a node in a tree are called siblings.

SN - See Structure Node.

Structure Node - One of the two primary nodes in a data base. The structure
nodes contain the hierarchical structure of a data base and act as a

template to interpret the information kept in a DBE. Structure Level 1.2
defines a structure node (SN) and 2.3 presents the format of a SN.

132




Structure Set - A structure set is composed of a subset of the nodes on
a branch of the structure node tree. A structure tree is said to
belong to a structure node. The rules for forming structure sets are
presented in Structure Level 1.2.

Structure Tree - A tree composed entirely of structure nodes which represents
the hierarchy of a data base. Structure trees are defined in Structure
Level 1.2.

Successor - Considering a node in a chain of nodes (linked by pointers), the
node pointed at by the considered node is the successor in the chain.

SYS - The name of the SN which is the root of the structure tree. It is
also the name of the DBE associated with the SN called SYS. The attri-
butes of the DBE called SYS contain pertinent DBMS information such as
cycle information. Both of these nodes are automatically created by
DBMS.

Tag - See Header.

Tagged - Refers to any data structure whose modules of information are
preceded by tags.

Text - In a tagged architecture, the text of a node is all information
stored in the node exclusive of the header (see Structure Level 2).

Tree - A tree is a grouping of nodes such that:
1) There is one node which is called the root of the tree.
2) The remaining nodes form disjoint groups where each of the
groups is a tree. Each of the groups is referred to as a

subtree of the original tree.

Undefined Continuation - See Defined Continuation.

133/134




DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director
Armed Forces Radiobiology Research Institute
Defense Nuclear Agency

ATTIN: Robert E. Carter

ATTN: Tech. Lib.

Director of Defense Research & Engineering
ATTN: Asst. Dir., Strat. Wpns.

Director
Detfense Communications Agency
ATTN: Code 510.5
ATTN: Code 930, Monte [. Burgett, Jr.

Defense Documentation Center
2 cy ATTN: TC

Director

Defense Intelligence Agency
ATTN: DI-TD
ATTN: DI-3

Director
Defense Advanced Research Projects Agency
ATTN: NMR

Director
Defense Nuclear Agency
ATTN: DDST
ATTN: STVL
ATTN: STSI
ATTN: RAEV, Captain Van Prouyen
ATTN: SPAS, J. Moulton
3 cy ATTN: STTL, Tech. Lib.
5cy ATTN: SPAS, D. Kohler
5cyv ATTN: RAEV, J. Farber

Headguarters
European Command
ATTN: ECI6-PF

Commander

Field Command

Defense Nuclear Agency
ATTN: FCPR

Chief

Defense Nuclear Agency, FC

Las Vegas Liason Office
ATTN: FCTCL

Director
Joint Strategic Target Planning Staff, JCS
ATTN: JLTW

Chiet
Livermore Division, Field Command, DNA
Lawrence Livermore Laboratory

ATTN: FCPRL

OJCS/)-3
ATTN: J-3, RDTA Br., WWMCCS, Plans Div.

135

DEPARTMENT OF THE ARMY

Commander
Frankford Arscnal
ATTN: SARFA-FCD, Marvin Elnick

Commander
Harry Diamond Laboratories

: AMXDO-EM, R. Bostak
AMXDO-RB, Joseph R. Miletta
AMXDO-RBI, John A. Rosado
AMXDO-RCC, John E. Thompkins
AMXDO-EM, Robert F. Gray
AMXDO-EM, Raphael Wong
AMXDO-RC, Robert B. Oswald, Jr.
AMXDO-EM, J. W, Beilfuss
HD1., Library
D. Schallhorn
P. Caldwell
3. Graybill
J. Gwaltney

Commander

Picatinny Arsenal
ATTN: SMUPA-FR-S-P, Lester W. Ioremus
ATTN: SARPA-ND-N
ATTN: SARPA-ND-C-E, Amina Nordio
ATTN: Dr. P. Harris

Commander
TRASANA
ATTN: ATAA-EAC, Franics N. Winans

Director

U.S. Army Ballistic Research Labs.
ATTN: AMXBR-X, Julius J. Meszaros
ATTN: AMXBR-VL, John W. Kinch
ATTN: AMXRD-BVL, David L. Rigotti
ATTN: AMXBR-ED, H. Burden

