AD=AD34 184 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
HIGH LEVEL EXPRESSION OF Sgh ANTIC INTEGRITY SPECIFICATIONS IN A==ETC(U)

SEP 76 D J MCLEOD NOOO14=75=C=0661
UNCLASSIFIED MIT/LCS/TR-1565 NL

= IIIIII

o

-
.-

j22

mi | 8

llL2 fie

nmga lllll: Il

ADA034184

» Kl
-
)

y s MASSACHUSETTS
[LABOR ATORY FOR ﬁ%‘ INSTITUTE OF

COM PU'I ER SCIENCE

TECHNOLOGY

rerly Project MAC)

ﬁ

~)

MIT/LCS/TR-165

HIGH LEVEL EXPRESSION OF
SEMANTIC INTEGRITY
SPECIFICATIONS IN A
RELATIONAL DATA BASE

SYSTEM
DDC

U N
Dennis J. McLeod [} ™" ** "7 :m
i

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under
contract no. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE i e s
2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
. MIT/LCS/TR-165
7~ \JA_TITLE (and Subtitla) . - — 5. TYPE OF REPORT & PERIOD COVERED
Al High Level Expression of Semantic Integrity S.M. Thesis
\‘:5%7/ Specifications in a Relational Data Base System. 1975-1976

6. PERFORMING ORG. REPQRT NUMBER
MIT/LCS/TR-165 «

’/,,, [T AUTHOR(e) é@‘n&r!tl(u
'@Denm‘s J.]McLeod I, NgP@14-75- C-#661 |,

—

e

. N NI l. N NAME AN DDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Massachusetts Institute of Technology AREA & WORK UNIT NUMBERS

Laboratory for Computer Science
545 Technology Square; Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 1

2.
Advanced Research Projects Agency // Sep tamBE® 1876

Department of Defense

1]\.400 Wilson Boulevard -| 21
O.fe " Nav]_ eerc g Office) 1S. SECURITY CLASS. (of this report)
Department of the Navy Unclassified

Information Systems Program
Arlington, Virginia 22217

[75a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Approved s bution unlimited

'7. DISTRIBUTION !’ATEMENT (of the abetract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse aide if necesesary and Identify by Flock number)

Data base management, semantic integrity. error detection and correction,
data base design, data definition, data semantics, very high level languages

20. TRACT (Continue on reverse side If neceseary and identify by block number)

The Ysemantic integrity‘ of a data base is said to be violated when the
data base ceases to represent a legitimate configuration of the application
environment it is intended to model. In the context of the relational data
model, it is possible to identify multiple levels of semantic integrity
information: (1) the description of the domains of the data base as abstract
sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure

DD é :2:”73 ‘473 EDITION OF | NOV 65 'S OBSOLETE @

o
ey

S/N 0102-014°6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Br'ered

HIFEHE

T e

|

«ECHURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

70
spec1f1cat10n), (3) the definition of the abstract operations which are
meaningful in terms of the application environment (structured operations),
and (4) the expression of additional semantic information not contained in
the structure of the relations nor in the identities of their underlying
domains (relation constraints).

A high level, nonprocedural domain definition language facilitates the
description of domains. Such a language allows the specification of the
properties of the values constituting a domain, and the action that is to
occur if an attempt is made to update a column entry such that it does not
belong to the underlying domain of that column. The specification of
: relation structure and structured operations can be accomplished by means of
high level integrity (sub)languages.,

A relation constraint has three components: (1) the assertion (a
predicate on the state of the data base or on transitions between data base
states), (2) the validity requirement (the occasion(s) at which the assertion
must hold), and (3) the violation-action (the action that is to occur if the
assertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification
scheme) which is useful for the construction of a relation constraint language
and specification methodology. Assertions are more than expressions of some
« relationships among different values in a data base; an assertion singles
out the data that is constrained, and states the propertles this data must
possess. A classification is provided of the various predicate types used

\\ to identify constrained data and to state the properties that they are to

“possess.
““MA semantic integrity subsystem (of a generalized relational data base
{ management system) can support the generation and maintenance of integrity
specifications, verify that these specifications are met by the data base,
} and take appropriate action if violations are detected.BK

SECURITY CLASSIPICATION OF THIS PAGE(When Date Bntered)

Lt Tuie N /AYAILABILITY GODES

U:38eN W /
t White Seran W

gur Sectiom [
LNRD (i
SIPIREIRN it ‘

TR /o SPEOAL

"

¢

-

Cambridge

MIT/LCS/TR-165

High Level Expression of Semantic Integrity Specifications
in a Relational Data Buo.S‘y"stom

Dennis . McLeod

September 1976

Massachusetts Institute of Technology

Laboratory for Computer Science
(formerly Project MAC)

Massachusetts 02139

DISTRIBUTION STATEMENT A_ |
Approved for public release;
Distribution Unlimited

Semantic Integrity Specification 2

ABSTRACT

The "semantic integrity” of a data base is said to be violated when the data base
ceases to represent a legitimate configuration of the application environment it is intended
to model. In the context of the relational data model, it is possible to identify muitiple
levels of semantic integrity information: (1) the description of the domains of the data base,
as abstract sets of atomic data values (domain definition), (2) the specification of the
fundamental structure of the relations of the data base (relation structure specification), (3)
the definition of the abstract operations which are meaningful in terms of the application
environment (structured operations), and (4) the expression of additional semantic
information not contained in the structure of the relations nor in the identities of their
underlying domains (relation constraints).

A high level, nonprocedural domain definition language facilitates the description of
domains. Such a language allows the specification of the properties of the values
constituting a domain, and the action that is to occur if an attempt is made to update a
column entry such that it does not belong to the underlying domain of that column. The
specification of relation structure and structured operations can also be accomplished by
means of high level integrity (sub)languages.

A relation constraint has three components:
of the data base or on transitions be

n (a predicate on the state
ase states), (2) the validity requirement (the
occasion(s) at which ton must hold), and (3) the violation-action (the action that is
to occur if the assertion does not hold at a time when it should). Relation constraint
specification can be related to an expression framework (classification scheme) which is
useful for the construction of a relation constraint language and specification methodology.
Assertions are more than expressions of some relationships among different values in a
data base; an assertion singles out the data that is constrained, and states the properties
that this data must possess. A classification is provided of the various predicate types used
to identify constrained data and to state the properties that they are to possess.

A semantic integrity subsystem (of a generalized relational data base management
system) can support the generation and maintenance of integrity specifications, verify that
these specifications are met by the data base, and take appropriate action if violations are
detected.

Semantic Integrity Specification 3

ACKNOWLEDGEMENTS

The author is most grateful to Professor Michael Hammer of MIT for his
enthusiastic suppport and guidance, and for his many and varied contributions to the
contents of this thesis. Many others have helped greatly, providing ideas, comments, and
criticisms, including: Jack Aiello, Sheldon Borkin, Daniel Carnese, Arvola Chan, Marvin
Essrig, Richard Grossman, Professor Barbara Liskov, Professor William Martin, Professor
David Redell, Arnold Schiemann, and Sunil Sarin (all of MIT);, Dr. Donald Chamberlin,
Dr. Edgar Codd, Dr. Kapali Eswaran, Dr. Frank King, Dr. James Gray, and Dr.
Bradford Wade (all of IBM San Jose Research); Professor Michael Stonebraker (of the
University of California, Berkeley). Although many of the ideas in this thesis belong to
these persons, all of the mistakes belong to the author. Finally, the author would like to
thank Mary Rykowski, for her moral support, for polishing the prose of earlier drafts of
this document, and for being an inspired and unending critic.

This research was sponsored by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the office of Naval Research under contract
number NO00OI4-75-C-0661.

This report is a slightly revised version of a thesis submitted to the Department of
Electrical Engineering and Computer Science in June 1976, in partial fulfiliment of the

degree of Master of Science.

Semantic Integrity Specification 4

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS

LIST OF FIGURES

1. INTRODUCTION

L1. Semantic Integrity

1.2. The Data Model

1.3. The Relational Data Model

2. SEMANTIC INTEGRITY

2.1. Background

2.2. An Approach to Semantic Integrity Specification
3. DOMAIN DEFINITION

3.1. Describing Sets of Atomic Data Values
3.2. A Domain Definition Language
3.21. Language Details and Examples
3.3. Implementation Considerations
3.4. Extensions

4. RELATION STRUCTURE

4.1. Additional Column Information
4.2. Comparability

4.21. Domain Conversions

5. STRUCTURED OPERATIONS

5.1. Semantic Integrity Information in Structured Operations

O QO e W N

T ———

Semantic Integrity Specification 5

5.2. The Definition of Structured Operations

6. RELATION CONSTRAINTS

6.1. Whither Assertion Structure?

6.2. Relation Constraint Assertions

6.21. Simple Assertions

6.2 2. Identification of the Constrained Collection

6.23. Tuple Assertions

6.2.4. Set Assertions

6.2.5. Scope of Assertions

6.3. Relation Constraint Validity Requirement

6.4. Relation Constraint Violation-Action

©.5. Implementation Considerations

6.6. Remarks

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM
7.1. Components of a Semantic Integrity Subsystem

7.2. The User’s View of the Integrity Mechanism

1.3. Some Thoughts on Integrity Subsystem Implementation

73.1. The Use of Inversions in Relation Constraint Checking (An Example)
8. REMARKS AND DIRECTIONS

REFERENCES AND BIBLIOGRAPHY

45
48
49
51
51
53
57
6l
65
66
69
70
n

N

74

78

LIST OF FIGURES

I-l. Relation EMP

1-2. Example Data Base

1-3. A Possible Set of Relational Primitive Operations
3-1. Selected Example Data Base Domain Definitions
3-2. Syntax of the Domain Definition Language

6-1. Some Simple Assertions (for data base in figure 1-2)
6-2. Local Tuple Predicates :

6-3. Nonlocal Tuple Predicates

6-4. Local Set Predicates

6-5. Nonlocal Set Predicates

Semantic Integrity Specification 6

106
107
108
109
m
115
116
nm
us
1ne

Semantic Integrity Specification 7
L. INTRODUCTION
Rather than just a collection of values, a data base should be a model of some

application environment. When a data base ceases to represent a valid configuration of

that application environment, the semantic integrity of the data base is violated. The

purpose of this thesis is to examine the problem of describing and preserving the semantic
integrity of a data base in the context of a generalized data base system. The general goal
is to provide a first approximation to a "theory" of semantic integrity (particularly in the
context of the relational data model), and to provide a basis for a semantic integrity
specification methodology. This includes an overview of the relevant issues as well as a
description of a particular approach to the problem, with emphasis on the high level,

nonprocedural expression of semantic integrity requirements.

Data base systems (data base management systems) are intended to assume the tasks
of facilitating data storage, manipulation, and retrieval. The data base system should also
be responsible for maintaining the correctness of the data in a data base, as well as
providing users with appropriate abstract views of the data. This is particularly important
for large data bases, as ad hoc and "hand” checking is impractical.

By way of background, it might be useful to place the notion of semantic integrity in
perspective, and to better define the meaning of the term as used in this thesis. There are
a number of ways in which the soundness of data in a data base may be compromised:

I. The reliability of data may be compromised by errors due to hardware failure, as

well as those due to failure of the operating system and data base system software.

