
F Sfl MASSACHUSETTS INST OF TECH CAMOtIOSE LAS FOfi COMPUTES—ETC F,. 9~tH u H LCVCL EXPRESSION oc Si’ ANTIC INTEGRITY SPECIFICATIONS IN A——r TcIu)
SEP 76 0 a NCLEOO NOOO1~ —75—c-O66t

I uNCl ASSIFIeD NZTACS/TReISS NI.

I i

~~~~~~~~. 
_ _

- ~toomnmm •DD~
- -



IIIH ‘
I i

• ________________ I

11)11’ .25 illhI~•~ ~~



LABOR ATORY FOR
COM PUTER SCIENCE TECHNOLO (;Y

(former ly Project MAC)

MIT/LCS/ TR-165

HIGH LEVEL EXPRE SSION OF
SEMANTIC INTEGRITY
SPECIFICATIONS IN A

RELATI ONAL DATA BASE
SYSTEM

D D C

Dennis J . McLeod~~~~~~~~~~~ J~J

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Office of Naval Research under
contract no. N00014-75.C-0661

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSE11’S 02139

[~ismIrnmoN S?ATEMENT A]
I £p~zov.d foz public ;e1;ci..;



SECURITY CLASSI FICATION OF THIS PAGE (1Th.n Sal. £nftr.d)

BEFORE COMPLETIN G FORMREPORT DOCUMENTATION PAGE READ INSTRUCTION S

12 
GOVT ACCESSION NO 3. RECIPIENT S C A T A L O G  NUMbER

High Level Expression of semantic Integrity S..M. Thesis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5. TYPE OF REPORT 6 PERIOD COVERED 

-

Specifications in a Relational Data Base System s~ 1975— 1976
6. PERFORMING ORG. REPORT NUMb ER

__
MIT/LCS/TR— 165_~~

7. AUTP4OR(i) ___ S. CONTRACT OR GRL~~Y M9MSER(.)

~~~~ Dennis J .fMcLeod
J 

NgØØ14-75-C-Ø661 (p—

9 PERFORMING ORGANIZATI ON NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . A3 K

Massachusetts Institute of Technolg.gy AREA S WOR K UNIT NUMb ERS

Laboratory for Computer Science
545 Technology Square ; Cambridge , MA 02139 

— ____________________________
II . CO NTROLL ING OFFICE N A M E  A N D  ADDRESS •~~~~~ eDr~ “ —

Advanced Research Projects Agency Sepi_~~~T 1
~~ 76

Department of Defense 1L WUMB~~R1400 Wilson Boulevard 121
,~rMw~~w~~ Y~~~~~~~~~~~ E~~~~~~LSSI~II _________5 OIls c.) IS. SECURITY CLASS. (ot ffi g . r.purt)
Office of Naval Research
Department of the Navy Unclassified
Information Systems Program IS.. OECLA SSIF ICATI ON/OOWNGRA DING
Arlington , Virginia 22217 SCH EDULE

16 OI 5T~~$M.Z1p-~~TATE~~EMT oL,i.l.

~~~~ ?i4 ~~~
t

~~
’
~~
t~e~5is~jApproved ror puDlic release; distribution unlimited

‘7 o Isrpueu TIoN STATEMENT (of th~ .b.t, .cf ..,t.r .d Sn Block 20. II dill .r.nt lro.. R.porS)

lb SUPPL EMENTARY NOTES

19 KEY WO R DS (Cøntinu. on r.v•ra. .id. SI .,.c..awv .,d Sdsnuly by 1~fock nu.,b.r)

Data base management, semantic integrity~ error detection and correction,
data base design , data definition , data semantics , very high level languages

20. ~~J~T RA C T (Continue on ,.o •,.• .ld. If n.ca•Wy ~ ed Ideni Sty by block nt ub•r)

~~The ‘semantic integrity’ of a data base Is said to be violated when the
data base ceases to represent a legitimate configuration of the appl ication
environment i t is intended to model . In the context of the relational data
model , i t is possible to identify multiple levels of semantic integrity
Information: (1) the description of the domains of the data base as abstract
sets of atomic data values (domain definitIon), (2) the specification of the
fundamental structure of the relations of the data base (relation structure ~~

CD 1 j AN 73 1473 EDITION OF I NOVSS ’S OSSOLETI
S/ri O I O 2 ~ O I 4 660 1

SECURITY CLASSIFICATION O~ THIS PAGE ~1N,.a Data b.~ .c.d ’

Ill—

ç~~C I iH I7Y CLASSIFICATION OF THIS PAGE(Wh.r Oat. Ent.r.d)
Lu.
specification), (3) the definition of the abstract operations which are
meaningful in terms of the application environment (structured operations),
and (4) the expression of additional semantic information not contained in
the structure of the relations nor in the identi ties of their underlying
domai ns (relation constraints).

A high level . nonprocedural domain definition language facilitates the
description of domains. Such a language allow s the specification of the
properties of the values constituting a domain , and the action that is to
occur if an attempt Is made to update a column entry such that it does not
belong to the underlying domain of that column . The specification of
relati on structure and structured operations can be accompl ished by means of
high level integrity (sub)languages .

- - A relation constrainf has three components: (1) the assertion (a
predicate on the state of the data base or on transitions between data base
states), (2) the validity requirement (the occasion(s) at which the assertion
must hold), and (3) the violation-action (the action that is to occur if the
assertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification
scheme) wh i ch is useful for the construction of a rel ation constraint language
and specifi cation methodology. Assertions are more than expressions of some

• relationships among different values in a data base; an assertion singles
\ out the data that is constrained , and states the properties this data must
\~

possess. A classification is provided of the various predicate types used
to identify constrained data and to state the properties that they are to
“ppssess.

‘~ A semantic integrity subsystem (of a generalized relational data base
management system) can support the generation and maintenance of integrity
specifications, verify that these specifications are met by the data base,
and take appropriate action if violations are detected.

SECURITY CI.ARSIPICATION OP THIS PASt(~~~.i 0 a ~~~~~~~~

S~i,tt ~~~~~~~~
eur c~cI~ s I .

~

MIT/LCS/TR—165

~‘53~flj$t%i’fl tODCZ

‘.~~~~A~MC aat/w $PECIAL

High Level Expression of Semantic Integrity Specifications
in a Relational Data Ba.. System

Dennis J. McLeod

September 1976

Massachusetts Institute of Technology

Laboratory for Computer Science
(formerly Project MAC)

Cambridge Massachusetts 02139

D D C

TPISTR1BUT1ON~~TATEMENT A
Approved for public rolecise;

Distribution Unlunited

Semantic Integrity Specification 2

ABSTRACT

The semantic integrity of a data base is said to be violated when the data base
ceases to represent a legitimate configuration of the application environment It is Intended
to model. In the context of the relational data model, it is possible to identify multiple
levels of semantic integrity information: (I) the description of the domains of the data base,
as abstract sets of atomic data values (domain defInition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure specification). (3)
the definition of the abstract operations which are meaningful in terms of the application
env ironment (structured operat ions) . and (4) the expression of additional semantic
information not contained in the structure of the relations nor in the identities of their
underlying domains (relation constra ints).

A high level, nonprocedural domain definition language facilitates the description of
domains. Such a language allows the specification of the properties of the values
constituting a domain, and the action that is to occur if an attempt is made to update a
column entry such that it does not belong to the underlying domain of that column. The
specification of relation structure and structured operations can also be accomplished by

A relation constraint has three components:j~LLhe-aeserfl la.predicate on the state
of the data base or on transition~,~ iwe.n-data~ iie states), (2) the validity requirement (the
occasion(s) at wh Ltbe-assertion must hold), and (3) the violation-action (the action that is
to occur if - titl issertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification scheme) which Is
useful for the construction of a relation constraint language and specification methodology.
Assertions are more than ex pressions of some relationships among different values in a
data base; an assertion singles out the data that is constrained, and states the properties
that this data must possess. A classification is provided of the various predicate types used
to identify constrained data and to state the properties that they are to possess.

A semantic integrity subsystem (of a generalized relational data base management
system) can support the generation and maintenance of integrity specifications, verify that
these specifications are met by the data base, and take appropriate action if violations are
detected.

Semantic Integrity Specification 3

ACKNOWLEDGEMENTS

The author is most grateful to Professor Michael Hammer of MIT for his
enthusiastic suppport and guidance, and for his many and varied contributions to the

contents of this thesis. Many others have helped greatly, providing ideas, comments, and
criticisms, including: Jack Aiello, Sheldon Borkin, Daniel Carnese, Arvola Chan, Marvin
Essrig, Richard Grossman, Professor Barbara Liskov , Professor William Martin, Professor
David Redell, Arnold Schiemann, and Sunil Sarin (all of MIT); Dr. Donald Chamberlin,
Dr. Edgar Codd, Dr. Kapali Eswaran , Dr. Frank King, Dr. James Gray, and Dr.
Bradford Wade (all of IBM San Jose Research) Professor Michael Stonebraker (of the

University of California, Berkeley). Although many of the ideas in this thesis belong to

these persons, all of the mistakes belong to the author. Finally, the author would like to

thank Mary Rykowski, for her moral support, for polishing the prose of earlier drafts of

this document, and for being an inspired and unending critic.

This research was sponsored by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the office of Naval Research under contract

number N00014-75-C-0661.

This report is a slightly revised version of a thesis submitted to the Department of

Electrical Engineering and Computer Science in June 1976, in partial fulfillment of the

degree of Master of Science.

Semantic Integrity SpecIfication 4

TABLE OF CONTENTS

ABSTRACT 2

ACKNOWLEDGEMENTS S

TABLE OF COl ITENTS 4

LIST OF FIGURES 6

I. INTRODUCTION 7

Ii. Semantic Integrity 9

1.2. The Data Model 11

1.3. The Relational Data Model 13

2. SEMANTIC INTEGRITY 16

2.1. Background 17

2.2. An Approach to Semantic Integrity SpecificatIon 20

3. DOMAIN DEFINITION 23

3.L Describing Sets of Atomic Data Values 24

3.2. A Domain Definition Language 25

3.2.1. Language Details and Examples 28

3.3. Implementation Considerations 32

3~4. Extensions

4. RELATION STRUCTURE 37

4.1. Additional Column Information 38

4.2. ComparabIlity 38

4.2.1. Domain Conversions 39

S STRUCTURED OPERATIONS 44

5.1. SemantIc Integrity Information In Structured Operations 44

Semantic Integrity Specification 5

5.2. The Definition of Structured Operations 45

6. RELATION CONSTRAINTS 48

6.1. Whither Assertion Structure? 49

6.2. Relation Constraint Assertions 51

6.2.1. Simple Assertions SI

6.2.2. Identification of the Constrained Collection 53

6.2.S. Tuple Assertions 57

6.2.4. Set Assertions 61

6.2.5. Scope of Assertions 65

6.3. Relation Constraint Validity Requirement 66

6.4. Relation Constraint Violation-Action 69

6.5. Implementation Considerations 70

6.6. Remarks 71

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM 72

7.1. Components of a Semantic Integrity Subsystem 72

7.2. The User’s View of the Integrity Mechanism 73

7.3. Some Thoughts on Integrity Subsystem ImplementatIon 74

7.3.1. The Use of Inversions In Relation Constraint Checking (An Example) 76

8. REMARKS AND DIRECTIONS 78

REFERENCES AND BIBLIOGRAPHY 80

- - -

Semantic Integrity SpecifIcation 6

LIST OF FIGURES

I-I. Relation EMP 106

1-2. Example Data Base 307

1-3. A Possible Set of Relational Primitive Operations 108

S-I. Selected Example Data Base Domain Definitions 109

3-2. Syntax of the Domain Definition Language 111

6-1. Some Simple Assertions (for data base in figure 1-2) 115

6-2. Local Tuple PredIcates 316

63. Nonlocal Tuple Predicates 317

6-4. Local Set Predicates 118

6 5. Nonlocal Set Predicates 119

_ _ _ _ _ _ - - - - -

Semantic Integrity Specification 7

I. INTRODUCTION

Rather than just a collection of values, a data base should be a model of some

application environment. When a data base ceases to represent a valid configuration of
that application environment, the semantic integrity of the data base Is violated. The
purpose of this thesis is to examine the problem of describing and preserving the semantic

integrity of a data base in the context of a generalized data base system. The general goat

is to provide a first approximation to a “theory” of semantic integrity (particularly in the
context of the relational data model), and to provide a basis for a semantic Integrity
specification methodology. This includes art overview of the relevant issues as well as a

description of a particular approach to the problem, with emphasis on the high level,

nonprocedural expression of semantic integrity requirements.

p~at~ base systems (data base management systems) are intended to assume the tasks

of facilitating data storage. manipulation, and retrieval. The data base system should also

be responsible for maintaining the correctness of the data In a data base, as well as
providing users with appropriate abstract views of the data. This is particularly important

for large data bases, as ad Isoc and “hand” checking is impractical.

By way of background, it might be useful to place the notion of semantic integrity in

perspective, and to better define the meaning of the terni as used in this thesis. There are

a number of ways In which the soundness of data in a data base may be compromised:

I. The reliabi~~y~ of data may be compromised by errors due to hardware failure, as

well as those due to failure of the operating system and data base system software.

Hardware reliability (in the context of data base systems) has been considered

elsewhere (Fossum 1974, Wilkes 1972]. Software reliability is a very prominent

research concern at present, as exemplified by the work of’ those concerned with

Semantic Integrity Specification 8

establishing the correctnes s of programs. In the area of data base systems,
Hawryszklewycz and Dennis (Hawryszkiewycz 1972, Hawryszkiewycz 1973) have
developed a formal semantic model of a relational data base system, defined data
base primitive operations in terms of this model, and proven the correctness of the
operation definitions (abstract programs). Weber (Weber 1976) has further developed
this approach.

2. The concurrent consistency of data may be violated due to the effects of

Improperly controlled accesses to shared data by multiple concurrent users (processes).
It is desirable to provide each user with a consistent view of a data base, shielding
this user from Interfering effects due to the activities of other users, while at the
same time retaining a maximum amount of legitimate concurrent activity. Eswaran,
Cray, Lon e, and Traiger (Eswaran 1974) have described a high level scheme for
concurrent consistency control In a relational data base system. Hawryszkiewycz and
Dennis (Hawryszklewycz 1972, Hawryszkiewycz 1973] developed a lower level model of
concurrent consistency based on a formal semantic model of a relational data base
system.

S. Data security may be compromised by a failure to properly (administratively)
restrict the manner in which a given user may access and manipulate a data base. A
good deal of pioneering effort in the area of security and protection has been
accomplished In the context of operating systems. Some of this work has beer
extended to data base systems, e.g., the work of Chamberlin, Gray, and Tralger
(Chamberlin 1975]. and Stonebraker and Wong (Stonebraker l974d1

4. The semantic Integrity of data Is violated when the data base ceases to represent a
legal configuration of the application environment It is intended to model. Semantic

Integrity errors may be introduced by user error, lack of understanding, malice, etc.

Semantic Integrity Specification 9

(“Inadvertent , Improper, or malicious update” (Stonebraker 1974c)). In fact, hardware
and software reliability errors, concurrent consistency errors, and security errors may
cause the semantic integrity specifications of a data base to be violated. For example.
some user may, because of a failure of the data base security mechanism, make an
unauthorized change, such as raising his own salary from $20,000 to $30,000; this
unauthorized change can then cause a semantic Integrity constraint to be violated,
such as “all employee salaries are less than $25,000”.

This thesis deals specifically with the fourth aspect of the soundness of a data base,
namely semantic integrity. In what follows, we assume that hardware and software
reliability are guaranteed (e.g., by the operating system). We also assume that concurrent
consistency is assured; it is sufficient to assume, without loss of generality, that a single user

is interacting with the system at any given time. Security issues are not further considered

in this thesis.

LI. Semantic Integrity

A data base is meant to serve as a model of some limited universe; at any given time.
the values In the data base represent a particular configuration of that application
environment. Every such world has Its own internal logic. a set of rules specifying what

constitutes a legitimate and plausible configuration of that environment IFlorentin 19741 It

should be the function of the data base system to Insure that these rules are not violated

and therefore that the data base is not In a semantically inconsistent state.

A basic premise we will adopt Is that , as noted by Minsky (Minsky 1974a): “the
fundamental property of a data base is that It has an intrinsic meaning which Is invariant

of Its interaction with users”. The semantic integrity specifications for a data base capture

this Intrinsic meaning. The data base system should facilitate the precise expression of’

Semantic Integrity Specification 10

these Integrity specifications. We assume that some person (or committee of persons),

known as the ~~~ ~~~ adminlstrator,~ is responsIble for stating the semantic integrity

specifications for the data base.

It is possible and indeed desirable for the data base system to support multiple

abstract logical views of a data base. These views must however be constructed from and

consistent with the semantic integrity specifications (i.e., the data base administrator’s view

of the data base). Even providing a view of the data base which consists of a subset of

that data base Is difficult, because of the “connections” between the subset and other

elements of the data base.

A variety of causes may result in a compromise of the semantic integrity of a data

base, Including:

I. inaccurate data recording or entry,

2 inadvertent alteration of data during some transmission or transcrIption process.

S deliberate falsification of data,

4 loss, omission, or delay of data.

The ramifications of permitting incorrect data to permeate a data base may indeed be far

earhing. Crucial decisions may be wrongly influenced, user confidence in the system

destroyed, and the reliability and performance of the system degraded (Including

application programs and packages as well as the data base system Itself).

It is generally recognized that the problem of bad data in data bases Is a serious one.

Unfortunately, the state of the art in error checking In data base systems Is quite dismal.

Moct semantic integrity checking is currently accomplished by means of application

programs; data checking mechanisms are embedded in these applicatIon programs. SpecIal

purpose data base “audit” routines are also sometimes used to check data integrity. Existing

c~. mmercial data base systems perform limited types of’ Integrity checking, If any. This

Semantic Integrity SpecificatIon 11

checking is nearly always limited to simple data format checks. In any case, semantic

integrity information and checking Is usually unstructured, and is embedded in application
programs in an ad hoc manner (Cosden 19741 furthermore, no discipline Is imposed on the
semantic integrity specification process. This lack of structure and discipline has the

following consequences:

1. The mechanism by which semantic integrity specifications are checked is diffuse.

2. Semantic integrity specifications are not readily modifiable.

S. The abstraction defined by the semantic integrity specifications, which is Intended
to correspond to the set of rules in the application environment, is difficult to
understand.

4. Inconsistencies and redundancies can be present in the semantic Integrity

specifications, which may be difficult to locate.

5. It is difficult to make the semantic integrity checking process efficient, either by

means of manual or automatic optimization.

1.2. The l)ata Model

The ~~~ model upon which a data base system is based is defined here to consist of

the type(s) of data structures used to represent information in the data base, along with the

s’~ of primitive operations which can be used to manipulate those structures. The nature

of the data model underlying a data base system has a very significant effect on the

manner in which one describes the semantic integrity of a data base in that system. As

described below, some semantic Integrity information is often In fact embedded in the

structures used in the data model (Date 1975, Mommens 3975].

There have been three principal data models proposed for generalized data base

systems (Date 1975]:

Semantic Integrity Specification 12

I. For historical and other reasons, the hierarchical approach is a very popular one.
Examples of hierarchical data base systems and data sublanguages (languages for
defining and manipulating data bases) include IMS (IBM], HQ,L (Fehder 19743, Data

Language (MarilI 19753 and System 2000 (MRI 1972]. In the hierarchic approach,
some semantic integrity information is expressed in the form of one-to-many

relationships (trees). Thus, one-to-many constraints are expressed by appropriately
constructing the data base hIerarchy.

2. The network approach Is typified by the Codasyl DBTG proposal (Codasyl 1971a]
and the work of Bachman (Bachman 1973]. An example of a network data base
system is Adabas (Software AG 1974). In the network data model, some semantic
integrity information is expressed via many-to-many relationships; this is done by
appropriately constructing the network structures of the data base.

S. The relational approach was introduced by Codd (Codd 1970] (Codd 1974a3.

Examples of relational data base systems and data sublanguages Include ALPHA
(Codd 1971a], INGRES (McDonald 1974a, McDonald 1971b, Held 1975b), MACAIMS
(Goldstein 1970], Q,uery by Example ~Zloof 1974, Zloof 1975a, Zloof 1975b), RDMS
(Steuert 19743, RISS (McLeod 1975), SEQ,UEL (Boyce l973a. Chamberlin 1974b,
Chamberlin 1975), and SQUARE (Boyce 1973b, Boyce 1975). In the relational data
model, functional dependencies are normally included in the specification of the basic
struct ure of relations. However , as discussed in section 1.3, these functional
dependencies may be easily separated from the basic structure of the relations of the
data base.

Several (higher level) semantic ç~ta~ models have been recently proposed (Chen
1975, SchmIdt 1975, Senko 1975, Smith 1976, Tslchrltzis 19753. These higher level
models attempt to Incorporate more semantic integrity information In the basic

Semantic Integrity Specification 13

structure of a data base. Structures In these data models are Intended to represent

objects, attributes of objects, and relationships between objects (in the application

environment). Semantic operations on these structures represent legitimate changes in

the application environment.

It Is not the purpose here to analyze these data models in detail, although many
of the ideas developed herein are quite closely related to work on semantic data
models. Rather, and for reasons to be explained later, the relational data model will

be used herein, as a basis for the discussion of data base semantic Integrity.
Although the ideas discussed In this thesis are applicable to data base systems In

general, the discussion Is couched in terms of the relational model of data.

1.3. The Relational Data Model

The relational data model appears to be the simplest data structure consistent
with the semantics of information and which provides a maximum degree of data

Independence (Boyce 1973b]. As concisely stated by Codd (Codd 1974a) “In the

relational approach there exists an interface at wh ich the totality of’ formatted data in

a data base can be viewed as a collection of nonhlerarchic relations of assorted

degrees on a given collection of simple domains (domains whose elements are not

decomposable as far as the data base management system is concerned).

For the purposes of this thesis, a (relational) data base is defined to be a

collection of normalized relations (relations in first normal form (Codd 1970]), and a

collection of dcmains. (The relations present In the data base are specifically called

base relations.) A domain is an abstract set of atomic data values (objects). Domains

are defined Independently of relations. A normalized relation may be viewed as a

table, wherein each row of the table corresponds to a tuple of the relation, and the

-4

Semantic Integrity SpecIfication 14

entries in a column belong to the set of values constituting the underlyinE domain of

that column. (An ~~~ Is the value in some particular column for a given row of a

relation.) The domain underlying a column consists of precisely those objects which

can appear as entries In that column; any value in the underlying domain of a

column can appear in that column, and every value in the underlying domain Is a

plausible entry In that column. Note that domain and relation names are unique with

respect to a data base, and that a domain and a relation cannot have the same name.

Consider, for example, a data base which contains information about some

company. Assume that a relation called EMP contains data on the employees of the

company. EMP is shown In figure 1-1, described by its table representation. The

