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ABSTRACT

Compressible flow over a laser turret creates a phase distortion.
To gain insight to this problem a model of a hemispherical turret is
developed. The flow field is obtained using a second order solution
based on Janzen-Rayleigh expansion for the compressible potential flow
equation. Contours of constant phase distortion were calculated; results
at the critical Mach number are presented and discussed. It was found
that the distortion at 0° elevation angle was equivalent to a positive
lens whereas at 90° the distortion is similar to a negative lens. At
45° the main effect is beam tilting into the wind. For a ratio of beam
radius to turret radius equal to 0.5, the focal length at beam elevation
angle of 0° is 16.5km. At beam elevation of 54° the beam tilt was found
to be 26.5 microradians. The results of this paper are compared with

other results reported in the literature.
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PHASE DISTORTION DUE TO AIRFLOW OVER
A HEMISPHERICAL LASER TURRET

by
A. E. Fuhs* and S. E. Fuhs**

I. INTRODUCTION

The index of refraction of air is related to mass density. Starting
at modest subsonic Mach numbers, e.g. 0.3, and extending to transonic
flignt, flow over a bluat laser turret causes significant changes in
density. The change in density, which in turn changes index of refraction,
can defocus a laser beam.

Variable index of refraction within context of aeronautical appli-
cations is not a new prob.em; however, there are two aspects which are
new. First, the laser beam is large relative to a characteristic turret
dimension. Second, for many airborne applications the laser telescope
requires a turret which protrudes into the flow.

Reconnaissance aircraft fly photographic missions. The compressible
fiow over the aircraft acts like a distorted lens and conceivably could
cause distorted photographic images. The variable index of refraction is
not a serious problem for reconnaissance aircraft for two reasons. The
aperture of the camera is small compared to the characteristic scale of
the distortions; in the case of a laser telescope this in not true. Fur-
thermore, the camera on a reconnaissance aircraft is not mounted in a
turret. To aim the camera the pilot aims the aircraft. Camera windows
are flush with the aircraft surface.

Cruise missiles with intercontinental ranges may use celestial navi-

gation which requires precise measurement of angular location of stars.

* Distinguished Professor of Mechanical Engineering
#% Student, California Institute of Technology
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A distorted lens created by the ambient flow field causes an error in
‘;' measurement. Knowledge of the external aerodynemics is important. = !

A model which is useful for understanding the density field in

the vicinity of a turret is the flow around a sphere or an ellipsoid.
The plane containing an incoming fluid velocity vector and a diameter
of the sphere does not have flow components normal to the plane. This
L is a plane of symmetry and conceptually can be considered a wall. The
flow over the hemisphere above the plane can be calculated readily.

For incompressible flow, the solution for the flow over a sphere
(1)

| is well known. See for example pages 464-465 of Milne-Thompson,

(2) (3)

pages 92-93 of Lamb or pages 339-342 of Karamcheti. Techniques

are available to introduce the influence of compressibility or, stated

another way, the influence of Mach number. One method is the Janzen-

) Another brief

(5)

Rayleigh technique discussed briefly by Van Dyke.(u

description is given in Chapter 10 of Liepmann and Puckett. The

Janzen-Rayleigh method is discussed also on pages 328-334 of Oswatitsch.(s)

Lord Rayleigh(7) provides the second order solution for a sphere in a

paper published in 1916.
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II. DISCUSSION OF ANALYTICAL MODELS

Optical distortion due to the external flow field can be divided
into two categories. Viscous flow phenomena fall into one category and
include shear layers, laminar and turbulent boundary layers, and shedding
of discrete vortices. The other category involves the inviscid flow
field. This paper treats the latter category.

Laser turrets can be classified as blunt or small-perturbation
turrets. If the turret has a surface with a normal vector, ﬁ, aligned
parallel, or nearly so,to the freestream velocity vector, V, the turret
is "blunt". If the angle between the normal vectors of the turret sur-
face and the freestream velocity vector are everywhere large, e.g. 60°
to 90°, then the turret is "small-perturbation".