Hardware reliability (in the context of data base systems) has been considered

elsewhere [Fossum 1974, Wilkes 1972). Software reliability is a very prominent

research concern at present, as exemplified by the work of those concerned with

v}

Semantic Integrity Specification 8

establishing the correctness of programs. In the area of data base systems,
Hawryszkiewycz and Dennis [Hawryszkiewycz 1972, Hawryszkiewycz 1973) have
developed a formal semantic model of a relational data base system, defined data
base primitive operations in terms of this model, and proven the correctness of the
operation definitions (abstract programs). Weber [Weber 1976] has further developed
this approach.

2. The concurrent consistency of data may be violated due to the effects of

improperly controlled accesses to shared data by multiple concurrent users (processes).
It is desirable to provide each user with a consistent view of a data base, shielding
this user from interfering effects due to the activities of other users, while at the
same time retaining a maximum amount of legitimate concurrent activity. Eswaran,
Gray, Lorie, and Traiger [Eswaran 1974] have described a high level scheme for
concurrent consistency control in a relational data base system. Hawryszkiewycz and
Dennis [Hawryszkiewycz 1972, Hawryszkiewycz 1973] developed a lower level model of
concurrent consistency based on a formal semantic model of a relational data base
system.

3. Data security may be compromised by a failure to properly (administratively)
restrict the manner in which a given user may access and manipulate a data base. A
good deal of pioneering effort in the area of security and protection has been
accomplished in the context of operating systems. Some of this work has beer
extended to data base systems, e.g., the work of Chamberlin, Gray, and Traiger
(Chamberlin 1975), and Stonebraker and Wong [Stonebraker 1974d).

4. The semantic integrity of data is violated when the data base ceases to represent a

legal configuration of the application environment it is intended to model. Semantic

integrity errors may be introduced by user error, lack of understanding, malice, etc.

Semantic Integrity Specification 9

(Cinadvertent, improper, or malicious update” [Stonebraker 1974c)). In fact, hardware
and software reliébmty errors, concurrent consistency errors, and security errors may
cause the semantic integrity specifications of a data base to be violated. For example,
some user may, because of a failure of the data base security mechanism, make an
unauthorized change, such as raising his own salary from $20,000 to $30,000; this
unauthorized change can then cause a semantic integrity constraint to be violated,
such as "all employee salaries are less than $25,000".

This thesis deals specifically with the fourth aspect of the soundness of a data base,
namely semantic integrity. In what follows, we assume that hardware and software
reliability are guaranteed (eg., by the operating system). We also assume that concurrent
consistency is assured; it is sufficient to assume, without loss of generality, that a single user
is interacting with the system at any given time. Security issues are not further considered

in this thesis.

Ll Semantic Integrity

A data base is meant to serve as a mocel of some limited universe; at any given time,
the values in the data base represent a particular configuration of that application
environment. Every such world has its own internal logic: a set of rules specifying what
constitutes a legitimate and plausible configuration of that environment [Florentin 19741 It
should be the function of the data base system to insure that these rules are not violated
and therefore that the data base is not in a semantically inconsistent state.

A basic premise we will adopt is that, as noted by Minsky [Minsky 1974a): “the
fundamental property of a data base is that it has an intrinsic meaning which is invariant

of its interaction with users”. The semantic integrity specifications for a data base capture

this intrinsic meaning. The data base system should facilitate the precise expression of

Semantic Integrity Specification 10

these integrity specifications. We assume that some person (or committee of persons),

known as the data base administrator, is responsible for stating the semantic integrity

specifications for the data base.

It is possible and indeed desirable for the data base system to support multiple
abstract logical views of a data base. These views must however be constructed from and
consistent with the semantic integrity specifications (i.e, the data base administrator’s view
of the data base). Even providing a view of the data base which consists of a subset of
that data base is difficult, because of the "connections” between the subset and other
elements of the data base.

A variety of causes may result in a compromise of the semantic integrity of a data
base, including:

1. inaccurate data recording or entry,

2 inadvertent alteration of data during some transmission or transcription process,

3 deliberate falsification of data,

4 loss, omission, or celay of data.

The ramifications of permitting incorrect data to permeate a data base may indeed be far
reaching. Crucial decisions may be wrongly influenced, user confidence in the system
destroyed, and the reliability and performance of the system degraded (including
application programs and packages as well as the data base system itself).

It is generally recognized that the problem of bad data in data bases is a serious one.
Unfortunately, the state of the art in error checking in data base systems is quite dismal.
Most semantic integrity checking is currently accomplished by means of application
programs; data checking mechanisms are embedded in these application programs. Special
purpose data base "audit” routines are also sometimes used to check data integrity. Existing

commercial data base systems perform limited types of integrity checking, if any. This

Semantic Integrity Specification 1l

checking is nearly always limited to simple data format checks. In any case, semantic
integrity information aﬁd checking is usually unstructured, and is embedded in application
programs in an ad hoc manner [Gosden 1974}, furthermore, no discipline is imposed on the
semantic integrity specification process. This lack of structure and discipline has the
following consequences:

1. The mechanism by which semantic integrity specifications are checked is diffuse.

2. Semantic integrity specifications are not readily modifiable.

3. The abstraction defined by the semantic integrity specifications, which is intended

to correspond to the set. of rules in the application environment, is difficult to

understand.

4. Inconsistencies and redundancies can be present in the semantic integrity

specifications, which may be difficult to locate.

5. It is difficult to make the semantic integrity checking process efficient, either by

means of manual or automatic optimization.

12. The Data Model

The data model upon which a data base system is based is defined here to consist of
the type(s) of data structures used to represent information in the data base, along with the
set of primitive operations which can be used to manipulate those structures. The nature
of the data model underlying a data base system has a very significant effect on the
manner in which one describes the semantic integrity of a data base in that system. As
described below, some semantic integrity information is often in fact embedded in the
structures used in the data model [Date 1975, Mommens 1975).

There have been three principal data models proposed for generalized data base

systems (Date 1975):

Semantic Integrity Specification 12

1. For historical and other reasons, the hierarchical approach is a very popular one.
Examples of hierarchical data base systems and data sublanguages (languages for
defining and manipulating data bases) include IMS (IBM], HQL [Fehder 1974), Data
Language [Marill 1975] and System 2000 [MRI 1972) In the hierarchic approach,
some semantic integrity information is expressed in the form of one-to-many
relationships (trees). Thus, one-to-many constraints are expressed by appropriately
constructing the data base hierarchy.
2. The network approach is typified by the Codasyl DBTG proposal [Codasyl 1971a)
and the work of Bachman [Bachman 1973]. An example of a network data base
system is Adabas [Software AG 1974). In the network data model, some semantic
integrity information is expressed via many-to-many relationships; this is done by
appropriately constructing the network structures of the data base.
3. The relational approach was introduced by Codd [Codd 1970] [Codd 1974a).
Examples of relational data base systems and data sublanguages include ALPHA
(Codd 1971a), INGRES [McDonald 19742, McDonald 1974b, Held 1975b), MACAIMS
(Goldstein 1970), Query by Example [Zloof 1974, Zloof 1975a, Zloof 1975b), RDMS
(Steuert 1974), RISS [McLeod 1975), SEQUEL [Boyce 1973a, Chamberlin 1974b,
Chamberlin 1975), and SQUARE [Boyce 1973b, Boyce 19751 In the relational data
model, functional dependencies are normally included in the specification of the basic
structure of relations. However, as discussed in section 1.3, these functional
dependencies may be easily separated from the basic structure of the relations of the
data base.

Several (higher level) semantic data models have been recently proposed (Chen

1975, Schmidt 1975, Senko 1975, Smith 1976, Tsichritzis 1975). These higher level

models attempt to incorporate more semantic integrity information in the basic

Semantic Integrity Specification 13

structure of a data base. Structures in these data models are intended to represent
ob jects, attributes of objects, and relationships between objects (in the application
environment). Semantic operations on these structures represent legitimate changes in
the application environment.

It is not the purpose here to analyze these data models in detail, although many
of the ideas developed herein are quite closely related to work on semantic data
models. Rather, and for reasons to be explained later, the relational data model will
be used herein, as a basis for the discussion of data base semantic integrity.
Although the ideas discassed in this thesis are applicable to data base systems in

general, the discussion is couched in terms of the relational model of data.

13. The Relational Data Model

The relational data model "appears to be the simplest data structure consistent
with the semantics of information and which provides a maximum degree of data
independence” (Boyce 1973b]. As concisely stated by Codd [Codd 1974a) "In the
relational approach there exists an interface at which the totality of formatted data in
a data base can be viewed as a collection of nonhierarchic relations of assorted
degrees on a given collection of simple domains (domains whose elements are not
decomposable as far as the data base management system is concerned).”

For the purposes of this thesis, a (relational) data base is defined to be a
collection of normalized relations (relations in first normal form [Codd 1970])), and a
collection of dcmains. (The relations present in the data base are specifically called
base relations.) A domain is an abstract set of atomic data values (objects). Domains
are defined independently of relations. A normalized relation may be viewed as a

table, wherein each row of the table correspohds to a tuple of the relation, and the

Semantic Integrity Specification 14

entries in a column belong to the set of values constituting the underlying domain of

that column. (Aﬁ entry is the value in some particular column for a given row of a
relation.) The domain underlying a column consists of precisely those ob jects which
can appear as entries in that column; any value in the underlying domain of a
column can appear in that column, and every value in the underlying domain is a
plausible entry in that column. Note that domain and relation names are unique with
respect to a data base, and that a domain and a relation cannot have the same name.

Consider, for example, a data base which contains information about some
company. Assume that a relation called EMP contains data on the employees of the
company. EMP is shown in figure 1-1, described by its table representation. The
rows of the table correspond to tuples of the relation (records), and the columns
correspond to instances of particular domains of the data base. (Loosely speaking, a
relation corresponds to a “flat” file, a tuple to a record, and a column to a data field.)

Each data base relation is created by naming the relation and each constituent
column, and specifying the name of the underlying domain of each column. More
than one column in a relation may have the same underlying domain. Column
names are unique within a relation. Specifying the name of the underlying domain
of each column defines the set of values from which entries in that column may be
selected; that is, the set of entries in a column is always a subset of the underlying
domain of that column.

Figure 1-2 contains a description of an example data base. The name of each
domain and relation of the data base is listed therein (in upper case characters). For
each relation, the name of each of its constituent columns is specified (by one upper
case character followed by lower case characters), as is the underlying domain of each

column. Relation EMP contains information on the employees of the company,

Semantic Integrity Specification 15

SALES records information on the supplies of items for the company, ORDERS
records order information, and BUDGET contains the salary budget for each
department of the company.

Figure I-3 contains a list of some example primitive operations which may be
used to interact with a relational data base. It is assumed that in addition to these
operations, a high level, nonprocedural query language is provided (eg., SEQUEL
(Chamberlin 1974b], QUEL [Held 1975b), or Query by Example [Zloof 1975a)).