~~~~ of the table correspo nd to tupies of the relation (records), and the columns

correspond to Instances of particular domains of the data base. (Loosely speaking, a

relatIon corresponds to a “flat” file, a tuple to a record, and a column to a data field.)

Each data base relation is created by naming the relation and each constituent

column, and specifying the name of the underlying domain of each column. More

than one column In a relation may have the same underlying domain. Column

names are unique within a relation. Specifying the name of the underlying domain

of each column defines the set of values from which entries In that column may be

selected; that is, the set of entries in a column Is always a subset of the underlying

domain of that column.

Figure 1-2 contains a description of an example data base. The name of each

domaIn and relation of the data base Is listed therein (in upper case characters). For

each relation, the name of each of its constituent columns is specified (by one upper

case character followed by lower case characters), as is the underlying domain of each

column. Relation EMP contains Information on the employees of the company,



Semantic Integrity Specification IS

SALES records information on the supplies of Items for the company, ORDERS

records order Information, and BUDGET contains the salary bud get for each

department of the company.

Figure 1-3 contains a list of some example primitive operations which may be

used to Interact with a relational data base. It Is assumed that In addition to these
operations, a high level, nonprocedural query language is provided (e.g., SEQUEL

(Chamberlin 1974b], QUEL (Held 1975b3, or Q~zery by Example (Zloof 1975a]).

The advantages of the relational data model have been previously elucidated
(Codd 197k, Codd 1975b, Date 1974), and will not be repeated here In detail. For our

purposes, the followIng attributes of the relational model of data are most significant:

1. Access paths are not apparent in the logical view of data.

2. The data model Is conducive to (relatively) nonprocedural data selection, query, and

manipulation languages.

3. It Is possible to cleanly Isolate the different levels of semantic Integrity in the

relational data model, as discussed in chapter 2. For example, in the hierarchical and

network data models, certain types of Integrity constraints are deliberately built into

the data structure Itself (e.g., the owner-coupled set construct In the network model).

The data base administrator is thus faced with problem of separating the semantic

Integrity requirements from the complexities of the data structure. However, In the

relatIonal data model, “the data base administrator has only one type of structure to

consider, and a very simple coordinate system (identification of relations and columns

by name and rows by content) by which he may refer to any IndivIdual item or

portion of that structur.. (Date 19751



Semantic Integrity SpecifIcation 16

2. SEMANTIC INTEGRITY

In the context of the relational data model, it is possible to identify four principal

levels of semantic integrity:

1. Domain defInition is the dcscrtption of abstract sets of atomic data values, which

are to be used to specify the set of values from which entries in columns of relations

can be selected. This can be accomplished by means of a high level domain

definition language (McLeod 1976a, McLeod 197Gb]. For example, the domain

SALARY may be defined as consisting of positive integers less than 100,000.
2. Relation structure specification Is the description of the fundamental structure of

the base relations. This includes naming each constituent column of a relation, and

stating the underlying domain of that column.

3. Structured operations are abstract operations, which are meaningful in terms of the

application environment. Structured operations describe data base transactions, and

are used to capture the conceptual types of manipulations that are meaningful for a

data base (such as, for the example data base of figure 1-2, an operation HIRE-

EMPLOYEE).

4. The relation constraints level is concerned with relationships among data base

components. Relation constraints are used to define all additional semantic properties

of and relationships between the relations of a data base. For example. primary key

(Codd 1970] (and third normal form (Codd 1971b, Codd 1971c]) specification Is

accomplished by appropriate relation constraints. However, relation constraints go

far beyond merely supporting functional dependencies, they provide the capability to

det inc a very rich variety of types of data properties. For example, relation

constraInts may disallow inconsistencies between column entries of a sIngle tuple or



Semantic Integrity Specification 17

between a tuple and other tuples in the same or other relation(s). They may also

preclude some global patterns in some set of tuples in a relation or the data base as a

whole, or may disallow certain types of missing data (such as missing tuples, obsolete

values, etc.)

Before further describing the approach to semantic Integrity which Is taken in this

thesis, we briefly examine other work that has been done in the area of semantIc integrity

in data base systems.

2.1. Background

In general, there are two major approaches to the specification of the semantic

integrity of a data base

1. In a state snapshot approach, rules are stated that specify which data base states are

permIssible (valid states). The data base system is responsible for insuring that the

data base Is always In a valid state. (As discussed in a later chapter. it may be

necessary to allow the data base to temporarily pass through one or more invalid

states.)

2. In a 
~ 

transition approach, the set of legal data base operations is specified.

Depending on the data base state, only certa in operations (valid operations) are

allowed to be performed on that state. These operations are guaranteed to preserve

the integrity of the data base.

A state snapshot approach to describing the semantic Integrity specifications for a

data base Involves the expression of logical constraints, which can be viewed as predicates

on the state of the data base. These constraints limit the states of a data base to those that

conform to some expressed limitations. Several authors (Boyce 1973a, Eswaran 1975,

Stonebraker 1974c, Stonebraker 197k, Zloof 1975b] have discussed semantic Integrity 



Semantic Integrity Specification 18

assertions In the context of the relational data model. Graves (Graves 1975) has also

considered the problem of semantic integrity.

More specifically, Boyce and Chamberlin (Boyce 1973a) introduced the use of

SEQJJEL predicates for expressing integrity assertions. For an operation which makes a

data base change to be allowed, the predicates must hold on the data base state which

results as a consequence of the execution of that operation. Eswaran and Chamberlin

[Eswaran 1975) have discussed the functional requirements of a semantic integrity subsystem

and have examined semantic integrity in the context of SEQ~UEL and System R

(Chamberlin 1975, Eswaran 1~75]. Stonebraker and Wong have considered semantic

integrity In terms of the INCRES system and the language QJJEL (Stonebraker 1974c1 and

i.~troduced the concept of query modification as a tool for the implementation of a semantic

Integrity subsystem (Stonebraker 197k]. Consider the following example of query

mod ification: a data base operation is attempted which states “increase the salary of each

employee in the sales department by l0~ ; assuming the existence of an integrity assertion

which states that “each employee salary is less than $30,000”, query modification would

transform the operation Into one which specifies 4increase the salary of each employee in

the sales department by 10~, if that increase results in his salary being less than 830,000”.

Zloof has studied the problem of semantic integrity with respect to the expression of

semantii. integrity specifIcations in Qpery by Example [Zloof 1975b].

In these approaches, facilities are provided to allow the user to state predicates

(expressed In SEQUEL, QUEL, or Qpery by Example) which are to hold on the data base.

Assertions must be satisfied by the result of a data base change for that change to be

mllowed. Several significant problems exist with these approaches:

I. They do not deal with the entire problem of semantic Integrity In a relational data

base, but rather focus primarily on relation constraints.

- -



Semantic Integrity SpecIfication 19

2. They are inadequately flexible with regard to when assertions are to be checked.
3. The types of actIons possible upon detection of semantic integrity violations are
limited.

4. No structure is placed on the semantic integrity specifications; assertions are
arbitrary predicates on the state of the data base or ott transitions from one data base
state to another.

A state transition approach to semantic integrity specification consists of describing
the set of legal operations which may be performed on a data base. In this approach, the
user is confined to interacting ~with the data base by means of a limited set of operations.
Semantic integrity information is thus procedurally embedded in the operations. This
approach has been suggested by Minsky (Minsky 1974a, Minsky 1974b], in the context of
data base systems. Related work in the area of the definition of abstract data types (e.g~
the work of Liskov and Zilles ~Liskov 1974)) has much in common with this operational
approach.

Some of the most significant problems with the state transition approach are
I. Semantic integrity information is embedded in procedures in an unstructured
manner, and is consequently hard to modify and potentially redundant, inconsistent,
and incomplete.

2. The conceptual semantic model of a data base is difficult to abstract f rom the
procedurally embedded semantic integrity information.
3. It is difficult to verIfy the correctness of the semantic Integrity information, as it Is
scattered through the operations.

4. It is not always possible to precisely characterize the set of operations which are
meaningful for a data base at the time the data base is created. Data Is often kept in
a data base before uses for it are discovered, or at least before all of Its potential uses



Semantic Integrity Specification 20

are discovered; nevertheless, It Is often possible to describe the semantic integrity of

this data by means of properties It must satisfy (e.g., assertions which must hold on

the data).

5. Different data base “views” (external schemas) may Include very different sets of

semantically meanIngful operations, while still couched in terms of a single data base

schema (conceptual schema). It is difficult to insure the consistency and completeness

of the semantic integrIty checking which Is performed by the operations in different

vIews.

6. Some data base operatrons are not meaningful in terms of the semantic Integrity of

a data base, but are nonetheless required in practice (e.g., an operation to change a

person’s date of birth, the value of which was originally Incorrectly entered Into the

system).

2.2. Art Approach to Semantic Integrity SpecificatIon

The major goal of this thesis Is to provide a first appro~1mation to a “theory” of

semantic Integrity, particularly In the context of the relational data model. In so doing, it is

hoped that a basis for a semantic Integrity specificatIon methodology will be developed.

This methodology should assist in the formulation of the semantic integrity rules of a given

application envIronment, and direct the selection of those rules which will constitute the

semantic Integrity specifications of a data base (e.g., In the face of Implementation cost

tradeoffs).

A semantic integrity subsystem must be capable of performing:

1. semantIc Integrity checkinf (error detectIon),

2. semantIc Integrity violation localization (determining precisely which data values
are In error),



Semantic Integrity Specification 21

3. semantic integrity violation-action (reporting!response).
The semantic integrity specification language(s) must provide the user with the ability to
state all information required to perform these tasks. (This Includes, of course, a precise
specification of the semantic integrity rules themselves.)

Actually, it is desirable not only to encapsulate (In the data base semantic integrity
specifications) knowledge about the semantic integrity of a data base, but also knowledge
about how users will interact with the data base. The meaning of a data base includes the
manner in which users Interact with it; semantic integrity and user abstractIon are closely
related issues.

Some semantic integrity information is best expressed via a state snapshot approach,
while other information is best expressed in terms of state transitions. The approach
described in this thesis includes both state snapshot and state transition aspects.

BasIcally, then, the approach to semantic Integrity taken here has several major
objecri Yes:

I. It should be possible to express semantic integrity specifications:
a. on a high level,

b. declara tively, rather than procedurally,

c. in a structured manner,

d. abstractly, in a way relevant to the application environment.

2. These specifications should be:

a. easily modifiable,

b. rionredundant,

c. consistent,

d. complete (as a model of the application environment),
3. Semantic Integrity checking should be:



Semantic IntegrIty Specification 22

a. the responsibility of the system (but the system may sometimes need to ask

for advice from the user),

b. flexible, allowing appropriate specification of when checking is to be done

(e.g., after primitive data base change, after conceptual transaction, etc.),

c. acceptably efficient in terms of the overall performance of the data base

system.

4. Semantic integrity violation-action should be

a. flexible, allowIng an appropriate violation-action to be specified (e.g.,

including error reporting, corrective action, etc.),

b. sufficiently “localized” so as not to generate time-consus”ilng. expensive, and

potentially destructive “side effects”.

The approach to semantic integrity described in this thesis may in fact be viewed as

a generalized approach to data base design and/or data definition. That is, we are

attempting to provide a framework by which the data in a data base may be described.

Additionally, the framework descrIbed herein may prove useful as a base language Into

which specifications In terms of a higher level data model (such as those described in

(Chen 1975, Schmidt 1975, Senko 1975, Smith 1975, Tslchrttzls 1975)) may be translated.



Semantic Integrity Specification 23

3. DOMAIN DEFINITION

The purpose of this chapter is to discuss domain definition, one level of semantic
integrity in the context of the relational data model. Specifically, the precise definition of
domains, viewed as sets of atomic data values, is considered. This includes a review of the
functional requirements for dealing with the problem of domain definition, a discussion
and evaluation of other work that has been done In the area, and the description of a
specific solution to the domain definition problem.

It is important to note that a domain is different from a unary relation. Domains are
abstract sets of atomic data values, and may in fact contain an infinite number of elements.
A relation, by contrast, must contain a finite number of tuples. Abstractly, relations are
sut~ect to change (e.g., by the addition of new tuples), but domains are changed only when
the associated abstraction changes. To a crude first approximation , the set of values
constituting a domain is fixed at the time the data base is defined (Ncompile time”), while
the set of tuples in a relation is normally changed during the day-to-day operation of the
data base system (“run tim?).

Domain semantic integrity errors, i.e., errors which involve the presence of entries in
some column of a relation which do not belong to the domain underlying that column,
occur frequently enough to justify a facility to handle them. Specific experience with a

particular data base application environment has shown that, for an experimental sample
of user-data base Interactions, a large percentage of errors discovered are domain semantic

integrity errors (McLeod 19751

_ _ _ _ _ _ _ _  _ _  -~~~~--- -- -_ _  _ _ _ _ _ _ _



Semantic Integrity Specification 24

3.1. Describing Sets of Atomic Data Values

As thscussed in chapter 2, several approaches to semantic integrity for relational data
bases have been recently presented. As noted in that chapter . all of these approaches
essentially deal with relation constraints, I.e., facilities are provided that allow the user to
state predicates (expressed in SEQ,UEL, QJJEL, or Q,uery by Example) which are to hold
on the data base.

The requirements of domain definition are not adequately supported in these systems.
They lack the capability to allow domains to be precisely defined as abstract sets of atomic
data values. All of these systems allow the data type of each column of a relation (not each

domain of the data base) to be defined, but the possible types are limited and very

representatIon-orIented. It should be possible. for example, to define domains like
SOCIAL_SECURITVJIIUMBER and CEO_COORDINATE, rather than being limited to
such domains as INTEGER and CHARACTER_STRING. It is desirable to be able to
describe a conceptual class of data values. This abstract description is quite different from
a mere specification of the physical representation of the values in a domain; rather, the
semantic propertIes of the domain are pronounced. The work of Liskov and Zilles (Liskov
1974] concerning abstract data types is related to this notion, in that classes of abstract data

objects (values) are being described.

Boyce and Chamberlin (Boyce 1973a ] have proposed attaching attributes to each

column of a relation (“column descriptors0). One of these attributes is the scope of a

column, which specifies the set of permissible values for entries in that column. e.g., salary

is a positive integer less than 20000. SImilarly, Zloof (Zloof 1975b3 has indicated that

provisions should be made for facilitating the specification of entry “formats” (“their type,

s ize, etc,”).

A detailed scheme is needed to facilitate the precise description of domains, and to



Semantic Integrity Specification 25

Integrate the domain definitions with the structure of the relational data base. Such a

scheme should (at least) satisfy the following criteria:
I. facilitate the precise and detailed description of sets of atomic data values, as

subsets of one of the natural domains: real number and character string (these
“natural’ domains are the primitive domains which are used to construct other
domains),

2. provIde for the proper abstraction of defining domains independent of their use as
underlying domains of columns in one or more relations,

3. force a domain definition to be a single module, so that domain semantic integrity

information is !ocalized,

4. facilitate automatic domain definition checking and flexible types of action which

are to occur upon detection of a domain defintlon violation,

5. support specifications that describe when and how domain values can be compared
(e.g.. when two values being compared are from the same domain, and when the two

values are from different domains), and converted (e.g., when It is desired to convert

the value in one domain into and ‘equivalent’ value i.i another domain).

3.2. A Domain Definition Language

A high level, nonprocedural language can be used to express domain definitions. In

this language, each domaIn In a data base Is described by a single domain definition
(domain definItion module). The definition of a domain Is “Installed” (bound) at the time
the dc’main Is created. Domain creation may be vIewed as the compilation of the domain

definition module. Note that a domain definition specifies an underlyIng set of atomic

values. Domains are not dynamic as are unary relations; rather, they constitute fixed

abstract sets of data values. The definition of a domain may be modified, but this occurs



Semantic Integrity SpecIfication 26

only when the abstraction has changed.

As noted by Hammer and McLeod (1-lammer 1975]. three types of information are

required by the semantic integrity subsystem to deal with domain definitions:

I. a specification of the set of atomic data values constituting the domain,

2. information describing when the domain definition is to be checked,

3. a specification of the action that is to occur if the domain definition is not

satisfied.

Since we shall assume that domain definitions are checked whenever an entry in some

column of a relation Is created or altered (e.g., by an operation which inserts or updates a

row), the specification of when a domain definition is to be checked need not be explicit.

Thus all that need be explicitly expressed in the statement of a domain definition is the

precise description of the set of values comprising the domain, and the action that is to

occur if an entry us some column of a relation is created or modified so that it does not

belong to the underlying domain of that column.