The turret being considered here is a hemisphere, which is obviously
a blunt turret. At the front stagnation point of a hemispherical turret,
Vedis = L

For a blunt turret, compressibility effects set in at a smaller
freestream Mach number, M_. A useful concept is the critical Mach number,
M_*. At the critical Mach number, somewhere on the body a local Mach
number is just sonic. When M_ > M_*, the flow becomes inherently nonlinear
and shock waves appear.

For a circular cylinder with its axis normal to the flow, the critical
Mach number is 0.3985. For a sphere, the critical Mach number is 0.5868.
A hemisphere-cylinder, which is oriented with the cylinder axis parallel
to the freestream flow direction, has a critical/Mach number lesc than

0.7. Hsieh'S

gives experimentally determined pressure coefficients for
a hemisphere-cylinder over the Mach number range 0.7 to 1.0. In refer-

ence 9 Hsieh extends the Mach number range from 1.05 to 1.82. Using Cp




from reference 8, the maximum local Mach number is 1.25; the maximum

local Mach number occurs at an angle of approximately 60° on the sphere.

The angle is measured from the stagnation point to the location of

b c .
P

For small perturbation turrets the critical Mach number is larger.
(10)

Calculations were made of a turret on a cylindrical fuselage. The

turret shape was determined by

R(x,0) = R0 + % (1 + cos %5) (1 + cos fe)

(1)
R(x,6) = R, for £ < |x| <L and n/f < |6]|< =

where RO is fuselage radius; e, height of turret; £, length of turret;
1/f, the fraction of the 2m circumference occupied by the turret; and, L,
the separation between periodic turrets. Table I summarizes the critical

Mach number.

TABLE I. Critical Mach Numbers for Small-Perturbation Laser Turrets

/R, L/R, 1/f e/R, M_# P Yl
| 1.005 5.0 .333 0.05 .88 4,50
* .10 .82 8.9°
.15 .76 13.2°
.20 .72 17.40
.25 .68 21.3°
.30 .65 25.1°
.35 .62 28.7°
.40 .59 32.0°
45 - 35.1°
.50 - 38.00

.55 o 40.7°




There are different analytical models that can be developed for
laser turret geometries. Flow over blunt turrets can be determined using
expansion techniques such as the Janzen-Rayleigh method mentioned ear-
lier. As more terms in the expansion are evaluated, the more accurate
are the flow field calculations as Mach number increases. Upper bound
is the critical Mach number. For M_ > M _*, the calculations will be
grossly in error.

There are numerical techniques which directly integrate appropriate
differential equations. One method, which is applicable to axisymmetric
flow, is the technique of South and Jameson.(ll)

For small-perturbation laser turrets the equations can be linear-
ized. Compressibility effects in subsonic or supersonic flow are incor-
porated. Transonic flow is excluded since the transonic equations are
nonlinear even for small perturbation.

Figure 1 summarizes the regions in a body slope vs. Mach number
map. The flow within the region ABCD can be described with sufficient
accuracy using the linearized, small-perturbation equaticns. The line
CD represents the critical Mach number. The line BC is shown at a
slope of 30°. The assumptions involved in the linearization of the po-
tential flow equation became less and less valid as the maximum slope
increases. The region CDJ, which resembles an inverted triargle, requires
solution of the nonlinear small-perturbation, transonic, potential equa-
tion.

The region EFGH defines the area where Janzen-Rayleigh technique is
most useful. The line GH,which defines the critical Mach number, is
shown dashed; the critical Mach number is a function of turret shape.

Hence GH is intended to qualitatively suggest the upper bound for Mach

number.
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Tigure 1. Freestream Mach Number Regions for Application of
Various Analytical Models.

There are vertical lines 1, 2, 3, and 4 within region EFGH. These
lines represent the upper bound of applicability of the first, second,
third, and fourth order solutions when Janzen-Rayleigh technique is
used. The first order solution may be applied within region F11E; the
second order solution, within region F22E; etc.