The advantages of the relational data model have been previously elucidated
[Codd 1974¢c, Codd 1975b, Date 1974), and will not be repeated here in detail. For our
purposes, the following attributes of the relational model of data are most significant:
1. Access paths are not apparent in the logical view of data.

2. The data model is conducive to (relatively) nonprocedural data selection, query, and
manipulation languages.

3. It is possible to cleanly isolate the different levels of semantic integrity in the
relational data model, as discussed in chapter 2. For example, in the hierarchical and
network data models, certain types of integrity constraints are deliberately built into
the data structure itself (eg., the owner-coupled set construct in the network model).
The data base administrator is thus faced with problem of separating the semantic
integrity requirements from the complexities of the data structure. However, in the
relational data model, "the data base administrator has only one type of structure to
consider, and a very simple coordinate system (identification of relations and columns
by name and rows by content) by which he may refer to any individual item or

portion of that structure.” [Date 1975)

Semantic Integrity Specification 16

2. SEMANTIC INTEGRITY

In the context of the relational data model, it is possible to identify four principal

levels of semantic integrity:

l. Domain definition is the dcscription of abstract sets of atomic data values, which

are to be used to specify the set of values from which entries in columns of relations
can be selected. This can be accomplished by means of a high level domain
definition language [McLeod 1976a, McLeod 1976b]. For example, the domain
SALARY may be defined as consisting of positive integers less than 100,000.

2. Relation structure specification is the description of the fundamental structure of

the base relations. This includes naming each constituent column of a relation, and
stating the underlying domain of that column.

3. Structured operations are abstract operations, which are meaningful in terms of the

application environment. Structured operations describe data base transactions, and
are used to capture the conceptual types of manipulations that are meaningful for a
data base (such as, for the example data base of figure 1-2, an operation HIRE-
EMPLOYEE).

4. The relation constraints level is concerned with relationships among data base

components. Relation constraints are used to define all additional semantic properties
of and relationships between the relations of a data base. For example, primary key
(Codd 1970] (and third normal form [Codd 197Ib, Codd 197Ic)) specification is
accomplished by appropriate relation constraints. However, relation constraints go
far beyond merely supporting functional dependencies; they provide the capability to
define a very rich variety of types of data properties. For example, relation

constraints may disallow inconsistencies between column entries of a single tuple or

S ——————

Semantic Integrity Specification 17

between a tuple and other tuples in the same or other relation(s). They may also

preclude some gldbal patterns in some set of tuples in a relation or the data base as a

whole, or may disallow certain type; of missing data (such as missing tuples, obsolete

values, etc)

Before further describing the approach to semantic integrity which is taken in this
thesis, we briefly examine other work that has been done in the area of semantic integrity

in data base systems.

2.1. Background

In general, there are two ma jor approaches to the specification of the semantic
integrity of a data base:

1. In a state snapshot approach, rules are stated that specify which data base states are

permissible (valid states). The data base system is responsible for insuring that the

data base is always in a valid state. (As discussed in a later chapter, it may be
necessary to allow the data base to temporarily pass through one or more invalid
states.)

2. In a state transition approach, the set of legal data base operations is specified.

Depending on the data base state, only certain operations (valid operations) are

allowed to be performed on that state. These operations are guaranteed to preserve

the integrity of the data base.

A state snapshot approach to describing the semantic integrity specifications for a
data base involves the expression of logical constraints, which can be viewed as predicates
on the state of the data base. These constraints limit the states of a data base to those that
conform to some expressed limitations. Several authors [Boyce 1973a, Eswaran 1975,

Stonebraker 1974c, Stonebraker 1975¢, Zloof 1975b) have discussed semantic integrity

Semantic Integrity Specification 18

assertions in the context of the relational data model. Graves [Graves 1975] has also
considered the problem of semantic integrity.

More specifically, Boyce and Chamberlin [Boyce 1973a] introduced the use of
SEQUEL predicates for expressing integrity assertions. For an operation which makes a
data base change to be allowed, the predicates must hold on the data base state which
results as a consequence of the execution of that operation. Eswaran and Chamberlin

[Eswaran 1975) have discussed the functional requirements of a semantic integrity subsystem

and have examined semantic integrity in the context of SEQUEL and System R
[Chamberlin 1975, Eswaran 1375). Stonebraker and Wong have considered semantic
integrity in terms of the INGRES system and the language QUEL [Stonebraker 1974c), and
introduced the concept of query modification as a tool for the implementation of a semantic
integrity subsystem [Stonebraker 1975¢). Consider the following example of query
modification: a data base operation is attempted which states “increase the salary of each
employee in the sales department by 102", assuming the existence of an integrity assertion
which states that "each employee salary is less than $30,000°, query modification would
transform the operation into one which specifies “increase the salary of each employee in
the sales department by 10%, if that increase results in his salary being less than $30,000".
Zloof has studied the problem of semantic integrity with respect to the expression of
semantic integrity specifications in Query by Example [Zloof 1975b].

In these approaches, facilities are provided to allow the user to state predicates
(expressed in SEQUEL, QUEL, or Query by Example) which are to hold on the data base.
Assertions must be satisfied by the result of a data base change for that change to be
allowed. Several significant problems exist with these approaches:

l. They do not deal with the entire problem of semantic integrity in a relational data

base, but rather focus primarily on relation constraints.

Semantic Integrity Specification 19

2. They are inadequately flexible with regard to when assertions are to be checked.

3. The types of actions possible upon detection of semantic integrity violations are

limited.

4. No structure is placed on the semantic integrity specifications; assertions are

arbitrary predicates on the state of the data base or on transitions from one data base

state to another.

A state transition approach to semantic integrity specification consists of describing
the set of legal operations which may be performed on a data base. In this approach, the
user is confined to interacting with the data base by means of a limited set of operations.
Semantic integrity information is thus procedurally embedded in the operations. This
approach has been suggested by Minsky [Minsky 1974a, Minsky 1974b), in the context of
data base systems. Related work in the area of the definition of abstract data types (eg.
the work of Liskov and Zilles [Liskov 1974)) has much in common with this operational
approach.

Some of the most significant problems with the state transition approach are:

l. Semantic integrity information is embedded in procedures in an unstructured

manner, and is consequently hard to modify and potentially redundant, inconsistent,

and incomplete. .

2. The conceptual semantic model of a data base is difficult to abstract from the

procedurally embedded semantic integrity inf;ormation.

8. It is difficult to verif y the correctness of fhe semantic integrity information, as it is

scattered through the operations.

4. It is not always possible to precisely characterize the set of operations which are

meaningful for a data base at the time the data base is created. Data is often kept in

a data base before uses for it are discovered, or at least before all of its potential uses

Semantic Integrity Specification 20

are discovered; nevertheless, it is often possible to describe the semantic integrity of
this data by means of properties it must satisfy (e.g., assertions which must hold on
the data).

5. Different data base “views" (external schemas) may include very different sets of
semantically meaningful operations, while still couched in terms of a single data base
schema (conceptual schema). It is difficult to insure the consistency and completeness
of the semantic integrity checking which is performed by the operations in different
views.

6. Some data base operations are not meaningful in terms of the semantic integrity of
a data base, but are noﬁetheless required in practice (e.g., an operation to change a
person's date of birth, the value of which was originally incorrectly entered into the

system).

2.2. An Approach to Semantic Integrity Specification

The major goal of this thesis is to provide a first approximation to a “theory” of
semantic integrity, particularly in the context of the relational data model. In so doing, it is
hoped that a basis for a semantic integrity specification methodology will be developed.
This methodology should assist in the formulation of the semantic integrity rules of a given
application environment, and direct the selection of those rules which will constitute the
semantic integrity specifications of a data base (eg., in the face of implementation cost
tradeoffs).

A semantic integrity subsystem must be capable of performing:

1. semantic integrity checking (error detection),

2. semantic integrity violation localization (determining precisely which data values

are in error),

Semantic Integrity Specification 21

8. semantic integrity violation-action (reporting/response).

The semantic integrity specification language(s) must provide the user with the ability to
state all information required to perform these tasks. (This includes, of course, a precise
specification of the semantic integrity rules themselves.)

Actually, it is desirable not only to encapsulate (in the data base semantic integrity
specifications) knowledge about the semantic integrity of a data base, but also knowledge
about how users will interact with the data base. The meaning of a data base includes the
manner in which users interact with it; semantic integrity and user abstraction are closely
related issues.

Some semantic integrity information is best expressed via a state snapshot approach,
while other information is best expressed in terms of state transitions. The approach
described in this thesis includes both state snapshot and state transition aspects.

Basically, then, the approach to semantic integrity taken here has several ma jor
ob jectives:

L. It should be possible to express semantic integrity specifications:

a. on a high level,

b. declaratively, rather than procedurally,

¢. in a structured manner,

d. abstractly, in a way relevant to the application environment.

2. These specifications should be:

a. easily modifiable,

b. nonredundant,

C. consistent,

d. complete (as a model of the application environment),

3. Semantic integrity checking should be:

Semantic Integrity Specification 22

a. the responsibility of the system (but the system may sometimes need to ask
for advice from the user),
b. flexible, allowing appropriate specification of when checking is to be done
(eg., after primitive data base change, after conceptual transaction, etc.),
c. acceptably efficient in terms of the overall performance of the data base
system.
4. Semantic integrity violation-action should be:
a. flexible, allowing an appropriate violation-action to be specified (e.g.,
including error reporting, corrective action, etc.),
b. sufficiently "localized” so as not to generate time-consuming, expensive, and
potentially destructive “side effects”.
The approach to semantic integrity described in this thesis may in fact be viewed as
a generalized approach to data base design and/or data definition. That is, we are
attempting to provide a framework by which the data in a data base may be described.
Additionally, the framework described herein may prove useful as a base language into
which specifications in terms of a higher level data model (such as those described in

[Chen 1975, Schmidt 1975, Senko 1975, Smith 1975, Tsichritzis 1975]) may be translated.

A o

Semantic Integrity Specification 23

3. DOMAIN DEFINITION

The purpose of this chapter is to discuss domain definition, one level of semantic
integrity in the context of the relational data model. Specifically, the precise definition of
demains, viewed as sets of atomic data values, is considered. This includes a review of the
functional requirements for dealing with the problem of domain definition, a discussion
and evaluation of other work that has been done in the area, and the description of a
specific solution to the domain definition problem.

It is important to note that a domain is different from a unary relation. Domains are
abstract sets of atomic data values, and may in fact contain an infinite number of elements.
A relation, by contrast, must contain a finite number of tuples. Abstractly, relations are
sut ject to change (eg., by the addition of new tuples), but domains are changed only when
the associated abstraction changes. To a crude first approximation, the set of values
constituting a domain is fixed at the time the data base is defined ("compile time”), while
the set of tuples in a relation is normally changed during the day-to-day operation of the
data base system (“run time").

Domain semantic integrity errors, i.e, errors which involve the presence of entries in
some column of a relation which do not belong to the domain underlying that column,
occur frequently enough to justify a facility to handle them. Specific experience with a
particular data base application environment has shown that, for an experimental sample
of user-data ba:e interactions, a large percentage of errors discovered are domain semantic

integrity errors [McLeod 1975].