Each domain definition therefore consIsts of the following four components,

represented as clauses in the domain definition language

1 Domain name

2. Description

The description clause allows the set of atomic data values constituting a domain to

be specified. The set of values constituting a domain Is defined as some subset of

one of the two natural domalns real number and character string. Every domain is

thus defined and represented as a subset of the real numbers or of the set of

(varying length) character strings. This specification may be accomplished by:

a. enumerating the domain values,

b. decomposing the domain values by specifying the subunits of which they



Semantic Integrity Specification 27

are composed,

c. placing restrictions on the set of values by stating predicates that describe a
subset of one of the natural domains,

or a combination of the above. The special data value “null” (undefined) is present
in each domain. This is to allow missing data to be represented in the data base. (It
may sometimes be useful to distinguish an “unknown” value from a value which
“does not make sense” EFlorentin 1976], but this distinction is not made here.)
3. Orderu~g

The ordering clause is used to Indicate how domain values are ordered with regard
to comparisons with other values in the same domain. This information is Important
in Identifying the semantic properties of a domain. One type of ordering

specification is that the values in a domain inherit ti’~e (total) ordering of the natural

domain of which the domain is a subset. Inherited ordering may also be by subunit

(e.g., the primary ordering is by one subunit, the secondary ordering by another
subunit, etc.). Inherited ordering is numeric for domains which are defined as
subsets of the real numbers and lexicographic for domains which are defined as
subsets of the character strings. Another type of ordering specification is that no
ordering exists, in which case only equality comparisons are meaningful. An external
procedure (i.e., a procedure in some programming language other than the domain
definition language) can also be used to define the ordering specifications for a
domain; this procedure Is called whenever two values In the domain are to be

compared. Such a procedure accepts two domain values (which are to be compared)
and returns the value that is first in the ordering se~uence.

4. VIolation -acti on

The violation-action clause specifies the action that is to occur If an entry in some

-A



p.-

Semantic Integrity Specification 28

column of a relation is created or changed In such a way that the entry does not

belong to the underlying domain of that column. Types of violation-action include

a. the change may be refused and an error signaled,

b. a particular value, either constant or calculated from the erroneous value by

means of operations (such as substring, concatenate, etc.) may be substituted as

the new value of the entry,

c. a cafl may be made to an external procedure, the erroneous value being

passed as the argument to the procedure, and the procedure returning the new

value of the entry.

System-generated or user-specified messages may be optionally returned to the user or

calling program. Note that in cases b and c, it may be necessary to recheck the

domain definition after the corrected value of the entry has been determined.

At this point ft should be noted that the use of external procedures for ordering and

violation-action specification should be minimized, insofar as possible. The capability for

such use of external procedures Is provided for generality and completeness.

3.2.! Language Details and Examples

Figure 3-1 contaIns domain definitions for some of the example data base domains.

An indentation-oriented syntax Is used in this figure. Examples of values In each domain

are listed (in parentheses) to the right of the corresponding domain definition.

Figure 3-2 contains a specification of the syntax of the domain definition language.

I~ figus e 3-2, syntactic classes are denoted by lower case strings, while keywords are in

upper case; actually, the language should include both upper and lower case keywords.

Optional parts are enclosed in “0’, and alternatives are separated by “I”.
In figure 3-1, the description clause of the NAME domain definition specif lea that ft



SemantIc Integrity Specification 29

consists of (character) strings, each of which is composed of a string followed by a “ “
.

followed by another string. In this description clause, data values are decomposed into
subunits; the first and third are varIable subunits, while the second is constant. Subunits
may be labeled, so that they may be referenced elsewhere In the domain definition. As
stated above, external to a domain definition, the data values constituting a domain are
either atomIc numbers or atomic strings. The rule Is, If a description clause of a domain
contains only number subunits (variable or constant), then the values in that domain are
numbers, otherwise they are strings. Number and string subunits may be mixed, and If so.
number subunits are converted to string form to yield the string values constituting the
domain. For example, domain MONEY is defined to consist of strings of the form
“$25,000”. Values in domain MONEY have two subunits, the first of which is the string
constant “1”, and the second of which Is a positive number. Values In domain MONEY
are thus represented as strings; the number subunit of any value in domain MONEY is

viewed as a number (and can be manipulated as such, e.g., by N
.ue) when the subunit alone is

considered, but it is viewed as its string ‘equivalent” with regard to the domain value as a
whob. (and can be manipulated by string operations).

The description clause of the domain SEX IndIcates that it consists of two data
values: “female” and ‘male” (In addition to the ever-present “null”). This Is an example of

de;cription by enumeration.

For domain MONEY, the subunit labeled “value must be greater than or equal to
7ero, as specified by the ~ bunit where restrictiot .~ A subunit where restriction contains a
predicate that is to be true for the subunit and involves only that subunit; that is, this

predicate is a restriction on the set of numbers or strings which values for this subunit may

have. It is thereby possible to express properties of number subunits involving comparators
(such as “'“ and “s ”) and number constants. It is also possible to state that a number Is an

—a- 
• . !.

______ 



Semantic Integrity Specification 30

exponential (exponential notation) or an integer (as for doma in DATE). For string

subunits, a size (length) specification can be made, the set of characters permissible in a

string can be defined (as for domain ITEM), and a lexicographic ordering comparison

(such as “..“ or ‘>“) with constants can be stated.

A Elobal where restriction permits expression of properties involving multiple

subunits, as well as those on domain values viewed as a unit. A global where restriction

contains a predicate that may involve a domain value, subunit values, operations, and

comparators. String operations can be employed to generate substrings, calculate lengths,

perform concatenations, etc. Number operations include the usual arithmetic operations

and “maximum” and ‘mInimum’. For example, in the description of domain. MONEY, the

global where restriction states that domain values (viewed as strings) mi.~t either have two

digits to the right of the decimal point or else have no decimal point. Here, ‘rlght(o. ‘.‘

I)” evaluates to the right substring of the domain value (which is referenced by ‘o”), starting

at the character after the occurrence of “.. (This form of the “right’ operation takes two

arguments: a string whose right substring is to be calculated, and another string whose

index in the first string is calculated to deter.nine at which character of the first string the

right substring is to begin.) The operation “present” yields ‘true’ if the first string

specified contains an occurrence of each of the following strings, otherwise it yields “false”.

The global where restriction of domain ITEM illustrates the specification of the number of

times some contiguous group of subunits can repeat.

A where restriction may also contain a call of an external boolean procedure (as for

d’ masn ITEM). If this procedure call is In a global where restriction, the procedure is

invoked with the domain value in question as its argument; the procedure returns “true’ if

the value is present in the domain, otherwise it returns “false”. If the procedure call is in a

subunit where restriction, the procedure is Invoked with the subunit value in question as its



Semantic Integrity Specificatiofl SI

argument; ft returns ‘true” if the subunit value is legal, otherwise it returns ‘false’.

Roolean combinations of the above types of where restriction are allowed in both
subunit and global where restrictions, as are conditionals (as for domain DATE). In
addition, an “or” may be used to indicate that the domain contains values that come In more

than one form, i.e., that the domain consists of the union of two or more sets of values,

each of w hich is defined separately.

The second clause in a domain definition is the ordering clause. This may specify

that no ordering exIsts on values In the domain (‘none”), which means that only equality
comparisons are allowed (as for domain SEX). An ordering specification of ‘atomic” means

that values in the domain are ordered by the usual numeric or lexicographic ordering.
viewing the domain values as atomic numbers or strings (as for domain QJ.JAN). The

ordering clause may also contain an ordered list of labels (subunit names), indicating that

doma in values are ordered according to the values of the specified subunits. The usual

numeric or lexicographic ordering on these subunits Is used, and the subunits are taken in

sequence primary ordering, secondary ordering, etc. (as for domains NAME, MONEY,

and DATE). Finally, an external procedure can be used to specify the ordering on the

values in a domain. This procedure is passed the two values being compared, and returns

the value that is first in the ordering sequence (as for domain ITEM).

The third clause In a domain definition Is the violation-action clause. As discussed

above, it may specify that an error is to be signaled, indicating that the data base change

specified by a user is incorrect and should be rejected. A system-generated or user-specified

message may be optionally returned to the user or calling program. This is also true for the

other types of violation-action. If the violation-action Is specified as “error’, then an error

is signaled and a system-generated message is returned (as for domains NAME and DATE)

Domain SEX has a violation-action clause that specifies error signaling with a user-



Semantic Integrity Specification 32

specified error message. If a system-generated message were desired the specific message

could be replaced by “SYSTEM-GENERATED”. A system-generated message can be of

the form “the definition of domain SEX is violated”, or can bear more information If the

system is a bit smarter (e.g., ‘the definition of domain SEX is violated, it consists of only

the two values ‘female’ and ‘male”'). The “substitute” violation-action allows a constant

value to be substituted as the new value of the entry being created or changed (as for

domain MONEY). A calculated value, obtained via string or number operations, can also

be substituted (as for domain ITEM). In the specification of this calculation, ‘c”' represents

the value that is being checked to determine it it is in the domain. The calculated value is

then checked to make sure that it Is in fact a valid domain value if not, then an error is

signaled (to avoid infinite recursion). The definition of domain QJJAN offers an example

of an external procedure call violation-action.

3.3. Implementation Considerations

The domain definition language processor translates domain definitions into an

internal form used in semantic integrity checking. The semantic integrity subsystem has the

res ponsibi ~y of determining what checking is to be done whenever some data base change

request is issued by a user. It must also assume the responsibility of performing this

necescary checking. Whenever a new entry is created in a column (e.g., by an insert row

operation) or an existing entry in some row is changed (e.g., by an update row operation),

the system must make sure that this new entry belongs to the underlying domain of the

column in which it occurs. The Information in the description clause of the underlying

domain of the column Is used for this purpose. If the domain description Is violated, the

information in the violation-action clause is used. The orderIng information is used when

comparing two values In the same domain, as discussed in chapter 4.



Semantic Integrity SpecificatIon 33

A domain definition may be used to obtain the information necessary to construct

several Internal relations, which are used by the semantic integrity subsystem to facilitate
domaIn definition checking:

1. The domain definition relation contains a single tuple for each domain of the data

base; this relation has the following columns (with primary key domain name):
a. domain name,

b. description type, which is ‘simple” if the domain has one nonlabeled subunit
with no where restriction, otherwise “complex”,

c. global where restriction,

d. violation~action type, which is “error”, “substitute’, or “call”,
e. violation-action modifier, which for violation-action type “substitute” Is the
value (constant or calculated) to be substituted, for “call” is the name of the
external procedure to be called, otherwise ‘null’,

f. error/warning message, which is either a constant (user-specified message),

“system-generated”, or “null’,

g. ordering type, which Is “atomic’, “none’, “subunit” (for subunit specified

orderIng), or “call” (for external procedure call ordering),

h. ordering procedure name, which is the name of the external ordering

procedure If the ordering type is ‘call’, otherwise ‘null’.

2. The subunit definition relation contains a tuple for each subunit of each domain;

this relation has the following columns (with primary key domain name, subunit
Index):

a. domain name,

b. subunit index, which is the ordinal number of the subunit in the domain
definition,



Semantic Integrity Specification 34

c. subunit type, which Is either “constant” or “variable”,

d. label, which for constant subunits is “null”,

e. variable subunit class, which is “number”, ‘string”, or “oneof”, and ‘null” for

constant subunits,

f. subunit where restriction, “null’ if none exists,

g. ordering Index, which is the ordinal number of the subunit In the ordering

clause, and ‘null” if this subunit as not referenced in the ordering clause.

3. The oneof constant relation contaIns a tuple for each constant In a oneof”

descrIption of domain va!ues or domain subunit values (for each domain in the data

base with such a “oneof’ description): this relation has the following columns (with

all columns in the relation as primary key):

a. domain name,

b. subunit Index,

c. oneof constant , which is a constant in the “oneof ” list for the subunit

identified by the subunit index (for the domain specified by the domain name).

Domain definitions may be utilized to automatically determine the appropriate

physical storage type to be used to represent values in a domain. For strings, a fixed length

character string representation can be used when possible, such as when domain values are

enu merated (via ‘oneof”), or when an upper bound is placed on the length of string values

in the domain. In other cases, var ying length character strings can be used. For numbers.

it ma~ be necessary in many cases to make a compromise for efficiency. Integers (‘number

w~ crc integer”) may be represented by a fixed binary storage scheme (e.g., single word

binar y), but it must be clear that this is only an approximation to the domain definition. A

similar situat ion exists for real numbers: a float binary representation may be used for

storage.



Semantic Integrity Specification 35

3.4. Extensions

Important Issues to be considered in future research on domain definition include

I. It is possible to extend the domain definition language so that previously defined

domains may be used as subunits in the definition of a new domain. If this

hierarchic approach is used, care must be taken by the system to retain domain

definitions until they are no longer referenced in any other domain definition.

2. It may be useful to introduce domain operations. In this approach, operations are

defined for each domain, and manipulation of values In the domain is restricted to

the specified operations. This approach is similar to the notion of abstract data types

of Ltskov and Zilles (Liskov 1974]. It may be argued that the approach taken in this

paper is still too representation-oriented. For example, values in the domain

MONEY may be strings or numbers, but this is irrelevant with respect to abstraction.

The important properties of the values constituting a domain may be best

characterized by specif ying the operations that are defined on the values in the

domain. Of course, in this case a domain will no longer be defined as a subset of

one of the natural domains (string and real number), and the standardized set of

domain operations (such as V. —
“
, 

“ .‘, etc.) will probably no longer be appropriate.

3. It may be advantageous, in some cases , to defer the checking of domain definitions,

and not report violations at the time the data is actually entered into the system. For

example, in the case where a data base is being ‘bulk loaded” or updates are being

batched”, it may be desirable to report all violations of domain definitions at a later

time, say to an interactive user or as part of a summary report.

4. The modifiability of domain definitions is a very important issue. It should be

possible for the definition of a domain to be changed as the corresponding

abstraction changes. If this is allowed, then it Is necessary to verity that all entries in



Semantic Integrity Specification 36

columns having a given underlying domain satisf y the new definition of that
domain.

5. It is possible to call an external procedure to verify that a value in question belongs
to a domain. An external procedure call may also be used in the ordering and
violation-action specifications. However, we have no guarantee that the external
procedure is correct. Some reliability is nonetheless guaranteed by the fact that this
external procedure must use the normal data base system interface. In addition, the
domain definition Is again checked after the external procedure has terminated.
6. The problem of Implementing the domain definition scheme and evaluating its
effectiveness and efficiency has yet to be fully addressed.

7. It may be useful to consider the automatic generation of domain definitions by
attempting to generalize upon a few examples of domain values which are given by a
user. This is, of course, a part of the general problem of the detailed specification of

the user interface which supports the construction of domain definitions.



Semantic Integrity SpecifIcation 37

4. RELATION STRUCTURE

Relation structure specification is the description of the fundamental structure of the
(base) relations of a data base. When a relation is created, at least ,the following must be
done

1. The relation must be given a name, which Is unique with respect to all names of
relations In the data base.

2. The number of columns in the relation must be specified.
3. Each column of the re~acion must be assigned a unique name (unique with respect
to the names of the columns of the relation).

4. The name of the ~snderlying domain of each column must be specified. A
definition for each domain thus referenced must exist at the time the relation is
created.

It is possible to include other types of information as a part of the fundamental
structure of a relation. For example, the p~~ ary ~~ (Codd 1970] of the relation may be
Identified. However, at the level of abstraction at which our discussion of semantic
integrity is focused, the identifIcation of the primary key may be viewed as a type of
relation constraint (and ex pressed as such). Furthermore, there is no compelling ~eason for

distinguishing the primary key from other candidate ~~~ (Codd 1970]. It is most logical for

a primary key specification to be viewed as a relation constraint, as is the case for other

types of functional dependencies.

Many higher level semantic models for data base design and abstraction (data
definition), e.g., (SmIth 1976), consider certain types of relation constraints (such as
functional dependencies) to be special. Functional dependencies are one important type of
constraint, but there are other types which may be equally important (In some application



Semantic Integrity Specification 38

environment). We believe that it is essential to provide for a broad spectrum of relation

constraint types, and to Integrate the formulation of these constraints with the process of

data base design and abstraction. In chapter 6, our approach to relation constraints is

further discussed.

4.1. Additional Column Information

In addition to the column name and the name of its underlying domain, It Is useful

In practice to allow two adthrional attributes to be a3sociated with each column;

I. a narrative description bf the column, for documentation purposes,

2. an indicator specifying whether “null” (undefined) values may be present in the
column (thus allowing ‘null’ values to be selectively prohibited from columns).

4.2. Comparability

The kinds of comparisons and manipulations of column entries that are allowed

relates to the semantic integrity requirements of a data base. The term comparability Is

used herein to refer to the general problem of determining when and how two or more

column entries may be compared or otherwise manipulated by structured operations. There

are two basic types of comparisons: intradomain cornparisons and interdomain
comparisons.

Intradomaln comparisons are those in which two values from the same domain are

compared. In this case, the Information in the ordering clause of the domain definition Is

sufficient to determine how the comparison is to be made.

Interdomain comparisons are those in which two values from different domains are
compared. In this case, values are compared as atomic strings or numbers using a domain

conversion, as defIned below.

~



Semantic Integrity SpecIfication 39

4.2.1. Domain Conversions

A data base has associated with it a set of domain conversions. Each domain

con version is specified by means of a domain conversion module. Each such conversion Is
a specification of how values in a given domain are converted into ‘equivalent” values in
another domain, and vice versa. Explicit specification of domain conversions is necessary
because values in different domains belong to different abstract sets, and converting a
value in one domain Into an “equivalent value in another requires knowledge of the

precise nature of the abstract sets corresponding to the two domains involved. For example,

both FEET and INCHES are riumbers, but they cannot be meaningfully added without the
use of an appropriate conversion.

Domain conversions are defined Independent of the domains (and relations) of a

data base, In the sense that domarn conversion modules have no access to the Internal

details of a domain definition; domain conversions thus map atomic values in one domain

into arnmIc value; ifl another. Domain conversion modules can be dynamically created,

deleted, and modified, with the restrictions that:

I. both domains referenced in a domain conversion module must exist at the time the

con version Is created,

2. if either of the domains referenced in the domain conversion Is deleted, the

domain conversion is deleted.

For the purposes of this thesIs, it is assumed that domain conversion modules are

written in some high level programming language. This language may be a specialized

one, similar to the domain definition language. For generality, it is permissible to allow this

language to Invoke external procedures written in a high level general purpose

programming language.

For e x a m ple , a c o n v e r s i o n  fo r doma in  D O L L A R S  and

-a



Semantic Integrity Specification 10

THOUSANDS_OF_DOLLARS can be defined as:

domain conversion DOLLARS. THOUSANDS_OF_DOLLARS
DOLLARS - THOUSANDS_OF_DOLLARS ~ 1000
THOUSANDS_OF ..DOLLARS - DOLLARS I 1000

Conversions may be unidirectional as well as bidirectional, and this is the reason for

the seemingly redundant specification in the above example. For more complex types of
onversions, external procedures may be used; for example, we may have

domain conversion DATE, JULIAN...DATE
DATE “pl(JULIAN..DATE)
JULIAN..DATE a p2(DATE)

where p1 and p2 are external procedures.

Structured operations may perform various types of domain comparability operations
on entries in a data base. The standardized set of such domain operations includes “a”,

“ ‘a”, “>“, 
“

>—“
, “c”, ‘ca’, “.“. ‘-“, ‘o”, “I”, ‘oct”, and string and user-defined operations. For

example, some structured operation may check to see If, for some tuple in relation R, the

entry in column A Is larger than then entry in column B. (It is assumed tha both columns

A and B contain numbers.)

Whether or not values from different domains may be utilized together (compared or

otherwise manipulated) depends upon the nature of the domains and the partIcular type of

operation that is to be performed on the values in those domains. In order to establish a

f irst approximation to a set of comparability rules (for the standardized set of domain

operations), three types of comparability are distinguished:

I. equality-type, which is invoked when one of the following types of manipulations
occurs:

a. values are compared for equality (“u”) or Inequality (“ ‘a”)

b. numbers are added (“.“) or subtracted (“-
~~,

c. sets of numbers are manipulated via set operations, such as ‘maximum’ and



Semantic Integrity Specification 41

“minimum”,

d. sets of values are manipulated by ‘union’, “Intersection”, or ‘difference’,
2. ordering-type, which Is Invoked when values are compared via “c”, “<a’, ‘>“, or
• U

S. mixed-type, which is invoked when values are manipulated via multiplication (V).
division (“I”) , exponentlation (“so”), or any string operation or user-defined operation.
Equality-type comparisons are always allowed If the two values being compared (or

manipulated) are from the same domain, i.e., If the values are from the same column or
from columns with the same underlying domain. If the values are not from the same
domain, I.e., they are from distinct columns with different underlying domains, then they
may be compared If and only If a domain conversion exists between those domains. (All
domain conversions must be explicitly defined.) The domain conversion is used to convert
the value in one of the domains into an “equivalent” value in the other domain, and the
resulting values are then compared. (Another type of conversion could be supported, by

assigning units to each column, and defining units conversions (McLeod 1976b].)