A hemispherical turret considered in this paper is an example of

a blunt turret falling along the line F3.
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IIT. JANZEN-RAYLEIGH EXPANSION TECHNIQUE

b In spherical coordinates, the equations of motion are as follows:

2 2
Ju , v 9u v 1.9 a~ 3p
e e e L N s
1 3 Yss"F % TP p ar p or (2
E ~ ua_v+‘_,. ﬂ-&&!:_lla_p:_iig (3)
: 3r r 238 r p r 96 pY d

O |-

29—"’-!- -a—e + 1 _a_ 2 + 1 _3__ ’ ‘s
[l'1 ar T 39] ‘f;z a0 (r°u) F_é-i?x—e Y (vsin6) =0 4)

Equations (2) and (3) are Euler's equations. Equation (4) is the con-
tinuity equation. For flow over the sphere, there is no dependence on
the azimuthal angle in polar coordinates. Consequently, equations (2)
and (4) are two-dimensional equations depending only on r and 6.

Multiplying equation (2) by + u/ a2 and equation (3) by - v/a2,
adding and combining with equation (4) yields

2
1l 3 2 1 3 ¢ i 2 du , uv av V. , V3V
S B e e = Pttt i —— — —
72 37 (P'W *+ ey 35 (vosin 0) 5’2{” ww T r T Wty ae} (5)

o ety

The speed of sound, a, is the local value and changes from pcint to point
in the flow. It is necessary to account for variations in a. Using the

energy equation along a streamtube, one can show that

2 2 2

a Y=l 2 U + v
=1+ M (1--——) (6)
a? e %

Inviscid flow is considered. A potential can be introduced for the

velocity components sl %% 7N
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3¢
3 (8)

where U is the freestream velocity at upstream infinity. Introducing
equations (7) and (8) into equations (5) and (6) yields equations in
terms of a potential.

The Rayleigh-Janzen expansion considers the potential function to
be given as

¢=¢0+M3, ¢1+M:¢2+... (9)

The solution for 9% is considered the first order solution. The solution
involving both ¢ and 91 is called the second order solution. In this
paper only the second order solution is considered. For ease of writing,

the following definition is introduced:
vty (10)
¢

To digress briefly from the development of the Janzen-Rayleigh

expansion, the solution for the flow over a cylinder normal to the fluid

velocity will be discussed. Van Dyke(“) indicates the solution for the

cylinder has been performed to Mis. For y = 7/5, the result for maximum

surface speed is

X = 2.00000 + 1.166670 + 2.57833) + . . . .

8 (1)
+ 25.59041M_+ . . . . ¢+ 7450Mi6

The critical Mach number for a cylinder is M_ = 0.39852 + 0.00020.

In terms of the potential function, the speed of sound becomes

2
2
:—2- =14 M Fo, 655 75 ¥) (12a)

where F is given by




¢2
_y-1 2 ]
F= e [1 - (qbr + 7)] (12b)

)

With substitution of equations (9) and (10), the potential function

becomes

" 2 1
V2¢0 : vzw i M; I}% ¢rr > r? ¢r‘¢e¢er T ¢g ¢r * %" ¢g ¢96] (13)

where all terms on the right-hand side are determined from the first

order potential function %9 The result of equating coefficients of like

2
powers in M_ yields two equations

V295 = 0 (1)
and
vZy = M2 v = M2 [¢2¢» s e ek, 4 g ] (15)
1 o o B AR G I o SRS o R - i T I
The right-hand side of equation (15) is known due to the fact that
equation (14) can be solved to yield dg- 'To emphasize this fact, the
first term on the right-hand side is written explicitly showing ¢g>

v\ 2 9%
$2¢ (—0 i
rrr - \or or

Equation (15) is Poisson's equation.




IV. FIRST ORDER SOLUTION

The first order solution is obtained from Milne—’l’lmxpson,(l) Lamb,u)
or Karamchei‘i.(s) It is
3
¢0(r, 8) =U (r cos 6 + B_Z%Cz’i_‘l) (16)

where R is the sphere radius. The upstream stagnation point, P, is at
P(R, 180°); and the downstream stagnation point is at P(R, 0°). Using
equation (16) one can determine the derivatives to substitute into equa-

tion (15). These are

R3
¢r=UCOSG(l°F3-) (17)

5 3R3
$pp= Ucos 8 [‘E‘F] (18)

] (19)

N =

|
P2 Y%
—_

¢e=-rUsine[l+

P~ - T U cos 6 [l + (20)
i ’ R3
¢er--U51n6 l—F; (21)
The result of combining equations (15) and (17) to (21) is
2 =COSQ LenD 2 _9 2_17 3]}
v2) = 220 -0z +sinz o [u-Fa+or2 -3l (22)

where A = R3/r3 has been introduced.

