
P 43 A034 105 MASSACHUSETTS INS T O~ TECH CAPSNTO SE LAS POP COMPUTES— ETC P~ S 9,aINOEN SELECTION IN A SLLF A DIPT IVE RELATIONAL OATA BASE M&NABEMnETC(U)SEP 76 A T C14A11 N004fle7S—CeonjUNCLASSIFIED NZTILCVTh.164
• ilL

D~E~UI
DD~DDI _ D~~~DQI

_ _

~ DD3Wi!~~D~IW~QDQEU_
_

I

I I
• _________

• IIt~ ‘ 25

~ Ill~6

LABOR ATORY FOR MASSACHUSEYI’S

C()M PUTER Sc! ENCE TECH N()1
(Jor?nti 1y P f l) J ’ (t lA(

MIT/LCS/TR-166

INDEX SELECTION IN A
SELF-ADAPT WE RELATIONAL

DATA BASE MANAGEMENT
SYSTEM

D D C

Arvola Y. Chan

This research was supported by the Advanced Research
Projects A gency of the Department of Defense and was

monitore d by the Of fice of Naval Research under
contract no. N00014-75-C-Oôb i

545 TECHNOLOGY SQUARE . CAMBRIDGE . MASSACHUSETT S 02139

P~STI~IB~rnON S’fATEMENT A
Approved for public reloai.;

—
Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (B9 .n Oat. BnI.r.d)

__
BEFORE _COMPLETING _FORM

REPORT NUN

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

~~~~~~~~~~~~~~~~ ~ [2. 
oov r Acc:ssioN No ~~. RECiP IENT’ S C A T A L O G  ~ uuec~~

(

~~~: 4 TITLE ~~~ S~ btIf ~~) — - j  5. TYPE OF REPORT S PERIOD COVERED 
-

Index Selection in a Self—adaptive S.M. Thesis
Relational Data Base Management System .\ 1975-1976

~~— --‘--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S. PERFORMING ORG. REPOPr NUMSER

MIT~LCS/TR—l 66__‘~~
___________ S .,,

~~~AU ‘I’ H OR(a)(
~~ 

Arvola~~7~ han
J ~~~~ , N~~~ l4-75-C-164

S PERFORMING O R G A N ? Z A T ~ON NAME AND ADD R ESS ¶0 PROGRAM ELEM ENT . PROJECT . T A S (
Massachusetts Insti tute of Technology AREA & W O R K  U N I T  N U M B E R S

Laboratory for Computer Science~’
545 Technology Square ; Cambridge , MA

Advanced Research Projects Agency Septlav r
II . CON TROLLING OFF ICE NAME AND ADDRESS ~~~~~~~~~~

De artment of Defense ~T~~~ NUM B E R O F  PA G E S

_____________________________________ 98
~ Otfie.) ¶ 5  SECURITY CLA SS.  (of Ala ,.p.’rl)

Of fice of Naval Research
Department of the Nacy 

IS. . DECLASSIF ICATION DOW NGRAf l I~~G

Unclassified
Inf ormation Systems Program
Arlington, Virginia 222 17 SC H EDULE

16 DI5TRIBIJ ’rfON STATEMENT (of til l. R.po,i) 

~~~ .
~ £ tT c , S ~~~’?C~~i

Approved for public release; dis{-riburfpn unifiii1~~ed

¶ 7 . DISTRIB UTION STATE MENT (0! IA. ab•tra ct .nt.r.d In Block 20, Ii dl Cf .r.rt ftoO’ R.po~t)

IS SUPPL E M E N T A R Y N O T E S

19 K EY WÔ~~DS (Continu. on f.y .i.. old. If n.c..aaty ~~d Idantily by block nu.~b•r)

Data base management , secondary indices , inversions, adaptive
data base system , global optimizat ion, automatic physical data
base reorganization , performance monitoring, heuristics

20 A B S T R A C T (Contlflu. on r.v.,.• .ld. Il .i.c....,v ~~,d Sd.nSlly by block nu.,b.,)

rhe development of large integrated data bases that support a
variety of applications in an enterprise promises to be one of
the most important data processina activities of the next decade .
The effective utilization of such~~data bases depends on the
ability of data base management systems to cope with the
evolution of data base applications. In this thesis , we attempt
to develop a methodology for monitoring the developing pattern _—~

FORM 1
~~~ 1 JAN 75 1473 EDIT IO N OF I NOV 65 15 OSSOL ETE 

—

S / N  0 1 0 2 - 0 1 4 - 6 I I O I
SICURITY CLA S SIFICATION OP THIS RA GE (SR.., Data J~ le• d ;

I . 
_  _ _  _ _ _



4 (C I I K IY Y  CLASSIFICATION OF THIS PAGL4I~
,, Oaf. Ene.r.d)

20.

of access to a data base and for choosing near-optimal physical
data base organizations based on the evidenced mode of use.
More specifically , we consider the problem of adaptively
selecting the set of secondary indices to be maintained in an
integrated relational data base. Stress is placed on the
acquisition of an accurate usage model and on the precise
estimation of data base characteristics , through the use of
access monitoring and the application of forecasting and
smoothing techniques.,~The cost model used to evaluate proposed
index sets is realist~~~’~nd flexible enough to incorporate theoverhead costs of ind~x

\
~~intenance , creation , and storage .

A heuristic algorithm ~is ’sqeveloped for the selection of a near-
optimal index set without ‘~an exhaustive enumeration of all
possibilities.

SECURITY CLASSIFICATION OP YpuS PAO t (WR ~~, D.e• Iø .r fj

a’ -



MIT /LC S/TR— 166

INDEX SELECTION IN A SELF-ADAPTIVE
RELATIONAL DATA BASE MANA GEME NT SYSTEM

~~~~ ~~rIN Arvola Y. Chan
3c ’ S~CIIIS fl

D~

-
-

- .- ~
.1f ‘*711tA1IUT1 COSU

~.. . L a~~’~ VEW(

September 1976

LABORATORY FOR COMPUTER SCIENCE

(Formerl y Proj ect MAC)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMB RIDGE MASSACHUSETTS 02139

~ D D c

k L ~UT.~~N S~ •IL ~~~T A
Approved fox public releuso,

Distribution Unlimitod

.d - - _ _ _ _ _- - ~~~~~
..

2

ACKNOWLEDGEMENTS

It is my pleasure to acknowledge the continual encouragement , advice and support that I

have received from my thesis supervisor . Professor Michael Hammer , during the research

reported in this thesis. I would also like to express my sincere thanks to members of the

Programming Technology Division of the Laboratory for Computer Science: Dennis

McLeod, Sunil Sarin , Bahram Niamir, Bruce Daniels, Christopher Reeve and Timothy

Anderson for the many helps, suggestions, criticisms and comments that they have provided

in the course of this work and in the preparation of this document. Special thanks are due

to Bahram Niamir for the derivation of the closed form solution for the tuple accessing cost

function included in Appendix I.

This research was supported by the Advanced Research Projects Agency of the Department

of Defense and was monitored by the Office of Naval Research under contract number

N00014-75-C-0661.

This report reproduces a thesis of the same title submitted to the Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology. in partial

fulfillment of the degree of Master of Science, August 1976.

_____ - —___

3

INDEX SELECTION IN A SELF-ADAPTIVE

RELATI O NAL DAT A BASE M ANAGEMENT SYSTEM

by

Arvola V. Chan

Submitted to the Department of Electrical Engineering
and Computer Science on August 9, 1976 in partial
fulfillment of the requirements for the Degree of

Master of Science

ABSTRACT

The development of large integrated data bases that support a variety of applications in an
enterprise promises to be one of the most important data processing activities of the next
decade. The effective utilization of such data bases depends on the ability of data base
management systems to cope with the evolution of data base applications. In this thesis , we
attempt to develop a methodology for monitoring the developing pattern of access to a data
base and for choosing near -optimal physical data base organizations based on the evidenced
mode of use. More specif ically, we consider the problem of adaptively selecting the set of
secondary indices to be maintained in an integrated relational data base. Stress is placed on
the acquisition of an accurate usage model and on the precise estimation of data base
characteristics , through the use of access monitoring and the application of forecasting and
smoothing techniques. The cost model used to evaluate proposed index sets is realistic and
flexible enough to incorporate the overhead costs of index maintenance , creation , and
storage. A heuristic algorithm is developed for the selection of a near-optimal index set
without an exhaustive enumeration of all possibilities.

THESIS SUPERVISOR: Michael Hammer
TITLE: Assistant Professor of Computer Science and Engineering

_4

4

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . 2

ABSTRACT 3

TABLE OF CONTENTS 4

LIST OF F!G ’JRES 6

Chapter

1 INTRODUCTION 7
1. Integrated Data Bases 7
2. Relational Data Model 8
3. Rela tional Data base Iniplementation 10
4. Architecture of a Prototype Self—adaptive DBMS 12
5. Thesis Objectives 13
6. Approach 14

~~. Organization 15

2 DATA BASE ORGANIZATION 17
1. File Model 17
2. Access Model 17
3. Tuple Organization 18
4. Index Organization 20
S. Transaction Model and Processing 23
6. Query Distribution 27
7. DomaIn Value Distribution 28
8. ObjectIve of Index Selection 29

3 COST ANALYSIS 30
1. Tuple Access 31
2. Index Creation 35

a’ - - -. - -- ~~~~~~~~~~~~~~~~ . - - . .

S

3. Index Access ing and Maint enance 38
4. Total System Cost 40

4 PA.RA.METER ACQUISITION 42
1. Statistics Gathering 42
2. Application of Forecasting Techniques 46
3. Exponential Smoothing 47
4. Adaptive Forecasting 49
5. Parameter Forecasting 53

5 INDEX SELECTION 55
1. Index Selection Heuristics 56
2. Index Selection Procedure 60
3. Performance of Index Selection Heuristics 63
4. On Further Reduc ing the Cost of Index Selection 66
5. Query Clustering 69

6 SUMMARY AND FUTURE RESEARCH 74
1. Comparison With Previous Work 75
2. DIrections for Future Researcl 76

Appendix

1 PROOF OF EQUATION (3.3) 80

2 ANALYSIS OF SORTING COST 85

REFERENCES 88

.4 ~.. ~~~ -.

6

LIST OF FIGURES

Fig ure Page

1 A SAMPLE REL ATI ON 9

2 CONCEPTUAL ORGANIZATION OF AN INDEX 21

3 PHYSICAL ORGANIZATION OF AN IND EX 22

4 TUPLE ACCESS COST FUN CTIONS 34

a’

7

CHAPTER 1

INTRODUCTION

The development of large integrated data bases, each serving a wide variety of applications,

promises to be one of the most important data processing activities of the next decade. The

effective utilization of such data bases is highly dependent on the relationship between their

physical organization and the prevailing modes of use to which they are put. In this thesis .

we address the problem of optimizing the performance of an integrated data base by

automatically adapting its physical organization to changing access requirements.

1. Integrated Data bases

An integrated data base may be defined as a collection of interrelated data stored without

harmful or unnecessary redundancy and accessed in a uniform and controlled manner,

serving one or more applications in an optimal fashion tMartin75]. It may be viewed as the

respository of information needed for performing certain functions in an enterprise. In

addition to accesses (continuous retrievals and updates) by application programs for regular

control functions, it may be used by interactive users for unanticipated information retrieval

• for planning purposes.

The profits to be gained from the integration of previously related but highly duplicated

data bases are manifold (Martin75, Chamberi in76]. The elimination of unnecessary

redundancy leads to reduced storage and updating costs. More importantly, the consistency

of information stored in the data base is enhanced, since iae pu~ i’uiiuy of having different

copies of the data in different stages of updating is removed . Furthermore, the improved

a’

Chapter 1 8 Introduction

coherence of the data will significantly increase the usability of the data base. By providing

users with the capability of extracting any information that is logically contained in the data

base, the generation of extensive printed reports on a scheduled base for manual analysis

can often be avoided.

In order for these data bases to be truly effective , the data management systems which

support them will have to manifest two important characteristics: data independence and

non-procedural access. By data independence we mean that users and their application

programs are shielded from knowledge of the actual ph ysical organizations used to

represent their data, concentrating on a logical view of the data. This makes the data base

easy to use and avoids the need for application programs to change when the data base’s

physical structure is reorganized. Non-procedural access also makes the data base easy to

use; this means the provision of access languages which allow the specification of desired

data in terms of properties it possesses rather than in terms of the search algorithm used to

locate it in the data base.

2. Relational Data Model

The relational model CCodd7O] of data has been proposed as a means of achieving the

above goals of data-independence and non-procedural access. The user of a relational data

base is provided with a simple and uniform view of the data , a logical view which is

completely independent of the actual storage structures used to represent their data. The

simplicity of this logical data structure lends itself to access by means of easy-to-use

languages, which provide associative referencing (content addressing) of the data base

contents.

_ _ _ _ _ _ _ _ _

Chapter 1 9 Introduction

Specifically, a relational data base consists of a collection of relations - a relation is a named

two-dimensional table, which has a f ixed number of (named) columns and an arbitrary

number of (unnamed) rows (called tuples). Each tuple (ii, t2, , t~) represents an entry in

the relation; t~, the ith component of a tuple, Is ~ member of D
~
, the domain associated with

the ith column. (Henceforth , we will use the terms column and domains interchangably.)

The relation EMP depicted in Figure 1 has four columns; for each tuple of the relation, the

corresponding columnar values represent the name, age, sex , and salary of the particular

employee . Figure 1 represents a snapshot of the relation at a particular point in time;

relational data base languages provide users the ability to selectively retrieve or modif y

individual tuples, as well as insert and delete tuples.

EMP: TUPLE NAME AGE SEX SALARY

1 Smith 30 M 16000
2 James 25 M 12000
3 Black 28 F 14000
4 Brown 35 M 20000
5 Jones 20 F 10000
6 W h I t e 40 F 16000
7 Gray 35 M 15000
8 Green 20 F 10000

Figure 1

A Sample Re lati on

The table of Figure I is purely the user’s logical view of the data base; there are no

stipulations as to how this data would actually be stored on the computer.

.4 . .

Chapter 1 10 Introduction

In order to find the names of all male employees making more than *15,000, the user might

ex press a query (Astrahan75) as

SELECT NAME
FROM EMP
WHERE SEX =

AND SAL > 15000.

The query language processor would translate this specification of the desired information

into searches on the data base that utilize the precise storage structures and auxiliary access

mechanisms used to store the data in order to locate the desired tuples and retrieve the

specified column values .

3. Relational Data Base Imp lementat ion

Because of the distance of the user’s view of a relational data base (and of his queries

against it) from the realities of the data base’s physical organization, more responsibility is

placed on a relational data base system than on a conventional system. This responsibility

takes two forms: choosing the physical representation for a relation; and optimizing the

execution of queries against a relation, making optimally efficient use of the available access

structures. Relational data base systems must possess “intelligence” in order to make

decisions in these areas , which have heretofore been the province of human decision-

makers.