_ -

Semantic Integrity Specification 24

3.1 Describing Sets of Atomic Data Values

As discussed in chapter 2, several approaches to semantic integrity for relational data
bases have been recently presented. As noted in that chapter, all of these approaches
essentially deal with relation constraints, i.e., facilities are provided that allow the user to
state predicates (expressed in SEQUEL, QUEL, or Query by Example) which are to hold
on the data base.

The requirements of domain definition are not adequately supported in these systems.
They lack the capability to allow domains to be precisely defined as abstract sets of atomic
data values. All of these systetﬁs allow the data type of each column of a relation (not each
domain of the data base) to be defined, but the possible types are limited and very
representation-oriented. It should be possible, for example, to define domains like
SOCIAL_SECURITY_NUMBER and GEO_COORDINATE, rather than being limited to
such domains as INTEGER and CHARACTER_STRING. It is desirable to be able to
describe a conceptual class of data values. This abstract description is quite different from
a mere specification of the physical representation of the values in a domain; rather, the
semantic properties of the domain are pronounced. The work of Liskov and Zilles [Liskov
1974] concerning abstract data types is related to this notion, in that classes of abstract data
ob jects (values) are being described.

Boyce and Chamberlin [Boyce 1973a) have proposed attaching attributes to each
column of a relation ("column descriptors”). One of these attributes is the scope of a
column, which specifies the set of permissible values for entries in that column, eg., salary
is a positive integer less than 20000. Similarly, Zloof [Zloof 1975b] has indicated that
provisions should be made for facilitating the specification of entry "formats” ("their type,
size, etc,”).

A detailed scheme is needed to facilitate the precise description of domains, and to

Semantic Integrity Specification 25

integrate the domain definitions with the structure of the relational data base. Such a
scheme should (at least) satisfy the following criteria:
1. facilitate the precise and detailed description of sets of atomic data values, as
subsets of one of the natural domains: real number and character string (these
“natural” domains are the primitive domains which are used to construct other
domains),
2. provide for the proper abstraction of defining domains independent of their use as
underlying domains of columns in one or more relations,
3. force a domain definition to be a single module, so that domain semantic integrity
information is localized,
4. facilitate automatic domain definition checking and flexible types of action which
are to occur upon detection of a domain defintion violation,
5. support specifications that describe when and how domain values can be compared
(eg.. when two values being compared are from the same domain, and when the two
values are from different domains), and converted (eg., when it is desired to convert

the value in one domain into and “equivalent” value ia another domain).
eq

3.2. A Domain Definition Language
A high level, nonprocedural language can be used to express domain definitions. In
this language, each domain in a data base is described by a single domain definition

(domain definition module). The definition of a domain is "installed” (bound) at the time

the domain is created. Domain creation may be viewed as the compilation of the domain
definition module. Note that a domain definition specifies an underlying set of atomic
values. Domains are not dynamic as are unary relations; rather, they constitute fixed

abstract sets of data values. The definition of a domain may be modified, but this occurs

-

Semantic Integrity Specification 26

only when the abstraction has changed.

As noted by Hammer and McLeod [(Hammer 1975), three types of information are
required by the semantic integrity subsystem to deal with domain definitions:

1. a specification of the set of atomic data values constituting the domain,

2. information describing when the domain definition is to be checked,

3. a specification of the action that is to occur if the domain definition is not

satisfied.
Since we shall assume that domain definitions are checked whenever an entry in some
column of a relation is created or altered (eg., by an operation which inserts or updates a
row), the specification of when a domain definition is to be checked need not be explicit.
Thus all that need be explicitly expressed in the statement of a domain definition is the
precise description of the set of values comprising the domain, and the action that is to
occur if an entry in some column of a relation is created or modified so that it does not
belong to the underlying domain of that column.

Each domain definition therefore consists of the following four components,
represented as clauses in the domain definition language:

| Domain name

2. Description

The description clause allows the set of atomic data values constituting a domain to

be specified. The set of values constituting a domain is defined as some subset of

one of the two natural domains: real number and character string. Every domain is

thus defined and represented as a subset of the real numbers or of the set of

(varying length) character strings. This specification may be accomplished by:

a. enumerating the domain values,

b. decomposing the domain values by specifying the subunits of which they

Semantic Integrity Specification 27

are composed,

C. placing restrictions on the set of values by stating predicates that describe a

subset of one of the natural domains,
or a combination of the above. The special data value “null” (undefined) is present
in each domain. This is to allow missing data to be represented in the data base. (It
may sometimes be useful to distinguish an “"unknown" value from a value which
“does not make sense” [Florentin 1976), but this distinction is not made here.)
3. Ordering
The ordering clause is used to indicate how domain values are ordered with regard
to comparisons with other values in the same domain. This information is important
in identifying the semantic properties of a domain. One type of ordering
specification is that the values in a domain inherit the (total) ordering of the natural
domain of which the domain is a subset. Inherited ordering may also be by subunit
(e.g., the primary ordering is by one subunit, the secondary ordering by another
subunit, etc.). Inherited ordering is numeric for domains which are defined as
subsets of the real numbers and lexicographic for domains which are defined as
subsets of the character strings. Another type of ordering specification is that no
ordering exists, in which case only equality comparisons are meaningful. An external
procedure (i.e, a procedure in some programming language other than the domain
definition language) can also be used to define the ordering specifications for a
domain; this procedure is called whenever two values in the domain are to be
compared. Such a procedure accepts two domain values (which are to be compared)
and returns the value that is first in the ordering sequence.

4. Violation-action

The violation-action clause specifies the action that is to occur if an entry in some

——

Semantic Integrity Specification 28

column of a relation is created or changed in such a way that the entry does not
belong to the underlying domain of that column. Types of violation-action include:
a. the change may be refused and an error signaled,
b. a particular value, either constant or calculated from the erroneous value by
means of operations (such as substring, concatenate, etc) may be substituted as
the new value of the entry,
¢. a call may be made to an external procedure, the erroneous value being
passed as the argument to the procedure, and the procedure returning the new
value of the entry. '
System-generated or user-specified messages may be optionally returned to the user or
calling program. Note that in cases b and c, it may be necessary to recheck the
domain definition after the corrected value of the entry has been determined.
At this point it should be noted that the use of external procedures for ordering and
violation-action specification should be minimized, insofar as possible. The capability for

such use of external procedures is provided for generality and completeness.

3.21 Language Details and Examples

Figure 3-1 contains domain definitions for some of the example data base domains.
An indentation-oriented syntax is used in this figure. Examples of values in each domain
are listed (in parentheses) to the right of the corresponding domain definition.

Figure 3-2 contains a specification of the syntax of the domain definition language.
In figuie 3-2, syntactic classes are denoted by lower case strings, while keywords are in
upper case; actually, the language should include both upper and lower case keywords.
Optional parts are enclosed in "0", and alternatives are separated by "[".

In figure 3-1, the description clause of the NAME domain definition specifies that it

Semantic Integrity Specification 29

consists of (character) strings, each of which is composed of a string followed by a *, *,
followed by another string. In this description clause, data values are decomposed into
subunits; the first and third are variable subunits, while the second is constant. Subunits
may be labeled, so that they may be referenced elsewhere in the domain definition. As
stated above, external to a domain definition, the data values constituting a domain are
either atomic numbers or atomic strings. The rule is, if a description clause of a domain
contains only number subunits (variable or constant), then the values in that domain are
numbers, otherwise they are strings. Number and string subunits may be mixed, and if so,
number subunits are converted to string form to yield the string values constituting the
domain. For example, domain MONEY is defined to consist of strings of the form
"$25,000". Values in domain MONEY have two subunits, the first of which is the string
constant "$", and the second of which is a positive number. Values in domain MONEY
are thus represented as strings; the number subunit of any value in domain MONEY is
viewed as a number (and can be manipulated as such, eg., by “+") when the subunit alone is
considered, but it is viewed as its string "equivalent” with regard to the domain value as a
whole (and can be manipulated by string operations).

The description clause of the domain SEX indicates that it consists of two data
values: “"female™ and “male” (in addition to the ever-present “null”). This is an example of
description by enumeration.

For domain MONEY, the subunit labeled "value® must be greater than or equal to

zero, as specified by the subunit where restriction. A subunit where restriction contains a

predicate that is to be true for the subunit and involves only that subunit; that is, this
predicate is a restriction on the set of numbers or strings which values for this subunit may
have. It is thereby possible to express properties of number subunits involving comparators

(such as "=" and ">") and number constants. It is also possible to state that a number is an

Semantic Integrity Specification 30

exponential (exponential notation) or an integer (as for domain DATE). For string
subunits, a size (length) specification can be made, the set of characters permissible in a
string can be defined (as for domain ITEM), and a lexicographic ordering comparison
(such as "=" or ">") with constants can be stated.

A global where restriction permits expression of properties involving multiple

subunits, as well as those on domain values viewed as a unit. A global where restriction
contains a predicate that may involve a domain value, subunit values, operations, and
comparators. String operations can be employed to generate substrings, calculate lengths,
perform concatenations, etc. Number operations include the usual arithmetic operations
and "maximum” and "minimum”. For example, in the description of domain MONEY, the
global where restriction states that domain values (viewed as strings) must either have two
digits to the right of the decimal point or else have no decimal point. Here, “right(s, "’ «
1)” evaluates to the right substring of the domain value (which is referenced by “e"), starting
at the character after the occurrence of ".". (This form of the “right” operation takes two
arguments: a string whose right substring is to be calculated, and another string whose
index in the first string is calculated to deterinine at which character of the first string the
right substring is to begin.) The operation “present” yields “true” if the first string
specified contains an occurrence of each of the following strings, otherwise it yields “false”.
The global where restriction of domain ITEM illustrates the specification of the number of
times some contiguous group of subunits can repeat.

A where restriction may also contain a call of an external boolean procedure (as for
c¢omain ITEM). If this procedure call is in a global where restriction, the procedure is
invoked with the domain value in question as its argument; the procedure returns “true” if
the value is present in the domain, otherwise it returns “false™. If the procedure call is in a

subunit where restriction, the procedure is invoked with the subunit value in question as its

Semantic Integrity Specification 38|

argument; it returns “true” if the subunit value is legal, otherwise it returns "false”.

Boolean combinations of the above types of where restriction are allowed in both
subunit and global where restrictions, as are conditionals (as for domain DATE). In
addition, an “or” may be used to indicate that the domain contains values that come in more
than one form, i.e, that the domain consists of the union of two or more sets of values,
each of which is defined separately.

The second clause in a domain definition is the ordering clause. This may specify
that no ordering exists on values in the domain ("none®), which means that only equality
comparisons are allowed (as for domain SEX). An ordering specification of "atomic™ means
that values in the domain are ordered by the usuai numeric or lexicographic ordering,
viewing the domain values as atomic numbers or strings (as for domain QUAN). The
ordering clause may also contain an ordered list of labels (subunit names), indicating that
domain values are ordered according to the values of the specified subunits. The usual
numeric or lexicographic ordering on these subunits is used, and the subunits are taken in
sequence: primary ordering, secondary ordering, etc. (as for domains NAME, MONEY,
and DATE). Finally, an external procedure can be used to specify the ordering on the
values in a domain. This procedure is passed the two values being compared, and returns
the value that is first in the ordering sequence (as for domain ITEM).