Ordering-type comparisons are allowed if two values are from the same underlying
domain and the ordering of that domain is not “none’. The ordering information In the
domain definition Is used to determine how the values are to be compared. Orderin~-type
comparisons are also allowed if the two values are from different columns, these columns
have different underlying domains, and a domain conversion exists between those two
underlying domains. In this case, the values are compared by using the domain conversion,
as for equality-type comparisons. In any other case, ordering-type comparisons are not
allowed.

Mixed-type comparisons are always allowed. Values can always be manipulated by a

mixed-type operation (with no restrictions). Values that are numbers may be multiplied,

.4 _ _ _ _ _ _



Semantic Integrity Specification 42

divided, and exponentiated with no limitations, except of course for the requirement that

the values be numbers. Although numbers may be added and subtracted only when they

have the same ‘units”, multiplication, division, and exponentiation can be performed

without any such restriction. It presumably makes sense to divide a value in domain FEET

by a value in domain POUNDS. but it is (normally) not sensible to add these two values.
p

For mixed-type comparisons, values being manipulated are treated as atomic and domain

conversions are not used. Note that if user-defined domain operations are allowed, they

may be placed in this category by default. More generally, it may be best to allow the user

to specify the comparability type (equality, ordering, or mixed) of each user-defined domain

operation.

If the user wishes to state an unusual type of query, such as asking for all employees

whose name is the same as the name of their department, the user may be allowed to “force”
the comparison, by explicitly overriding the restrictions. Entries in the two columns are

then compared using the default numeric or lexicographic ordering, treating the values as

~itcmic numbers or strings, respectively. The idea is to permit the system to be flexible and

not to allow comparability rules to get in the way when they should not. The best approach
may be to warn the user that an operation may be meaningless, but allow It to proceed if he

demands it. (The semantic integrity of the data base is not really in danger anyway).

Domain conversions are also useful when a structured operation retrieves an entry

from some column of a tuple in a relation and assigns It to be the new value of some other

entry (in a different column of some tuple in a relation). For . ‘mple, suppose that the

date an it~m was shipped by some company (the entry In column Date of relation ORDERS

in the example data base of figure 1-2) is to be copied into the Date column of another
d.ttiun , say BIG_ORDERS. (BIG_ORDERS records all orders which request over $1000
,if merchandise.) The Date column in BIG_ORDERS has underlying domain



Semantic Integrity SpecifIcation 43

JULIAN...DATE (i.e., dates of the form “76.134”), while the Date column In ORDERS has
underlyIng domain DATE (I.e., dates of the form ‘1/20/1976’). Thus the domain conversion
from DATE to JULIAN_DATE can be used to effect the desired assignment.

The general rule for an assignment which takes the entry in a column (A) and
assigns it as the new value of an entry in another column (B) is as follows:

1. If A and B have the same underlying domain, the assIgnment Is performed with no
conversion.

2. If A and B have different underlying domains, then:

a. If a domain conversion exists from A to B, the conversion Is used to affect
the assignment,

b. if no such conversion exists, the assignment Is not allowed.



Semantic Integrity SpecifIcation 44

5. STRUCTURED OPERATIONS

A very Important aspect of data base semantic integrity is the set of operations a user
may employ to examine and manipulate the data base. It is possible tu describe a user’s
view of a data base as consisting of data structures plus operations. Alternatively, one may
conceptually characterize the user’s abstract view completely by a set of abstract operations,

as is done in abstract data types (Liskov 19741 These operations provide a behavioral
specification of the semantics of the data base.

For these reasons, the concept of a structured operation i~ included in our approach
to semantic integrity. The principal purpose of a structured operation is to embody a

conceptual data base transaction: an action which is meaningful and permissible in the

context of the application env1ronment. For the example data base of figure 1-2, structured
operations may include: hire_employee , fire_employee, raise_salary, place_order ,
create_new_department, etc.

51. Semantic Integrity Information in Structured Operations
One approach to preserving the semantic integrity of a data base is impose the

restriction that the operations that may be performed on a data base are only those in some
give.i set. This set of operations should be defined so that it contains only meaningful
actinns. However , the approach of allowing only semantically meaningful operations has
several problems:

I. Operations which are not semantically meaningful in the context of the application
cnvironment must be allowed, e.g., to permit errors to be corrected.

2. The set of operations that are to be allowed may depend upon some characteristics
of the data base state. For example, the set of operations 01 may be legal if the data



Semantic Integrity Specification 45

base Is In state Si, but if the data base is in state S2, the set of legal operations may

be 02.

S. The uses of a data base are not fixed, but rather evolve with time. Operations

change and new operations need to be created. If the semantic Integrity information

is embedded in these operations, a scan of all data base operations may be necessary

to make such modifications.

4. Often data Is maintained In a data base before uses for it are discovered. Thus It

is difficult to characterite the data via a behavioral semantics approach; in some

sense the semantics of the data is known, but the exact nature of the set of operations

on that data Is not.

5.2. The Definition of Structured Operations

Despite the problems mentioned above, it is important to be able to define a set of

abstract operations on a data base. To this end, we allow structured operations to be

defined. Structured operations are constructed using:

I. the primitive data base operations (e.g., see figure I-S),

2. statements in a very high level data selection (query) and data modification

language, such as SEQ,UEL (or QUEL or Q~uery by Example).

Structured operations are ordered lists of: primitive operations, statements In a data

selection and modification language, and previously defined structured operations.

Allowing previously defined structured operations within new operations enables a

hierarchic organization.

For the example data basi of fIgure 1-2, a structured operation to raise an employee’s

salary could be defined:



Semantic Integrity Specification 46

operation raise_salary (employee_name, new_salary)
update EMP

where Name - employee_name
Salary — new_salary

This structured operation consists of a single SEQUEL-like statement, which updates the

Salary column of the tuple In EMP with a value in the Name column equal to the first

parameter of the operation (presumably there is one such tuple). The new Salary value is

..pecified as the second parameter.

Consider an operation to place an order (again in the context of the example data

base of figure 1-2):

operation place_order (customer_Id, Item_id)
Insert_tuple (ORDERS)
Item — item_Id
Customer - customerjd
Date_shipped - date()
Order_number — generate_order_siumberO

In this example operation, a tuple consisting of all null values is first created, and then its

columns are given values. Note that two external procedures are called, one to return the

current date and the other to generate a unique order number. The types of names

(identifiers) used in the definition of the operation include those of parameters, a relation,

columns, and external procedures.

The operation check_credit_and_order could be defined as:

operation check_credit_and_order (customer_id, item_id)
If check_credit (customer_id)

then place_order (customer, item)
else error

The operations check_credit and place_order used In this definition are assumed to have

been previously defined. Note that this operation contains a conditional expression: a

useful ~onstruct we may Include in the structured operation language. This of course

motivates the need for other types of constructs, e.g.. for Iteration. We may for instance

want to have an operation that takes an arbitrary number of items as parameters and



Semantic Integrity Specification 47

places an order for each.

Thus, in general, it might be desirable to have a structured operation language which
has many of the capabilities of a general purpose programming language. We could
consequently allow structured operations to be written In some high level general purpose
programming language. The details of this are not persued here.

One Important point to note In passing, is that structured operations are important
with regard to the specification of when relation constraint assertions are to hold (be
checked). This Is further discussed in chapter 6.

4 .



Semantic Integrity Specification 48

6. RELATION CONSTRAINTS

The fourth aspect of semantic integrity in a relational data base system concerns

relation constraints. In this chapter, the requirements for relation constraints are detailed,

and an approach to their specification is presented.

Codd (Codd l971b, Codd 1971c] has identified the “third normal form” of relations

(Codd 1974a]: “A relation R Is in third normal form if it is in first normal form and, for

every attribute collection C of R, If any attribute not in C is functionally dependent on C,

then all attributes in R are functionally dependent on C.” Third normal form facilitates the

straightforward expression of some types of relation constraints, namely functional

dependencies. But the class of data properties describable via functional dependencies is

limited.

Boyce and Chamberlin (Boyce 1973a] observed that a high level language, such as

SEQUEL (Chamberlin 1974b, Chamberlin 1975], may be used as a vehicle for the expression

of d.~a properties other than functional dependencies. SEQUEL expressions were shown

to be useful in expressing such types of properties as “uniqueness of key”, “functional

dependency”, “validity check”, and “inter-relational constraints”.

The integrity assertions of SEQUEL (Boyce 1973a, Eswaran 1975], INGRES

(Stonebraker 1974c], and O~iery by Example (Zloof 1975b] are used to express varied types

of data properties. However , these facilities basically provide for the unstructured

.,~.ec~ficatIon of arbitrary predicates. Although the assertion expression capabilities of

SEQ.U~L and INCRES are “complete”, they do not allow for the analysis of the types of

po~ ible assertions.

rurthermore, the assertions of SEQUEL and INGRES are rather inflexible with

regaid to when they are to hold, and what action is to occur if they do not. In SEQUEL



Semantic Integrity Specification 49

and INGRES, If a data base change is specified which would cause some assertion to be

violated, the data base change is Immediately rejected and an error signaled LEawaran 1975],
or the data base change is modified such that the assertion will be satisfied (Stonebraker
1975c].

In response to this latter objection a relation constraint is herein defined as an
abstract statement, having three components:

I. the assertion (a property), which is a predicate on the state of the data base or on
transitions between data base states,
2. the validity reguiremeflt1 which specifies the occasion(s) at which the assertion is to
hold,

3. the violation-action, which is the action that Is to occur if the assertion is not
satisfied at a time when it should be.
In response to the former objection, a detailed classification of relation constraints is

presented below. The emphasis is placed on providing a structured framework, which may
be used to construct a high level, abstraction-based, well-directed, and disciplined relation
constraint specification methodology. In so doing, a principal goal is to irv~pose some
structure on the problem of semantic errors in data bases. In this approa~ .t is important

to keep “an eye toward implementation”, although no specific implementation considerations
are included in this thesis.

6.1. Whither Assertion Structure?

We subscribe to the view that the assertion component of a data base relation
conct raint should not be viewed as an arbitrary predicate of the first-order predicate
calculus, ranging over tuples of the relations of a data base. Rather, every assertion should
have a well-defined, uniform structure. There are several advantages to taking a



Semantic Integrity Specification 50

discIplined approach to assertion expression:

I. It provides the data base administrator (or other authority responsible for

expressing the constraints) with a conceptual framework in terms of which to

organize his thinking and structure the formulation of assertion specifications.

Reducing abstract, problem-oriented limitations on configurations of the application

environment to concrete restrictions on values in the data base is essentially a

programming problem. By providing the “programmer” with a theoretical and

general framework for his problem, it is possible to significantly ease his task.

2. The issues of constraint specification which are ancillary to assertion expression.
namely the validity requirement and violation-action, cannot be satisfactorily

addressed in the absence of the kind of structure proposed herein. The degree to

which a semantic integrity subsystem can respond “intelligently” to a constraint

violation depends upon how well the formulation of the constraint captures the Intent

of its expressor.

3. A useful conceptual framework for assertions will provide some measure of the

complexity of individual assertions, providing their expressor with a guide to the cost

of their Implementation. Indeed, the structure of an assertion can be used by an

Implementation facility as a guide to the strategy for the implementation of its

checking.

It is Important to note that insur ing that there is a single, unique specification of a

given conceptual constraint is not a major objective here. Rather, the emphasis Is placed

on encouraging a “reasonable” formula tion, one wh ich accurately models the application

environment abstraction and which is useable by an Implementation facility.

-

~ 

-~ - - -~~~~~~~~- -~~~ -~~~~~~~~~~~~~~~~ - -~~~~---_ _



Semantic Integrity Specification 51

6.2. Relation Constraint Assertions

The assertion component of a relation constraint Is a logical predicate on the state of
the data base or transitions between data base states. ft expresses some semantic property of
the data base.

Each assertion Is either a simple assertion or a combination of simple assertions (a
derived assertion). Simple assertions may be combined using boolean operators and other
connectors (such as “if then else”). The remainder of this section deals with simple
assertions; the generalization to derived assertions is more-or-less straightforward. When
no ambiguity is possible, “assertion” will be used in place of “simple assertion”.

6.2.1. Simple Assertions

Every (simple) assertion may be viewed as delimiting certain values of the data base
in terms of certain others. That Is, an assertion does not merely express some relationship
among different values in the data base. Rather, it singles out certain values, and identifies
them as being the constrained data of the predicate. The predicate delimits the legal values
of the constrained data In terms of the constraining data. Thus, every assertion constrains
some data with respect to some other; the two are not being bilaterally restricted.

As a consequence, there are two distinct steps in the process of stating an assertion:
I. The data that Is being constrained is described. This description is accomplished
in two sequential substeps, in which the following are identified:

a. the set of all data objects in the data base that are being restricted (the
constrained collection),

b. the precise aspect of each of these data objects that is being delimited (the
restricted expression).

Part a of step 1 utIlizes 
~~ selection pj~edicates. The predicate expression

- a - ---_ _ _ _ _ _  _ _ _



Semantic Integrity Specification 52

capabilities of any data selection- or query .language may be adapted to accomplish

this task (Chamberlin 1974b, Chamberlin 1975, Codd l971a, Codd 1971d, Hall i975,

McLeod 1976c, Held 1975b, Zloof 1974, Zloof 1975a). For example, consider the

assertion that the salary of each employee in the sales department is less than the

salary of his manager. Here, the constrained collection consists of those tuples in

relation EMP which have “sales” in the Department column. The restricted

expression is the Salary entry of each such tuple. The necessity of first identifying

the constrained collection and then the restricted expression is occasioned by more

rich and complex assertions, as discussed below.

2. The actual predicate of the assertion is stated, which asserts a restriction on the

value of the restricted expression for each member of the constrained collection. The

predicates used therein are called assertion predicates. In general, this restriction

depends on other data in the data base. The other data which participates in the

assertion is called the constraining~ ~~~~~~ and the expression which computes the

precise delimiting value is called the restricting expression. For example, for the

assertion above, the constraining data (for each tuple) Is the tuple in relation EMP

whose Name entry equals the Manager entry of the constrained tuple; the restricting

expression is the Salary entry of the constraining tuple.

Figure 6-1 contains some examples of simple assertions. For each assertion , the

constrained collection and assertion predicate are identified. Note that the “language” used

to specify the assertion predicates is intended only to be illustrative, but Is more-or-less

consistent “.‘ i’h the “level” of (and directly translatable into) relational data selection

languages such as SEQUEL, QUEL, and Query by Example.

-- --~~~ S



Semantic Integrity Specification 53

6.2.2. Identification of the Constrained Collection

As Introduced above, the first step in the specification of an assertion is the
identification of the constrained collection: that which is conceptually being delimited by

the assertion. In general, the constrained collection Is a collection of data objects, and the
assertion applies to each of them. In this sense, every assertion is in effect an assertion
schema, which Is instantiated for each element of the constrained collection.

An assertion may either express a property of an individual tup e (a ~~~ assertion),
or a property of a set of tuples considered as a whole (a ~~ assertion). In figure 6-1.
examples 1-4 are tuple assertions, while examples 5-8 are set assertions.

The constrained collection for a tuple assertion is a collection of tuples, to each of

which the assertion applies. The constrained collection for a set assertion, similarly, is a
collection of sets of cuples. The set assertion applies to each tuple set in the constrained
collection. An important (and frequent) special case of a set assertion is that in which the

constrained collection consists of a single set. Note the difference between this special case
and a tuple assertion: In the former, the assertion applies to the tuple set as a whole, while

In the latter it applies to each individual member of ft. Thus, In example I, the constrained

collection has many elements, each of which is a tuple of the EMP relation; in example 5,

the constrained collection consists of a single element, which is the entire EMP relation; in
example 6, the constrained collection has severa ’ elements, each of which Is a subset of the
EM P relation.

Both for tuple and set assertions, defining the constrained collection begins with
identifying some set of tupks (called the underlying relation of the assertion). This tuple
set can then be manipulated by means of data selection predicates, to ultimately define the
constrained collection.

The underlying relation of an assertion need not be a relation defined as part of the



Semantic Integrity Specification 54

da ta base. In general, it may be any of the following:

1. a base relation (a relation explicitly present in the set of data base relations),

2. the cross product of two or more base relations,

3. the union of two or more base relations,

4. the cross product of two or more relations of types I and 3, at least one of which is

not a base relation,

5. any relation which can be defined in terms of base relations, not included in the

above (these relations may be constructed using the various selection criteria and

retrieval operators of a data selection language).

For example. EMP is a relation of type 1, EMP cross BUDGET is of type 2. An example of

a relation of type 3 would t~e the union of relations CURRENT_EMP and OLD_EMP

(where both have the same structure as EMP). An example of a relation of type 5 is

SAL_TOTAL (Department. Sum_salaries), where Sum_salaries is the sum of the salaries of

employees working for the associated department.

The foregoing classification of underlying relations Is in order of increasing

complexity, and exhibits the different kinds of relations to which assertions may apply. It

is important to observe that an assertion need not apply to a relation explicitly present in

the data base, but may hold for a derived relation.

Once the underlying relation is defined, the precise specification of the constrained

collection can be accomplished. In the case of tuple assertions, the constrained collection Is

obtained from the underlying relation by means of data selection predicates. The

complexity of the selection process can be described In terms of the operators of the data

selection language. Selection of the constrained collection is a problem In the specification

of a relation.

However , In the case of set assertions, there Is a need to sp~cIfy a collection of tuple

‘4



Semantic IntegrIty Specification 55

sets; each such set Is a member of the constrained collection. For illustration, consider the
following tentative taxonomy of the first stage of the specification process for a constrained
collection which consists of tuple sets:

I. The constrained collection may contain a single set of tuples, selected from the
underlying relation. (simple 

~
)

2. A set of tuples may be selected from the underlying relation, and then divided into
groups, e.g., by common value in one or more columns or by intervals of column
values (such as 21 Age c 30, 31 c Age <40, etc.). Certain of these groups may then
be chosen based on properties they possess. The constrained collection is thus a

collection of tuple sets, namely the groups that were so chosen. The assertion then

applies to each tuple set in the constrained collection. (groupe~ ~
)

3. A set of tuples may be selected from the underlying relation, and those subsets of it

which satisfy a specified property are chosen. An example of such a property might

be that the number of tuples in the subset equals three. These chosen subsets

comprise the constrained collection, and the assertion is applied to each of them.

(property-defined !!! )
There Is a noticeable degree of flexibility in the foregoing framework for ident&fying

the constrained collection, in that it does not impose a rigid specification methodology on

the expressor of assertions. The criterion of completeness would not demand all the options

for the underlying relation allowed above; it is clear that any assertion can be satisfactorily

specified by letting the underlying relation be the cross product of all the base relations and

performing various operations thereon to compute the constrained collection. However, in

many instances such an “all-at-once” approach would be cumbersome and unnatural. It

might be more convenient to follow a “~~-down , ~~~-~~-~~p approach and define a

sequence of derived relations, the last of which Is the underlying relation. This can



Semantic Integrity Specification 56

facilitate the straightforward expression of the assertion.

Consider the following assertion: the sum of salaries of emp loyees of each

department is less than the budget of that department. An all-at-once approach to

expressing this assertion would proceed to identify the constrained collection as the set of

tuples in EMP, grouped by common Deparcment (grouped set). The restricted expression

would be the sum of the Salaries (for each group). The assertion predicate Is then

“sum (Sa lary) < BUDGET.Sa lary_ bud get where BUDCET.Department —

common_value_of(Department) (in the constrained tuple set)”. Thus the constraining data

is the tuple in BUDGET having the Department column entry equal to the common value

of the entries in the Department column for the constrained tuple set, and the restricting

expression is the Salary_budget column entry of the constraining tuple.