Before proceeding with second order solution, a comment about
boundary conditions is appropriate. The component of velocity normal to
the surface of the sphere must be zero. At infinity, the velocity should
be U. Consequently,

—— :0~fﬁ :O-J‘.m s
CE Y b W e W OB

o

(23)

10




Since %9 yields U at infinity, the velocity perturbation due to 1

should be zero at infinity.

SRR

o e s b S S K

prewes
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V. RAYLEIGH SOLUTION FOR SECOND ORDER FUNCTION

In July, 1916, Lord Rayleigh'”’ reported the solution for the
second order function.
The Legendre functions

P, = cos 6 (24)

| el 3 3
P3-§cos 6—-2—cose (25)

are introduced into equation (15) in the following manner: First,
equations (17) through (21) are substituted into equation (15); second,

terms are grouped so as to form the functions Pl and P The result is

30

20 36 R6 . 9 RY /. R} 24 R6 3 RY
Vz*’l'7[(‘3"?7*77m)1’1*(5;v'r‘7*7 m) Pa] s

Equation (26) is in the form

L (e (27)

where C]m are zero except form = 7 and 10; all sz are zero; and C3m
are zero except form = 4, 7, and 10. Non-zero Cnm are the appropriate

constants appearing in equation (26). The Legendre differential equation

is
1 : dPn & %
85T sin 6 N ] n (n+l) Pn =0 (28)

8=

Define the function ¢ -~ which satisfies the equation

g 2 32q’nm 2 a"nm d ) ; Mnm
* ncnm "V wz *r 3w Trsnoae SN0 3 (29)
Assume
PR
¢nm =Y Pn Anm (30)

12




Consequently,

3¢

nm _ 1-m
@ (2-m) r PnA
and
32¢nm =M
T = (2-m) (1-m) r Pn A

Combining equations (29) and (32) gives

-] ¥ -m
r m‘Pn Cnm = (2-m) (1-m) r Pn Anm

~-m+2 9P
-Mp T 9 . n
+2 (2-m) r nA + T2 sin © ﬁ [Sln 6 W ] A
Substitution of equation (28) into equation (33) yields

r P, C.* P r E, [(2-m) (1-m) + 2 (2-m) - n (n+l)]

As a result

C
A ¥ nm

nm ~ (2-m) (3-m) - n (n+D) (35)

Using equations (26), (30), and (35), that part of the second order

function identified as the particular solution is obtained

! R RO gR° _ 8RS _ 3R ’
¢1‘U{P1['S?5'+W]+ Pa['m‘m*mw 5
The homogeneous solution is

¢, = Ar P, + BPl/r2 + Cr3P3 +D P3/r“ (37)

At infinity the potential must be finite and the velocity must be U;
the function g of equation (16) yields U. Consequently both A and C

equal zero. At the surface of the sphere

13
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T T

¢ 3¢
3 1 1
Fra =0 and r 385 =0 (38)
r=R =0

From the requirements of equation (38) combined with equations (36)

and (37) 3
B=5-UM (39)
and
5
=20 (40)

The final expression for the potential function is

3 2 3 6 9
i Had i R 2f[r3 _Re R
$ = 408, = {U [“ ¥ 7?2]?1; 3 Wm{[é'f?- Tt me] 21

o, 3, amil mée amt ] ek
I0r2 " S6F* " I0r° T ITEr®| "3

The first term in brackets is 4>0; and the second, long term is the second

order contribution.