The third clause in a domain definition is the violation-action clause. As discussed
above, it may specify that an error is to be signaled, indicating that the data base change
specified by a user is incorrect and should be rejected. A system-generated or user-specified
message may be optionally returned to the user or calling program. This is also true for the
other types of violation-action. If the violation-action is specified as “error”, then an error
is signaled and a system-generated message is returned (as for domains NAME and DATE)

Domain SEX has a violation-action clause that specifies error signaling with a user-

Semantic Integrity Specification 32

specified error message. If a system-generated message were desired the specific message
could be replaced by "SYSTEM-GENERATED". A system-generated message can be of
the form “the definition of domain SEX is violated”, or can bear more information if the
system is a bit smarter (eg., “the definition of domain SEX is violated, it consists of only
the two values 'female’ and 'male’™). The “substitute” violation-action allows a constant
value to be substituted as the new value of the entry being created or changed (as for
domain MONEY). A calculated value, obtained via string or number operations, can also
be substituted (as for domain ITEM). In the specification of this calculation, "" represents
the value that is being checked to determine if it is in the domain. The calculated value is
then checked to make sure that it is in fact a valid domain value; if not, then an error is
signaled (to avoid infinite recursion). The definition of domain QUAN offers an example

of an external procedure call violation-action.

3.3. Implementation Considerations

The domain definition language processor translates domain definitions into an

internal form used in semantic integrity checking. The semantic integrity subsystem has the
responsibi. 'y of determining what checking is to be done whenever some data base change
request is issued by a user. It must also assume the responsibility of performing this
necessary checking. Whenever a new entry is created in a column (eg. by an insert row
operation) or an existing entry in some row is changed (eg., by an update row operation),
the system must make sure that this new entry belongs to the underlying domain of the
column in which it occurs. The information in the description clause of the underlying
domain of the column is used for this purpose. If the domain description is violated, the
information in the violation-action clause is used. The ordering information is used when

comparing two values in the same domain, as discussed in chapter 4.

Semantic Integrity Specification 33

A domain definition may be used to obtain the information necessary to construct
several internal relations, which are used by the semantic integrity subsystem to facilitate

domain definition checking:

1. The domain definition relation contains a single tuple for each domain of the data
base; this relation has the following columns (with primary key domain name):
a. domain name,
b. description type, which is "simple” if the domain has one nonlabeled subunit
with no where restriction, otherwise “complex”,
c. global where restriction,
d. violation-action type, which is "error”, “substitute”, or "call®,
e. violation-action modifier, which for violation-action type “substitute” is the
value (constant or calculated) to be substituted, for “call” is the name of the
external procedure to be called, otherwise "null®,
f. error/warning message, which is either a constant (user-specified message),
"system-generated®, or “null”,
g ordering type, which is "atomic”, "none”, “subunit” (for subunit specified
ordering), or “call” (for external procedure call ordering),
h. ordering procedure name, which is the name of the external ordering
procedure if the ordering type is "call®, otherwise "null".

2. The subunit definition relation contains a tuple for each subunit of each domain;

this relation has the following columns (with primary key domain name, subunit
index):

a. domain name,

b. subunit index, which is the ordinal number of the subunit in the domain

definition,

Semantic Integrity Specification 34

c. subunit type, which is either “constant” or “variable®,

d. label, which for constant subunits is "null”,

e. variable subunit class, which is "number”, "string", or "oneof”, and "null” for
constant subunits,

f. subunit where restriction, "null® if none exists,

g- ordering index, which is the ordinal number of the subunit in the ordering
clause, and “null” if this subunit is not referenced in the ordering clause.

3. The oneof constant relation contains a tuple for each constant in a “oneof”

description of domain values or domain subunit values (for each domain in the data
base with such a “oneof” description); this relation has the following columns (with
all columns in the relation as primary key):
a. domain name,
b. subunit index,
c¢. oneof constant, which is a constant in the “"oneof” list for the subunit
identified by the subunit index (for the domain specified by the domain name).
Domain definitions may be utilized to automatically determine the appropriate
physical storage type to be used to represent values in a domain. For strings, a fixed length
character string representation can be used when possible, such as when domain values are
enumerated (via "oneof"), or when an upper bound is placed on the length of string values
in the domain. In other cases, varying length character strings can be used. For numbers,
it may be necessary in many cases to make a compromise for efficiency. Integers ("number
where integer”) may be represented by a fixed binary storage scheme (eg., single word
binary). but it must be clear that this is only an approximation to the domain definition. A
similar situation exists for real numbers: a float binary representation may be used for

storage.

R

Semantic Integrity Specification 35

3.4. Extensions

Important issues to be considered in future research on domain definition include:

I. It is possible to extend the domain definition language so that previously defined
domains may be used as subunits in the definition of a new domain. If this
hierarchic approach is used, care must be taken by the system to retain domain
definitions until they are no longer referenced in any other domain definition.

2. It may be useful to introduce domain operations. In this approach, operations are

defined for each domain, and manipulation of values in the domain is restricted to
the specified operations. This approach is similar to the notion of abstract data types
of Liskov and Zilles [Liskov 1974]. It may be argued that the approach taken in this
paper is still too representation-oriented. For example, values in the domain
MONEY may be strings or numbers, but this is irrelevant with respect to abstraction.
The important properties of the values constituting a domain may be best
characierized by specifying the operations that are defined on the values in the
domain. Of course, in this case a domain will no longer be defined as a subset of
one of the natural domains (string and real number), and the standardized set of
domain operations (such as ">", "a", "s", etc.) will probably no longer be appropriate.
3. It may be advantageous, in some cases, to defer the checking of domain definitions,
and not report violations at the time the data is actually entered into the system. For
example, in the case where a data base is being "bulk loaded” or updates are being
"batched”, it may be desirable to report all violations of domain definitions at a later
time, say to an interactive user or as part of a summary report.

4. The modifiability of domain definitions is a very important issue. It should be

possible for the definition of a domain to be changed as the corresponding

abstraction changes. If this is allowed, then it is necessary to verify that all entries in

Semantic Integrity Specification 36

columns having a given underlying domain satisfy the new definition of that
domain.

5. It is possible to call an external procedure to verif y that a value in question belongs
to a domain. An external procedure call may also be used in the ordering and
violation-action specifications. However, we have no guarantee that the external
procedure is correct. Some reliability is nonetheless guaranteed by the fact that this
external procedure must use the normal data base system interface. In addition, the
domain definition is again checked after the external procedure has terminated.

6. The problem of implementing the domain definition scheme and evaluating its
effectiveness and efficiency has yet to be f ully addressed.

7. It may be useful to consider the automatic generation of domain definitions by
attempting to generalize upon a few examples of domain values which are given by a
user. This is, of course, a part of the general problem of the detailed specification of

the user interface which supports the construction of domain definitions.

_—

Semantic Integrity Specification 37

4. RELATION STRUCTURE

Relation structure specification is the description of the fundamental structure of the
(base) relations of a data base. When a relation is created, at least the following must be
done:

I. The relation must be given a name, which is unique with respect to all names of

relations in the data base.

2. The number of columns in the relation must be specified.

8. Each column of the reiation must be assigned a unique name (unique with respect

to the names of the columns of the relation).

4. The name of the underlying domain of each column must be specified. A

definition for each domain thus referenced must exist at the time the relation is

created.

It is possible to include other types of information as a part of the fundamental
structure of a relation. For example, the primary key [Codd 1970] of the relation may be
identified. However, at the level of abstraction at which our discussion of semantic
integrity is focused, the identification of the primary key may be viewed as a type of
relation constraint (and expressed as such). Furthermore, there is no compelling “eason for
distinguishing the primary key from other candidate keys [Codd 1970). It is most logical for
a primary key specification to be viewed as a relation constraint, as is the case for other
types of functional dependencies.

Many higher level semantic models for data base design and abstraction (data
definition), e.g., [Smith 1976), consider certain types of relation constraints (such as
functional dependencies) to be special. Functional dependencies are one important type of

constraint, but there are other types which may be equally important (in some application

Semantic Integrity Specification 38

environment). We believe that it is essential to provide for a broad spectrum of relation
constraint types, and to integrate the formulation of these constraints with the process of
data base design and abstraction. In chapter 6, our approach to relation constraints is

further discussed.

4.1. Additional Column Information

In addition to the column name and the name of its underlying domain, it is useful
in practice to allow two additional attributes to be associated with each column:

1. a narrative description of the column, for documentation purposes,

2. an indicator specifying whether "null” (undefined) values may be present in the

column (thus allowing “null® values to be selectively prohibited from columns).

4.2. Comparability

The kinds of comparisons and manipulations of column entries that are allowed
relates to the semantic integrity requirements of a data base. The term comgafabilitx is
used herein to refer to the general problem of determining when and how two or more
column entries may be compared or btherwise manipulated by structured operations. There

are two basic types of comparisons: intradomain comparisons and interdomain

comparisons.

Intradomain comparisons are those in which two values from the same domain are
compared. In this case, the information in the ordering clause of the domain definition is
sufficient to determine how the comparison is to be made.

Interdomain comparisons are those in which two values from different domains are
compared. In this case, values are compared as atomic strings or numbers using a domain

conversion, as defined below.

N—

Semantic Integrity Specification 39

4.21. Domain Conversions

A data base has assoclated with it a set of domain conversions. Each domain

conversion is specified by means of a domain conversion module. Each such conversion is

a specification of how values in a given domain are converted into “equivalent” values in
another domain, and vice versa. Explicit specification of domain conversions is necessary
because values in different domains belong to different abstract sets, and converting a
value in one domain into an “equivalent” value in another requires knowledge of the
precise nature of the abstract sets corresponding to the two domains involved. For example,
both FEET and INCHES are filumbers, but they cannot be meaningfully added without the
use of an appropriate conversion.

Domain conversions are defined independent of the domains (and relations) of a
data base, in the sense that domain conversion modules have no access to the internal
details of a domain definition; domain conversions thus map atomic values in one domain
into atomic values in ancther. Domain conversion modules can be dynamically created,
deleted, and modified, with the restrictions that:

1. beth domains referenced-in a domain conversion module must exist at the time the

conversion is created,

2. if either of the domains referenced in the domain conversion is deleted, the

domain conversion is deleted.

For the purposes of this thesis, it is assumed that domain conversion modules are
written in some high level programming language. This language may be a specialized
one, similar to the domain definition language. For generality, it is permissible to allow this
language to invoke external procedures written in a high level general purpose
programming language.