We believe that the selection of good storage structures is the primary issue in relational

data base implementation, since the efficiency that can be achieved by a query optimizer is

strictly delimited by the available storage structures. Furthermore, the efficient utilization of

Chapter 1 11 Introduction

a data base is highly dependent on the optimal matching of its physical organization to its

access requirements, as well as to other of its characteristics (such as the distribution of

values in it). (For example, certain data base organizations are suitable for low update -

high retrieval situations, while others yield optimal performance in opposite circumstances.)

Hence, the usage pattern of a data base should be ascertained and utilized in choosing its

ph ysical organization. In addition, when viewed as the repository of all information used in

managing an enterprise, an integrated data base can no longer be considered as a static

entity. Instead, it is continually changing in size, and its access requirements gradually alter

as applications evolve and users develop familiarity with the system . Accordingly, the

tuning of a data base’s physical organization to fit its usage pattern must be an ongoing

process.

In current relational data base systems, the data base administrator (OBA) may make

recommendations to the system about desirable auxiliary access structures , but his

judgements are based largely on intuition and on a limited amount of communication with

some individual users. For large integrated data bases , a more systemat ic means for

acquiring information about data base usage, and a more algorithmic way of evaluating the

costs of alternative configurations, will be essential . A minimal capability of a data base

management system should be the incorporation of monitoring mechanisms that collect

usage statistics while performing query processing. A more sophisticated system would sense

a change in access requirements , eval uate the cost/benefits of various reorganization

strategies, and choose an optimal structure to be recommended to the DBA; eventually, such

a system might itself perform the necessary tuning.

a’ . . -

Chapter 1 12 Introduction

4. Architecture of a Pro totype Self-Ada ptive DBMS

The work to be reported in this thesis is part of an ongoing research effort to develop a

self-adaptive data base management system. The intent of this development is twofold: to

develop the techniques and methodology for the construction of such systems, and to do

performance analysis of these techniques so as to assess their costs and payoffs.

The operation of the initial version of the prototype system is envisioned as follows . The

specifications of data base interactions , by both interactive users and application

programmers , will be expressed in a non-procedural language; these are first translated into

an a high level procedural system level interface language, which is then interpreted by the

system modules. The language processor has available to it a model of the current state of

the data base, which contains , among other things, a description of the current physical

organization of the data base , and estimations of the characteristics of the data base’s

current contents. Using this information , the language processor can choose the best

strategy for processing each data base operation in the current environment. Statistics

gathering mechanisms are embedded within the system modules that interpret the object

code of the language processor , and record data concerning the execution of every data base

transaction. The statistical information gathered for a run is deposited in a collection area

and summarized from time to time. When the reorganization component of the system is

invoked (which will be at fixed intervals of time), the statistical information collected over

the preceding interval is combined with statistics from previous interval and used to obtain

a forecast of the access requirements for the upcoming interval; in addition, a projected

assessment of various characteristics of the data in the data base is made. A near-optimal

physical organization for the data base is then determined heuristically; optamality means

a’

Chapter I 13 Introduction

with respect to total cost for the upcoming interval, taking into account the storage and

maintenance cost of any auxiliary access structures. This cost is compared with the

projected cost for the existing organization. Reorganization will be performed only if its

payoff is great enough to cover an appropriate fraction of its cost as well as that of

application program retranslation.

5. Thesis Obj ectives

The principal goal of this thesis is to develop the techniques and methodology for the

construction of self-ada ptive data base management systems. At its heart, this is a problem

in pattern recognition, statistical forecasting and artlicial intelligence: first , to extract from

a mass of statistics relating to data base performance a succinct pattern which characterizes

its mode of use; second, to apply forecasting techniques developed in management science in

the detection of shifts in usage pattern and the projection of upcoming access requirements;

third, since an exhaustive consideration of all possible structures is computationally

infeasible, to develop efficient heuristics that can use the projected usage pattern to

synthesize a near-optimal structure.

The continuous monitoring of accesses to a data base opens up many possibilities for its

reorganization . Rather than providing a comprehensive study on reorganization

possibilities in a data base management system, we have limited the scope of our initial

investigation to a well-defined aspect of data base reorganization, so as to obtain some

concrete results . We have chosen as the vehicle for this stud y the problem of’ index

selection in a relational data base. A secondary index (sometimes referred to as an

inversion) is a well-known software structure which can improve the performance of

I’

Chapter I 14 Introduction

accesses to a relation (file) [Bleir67, Date7S, Martin75] . For each domain (field) of the

relation that is indexed , a table is maintained, which for each value of the domain in

question contains pointers to all those tuples (records) whose contents in the designated

domain is the specified value. Clearly, the presence of a secondary index for a particular

domain can improve the execution of many queries that reference that domain; on the

other hand, manitenance of such an index has costs that slow down the performance of data

base updates, insertions, and deletions. Roughly speaking, a domain that is referenced

frequently relative to its modification is a good candidate for index maintenance. The

choice of which (if any) domains to index must be done with care; a good choice can

significantly improve the performance of the system, while a bad selection can seriously

degrade it. The goal of our system is to make a good choice of those domains for which to

maintain secondary indices, based on how the data base is actually used.

6. App roach

There have been a number of previous studies on the index selection problem [Lum7I,

King74, Stonebraker74, Cardenas75, Held75b, Farleyl5, Scholnick75). However , we feel that

the resu~ts that have been obtained are not directly applicable to a complete or general data

base environment . Some of these have been formal analyses which have made many

simplif ying assumptions in order to obtain analytic solutions; others have been system

designs that are incomplete or unrealistic in many ways. Our thrust here is to relax many

of’ the simplif ying assumptions made in previous studies and to develop more complete and

accurate models of costs and accesses . In addition, we will stress the importance of the

acquistion of accurate parameters to the cost model, an area which is of special significance

in a dynamic environment where access requirements are continually changing, but which

a’ — - . - -~~~~~~~~~~- - .

Chapter I 15 Introduction

has hardly been addressed in previous works. Four basic components of our investigations

can be identified:

(1) the development of accurate cost models for the processing of data base transactions

under different indexing organization (i.e. when different sets of domains are

Indexed);

(2) the identification of the set of usage parameters that succinctly characterize the data

base usage and which can be inexpensively acquired during the processing of data

base transactions;

(3) the application of appropriate forecasting techniques to detect and respond to shifts in

access patterns and data characteristics;

(4) the design of heuristic computation procedures that exploit the structure of the index

selection problem in the synthesis of a near-optimal data base organization (i.e.

choosing a near optimal index set) at a reasonable cost.

7. Or ganization

The rest of this thesis is organized as follows. Chapter Two summarizes the data base

environment which we shall utilize: the data model, the transaction model, the storage and

index organizations, and the various assumptions we have made. In Chapter Three, we

present our cost analysis for various basic operaticns in the data base and describe the

ob ject ive cost function that we will attempt to minimize. Then in Chapter Four, we ex plain

— _ a’. _ _ . . -- - - . . - -

Chapter 1 16 Introduction

how parameters needed by our cost model are acquired through statistics gathering and
application of forecasting techniques. In chapter Five, we argue for the need of heuristics
for the solution of the index selection problem and describe the heuristics we have devised.
Finally, Chapter Six includes summary, conclusions and suggestions for future research.

a’ - -~~~~~~-- - - --~~~~~-~~~~~-- ---

17

CHAPTER 2

DATA BASE ORG ANIZATION

In this chapter , we describe the data base environment we have assumed in our research.

Our discussions will be based on a rather general model of the data base, one which can

readily be extended to characterize a large variety of existing systems. We will describe the

storage and access structures in the data base, the kinds of transactions that may be
conducted against it, and the way transactions are processed. In addition, we will contrast

our assumptions with those employed in previous studies which we feel to be incomplete or

unrealistic.

1. File Model

As we have said, we operate in the environment of a relational data base. The totality of

formatted data in the data base consists therefore of one or more relations. However , we

address here the reduced problem of selecting indices for a data base made of a single

relation. (We expect that extens ions can be made to the general multi-relation case.) Even

though insertion and deletion of tuples are permitted in our transaction model, we will

assume that the cardinality (number of tuples) of the relation remains relatively unchanged

between two consecutive points at which index selection is considered (i.e. the rate of

change in size of the data base per review interval is small).

2. Acoes~ M odel

Previous studies on index selection have often assumed rather unrealistic access models:

-A

Chapter 2 18 Data Base Organization

both King tKing74] and Schkolnick [Scholnick75] have assumed that the cost of ac~essing

an arbitrary subset of all the tuples in a relation is directly proportional to the size of the

set. This will be true only if all tuples are equally accessible, as in the case when they all

reside in primary memory, or equally inaccessible, as in the case when each is independently

stored on secondar y storage. For data bases of reasonable size and reasonable tuple length.

neither assumption will hold.

In this study, we will assume that the totality of the data base (both the stored representation

of the relation and the set of secondary indices that are maintained) resiaes on direct access

secondary storage devices like disks [Rothnie74, Blasgen76). Physical storage space on such

devices is partitioned into fixed size blocks called pages. The page is the unit of memory

allocation and the unit of transfer between main memory and secondary storage. The

accessing cost of a page is assumed to be independent of the sequence of page accesses.

Furthermore, we will assume that the system is I/O bound, so that page accessing cost

dominates all other internal processing Costs. Hence, the processing cost for a data base

transaction is measured solely in terms of the number of pages that have to be accessed in

its processing.

3. Tuple Or ganization

We will assume that cuples are of fixed length (i.e. each occupies the same amount of

physical storage space) so that each page has a capacity for a fixed number of tuples. To

retrieve all the tuples in the relation, a scan of all the pages on which the tuples reside can

be performed . (Henceforth , we will refer to these pages as the segment on which the

relat ion is stored.) The cost of this sequential scan is just ~ pages, where p is the number of

a’

Chapter 2 19 Data Base Organization

pages in the segment. However , in many instances, only a small subset of the tuples will

actually be required for processing; hence, it is desirable to provide additional access paths

to enable access to just those tuples that are needed. In other situations, all tuples may be

required, but in a specific sort order. If the required ordering is different from the one in

which tuples are physically stored, then sorting will be required; for typical sizes of data

bases, an external sort would be in order, and would entail going over the data in several

passes. Hence, it is desirable to physically cluster together tuples that are needed together.

Held and Stonebraker [Held75b] have investigated a variety of organizations for storing

tuples of a relation on pages of a direct access file, and have made a broad categorization of

keyed structures versus non-keyed structures . A key structure is one in which a domain (or a

combination of domains) is used to determine where in secondary storage the tuple should

be stored . The advantage of a keyed structure is that tuples that are often needed together

can be clustered together physically. However , any modification to a tuple in the keyed

domain(s) will require the tuple to be relocated. Hence, all index entries that point to this

tuple will have to be modified also. A non-keyed structure is one in which the tuples are

stored using some criteria that is independent of the value of the tuple. The advantage of

a non-keyed srructure is that it enables auxiliary access structures like indices to be

maintained more economically.

For the purpose of this thesis, we will assume that the tuples in the relation are organized as

a non-keyed structure. We will assume that they are stored sequentially on the pages of the

segment without any preferred ordering. (For example , they might be stored according to

their chronological order of insertion into the data base.) Since the cost of a sequential scan

Is dependent on the number of pages in the segment , it is essential that the storage

utilization in the tuple space be maximized, so as to minimize the cost of segment scans. We

a’

Chapter 2 20 Data Base Organization

will assume that all empty spaces resulting from the deletion of tuples will be reused for
newly inserted tuples, before a new page is allocated for the segment. (This can readily be
done by keeping a linked list of the empty spaces in the segment. The linked list can be

stored in the empty spaces in the segment itself. Only a pointer to the head of the list need

to be maintained separately for the purpose of storage allocation in the tuple space.) Even
with the above assumption, poor storage utilization can still result from a long sequence of

tuple insertions followed by a long sequence of tuple deletions. On the other hand, garbage

collection in the tuple space would have to be accompanied by the modification of all those
index entries for tuples that are relocated. To simplify our discussions here, we will finesse
the need to garbage collect in the tuple space by assuming that there are no clustered

deletions of tuples from the same page, and that the general trend is for the data base to

grow in size. (Note that we could readily include garbage collection overhead in our cost

model by monitoring the average number of tuples that are relocated per review interval, in

addition to the actual number of insertions, deletions and modifications, towards the

estimation of index maintenance cost.)

4. Index Or ganization

We assume that each tuple in the relation has associated with it a unique tuple identifier
(TID), a logical address which enables the tuple to be located with a single page access . An

index on a column of a relation is then a mapping from values in the column to TIDs of

tuples with those values. Conceptually, an index may be viewed as a binary relation

consisting of pairs whose first component is a value from the column and whose second

componeflt is the TID of a tuple with that value. Figure 2 shows an index on the column

salary for the EMP relation depicted in Figure I. (This sequential organization is actually

Chapter 2 21 Data Base Organization

assumed in (King71].) However , as Cardenas [Cardenas75] has pointed out , the
organization of the index is itself an important problem in the enhancement of system

performance. We will therefore assume that the index is organized in such a way that all
those TIDs associated with the same column value are easily accessible. Specifically, we will
adopt the VSAM-like tree organization as used in Blasgen’s study [Wagner73, Blasgen76].
Figure 3 shows how the index shown in Figure 2 will actuall y be stored. It is a balanced
tree whose nodes are index pages. Leaf pages contain pairs whose first component is a
column value and whose second component is a sorted list of the TIDs of those tuples with
that column value . The pairs in each leaf-page are sorted on the value of their first
component. Higher level pages contains pairs consisting of the identifier of a lower page
and the high key value on it . These pairs are also sorted by the values of their first
components. The tree is kept balanced on insertion or deletion in a way that is similar to
the maintenance of B-trees EBayer72), with the splitting and merging of pages as necessary.