VI. DEVELOPMENT OF PHASE DISTORTION

‘ Use of Potential Function to Obtain Index of Refraction

The index of refraction and density are related by

pm
n=l+|<'9~—-——-=l+o<p— 42)
P SL Pe

where k' is a constant with value of about 2 x 10'”. Note

k= k'p / Par* The flow is assumed to be isentropic. Consequently

1
y-1
1+ Ll
LSS a5, il (43)
P 1 #1001

The local Mach number is given by

2 2
2 =1 1 /3¢ 1 3¢
M az[(a—f) *(F ﬁ) ] )

In equation (42) p is the local density, p_ is the freestream density,
and pqp is the sea level density on a standard day. By combining equa-
tions (6), (12a), (41), (42), (43), and (44), an expression is obtained
for the index of refraction.

The turret has a characteristic length; for the sphere this is
the radius R. The laser beam has a characteristic size which is the
diameter D or radius R'. The wavelength of the laser radiation, A,
is also a characteristic length as will be demonstrated in subsequent
discussion. Two nondimensional lengths can be formed. Since R occurs
prominently in the equations for the potential, R is chosen as the
reference length. With that choice, A/R and D/R are two of the para-

meters specifying the problem.

L 15
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Phase distortion is a function of the direction that the beam is
pointed. Define e and a as elevation and azimuth angles. For the
hemispherical turret, symmetry exists about the diameter of the sphere
which is parallel to the freestream velocity vector. In general, two
angles, e and a, are needed to define the beam direction; however,
for the hemispherical turret only one angle is needed. Looking ahead,
the angle 6' occurring in equations (45) and (46) will be used as the

beam angle; see also Figure 2.

Geometrical Relations for Calculation of Phase Distortion

Figure 2 shows the geometry of the problem. The radius of the
sphere is R. The beam is elevated at an angle 6'. The z axis is the
same as the polar axis for polar coordinates.

To locate points within the beam, three variables are used; s is
distance along the beam, as shown in Figure 3; a is an angle measured
clockwise from the windward edge of beam; and R' is the radial distance
from the beam centerline or axis.

The flow properties, i.e., density and local Mach number, are
furctions of r and 6. These are polar coordinates. Consequently, it is
necessary to express r and 6 in terms of 6', s, a, and R. The equations

are 2 2 2 2
r=[(R+s)sine'—R'cosacose'] + R'" sin “a
2 45)

+ [(R+s) cos 8' + R!' cosasine']

and

1 Vr(l’j+s)sine'-R'cosacose']2+R'2sin2a
0 = tan

[(R+s) cos 6' + R' cos a sin 6']

(46)

Equations (45) and (46) can be used to evaluate equations (41) to (uy).

The index of refraction is given by equation (42). Define N as the
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Figure 2. Geometry for Phase Distortion Calculation.
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Figure 3. Cross Section of the Turret and Beam in the x-z Plane.




number of waves along a distance s. Hence

A a %S_ (47)

where X is the local wavelength. The local wavelength is a function of

8', a, R', and s. It is

A (1 + k)
A= AP g L2 = u48)
T nf " T +«e/o) ~ T+ «plp)
As a result, the number of waves is
s
¢ 1 o
N = UT-T—KT f (1 + « ;;)ds (49)
-5'

A reference is needed. The reference which is convenient is the number
of waves along the beam axis; designate that quantity as NO' Using this
reference

S 4] s

- 1 [ Pr °0
NNy = 3T / (1+x £)ds - / (1+e-D)ds - f (1+cDdsf  (50)

-] [

>

bt ] Larc 0

Note the density on the beam centerline for ~s'< s < 0 is denoted by P
a reference density. For 0 < s < =, the density on the centerline is
Py which is a function of s. In equation (50) the value of unity in
each integrand can be cancelled giving

s &

_ &R PPy ds P=Pp ds
N-Ny = A (1K) P ol e R (51)

¥ -3
The second integral in equation (51) has been termed the GAP INTEGRAL

since it enters the equation as a result of the gap between s = -s' and
s = 0. See Figure 3. In the calculatiors which were conducted, the gap

18




integral was evaluated by assuming P = Pyb this is an arbitrary assump-
tion. Note that in equation (51) wavelength is nondimensionalized by R

to form A _/R. The distance along a ray is also nondimensional, i.e.,

ds/R.