For example, a conversion for domain DOLLARS and

-

Semantic Integrity Specification 40

THOUSANDS_OF_DOLLARS can be defined as:
domain conversion DOLLARS, THOUSANDS_OF_DOLLARS
DOLLARS = THOUSANDS_OF_DOLLARS « 1000
THOUSANDS_OF_DOLLARS = DOLLARS / 1000
Conversions may be unidirectional as well as bidirectional, and this is the reason for
the seemingly redundant specification in the above example. For more complex types of
conversions, external procedures may be used; for example, we may have:
domain conversion DATE, JULIAN_DATE
DATE = pl(JULIAN_DATE)
JULIAN_DATE = p2(DATE)
where pl and p2 are external procedures.
Structured operations may perform various types of domain comparability operations
on entries in a data base. The standardized set of such domain operations includes =",

~al, >, e, T, e, e, 0 T, TS, ", and string and user-defined operations. For
example, some structured operation may check to see if, for some tuple in relation R, the
entry in column A is larger than then entry in column B. (It is assumed tha both columns
A and B contain numbers.)

Whether or not values from different domains may be utilized together (compared or
otherwise manipulated) depends upon the nature of the domains and the particular type of
operation that is to be performed on the values in those domains. In order to establish a
first approximation to a set of comparability rules (for the standardized set of domain
operations), three types of comparability are distinguished:

1. equality-type, which is invoked when one of the following types of manipulations

occurs:

a. values are compared for equality ("=") or inequality ("~="),

b. numbers are added ("+") or subtracted ("-"),

c. sets of numbers are manipulated via set operations, such as "maximum” and

Semantic Integrity Specification 4l

“minimum®,

d. sets of values are manipulated by "union®, "intersection®, or "difference”,
2. ordering-type, which is invoked when values are compared via °<", "<=", ">", or
"~

8. mixed-type, which is invoked when values are manipulated via multiplication (%),

division ("/), exponentiation (*«"), or any string operation or user-defined operation.

Equality-type comparisons are always allowed if the two values being compared (or
manipulated) are from the same domain, i.e., if the values are from the same column or
from columns with the same ;mderlying domain. If the values are not from the same
domain, i, they are from distinct columns with different underlying domains, then they
may be compared if and only if a domain conversion exists between those domains. (All
domain conversions must be explicitly defined.) The domain conversion is used to convert
the value in one of the domains into an "equivalent™ value in the other domain, and the
resulting values are then compared. (Another type of conversion could be supported, by
assigning units to each column, and defining units conversions (McLeod 1976b).)

Ordering-type comparisons are allowed if two values are from the same underlying
domain and the ordering of that domain is not “none”. The ordering information in the
domain definition is used to determine how the values are to be compared. Orderlng-type
comparisons are also allowed if the two values are from different columns, these colhmns
have different underlying domains, and a domain conversion exists between those two
underlying domains. In this case, the values are compared by using the domain conversion,
as for equality-type comparisons. In any other case, ordering-type comparisons are not
allowed.

Mixed-type comparisons are always allowed. Values can always be manipulated by a

mixed-type operation (with no restrictions). Values that are numbers may be multiplied,

Semantic Integrity Specification 42

divided, and exponentiated with no limitations, except of course for the requirement that
the values be numbers. Although numbers may be added and subtracted only when they
have the same “units”, multiplication, division, and exponentiation can be performed
without any such restriction. It presumably makes sense to divide a value in domain FEET
by a value in domain POUNDS, but it is (normally) not sensible to add these two values.
For mixed-type comparisons, values being manipulated are treated as atomic and domain
conversions are not used. Note that if user-defined domain operations are allowed, they
may be placed in this category by default. More generally, it may be best to allow the user
to specify the comparability type (equality, ordering, or mixed) of each user-defined demain
operation.

If the user wishes to state an unusual type of query, such as asking for all employees
whose name is the same as the name of their department, the user may be allowed to “force”
the comparison, by explicitly overriding the restrictions. Entries in the two columns are
then compared using the default numeric or lexicographic ordering, treating the values as
atemic numbers or strings, respectively. The idea is to permit the system to be flexible and
not to allow comparability rules to get in the way when they should not. The best approach
may be to warn the user that an operation may be meaningless, but allow it to proceed if he
demands it. (The semantic integrity of the data base is not really in danger anyway).

Domain conversions are also useful when a structured operation retrieves an entry
from some column of a tuple in a relation and assigns it to be the new value of some other
entry (in a different column of some tuple in a relation). For example, suppose that the
date an itom was shipped by some company (the entry in column Date of relation ORDERS
in the example data base of figure 1-2) is to be copied into the Date column of another
relation, say BIG_ORDERS. (BIG_ORDERS records all orders which request over $1000
of merchandise.) The Date column in BIG_ORDERS has underlying domain

i

Semantic Integrity Specification 43

JULIAN_DATE (i.e, dates of the form "76.134"), while the Date column in ORDERS has
underlying domain DATE (lLe. dates of the form "1/20/1976"). Thus the domain conversion
from DATE to JULIAN_DATE can be used to effect the desired assignment.

The general rule for an assignment which takes the entry in a column (A) and
assigns it as the new value of an entry in another column (B) is as follows:

L If A and B have the same underlying domain, the assignment is performed with no

conversion.

2. If A and B have different underlying domains, then:

a. if a domain coriversion exists from A to B, the conversion is used to affect

the assignment,

b. if no such conversion exists, the assignment is not allowed.

Semantic Integrity Specification 44
5. STRUCTURED OPERATIONS
A very important aspect of data base semantic integrity is the set of operations a user

may employ to examine and manipulate the data base. It is possible tu describe a user's

view of a data base as consisting of data structures plus operations. Alternatively, one may

conceptually characterize the user’s abstract view completely by a set of abstract operations,
as 1s done in abstract data types [Liskov 1974]. These operations provide a behavioral
specification of the semantics of the data base.

For these reasons, the COI"ICEpt of a structured operation is included in our approach
to semantic integrity. The principal purpose of a structured operation is to embody a
conceptual data base transaction: an action which is meaningful and permissible in the
context of the application environment. For the example data base of figure 1-2, structured
operations may include: hire_employee, fire_employee, raise_salary, place_order,

create_new_department, etc.

51 Semantic Integrity Information in Structured Operations

One approach to preserving the semantic integrity of a data base is impose the
restriction that the operations that may be performed on a data base are only those in some
given set. This set of operations should be defined so that it contains only meaningful
actions. However, the approach of allow;ng only semantically meaningful operations has
several problems:

1. Operations which are not semantically meaningful in the context of the application

cnvironment must be allowed, eg., to permit errors to be corrected.

2. The set of operations that are to be allowed may depend upon some characteristics

of the data base state. For example, the set of operations Ol may be legal if the data

Semantic Integrity Specification 45

base is in state SI, but if the data base is in state S2, the set of legal operations may
be O2.

3. The uses of a data base are not fixed, but rather evolve with time. Operations
change and new operations need to be created. If the semantic integrity information
is embedded in these operations, a scan of all data base operations may be necessary
to make such modifications.

4. Often data is maintained in a data base before uses for it are discovered. Thus it
is difficult to characterite the data via a behavioral semantics approach; in some
sense the semantics of the data is known, but the exact nature of the set of operations

on that data is not.

5.2. The Definition of Structured Operations

Despite the problems mentioned above, it is important to be able to define a set of
abstract operations on a data base. To this end, we allow structured operations to be
defined. Structured operations are constructed using:

1. the primitive data base operations (eg., see figure 1-8),

2. statements in a very high level data selection (query) and data modification

language, such as SEQUEL (or QUEL or Query by Example).
Structured operations are ordered lists of: primitive operations, statements in a data
selection and modification language, and previously defined structured operations.
Allowing previously defined structured operations within new operations enables a
hierarchic organization.

For the example data base of figure 1-2, a structured operation to raise an employee's
salary could be defined:

Semantic Integrity Specification 46

operation raise_salary (employee_name, new_salary)
update EMP
where Name = employee_name
Salary = new_salary
This structured operation consists of a single SEQUEL-like statement, which updates the
Salary column of the tuple in EMP with a value in the Name column equal to the first
parameter of the operation (presumably there is one such tuple). The new Salary value is
specified as the second parameter.
Consider an operation to place an order (again in the context of the example data
base of figure 1-2):
operation place_order (customer_jd, item_id)
insert_tuple (ORDERS)
Item = item_id
Customer = customer_id
Date_shipped = date()
Order_number = generate_order_number()
In this example operation, a tuple consisting of all null values is first created, and then its
columns are given values. Note that two external procedures are called, one to return the
current date and the other to generate a unique order number. The types of names
(identifiers) used in the definition of the operation include those of parameters, a relation,
columns, and external procedures.
The operation check_credit_and_order could be defined as:
operation check _credit_and_order (customer_id, item_id)
if check_credit (customer_id)
then place_order (customer, item)
else error
The operations check_credit and place_order used in this definition are assumed to have
been previously defined. Note that this operation contains a conditional expression: a
useful construct we may include in the structured operation language. This of course
motivates the need for other types of constructs, eg., for iteration. We may for instance

want to have an operation that takes an arbitrary number of items as parameters and

Semantic Integrity Specification 47

places an order for each.

Thus, in general, it might be desirable to have a structured operation language which
has many of the capabilities of a general purpose programming language. We could
consequently allow structured operations to be written in some high level general purpose
programming language. The details of this are not persued here.

One important point to note in passing, is that structured operations are important
with regard to the specification of when relation constraint assertions are to hold (be

checked). This is further discussed in chapter 6.

Semantic Integrity Specification 48

6. RELATION CONSTRAINTS

The fourth aspect of semantic integrity in a relational data base system concerns
relation constraints. In this chapter, the requirements for relation constraints are detailed,
and an approach to their specification is presented.

Codd [Codd 197Ib, Codd 197ic] has identified the “third normal form™ of relations
[Codd 1974a): “A relation R is in third normal form if it is in first normal form and, for
every attribute collection C of R, if any attribute not in C is functionally dependent on C,
then all attributes in R are functionally dependent on C." Third normal form facilitates the
straightforward expression of some types of relation constraints, namely functional
dependencies. But the class of data properties describable via functional dependencies is
iimited.

Boyce and Chamberlin [Boyce 1973a] observed that a high level language, such as
SEQUEL [Chamberlin 1974b, Chamberlin 1975}, may be used as a vehicle for the expression
of data properties other than functional dependencies. SEQUEL expressions were shown
to be useful in expressing such types of properties as "uniqueness of key", "functional
dependency”, "validity check”, and “inter-relational constraints".

The integrity assertions of SEQUEL (Boyce 1973a, Eswaran 1975], INGRES
[S:onebrakerAIQ'Hcl. and Query by Example (Zloof 1975b] are used to express varied types
of data properties. However, these facilities basically provide for the unstructured
spec:fication of arbitrary predicates. Although the assertion expression capabilities of
SEQUFEL and INGRES are “complete”, they do not allow for the analysis of the types of
poscible assertions.

Furthermore, the assertions of SEQUEL and INGRES are rather inflexible with

rega:d to when they are to hold, and what action is to occur if they do not. In SEQUEL

Semantic Integrity Specification 49

and INGRES, if a data base change is specified which would cause some assertion to be
violated, the data base change is immediately rejected and an error signaled (Eswaran 1975),
or the data base change is modified such that the assertion will be satisfied [Stonebraker

1975¢).