SALARY T I D

16000 1
12000 2
14000 3
20000 4
10000 5
16000 6
15000 7
10000 8

FIgure 2
Conceptual Organization of an Index

.4

Chapter 2 22 Data Base Organization

/
/

/
I
,

/
-

~~

. I,

FJ~1I H~~
/

‘

/
/

~~~~~~~~~ I ~ ~~~~~~~~~ 1,
~ ~i E~F~~

Figure 3

Physical Organization of an Index



Chapter 2 23 Data Base Organization

5. Transacti on Model and Proce ssing

We will consider four types of transactions that may be conducted against the data base:

the retrieval, insertion, updating and deletion of tuples. An update or a delete operation is

often specified in two components: a selection component which determines the set of tuples

to be processed, and an action component (which in the case of an update, determines how

each tuple is to be processed). As will be discussed below, the use of an index (or indices) to

identif y the set of tuples that satisf y (or potentiall y satisf y) a selection component entails a

number of steps, after which we can no longer assume that any part of an index still reside

in primary memory. Hence, we can assume that the maintenance to the indices due to an

update or delete is independent of the selection component of the transaction (i.e., the

maintenance cost of an index due to a tuple deletion or modification is the same regardless

of whether the tuple is identified through the use of that index or through a sequential

scan). Therefore, we will assume that the data base transactions specified in the source

language get translated by the language processor into sequences of queries, updates, inserts ,

and deletes, as described below.

(1) O~uery - this can result either from a retrieval specification in the source language or

from the data selection component of an update or delete specification as discussed

above. It enables those tuples to be retrieved or acted upon to be specified in terms of

the properties they possess. In relational access languages that are currently being

developed, powerful and general data selection predicates are allowed [Codd7l ,

Boyce74, Astrahan75, Held75a, Czarnik75]. However , in order to be able to evaluate

the tradeoffs of a particular index , we shall limit ourselves to the consideration of only

those data selection predicates for whose processing the utility of indices can readily be

a’ . -- - -



Chapter 2 24 Data Base Organization

determined. We will therefore allow only the following predicate types:

(a) a predicate consisting of a single equality condition or a conjunction of two or more

equality conditions;

(b) a predicate consisting of a disjunction of two or more equality conditions.

(By an equality condition , we mean a predicate of the form Ask, where A is some

domain name, and k is a constant or program variable.)

Henceforth, we will refer to the process of identifying the set of tuples that satisfy

(qualify for) the selection predicate associated with a query as the resolving of the

query. (A retrieval specification in the source language may in addition to the selection

of tuples . specify what fields in the selected tuples are to be output or further

processed. However , the time to perform these operations is independent of which

indices are maintained, and so will be ignored in our disucssion here.) For a query

arising from a delete or update specification in the source language, we will assume

that each qualified tuple is returned accompanied by its TID, thus allowing it to be

identified in subsequent delete or update operations.

An index (or a set of indices) can be used to totally or partially resolve a query. (A

query is said to be totally resolved when the exact set of tuples that satisf y the

associated selection predicate is identified, and it is said to be partially resolved if a

superset (but one which is smaller than the entire set of tuples in the relation) of those

tuples that satisfy the associated selection predicate is identified. This partially

Li



Chapter 2 25 Data Base Organization

qualified set of tuples will have to be brought into main memory and each tuple must

be examined to determine if it satisfies the full predicate.) Given a data selection

predicate and an existing set of indices, there are a number of possible strategies for

obtaining the set of selected tuples. Depending on the nature of the predicate and the

selectavities of the domains involved , it may be most profitable to use none, all, or a

subset of the applicable indices. In previous studies, it is assumed that indices are used

whenever they are available. However, as we will see from our cost analysis in the

next chapter, there may be situations in which it would be most economical to use less

than the full set of applicable indices in resolving a query. For simplicity, we will

assume that the query processor uses the following decision criterion: it will evaluate
the expected cost of processing the query using the full set of applicable indices (i.e.

existing indices on those columns which are specified in the query) and will use all of

them only if this ex pected cost is less that of a sequential scan; otherwise a sequential

scan will be utilized. (Note that a disjunctive query will be resolved using indices only
if indices on all of the domains referenced in the query are available; a tuple that

does not satisfy any of the predicates resolved through indices can still potentially

satisf y those predicates on domains for which no indices exist , and hence some

qualified tuples can only be identified through a sequential scan of the entire segment.)

We will assume that a query is processed using indices as follows:

(a) For each domain specified in the query and for which an index exists, a list containing

the TIDs of’ all those tuples that satisfy the equality condition on the column in

question Is obtained;

.4 - -~~~~~~~~~ . ..---- --.. - — - .- , -. --- - - .



Chapter 2 26 Data Base Organization

(b) Depending on whether the selection predicate is a conjunct ion or disjunction . an

intersection or union list of all those lists obtained in step (a) is formed. This restricted

list contains the TIDs of all those tuples that satisf y the conjunction or disjunction of

those equality predicates involving domains for which indices exist;

(C) This restricted set of tuples is brought to main memory for further processing. (In the

case of a conjunctive query that has only been partially resolved, i.e., the restrtcted set

of tuples only satisfy the conjunction of those equality predicates involving domains

which are indexed , each of the restricted tuples is checked against the equality

conditions involving the non-indexed domains and then discarded or retained

accordingly. (This is sometimes known as the removal of false-drops [Schkolnick75).)

(In the process of obtaining the TID list for the restricted tuples that have to be

accessed, it is possible that some of the TID lists involved are so long that they cannot

completely reside in primary memory. Therefore , we will assume that the list

manipulation phase is combined with the tuple access phase: i.e., we will assume that

the individual TID lists are in the same sort order, so that the union or intersection

process can be carried out in a single pass over all of the participating lists [Welch~6).

By utilizing portions of the resulting TID list as soon as it is available, extra page

accessing can be avoided.)

(2) Insert - this inserts a single tuple into the relation. It is specified by supplying a value

for each of fields in the tuple to be inserted, and results in the tuple’s insertion into the

main file, together with the necessary maintenance to the existing set of indices.

.4 . .



Chapter 2 27 Data Base Organization

(3) Delete - this deletes a single tuple from the relation. It is specified by supplying the

TID of the tuple to be deleted, together with values in different fields of the tuple,

and results in the deletion of the tuple from the stored representation of the relation,

and the necessary maintenance to the existing set of indices to reflect this deletion.

(4 ) Update - this involves a single tup le in the relation . It is specified by three

components: the TID of the tuple to be updated, its old component values, and its new

component values. It causes the tuple to be updated, and the indices on the affected

domains modified accordingly.

6. Quer y Distribution

In earlier index selection studies, simplifying assum ptions on query distributions are often

adopted. In [King74], it is assumed that selection predicates only consist of of single equality

conditions. Hence, it is sufficient to summarize the statistics on query distribution by the

probabilities of each domain being specified in a selection predicate. In (Scholnick’75), the

restriction to the consideration of single-domain queries is relaxed , but with the imposition

of the new assumption that domain occurrence probabilities in queries are independent.

Hence, the model that is used there is unable to account for the positive or negative

correlation among domain occurrences in queries; such correlation is common in the usage

of real data bases. (For examp le, in queries on the EMP relation (Figure I), age and salary

might often be specified together while name is more likely to be specified alone.) In this

study, we will do away with any such simplifying assumption by observing the occurrence

frequencies of those queries that actually occur.

Li . —~~~--~~~~-— - ~~- - .. . - -- . - .



Chapter 2 28 Data Base Organization

7. Domain Value Distrib ution

In earlier work , it is often assumed that the set of distinct values in a domain is evenly

distributed among tuples in the relation, and that all domain values are equally likely to be

specified in the constant part of a selection predicate. Consequently, the average fraction of

tuples that can be expected to satisf y an equality condition on a domain is assumed to be the

reciprocal of the number of values in the domain. However , in a real data base, it is often

the case that the distribution of domain values among tuples and in query specifications are

skewed , i.e. some values are used more often than others. We would like to take advantage

of our continuous monitoring facilit y to detect such situations. We will therefore define a

new measure for the resolving power of a domain index. We define the average selectivity

of a domain as the average fraction of tuples under consideration that have historically

satisfied an equality condition involving that domain.

Since we allow the specification of multiple domains in queries, it is necessary to have a

measure for the joint resolving power of two or more domain indices. For this purpose, we

will assume that the specification of values from different domains in a query are

uncorrelated (i.e., given that a query specifies two columns A and B, the probability of a

particular key value in column B being specified is independent of the value in column A

that is specified). Hence, the joint conjunctive selectivity of a set of domains D. each with

average selectivity AS1 is

(2. 1) 
~ 1(D AS1

(The interpretation of this expression is that the expected fraction of tuples that satisfy a

. .



Chapter 2 29 Data Base Organization

number of predicates simultaneously is equal to the product of the individual expected

fractions that satisfy the predicates.) Similarly, the joint disjunctive selectivity of a set of

domains D, each with average selectivity AS1 is

(2. 2) 1 — 

~ l D  (1 — AS 1)

(The interpretation of thu is that the expected fraction of tupies that satisfy a dis~unction

of equality conditions is the complement of the fraction expected not to satisfy any of the

equality conditions in the disjunction.)

S. Obj ective of Index Selection

We assume that index selection wilt be reconsidered at f ixed intervals and that usage

statistics are collected during the processing of each transaction in the data base and

summarized at the end of each interval. The ob jecti ve of the selection process is to

minimize the total system cost for the upcoming interval. This total cost includes retrieval

processing; index creation , maintenance and storage; and application program

retranslation. In contrast with previous studies, we have chosen to minimize this total cost ,

rather than using a probabilistic model of data base transactions and attempting to

minimize only the expected cost of an average transaction. Our information on the absolute

level of’ activities in the data base (in addition to their relative levels) allows us to amortize

such cost as index creation, index storage and application program retranslation over the

data base transact ions, rather than completely omitting them from the cost model.

Li - . - - .



30

CHAPTER 3

COST ANALYSIS

One of the most important tasks in the analysis and enhancement of performance of any

system is the determ ination of the set of parameters that have a significant effect on

performance and the formulation of the cost model relating system performance to these

parameters . Since we operate in a dynamic environment , we have to resort to the continuous

monitoring of data base transactions to obtain the parameters in our system. As we shall

see, most of these parameters can be directly measured . However , there are others that are

not directly observable , in which case we have to relate them to statistics that can be readily

obtained through stat istics gathering. In this chapter , we will analyze the cost of various

basic operations in the data base system and then discuss the objective cost function that

our index selection procedure will endeavour to minimize.

As we have seen , the processing of a query using indices involves the retrieval of the

relevant TID lists from the indices, the manipulation of these lists to obtain an intersection

or union list, and the accessing of the restricted set of tuples as identified by the resultant

list. As in previous studies, we assume that the manipulation of the TID lists is done in

main memory, and is therefore negligible according to our cost criterion of page accesses.

Similarly, any need to remove “false -drops ” from the restricted set of tuples is done in

primary memory at a negligible cost . Hence, the processing cost of a query using indices can

be assumed to be made up of’ two components: the cost of using the relevant indices and

the cost of accessing the restricted set of tuples. As regards to modifications to the data base

(update, insert and delete), maintenance of the existing indices in addition to modifications

of the stored representation of the relation must be made. Since the latter cost is incurred



Chapter 3 31 Cost Analysis

regardless of what domains are indexed, we will ignore it from further consideration, and

concentrate only on the maintenance cost of the indices in determining the costs of data base

modification.

1. Tuple Access

In order to compare the utility of different sets of indices towards the processing of a query,

we need to have an estimate of the sizes of the sets of tuples that must be accessed in order

to resolve the query, given the availability of each of the index sets. We have earlier

defined the average selectivity of a domain as a measure for the resolving power of an

index on that domain. Using the selectivity of the domains specified in a query which are

indexed, we can estimate the number of tuples that have to be examined to evaluate all the

predicates. Since our cost criterion is the number of pages that have to be accessed, we have

to translate this expected number of tuple accesses to an expected number of page accesses.

We feel most previous index selection studies have been inaccurate in their choice of cost

model for the accessing of such a restricted set of tuples. In [Scholnick75] linear relationship

between the number of tuples to access and the accessing cost is assumed . This is equivalent

to saying that each tuple specified in the resulting TID list will incur one page access In
[HeId7Sb), a piecewise linear relationship is assumed: if the relation is stored as p pages of

tuples each, and r tuples are to be accessed , then the number of page accesses is assumed to

be min(r, p). In a paged memory environment in which tuples are blocked together on

pages, neither of the above schemes accuratel y model the tuple accessing process (since the

restricted set of tuples can be accessed in the order of their TIDs so that tuples from the

same page will incur only a single page access). A more realistic scheme to estimate the

accessing cost for r tuples is to assume that they are equally likely to be any r tuples in the

Li - . - -- --



Chapter 3 32 Cost Analysis

segment, and to use the expected number of page accesses for r randomly selected tuples in

the relation as an estimate for the tuple accessing cost for a query whose resolution under

the availability of a particular set of indices is expected to require the retrieval of r tuples.

This expected number has been considered in a number of previous studies [Rothnie72,

Schmid75 , Vue75]. However , the formulations that have been derived are often

computationally infeasible or inaccurate. Based on a Markov model approximation to the

underlying process of accessing r randomly selected tuples, Rothnie tRothnie72) has obtained

a lower and upper bound on the ex pected number of pages that have to be touched.

Schmid and Bernstein (Schmid75), using a combinatorial analysis , have derived an exact

formulation that involves a complicated recurrence relation whose computation for moderate

values of the parameters becomes very costly and inaccurate because of the significant

round-off errors encountered . The following formulation, due to Yue and Wong [Yue75], is

by far the most satisfactory.

Let n • number of tup les in segment

t a number of tuples per page

p • number of pages in segment

f (r) a expected number of page access for r randomly selected tuples, then

(3. 1) f ( 0 )  0

t ( p - 1) — 1  Pt(3. 2) f (r .1) = f U )  +
p t — i  p t—i

The value of f for an arbitrary value of r can be computed from the recurrence relation

with relatively little round-off error. However , this computation involves r multiplications

and r divisions and is therefore quite expensive to carry out. We (in conjunction with



Chapter 3 33 Cost Analysis

Bahram Niamir of the MIT Laboratory for Computer Science) have obtained a closed form

solution of the above difference equation which can be computed more efficiently.

(n_ r

n (
(3. 3) f (r) a 

~~~~~~~~~ — ____
(n

A detailed derivation of this formulation is included in A ppendix I. The above

formulation also admits of a simple interpretation. Consider an arbitrary page in the

segment; the probability that it does not contain any of the r desired tuples is equal to the

number of ways of choosing t tuples from n - r tuples, divided by the number of ways of

choosing t tuples from n tuples. Hence, the expression within the parenthesis gives the

probability that this page contains one or more of the r desired tuples. Thus, multiplying

this ex pression by the total number of’ pages in the segment gives the number of pages

expected to contain one or more of the desired tuples, i.e., the expected number of page

accesses.

For a fixed value of p (say 1000), and for a typical value of t (say 50), the shape of the

function f’(r) is shown in curve •3 of Figure 4. It is Instruct ive to note that for values of r

c1ose to, but less that p. the value of f(r) is roughly O.6p, which is substiantiall y different

from the value given by a linear cost function. (Curve ii indicates a linear cost function

(Scholnick75] while curve .2 indicates a piecewise linear cost function [Held75b].)