Commander

U.S. Army Electronics Command
ATTN: AMSEL-GG-TD, W. R. Werk
ATTN: AMSEL-TL-MD, Gerhart K. Gaule
ATTN: AMSEL-TL-IR, Edwin T. Hunter

Commanding Officer
U.S. Army Electronics Command
Night Vision Laboratory

ATTN: CPT Allan S, Parker

Commander
U.S. Army Electronics Proving Ground
ATTN: STEEP-MT-M, Gerald W. Durbin

Commandant
U.S. Army Field Artillery School
ATTN: ATSFA-CTD-ME, Harley Moberg

Commander

U.S. Army Mat. & Mechanics Rsch. Ctr.
ATTN: AMXMR-HH, John F. Dignam
ATTN: Dr. T. Chow

Commander
U.S. Army Materiel Dev, & Readiness Cmd.
ATTN: AMCRD-WN-RE, John F. Corrigan




DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

I'he Bendix Corporation
Research Laboratories Division
ATTN: Donald J. Nichaus, Mgr., Prgm. Dev.

T'he Boeing Company
ATTN: Robert S, Caldwell, 2R-00
ATTN: Donald W. Egelkrout, 2R-00
ATTN: David L. Dye, 87-75
ATTN: Aerospace Library
ATTN: Howard W, Wicklein, 17-11
ATTN: Dr. Lempriere
ATTN: J. Adamski
ATTN: J. Shrader

Booz-Allen & Hamilton, Inc.
ATTN: Raymond J. Chrisner

Brown Engineering Company, Inc.
ATTN: David L. Lambert, M.S. I8

Charles Stark Draper Laboratory, Inc.
Kenneth Fertig
Paul R. Kelly

Computer Sciences Corporation
ATTN: Richard H. Dickhaut

Cutler-Hammer, Inc.
AlIL Division
ATTN: Anne Anthony, Central Tech. Files

University of Denver
Colorado Seminary
ATTN: Sec, Officer for Fred P. Venditti

I'he Dikewood Corporation
ATTN: L. Wayne Davis

Effects Technology, Inc.
Al ;o Mr. B, Wengler
ATTN: Mr. M. Rosen

E-Syvstems, Inc,
Greenville Division
ATTN: Library, 8-50100

Exp. & Math. Physics Consultants
ATTN: Thomas M. Jordan

Fairchild Industries, Inc.
ATTN: Mgr., Config. Data & Standards

The Franklin Institute
ATTN: Ramie H. Thompson

CGarrett Corporation
ATTN: Robert E. Weir, Dept. 93-9

General Electric Company
Space Division

ATTN: Larry I. Chasen

: G. Harrison

John R. Greenbaum
Joseph C. Peden, CCF 8301
ATTN: John L. Andrews
ATTN: James P, Spratt
ATTN: J. Hannabeck
ATTN: R. Peterson

o o

_

138

General Electrie Company
Re-Entry & Environmental Systems Div,
ATTN: Robert V. Benedict

General Electric Company
TEMPO-Center for Advanced Studies
ATTN: DASIAC
ATTN: William McNamera
ATTN: Royden R. Rutherford
ATTN: M. Espig

General Electrie Company
ATTN: CSP 0-7, L. H. Dee

General Electric Company

Acrospace Electronics Systems
ATTN: W, J. Patterson, Drop 233
ATTN: George Francis, Drop 233

General Electric Company-TEMPO
ATTN: DASIAC for William Alfonte

General Research Corporation
ATTN: Robert D. Hill

General Research Corporation
Washington Operations
ATTN: David K. Osias

GTE Svlvania, Inc.

Electronics Svstems Grp. -Eastern Div,
ATTN: Leonard L. Blaisdelf
ATTN: James A. Waldon

GTE Sylvania, Inc.
ATTN: Charles H. Ramsbottom
ATTN: Herbert A. Ullman
ATTN: David P. Flood

Gulton Industries, Inc.
Engineered Magneties Division
ATTN: Eng. Magnetics Div.

Harris Corporation
Harris Semiconductor Division

ATTN: T. L. Clark, M.S, 4040
ATTN: Wayne E. Abare, M.S, 16-111
ATTN: Carf F. Davis, M.S. 17-220

Hazeltine Corporation
ATTN: M. Waite, Tech. Info. Ctr.