A computer program has been developed for the HP3830 which calculates
N - NO as a function of sphere radius, R; elevation angle, 6'; radius
within the beam, R'; angle within the beam, aj; freestream Mach number,
M; wavelength, A_; constant in density equation (42), «'; ratio of heat
capacities for air, y; and freestream speed of sound, a_. Note that

it is not necessary tospecify p_ since all calculations depend on den-

sity ratio; see equations (48) and (51). Values used in the calculations

are as follows:

R = 0.9144 meter

A, = 3.8 micron = 3.8 x 1078 meter
= 2x 107"

a = 342 meter/sec

y = 1.4

M_, R', o, and 6' have been varied. Calculations have been performed

to the extent necessary to plot phase distortion maps.
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VII. RESULTS OF CALCULATIONS

Graphical Presentation of Results

Plots of isocontours of phase shift were made for steps of 18°

starting with 6' = 0 to ' = 90°. The plots are shown in Figures 4

to 9. To avoid awkward decimal values, units of the plots are deci-

wavelength; hence 250 is 2.5 wavelengths, and 25 is a quarter of a

wavelength. Recall that the beam center line is used as reference for

Figure 4. Contours of Constant
Phase Shift for
8' = 0°.

Figure 5. Contours of Constant
Phase Shift for
6 = 18°.

the phase shift. Reference to equation (51) shows that a positive

phase shift is the case of more waves along the ray in question than

along the ray coincident with the beam centerline.

For the series of plots in Figures 4 to 9 the critical Mach

number was selected. For a sphere this is M* = 0.587. The gap inte-~

gral is not included in the phase shift.

The outer edge of each plot

is for D/2R =0.5. Recall that D = beam diameter, and R = turret radius.
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Figure 6. Contours of Constant Figure 7. Contours of Constant
Phase Shift for Phase Shift for
o' = 36°. e

Figure 8. Contours of Constant Figure 9. Contours of Constant
Phase Shift for Phase Shift for %
o' = 72°, 6' = 90°. 1




To provide insight to the magnitude of gap integral, Table II

gives the maximum value for each of the plots.

TABLE II. MAXIMUM VALUE OF GAP INTEGRAL

beam elevation angle maximum value of gap integral
in deciwave lengths and location
G within beam
(gap integral) a
0o + 36.8 *
18° + 65.4 0°
36° + 67.8 0°
5y° - 83.6 180°
72° - 86.3 120°
g0° - 86.6 90°

M = 0.586 for these calculations. Also DR = 0.5.

©0

* not a function of a.

Evaluation of Phase Distortion as a Function of Distance Along the Beam

An important question is the rate of decay of the integrand in

equation (51). Calculations were made of

(N - NO)
2(s/R)

which is the phase distortion per unit distance along the beam. The
phase distortion per unit distance is a function of distance along the
beam. Results of the calculation are shown in Figure 10. The phase
distortion is the area enclosed by one of the curves. Most of the phase

distortion occurs within a length equal to one turret radius.
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Figure 10. Phase Distortion Per Unit {s/R) as a Function
of Distance Along the Beam for Rays at
o = 0°, 60°, 120°, and 180° Within the Beam.
Elevation Angle was 6' = 18°.

Dependence of Phase Distortion on Flight Mach Number

Another parameter of considerable interest is the dependence of
phase distortion on Mach number. Qualitatively, isodensity contours at

M, < M¥ have an appearance the same as for M _= M*. Quantitatively, there
are changes in both the shape of an isocontour of constant phase shift
and the magnitude of the phase shift. Table III compares magnitudes
of distinctive features of the maps for two Mach numbers. Table III
should be studied simultaneously with the appropriate figure for 6'.
Phase distortion curves based solely on a first order calculation,
i.e., using 90 in equation (9) only, should have the same shape for all
M_. A calculation of phase distortion based on a second order solution,
i.e., using both ¢ and ¢, in equation (9), should be a function of M_.
Figure 11 shows the change in shape of a phase distortion curve with
Mach number. The curves are drawn for €' = 18°; M _, either 0.300 or
0.587; R'/R from 0 to 0.5 and for a = 0° and a = 180°. The phase dis-
tortion has been normalized with the value at R'/R = 0.5 and o = 180°.