Chapter 3 34 Cost Anal ysis

4000 - - (1)
/

/

3500 .. /
/

3000
/

/

expected
//2500 - - . /

number /
/

/
of 2000 - - -

page //
1500 -~~~ /accesses /

/

1000 _ _ _ _ _--j~) (3)

,
,

500 - . -

/0 ~~~ I l —-- -—-~----—~----- •
~~

-..--.-

— .——— . — 1 .__ .___..__ _ __ i _.i_ i_ i .______ .______ .__ _ ____j_ —————— . —

0 500 1000 1500 2000 2500 3000 3500 4000

num ber of tup les to be accessed

Figure 4

Tup le Accss Cos t Func ti ons

Li

Chapter 3 35 Cost Analysis

2. Index Creation

In order to determine if reorganization is worthwhile, we need to have an estimate for its
costs and its payoffs. Two major components of the reorganization cost (due to a change in
indexing policy) are:

(1) cost of retranslating existing application programs;

(2) cost of creating the new indices.

T ’e former can be es~iriaated from the previous translation costs of the individual

application programs. (In many systems, the data manipulation language is interpreted in
which case no retranslation cost is incurred as a result of physical reorganization.) The
latter , in general, depends both on the current size of the relation and on the number of

distinct key values in each of the domains, we assume that an index is created as follows.

(1) For each tuple in the relation , a pair consisting of the value of the tuple for the
indexed domain, and of the tuple identifier is formed.

(2) These pairs are sorted, with the domain value as the major sort key, and the tuple
identifier as the minor sort key. (Typically, this will involve an external sort consisting

of a sorting and a merging phase.)

(3) A data structure (see Figure 3) that facilitates the accessing of the list of tuple

identifiers for tuples associated with any value in the domain is constructed from the

Li

Chapter 3 36 Cost Analysis

sorted pairs of domain values and tuple id.

Let ti number of tuples in relation

p number of pages in segment

w = number of words per page

b = number of pages available for internal buffering

in number of words in the representation of a key value in the domain

Step one involves the scanning of the segment and the formation of the pairs of key value

and TID. For practical sizes of the data base , these pairs have to be written back to

secondary memory for temporary storage. This can be combined with the initial internal

sorting phase of step two with a cost of

(3, 4) p + fn (1n+1)/w~

where p is the cost of scanning tuples in the segment and In(ln.l)iwl is the number of

pages needed for the writing out of the n pairs (each of length ln.1) of domain value and

TID into the initial sorted subfiles. Let

P ’ • In(ln+1)/w l

Then we will assume that at the end of step one, s - I subfiles of length b and one of length

b’ are formed where

(3. 6) s • 1p ’/bl

Li - - -

Chapter 3 37 Cost Analysis

/ b if mod (p ’,b) = 0(3. 7) b’ • I
~, mod (p ’,b) otherwise

The cost of merging these s subfiles is derived in Appendix 2 and is given by

(3. 8) Cme rge (S - 1~ b’)

However , we note that in the last pass of the merging process, instead of writing out the b ~‘

(s - I) • b’ pages for the single sorted file, we will build the VSAM -like tree for the index.

Hence, the cost of the second phase of the index creation procedure is

(3• 9) Cmerge (S — 1, b’) — (b * (S — 1) + b’)

Finally, the cost of the third phase consists of writing out the leaf and node pages of the

index tree and can be estimated as follows. (We will assume that pages in an index are not

filled to capacity at creation time, so as to facilitate subsequent modifications.)

Let u~ • initial fraction of utilization in a node page

u1 = initial fraction of utilization in a leaf page

v = number of distinct key values in the indexed domain

c = number of key pointer pairs a node page can contain

k • initial number of key pointer pairs with which a node page is filled (.u~’:’c)

then the number of leaf pages If is

_ _ _ _ - --~~~ - - - -~~~~~-~~~

Chapter 3 38 Cost Analysis

(3. 10) if (V * In + n)/(u1 * w)

The height h of the index tree is

(3. 11) h = UOg klfl

(where the leaf nodes are at height 0), and the number of node pages is

(3. 12) l i f /k i + F l i f / k i / k i ~ F IF 1f / k ~ / k l /k1 +

if/k + If/k 2 + If/k 3
+

= l f / (k — 1’

From the above ana l ys i s , we also have a roug h estimate for the storage icquiternent of an

index on the domain in question , which is

(3. 13) if + lf / (k - 1)

The above anal ysis has been motivated by the need to estimate the costs of index creation

and storage. However, it depends very much on the number of dist inct keys in the indexed

domain, for which we can only have a iough esti m ate Consequentl y, it will be difficult to

come up with a close estimate of the index ci cat ion and stora ge costc

3. Index AccessIng_and MaintenRnce

(The average cost of using an index as well as the total maintenance cost of an index within

Li

Chapter 3 39 Cost Analysis

an interval can be directly measured. The purpose of the analysis below is only for the

purpose of estimating these parameters for those domains which are not indexed.)

The use of an index to obtain the list of tuple identifiers with a particular value in the

indexed domain involves starting from the root of the tree, and following a path through

the node pages which leads to the leaf page containing the desired TID list. Let h be the

height of the index (where the root of the tree is at height 0, and the leaf pages are at

height h), then the cost of using the index to obtain an average TID list can be estimated as

(3. 14) h + Fif/v i

Similarly, the cost of modifying a TID list in a leaf of the index (as a result of a tuple

insertion or deletion) when no overflow or underf low is incurred, is

(3. 15) h + 2 ~1f/v]

(The maintenance to an index due to the update of a tuple in the indexed domain can be

assumed to be the sum of the maintenance due to a delete and an insert .) The cost of index

maintenance due to the splitting and merging (or garbage collection) in the index is more

difficult to parameterize , since it depends on the actual sequence of tuple insertions ,

deletions and modifications. This component has often been completely ignored in previous

studies. Here, we can add to the above cost an average overhead cost per modification, a

parameter which can be obtained by monitoring the actual maintenance of an index. For

those domains that have not been previously index , the normalized average overhead

among those indices that have been maintained can be used as a very rough estimate.

F,-.

Chapter 3 40 Cost Analysis

4. Total System Cost

With full knowledge of the upcoming requirements , the total system cost for the next

interval under a particular indexing policy is computed as follows. For each query type, we

can determine, using the selectivities of the domains that occur both in the query and in the

proposed index set , how many tuples will need to be scanned to resolve this query type, with

the full use of the indices. Our non-linear cost function translates this into an expected

number of page accesses. To this is added the expected number of page accesses that are

involved in accessing the indices themselves. This then gives us the total processing cost for

this query type, if the proposed indices are used. We then know if the query processor

would, given the proposed index set, use them to resolve this query type or would process it

by means of a sequential scan. In any event , we thus know the projected cost of processing

this query type in the presence of the proposed set of indices. We multiply this cost by the

ex pected frequency of this query type, and repeat the process for all the query types. This

gives the projected total query processing cost. Adding to this the projected indexing costs

(creation (if applicable), maintenance (due to tuple insertion, deletion and modification) and

storage) and the application program retranslation costs (nil for the index set which is

identical to the one that is maintained in the previous interval) yields the total system cost

for the next interval.

Let CC1 ex pected creation cost of index on domain i (if not already exist)

MC1 a expected maintenance cost of index on domain i

SC1 z expectedstorage cost of index on domain i

AC 1 a expected cost of obtaining a TID list using an index on domain i

AS 1 a average selectivity of domain i

Li - - - - - - - —

F-.

Chapter 3 ii Cost Analysis

Q = projected set of queries in upcoming interval

Fq = occurrence frequency of query q where q £ 0,,,
n = average number tuples in relation

p = average number of pages in stored representation of relation

a set of domains indexed in the previous interval

• set of domains specified in query q

Tq 2 type of query q (0 if conjunctive, I if disjunctive)

RC (D) a application program retranslation cost, 0 if D -

1q (D) • I if Dq c D, 0 otherwise

Cq (D) s cost of processing query q with the index set D

(l_Tq)omin(p~((~j £ Dn Dq
AC

~
)+f((

~i ~ Dn Dq
AS1)sen)))

Tq~’((I lq)~:’p4q’~min(p.((~j c Dq
ACi)f~~”(fi £

The objective of the index selection procedure is then to select the index set D which

minimizes the following expression:

(3. 16) TIED (CC1 + MC1 + SC1) + Tq~ Q Fq * Cq (D) + RC(D)

~

~~~~~~~~~~~~ 
- -

~~
- 

~
- 

~~~~~~~~~~~~~~~~~~~~~


42

CHAPTER 4

P ARAMETER AC QUI SITION

A fundamental problem in an adaptive system operar~ng in a dynamic and uncertain

environment is the exploitation of new information in reducing the uncertainty of the

system. In our context , this involves the utilization of observed data on how access

requirements and data characteristics change over time in the estimation of exogenous

(uncontrollable) parameters essential for predicting the performance of different indexing

organizations for the planning horizon. In the following sections, we will describe the

statistics that are to be collected during transaction processing. We will then explain our

choice of forecasting technique and how the various parameters in the system are to be

forecasted .

1. Statistics Gather ing

Statistics are collected during the procesing of each data base transaction for twc purposes:

(1) as a direct measurement of certain system parameters in the current time interval;

(2) to be used in the indirect estimation of certain system parameters, parameters that

cannot be measured directly or whose direct measurement would entail excessive

overhead.

The statistics to be gathered for the purpose of index selection fall into four general classes.

Li

Chapter 4 43 Parameters Acquisition

(1) Index Maintenance Statistics - This has several components. First of all, there is the

total maintenance cost of each active index in the current interval. For domains that

are not indexed , we need to obtain an estimate of the cost that might have been

ex pended had an index been maintained on each of these domains. For this purpose,

we record the total number of tuples that are deleted from and inserted into the

relation in the current interval, and the number of updates to each domain in the

tuples. In addition, we will break down the maintenance cost of each active index into

two parts: the cost of basic maintenance to a leaf in the index tree, and the more

difficult -to-parameterize costs of node splitting and merging necessary for maintaining

the index as a balanced tree . This will allow us to calulate the normalized node

splitting and merging overhead per insertion or deletion (an update can be counted as

a delete and an insert) in the active indices, which will be used in estimating the cost of

maintaining an index on a domain which is not indexed tn the current interval.

(2) Query Type Statistics - The type of a query is determined by the set of domains it

utilizes and by whether it is a conjunction or disjunction of equality predicates. We

record the occurrence of each query (this can be encoded as a bit pattern) and then

summarize the occurrence frequencies oi each query type from time to time.

(3) Domain Selectivity Statistics - For each domain, we maintain its average selectivity

over all uses of the domain in equality conditions in the current interval. This is

accom plished by recording the number of times the domain occurs in equality

conditions and the sum of the select ivities of the domain in each of these predicates.

If an index for the domain is used to resolve the particular equality condition, then the

precise selectivity of the domain for this query can be calculated as the fraction of

Chapter 4 44 Parameters Acquisition

tuples in the relation with the domain value in question. If the equality condition is

resolved through a sequential scan, the selectivity of the involved domain has to be

calculated in a reduced tuple space and then extrapolated to the entire tuple space.

This is necessary for two reasons: in the first place, the scan may be of a reduced set

of tuples identified through the use of an index (or indices); secondly, we assume that

the query resolver is efficient in that it will avoid the unnecessary checking of tuples

against equality predicates (i.e., avoiding testing subsequent predicates in a conjunction

once one has evaluated to false, or in a disjunction once one has evaluated to true).

The estimation of selectivity can be done as follows:

(a) Suppose the equality condition appears in a con junction of conditions of the form

C1 A C 2 A A C ~

where each of the C1 is an equality condition involving domain D
~
. (We assume that

the ordering of the equality conditions above reflects the order of conditions against

which a tuple is checked) Let N0 be the total number of tuples scanned, and let N1,

N2 , Nn be the number of tuples that satisf y C1, C1 A C2, , C1 A C2 A A

res pectively. (Note that these numbers are readily available). The selectivity of

domain for this query is then approximated as

(4. 1) Si a

(C) Suppose the equality condition appears In a disjunction of conditions of the form

Chapter 4 45 Parameters Acquisition

C1 v C 2 v v C n

where each of the C
~

is an equality condition involving domain D1. Let N0 be the

total number of tuples scanned and let N1. N2, , N~ be the number of tuples that

satisf y C1, -C1 A C2, , A —C2 ,~ A C~ respectively . (Again, these numbers

are readil y available). The selectivity of domain D
~

for this query is then

approximated as

(4. 2) S1 N1/ (N0 — T1~~<1 Nj)

(4) Index Accessing Statistics - For each active index, we record the number of times it is

used for resolving equality conditions and the total cost expended in such uses. This

allows us to obtain the average cost of using the index . As for a domain that is not

indexed, we can estimate the number of distinct values in each as the reciprocal of its

observed selectivity and use the procedure described in the previous chapter for

estimating its average accessing cost.

The foregoing stat istics comprise our model of the usage pattern of the data base. The

frequency count of the query types, together with the index maintenance statistics constitute

the record of transactions with the data base. By recording the types of the queries that

actually occur, we detect any correlations (positive or negative) that may exist between the

occurrences of different domains in a query (it may happen that some combinations of

domains are frequently used together, while others rarely are). Thus we avoid making the

strong (and often inaccurate) assumption that the simultaneous occurrences of domains in a

query are mutually independent events. (Previous studies have made this assumption, and

Chapter 4 46 Parameters Acquisition

so have recorded access history merely as the frequency of each domain’s occurrence in

queries.) We observe that our measure of domain selectivity serves as a succinct yet precise

indication of how a domain is actually used in queries. 3y averaging the selectivities of the

actual occurrences of a domain, we take into consideration both skewness in the distribution

of domain values over the tuples as well as non-uniform use of domain values in queries.

This measurement of selectivit y is more accurate than its conventional est imate as the

reciprocal of the number of distinct values in the domain. Finally, we note that all of the

foregoing stat ist ics can be collected and maintained with very little overhead, either in

execution time or in storage requirements. All of the required information can be easily

obtained during query or transaction processing, and requires little space for its recording.

2. App lication of Forec astin.g Techni ques

As we have said, at each reorganization point, we forecast a number of characteristics of the

system for the interval up to the next reorganizacional point. Specifically, we predict the

following:

(A) tne average size of the relation (number of tuples and number of pages);

(2) the average selectivity of each domain;

(3) the expected cost of maintaining an index for each domain;

(4) the expected storage requirement of an index for each domain;

Chapter 4 47 Parameters Acquisition

(5) the ex pected cost of each use of an index in obtaining the TIDs of those tuples that

satisfy an equality condition involving the indexed domain;

(6) the number of occurrences of each query type.

We could do these projections solely on the basis of statistics collected during the latest time

period, or we could combine together the statistics collected over all previous periods .