Honevwell, Incorporated
Government & Acronautical Products Division
ATTN: Ronald R. Johnson, A-1622

Honeywell, Incorporated
Acrospace Division
TTN: Stacey H. Graff, M.S. 725-J
N: James D. Allen, M.S. 775-D
AT'IN: Harrison H. Noble, M.S, 725-5A

Honevwell, Incorporated
ATTN: Tech. Lib.

Hughes Aireraft Company
ATTN: Billy W, Campbell, M.S, 6-E-110
ATTN: Kenneth R. Walker, M.S, D-157




’n?i

DEPARTMENT OF THE ARMY (Continued)

Commander

U.S. Army Missile Command
ATTN: AMSI-RGP, Victor W. Ruwe
ATTN: AMSMI-RGP, Hugh Green
ATTN: AMSMI-RRR, Faison P, Gibson

Commander
U. 5. Army Nuclear Agency
ATTN: ATCN-W, LTC Leonard A. Sluga

Project Manager
U8, Army Tactical Data Systems, AMC
ATTN: Dwaine B. Huewe

Commander
White Sands Missile Range
ATTN: STEWS-TE-NT, Marvin P. Squires

DEPARTMENT OF THE NAVY

Chief of Naval Research
Navv Department
ATTN: Code 427

Commanding Officer
Naval Ammunition Depot
ATTN: Code 7024, James Ramsey
Commander
Naval Electronic Systems Command
ATTN: ELEX 05323, Cleveland F. Watkins
ATTN: PME 117-21
ATTN: Code 50451

Commander

Naval Electronics Laboratory Center
ATTN: H. F. Wong
ATTN: Code 4223

Director
Naval Research Laboratory

ATTN: Code 2627, Doris R. Folen
2ey ATTIN: Dr. G. Cooperstein

Officer-in-Charge
Civil Engineering Lab,

Commander

Naval Surface Weapons Center
ATTN: Code 431, Edwin B, Decan
ATTN: Code WX-21, Tech. Lib.
ATTN: L. Ge
ATTN: Dr.
ATTN:
ATTN: Code 7

Commander
Naval Surface Weapons Center
ATTN: Code FUR, Robert A. Amadori

Commanding Officer

Naval Weapons Evaluation Facility
ATTN: Code ATG, Mr. Stanley
ATTN: Code ADS

Director
Strategic Systems Project Office
ATTN: NSP-2701, John W. Pitsenberge»

136

DEPARTMENT OF THE AIR FORCE

Commander

Acronautical Systems Division, AFSC
ATTN: ASD-YH-EX, It Col Robert Leverette
ATTN: Tech. Lib.

Commander
ADC/XP
ATTN: XPQY

AF Civil Engincering Center
ATTN: PREC

Commandant
AF Flight Dyvnamics Laboratory, AFSC
ATTN: DOO/Lib.

Director
Air University Library
ATTN: LDE

Commander
Air University
ATTN: ED, Dir., Civ. Eng.

AF Institute of Technology, Al
ATTN: Tech. Lib., Bldg. 640, Area B
ATTN: CES

AF Materials Laboratory, AFSC
ATTN: Tech. Lib.

AFTAC
ATTN: TAE

Air Force Avionics Laboratory, AFSC
ATTN: AVAL, TEA, Hans J. Hennecke
ATTN: AFAL, AAA