Differences in the curves are due to Mach number effects.

23




! TABLE III. COMPARISON OF MAGNITUDE OF PHASE SHIFT FOR TWO
f‘ : DIFFERENT MACH NUMBERS

: ; ' feature of isocontour map value at M_ = 0.300 M_= 0.587
0° maximum ¢ at beam edge -41.5 -160
18° maximum ¢ at positive peak +15 + 60

minimum ¢ -69.6 -290

‘ 36° maximum ¢ +4y,2 +240

' | minimum ¢ -80.3 -3u5
| 5y° maximum ¢ +85.2 +370

minimum ¢ -54.4 -268
729 maximum ¢ *83.7 +386

minimum ¢ at negative valley -14.1 - 74.1
90° maximum ¢ at o = 0° +49.1 +223

Ma2O. 300

Ma=0.300

- 1 i L ki i ek N

-0 -06 -0.2 0 0.2 0. 1.0
NONDIMENSIONAL RADIUS

Figure 11. Phase Distortion for Two Mach Numbers.
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Interpretation of Results

Phase shift for 6' = 0 as shown in Figure 4 consists of a series
of concentric circles. Since the phase shift is negative, the beam
is being focused. Concentric curves with negative phase distortion
gives a positive focus.

The contours of constant phase shift for 6' = 54° are almost
straight lines. The algebraic signs of phase shift contours indicate
the beam is being tilted in a direction opposite to the relative wind.
The angular tilt is given roughly by

(tilt angle) = I:(N-NO)00 - (N'N0)180°] ;E'. (52)

Inserting the appropriate values (values for N-N, were obtained from

Table III) gives

-6
. . €870 + 268) (3.8 x 10 m) _ 3 ;
(tilt angle) = ) (457om (1009 = 26.5 microradians

Tilt of a beam does not cause a serious problem.

These results for tilt angle can be compared with similar work by

Cook. (12

(12)

Captain Cook used the following values in a sample calculation

(notation has been adjusted to match this report):

R' = 0.25m A, = 10.6 micron
R = 0.7Im «'/o_ = 0,22 cm’/gm
M_ = 0.5 ¢ =2.7x%x107

For 6' = 54°, a beam tilt of 63 microradians was calculated. When adjust-
ments are made for different parameters used to calculate the two results,
i.e., 63 and 26.5 microradians, the answers agree quite favorably.

It is possible to determine an approximate focal length, Fa. The

subscript, a, indicates the focal length in a plane defined by o of
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Figure 2. The appropriate equation is

1 A
T ° TaRN: (N—No) B 2(N—N0) : (53)
a R2 R1

Equation (53) was evaluated for a = 0 and for the following values for
other parameters
1.23 x 10~ gn/em®

P ®
A, =3.8x107°m M_ = 0.587
AR'= 0.1524 m R =0.9144 m

(N—NO) at Ré = 0.799 wavelengths

0.214% wavelengths

(N—NO) at Ri

el = 00
A focal length of 16.5 km was found.
Before proceeding, some additional information concerning equation

(53) is appropriate. Equation (53) is a specialization of the equation

2
== 3 (54)
X
where
b
I =/ n ds (55)
a

For the problem at hand equations (54) and (55) yield

: SN P2~Pp P17Pg ?0~Po

where Py = p(xz), Py = p(xl), etc. It is obvious that the third integral
(12)

is zero. Equation (56) leads to equation (53). From Cook's report for
the previously cited values for R, R', M_, etc., a focal length of about

6 km is calculated. Adjusting the value for values of R, R', M_, etc.,
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used in the calculations of this report, good qualitative agreement
is obtained.