However, neither alone would be satisfactory for the purpose of a stable and yet responsive

adaptive system . In the former case , the system would be overly vulnerable to chance

fluctuations, whereas in the latter case, it would be too insensitive to real changes. A more

satisfactor y approach would be to take into consideration the pattern of change in each of

these parameters in earlier time intervals in arriving at predictions for their values in the

upcoming interval. A broad spectrum of techniques is available for the analysis and

forecasting of time series. However , because of the potentially large number of parameters

in our cost model, we have to restrict ourselves to those forecasting techniques that are

efficient in terms of computation and stora ge requirement. Specificall y, we consider here

the techni que of exponential smoothing for our forecastin g procedure because of its

simp licity of com putation , its minimal stora ge requirement , its adjustibi l ity for

responsiveness and its generalizability to account for trends. In the following discussion, we

will refer to the t t h observation of a time series (i.e., values of a parameter over successive

periods of time) as x(t) and the next forecast based on observations up to x(t) as

3. Exponent ial Smoothing

Intuitively, a weighted moving average strikes a reasonable balance between the two

Li ~~~~~- - - - - —~~~----- --- - -_________________________

Chapter 4 48 Parameters Acquisition

extremes for parameter prediction mentioned earlier. Forecasts derived by weighing past

observations ex ponentially (or geometrically) have been used with some success in operations

research and economics (Brown5g, Muth6O, Winters60, Brown62]. The forecast is based on

two sources of evidence , the most recent observation and the forecast made one period

before. The exponential smoothing procedure, in its simplest form, is carried out as follows:

(4. 3) ~(1) = x(1)

(4. 4) ~ (k) a a x(k) + (1 — a) ~ (k — 1)

where a is called a smoothing constant and takes on values between 0 and I. A closed form

expression for ~(k) is

k—i k— 2 I
(4. 5) 2 (k) x(1) (1 — a) + a T x(k — 1) (1 — a)

i =0

In essence, the new forecast is calculated as a weighted average of all previous observations

with the weight decreasing geometrically over successi vel y earlier observations . The

compactness of the scheme lies in the fact that only two parameters need to be maintained

for each time series: the current observation and the previous estimate. Note that equation

(4.4) can be rewritten as follows:

(4. 6) 2 (k) 2(k — 1) + a (x (k) — 2(k — 1))

We see that the new forecast is equal to the sum of the two terms: the old estimate and a

correction term that Is proportional to the previous forecasting error (difference between

Chapter 4 49 Parameters Acquisition

forecast and actual observation). The rate of response to recent changes can be adjusted

simply by changing the smoothing constant: the larger the smoothing constant, the more

sensitive is the forecast to recent changes and chance fluctuations. Since the weights given

to earlier observations sum up to one, no systematic bias is introduced (i.e., the ex pected

value of the forecast is equal to the expected value of the random variable). Hence, this

procedure is appropriate only for the forecastin g of the expected values of stochastic

variables whose sums do not change between successive periods EDenning7l]. If there is a

long term upward or downward trend in the series, the forecast will always lag behind or

lead the actual observation. Since we expect to observe trends in various activities in the

data base, it is appropriate to choose a forecasting technique that can accomodate trends.

4. Adaptive Forec astinE

This is a variant of the simple exponential smoothing technique that takes trend into

consideration. Its form is [Theil64)

(4. 7) 2(t) a X (t) + e (t)

(4.8) 2(t) a g x (t) + (1 — a) (g(t — 1) + e(t — 1))

(4.9) e(t) $ (2(t) — — 1)) + (1 — $) e(t — 1)

where ~(t) and e(t) are the trend and the trend change at time t respectively. (Either an

additive or a multiplicative trend can be incorporated; the latter through logarithmic

transformation of the original series.) To carry out a forecast , we need only the current

Chapter 4 50 Parameters Acquisition

observation, the previously computed values for the trend, and the trend change, and the

computation is still very simple.

The appropriate choices for the smoothing constants a and 8, however , is a non-trivial

problem. It is possible to take a completely empirical approach (Winters6O]. By maintaining

the previous values for the time series, it is possible to compare the forecasts made using

different sets of the parameters a and P (One reasonable criterion for comparison may be

the standard deviation of forecasting error). Winters (Winters6O) has suggested the method

of steepest descent (Beckenbach56) for finding the best parameters for a single series. This

method , however , consumes sufficient storage space and computing time to make its

application to the large number of series in our system feasible. On the other hand, we

have no reason to believe that a set of parameters that work best for a particular series will

work equally well for other series, so that it might not be too practical to choose the

optimum weights for one series and use the same weights for all other series. Theil and

Wage [Theil64] have formulated an explicit stochastic model as a basis for the above

forecasting method (equations (4.7) through (4.10)). The time series is postulated to be

generated by

(4. 10) x (t) a
~(t) +

(4. 11) ~ (t) = ~(t — 1) + ~(t)

where Et) is the mean of x(t) and t~(t) is the trend change from period t - 1 to period t. (We

can inter pret X(t) and e(t) of equations (4.8) and (4.9) as estimators of ~(t) and ,(t)

respectively.) The trend change is postulated to be generated by

Li

Chapter 4 SI Parameters Acquisition

(4. 12) q(t) a
~(t — 1) + r(t)

where ,~(t) and P(t) are time series wit h zero mean, constant variance (,2(~) and
respectively) and zero covariance of all kinds.

For this underlying model, Theil and Wage [Theil6O) have folund the optimal weights a
and $ to be used. Let

(4. 13) g2 a

(4. 14) h2
= —g 2/8 + g (1 + g 2/ 16) 1/2,2

Then the optimal weights for a and 5 are

(4. 15) a 2h/ (1 + h)

(4. 16) $ = h

The mean square error of the forecasts is dependent on the choices for a and 8 which in
turn are dependent on the estimate for the variance ratio g2 (ratio between the estimates for

and ‘
2(M)) A sensit ivit y analysis of the conse quences of error in estimatin g the

variances ratio (g2) in [Theil60) has shown that a 5O~. error results in less that l.5~ increase
in the mean square prediction error. We can therefore start with a rough estimate of g2.
determine the appropriate values for a and P (or equivalently, we can start with an arbitrary
choice for a and 8), and adapt these coefficient s to updated estimates of the variance ratio.

Li

Chapter 4 52 Parameters Acquisition

Our application of the above technique in the forecasting of a time series in our system can

be summarized as follows.

At initialization, let

(4. 17) 2(0) = x (0)

(4. 18) e (0) 0

At t — I,

(4. 19) 2(1) a a x(1) + (1 — a) 2(0)

(4. 20) e(1) = P (2(1) — 2 (0))

At t — 2,

(4.21) 2 (2) a a x (2) + (1 — a) (2(1) + e(1))

(4. 22) e (2) 5 (2(2) — 2(1)) + (1 — 5) e(1)

(4. 23) ,2 (i’, 2) a (
~ (1) + e (1) — x (2)) 2

(4. 24) ,2 (,, 2) a (e (2) — e(1)) 2

Li

Chapter 4 53 Parameters Acquisition

(,2(~ t) and ,2(,, t) are estimates of the variance 2(,~) and ,2(,) at time t)

For t 2,

(4. 25) 1(t) = a x (t) + (1 — a) (1(t — 1) + e(t — I))

(4 . 26) e (t) — 8 (1(t) — 2(t — 1)) + (1 — 5) e(t — 1))

(4. 27) ,2 (ji , t) a ((t —
~~
,2

~~~ t — 1) +

(x (t) — 2(t — 1) — e(t — 1)) 2)/ (t  — 2)

(4. 28) e2 (v , t)  = ( ( t  — 3) c2 (5, t — 1) + (e (t) — e(t — 1)) 2) / (t  — 2)

We begin by using arbitrary values for a and 5. As new estimate for the variance ratio g2

becomes available (from the ratio of ~2(,, t) to ,2(,~ t )) , we can adapt the values for a and 5.

(Note that the amount of information that has to be passed on from one interval to the next

is still quite small, and the computation needed to choose the appropriate weights is

minimal.)

5. Parameter Forec ast ing

Using the foregoing techniques, we can summarize our forecasting procedures for upcoming

parameters as follows:

(1) average size of the relation - we can use the current size of the relation as our current



Chapter 4 54 Parameters Acquisition

observation , forecast the size of the relation at the end of the upcoming interval, and

use the average of the two as the average size of the relation over the upcoming

interval.

(2) maintenance cost of each domain index - if the domain is indexed in the previous

interval , then its actual maintenance cost can be used as the latest observation;

otherwise we can use the estimated cost as described earlier as the latest evidence.

(3) number of occurrences of each query type - if an observed query type has no previous

forecast , then we will use the observed frequency as the next forecast and treat this as

a new series to be forecasted.

(4) avera ge selectivity of each domain, storage requirement and average accessing cost of

each domain index - we note that our estimates for the current values of these

parameters in the case of non-indexed domains are rather crude, hence we will

reinitialize the forecasting procedure for each newly ” indexed domain, i.e., if a domain

is indexed in the most recent interval but not in the one before, then we will use the

most. recent observation as the sole evidence in the forecasting of these parameters.

~~~-


55

CHAPTER 5

INDEX SELECTION

A straightforward approach to the index selection probl~~ would be to evaluate the

projected total system cost for each possible index set (using equation (3.16)), and then select

that set of domains which gives the smallest cost. With m domains in the relation, there are

2m possible choices of index sets. For small m (say less than 10), this enumerative approach

may be feasible for finding the optimal combination of domains to be indexed. However ,

because of the ex ponential rate of increase of the number of possible index sets with the

number of domains, the search space becomes prohibitively large very rapidly. (With 30

domains, there are more than I0~ index sets to be considered. The cost of exhaustively

ex ploring the search space may no longer commensurate with the profits that can be

gained.) Yet, it is not uncommon to find single-relation data bases with tens of domains.

Therefore, it is appropriate to look for ways whereby the search space of potential index

sets can be systematicall y reduced. One possible approach is to look for properties of the

cost function that will allow it to be minimized without exhaustive enumeration , such as

through a depth -first search , as exemp lified in Schkolnick ’s index selection study

(Schkolnick75]. However , these properties depend upon unrealistic assumptions that domain

occurrences are uncorrelated and that the tuple acess cost function is linear, and even so,
0.5

the associated upper bound of 2m log m index sets to be tested is not enough of a

reduction to enable the inexpensive selection of the optimal index set for a relation with a

moderate number of domains.

When we remove the above two assumptions, the computation needed to evaluate the utility

of a proposed index set becomes dependent on the number of distinct query types

_a --. --—-

Chapter 5 56 Index Selection

forecasted . (All told, there are (2m - I) possible conjunctive query types (which specif y I or

more domains) and (2m - m - I) disjunctive query types (which specify 2 or more domains

for a total of (2m.1 - m - 2) possible query types.) Except in cases when only a few of the

large number of potential query types actually occur, the evaluation of the cost-effectiveness

of a particular potential index set is quite expensive. Hence, we have a strong incentive for

systematically reducing the search space for the optimal index set. Yet, because of our lack

of simplifying assumptions, the hope of finding an algorithmic way to exp lore a reduced

search space of practical size and still finding the optimum is dim. Therefore , it is

appropriate to draw on the experience of artificial intelligence researchers working in areas

where formal mathematical structures are computationally impractical, and use heuristic

methods EFeigenbaum63, Meier69) that significantly prune down the search space and that

work towards obtaining a near-optimal solution.

1. Index Selection Heuristics

In this section, we examine the structure of the index selection problem and describe a

number of ways in which the index selection cost can be reduced.

(1) Not all queries can use indices profitably. The expected set of tuples that satisfy a

query may be so large (i.e. the qualified tuples are likely to reside on close to p pages)

th at no set of indices could possibly be useful in its processing. Since the cost of

computing the utility of a proposed set of indices is dependent on the total number of

queries under consideration, those queries that cannot profitably make use of indices

should be removed from the projected query set whose processing cost is to be

minimized. This can be done by computing the processing cost of each query given

Chapter 5 57 Index Selection

the availability of indices on all domains that are used in the query. If this is more

expensive than a sequential scan, then the query should be removed f rom the projected

set of queries.

(2) Some domains can be eliminated from the initial candidate set by virtue of their low

occurrence frequencies in queries. This effectively reduces m, the initial number of

domains in the candidate set. Using the forecasted frequency of each query type, and

the projected selectivity of each domain in the relation, we can compute an upper

bound on the number of page accesses that the use of an index on a particular domain

can save in the processing of the forecasted set of queries. If this upper bound is less

than the projected cost of maintaining an index on the domain, then this domain can

safely be excluded from the initial candidate set, i.e., the domain is so unselective or is

used in retrievals so infrequently relative to its being updated, that it cannot possibly

be profitable to index it.

The upper bound on the utility of an index for an arbitrary domain i is computed as

follows. Let q be a conjunctive query type that involves domain i, and let Sq be the

joint selectivity of all the domains of q. Then the tuples that satisf y q are expected to

reside on f(Sq~fl) pages, where n is the total number of tuples in the relation and f is

our non-linear function for ex pected page accesses . So an upper bound on the benefit

that an index on i could possibly bring to the evaluation of q would be to reduce the

number of pages to be accessed from p to f(Sq~n). (A similar formula holds as well for

the maximal reduction where q is a disjunctive query, but with Sq there representing

the joint disjunctive selectivit y of the domains used in q.) In the case of a conjunctive

query, an additional upper can be computed which in some cases may be tighter than

Li _ _ _ -

Chapter 5 58 Index Selection

the one just mentioned. Note that an index on domain i with selectivity S1 reduces the

number of tuples that have to be examined to resolve a conjunctive query involving

domain i by a factor of S~. However, because of the convexity of our tuple access cost

function , a reduction by Si in the number of tuples to access leads to less than a

reduction by S1 in page accesses. Hence the maximal incremental saving (in terms of

page accesses) cannot exceed p’.(I - Si). Thus the upper bound on the utility of an

index for i is:

(5. 1) Zq€Q j
Fq*((l_Tq)*W lfl(P*(l_Si)~

P* (l_f ((fljcDq
SJ)*fl))

+

Tq*P*(l f((l_fljcD (l_S j))*fl))q

w here Q1 - set of forecasted query types that use domain i

Fq a projected number of occurrences of q

Dq = set of domains referenced in q

Tq = 0 if q is conjunctive and I if q is disjunctive

n a total number of tuples in the relation

f non-linear tuple access cost function for the relation

(3) Some domains could be known to be included in the optimal index set by virtue of

their high occurrence frequencies in queries. For each domain, we can compute a lower

bound on the savings in query processing its indexing can bring. If the latter is less

than the expected maintenance cost, then the domain must be included in the optimal

index set. In cases where a domain is used together with others in a query, it is very

difficult to assess the lower bound on the utility of the index. Therefore, we will

compute the lower bound for a domain based only on those queries in which the

. :

Chapter 5 59 Index Selection

domain occur alone.