Commander
Rome Air Development Center, AFSC
ATTUN: Doc. Lib,

AF Rocket Propulsion Laboratory
ATIN: DYSN

HQ USAF/PR
ATTN: PREE

HQ USAF /XO
ATTN: XOOWD

Deputy Inspector General
Inspection & Safety
ATTN: PQAL

Headquarters

Air Force Systems Command
ATTN: DLSP
ATTN: DLCAW

U.S. Air Force Academy
ATTN: DFSLB
ATTN: DFCE

AF Armament Laboratory, AFSC
DLOSL
DEE




DEPARTME

AF Aero-Propulsion Laboratory, AFSC
ATTN: POD, P. E. Stover

Commander
Foreign Technology Division, AFSC
ATTN: FTD/PDIC

AF Weapons Laboratory, AFSC
ELA

ELC

ELP, Carl E. Baum
HO

Mr. K. D. Smith, DYV
AL

ALC

ALE

ALO

AR

DE

DEV

DEX

DY

DY'T

DYS, Dr. Baker & Dr. Burns
DYV, Maj Mitchell, Maj Stuber & F. Bick
DYX

KL

ELP

ELS, B. Kline

LR

LRE

LRL

LRO

LRP

PG

PGA

PGV

PO

SA

SAB

N: SAS

2 ¢y ATTN: SUL

10 ¢y

2Cy /

3 cy /

10 ¢y /

Commander
Ogden Air Logistics Center
ATTN: MMEWM, Robert Joffs

Commander in Chief
Pacific Air Forces
ATTN: DEE

Commander in Chief
Strategic Air Command
ATTN: XPFS, Maj Brian (. Stephan

USAF, SCLO
ATTN: Maj Pierson, Chief, LO

SAMSO/ DY
ATTN: DYS, Maj Larry A. Darda

SAMSO/MN
ATTN: MNNR

SAMSO/RS
ATTN: RSSE

DEPARTMENT OF THE AIR FORCE (Continued)
SAMSO/YD
ATTN: YDD, Maj Marion IF. Schneider

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION

University of California

Lawrence Livermore Laboratory
ATTN: Donald .J. Meeker, L-153

E. K. Miller, L-156

Lawrence Cleland, [-156

Frederick R. Kovar, 1.-94

William J. Hogan, L-531

Dr. Keller

W. Ishell

Dr. Mayer

Los Alamos Scientific Laboratory
ATTN: Doc. Con. for Bruce W. Noel
ATIN: Doc. Con. forJ. Arthur Freed
ATTN: Report Librar
ATTN: Dr. Skaggs
ATTN: Dr. Dingus

Sandia Laboratories
ATTN: 3141
TTN: Dr. Posey
N: Dr. Butcher
ATTN: Dr. Toepler

DEPARTMENT OF DEFENSE CONTRACTORS

Acrojet Electro-Systems Co., Div.
Acrojet-General Corporation
ATTN: Thomas D. Hanscome

Acronutronic Ford Corporation

Acrospace & Communications Ops.
ATTN: E. R. Poncelet, Jr.
ATTN: Ken C. Attinger
ATTN: Tech. Info. Section

Aeronutronic Ford Corporation
Western Development Laboratories Div.
ATTN: sSamuel R. Crawlord, M.S. 531

Acrospace Corporation
ATTN: Dr. B. Barry
ATTN: Dr. M. Kausch
ATTN: Dr. J. Benveniste

Avco Research & Systems Group
ATTN: Research Library, A-830, Rm. 7201
ATTN: Dr. Bade
ATEN: W. Broding

The BDM Corporation
ATIN: T. H. Neighbors
ATTN: William Druen

The BDM Corporation
ATTUN: James M. Phelan

Bell Aerospace Company
Division of Textron, Inc.
ATTN: Carl B. Schoch, Wpns, Effects Grp.

The Bendix Corporation

Communication Division
ATTN: Doc, Con.

137




1ot
f

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

The Bendix Corporation
Research Laboratories Division

ATTN: Donald J. Niehaus, Mgr., Prgm. Dev.

The Boeing Company
ATTIN: Robert S. Caldwell, 2R-00
ATTN: Donald W. Egelkrout, 2R-00
ATTN: David L. Dve, 87-75
ATTN: Aecrospace Library
ATTN: Howard W. Wicklein, 17-11
ATIN: Dr. Lempriere
ATTN: J. Adamski
ATTN: J. Shrader

Boaz-Allen & Hamilton, Inc.
ATTN: Raymond J. Chrisner

Brown Engineering Company, Inc.
ATTN: David L. Lambert, M.S, 18

Charles Stark Draper Laboratory, Inc.
ATTN: Kenneth Fertig
ATTN: Paul R. Kelly

Computer Sciences Corporation
ATTN: Richard H. Dickhaut

Cutler-Hammer, Inc.
AlL Division
ATTN: Anne Anthony, Central Tech. Files

University of Denver
Colorado Seminary
ATTN: Sec. Officer for Fred P, Venditti

I'he Dikewood Corporation
ATTN: L. Wayne Davis

Effects Technology, Inc.
ATTN: Mr. B. Wengler
ATTN: Mr. M. Rosen

E-Systems, Inc.
Creenville Division
ATTN: Library, 8-50100

Exp. & Math. Physics Consultants
ATTN: Thomas M. Jordan

Fairchild Industries, Inc.
ATTN: Mgr., Config. Data & Standards

The Franklin Institute
ATTN: Ramie H. Thompson

Garrett Corporation
ATTN: Robert E. Weir, Dept, 93-9

General Electric Company
Space Division
ATTN: Larry I. Chasen
ATTN: G. Harrison
ATTN: John R. Greenbaum
ATTN: Joseph C. Peden, CCF 8301
AT’IN: John L. Andrews
ATIN: James P. Spratt
ATTN: J. Hannabeck
ATTN: R. Peterson