A top-down, step-by-s ep approach to the expression of the above assertion may

proceed by noting that the assertion could be expressed as a tuple assertion, If there existed

a relation of the form DEPARTMENTS (Department , Sum _of _emp_ salaries ,

Salary_budget). If such a relation existed, the constrained collection would be each tuple in

relation DEPARTMENTS. The restricted expression would be the column entry

Sum_of _emp_salaries. The assertion predicate would be “Sum_of _emp_salaries c

Salary_budget”. Here the restricting expression is the column entry Salary...budget in the

constrained cuple, and the constraining data is the constrained tuple itself.

However, the relation DEPARTMENTS does not exist. Consequently, ft is necessary

to specify how it Is to be derived from existing base relations. The underlying relation of

~he constrained collection Is thus a derived relation, i.e., the relation DEPARTMENTS. A

data selection language would be used to construct this derived relation; for example, the

specification could be in a SEQUEL-like language:

_ _ _ _ _ _ _ _  _ _ _ _ _ _



Semantic Integrity Specification 57

DEPARTM ENTS (Department, Sum_of _emp_salaries, Salary_budget) -
select EMP.Department, sum(EM P.Salary), BUDG ET.Salary_budget
from EMP, BUDGET
where EM P.Department - BUDG ET.Department
group by EMP.Department

~.2.S. Tuple Assertions

It is now appropriate to examine more closely the structure of tuple assertions. In this
case, the constrained collection Is a collection of tuples, obtained f rom the underlying
relation by the application of data selection predicates. The assertion predicate then applies
to each Individual tuple in the constrained collection. Tuple predicates are used to specify
tuple assertions. The restricted expression defines that aspect of each constrained tuple that
is being delimited. In the simplest case, the restricted expression is some column name of
the uruierlying relation. More generally. it may be an expression: an appropriate
combination of column names, system-provided operators, and user-defined operators.

It may be possible to formulate a given conceptual assertion in different ways. with

different restricted expressions. For example, though the tuple assertions “Credit_line -

Debt < !OO00~ and “Creditjine < Debt • 50C00” are logically equivalent, in the former case
he re” ‘i Icted expression Is “Cvedit_line - Debt”, while in the latter case it is just

“Credit_line”. This flexibility enables the assertion expressor to precisely identify which

dara values ~re to be regarded as dominant, and which as subordinate. In the first case, it

is a combinatIon of the entries Credit_line and Debt that is being delimited, while in the

l~r’.r ricø it Is simply the Credit_line entry. This distinction contributes to the abstraction

power of assertlnn expression, and has implications for the implementation of constraints

~‘~‘l for the actions that are to be taken upon the detection of an assertion violation.

The value which delImits the restricted expression is the restricting expression, which

Is computed from some data values which may reside anywhere In the data base. In

particular , these data values (the constraining data) may be outside the constrained tuple.

_4 - -  - -  - -



Semantic Integrity Specification 58

Tuple predicates may be classified on the basis of the relationship between the

constr~ined collection and the constraining data:

1. A cuple predicate is 
~~~ 

(L) if the constraining data is present in the constrained

tuple. That is, for a local tuple predicate, all data referenced in the predicate is

within the constrained tuple itself.

2. A tuple predicate is nonlocal independent (NI) if the constraining data Is data

selected from elsewhere in the data base, but whose selection does not depend on any

data in the constrained tuple.

3. A tuple predicate Is nonlocal dependent (ND) if the selection of the constraining

data does depend on data in the constrained tuple.

In figure 6-1, examples I and 4 involve L-type tuple ~redicates, example 2 is an NI-type

tuple predicate, and example 3 is an ND-type tuple predicate.

This classification Is in order of increasing complexity. For L-type tuple predicates.

one has only to look at the constrained tuple to determine the restricting expression; the

constraining data is present in the constrained tuple Itself. For type-NI tuple predicates.
this as no longer the case. The restricting expression Is now computed from data arbitrarily

located an the data base, not confined to the constrained tuple. However, the data from

which the restricting expression is computed is the same for each tuple in the constrained

collection. Thus the restricting expression admits of a one-time computation, with the result

bein~ used for each constrained tuple. For type-ND tuple predIcates, the computation of

the it cracta ng expression depends on data in the constr~?Ined tuple. It Is therefore necessary

to recompute the restricting expression for each individual constrained cuple.

There are two dimensions by which we classify local topic predicates. The first

dimension neasures the complexIty of the restricting expression, and has three levels:

1. The restricted expression is compared via a scalar comparator to a constant , a single

- - _ _ _ _

Semantic Integrity Specification 59

column entry f rom the constrained topIc, or an expression involving several column
entries from the constrained tuple. (types 1-3)

2. The restricted expression Is compared via a set comparator to a set of constants, a
set of column entries from the constrained topIc, a set of single-valued expressions
computed from entries from the constrained tuple. or some expression which yields a
set of values and depends on entries in the constrained tuple. (types 4-7)
3. The restricted expression is compared via a set comparator to a set of constant
topics, a set of topics involving entries from the constrained tuple, a set of tuples
composed of single-valued expressions computed from entries from the constrained
topIc, or some expression which yields a set of tuples and depends on entries in the
constrained tuple. (types 8-11)

The second dimension reflects the complexity of the restricted expression , and also

has three levels:

a. For types I-i, the restricted expression is a column entry in the constrained tuple.
For types 8-Il, It is a subtupte of the constrained tuple.

b. The restricted ex pression Is a single-valued expression. For types 1-7. the restricted

expression Is computed from column entries In the constrained tuple, and yields a
sralar value. For types 8-li, it yields a tuple composed of such column entry

expressions.

c. The restricted expression is a set-valued expression. For types 4-7, it yields a set of
scalars. For types 8-li, It yIelds a set of tuples. (This level does not apply to types 1-3.)
J~igure 6-2 illustrates this classif ication for local tuple predicates of types la-Ha.

Consider the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E. and F have underlying domain character string).

Some examples of local tuple predicates may be classified, as follows:

Semantic Integrity Specification 60

1. A < 15 (Ia),

2. A c B (2a).

S. A < B/C (3a),

4. A is in (“x”, “v” “a”) (4a),

5. A is In (“x” E, F) (6a)

(This means that, for each constrained tuple, the entry In column A Is Ira the set

containing the constant x” and the entries in columns E and F.).

6. (D, E) is In ((“x”, “y”), (“a”, F)) (lOa)

(This means that, for each constrained tuple, the subtuple consisting of the
entries

from columns D and E equals either the topIc ex ”,”y) , or a tuple whose first

com ponen t is “ a” and whose second component Ii the F entry of the constrained

suple.),

7. A • B c C (2b),

8. A • B is in (C . 1, C • 2, C • 3) (6b),

9. (D, E) intersect {“w”, “x ”j contains {“y”, “z”~ (4c)

(This means that the intersection of the sets consisting of the entries in columns D

and E and the constants “w” and “x”, as a superset of the set containIng the constants

“y” and “a” .).

As for local topIc predicates~ nonlocal tuple predicates may be classified on two

dimensions. The first dimension again consists of three levels:

I The restricted expression is compared via a scalar comparator to a a single-valued

expressions which yields a scalar value (and which is computed from data elsewhere

in the data base). (type I)

2. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of scalars. (type 2)

Semantic Integrity Specification 61

S. The restricted expression is compared via a set comparator to a set-valued

ex pression , wh ich y ields a set of tuples . (type 3)

Again, the second dimension consists of three levels:

a. For types 1-2, the restricted expression Is a column entry. For type 3, it Is a tuple

of entries which constitutes a subtopic of the constrained tuple.

b. The restricted expression is a single-valued expression. For types 1-2, this
expression is computed from entries In the constrained toplc. and yields a scalar. For
type 3, it yields a topic composed of such column entry expressions.
c. The restricted ex pression is a set-valued expression. For type 2, it yields a set of
scalars. For type 3, it yields a set of tuples. (This level does not apply to type I.)

Figure 6-3 illustrates this classification for nonlocal topIc predicates of types la-3a .

Note that the computation of the restricting expression (scalarval or setvai) is Independent
of the constrained tuple for NI-type tuple predicates, but dependent for ND-type predicates.

The data selection language must now serve the added role of Identifying the constraining

data. For this reason, the classification Is coarser for nonlocal tuple predicates than for
local r’iple predicates.

6.2.4. Set Assertions

For set assertions, the constrained collectjon is a collection of tuple sets, obtained from

the underlying relation, as discussed in section 6.2.2. The assertion predicate then applies to

each cuple set In the constrained collection. Set predicates are used to specify set assertions.

The restricted expression is that aspect of each constrained tupie set that is being delimited.

In the simplest case, the restricted expression is the set of entries in some column of the

underlying relation (e.g., the set of Salary entries in EMP). More generally, it may be an

expression: an appropriate combination of column names, system-provided operators, and

Semantic Integrity Specification 62

user-defined operators. These operators include aggregate arithmetic operators which are

applied to sets of values.

As for tuple assertions, the restricting expression is the value that delimits the

restricted expression. The constraining data may be, in general, data anywhere in the data
base. Again, as for topIc assertions, it may be possible to express a given conceptual set
assertion in several ways.

Set predicates may be classified on the basis of the relationship between the

constrained collection and the constraining data:

I. A set predicate is)~ç~J (L.) if the constraining data is present in the constrained

tuple set. That Is, the restricting expression may be computed solely from the

constrained tuple set.

2. A set predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but where this selection does not depend

upon the constrained tuple set.

S A set predicate is nonlocal dependent (ND) If the selection of the constraining data
does depend upon the constrained tuple set.

In figure 6-1, examples B and 8 are L-type set predicates, and examples 5 and 7 are NI-type
set predicates.

As for tuple predicates, there are two dimensions on which local set predicates may be

classified. One dimension reflects the complexity of the restricting expression, and the
other reflects the complexity of the restricted expression. The first dimension has four
levels:

1. The restrIcted expression is compared via a scalar com parator to a constant, an

aggregate function of the entries in some column of the constrained topic set, or an

expression involving several such aggregates. (types 1-3)

- __ —___

Semantic Integrity Specification 63

2. As in 1, except that the aggregate functions in the constraining expression are not

computed for a set of scalars, but for a set of tuples; namely, the collection of

subtopics obtained by projecting the constrained tuple set onto two or more columns.
(types 4-6)

S. The restricted expression is compared via a set comparator to a set of constants, the

set of entries in some column of the constrained tuple set, or an expression involving
several such sets. (types 7-9)

4. This is analogous to 3 in the same way that 2 is analogous to I. That is, the

restricting expression does not deal with scalars, but with sets of subtuples of the

constrained tuple Set. (types 10-12)

The second dimension consists of two levels:

a. For types 1-6, the restricted expression is an aggregate function. For types 7-12, it

Is an instantiation of the function “set”, which generates the set of values In some

column or the set of subtuples for some group of columns, taken over the constrained

tuple set.

b. For types 1-6, the restricted expression is a single-valued expression computed

from two or more of the aggregate functions described above. For types 7-12, it is a

set-valued expression, computed from two or more instantlations of “set”, as described

above.

A special type of local set predicates, the column relationship predicates, are not

~ncluded in the above scheme. Column relationship predicates are used to express

properties such as one-to-one correspondences and functional dependencies. To state a

‘:olumn relationship predicate, two groups of column names from the constrained topic set

ire specified. The relationship between these two groups of columns Is then stated. For

~xample, one may state that for the relation R (A, B, C, D, E, F), there Is a one-to-one

Semantic Integrity Specification 64

correspondence between the column A and the column group (B, C). This means that there

Is a one-to-one relationship between the entry in column A and the subtup le formed from

the entries in columns B and C. Note that column relationship predicates are always local.

FIgure 6-4 illustrates this classification for local set predicates, types la-16a. For

example, for the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying

domain real number and columns D, E, and F have underlying domain character string),

various local set predicates may be classified, as follows:

I. avg(A) .c 15 (Ia).

2. avg(A) c sum(B) (2a),

3. count(D, E) <50 (4a)

(This means that the number of topIcs in the relation formed by projecting the

constrained tuple set or columns D and £ is less than 50.),

4. ser(D) contains {“x”, y”, “z”J (7a),

5. set(D) properly contains sec(E) union (“y”, z”J (9a),

6. set(D, E) Is in {(“w ”, “x ”), (“y”, “a”)) (IOa)

(This means that the set of tuples obtained by projecting on columns D and £ is a

subset of the set of constant tuples containing (“w”, “x”) and (“y”, “a”).

7. D one-to-one (E, F) (Ha),

8. set (D) union set (E) is in set (F) (8b).

Nonlocal set predicates may be similarly classified. The first dimension has ttu ee

levels

I. The restricted expression Is compared via a scalar comparator to a single-valued

expressIon, whIch yields a scalar value (and which Is computed from some data in the

data base) (types 1-2).

2. The restricted ex pression is compared via a set comparator to a set-valued

p.— -

Semantic IntegrIty Specification 65

expression, which yields a set of scalars. (type 3)

3. The restricted expression is compared via a set comparator to a set-valued

ex pression, which yields a set of tuples. (type 4)

The second dimension consists of two levels:

a. For types 1-2, the restricted expression is an aggregate function. For types 3-4, it is

an instantiation of the function “set”, whic h generates the set of values in some

column or the set of subtuples for some group of columns, taken over the constrained

tuple set.

b. For types 1-2, the restricted ex pression is a single-valued expression computed

from two or more of the aggregate functions described above. For types 3-4, it is a

set ~valued ex pression, computed from two or more instantiations of “set”, as described

above.

Figure 6-5 illustrates this two dimensional classificat ion for types la-4a. Note that the

computation of the restricting expression (scalarval oi secva l) is Independent of the

constrained tuple set for NI-type set predicates, but dependent for ND-type predicates.

6.2.5. Scope of Assertions

It was stated in section 6.2.2 that each assertion is actually an assertion schema: an

assertion is instantiated for and applies to each element of the constrained collection. But

there is another sense tn which an assertion may be viewed as a schema. This is by

allowing described rather than explicit references to relation and column names within an

ion

It may be desirable to state a “second order ” assertion , e.g., each column in some

relition of the data base which has underlying domain NAME must be a subset of the

Name column in relation EMP. This may be handled by allowing column names (and

Semantic Integrity Specification 66

relation names) to be variables which range over the set of all columns or relations in the

data base (or some specified subset thereof). This is basIcally a universal quantification of

second order.

Without proposing a specific detailed solution to this problem of explicit scope vs.

desrrib~4 scope, we may observe that such a solution must facilitate a second order

quantification, on a level above the constrained collection. Consider the assertion that, for

each column in the data base named Cl, every pair of entries in this column sums to less

than 100. Here the constrained collection is a set of pairs of tuples. The property must hold

for each element of the constrained collection. Furthermore, the assertion actually applies to

each element in a set of constrained collections, viz., one such constrained collectIon for each

column (in the data base) which is named CL

It has been stated that the scope of a relation constraint assertion can either be

explicit (apply to relations and columns which are constants) or described (apply to relations

and columns which are variables whose ranges are described). It is certainly valid to

question the desirability and practicality of assertions with described scope, and we shall not

take a position on this matter here. Rather, for the purposes of the remainder of this

thesis, it is sufficient to assume that we are dealing with assertions having explicit scope,

although we believe that the extension to assertions having described scope is

straightforward.

6.3. Relation Constraint Validity Requirement

Another component of a relation Constraint is the validity requirement(s): the

occasion(s) at which the assetion component of the constraint must hold.

One possibility is that an assertion must hold at all times, and consequently must be

checked after any data base change that may cause its violation. Such assertions must

- - - - -

Semantic Integrity Specification 67

theoretically be checked (verif led) after every primitive data base change (such as update,

Insert, or delete tuple). Assertions actually need to be checked only if some value(s) are

changed which may cause the assertion to be violated. Some success has been achieved In

automatically determining when an assertion actually needs verification (Eswaran 1975,

Stonebraker 1975c).

In some cases, It is necessary to specify than an assertion need not hold during some

complex data base transaction(s), because it may not be meaningful to verify the assertion

until after the transaction(s) are completed. Such assertions are checked only at the end of

these transactions.

Suppose, for example, that there is an assertion for the example data base of figure 1

which states that exactly two employees in the sales department have a salary of more than

S15,000. Assume that at some time the assertion holds, as employees “Smith” and “Jones”

both have salary $20,000 and work in the sales department. It is now desired to transfer

employee “Smith” out of the sales department, replacing him with employee “Davis” (with

salary $30,000). If the primitive operations update row, ir cert row, and delete row are the

only operations available and the assertion is checked after each primitive operation, the

desired change cannot be legally accomplished. Thus the verification of this assertion must

be deferred until the entire transaction (which consists of two primitive operations) is

completed.

Consequently, it can be semantically necessary and/or desirable for the constraint

expressor to specify precisely when an assercLon is to be checked. For reasons of efficiency,

it is also important to have the ability to specify that an assertion need only be checked at

certain limited times, because verif ying it af:er every data base change that could cause its

violation might be catastrophicall y expensive.

Accordingly, the validity requirement of a relation constraint should be expressed in

-__

Semantic Integrity Specification 68

terms of structured operations. For example, the validity requirement of some assertions

might be that the assertion is to be checked after operation raise-salary. Each relation

constraint validity requirement should consist of a list of structured operations after which

the assertion component is to be checked. The special validity requirement “always” has the

function of assuring that the assertion will be checked after any data base change that may

cause its violation.

It may be necessary to check one or more relation constraint assertions after each data

base change is attempted (by a structured operation). The simplest type of data base

change is a primitive update, insert, or delete tuple operation. Slightly more complex is the

set-oriented tuple update, Insert, or delete which may be expressed In the high level

nonprocedural data selection and modification language (e.g., SEQJJEL). Since structured

operations are hierarchically organized, it may be necessary to check some assertions after

each hierarchic structured operation. Consider, for example, the structured operation A,

which Is defined to have the effect of executing a delete tuple operation, followed by the

execution of operation B. Operation B consists of a single update tuple operation. It may

then be necessary to check some assertions after the delete tuple operation, after operation

B, after the update tuple operation (in B). and after operation A.

A special treatment of “nu ll” (undefined) values as column entries is required. As

noted by Eswaran and Chamberlin (Eswaran 1975], the checking of a relation constraint

assertion should be such that the presence of “null” values should never cause the assertion

to succeed If It would otherwise fail (be violated), and should never cause it to fall if It

would otherwise succeed. An exception to this rule is made for assertions which explicitly

reference “nUll” values (e.g., “Sex — null”).

Semantic Integrity Specification 69

6.4. Relation Constraint Violation-Action

Associated with every occasion at which an assertion is to be checked, is a violation-
action to be taken if the assertion is not satisfied upon attempted verification. Several types

of violation-action can be specified:

1. An !~~ can be signalled, and the requested data base change rejected. A message

is issued informing the user of the problem; the nature of this message may be

explicitly specified as a part of the violation-action, or it may be chosen by the

System.

2. A warninE can be Issued, but the Illegal data base change allowed. The user may
be warned with a system-generated message, or a message specified as part of the
violation-action. The warning may be persistent, in which case it appears whenever
the potentially bad data Is referenced.

3. A corrective action can be specified, which attempts to repair the error; the

assertion is then rechecked. This approach may be dangerous, but is appropriate In

some cases. There are several types of corrective action:

a. a substitute value may be specified to replace the offending data,

b. ~~
. structured operation may be performed,

c. an external procedure may be called.

If a corrective violation-action is attempted, the relation constraint assertion which

caused Its invocation is rechecked after the corrective action is performed. It is

Intended that corrected value and structured operation corrective actions handle the

bulk of the corrective violation-action needs. However, It is possible to call an

external procedure (which is writte n In some high level general purpose

programming language) as a corrective action. This external procedure receives no

special prlvilges with regard to data base interaction. There are of course other

Semantic Integrity Specification 70

problems which result from permitting such external procedures to be used, which

are similar to those discussed in the Contex t of domain definition violation-action (see

section 3.4). (A more far-reaching set of problems of this type is discussed by Minsky

(Minsky 19761)

The actual interface which reports relation constraint violations to the user should

actually allow this user to control the violation-action. The user should be consulted, if

appropriate. For instance, assume that the user wishes to perform an operation which gives

employee “Jones” a l0~ raise in salary. Assume also that there Is a relation constraint

assertion which states that the sum of salaries of all the employees in each department of

the company must be less than the budget of that department. Suppose also that this

assertion would be violated if the salary of “Jones” Is increased by 10g. A reasonable

violation-action might be to r~.ise the salary of Jones” to its maximum permissible value,

while reporting this to the user and asking for approval before actually performing the

action.

In this scheme, the vIolation-actions are assocIated with the assertion; they are part

of the relation constaint. This means that violation-action information is not a part of the

specification of the structured operations. All Information regarding the checking of an

assertion is localized in the relation constraint. This has the desirable effect of eliminating

the arbitrary procedural embedding of violation-action information.

6.5. Implementation Considerations

A relation constraint language processor may be used to “compile” relation constraints

Into an Internal form. Relation constraints may be added to and deleted from a data base.

(A constraint may be changed by deleting It and adding a revised version.) Adding a

relation constraint consists of Its compilation and initial checking. Normally, the constraint

Semantic Integrity Specification 71

must be satisfied when It is added to the data base.

The internal form into which a relation constraint Is compIled is used by the semantic

integrity subsystem to check the integrity of the data base, and to take appropriate action

which violations are detected. Moreover, the integrity subsystem manages all four aspects

of semantic Integrity, as discussed above and in chapter 7.

6.6. Remarks

The princi pal purpose of this chapter has been to impose some structure on the

problem of relation constraint specification in the context of the semantic integrity of a

relational data base. Important issues to be considered in future work Include:

1. a detailed analysis of the applicability of specific high level, nonprocedural data

selection languages to assertion specification (e.g., SEQJJEL Q!JEL, or Q~,uery by

Example),

2. a comp lete description of a disciplined specil ition methodology for relation

constra ints (including detailed example(s) of relation c 3nstratnt specification),

3. specifications of the user interface of . the semantic integrity subsystem, vis-a-vis

relation constraints,

4. an analysis of the impact of the semantic integrity subsystem on other aspects of

the data base .cyst~m (e.g., data security),

5. an assessment of the, ramifications of various problems concerning relation

constraints, including:i

a. redundancies,

b. contradictions,

c. circularities (because of corrective action side effects),

6. a study of Implementation techniques for relation constraint checking.

‘I’ ___________

Semantic Integrity Specification 72

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM

The purpose of this chapter is to present some brief comments on several important

aspects of the design of a semantic integrity subsystem. The purpose of such a subsystem is

to manage the semantic integrity of a data base, as indicated by the semantic Integrity

specifications for that data base.

7.1. Components of a Semantic Integrity Subsystem

We propose that a semantic integrity subsystem possess four principal compon ’nts:

I. The semantic integrity language processors translate the specificatior~s in the high

level semantic integrity languages into internal forms useful to the semantic integrity

subsystem. As dIscussed In this thesis, there are four semantic integrity languages, for

domain definitIon, relation structure, structured operations, and relation constraints.

(Actually, these four langauges may be viewed as sublanguages of a single semantic

integrity language.)

2. The semantic integrity checker determines which domain definitions and relation

constraints need to be checked after a given data base change is performed, and

performs that checking.

S. The semantic integrity violation-action processor takes appropriate action when a

domain definition or relation constraint is violated.

4. The relation constraint ç~ ~atibil~y checker is responsible for Insuring that the set

of relation constraints currently extant for a data base is free from contradictions and

other undesirable properties. The compatability checker may be called by the relation

constraint language processor when adding a new relation constraint, to make sure

that ft Is acceptable to add it. The problem of designing and implementing a

~~

~-

Semantic Integrity Specification 73

compatability checker involves general techniques of deductive inference, automated

theorem provers, etc. Only a very limited compatability checker could be practical at
the present time.

7.2. The User’s View of the Integrity Mechanism

It is extremely important to provide an effective user - data base system interface1
especially with regard to the creation, maintenance, and reporting of semantic Integrity
information. There are actually three major types of users with which one needs to be
concerned:

I. the data base administrator (DBA), which may in fact be a single person or many
persons, whose job is to create and maintain the semantic integrity specifications,

2. the nonprogramming user, who deals with the data base by means of generalized

data selection and modification languges (e.g. SEQUEL, QUEL, or Query by
Example),

3. the applications program, which calls upon data base system facilities.

Of course, a single person may serve both as a DBA and a (nonprogrammirij) user. The

distinction between nonprogramming users and applications programs is ma~ e in order to

distinguish the types of communication with the semantic integrity subsystc m which are

necessary.

The DBA should be provided facilities which allow the following types of actions.

1. add relation,

2. delete relation,

3. add domain,

4. delete domain,

5. add structured operation,

Semantic Integrity SpecIfication 74

6. delete structured operation,

7. add relation constraint,

8. delete relation constraint.

It should also be possible for a DEA to change the structure of relations, and modify the

definition of domains, structured operations, and relation constraints. It is furthermore

desirable to allow the DBA to ask questions about the semantic integrity specifications,

specially the relation constraints. For example, it should be possible to ask which

constraints may possibly be violated if an entry in a given column Is changed, or which

constraints have a given column entry as constrained data.

The nonprogramming user must be provided with high level reporting of semantic

integrity violations and violation-actions. In general, a (nonprogramming) user sees a set of

data structures (domains and elations), a set of structured operations, and a set of relation

constraints. When a domain definition or relation constraint is found to be violated, the

user is either informed of this fact or an automatic corrective action is attempted. In any

case, it must be possible to provide the user with a high level “error message”. The

semantic integrity subsystem must not be completely silent (e.g., see (Stonebraker 197id,

Sconebraker 1975c]). It must also be possible for the user to interact with the semantic

Integrity subsystem to attempt to repair an error, should that be appropriate.

The applications program must be provided with capabilities similar to those for

nonprogramming users, but all communication must be accomplished via procedure call and

return, and message passing protocols.

7.3. Some Thoughts on Integrity Subsystem Implementation

Although a detailed Investigation of implementation techniques for semantic integrity

subsystems is an Important research topic, little has been done on It to date. Stonebraker

Semantic Integrity Specification 75

and Wong (Stonebraker 1974d, Stonebraker 19’75c] have proposed a very clean query

modification” approach to integrity checking, but this scheme has some limitations (e.g.,

some useful types of techniques for the optimization of integrity checking are not handled).

Sarin [Sarin 1976] is currently Investigating this topic in some detail. In this thesis, we are

not principally concerned with the specifics of implementation techniques. However, we

shall discuss a few Important aspects of semantic integrity subsystem implementation.

First of alt, it Is Important that a data base logging and backup facility exist. This Is

crucial in allowing the actions of a structured operation (transaction) to be “backed out” and

“undone”, if occasioned by the violation of a domain definition or relation constraint.

It is sometimes the case that a data base change will cause several domain definitions
and relation const raints to be checked. (A data base change is accomplished by the

invocation of a primitIve or structured operation.) A scheme must be developed for

determining in what order these are to be checked. One way to handle this is to assign

priorities to domain definitions and relation constraints; this may be done by the DRA or

automaticall y by the semantic integrity subsystem. Domain definitions should receive

priority over relation constraints (since they are always checked after primitive operations),

and the various types of relation constraints can be ordered by their comple~city, Importance,
or some other metric.

Since relation constraint checking is potentially a costly undertaking, It is crucial that

efficient checking techniques be developed. Much of the work on optimizing data selection

and modifiction languages is relevant here. Heuristics may be developed for determining,

on the basis of the patterns of data base interaction, which access paths and aids to

maintain (Hammer 1976b3. One type of useful heuristic involves the maintenance of

aggregate values. For example, If there is a relation constraint assertion which states that

the sum of employee salaries Is lets than StOO,000, it may be helpful to maintain the sum

Semantic Integrity Specification 76

and update it as necessary, rather than constantly recalculating it when the assertion is

checked. Other types of heuristics may also prove useful, e.g., dealing with characteristics

of Individual types of physical storage devices (such as data clustering and page

arrangement), or dealing with the maintenance and use of inversions (indices).

7.3.1. The Use of Inversions in Relation Constraint Checking (An Example)

As an example illustrative of the usefulness of inversions in relation constraint

checking, consider an example assertion. Suppose that the assertion (for the example data

base of figure 1-2) states that for each tuple B in relation BUDGET, the entry in the

Salary_budget column (B.Salary_budget) is greater than or equal to the sum of the entries

in the Salary column of the tuples in EMP (El, ... , En) which have Department —

B.Department. Several primit~ ye operations which may require this assertion to be checked
are listed below, along with the method by which the necessar y checking may be

accomplished and an indication of which inversions would be helpful in such checking:

1. for some tuple B in BUDGET, Salary_budget Is changed:

a. find all tuples in EMP (El, En) which have Department - B.Department,

b. calculate S — E1.Salary + En.Salary,

c. check that S c— B.Salary...budget,

useful Inversions: Department In EMP (for step a),

2. for some tuple E In EMP, Salary Is changed:

a. find all tuples in EMP (El, ... , En) which have Department . E.Department,

b. calculate S — El.Salary + En.Salary,

C. find the tuple in BUDGET (B) which has Department - E.Department,
d. check that S .c— B.Salary_budget,

useful Inversions: Department in EMP (for step a), Department In BUDGET (for

Semantic Integrity Specification 77

step C),

3. for some tuple in BUDGET (B), Department is changed:
(same as 1),

4. for some tuple In EMP (E), Department is changed,

(same as 2),

5. a new tuple is Inserted into BUDGET (B),

(same as 1),

6. a new tuple is inserted into EMP (E),
(same as 2).

In this particular example, no checking needs to be done when tuples are deleted from
EMP , since that can only cause the sum CS) to decrease. Of course, this is not true for all
assertions involving sums of this type.

-

~

Semantic Integrity Specification 78

8. REMARKS AND DIRECTIONS

The major purpose of this thesis has been to provide a comprehensive, detailed

analysis of the issues and problems associated with maintaining semantic integrity in a

/ generalized (relational) data base sys:em. The principal emphasis has been on the high

level ex pression of semantic integrity specifications. The major portion of the work

described herein has been concerned with providing a framework for semantic integrity

specifications. Both the functional requirements for a solution to the semantic integrity

problem and a specific approach to providing such a solution have been emphasized. An

attempt has been made to indicate important directions for further work on semantic

integrity.

By way of conclusion, t)-ere are several important general directions for the extension

of the work described in this thesis. The following are most significant:

I. an analysis of important integrity specification language design issues (e.g., the

usefulness of constructs in languages like SEQJJEL, QJJEL, and Q,,uery by Example,

the adequacy of nonprocedural specification methodologies, the importance of

Iteration and recursion, etc.),

2. the complete design of a language for semantic Integrity specification, including

sublanguages for each of the four aspects of semantic integrity (in the relational data

model),

3. the development of a well-directed, struct ured, disciplined approach to data base

design (based on the semantic integrity framework),

4. a comprehensive example of the application of the semantic integrity specification

methodology described herein to a “real” application domain,

5. the Implementation of the semantic integrity subsystem outlined in this thesis,

- .~~~

Semantic Integrity Specification 79

6. an analysis of the cost of building, maintaining, and enforcing semantic integrity

rules,

7. a study of the relationship of semantic integrity issues with those of security.

concurrent consistency, and query processing (including the use of deductive

techniques).

8. an evaluation of the ramifications of separating the four aspects of integrity to the

extent described above (e.g., an analysis of whether it is necessary to allow the

information within a domain definition to be referenced in relation constraint

assertions), and a study ot the appropriateness of this approach,

9. an evaluation of the applicability of a behavioral approach to the description of

data semantics in an Integrated data base environment,

10. the extension of the semantic integrity scheme to allow multiple “views” of a data

base,

It. an evaluation of possible extensions to permit a nonabsolutist approach to integrity

(involving the notions of q’iantized truth and confidence measures [.Zadeh 1975)),

12. a study of the ability of the approach to the semantic integrity problem described

in this thesis to improve the overall effectiveness of a data base system.

Semantic Integrity SpecIfication 80

REFERENCES AND BIBLIOGRAPHY

(Abrial 1974]

Abrial, J. R., “Data Semantics”, Data Base Management, North Holland, 1974.

(AlIman 1975)

Ailman, E., M. Stonebraker, and G. Held, Embedding a Relational Data Sublanguage in a

General Purpose Programming Language, Electronics Research Laboratory Report ERL-

M564, University of California; Berkeley CA,, 10 October 1975.

[AlIman 1976]

Ailman, E., M. Sconebraker, a ~id G. Held, “Embedding a Relational Data Sublanguage in a

General Purpose Programming Language”, Proceedings of ACM SIGPLAN/SIGMOD

Conference on Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-24

March 1976.

[Armstrong 1974]

Armstrong, W. W, “Dependency Structures of Data Base Relationships”, Information

Proc .sung 74. North Holland, 1974.

i*~r.h.. A7S]

W II ai~d D D Chamberlin. “Implementation of a Structured English Q~iery

~-~--r
p,~~~~~~~ W ACM SIGMOD International Conference on the Management

- 0~~

Semantic Integrity Specification 81

(Bachman 19733
Bachman, C. W., “The Programmer as Navigator”, Communications of the ACM, Volume
16, Number 11. November 1973.

tBernstein 1975)

Bernstein, P. A., J. R. Swenson, and D. C. Tsichriczis, “A Unified Approach to Functional
Dependencies and Relations”, Proceedings of ACM SIGMOD International Conference on

the Management of Data, San Jose CA, 14-16 May 1975.

[Ejorner 1973]

Bjorner, D., E. F. Codd, K. L. Deckert, and I. L. Traiger, The Camma-0 N-ary Relational
Data Base interface Specifications of Objects and Operations, IBM Research Report
RJ1200, San Jose CA, 11 April 1973.

(Borg ida 19753

Borgida, A. T., Topics in the Understanding of English Sentences by Computer, Technical
Report 78, Department of Computer Science, University of Toronto, Toronto, Canada,

February 1975.

(Boyce l973a]

Boyce, R. F. and D. D. Chamberlin, Using a Structured English O,,uery Language as a Data
Defnition Facility, IBM Research Report RJ13l8, San Jose CA, 10 December 1973.

(Boyce 1973b]

Boyce, R. F., D. D. Chamberlin, W. F. King III, and M. M. Hammer, “Specifying Q,ueries as

Semantic Integrity Specification 82

Relational Expressions~ SQJJARE”. Proceedings of ACM SIGPLAN-SIGIR Interface

Meeting, Gaithersburg MD, 4-6 November 1973.

(Boyce 1975)

Boyce, R. F., D. D. Chamberlin, W. F. King III , and M. M. Hammer, “Specifying Q~,ueries as

Relational Expressions: The SO~UARE Data Sublanguage”, Communications of the ACM,

Volume 18. Number II, November 1975.

(Bracchi 1972]

Bracchi, G. A., A. Fedeli, and P. Paolini, “A Language for a Relational Data Base

Management System”, Sixth Annual Princeton Conference on Information Sciences and

Systems , Princeton NJ, 23-24 Ifarch 1972.

(Bracchi 1974)

Bracchi, C., A. Fedeli, and P. Paolini, “A Multi-Level Relational Model for Data Base

Management Systems”, Data Base Management, North Holland, 1971.

(Cardenas 1975)

Cardenas , A. F., “ Anal ysis and Performance of Inverted Data Base Structures ” ,

Communications of the ACM, Volume 18, Number 5, May 1975.

[Chamber lin 1974a)

Chamberlin , D. D., R. F. Boyce, and I. L. Tralger, “A Deadlock-Free Scheme for Resource

Locking In a Data Base Environment”, Information Processing ‘74, North-Holland, 1974.

-. -—-- -~~~~~~ -- --- __________

Semantic Integrity Specification 83

(Chamberlin 1974b)

Chamberlin, D. D. and R. F. Boyce, “SEQJJEL. A Structured English Qjsery Language”,

Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann

Arbor MI, 1-3 May 1974.

(Chamberlin 1975)

Chamberlin, D. D., J. N. Gray, and I. L. Traiger, “Views, Authorization, and Locking in a

Relational Data Base System”, Proceedings of National Computer Conference, Anaheim

CA, 19-22 May 1975.

(Chan 19743

Chan, A. V., Automatic Selection of Inversions in an Integrated Data Base Environment, S.

M. thesis proposal, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 18 December 1974.

(Chen 1975)

Chen, P. P. S., “The Entity-Relationship Model: Toward a Unified View of Data”, ACM’

Transactions on Data Base Systems, Volume 1, Number 1, March 1976 (to appear).

(Codasyl 197la]

Codasyl Committee on Data System Languages, Codasyl Data Base Task Group Report,

ACM, New York NY, 1971.

(Codd 1970]

Codd, E. F., “A Relational Model for Large Shared Data Banks”, Communications of the

r - - — ______ ____________________

Semantic Integrity Specification 84

ACM, Volume 13, Number 6, June 1970.

(Codd 1971a]

Codd, E. F., “A Data Base Sublanguage Pounded on the Relational Calculus”, Proceedings

of ACM SICFIDET Workshop on Data Description, Access, and Control, San Diego CA,

1971.

(Codd 1971b)

Codd, E. F., “Further Normalization of the Data Base Relational Model”, Courant

Computer Science Symposia 6, New York NY, 24-25 May 1971, in Data Base Systems,

Prentice Hall, 1971.

(Codd 1971c)

Cndd, E. F., “Normalized Data Base Structure-. A Brief Tutorial”, Proceedings of ACM

SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

(Codd 1971d]

Codd, E. F., “Relational Completeness of Data Base Sublanguages”, Courant Computer

Science Symposia 6, New. York NY, 24-25 May 1971, in Data Base Systems. Prentice Hall,

1971

(Codd 1974a]

Codd, E, F., “Recent Investigations in Relational Data Base Systems”, Information

Processing ‘74, North Holland, 1974.

Semantic Integrity Specification 85

(Codd 1974b]

Codd, E. F., “Seven Steps to Rendezvous with the Casual User”, Proceedings of IFIP TC-2
Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5 AprIl 1974,
North Holland, 1974.

(Codd 1974c]

Codd, E. F. and C. J. Date, “Interactive Support for Non-Programmers The Relational
and Network Approaches”, Proceedings of ACM SIOFIDET Worksho p on Data
Description. Access, and Control, Ann Arbor MI, 1-3 May 1974.

(Codd l975a]

Codd, E. F., A List of References Pertaining to Relational Data Base Management, IBM

Research Laboratory, San Jose CA, 1975.

(Codd 1975b)

Codd , E. F. (editor), “Imp lementation of Relational Data Base Management Systems”,
(Transcription of 1975 National Computer Conference Panel Discussion on Relational Data

Base Management), FDT - Quarterly Bulle:in of ACM SIGMOD, Volume 7, Nmuber 2,
Se~tember 1975.

(Conway 1974)

Conway, R. W., W. L. Maxwell, and H. L. Morgan, “A Technique for Pile Surveillance”,

Information Processing ‘74, North Holland, 1974.

(Date 1971a]

Semantic Integrity Specification 86

Date, C. J. and P. Hopewell, “File Definition and Logical Data Independence”, Proceedings

of ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA,

1971.

(Date 1971b)

Date, C. J. and P. Hopewell, “Storage Structure and Physical Data Independence”,

Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, San

Diego CA, 1971.

(Date 1972]

Date , C. J.. “Relational Data Base Systems; A Tutorial”, Proceedings of Fourth Annual

Symposium on Computers and Information Science, Miami Beach FL, 14-16 December 1972,

Plenum Press, 1972.

(Date 1974]

Dare, C. J. and E. F. Codd, “The Relational and Network Approaches: Comparison of the

Ap~Iacation Programming Interfaces”, Proceedings of ACM SIGFIDET Workshop on Data

Description, Access, and Control, Ann Arbor MI, 13 May 1974.

(Date 1975]

ut ’~, C. J., An Introduction to Data Base Systems, Addison-Wesley, 1975.

LEngles 1971)

Erig~es , R. W., “An Analysis of the April 1971 DBTG Report ”, Proceedings of ACM

SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

I

Semantic Integrity SpecificatIon 87

(Eawaran 1974)

Eswaran, K. P., J. N. Cray, R. A. Lon e, and I. L Tralger, The Notions of Consistency and
Predicate Locks In a Data Base System, IBM Research Report RJ1487, San Joe. CA. 30

December 1974.

(Eswaran 1975]

Eswaran , K. P. and D. D. Chamberlin, “Functional Specifications of a Subsystem for
Database Integrity”, Proceedings of International Conference on Very Large Data Bases,
Framingham MA, 22-24 September 1975.

(Everest l974a]

Everest, G. C., “Concurrent Update Control and Database Integrity”, Proceedings of IFIP
TC-2 Working Conference on Data Base Management Systems, Carps., CorsIca, 1-5 April
1974, North Holland. 1974.

(Everest l974b)

Everest, C. C., “The Futures of Database Management”, Proceedings of ACM SIGMOD
Cor ference on Data Description, Access, and Control, Ann Arbor MI, I-S May 1974.

(Fadous 1975]

Fadous, R. V. and J. Forsyth, “Finding Candidate Keys for Relational Data Bases”,

Proceedings of ACM SIGMOD International Conference on the Management of Data, San

Jose CA, 14-16 May 1975.

Semantic Integrity SpecIfication 88

(Fehder 1974)

Pehder, P., “HOJ..: A Set-Oriented Transaction Language for Hierarchically Structured

Data Bates”, Proceedings of ACM National Conference, San Diego CA, November 1974.

(Fernandez 1975)

Fernandez, E. B., R. C. Summers, and T. Lang, “Definition of Access Rules In Data

Management Systems”, Proceedings of International Conference on Very Large Data Bases,

Framingham MA, 22-24 September 1971

(Florentin 1974]

Florentln, J. J., “Consistency Auditing of Databases”, The Computer Journal, Volume 17,

Number I, February 1974.

(Florentin 1976]

Florentin, J. J., “Information Reference Coding”, Communications of the ACM. Volume 19,

Number I, January 1976.

(Possum 1974]

Fossum, B. M., “Data Base Integri ty as Provided for by a Particular Data Base

M~nagement System”, Data Base Management, North Holland, 1974.

(Goldstein 1970]

Goldstein, R. C. and A. L. Strnad, “The MacAims Data Management System”, Proceedings

of ACM SIOFIDET Workshop on Data Description and Access, November 1970.

Semantic I~itegrity Specification 89

(Gosden 1974]

Gosden , J. A., “Large Scale Data Base Systems Current Deficiencies and User
Requirements, Data Base Management Systems, North Holland, 1974.

(Gotlieb 1975]

Cotlieb, L. R., “Computing Joins of Relations ”, Proceedings of ACM SIGMOD
International Conference on the Management of Data, San Jose CA, 11-16 May 1975.

(Graves 1975)

Craves, R. W., “Integrity Control in a Relational Data Description Language”, Proceedings
of ACM Pacific Conference, San Francisco CA, 17-18 April 1975.

[Cray 1975]

Gray, J. N., R. A. Lon e, and C. R. Putzolu, “Granularity of Locks In a Shared Data Base”,
Proceedings of International Conference on Very Large Data Bases, Framingham MA, 22-
24 September 1975.

(Grossman 197S]

Grossman , R. W., “Representing the Semantics of Natural Language as Constraint
Expressions”, Working Paper 87, Artificial IntellIgence Laboratory, Massachusetts Institute
of Technology, Cambridge MA, January 1975.

(Grossman 1976]

Grossman, R. W., Some Data-base Applications of Constraint Expressions, S. M. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of

1”

Semantic Integrity Specification 90

Technology, Cambridge MA, January 1976.

(Guttag 1976]

Guuag. 3., “Abstract Data Types and the Development of Data Structures”, Proceedings of

ACM SIGPLAN/SIGMOD Conference on Data: Abstraction, Definition, and Structure,

Salt Lake City UT, 22-24 March 1976.

(Hall 1975)

Hall, P. A. V., S. J. P. Todd, and P. Hitchcock, An Algebra of Relations for Machine

Computation, IBM Scientific Centre Report UKSCOO66, Peterlee, England, January 1975.

(Hammer ~974)

Hammer, M. M., W. C. Howe, and I. W ladawsky, An Interactive Business Definition

System, IBM Research Report RC4680, Yorktown Heights NY, 16 January 1974.

(Hammer 1975)

Hammer. M. M. and D. J. McLeod, “Semantic Integrity in a Relational Data Base System”,

Proceedings of International Conference on Very Large Data Bases. Framingham MA. 22-

21 September 1975.

(Hammer 1976a]

Hanmer , M. M. and D. J. McLeod, A Framework for Data Base Semantic Integrity

Constraints , Very Large Data Bases Group Report , Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge MA, January 1976.

--