In response to this latter ob jection, a relation constraint is herein defined as an

abstract statement, having three components:
1. the assertion (a property), which is a predicate on the state of the data base or on
transitions between data base states,

2. the validity requiremerit, which specifies the occasion(s) at which the assertion is to

hold,

3. the violation-action, which is the action that is to occur if the assertion is not

satisfied at a time when it should be.

In response to the former ob jection, a detailed classification of relation constraints is
presented below. The emphasis is placed on providing a structured framework, which may
be used to construct a high level, abstraction-based, well-directed, and disciplined relation
constraint specification methodology. In so doing, a principal goal is to impose some
structure on the problem of semantic errors in data bases. In this approac .t is important

to keep “an eye toward implementation”, although no specific implementation considerations

are included in this thesis.

6.1. Whither Assertion Structure?

We subscribe to the view that the assertion component of a data base relation
constraint should not be viewed as an arbitrary predicate of the first-order predicate
calculus, ranging over tuples of the relations of a data base. Rather, every assertion should

have a well-defined, uniform structure. There are several advantages to taking a

Semantic Integrity Specification 50

disciplined approach to assertion expression:
. It provides the data base administrator (or other authority responsible for
expressing the constraints) with a conceptual framework in terms of which to
organize his thinking and structure the formulation of assertion specifications.
Reducing abstract, problem-oriented limitations on configurations of the application
environment to concrete restrictions on values in the data base is essentially a
programming problem. By providing the “"programmer” with a theoretical and
general framework for his problem, it is possible to significantly ease his task.
2. The issues of constraint specification which are ancillary to assertion expression,
namely the validity requirement and violation-action, cannot be satisfactorily
addressed in the absence of the kind of structure proposed herein. The degree to
which a semantic integrity subsystem can respond intelligently® to a constraint
violation depends upon how well the formulation of the constraint captures the intent
of its expressor.
3. A useful conceptual framework for assertions will provide some measure of the
complexity of individual assertions, providing their expressor with a guide to the cost
of their implementation. Indeed, the structure of an assertion can be used by an
implementation facility as a guide to the strategy for the implementation of its
checking.
It is important to note that insuring that there is a single, unique specification of a
given conceptual constraint is not a major ob jective here. Rather, the emphasis is placed
on encouraging a “reasonable” formulation, one which accurately models the application

environment abstraction and which Is useable by an implementation facility.

Semantic Integrity Specification 5]

6.2. Relation Constraint Assertions

The assertion component of a relation constraint is a logical predicate on the state of
the data base or transitions between data base states. It expresses some semantic property of
the data base.

Each assertion is either a simple assertion or a combination of simple assertions (a

derived assertion). Simple assertions may be combined using boolean operators and other

connectors (such as "if then else”). The remainder of this section deals with simple
assertions; the generalization to derived assertions is more-or-less straightforward. When

no ambiguity is possible, "assertion" will be used in place of “simple assertion".

6.2.1. Simple Assertions

Every (simple) assertion may be viewed as delimiting certain values of the data base
in terms of certain others. That is, an assertion does not merely express some relationship
among different values in the data base. Rather, it singles out certain values, and identifies

them as being the constrained data of the predicate. The predicate delimits the legal values

of the constrained data in terms of the constraining data. Thus, every assertion constrains

some data with respect to some other; the two are not being bilaterally restricted.
As a consequence, there are two distinct steps in the process of stating an assertion:
l. The data that is being constrained is described. This description is accomplished
in two sequential substeps, in which the following are identified:
a. the set of all data objects in the data base that are being restricted (the

constrained collection),

b. the precise aspect of each of these data objects that is being delimited (the

restricted expression).

Part a of step | utilizes data selection predicates. The predicate expression

Semantic Integrity Specification 52

capabilities of any data selection- or query language may be adapted to accomplish
this task [Chamberlin 1974b, Chamberlin 1975, Codd 197la, Codd 1971d, Hall 1975,
McLeod 1976¢c, Held 1975b, Zloof 1974, Zloof 1975a). For example, consider the
assertion that the salary of each employee in the sales department is less than the
salary of his manager. Here, the constrained collection consists of those tuples in
relation EMP which have "sales” in the Department column. The restricted
expression is the Salary entry of each such tuple. The necessity of first identifying
the constrained collection and then the restricted expression is occasioned by more
rich and complex assertions, as discussed below.

2. The actual predicate of the assertion is stated, which asserts a restriction on the
value of the restricted expression for each member of the constrained collection. The

predicates used therein are called assertion predicates. In general, this restriction

depends on other data in the data base. The other data which participates in the

assertion is called the constraining data, and the expression which computes the

precise delimiting value is called the restricting expression. For example, for the

assertion above, the constraining data (for each tuple) is the tuple in relation EMP

whose Name entry equals the Manager entry of the constrained tuple; the restricting

expression is the Salary entry of the constraining tuple.

Figure 6-1 contains some examples of simple assertions. For each assertion, the
constrained collection and assertion predicate are identified. Note that the "language” used
to specify the assertion predicates is intenced only to be illustrative, but is more-or-less
consistent with the "level” of (and directly translatable into) relationai data selection

languages such as SEQUEL, QUEL, and Query by Example.

Semantic Integrity Specification 53

6.2.2. Identification of the Constrained Collection

As introduced above, the first step in the specification of an assertion is the
identification of the constrained collection: that which is conceptually being delimited by
the assertion. In general, the constrained collection is a collection of data ob jects, and the
assertion applies to each of them. In this sense, every assertion is in effect an assertion
schema, which is instantiated for each element of the constrained collection.

An assertion may either express a property of an individual tuple (a tuple assertion),
or a property of a set of tuples considered as a whole (a set assertion). In figure 6-1,
examples 1-4 are tuple assertions, while examples 5-8 are set assertions.

The constrained collection for a tuple assertion is a collection of tuples, to each of
which the assertion applies. The constrained collection for a set assertion, similarly, is a
collection of sets of tuples. The set assertion applies to each tuple set in the constrained
collection. An important (and frequent) special case of a set assertion is that in which the
constrained collection consists of a single set. Note the difference between this special case
and a tuple assertion: in the former, the assertion applies to the tuple set as a whole, while
in the latter it applies to each individual member of it. Thus, in example 1, the constrained
collection has many elements, each of which is a tuple of the EMP relation; in example 5,
the constrained collection consists of a single element, which is the entire EMP relation; in
example 6, the constrained collection has severa* elements, each of which is a subset of the
EMP relation.

Both for tuple and set assertions, defining the constrained collection begins with

identifying some set of tuples (called the underlying relation of the assertion). This tuple

set can then be manipulated by means of data selection predicates, to ultimately define the
constrained collection.

The underlying relation of an assertion need not be a relation defined as part of the

-

Semantic Integrity Specification 5¢

data base. In general, it may be any of the following:

1. a base relation (a relation explicitly present in the set of data base relations),

2. the cross product of two or more base relations,

3. the union of two or more base relations,

4. the cross product of two or more relations of types 1 and 3, at least one of which is

not a base relation,

5. any relation which can be defined in terms of base relations, not included in the

above (these relations rﬁay be constructed using the various selection criteria and

retrieval operators of a data selection language).
For example, EMP is a relation of type I, EMP cross BUDGET is of type 2. An example of
a relation of type 3 would te the union of relations CURRENT_EMP and OLD_EMP
(where both have the same structure as EMP). An example of a relation of type 5 is
SAL_TOTAL (Department, Sum_salaries), where Sum_salaries is the sum of the salaries of
employees working for the associated department.

The foregoing classification of underlying relations is in order of increasing
complexity, and exhibits the different kinds of relations to which assertions may apply. It
is important to observe that an assertion need not apply to a relation explicitly present in
the data base, but may hold for a derived relation.

Once the underlying relation is defined, the precise specification of the constrained
collection can be accomplished. In the case of tuple assertions, the constrained collection is
obtained from the underlying relation by means of data selection predicates. The
complexity of the selection process can be described in terms of the operators of the data
selection language. Selection of the constrained collection is a problem in the specification
of a relation.

However, in the case of set assertions, there is a need to specify a collection of tuple

T

Semantic Integrity Specification 55

sets; each such set is a member of the constrained collection. For illustration, consider the
following tentative taxonomy of the first stage of the specification process for a constrained
collecticn which consists of tuple sets:

l. The constrained collection may contain a single set of tuples, selected from the

underlying relation. (simple set)

2. A set of tuples may be selected from the underlying relation, and then divided into

groups, eg., by common value in one or more columns or by intervals of column

values (such as 21 < Age < 30, 31 < Age < 40, etc). Certain of these groups may then

be chosen based on pro'perties they possess. The constrained collection is thus a

collection of tuple sets, namely the groups that were so chosen. The assertion then

applies to each tuple set in the constrained collection. (grouped set)

3. A set of tuples may be selected from the underlying relation, and those subsets of it

which satisfy a specified property are chosen. An example of such a property might

be that the number of tuples in the subset equals three. These chosen subsets
comprise the constrained collection, and the assertion is applied to each of them.

(property-defined set)

There is a noticeable degree of flexibility in the f oreg;sing framework for identifying
the constrained collection, in that it does not impose a rigid specification methodology on
the expressor of assertions. The criterion of completeness would not demand all the options
for the underlying relation allowed above; it is clear that any assertion can be satisfactorily
specified by letting the underlying relation be the cross product of all the base relations and
performing various operations thereon to compute the constrained collection. However, in
many instances such an "all-at-once” approach would be cumbersome and unnatural. It
might be more convenient to follow a "top-down", step-by-step approach and define a

sequence of derived relations, the last of which is the underlying relation. This can

Semantic Integrity Specification 56

facilitate the straightforward expression of the assertion.

Consider the following assertion: the sum of salaries of employees of each
department is less than the budget of that department. An all-at-once approach to
expressing this assertion would proceed to identify the constrained collection as the set of
tuples in EMP, grouped by common Depariment (grouped set). The restricted expression
would be the sum of the Salaries (for each group). The assertion predicate is then
“sum(Salary) <« BUDGET.Salary_budget where BUDGET.Department =
common_value_of(Department) (in the constrained tuple set)”. Thus the constraining data
1s the tuple in BUDGET havihg the Department column entry equal to the common value
of the entries in the Department column for the constrained tuple set, and the restricting
expression is the Salary_budget column entry of the constraining tuple.

A top-down, step-by-scep approach to the expression of the above assertion may
proceed by noting that the assertion could be expressed as a tuple assertion, if there existed
a relation of the form DEPARTMENTS (Department, Sum_of __emp_salaries,
Salary_budget). If such a relation existed, the constrained collection would be each tuple in
relation DEPARTMENTS. The restricted expression would be the column entry
Sum_of __emp_salaries. The assertion predicate would be "Sum_of_emp_salaries <
Salary_budget”. Here the restricting expression is the column entry Salary_budget in the
constrained tuple, and the constraining data is the constrained tuple itself.