138

DE:

ARTMENT OF DE

General Electric Company

Re-Entry & Environmental Systems Div,
ATTN: Robert V., Benediet

General Electric Company
TEMPO-Center for Advanced Studies
A'TTN: DASIAC
ATTN: William McNamera
ATTN: Royden R. Rutherford
ATTN: M. Espig

General Electric Company
ATTN: CSP 0-7, L. H. Dee

General Electric Company

Acrospace Electronics Systems
ATTN: W. J. Patterson, Drop 233
ATTN: George Francis, Drop 233

General Electric Company -TEMPO
ATTN: DASIAC for William Alfonte

General Research Corporation
ATTN: Robert D. Hill

General Research Corporation
Washington Operations
ATTN: David K. Osias

GTE Sylvania, Inc.

Electronics Systems Grp. -Eastern Div.
ATTN: Leonard L. Blaisdell
ATTN: James A, Waldon

GTE Sylvania, Inc.
ATTN: Charles H. Ramsbottom
ATTN: Herbert A. Ullman
ATTN: David P. Flood

Gulton Industries, Inc.
Engineered Magnetices Division
ATTN: Eng. Magnetics Div.

Harris Corporation

Harris Semiconductor Division

: T. L. Clark, M.S. 4040

N: Wayne E. Abare, M.S. 16-111
Carf F. Davis, M.S. 17-220

Hazeltine Corporation
ATTN: M. Waite, Tech. Info. Ctr.

Honeywell, Incorporated
Government & Acronautical Products Division
ATTN: Ronald R. Johnson, A-1622

Honeywell, Incorporated

¢ Division
Stacey H. Graff, M.S.
James D. Allen, M.S.
Harrison H. Noble, M.S

Honeywell, Incorporated
ATTN: Tech. Lib.

Hughes Aircraft Company
ATTN: Billy W. Campbell, M.S. 6-E-110
ATTN: Kenneth R. Walker, M.S. D-157

NSE CONTRACTORS (Continued)



DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

E CONTRACTORS (Conti nued)

Hughes Aircraft Company McDonnell Douglas Corporation

Space Systems Division ATTN: Stanley Schneider
ATTN: William W. Scott, M.S. A-1080 ATTN: Raymond J. DeBattista
ATTN: Edward C. Smith, M.S. A-620 ATTN: Dr. Reck

ATTN: Dr. Berkowitz
IBM Corporation

ATTN: Frank Frankovsky McDonnell Douglas Corporation
ATTN: Harry W, Mathers, Dept. M-11 ATTN: Tech. Lib., C1-290/36-84
II'T Research Institute Mission Research Corporation
ATTN: Irving N. Mindel ATTN: William C. Hart
Ion Physics Corporation Mission Research Corporation
ATTN: Mr. B. Evans ATTN: J. Roger Hill
ATTN: David E. Merewether
IRT
ATTN: R. L. Mertz I'he Mitre Corporation
ATTN: Leo D. Cotter ATTN: M. E. Fitzgerald
ATTN: Eric P. Wenaas
ATTN: MDC National Academy of Sciences
ATTN: National Materials Advisory Board for
Kaman Sciences Corporation R. S. Shane, Nat. Materials Advsy.
Al : John R. Hoffman
ATTN: Albert P. Bridges Northrop Corporation
ATTN: Donald H. Bryce Electronic Division
ATTN: W. Foster Rich ATTN: Boyce T. Ahlport
Walter E. Ware ATTN: George H. Towner
Dr. Shelton ATTN: Vincent R. DeMartino
T. Meagher
Northrop Corporation
KTech Corporation ATTN: Orlie L. Curtis, Jr.
ATTN: Dr. D. V. Keller ATTN: James P. Rayvmond
; : Mr. N. Froula ATTN: David N. Pocock
ATTN: Mr. L. Lee
Northrop Corporation
Litton Systems, Inc. Electronic Division
Guidance & Control Svstems Division ATTN: Joseph D. Russo
ATTN: R. W. Maughmer
ATTN: Val J. Ashby, M.S. 67 Physics International Company
ATEN: Doe. Con. for John H. Huntington
Lockheed Missiles & Space Co., Inc. ATTN: Dr. Shea
ATTN: George F. Heath, Dept. 81-14 ATTN: Dr. Putham
ATTN: Benjamin T. Kimura, Dept. 81-14 10 cy ATTN: K. Childers
ATTN: Hans L. Schneemann, Dept, 81-64
ATTN: Dr. Miller Prototype Development Associates, Inc.,
ATTN: Dr. Burford ATTN: Mr. T. McKinley
ATTN: R. Smith, K1-14
ATTN: R. Walz R & D Associates
ATTN: T. Kellcher ATTN: S. Clay Rogers
ATTN: Leonard Schlessinger
LTV Aerospace Corporation ATTN: Dr. Rausch
ATTN: Technical Data Ctr. ATIN: Dr. Field
Martin Marietta Aerospace The Rand Corporation
Orlando Division ATTN: Cullen Crain
ATTN: Jack M. Ashford, MP-537 ATTN: O. Nance
ATTN: Mona C. Griffith, Library, MP-30
ATTN: William W. Mras, MP-413 Raytheon Company