Wolters and Laffay(ls)

have calculated focal length for an
aperture of a turret on a F-15. The turret geometry was a cylinder
with axis parallel to the freestream; radius of the cylinder was 0.5 m.
When viewed from a position normal to the axis, a cylinder appears as a
rectangle. The square corners were rounded with a radius of 0.3 m.
Without rounding of the cornmers, the cylinder viewed from its end would
appear as a disc with radius 0.5 m. With the rounding of the cormers,
the disc is reduced to 0.2 m; the disc is normal to the freestream
velocity vector.

Wolters and Laffay(13)

determined the focal length of the lens
created by density variations within the external flow. The following

parameters were used in their calculations:

6

R' = 0.17 m A, = 10.6 x 100
R =0.5m <'/o_ = 0.223 x 107> m¥/kg
M_ = 0.587 6' = 0

<]

altitude: 20,000 ft.

For these conditions a focal length of 18.2 km was determined. Since
the distortion varies linearly with the ambient density, a fact which
follows from equation (42), the focal length can be adjusted to sea level
by an adjustment to density. For the same conditions as above except at
sea level, the focal length would be 8.2 km. A value 8.2 km is consistent
with results obtained in this report, 16.5 km.

Having compared in a rough way calculated results from references

(12) and (13) with calculated results from this paper, the relative

advantages and disadvantages of each model will now be compared. Reference

(12) used 3I/5x and 3I/3y to predict tilt; 32I/9x2 [see equation (54)] and ;
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32I/3y? were used to predict focal length. These were evaluated at the
beam center. An anelytical solution was obtained. Reference (12) also
used a first order solution for the flow field, which is equation (16).
This paper uses a second order solution as given by equation (41). Hence
a more accurate flow field is used in this paper. Reference (12) yields
a solution in simple form; this paper requires a desk top computer, eg.
HP9830, or else a high degree of patience if a HP55 were to be used.

In contrast to reference (13) which used a numerical solution to
the flow field, the second order analytical solution gives the flow field
to any degree of spatial resolution required. Numerical solutions give
results in discrete steps. Based on Figure 5 of reference (13) the ratio
of step size to cylinder radius is 0.22. Figure 10 of this paper shows
that approximately one-half of the phase distortion is generated in a
step size 0.22. Of course a smaller step size can be used. Numerical
techniques have the advantages of providing solutions for complex turret
geometry. This paper is applicable only to a hemispherical turret.

Look at Figure 9 for which 8' = 90°. The contours have a symmetry
about the a = 0°--180° line and about the o = 90°--270° line. The phase
distortion has positive values which give a negative lens. The focal
length for a = 0° is considerably less than for a = 90°. At 6' = 90°,
the beam is defocused.

It is apparent from Figures 4 to 9 that the phase distortion is a
strong function of elevation angle 6'. Compensation for the phase dis-
tortion is possible, at least partially. However, the shape of the pri-
mary telescope mirror required for compensation is a function of both
elevation angle and Mach number. Such compensation should fall within

the capability of adaptive optics techniques.
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To discuss the altitude dependence, recall « = x'p_/ ogr,* Both
k' and pg, are constants for a given wavelength and specified atmospheric
conditions. Consequently, k varies directly with p_. Now examine equa-
tion (51). Since k << 1, the term 1 + « is essentially unity; it follows

that N-N, varies directly as k. Phase distortion changes as p_. Obviously

as altitude increases, phase distortion decreases.




VIII. CONCLUDING REMARKS

Compressible flow over a sphere has been obtained forming the basis
for a model of a blunt hemispherical laser turret. Phase distortion has

been calculated for several freestream Mach numbers. Phase distortion

data are presented for M_ equal to the critical Mach number. Calculations

are consistent with those of references (12) and (13).

The phase distortion is a function of both elevation angle and Mach
number. Hence optical compensation requires a variable shape primary
mirror.

The model of a hemispherical laser turret provides insight to the
behavior of phase distortion as a function of Mach number. See Figure
11. Also refer to Table III.

Another valuable aspect of the calculations is the decay of den-
sity perturbation with distance along the beam. See Figure 10. It is
apparent that the distortion is fairly localized. Within a distance of
s/R = 1.0, over 99% of the distortion occurs.

The formulation clearly shows the altitude dependence of phase

distortion.
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