(4) A near optimum choice of the index set can be made incrementally. This heuristic

permits analysis of the problem as a stepwise minimization, each time adding to the

index set that domain which will bring the best improvement to the cost function.

There have been two previous suggestions regarding the incremental selection of

domains to be indexed. Farley and Schuster (Farley7S) suggest that the incremental

selection process can be terminated once no single domain in the non-indexed set can

be chosen that will yield incremental cost/benefits. This is insufficient for our choice

of query and tuple access models, there are two reasons why it may be necessary to

consider the incremental savings brought by adding two or more indices together to

the index set candidate. First, it may happen that for a query involving a conjunction

of conditions, the selectivity of any one domain may not be sufficient to reduce the

number of pages to be accessed to significantly less than the total number of pages in

the relation, whereas the joint selectivity of two or more domains might . (Recall that

the reduction must be significant in order to cover the index accessing cost.) Secondly,

a disjunction of conditions can be resolved via indices only if all of the domains

involved in the disjunction are indexed . An alternative strategy has been suggested by

Held [Held7Sb), who , at any stage of the incremental index selection procedure ,

considers the incremental savings uf each of the possible subset of domains in the

candidate set with less than or equal to some fixed number of domains in it. This, of

course , may be very inefficient. We have taken an intermediate approach . We

consider the adjoining of multiple domains to the index set only if no single domain

that will yield positive incremental savings can be found.

Chapter 5 60 Index Selection

(5) Only a small subset of all possible candidate domains need be considered in

determining the next domain or set of domains to be ad joined to the index set at each

stage. We can rank the domains with respect to the maximal savings each can bring

and then consider only the top ranking M domains, and combinations of them, for

detailed incremental savings calculation. (Alternatively, we can take the maintenance

cost of each into consideration and divide the maximal savings of each index by its

maintenance cost before doing the ranking.) Furthermore, a bound M’ (M’~M) can be

imposed on the number of domains that will be considered together.

(6) An upper bound can be put on the total number of cost evaluations (i.e., the total

number of index sets considered) to be performed in the entire selection procedure.

Also, an upper bound can be put on the maximum size of an index set that will be

considered. The incremental selection procedure will be terminated when either of

these bounds is exceeded.

2. Index Selection Procedure

To illustrate me above neuristics, we present the details of our index selection procedure.

Our procedure can be divided into three phases.

Phase I (Initialization) - During this phase. a tentative index set is chosen to include all

those clearly profitable domains, and a ranking of the domains that might be profitable to

ad join to the tentative ir~p,ex set is computed. This involves the following steps

(a) Remove from the projected set of queries all those that cannot profitably make use of

Chapter 5 61 Index Selection

indices.

(b) For each domain, compute a lower and upper bound on the savings an index on the

domain can brin g.

(C) Partition the set of domains D in the relation into three disjoint subsets: Dt - the

tentativel y chosen index set , D
~

- the candidate set, and D~ - the non-profitable set.

Initialize D
~

with those domains w hose maintenance costs are less than the

corresponding minimal savings they can bring, D~ with those domains whose

maintenance cost exceeds the corresponding maximal savings they can bring, and D
~

with D - Dt - D~.

(d) Rank the domains in D
~

with respect to their estimated utility.

Phase 2 (Incremental Selection) - The tentative index set is enlarged by the adjoinment of

domain(s) to it incrementally.

(a) Consider in turn the incremental savings gained by indexing each of the M top

ranking domains in the candidate set (i.e., for each of these domains d, compute the

cost associated with • d, and compare it to the cost associated with Dt). Adjoin to

D
~ that one which will give the best improvement to the cost function. If one cannot

be found , then consider larger-sized combinations (up to M’) of these M domains.

Consider combinations of the next larger size only if it is not profitable to adjoin any

of the combinations of the current size.

Chapter 5 62 Index Selection

(b) Remove the domain(s) from Dc as they are ad joined to Dt. Resume considering

individual domains for further adjoinment after an adjoinment to D
~
.

(C) Terminate the incremental selection if no subset (of size less than or equal to M’) of the

M top ranking domains in the candidate set can be chosen such that its ad joinment to

the index set will improve the index set’s cost function; or if the upper bound on the

total number of cost evaluations is reached.

Phase S (Bump-shift [Kuehn63]) - Domains that have been adjoined to the tentative index

set early in the incremental selection phase may turn out to be uneconomical as the result of

later addition of other domains to the set, and thus should be removed from the index set.

Since the probability of the need for the simultaneous removal of more than one domain is

quite small, we will only consider the removal of individual domains. (The necessity to

remove two domains from D
~

implies that some of those queries whose processing costs are

significantly improved by the initial adjoin ment of these domains to Dt, become less

dependent on them as other indices become available. The fact that it is not profitable to

remove one of them alone implies that there are some queries which depend on both of

them, and whose processing costs are improved, in the presence of both indices, by more

than the iu~aintenance cost of either one, but less than the maintenance cost of both. Such a

combination of circumstances is rare enough for us to ignore it.)

(a) For each domain d tentatively assigned to the index set, subtract the total cost for

from that for Dt - d. Remove from Dt that d for which the above difference is largest.

(b) Repeat the process until no domains remain in D1 whose removal would improve its

Chapter 5 63 Index Selection

cost function.

In order to assure that we have a real local optimum, we may go back to the

incremental selection phase after some domains have been removed from the tentative

index set. To guarantee that the process terminates, we would put a domain d into

if it is removed from D
~

by the bump-shift phase.

3. Performance of Index Selection Heuristics

We have discussed a number of ways in which the index selection problem may be

simplified. The initialization phase of our heuristic selection procedure leads to a reduction

in the search space for the optimal index set and a reduction in the total number of queries

that have to be considered under any proposed indexing poli.cy, without jeopardizrng the

possibility of finding the real optimum index set. On the other hand, when we make use of

the heuristics of stepwise minimization and of considering only the top ranking domains for

incremental selection, we have opted for a good solution at reasonable cost rather than the

optimal solution at any cost. There are several reasons why the stepwise minization

procedure should be good.

(a) It resembles the methods that might be employed by an intelligent human being in

solving the index selection problem. For any tentatively chosen index set, we know for

sure that the cost of maintaining those indices is less than the savings that they bring.

Furthermore, the total system cost is monotonically decreasing as successive domains are

added to (during incremental selection) and removed from (during bump-shift) the

tentative index set.

-~

Chapter 5 64 Index Selection

(b) It has been successfully applied in problem areas of a similar nature. In (Kuehn63),

stepwise minimization was applied to the problem of choosing the sites for warehouses

from a number of potential sites which minimize a particular cost function. The~
problem is in many respects similar to the index selection, especially in the fact that for

each potential warehouse site, there is the possibility of having or not having a

warehouse at that site, just as for each domain, we have the possibility of having or

not having an index on that domain.

(C) It actually finds the optimal index set under certain circumstances. It is provably

optimal if only single domain queries and/or disjunctive queries are present in the

projected query set. In such a case , it is impossible for the heuristic algorithm to

choose an index set that is a subset of the optimum , since it considers adjoining

combinations when necessar y; also, it is impossible for the heuristic algorithm to

include in its choice a domain that is not in the real optimum index set. (The fact that

a domain has been adjoined to the heuristically chosen index set means that there is a

set of queries which depend on t~he availability of the index in question in order to be

resolved using indices, and that the savings from processing these queries using indices

more than pay for the maintenance cost of that index.)

In the presence of both conjunctive and disjuncti ve queries, it is possible that the

heuristically chosen index set can depart significantly from the optimal index set. However ,

we can argue that the probability of this occurring is quite small, and even if it this does

occur , the total system cost under the heuristically chosen set of indices may not be too

different from that under the optimal index set.

Chapter 5 65 Index Selection

Let D0~
and Dheur be the optimum index set and the set chosen by the heuristic index

selection procedure respectively; then we have the following circumstances in which Dheur

will be non-optimal.

(a) D0~ strictl y includes Dheur - This is highly unlikel y, since we do consider the

adjoinment of multiple domains (up to a certain bound) to the tentatively chosen index

set if no simpler adjoinment is profitable.

(b) Dheur strictly includes - Because of our bump-shift procedure, we know that

Dheur must include two or more domains that are not in
~~~ 

and as discussed in the

previous section (on the bump-shift procedure), this is very unlikely.

(c) There are domains in D0~ which are not in DheLIr and v ice versa - This is probably

going to be the most common. The fact that domains which are in D0~t - Dheur are

not adjoined to Dheur implies either that they need to be simultaneously indexed to be

useful and their total number exceeds the bound on the number of domains that the

heuristic index selection procedure will consider for simultaneous adjoinment , a

possibility which is quite remote; or that indices on them are no longer useful in the

presence of domains in Dheur - 

~~~ 
in which case the total system cost for Dheur

may not be too far away from that for

We have performed a limited amount of ex perimentation with the above heuristic

algorithm, applying it to a number of access histories , and comparing its results to those

obtained by an exhaustive consideration of all possible index sets. In the cases that we have

tested, the heuristic algorithm has almost always found the optimal index set at a small

Chapter 5 66 Index Selection

fraction of the cost of the exhaust ive procedure. Most of the increments to the tentative

index set consist of single domains, so that the total number of index sets considered only

increased only linearly, instead of exponentially, with the total number of domains in the

relation. Moreover , the bump-shift phase seldom yielded an improved choice over that

given by the incremental selection, which in many cases was already identical to the choice

given by an exhaustive search and therefore optimal.

4. On Further Reduoin E the Cost of Index Selection

The main thrust of the heuristic index selection algorithm described in the previous section

was towards reducing the search space for potential index sets by making the selection

procedure an incremental one. However , in addition to the need for cutting down the index

set search space, there is also the need to minimize the cost of assessing the cost /benefits of

each individual index set. By making forecasts of query type occurrence frequencies based

on past observation , we have thus far avoided the strong assumption that individual

domain occurrence probabilities in a query are independent. In consequence, however , our

scheme requires that in considering each possible increment to the index set, we evaluate the

costs of processing each of the projected query types that involves any of the domains in the

increment . The number of possible query types is an exponential function of the number of

domains in the relation; so the number of query types that actually occur is also likely to

increase quite rapidly with the number of domains. There may be as many as 2m - 2mk

conjunctive query types that will require individual computation (for new processing cost),

where k is the size of the increment under consideration; these are those queries that use at

least one of the domains in the proposed increment. One possible simplification is to group

queries together and to characterize the group in terms of a small number of statistical

Chapter 5 67 Index Selection

properties. Instead of finding the savings in the processing of each of the queries that are

affected by a proposed increment, we can compute the savings for the group as a whole,

which can be done more efficiently. In the following sections, we will examine one query

grouping scheme that has been suggested previously and suggest extensions to it.

In (Schkolnick75j (who considers only conjunctive queries), all queries are put into a single

group which is described by the query occurrence probabilities of each domain , (i .e., the

fraction of queries in which the domain is used). Furthermore , these probabilities are

assumed to be independent. For example, for a relation with three domains a, b and c, each

with occurrence probability 1’a’ ~b’ ~~
respectively, the probability of having a query that

involves just the domains a and b is assumed to be

(5. 2) *
~b * (1

since and
~b are the occurrence probabilities of domains a and b, and 1 - is the

probability of domain c’s non-occurrence . For a proposed index set D, the total query

processing cost can then be computed as follows.

Let N t total number of tuples

NQ total number of queries

Q set of all possible queries

AS 1 = average selectivity of domain i

AC 1 average access cost for index on domain i

Pq • occurrence probability of query q, q Q

Dq domains specified in query q, qc Q

Chapter 5 68 Index Selection

Fq cost of accessing the set of tuples to resolve q using index set D

cost of accessin~ (rll D qnD AS 1) * Nt tuples

Cq processing cost of query q with index set D

~ 1ED qflD AC 1) + Fq

then the total query processing cost is

(5. 3) NQ * Zq~Q Pq * Cq

With m domains in the relation, there are 2m possible queries. However, in evaluating the

utility of an index set of size s, onl y 2~ distinguishable sub-groups of queries need to be

considered. (A distinguishable sub-group of queries consists of all those queries with the

same expected processing cost under a given set of indices. Civen an index set D, two

queries fall into the same sub-group if they use the same set of domains in D, since their

processing will involve the use of the same set of indices, resulting in the accessing of sets of

tuples of the same expected size.) Consider the above 3-domain relation and the index set

which includes only domain a, then the possible queries in the group can be divided into

two sub-groups, those that specify domain a and those don’t. In general, it is necessary to

evaluate the processing cost of each of these distinguishable sub-groups individually before

an expected processing cost for an average query can be computed. However , by assuming

that the tuple access cost function is linear, a further simplication results in the following

total query processing cost

(5. 4) Nq a
~~ 1cD P 1) * AC 1 + pieD (1 — P1 + P1 * AS 1))

_ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~ —~~----. .- _ _ _ _ _ _ _

Chapter 5 69 Index Selection

The above formula admits of the following simple interpretation: for an average query,

with probability P1 domain i in the index set 0 ii specified, in which case the fraction of

tuples that have to be examined is reduced by AS
~
; and with probability I - P1 domain i is

not specified in which case an index on domain i does not lead to any reduction in the

number of tuples to be examined.

We thus see that Schkolnick’s scheme leads to a very simple computation for the evaluation

of the utility of an index set . However , the simplifying assum ptions that lead to this

computational simplicity are not altogether realistic.

5. Quer y Clusteri ng

We feel that the idea of grouping queries is fundamentally sound, since it significantly

reduces the number of query types that have to be considered at each step of the

incremental index selection procedure. On the other hand, grouping can lead to loss in

correlation information. For example, again consider the above 3-domain relation: it may

happen that domains a and b never appear together in queries, whereas the independence

assumption will lead us to assume that a query that specifies only domain a and domain b

does occur with probability
~a C’

~b c’ (1 - In order to preserve the correlation

information, we should only group similar queries together. Hence, the division of the

queries into more than one group may be necessary . Since some correlation information is

inevitably lost when queries are grouped together and it often happens that some queries

occur quite frequently while others only rarely, we may want to consider the most frequently

occurring queries individually, in the process of incremental indexing utility calculation,

while grouping the less frequent ones into one or more groups.

Chapter 5 70 Index Selection

To incorporate the above scheme, the evaluation of the utility of any proposed increment to

the tentative index set can be modified as follows. The incremental savings afforded by the

increment to each of the frequent (non-grouped) queries is computed as before. As for each

of the query groups, we compute the improvement to each distinguishable sub-group of

queries that is affected by the increment. The improvement to the group is then computed

as a product of the total number of query occurences in the group and the average

improvement to a query in the group. The latter is obtained from the sum of the

improvements to each of the distinguishable subgroups, weighed by their individual

occurrence probability with respect to the group.