~~~

~-



Semantic Integrity Specification 91

(Hammer 197Gb)

Hammer , M. M. and A. V. Chan, “Index Selection in a Self-Adaptive Data Base

Management System”, Proceedings of ACM SIGMOD International Conference on the

Management of Data, Washington D. C~ 2-4 June 1976 (to appear).

(Hammer 1976c]

Hammer, M. M., “Error Detection in Data Base Systems”, Proceedings of National
Computer Conference, New York NY, 7-10 June 1976 (to appear).

(Hawkinson 1975]

Hiwkrnson. I.. ., “The Representation of Concepts in OWL”, Proceedings of Fourth

International Joint Conference on Artificial Intelligence, Tbllisi, Georgia, USSR, 3-8
September 1975.

(Hawley 19’75~
Hawle y, D. k, J. S. Knowles , and E. E. Tozer, “Database Consistency and the CODASYL

DETG Proposals, The Computer Journal, Volume 16, Number 3, November 1975.

IHawryskiewycz 1972]

Hawryskiewycz, I. T. and J. B. Dennis, “An Approach to Proving the Correctness of Data

Base Operations”, Proceedings of ACM SIGFIDET Workshop on Data Description, Access,

and Control, November 1972.

(Hawryskiewycz 1973]

Hawrys kiewycz , I. T., Semantics of Data Base Systems , Massachusetts h5stltute of



p.-

Semantic Integrity Specification 92

Technology Project MAC Technical Report TR-l12, Cambridge MA, December 1973.

(Heath 1971)

Heath, 1. J., “Unacceptable File Operations in a Relational Data Base”, Proceedings of

ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA. 1971.

(Held 1975a]

Held, C. and M. Stonebraker, Storage Structures and Access Methods in the Relational

Data Base Management System INGRES, Electronics Research Laboratory Report ERL-

M505, University of California, Berkeley CA. 3 March 1975.

(Held 1975b]

Held, C., M. R. Stonebraker , and E. Wong, “INGRES: A Relational Data Base System”,

Proceedings of National Computer Conference, Anaheim CA, 19-22 May 1975.

(Held 1975c]

Held, C., Storage Structures for Relational Data Base Management Systems. Electronics

Research Laboratory Report ERL-M533, University of California, Berkeley CA, 11 August

1975

(Hewitt 1971]

Hewitt , C. E., Procedural Embedding of Knowled ge in PLANNER, Proceedings of

International Joint Conference on Artificial 1nc~1ligence 2, September 1971.

(Ho~is~l 1976]

- -



Semantic Integrity Specification 93

Housel, B. C. and N. C. Shu, “A High Level Manipulation and Q.uery Language for

Hierarchical Data Abstractions”, Proceedings of ACM SIGPLAN/SICMOD Conference on

Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-24 March 1976.

(IBM)

IBM , IMS/360 Application Description Manual, 0H20.0765, White Plains NY.

(Jervis 1974]

Jervis, B. M., Qpery Languages for Relational Data Base Management Systems, S.M.
Thesis, Department of Computer Science, University of British Columbia, Canada, May

1974.

(Joyce 1974)

Joyce, 3. D., J. T. Murray. and M. R. Ward, “Data Management System User Requirements”,
Data Base Management Systems, North Holland, 1974.

(King 1974]

1< ing, W. F. III , On the Selection of Indices for a File, IBM Research Report RJ1341, San

Jose CA, January 1974.

t .Lis kov 1974]

Liskov, B. and S. Zilles, “Programming with Abst ract Data Types”, Proceedings of a

Symposium on Very High Level Languages, Santa Monica CA, March 1974.

ILorle 1974)



F AO-A034 Ills MASSACH USETTS INST OF TECH CAMn I OSE LAB FOR COMPUTE——ETC F/S 9,2
HIGH LEVEL EXPRESSION OF SI~ ANTIC INTEGRITY SPECIFICATIONS IN A—— !TC (U)SEP 76 0 .1 MCLEOO NOOOl~ -75—C—O6ol

UNCLASSIFI ED Nj T~LCS/TR 165 P4.