ATTN: Gajanan H. Joshi, Radar Sys. Lab.
Martin Marietta Corporation

Denver Division Raytheon Company
ATTN: J. E. Goodwin, Mail 0452 ATTN: James R. Weckback
ATTN: Paul G, Kase, Mail 8203 ATTN: Harold L. Flescher
Maxwell Laboratories, Inc, RCA Corporation
ATTN: Dr. V. Fargo Government & Commercial Systems

ATTN: George J. Brucker
MceDonnell Douglas Corporation

ATTN: Tom Ender

ATTN: Tech. Lib.

139




DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

RCA Corporation
ATTN: E. Van Keuren, 13-5-2

Rockwell International Corporation
ATTN: James E. Bell, HA-10
ATTN. George C. Messenger, FB-61

Rockwell International Corporation
Electronics Operations
ATTN: Mildred A, Blair
ATTN: Alan A. Langenfeld
ATTN: Dennis Sutherland

Sanders Associates, Inc.
ATTN: Moe L. Aitel, NCA 1-3236

Science Applications, Inc.
ATTN: Frederick M. Tesche

Science Applications, Inc.
ATTN: Mr. R. Fisher

Science Applications, Inc.
ATTN: Dr. J. Cramer

Science Applications, Inc.
ATTN: William L. Chadsey

Science Applications, Inc.
ATTN: J. Robert Beyster
ATTN: Larry Scott

Science Applications, Inc.
ATTN: Noel R. Byrn

Simulation Physics, Inc.
ATTN: John R. Uglum

Simulation Physics, Inc.
ATTN: Mr. R. Little

The Singer Company
ATTN: Irwin Goldman, Eng. Management

Southern Research Institute
ATTN: Mr. Colt Pears

Sperry Flight Systems Division
Sperry Rand Corporation
ATTN: D. Andrew Schow

Sperry Rand Corporation
Sperry Division
ATTN: Paul Marraffino

Stanford Research mstitute
ATTN: Philip J. Dolan
ATTN: Arthur Lee Whitson
ATTN: A. Lutze

Sundstrand Corporation
ATTN: Curtis B. White

Systems, Science & Software
ATTN: Dr. G. Gurtman

Systron-Donner Corporation
ATTN: Gordon B. Dean

Texas Instruments, Inc.
ATTN: Gary F. Hanson
ATTN: Donald J. Manus, M.S. 72

Texas Tech University
ATTN: Travis L. Simpson

TRW Systems Group

ATTN. A. M. Liebschutz, R1-1162

TN: Richard H. Kingsland, R1-2154

A. A. Witteles, R1-1120
Aaron H. Narevsky, R1-2144
Lillian D. Singletary, R1-1070
Jerry 1. Lubell
Benjamin Sussholtz

TRW Systems Group

San Bernardino Operations
ATTN: John E. Dahnke
ATTN: H. 8. Jensen

United Technologies Corporation
Hamilton Standard Division
ATTN: Raymond G. Giguere

victor A. J. Van Lint, Consultant
Mission Research Corporation
ATTN: V. A, J. Van Lint

Westinghouse Electric Corporation
ATTN. Henry P. Kalapaca, M.S. 3525

Official Record Copy, Mr. K. D. Smith, AFWL/DYV