The clustering scheme we suggest for the less frequent queries is of the nearest -centroid

type [Belford75]. (This involves the definition of a metric or a measure for the distance

between queries and groups of queries. The centroid of a group may be looked upon as an

average (or representative) query in the group.) Since the cost evaluation process at each

step of the incremental index selection procedure ~s dependent on the number of query

groups we have, we may a priori determine the number of groups (say C) into which the

less frequent queries ai~e to be divided. A possible clustering strategy is as follows. We rank

the less frequent queries in terms of their occurrence frequencies, and start off with groups

that are singletons of the C top ranking queries. The remaining queries are considered

sequentially; each is added to the group with the nearest centroid, after which the centroid

for the affected group is recomputed.

For each query group, we maintain its centroid and the total number of query occurrences in

the group. We represent a query by means of a binary vector which indicates the domains

that are used in the query and the centroid of a group of queries by means of a vector that

Chapter 5 71 Index Selection

indicates the occurrence probability of the individual domains with respect to the group.

Let Vg - vector representation of a query group g

Vq a vector representation of a query q

Pg a total number of query occurrences in g

Pq total number of occurrences of q

The distance between q and g can be computed as

(5• 5) l l V q — Vg I l a Z~ lV qk — Vgk l

When q is added to g, the centroid of the group is recomputed as

(5. 6) Vg 4 (Fq * Vq + P8 * Fg) / (Fq + F8
)

and the total number of query occurrences in the group is updated as

(5. 7) P8 4~ Fq + P8

In order to evaluate the utility of a proposed index set with respect to a given group of

queries, we need to have a scheme for the assignment of occurrence probability to each

possible query in the group. One possibility is to use the independence assumption

discussed previously. However , this results in the assignment of a non-zero probability to

the query that specifies none of the domains, which is inadequate since we never include the

query that specifies no domain in our grouping scheme. Therefore, we need to have a

Chapter 5 72 Index Selection

scheme for the normalization of probability assignments . In addition, we might want to

take into consideration the complexity (number of domains specified) of the component

queries of the group. For example, if all of the component queries in the group involve say

two domains, then we should discount single-domain or more-than-two-domain queries in

the probability assignments. In view of the above two considerations, we can keep track of

the number of query occurrences for each complexity in the process of adding queries to a

group, and use the following normalization scheme.

Let NQ a total number of query occurrences in the group

k = total number of domains with non-zero occurrence probability

P 1 = occurrence probability of the ~
th domain

NC1 number of query occurrences with complexity i

The conditional occurrence probability of 4 query q, which uses domains in Dq. given that

the query is of comp lexity Cq. can be computed as the product of the occurrence

probabilities of domains in Dq~ normalized by tne sum of products of probabilities of all

non-zero-occurrence -probability domains in the group, taken Cq at a time. The above

normalization factor for queries of complexity i can be shown to be the coefficient of x~ in

the following expansion ELiu68):

~1i1ik
(1 + P1x)

Hence, the uncL. - .:ional proability of having a query q which uses the set of domains in

Dq and of complexity Cq can be computed as

Chapter 5 73 Index Selection

(5.8) (NCc 1Ne~
) ~ ((j (D P1) /NFC)

q ” q q

Note that the number of distinguishable sub-groups in a query group with respect to an

index set (and hence the cost of indexing utility evaluation) depends on the number of

domains with non-zero occurrence probability (with respect to the the group) that the index

set contains. (The adjoinment of domains with zero occurrence probability in the group to

the index set will not affect the processing of the group.) Therefore, an alternative to the

above strategy of a priori deciding the number of groups to have is to limit the number of

domains with non-zero occurrence probability in each group. In attempting to add a query

to one of the existing groups, we can take into consideration both its distance from the

group and the number of domains with non-zero occurrence probability in the resulting

group, and create a new group if necessary.

74

CHAPTER 6

SUMMARY AND FUTURE RESEARCH

The research reported in this thesis has been motivated by the need for intelligent data base

management systems to support large integrated data bases. We have proposed a

methodology for the incorporation of optimization and self-organization capabilities into

data base management system. Specifically, we suggest the following approach:

(1) the development of an accurate cost model that closely reflects the data base

environment and data base system operation (this cost model is to be used both by the

query processor for selecting the most economic access path for a given query and by

the reorganization component of the system for the selection of a near-optimal physical

data base organization for the observed access pattern)~,

(2) the monitoring of accesses to the data base that allows the system to build up an

accurate model of the contents of the data base and the way that the data base is used;

(3) the application of forecasting techniques to detect and respond to changes in access

requirements and data characteristics;

(4) the design of computattonally feasible heuristics that select a near-optimal physical

organization at a reasonable cost.

We have applied the foregoing steps to the index selection problem and have achieved a

design for the incorporation of an adaptive index selection capability into a dynamic, single-

Chapter 6 75 Summary and Future Research

relation data base environment. In the following sections, we will summarize the novel

aspects of our approach and suggest possibk extensions to it.

1. Compari son with Previou s Work

Our ex perimental and heuristic approach to the index selection problem is different in

many respects from previous studies by Stonebraker (Stonebraker74], King (King74],

Schkolnick (Schkolnick75], Farley [Farley75], and Held [Held7Sb]. These other studies have

either been formal analyses, which have made many simplifying assumptions in order to

obtain an analytic solution, or else system designs that have been incomplete or unrealistic in

various ways.

Our work attempts to go farther than these by utilizing more complete and accurate models

of cost and access , and by emphasizing important aspects of realistic data base

environments. Our model of tuple access is realistic in the sense that we take into

consideration the blocking effect of tuples on secondary storage devices. Our cost models

for data base access and maintenance account for such real overheads as the expense of

index accessing and the cost of maintaining the index as a balanced tree. Our approach of

minimizing the total processing cost for the upcoming interval, rather than the expected cost

for a single data base transaction , is flexible enough to account for the overhead costs of

index creation, index storage, and application program retranslation.

We have stressed the importance of accurate usage model acquisition and data characteristic

estimation in a dynamic environment where access requirements are continually changing.

Our scheme endeavours to obtain a precise model of data base usage by recording actual

Chapter 6 76 Summary and Future Research

query patterns, thereby avoiding the strong and often inaccurate assumption that domain

specifications in queries are uncorrelated. We also take into consideration the facts that

values of a domain may not be equally used in queries and that they may not be evenly

distributed among tuples of the relation, by monitoring the actual selectivities of the domain

values that are used in queries. On the other hand, we have also made sure that our

schemes for gathering statistics during the processing of data base transactions have as little

effect on system performance as possible.

We believe it necessary to apply forecasting techniques to past observations and predict

future access requirements and characteristics , in order to capture and respond to the

dynamic and changing nature of data base usage. In the selection of applicable forecasting

techniques, we have stressed the importance of minimal storage requirements. simplicity in

computation, responsiveness and adaptability.

Finally, the size of actual data bases is reflected in our concern for efficient heuristics to

speed up the index selection process. Our scheme for the grouping of queries allows us to

reduce the index selection cost and yet preserve the influence of domain correlation on the

selection procedure.

2. Directions for Future Research

There are numerous optimization opportunities in a complex data base environment. In

this thesis, we have addressed the optimization issues related to the choice of indices to be

maintained and the strateg y for using these indices in query processing. By way of

conclusions, we suggest several directions in which our work can be extended.

Chapter 6 77 Summary and Future Research

(1) There are many separate issues that need resolution in the selection of physical

organization for a general integrated data base, including method of placement of

records on secondary storage , primary access mechanism, auxiliary access aids ,

clustering parameters etc. Within a single-data base environment , an organizational

issue that might be profitable to consider in conjunction with the selection of indices is

the division of the stored representation of the relation into a number of subf Ales, each

consisting of subtuples containing only a subset of the fields in the relation. The

purpose of such an organization is to limit the amount of irrelevant information that

is accessed, when the qualification and output parts of a query involve only a small

number of domains in the relation. Previous studies EKennedy72, Stocker73, Hoffer75)

have considered this file partitioning problem in the absence of auxiliary access aids.

An adaptive strategy towards the simultaneous selection of indices and file partitions

might be fruitful.

(2) Even though our investigations into index selection are in many respects more

comprehensive than previous studies, we have considered only the environment of a

single-relation data base accessed through a restricted interface wi~j i limited capabilities

for the selection of data . To fully realize the flexibility of a relational data base, it is

necessary to consider a multi-relation environment together with a high-level non-

procedural language interface that permits queries with arbitrary interconnection

between relations in the qualification part and high level operations on the qualified

data. In such an environment , it is necessary to consider the utility of indices for more

complicated operations (such as restriction, projection, division, join, etc . (Codd7O,

Palermo72, Smith75, Rothnie75, Pecherer75, Won g76]) and to select indices for all the

relations in the data base as a whole. The recording of detailed access history will be

Chapter 6 78 Summary and Future Research

necessary for optimal index selection in this environment, and the use of heuristics

should be fruitful in cutting down the search space and for selecting richer index

structures (such as combined indices).

(3) We have proposed that an intelligent data management system should build up a

model of the contents of the data base and the way that it is used. Such information

can be used for the evaluation of costs of alternative access paths for the processing of

queries. In addition to individual query optimization and global choice of optimal

physical organization, a query cost estimator can find yet another application in large

integrated data bases. It is all too easy for a naive data base user to ask a simple-to-

phrase query that will take a great deal of computational resource and time to answer.

Frequently, the value of this information to the requestor will not be commensurate

with the resources expended to obtain it. If a cost estimator is available at the user

interface, a user can obtain an estimate of the cost of answering his query and then

decide to pay the price and have it answered, or to cancel the query. More work on the

development of cost models for complex query processing, and schemes for the

acquisition of the necessary parameters, in order to provide such a facility.

(4) We have applied forecastin g techniques to the prediction of upcoming access

requirements and data characteristics. In a truly adaptive system, higher level adaptive

mechanisms will also be necessar y. Levin (Levin’75) has suggested the following

hierarchy of adaptive mechanisms to be employed in an uncertain environment:

(a) a forecasting mechanism that performs prediction of various parameters In the system

based on past observations;

Chapter 6 79 Summary and Future Research

(b) a parameter adaptive mechanism that for a given forecasting technique chooses the

best values for the basic parameters of the technique.

(C) a meta-adaptation mechanism that automatically switches from one forecasting

technique to another based on their individual performance.

The adpative forecasting procedure we have described actually encompasses the first

two mechanisms. To incorporate the mets-adaptive mechanism for a particular time

series involves keeping around the entire series (or at least the most recent portion) and

comparing the amount of forecasting error that would have been resulted from the

application of each of the forecasting technique under consideration. The large

number of parameters that we utilize preclude the application of any meta -adaptation

mechanism to each of them . On the other hand, a selective application of such a

mechanism to parameters to which the cost function is most sensitive may be

appropriate.

We have assumed that reorganization is to be considered at fixed intervals , the length

of which are to be determined by the data base administrator. Since the overhead of

index selection i~ incurred at each reorganization point, it would be desirable to have

the system automatica lly adjust the intervals between reorganization points to suit the

rate of change in access pattern and the degradation of system performance. More

fundamentally, an intelliggent adaptive system must assure that the payoff of the

adaptive mechanisms is commensurate with its overhead costs, and switch if of f

when the usage requirements reaches a steady state .

80

APPENDIX 1

PROOF OF EQUAT ION (3.3)

Considet m tuples T1, T2, , Tm to be placed into n equally likely slots that are partitioned

into p blocks of t slots each (n - pet). Let p(r) be the number of blocks that contain T1, T~,

, Tr. Define

(A1. 1) p (0) z 0

(A 1. 2) d (r) p (r+1) — p (r)

then p(r) and d(r) are random variables, and d(r) takes on values 0 or 1. Let f(r) be the

expected value of p(r), then we have the following recurrence relation:

(A1. 3) f (0) 0

(A1. 4) f (r+1) — f (r) = E(d (r))

Pro b (d (r)= 1]

= E Prob (d (r) 1 I p (r) ‘ki Prob [p (r) =k]
k

k=p
~ — k ~= Prob (p (r) =kl

k=0 fl — r

k=p 1 n k t \
‘~ I — I Prob (p (r) .k]

k=0 \ f l — r n - r j

n t
• — f (r)

n — r n — r

n — r — t S
(A1. 5) f (r.1) • f(r) +

n - r n — i ,

Appendix 1 81 Proof of Equation (3.3)

A closed form solution of the above diff~rence equation can be obtained as follows. Let

(Al. 6) s = n — r

(Al. 7) r = n — s, then

(Al. 8) Z s f(n—s+1) x~
s=0

= ~~~ (S — t) f (n—s) x S
+ E ii

s=0 saO

With some manipulations of equation (AI.8) we have

(Al. 9)
~~ (S — 1 + 1) f (n— (s—1)) x 5

s=0

• ~~~ (S — 1 + 1) f (n — (s — t)) x 5
s= 1

• Z s f (n—s) x S — ! t f (n—s) x 5 + Z n
Ss0 s=0 s=0

Considering the second equality sign in equation (A19), we get

(Al. 10) x 2 Z (S — 1) f (n— (s—l)) x~~
2

+ x ~ f (n — (s — l)) x S l
s•1 s=l

+ x ~ f (n— (s— 1))
s2 1

• x Z s f (n—s) x~~~~~
1 — t)

~ f (n—s) x~ + n
• s.0 s=0 s=0

Appendix I 82 Proof of Equation (3.3)

Let

(Al. 11) F(x) = Z f (n—s) x S
s=0

(Al. 12) F’ (x) = ~ s f (n—s)
s z O

the n from equation (Al.10) we get

x
(A1. 13) x 2 F ’ (x) + x F (x) = x F’ (x) — t F (x) + , or

1 - x

t + x n
(Al. 14) F’ (x) — — P (x) = — __________

x (1 — x) x (1 — x) 2

Equation (Al.14) is a linear first order differential equation, and has the following general

solution

/ 1 (1 — x) t 1
(Al. 15) F (x) = Ic — dx

(1 — x) t+1 ~ ~‘

x~ (n(l _ x\ t
• I c + — I

(1 — x) t~ 1 (~ t x

Appendix 1 83 Proof of Equation (3.3)

c x t n

(1 - x) t+1
+

t (1 - x)

w /t+k\ n ~

• c x t
~ Ix k + _ T

k=0 I
~~k) t s=0

~ ft +k\ n ~)
~ I Ix t k + _ z

k.0~~~k / t s=O

From equations (A1.7) and (A1.8), f(r) s f(n-s) — coefficient of x5 in F(x). Letting

(A1. l6) s = t + k

= n — r, we have

~ /t +k\ n
(A1. 17) F (x) = C Z I I x5 + — ~~~ x~s=t~~~t / t s=0

(n-r\ n
(Al. 1$) f(r) • C I I + —

\ t) t

Using the initial condition f(0) - 0. we have

fn\ n
(A1. 19) c i I + — = 0

\t) t

1
(A1. 20) C • - ____

(n-I

—-.——- -- -- - --- - - - --- ——- - --~~~~~

Appendix I 84 Proof of Equation (3.3)

Substituting this for c in equation (A1.19) we have,

(n- r

n
_ _ _(A1. 2l) f(r) = — — ____

t

(n - r

n (
_ _ _= — I i — ____

t~~ (S

I
’t

S

85

APPENDIX 2

ANALYSIS OF SORTING COST

The sorting of pairs of domain values and tuple identifiers forms a key step in the creation

of an index . For typical file sizes in a data base environment , an external sorting is

required. The sort merge technique has been extensively studied [o]. Ignoring internal

comparison costs, the cost of a sort merge depends on the number of initial sorted subfiles,

the merge factor , and the size of the blocks that are read from and written back into

secondary storage. However, as we have assumed that the page Is the fixed lin iF of storage

allocation, we will ignore the possibility of improving the disk accessing cost by reading and

writing blocks larger than one page each.