2 o F 2
A D 3~ 4 _______________________

U

______ 

END
DATE

FILMED

2—77

I



1.0 -

~~~ 

2 5

2 2

I . I
• _ _

• .25 jj fljj 4_
~

Semantic Integrity Specification 94

Lon e. R. A., XRM - An Extended (N-ary) Relational Memory, IBM Cambridge Scientific

Center Technical Report 320-2096, Cambridge MA, January 1974.

(Machgeels 1976]

Machgeels, C., A Procedural Language for Expressing Integrity Constraints In the

Coexistence Model”, Proceedings of IFIP TC-2 Conference on Modelling In Data Base

Management Systems, Freudenstadt, W. Germany, 5-9 June 1976 (to appear).

(Mañll 1975)

Marill, T. and D. Stern, “The Datacomputer: A Network Utility”, Proceedings of National

Computer Conference, Anaheim CA. 19-22 May 1975.

(Marten 1975)

Martin , J. T., Computer Data-Ease Orgranizatton, Prentice Hall, 1975.

(Maynard 1974)

Maynard, H. S., “User Requirements for Data Ease Management Systems (DBMS)”, Data

Base Management Systems, North Holland, 1974.

(McDonald 1974a]

McDonald, N., M. Stonebraker, and E. Wong. Preliminary Design of INCRES Part I -

Query Language. Data Storage and Access, Electronics Research Laboratory’ Report ERL-

M4~5, University of California, Berkeley CA, 10 April 1974.

(McDonald 1974b)

Semantic Integrity SpecIfication 95

McDonald, N. M., M. Stonebraker, and E. Wong, Preliminary Design of INGRES Part II -

Protection, Concurrency and Graphics. Electronics Research Laboratory Report ERL-M436,

University of California, Berkeley CA, 9 May 1974.

[McDonald 1974c)

McDonald, N. and M. Stonebraker, CUPID - The Friedly Query Language, Electronics

Research Laboratory Report ERL-M487, University of California, Berkeley CA, 16 October

1974.

(McDonald 1975a]

McDonald, N. and M. Stonebraker, “CUPID: The Friendly Qjaery Language”. Proceedings

of ACM Pacific Conference, San Francisco CA, 17-18 AprIl 1975.

(McDonald 1975b]

McDonald, N. H., CUPID: A Graphics Oriented Facility for Support of Non-Programmer

In’eractions with a Data Base, Electronics Research Laboratory Report ERL-M563,

University of California, Berkeley CA, 12 November 1975.

~ cLeod 1974)

Mr.Leod, D. J.. Relational Data Management in Minicomputers. S.B. Thesis, Department of

Electrical Engineering, Massachusetts In:titute of Technology, Cambridge MA, February

1974.

(McLeod 1975]

McLeod, D. J. and M. J. Meldman, “RISS: A Generalized Minicomputer Relational Data

d

Semantic Integrity Specification 96

Base Management System”, Proceedings of National Computer Conference, Anaheim CA.

19-22 May 1975.

(McLeod 1976a]

McLeod, D. J.. High Level Domain Definition in a Relational Data Base System, IBM

Research Report RJ1716, San Jose CA.,, 9 February 1976.

(McLeod 1976b)

McLeod, D. J., “High Level Domain Definition in a Relational Data Base System ”,

Proceedings of ACM SIGPLAN!SICMOD Conference on Data: Abstraction, Definition,

and Structure, Salt Lake City UT, 22-24 March 1976.

(McLeod 1976c]

McLeod, D. J.. Query by Example and SEQUEL: Translation and Compatibility, IBM

Research Report RJI7SO, San Jose CA, 1976.

[Mekzer 1973]

Meltzer , H. S., Current Concepts in Data Base Design, IBM Report to GUIDE 37

Information Systems Division, 2 November 1973.

(Minsky 3974a1

Minsky, N., “On Interaction with Data Basef, Proceedings of ACM SIGFIDET Workshop

on Data Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

[Minsky 1974b)

—
II ’

- _ - - - - —

Semantic Integrity SpecIfication 97

Minsky, N., Protection of Data Bases and the Process of User Data-Base Interaction,

Department of Computer Science Technical Report SOSAP-TR-ll, Rutgers University, New

Brunswick NJ, September 1974.

(Mommens 1975)

Mommens, J. H. and S. E. Smith, “Automatic Generation of Physical Data Base Structures”,

Proceedings of ACM SIGMOD International Conference on the Management of Data”,

San Jose CA, 14-16 May 1975.

[Morgan 1970]

Morgan. H. L, “An Interrupt Based Organization for Management information Systems”~
Communications of the ACM, Volume 13, Number 12, December 1970.

(MRI 1972]

M RI Systems Corporation, System 2000 General Information Manual, Austin TX, 1972.

CM ylopoulos 1975]

Mylopout’ s, J., S. A. Schuster, and D. Tsachritzis, “A Multi-Level Relational System”,

P’ ~ceedings of N~uional Computer Conference, Anaheim CA, 19-22 May 1975.

(Nipsen 1974]

Ni Issen, G. M., “Data Structuring in the DDL. and Relational Data Model”, Proceedings of

IPIP TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5

April 1974, North Holland, 1974.

Semantic Integrity SpecIfication 98

(Nordstrom 1976]

Nordstrom, B., “An Outline of a Mathematical Model for the Definition and Manipulation

of Data”, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction,

Definition, and Structure, Salt Lake City UT, 22-24 March 1976.

(Notley 1972]

Notley. M. C., The Peterlee IS/I System. IBM United Kingdom Scientific Center Report

UKSC-0018, England, March 1972.

(0 lIe 1974]

Olle, T. W., “Current and Future Trends in Data Base Management Systems”. Information

Processing 74, North Holland, 1974.

[Ozkaran 1974]

Ozkaran, E. A., S. A. Schuster, and K. C. Smith, A Data Base Processor, Technical Report

CSRG-43. University of Toronto, Toronto, Canada, November 1974.

(Oz~aran 1975)

Ozkaran, E. A., S. A. Schuster, and K. C. Smith, “RAP: As Associative Processor for Data

Base Management”, Proceedings of National Computer Conference, Anaheim CA. 19-22

M~y 1975.

FPfiscer 1974]

Pisster , C. F., The Computer Control of Changing Pictures, Technical Report TR-135,

Project MAC. Massachusetts Institute of Technology, Cambridge MA, September 1974.

Semantic Integrity SpecificatIon 99

(Redell 1974]

Redell, D. D., Naming and Protection In Extendible Operating Systems, Technical Report
TR~40, Project MAC, Massachusetts Institute of Technology, Cambridge MA. November

1974.

(Reisner 1975]

Resiner, P., R. F. Boyce, and D. D. Chamberlin, “Human Factors Evaluation of Two Data
Base Query Languages: SQUARE and SEQUEL”, Proceedings of National Computer
Conference, Anaheim CA, 19-22 May 1975.

(Robinson 1967]

Robinson, J. A., “A Review of Automatic Theorem Proving”, Proceedings of Symposium In

Applied Mathematics, American Mathematical Society, Providence RI, Volume 19. 1967.

[RobInson 1975]

Robinson, K. A., “Data Base -- The Ideas Behind the Ideas” The Computer Journal,
Volume 18, Number 1, January 1975.

(Rothnle 1972]

Rnthnle, J. B., The Design of Generalized Data Management Systems, Ph. D. thesis,
Department of Civil Engineering, Massachusetts Institute of Technology. Cambridge MA.
Si’pternber 1972.

tRothnie 1974]

.4 - -

Semantic Integrity SpecIfication 100

Rothnie, J. B.. “An Approach to Implementing a Relational Data Management System”,

Proceedings of ACM SICFIDET Workshop on Data Description, Access, and Control, Ann
Arbor MI. I-S May 1974.

[Rothnie 1975]

Rothnie, J. B., “Evaluating Inter-Entry Retrieval Expressions in a Relational Data Base

Management System”, Proceedings of National Computer Conference, Anaheim CA, 19-22
May 1975.

(Roussopoulos 1975]

Roussopoulos , N. and J. Mylopoulos, ‘Using Semantic Networks for Data Base

Management”, Proceedings of International Conference on Very Large Data Bases,

Framingham MA, 22-24 September 1975.

[Sarin 1976)

Sa~:n, S. K., Design of a Semantic Integrity Subsystem for Relational Data Base Systems.
S M. Thesis Proposal, Department of Electrical Engineering and Computer Science.

Ma.~sachusetts Institute of Technology, Cambridge MA, 29 January 1976.

tSchlotnick 1975]

Schiotnick , M., “Secondary Index Optim ization ”, Proceedings of ACM SIGMOD
1n~e-nit.onal Conference on the Management of Data, San Jose CA, 14-16 May 1975.

(5 hriid 19753

Schm:d, H. A. and J. R. Swenson, “On the Semantics of the Relational Data Model”,

Semantic Integrity Specification 101

Proceedings of ACM SIGMOD International Conference on the Management of Data, San

Jose CA. 14-16 May 19’74~

(Senko 1973)

Senko, M.. E. Altman, M. Astrahan, and P. Fehder, “Data Structures and Accessing in Data

Base Systems”, IBM Systems Journal, Number 1, 1973.

(Senko 1975]

Senko, M. E., “Specifications of Stored Data Structures and Desired Output Results in

DIAM II with FORAL”, Proceedings of International Conference on Very Large Data

Bases, Framingham MA. 22-24 September 1975.

[Sibley 1974]

Sibley, E. H., ‘Data Management System User Requirements”, Data Base Management

Systems, North Holland, 1974.

(Smith 19763

Smith, J. M. and D. C. P. Smith, “A Semant ics for Relational Data Bases Founded on

Abstraction’, Proceedings of ACM SICPLAN/SICMOD Conference on Data: Abstraction,

Definition, and Structure, Salt Lake City UT, 22-24 March 1976.

(Software AG 1974]

Software AG, ADABAS ADASCRIPT User’s Manual, Reston VA, 1974.

(Steuert 19743

Semantic Integrity Specification 102

Steuert, J. and J. Goldman, “The Relational Data Management System: A Perspective”,
Proceedings of ACM SIOFIDET Workshop on Data Description, Access, and Control, Ann

Arbor MI, I-S May 1974.

[Stonebraker 1974a]

Stonebraker, M. R., ‘The Choice of Partial Inversions and Combined Indices”,

International Journal of Computer and Information Science. Volume 3, Number 2, June

1974.

(Stonebraker 1974b)

Stonebralcer, M. R.. “A Functional View of Data Independence”, Proceedings of ACM

SICFIDET Workshop on Data Description, Access, and Control, Ann Arbor MI, 1-S May

1974.

(Stonebraker I974c3
Sconebraker, M. R., High Level Integrity Assurance in Relational Data Base Management

Systems , Electronics Research Laboratory Report ERL-M473, University of California ,

Berkeley CA, IS August 1974.

(Stonebraker 1974d]

Stonebraker, M. and E. Wong. Access Control In a Relational Data Base Management

System by Qjiery Modification, Electronics Research Laboratory Report ERL-M438,

University of California, Berkeley CA. 14 May 1974.

(Stonebraker 19ThaJ

Semantic Integrity SpecifIcation 103

Stonebraker, M. R. and C. Held, Networks, Hierarchies, and Relations in Data Base
Management Systems, Electronics Research Laboratory Report ERL-M504, UniversLty of
California, Berkeley CA. 3 March 1975.

[Stonebraker l975b]

Stonebraker, M. R., Getting Started in INGRES - A Tutorial, Electronics Research
Laboratory Report ERL-M518, University of California, Berkeley CA, 23 AprIl 1975.

[Stonebraker 1975c]

Stonebraker, M. “Implementation of Integrity Constraints and Views by Q~ier y

Modification’, Proceedings of ACM SIGMOD International Conference on the
Management of Data, San Jose CA, 14-16 May 1975.

[Summers 1975)

Svcrimers, R. C., C. D. Coleman, and E. B. Fernandez, “A Programming Language
Extension for Access to a Shared Data Base”, Proceedings of ACM Pacific Conference, San

Francisco CA. 17-18 April 1975.

11 aylor 1974]

Taylor, B. J. and S. C. Lloyd , ‘DUCHESS - A High Level Information System”,

Proceedings of National Computer Conference, Chicago IL, 6-10 May 1974.

[1 homas 1975)

Thomas, J. C., and J. D. Could, “A Psychological Study of Q,uery by Example”, Proceedings

of National Computer Conference, Anaheim CA. 19-22 May 1975.

Semantic Integrity Specification 104

(Tslchrltzis 19753

Tsichritzis, D., Features of a Conceptual Schema, Technical Report CSRG-56, Computer

Systems Research Group, University of Toronto, Toronto, Canada, July 1975.

(Valle 1975]

Valle, C.. “Interactive Handling of Data Base Relations: Experiments with the Relational

Approach”, Technical Report, University of Bologna. Bologna, Italy. March 1975.

tWeber 1976)

Weber, H., A Semantic Model of Integrity Constraints on a Relational Data Base”,

Proceedings of IFIP TC-2 Conference on Modelling In a Data Base Management Systems.

Freudenstadt, W. Germany, January 1976.

(Whitney 1974]

Whitney, K. M., “Relational Data Management Implementation Techniques’. Proceedings of

ACM SIC FIDET Workshop on Data Description, Access, and Control, Ann Arbor MI, I-S

May 1974.

(Wilkes 1972]

Wilkes, M. V., aOfl Preserving the Integrity of Data Bases”, The Computer Journal,

Vcluma 15, Number 3, 1972.

~Zadeh 1975)

Zadeh, L. A., Calculus of Fuzzy Restrictions, Electronics Research Laboratory Report ERL-

Semantic Integrity Specification 105

M502, University of California, Berkeley CA, 19 February 1975.

(Zloof 1974]

Zloof, M. M., Q,uery by Example, IBM Research Report RC4917, Yorktown Heights NY, 2

July 1974.

[Zloof 1975a]

Zloof , M. M., “Q,,uery by Example’, Proceedings of National Computer Conference,
Anaheim CA, 19-22 May 1975.

(Zloof 1975b]

Zlnof, M. M., “Q,.uery by Example: The Invocation and Definition of Tables and Forms’,
rroceedings of International Conference on Very Large Data Bases, Framingham MA, 22-
24 September 1975.

(Z ook 1975)

Zook , W., K. Youssef I, P. Kreps, C. Held, and J. Ford, INCRES - Reference Manual,
E!ectronics Research Laboratory Report ERL-M519, University of California, Berkeley CA.

~?‘~ April 1975.

-~~. ---~~~

Semantic Integrity Spedfication 106

Figure 1—1. Relation Et1P

co lumn —> Name Sex Sa lary Manager Departmentunder lying
doma 1,1 —> NAME SEX MONEY NAME DEPT

Jones, Richard male $12,088 Jones, Richard research

Phillip., Jeff male $18,008 Smith, Kathy sa les

Smith , Kathy female 111,080 Jones, Richard sa les

Semantic Integrity Specification 107

Figure 1—2. Example Data Base

Domains:

NAME QUAN
SEX ORDER..IlUtI
IIOt4EY CUST
DEPT DATE
I TEll

Relations:

E1IP (Name, Sex, Sa lary, Manager, Department)
NAME SEX MONEY NAME DEPT

SALES (Item, Department, Quantity_on_hand, Cost)
I TEll DEPT QUAN MONEY

ORDERS (Orderjiumber, Customer , Item, Date_shipped)
ORDERJIUII CUST ITEM DATE

BUDGET (Department , Sa lary_budget)
DEPT MONEY

H.

Semantic Integrity Specification 108

Figure 1—3. A Possible Set of Relationa l Primitive Operations

create domain
delete domain (these operations allow domains and
create relation relations to be defined and deleted)
delete relation

inser t tuple (these operations allow changes to be
delete tuple made to data in relations)
update tuple

add col umn tø
relation

delete co l umn
from relation (these operations facilitate relation

copy relation modification and relationa l algebraic
intersection manipulation of a data base)
union
difference
Jo In

Semantic Integrity SpecifIcation 109

Figure 3-1. Sel ected Example Data Base Domain Definitions

domain NAME (‘Smith , John’)
description

last: string
• ,
first: string

order i ng
last , first

violation -action
error

domain SEX (‘femal. ”)
description

oneof ‘female ’, ‘male ’
order i ng

none
violation — action

error ‘sex must be female or male ’

domain MONEY (‘$180”)
description

• 1’
value: number where >.8
where l ength (r ight(*, ‘.‘ + 1)) • 2

or not present *, .‘

order i ng
va I ue

violation — action
substitute null ‘va lue in error , null has been assumed’

doria ln I TEM (‘AB-75-326”)
description

str i ng where not has numerics , ‘—

ii: ‘— ‘

i2: string where not has alphabetic. , ‘—‘

where repit i tions ii tnrough i2 ‘4 and <.3
or

stu ng where call check_ i tem
order i ng

cal l compare_Item
violation -action

sub e titut e l.ft (*, 5)

Id

Semantic Integrity SpecIfication 110

Figure 3-1. (continued)

domain OUAN (17)
description

value: number where integer
and .8

order i ng
atom ic

violation—action
call f I xup_quan

domain DATE (“1/28/1976”)
descri~ t i on

month: oneof 1, .. ., 12
• I,
day: number where integer and >.1 and <.31
‘/137’
year: number where integer and >.5 and <—9
where (if (month • 4 or .5 or .9 or -11) then dayc.38)

and (if month • 2 then day <. 29)
and (If (month — 2 and year .. 6) then day <. 28)

ordering
year, month, day

violation —ac tion
error

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Semantic Integrity SpecifIcation 111

Figure 3-2. Syntax of the Domain Definition Language

doma i n—definition sz— DOMAIN doma i n-name
DESCRIPTION

description—c l ause
[ORDER ING

ordering—c l ause]
[VIOLATION-ACTION

violation—action—c lause]

domain-name ::. string-constant

description—c l ause ::— description-subc l ause
I description-c l ause

OR
de~cr I pt I on—subc I ause

deecription—subc l ause ::— description
[where—restriction]

description ::. (label:] subunit
I description

(label:) subunit

l abe l ::. string—constant

subunit :: . STRING (WHERE string-boolean]
I NUMBER [WHERE number-boo l ean]
I ONEOF etrlng—constar ut—liet
I ONEOF number—constant—list

str i ng—constant—list u— string—constant—component
string-constant-list, string—constant—component

btr ing—constant—component z:— string-constant
ALPHABET ICS

I ~LMER1CS
I SPECIALS

number—constant—I u t  ::- number-constant
I number-constant-I let , number—constant

string—boolean ::. str i ng-boolean-term
I string boolean OR str i ng—boolean—tera

string—boo lean—term ::— str i ng-bool ean—factOr
I string-boo l ean-term AND string-bool.an— factor



Semantic Integrity Specification 112

Figure 3-2. (continued)
I

str ing—boo lean—factor ::— string—boo lean—primary
I NOT etring-boo lean—pr imary

etr i ng—boo l ean—pr m ary : — string-predicate

(str ing-boo lean)

string—predicate :s. comparator str ing—constant
I IF string-predicate THEN string—predicate

(ELSE string-pred i cate]
I SIZE comparator number—expression
I HAS string—constant—list
I CALL procedure

comparator i i —  • i I > 1  >— I I <—

number—boo lean s s. number-boo lean-term
I nuinber-boolean OR number—boolean-term

number—boo l ean—term : : • number—boo lean—factor
I number-boo l ean-term AND number—boolean—facto r

number—boo lean—factor : : — number—boo l ean-pr i mary
I NOT number-boolean-pr imary

number—boolean—pr lmary : : - number-predicate
I (number-boo l ean)

number-pred i cate ii — comparator number-constant
I IF number—predicate THEN number—predi cate

(ELSE number-pi ed I cat.]
I INTEGER
I EXPONENTIAL
I CALL procedure

where— restriction i i—  boo lean

boo l ean t i —  boolean-term
I boo lean OR boo lsan-ter m

bootean-ter . as .  boolsan-factor
$ bools an-term AND boo l •an—factor

boo lean-factor a. boole an-pr i mary
$ NOT boo l ean—pr imary

bool ean—pr ImarW a:. Pred Icate
I (boolean)



Semantic Integrity Specification 113

Figure 3-2. (continu ed)

predicate :;— expression comparator expression
IF predicate THEN predicate

(ELSE pred i cate]
I PRESENT expression, string-constant-I jet
I CALL procedur e

expression : : • [addition—operator] unsigned -expression

uns i gned—express ion :;— ar ithmetic -term
I unsigned —e xpression addition—operator arithmetic— term

ar i thmetic— term a:. ar i thmetIc—factor
ar i thmetic—term multiply -operator ar i thmetic —factor

ar i theet ic—factor * : — subespress ion
I (expression)

subexpre~ sion :z— atom ic—expression
I set—function (expr .esion—I 1st)
I APPEND (expression, expression)
I SUBSTR ING (expres sion, expression , expression )
I LEFT(expreeslon , expression )
I RIGHT(expression, expression )
I LOCATION(expression , expression)
I LENGTH (expression)
I REPITITIONS l abe l THROUGH labe l

atomic—expression i i —  l abe l
I string—constant
I number—constan t
1*

expression—list :a. expression
• I expression —list , expression

set—function ::. MAX IMUM I flAX I MINIMUM I fIN string-constant

addition-operator :s. + I -

multipl y—operator sa. * I / I **
order i ng-clause a:. ordering-list

I NONE
I ATO MIC

‘ I CALL procedur e



Semantic Integrity SpecIfication 114

Figure 3-2. (contInued)

order i ng— list ::— l abe l
I ordering-list , label

v iolation—a ction—c l ause ::— violation-action
I violation-action—clause

violation—action

violation-action ::. ERROR
I ERROR message
I SUBSTITUTE expression
I SUBSTITUTE express i on massage
CALL procedure

I CALL procedure message

message is— string—constant
I SYSTEM-GENERATED

procedure :s— string—constant

Notes:

The nonterminals string-constant and number—constant are not
further defined.

ALPHABETICS refers to the characters “A” through “Z” and TMa”
through “z”, NUMERICS refers to the digits 8 through 9, and
SPECIALS refers to all other characters.

SIZE returns the length of a string subunit. HAS .1, ..., sn
returns “true ” if a subunit has an occurrence of each of the
strings si, ... , en (otherwise “fa l se”). SIZE and HAS appear
on l y in subunit where restrictions.

SUBSTRING(s ,il,i2) returns the substring of str ing s starting
at character 11 and extend i ng i2 character.. LEFT(s,i) and
~IuHT (s,i) return the left and righ t substr ing (respectively)
of e having l ength i. SUBSTRING, LEFT, and RIGHT may also be
invoked wi th  a second argument wh i ch is a string. This means
that the subetring Is to start at the leftmost or rightmost
occurrence of the second str i ng argument, e.g., “LEFT(*, ‘.‘ )“
and “LEFT(s, INOEX (*, ‘.‘) )“  are equiva lent. LENGTH(s) returns
the length of str ing s. APPENO(s1.s2) concatenates ci and s2.
LOCATION(sl,.2) returns the I ndex of the first occurrence of
s2 in ci (or 8 if s2 is not a substring of .1). REPETITIONS
.1 THROUGH .2 returns the number of repetitions (of the domain
va l ue) for subunits labe led .1 through s2.



Semantic Integrity Specification 115

Figure 6—1. Some Simple Assertions (f or data base in figure 1—2)

Note: CC means constrained collection , PR means predicate

1. The sal ary of every emp l oyee is less than $50,808.
CC: each tuple in DIP
PR: Sa lary < 58000

2. The manager of each employee Is also an emp l oyee.
CC: each tuple in EIIP
PR: Manager is present in set of all Names from tuples

in EIIP

3. The salary of each emp loyee In the toy department is less
than the sa lary of his manager.

CC: each tuple in ,EIIP where Department - ‘toy’
PR: Sal ary < Salary of the tuple where Name — Manager

in constrained tuple

4. The sa lary of an emp loyee cannot decrease.
CC: each tuple in EIIP
PR: new Salary >— old Sal ary

S. The average emp l oyee sal ary is at least equal to the sal ary
of Robert Jones.

CC: set of tuples in EMP
PR: average(Sa l ary) >. Salary of tupie where Name

‘Jones, Robert ’
6. Each department has at most two emp loyees with a salary of

more than $50,080.
CC: set of tuples In DIP where Sa lary > 58080. grouped

by common Department
PR: countlName) c. 2

7. The number of female emp l oyees is at least 40% of the total
number of employees.

CC: set of tuples in EIIP where Sex — ‘f emale ’
PR: count(Name) >. .4 * count (Name) for tuple. in DIP

8. Emp l oyee names are unique.
CC: set of tuple . ~n EIIP
PR: multlset (Name) ha. no duplicates

II ’



Semantic Integrity Specification 116

Figure 6—2. Loca l Tupla Predicates

Types of Predicates (a):

la. col scalarcom p const
2a. col eca l arcomp col
3a. cal scalarcomp colexpr

4a. col setcomp lconst—i , ..., conet-mi
Sa. cot setcomp (co t —i , ... , co l—m)
Sa. cot setcomp (co l expr—i , .. ., co lexpr-m)
7a. col setcomp setexpr

8a. (cot—i , .. ., co l— n) setcomp ((const— 11, ... , conet—in) ,
(conet—mi , .. ., const—mn))

Sa. (co l— 1, .. ., col—r~) setcomp ((co l —li, ..., cot—in) ,
(co t —mi , ... , co l— mn) )

lOa. (cal—i , ..., cot —n ) setcomp ((co t expr—1i, ... , cotexpr— ln ), ... ,
(co lexpr—ml , ... , colexpr—mn) }

ha .  (col—i , ..., cot —n) setcomp setexpr

Oefini tions:

ccl: co lumn name wi th  optional “ol d” or “new”
(co t —i, co t —li, etc., are cots; all cole must
reference entries within the constrained tuple)

const: constant from an appropriate domain
scalarop: +, —

‘ 
a, I, **~ sax , mm , etc., or a user—defined

.calar operator
setop: union (also wri t ten as 0) , intersection, difference ,

or a user-defined set operator
co l expr: a l egal combination of cot , const, op. and setop which

yields a sing le va l ue
~~texpr: same as colexpr except yields a set of val ues
sralarcomp: ., ~~., >, ~~., <, <—, or a user—defined scalar

comparator
setco~np : is in , con ta i ns, properly is in, properly contains,

or a user-defined se~ comparator



Semantic Integrity SpecIfication 117

Figure 6—3. Nonlocal Tuple Predicates

Types of Predicates (a):

ia. col scatarcomp scalarva l

2a. col eetcomp setval

3a. (co t —i, ... , col—n) setcomp setval

(In type 2a setva t is a set of va l ues, and In type 3a setva l
is a set of tuplee.)

Definitions:

Definitions here are the same as figur s 6—2, except:

scalarval: a scalar value computed from the data base
eetval: a set value computed from the data base

NO pred i cates are the same as NI predicates, except that the
process sel ecting scal arval and setva l may reference the entries
In the constrained tuple.



Semantic Integrity SpecIfication 118

Fi gure 6-4. Local Set Predicates

Types of Predicates (a) :

la. aggfn (col) scal arcomp const
2a. aggfn (co l) sca larcomp aggfn (co l)
3a. aggfn(col) scalarcomp aggfnexpr

4a. aggfn (col—h , ... , cot —n) scat arcomp const
5a. aggfn (col—l , ..., co t —n) sca l arcomp aggfn(cot —i, ..., cot-mi
6a. aggfn (co l —i, ... , cal—n) scalarcomp aggfnexpr

7a. set(col) setcomp (const—i , ..., conet—n)
8a. set (co l) setcomp set (col )
Sa. set (co l) setcomp setfnexpr

iOa. set (col—i , ..., co t —n) setcomp ((const—ii , .. ., const—ln), ... ,

(conet—mi , ..., const—mn ) )
h a. set(co l —l , ..., co t —n) setcomp ( (cot— il , ..., cot— in) ,

(co l—mi, ... , cot—mn ) )
12a. eet (col—l , ..., cot—n ) setcomp setfnexpr

i3a. cal crel cot
14a. cot cre l (cot—i , ... . cot—rn )
iSa. (co t —i , ... , cot—n ) crel cot
i6a. (co l—i , ... , co l—n) cret (cot— i, ... , co t —rn )

Definit ions:

(cot , conat , scatarop, setop, co t expr, sca l arcomp, setcomp are as
in figure 6-2)
aggfn: set. max , mm , avg. sum, count, or a user—defined

aggregate function (also all these with “‘“ . e.g. ,
“set’ H , meaning duplicates are retained)

crel: one—to-one , functionally —dependent , or a user—defined
column relationship comparator

aggfnexpr z a l ega l comb i nation of aggfn, cot , const, scal arop, setop,
and colexpr

setfnexpr : a lega l comb i nation of ~set”, cot , conet , scat arop. setop,
and colexpr

“Set” returns the set of values in a cot umn (or tup l es in a group
of co l umns. It is an aggfn. but is also treated separately since
it y ields a set value.
(Note tha t “max (se t (Sa lary )P’ is equ i va l ent to “max (Salary)”.)



Semantic Integrity SpecifIcation 119

Figure 6—5. Nonloca l Set Predicates

Types of Predicates (a) ;

la. aggfn(col) ecalarcomp scat arvat
2a. aggfn(co t —i , ... , co t —n) sca t arcomp sca larva l

3a. set (col) setcomp setval

4a. set(co l —l , ..., col —n) setcomp setva t

(In type 3a. eetva l is a set of sca l ars, and in type 4a, setva t
is a set of tuples.)

Definitions:

Definitions here are the same as figure 6—4, except:

scalarvat: a eca l ar value computed from the data base
setvat : a set va l ue computed from the data base

ND predicates are the same as NI predicates, except that the
process sel ecting scal arvat and setval may reference the data in
the constrained tuple set.



Official Distribution List

Defense Documentation Center New York Area Office
Cameron Station 715 Broadway — 5th floor
Alexandria, Va 22314 12 copies New York , N. Y. 10003 1 copy

Off ice of Naval Research Naval Research Laboratory
Information Systems Program Technical Information Division
Code 437 Code 2627
Arlington, Va 22217 2 copies Washington, D. C. 20375 6 copies

Office of Naval Research Dr. A. L. Slafkosky
Code 1021P Scientific Advisor
Arlington, Va 22217 6 copies Commandant of the Marine Corps

(Code RD—i)
Washington, D. C. 20380 1 copy

Off ice of Naval Research
Code 200
Arlington, Va 22217 1 copy Naval Electronics Laboratory Center

Advanced Sof tware Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arlington, Va 22217 1 copy

Mr. E. H. Cleissner
Naval Ship Research & Development C2nter

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Md 20084 1 copy
Arlington, Va 22217 1 copy

Captain Grace M. Hopper
Off ice of Naval Research NAICOM/MI S Planning Branch (OP—916D)
Branch Off ice, Boston Office of Chief “f Naval Operations
495 Summer Street Washington, D. C. 20350 1 copy
Boston, Ma 02210 1 copy

Mr. Kin B. Thompson
Off ice of Naval Research Technical Direc tor
Branch Off ice, Chicago Information Systems Division (OP—9lT)
536 South Clark Street Office of Chief of Naval Operations
Chicago, Ii 60605 1 copy Washington, D. C. 20350 1 copy

Off ice of Naval Research
Branch Off ice, Pasadena
1030 East Green Street
Pasadena, Ca 91106 1 copy