Cons%der the sorting of a file of p~ pages. Let ~ be the number of pages in main memory

available for internal buffering. As a first step of the sorting process, s sorted subfi les of

the original file can be formed using s internal sorts. To optimize the subsequent merging

process , s should be minimized by maximizing the size of each o~ the sorted subfiles.

Hence, the size of each sorted subfile should be made equal to the size of the internal

buffer , ‘e. b pages. The cost of this phase of the sort-merge is 2’:’p page accesses (since the

sorting of each of the subfiles is done internally without incurring extra page accesses). It is

possible that the original p pages of the file are only partially occupied, so that the writing

out of the sorted subfiles will incur less than p page accesses. Let u be the occupancy factor

(or fraction of storage utilization) of the original file; then the cost of forming the subfiles

is p ~ (1 • u) since the total length of the sorted subfiles will only be p’:’u pages. It is also

possible that Pu is not a multiple of b, in which case s-I subfiles of length b, and one with

length b’ (. p - b o (s - I)) will be formed.

_ _

Appendix 2 86 Analysis of Sorting Cost

The merge phase consists of repeatedly merging sorted subfiles until a single one is

obtained. Knuth [:~) has shown that merge patterns can be represented as trees, and that the

merging cost is proportional to the external path length of the corresponding tree .

Therefore, sorting cost is minimized by choosing a tree with minimum external path length

(sum of the level numbers of all the external nodes), such as a complete z-ary tree where z is

as large as allowable by the internal buffer size. Allowing one page for the buffering of

tuples from each subfile that participates in a merge, and one page for the output buffer , z

will be chosen to be b-i. Given s initial sorted subfiles (of which the first s-I are of length

b, and the last one is of length b’), the algorithm for carrying out the merging according to

a complete z-ary tree pattern can be described as follows. First add dummy subfiles (of zero

length) as necessary to make s — l(modulo (rn-i)), to the front of the queue of initial su~files,

then combine subfiles according to a first-in-first-out discipline, at any stage merging the z

oldest subfiles at the front of the queue into a single file which is placed at the rear. The

merging process terminates when a single sorted file is left. The external path length L for

a complete z-ary merge tree is (‘~
}

(A2. 1) L qs — 1(1q
— s) / (z — 1)J

where S • 1p/b~
q = 11og~s1

Hence, the paging cost C1 for the merging phase for the case that pu is a multiple of b is:

(A2. 2) C1 • b*L

Appendix 2 87 Analysis of Sorting Cost

If pu is not a multiple of b, there will be s - 1 subfiles of length b, and one with length b’ (
p - b “ (s - 1)). In this case, the merge-sort cost C2 is

(A2. 3) C2 - C 1 — q * (b — b ’)

Hence, the merging cost Cmerge (s - I, b’) for s - 1 subfiles of length b and one of length b’
is

(A 2. 4) C1 If b = b’

C2 1 f b ~~ b’

a’

88

REFERENCES

[ASTR AH AN’Th]

Astrahan, M. M., Chamberlin, D. D., implementation of a Structured

English Query Language . ProceediflEs of the ACM S1GMQ~

international Conference on Management of Data, May, 1975.

tBAYER72)

Eayer, R., McCreight. E., “Organil.atiOn and Maintenance of Large

Ordered Indexes”, Acta InformatiCa, Vol. 1,, Fasc i, 1972.

(BECKENBACH5GI

Beckenbach, E. F., (editor), “Modern Mathematics for the En~ifl! ,~~

McGraw-Hill Inc., New York , 1956.

(BELFORD7SI
Eelford, G. G., “Dynamic Data Clustering and Partitioflifl(, CAC .i,~~

Centre for Advanced Computation . Research in Network Data

Management and Resource Sharing. University of Illinois at Urbafla

Champaign. May, 1975.

tBLASGEN76]

Blasgen, M. W., Eswaran, K. P., “On the Evaluation of Qjseries in a

Relational Data Base System”. IEM Research Repoi% 1976.

a’

89 References

[BLEIR67]

Bleir, R. E., “Treating Hierarchical Data Structures in the SDC Time-

Shared Data Management System (TDMS)” , Proceedings of the ACM

National Conference, 1967.

[BOYCE74)

Boyce , R. F., Chamberlin , D. D., King, W . F., Hammer , M. M.,

“Specifying queries as relational expressions: SQUARE”, Data Base

Management, Proceedings of the IFIP Working Conference , North

Holland Publishing Co., Amsterdam, The Netherlands, April, 1974.

(BROWN59)

Brown, R. C., Statistical Forecasting for Inventory Control, McGraw

Hill Inc., New York , 1959.

[BROWN62]

Brown, R. C., “Smoothing, Forecasting and Prediction of Discrete Time

Series ”, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1962.

[CAR DENAS75)

Cardenas , A. F., “Anal ysis and Performance of Inverted Data Base

Structures”, CACM. Vol. 18, No. 5, May, 1975.

(CHAMBERLIN76)

Chamberlin, D. D., “Relational Data-base Management Systemsa, ACM

-— -~~~ - - — - -

90 References

Computing Surveys, Vol. 8, No~j . Mar., 1976.

(CODD7O)

Codd , E. F., “A Relational Model of Data for Large Shared Data

Banks , CACM Vol. IS, No~ 6, June, 1970.

(CODD7I]

Codd , E. F., “A Data Base Sublanguage founded on the Relational

Calculus”, Proceedings of the ACM-SIGFIDET Workshop on Data

Description, Access, and Control, 1971.

(CZARNIK75]

Czarnik , B., Schuster, S., Tsichritzis, D., “ZETA. A Relational Data

Base Management System”, Proceedings of the ACM Pacific Regional

Conference, April, 1975.

ED AT E75)

Date, C. J., “An Introduction to Data Base Systems”., Addison-Wesley,

Reading. Mass., 1975.

EDENNING7I]

Denning, P. J., Eisenstein , “Statistical Methods in Performance

Evaluation ”, ProceedinEs of the ACM Worksho p on System

Performance Evaluation, April. 1971.

91 References

IFARLEY75]

Parley, J. H. C., Schuster, S. A., “Query Execution and Index Selection

for Relational Data Bases”, Technical Report CSRC-53, University of

Toronto, Mar., 1975.

[FEIGENBAUM6S]

Feigenbaum, E. A., Feldman , J., (editors), “Computers and Thought ” ,

McGraw-Hill Inc., 1963.

[GOTL IEB75]

Gotlieb, L. R., “Computing Joins of Relations”, Proceedings of the

ACM SIGMOD Conference, May, 1975.

[HELD75A)

Held , C. D., Stonebraker, M. R., Won g, E., “INCRES: A Relational

Data Base System”, Proceedings of the AFIPS National Computer

Conference, May, 1975.

(H ELD75B]

Held, C. D., “Storage Structures for Relational Data Base Management

Systems ” , Memorandum Nb. ERL-M533, University of California ,

Berkeley, Aug., 1975.

EHOFFER75]

Hoffer , J. A., Severance , D. C., “The Use of Cluster Analysis in

a’______ - - ~- - - -~ ------~---—-

92 References

Physical Data Base Design”, Proceedings of the International

Conference on Very Large Data Bases, September, 1975.

(KING74)

King, W . F., “On the Selection of Indices for a File”, IBM Research Ri

~~~~ , San Jose, Jan., 1974.

[KENNEDY 72]

Kennedy, S. R., “A File Partition Model”, Information Science

Technical Report No. 2, California Institute of Technology, May, 1972.

(KNUTH’73)

Knuth , D., “Sortin g and Searching ”, The Art of Computer

Programming, Vol. 3, Addison-Wesley, 1973.

(KUEHN6S]

Kuehn, A. A., Hamburger, J. M., “A Heuristic Program for Locating

Warehouses”, Management Science, Vol. 9. No. 4, July, 1963.

ELEV IN75]

Levin , K. D., “Adaptive File Assignment in Distributed Data Bases”.

internal workin g paper , the Wharton School , Universit y of

Pennsylvania, 1975.

[L1068)



93 References

Liu, C. L., “Introduction to Combinatorial Mathematics ” , McGraw-Hill

Inc., 1968.

[LU M71]

Lum , V. V., Ling, H., “An Optimization Problem on the Selection of

Secondary Keys”, Proceedings of the ACM National Conference, 1971.

(MARTIN75]

Martin, J., C~~puter Data-Base Organization,~ Prentice Hall Inc.,

Englewood Cliffs, New Jersey, 1975.

(MEIER69]

Meier, R. C., Newell , W. T., Paz.er, H. L., “Sirnulanon in Business and

Economics”, Prentice Hall Inc., New Jersey, 1969.

[MUTH6O)

Muth, J. F., “Optimal Properties of Exponentially Weighted Forecasts”,

American Statistical Association Journal, June, 1960.

EPECHERER74]

Pecherer , R. M., “Efficient Retrieval in Relational Data Base System”,

Memorandum No. ERL-M547, University of California , Berkeley.

Oct., 1975.

(ROTHNIE72]

a’ - - - - - - _ _ - — ---------~~-—- -—--—_ -_-____



.! - - -
~~~

-

~
AD A034 165 MASSACHUSETTS INST OF TECH CAISRIOSE LAB FOR COMPUTE—ETC Fl 9,2

iwptx SELECTION IN A SELF—AD PTIVE RELATIONAL DATA BASE MANAS EM——CICIU)
SEP 76 A Y CHAN N0001N 73 C—O6b1

I UNCLASSIFIED NZT/LCS/T*—166
• I

I j :~ !!N~ I

I

ft

1.0 ~
_ _ _ _

2

1. 1 ~ 2 O

• _ _

.25 1Ii1I~ flf l l . 6

3

94 References

Rochnie, J. B.1 “The Design of a Generalized Data Management

System”, Ph. D. Dissertation, Department of Civil Engineering. MIT,

Sept., 1972.

~ROTHNIE74]

Rothnie, J. B., Lozano, T., “Att ribute Based File Organization In a

Paged Memory Environ ment”, CACMI Vol. 17. No. 2. Feb., 1974.

IROTHNIE75)

Rothn ie, J. B., “Evaluating Inter-entity Retrieval Expressions in a

Relational Data Base Management System”, Proceedings of the AFIPS

National Computer Conference, VoL14, 1975.

(SCHKOLNICK7S]

Schkolnick, M., “Secondary Index Optimization”, Proceedings of the

ACM-SIGMOD International Conference on Management of Data,

May, 1975.

(SMITH7S)

Smith, J. M., Chang, P., “OptImizing the Performance of a Relational

Data Base Interface”, CACM. Vol. 13~ No. 10. Oct. 1975.

(STOCK ER7S3

Stocker, P. M., Dearnley, P. A., “$.lf Organizing Data Management

Systems”. The Computer lournal. Vol. IS. No. 2. 1973.

95 References

(STONEBRAKER74)

Stonebraker, M., “The Choic, of Partial Inversions and Combined
Indices”, International Journal of Computer and Information Sciences,
Vol. 3. No. 2. 1974.

LTHEIL64)

Theil, H., Wage, S., “Some Observations on Adaptive Forecasting”,
Management Science. Vol. 10. No. 2, Jan., 1964.

(WAGNER7S]

Wagner, R. E., Index Design Considerations”, IBM System lournal.
Vol. 4, No. 3. 1973.

(WELCH76]

Welch, J. W., Graham , J. W., “Retrieval Using Ordered Lists in

Inverted and Multi li st Files”, Proceedings of the ACM SIGMOD
Conference. June, 1976.

(WINTERS6O]

Winters, P. R., “Forecasting Sales by Exponentially Weighted Moving
Averages”, Management Science, Vol. 60, 1960.

(WONG76)

Wang, E., Youuef I. K., “ A Strategy for Query Processing”, ACM
Transactions on Database Systems, (to appear).

96 References

(YUE7S]

Yue, P. C., Wang, C K., “Storage Cost Considerations in Secondary

Index Selection”, International Journal of Computer and Information

ScienCes, Vol. tNo 4.1975.

Official Distribution List

Defense Documentation Center New York Area Office
Cameron Station 715 Broadway — 5th floor
Alexandria , Va 22314 12 copies New York, N. Y. 10003 1 copy

Office of Naval Research Naval Research Laboratory
Information Systems Program Technical Information Division
Code 437 Code 2627
Arflngton, Va 22217 2 copies Washington, D. C. 20375 6 copies

Office of Naval Research Dr. A. L. Slafkosky
Code lO2IP Scientific Advisor
Arlington, Va 22217 6 copies Commandant of the Marine Corps

(Code RD—i)
Washington, D. C. 20380 1 copy

Office of Naval Research
Code 200
Arlington, Va 22217 1 copy Naval Electronics Laboratory Center

Advanced Sof tware Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy

Captain Grace N. Hopper
Office of Naval Research NAICOM/MIS Planning Branch (OP—916D)
Branch Off 1c , Boston Office of Chief of Naval Operations
495 Summer Street Washington, D. C. 20350 1 copy
Boston, Ma 02210 1 copy

Mr. Kin B. Thompson
Off ice of Naval Research Technical Director
Branch Off ice, Chicago Information Systems Division (OP—91T)
536 South Clark Street Office of Chief of Naval Operations
Chicago, Ii 60605 1 copy Washington, D. C. 20350 1 copy

Off ice of Naval Research
Branch Off ice, Pasadens
1030 East Green Street
Pasadena, Ca 91106 1 copy

_J - - - -

~~~~

- -