However, the relation DEPARTMENTS does not exist. Consequently, it is necessary
to specify how it is to be derived from existing base relations. The underlying relation of
ihe constrained collection is thus a derived relation, e, the relation DEPARTMENTS. A
data selection language would be used to construct this derived relation; for example, the

specification could be in a SEQUEL-like language:

Semantic Integrity Specification 57

DEPARTMENTS (Department, Sum_of _emp_salaries, Salary_budget) =
select EMP.Department, sum(EMP.Salary), BUDGET Salary_budget
from EMP, BUDGET
where EMP.Department = BUDGET.Department
group by EMP.Department
6.2.3. Tuple Assertions
It is now appropriate to examine more closely the structure of tuple assertions. In this
case, the constrained collection is a collection of tuples, obtained from the underlying

relation by the application of data selection predicates. The assertion predicate then applies

to each individual tuple in the constrained collection. Tuple predicates are used to specify

tuple assertions. The restricted expression defines that aspect of each constrained tuple that
is being delimited. In the simplest case, the restricted expression is some column name of
the underlying relation. More generally, it may be an expression: an appropriate
combination of column names, system-provided operators, and user-defined operators.

It may be possible to formulate a given conceptual assertion in different ways, with
different restricted expressions. For example, though the tuple assertions "Credit_line -
Debt < 50000” and "Credit_line < Debt + 50000" are logically equivalent, in the former case
‘he restricted expression is "Credit_line - Debt”, while in the latter case it is just
"Credit_line". This flexibility enables the assertion expressor to precisely identify which
dara values are to be regarded as dominant, and which as subordinate. In the first case, it
is a combination of the entries Credit_line and Debt that is being delimited, while in the
Irrter case jt is simply the Credit_line entry. This distinction contributes to the abstraction
power of assertion expression, and has implications for the implementation of constraints
and for the actions that are to be taken upon the detection of an assertion violation.

The value which delimits the restricted expression is the restricting expression, which
is computed from some data values which may reside anywhere in the data base. In

particular, these data values (the constraining data) may be outside the constrained tuple.

Semantic Integrity Specification 58

Tuple predicates may be classified on the basis of the relationship between the
constrained collection and the constraining data:

1. A tuple predicate is local (L) if the constraining data is present in the constrained

tuple. That is, for a local tuple predicate, all data referenced in the predicate is

within the constrained tuple itself.

2. A tuple predicate is nonlocal independent (NI) if the constraining data is data
selected from elsewhere in the data base, but whose selection does not depend on any
data in the constrained tuple.

3. A tuple predicate is nonlocal dependent (ND) if the selection of the constraining

data does depend on data in the constrained tuple.

In figure 6-1, examples | and 4 involve L-type tuple predicates, example 2 is an Nl-type
tuple predicate, and example 3 is an ND-type tuple predicate.

Thas classification is in order of increasing complexity. For L-type tuple predicates,
one has only to look at the constrained tuple to determine the restricting expression; the
constraining data is present in the constrained tuple itself. For type-NI tuple predicates,
this is no longer the case. The restricting expression is now computed from data arbitrarily
located in the data base, not confined to the constrained tuple. However, the data from
which the restricting expression is computed is the same for each tuple in the constrained
collection. Thus the restricting expression admits of a one-time computation, with the result
bein; used for each constrained tuple. For type-ND tuple predicates, the computation of
the re tricting expression depends on data in the constrined tuple. It is therefore necessary
to recompute the restricting expression for each individual constrained tuple.

There are two dimensions by which we classify local tuple predicates. The first
dimension measures the complexity of the restricting expression, and has three levels:

1. The restricted expression is compared via a scalar comparator to a constant, a single

Semantic Integrity Specification 59

column entry from the constrained tuple, or an expression involving several column

entries from the constrained tuple. (types 1-3)

2. The restricted expression is compared via a set comparator to a set of constants, a

set of column entries from the constrained tuple, a set of single-valued expressions

computed from entries from the constrained tuple, or some expression which yields a

set of values and depends on entries in the constrained tuple. (types 4-7)

3. The restricted expression is compared via a set comparator to a set of constant

tuples, a set of tuples involving entries from the constrained tuple, a set of tuples

composed of single-valued expressions computed from entries from the constrained

tuple, or some expression which ylelds a set of tuples and depends on entries in the

constrained tuple. (types 8-11)

The second dimension reflects the complexity of the restricted expression, and also
has three levels:

a. For types I-7, the restricted expression is a column entry in the constrained tuple.

For types 8-11, it is a subtuple of the constrained tuple.

b. The restricted expression is a single-valued expression. For types 1-7, the restricted

expression is computed from column entries in the constrained tuple, and yields a

scalar value. For types 8-11, it yields a tuple composed of such column entry

expressions.

¢. The restricted expression is a set-valued expression. For types 4-7, it yields a set of

scalars. For types 8-11, it yields a set of tuples. (This level does not apply to types 1-3.)

Figure 6-2 illustrates this classification for local tuple predicates of types la-lla.
Consider the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string).

Some examples of local tuple predicates may be classified, as follows:

Semantic Integrity Specification 60

1. A <15(la),

2. A < B (2),

3. A < B/C (3a),

4. Aisin {"x", "y", "7} (4a),

5. Aisin {"x", E, F} (6a)

(This means that, for each constrained tuple, the entry in column A is in the set

containing the constant "x" and the entries in columns Eand F),

6. (D, E) is in {("x", "y"), ("z", F)} (10a)

(This means that, for each constrained tuple, the subtuple consisting of the entries

from columns D and E equals either the tuple (*x"."y"), or a tuple whose first

component is “z" and whose second component is the F entry of the constrained

tuple.),

7.A+B<C(2D)

8.A+Bisin {C+1C+2C+3}(6b)

9. {D, E} intersect {"w", "x"} contains {"y", "2"} (4¢)

(This means that the intersection of the sets consisting of the entries in columns D

and E and the constants "w” and "x", 1s a superset of the set containing the constants

“y" and "1").

As for local tuple predicates, nonlocal tuple predicates may be classified on two
dimensions. The first dimension again consists of three levels:

I The restricted expression is compared via a scalar comparator to a a single-valued

expression, which yields a scalar value (and which is computed from data elsewhere

in the data base). (type 1)

2. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of scalars. (type 2)

Semantic Integrity Specification 6l

3. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of tuples. (type 3)

Again, the second dimension consists of three levels:

a. For types 1-2, the restricted expression is a column entry. For type 3, it is a tuple

of entries which constitutes a subtuple of the constrained tuple.

b. The restricted expression is a single-valued expression. For types 1-2, this

expression is computed from entries in the constrained tuple, and yields a scalar. For

type 3, it yields a tuple composed of such column entry expressions.

¢. The restricted expression is a set-valued expression. For type 2, it yields a set of

scalars. For type 3, it yields a set of tuples. (This level does not apply to type 1.)

Figure 6-3 illustrates this classification for nonlocal tuple predicates of types la-3a.
Note that the computation of the restricting expression (scalarval or setval) is independent
of the constrained tuple for NI-type tuple predicates, but dependent for ND-type predicates.
The data selection language must now serve the added role of identifying the constraining
data. For this reason, the classification is coarser for nonlocal tuple predicates than for

local tuple predicates.

6.2.4. Set Assertions

For set assertions, the constrained collectjon is a collection of tuple sets, obtained from
the underlying relation, as discussed in section 6.22. The assertion predicate then applies to
each tuple set in the constrained collection. Set predicates are used to specify set assertions.
The restricted expression is that aspect of each constrained tuple set that is being delimited.
In the simplest case, the restricted expression is the set of entries in some column of the
underlying relation (e.g., the set of Salary entries in EMP). More generally, it may be an

expression: an appropriate combination of column names, system-provided operators, and

Semantic Integrity Specification 62

user-defined operators. These operators include aggregate arithmetic operators which are
applied to sets of values.

As for tuple assertions, the restricting expression is the value that delimits the
restricted expression. The constraining data may be, in general, data anywhere in the data
base. Again, as for tuple assertions, it may be possible to express a given conceptual set
assertion in several ways.

Set predicates may be classified on the basis of the relationship between the
constrained collection and the constraining data:

l. A set predicate is local (L) if the constraining data is present in the constrained

tuple set. That is, the restricting expression may be computed solely from the

constrained tuple set.

2. A set predicate is nonlocal independent (NI) if the constraining data is data

selected from elsewhere in the data base, but where this selection does not depend

upon the constrained tuple set.

3 A set predicate is nonlocal dependent (ND) if the selection of the constraining data

does depend upon the constrained tuple set.

In figure 6-1, examples 6 and 8 are L-type set predicates, and examples 5 and 7 are Ni-type
set predicates.

As for tuple predicates, there are two dimensions on which local set predicates may be
classified. One dimension reflects the complexity of the restricting expression, and the
other reflects the complexity of the restricted expression. The first dimension has four
levels:

I. The restricted expression is compared via a scalar comparator to a constant, an

aggregate function of the entries in some column of the constrained tuple set, or an

expression involving several such aggregates. (types 1-3)

Semantic Integrity Specification 63

2. As in |, except that the aggregate functions in the constraining expression are not
computed for a set of scalars, but for a set of tuples; namely, the collection of
subtuples obtained by projecting the constrained tuple set onto two or more columns.
(types 4-6)

3. The restricted expression is compared via a set comparator to a set of constants, the
set of entries in some column of the constrained tuple set, or an expression involving
several such sets. (types 7-9)

4. This is analogous to 3 in the same way that 2 is analogous to 1. That is, the
restricting expression does not deal with scalars, but with sets of subtuples of the
constrained tuple set. (types 10-12)

The second dimension consists of two levels:

a. For types 1-6, the restricted expression is an aggregate function. For types 7-12, it
is an instantiation of the function "set”, which generates the set of values in some
column or the set of subtuples for some group of columns, taken over the constrained
tuple set.

b. For types 1-6, the restricted expression is a single-valued expression computed
from two or more of the aggregate functions described above. For types 7-12, it is a
set-valued expression, computed from two or more instantiations of “set”, as described
above.

A special type of local set predicates, the column relationship predicates, are not

included in the above scheme. Column relationship predicates are used to express
properties such as one-to-one correspondences and functional dependencies. To state a
rolumn relationship predicate, two groups of column names from the constrained tuple set
are specified. The relationship between these two groups of columns is then stated. For

*xample, one may state that for the relation R (A, B, C, D, E, F), there is a one-to-one

Semantic Integrity Specification 64

correspondence between the column A and the column group (B, C). This means that there
is a one-to-one relationship between the entry in column A and the subtuple formed from
the entries in columns B and C. Note that column relationship predicates are always local.

Figure 6-4 illustrates this classification for local set predicates, types la-16a. For
example, for the relation R (A, B, C, D, E, F) (where columns A, B, and C have underlying
domain real number and columns D, E, and F have underlying domain character string),
various local set predicates may be classified, as follows:

1. avg(A) < 15 (la),

2. avg(A) < sum(B) (2a), '

3. count(D, E) < 50 (4a)

(This means that the number of tuples in the relation formed by projecting the

constrained tuple set or columns D and E is less than 50.),

4. set(D) contains {"x", “y", "2} (7a),

5. set(D) properly contains set(E) union {y", "z"} (%a),

6. set(D, E) is in {("w", "x"), ("y", "2")} (10a)

(This means that the set of tuples obtained by projecting on columns D and E is a

subset of the set of constant tuples containing ("w", "x") and (7y", "27),

7. D one-to-one (E, F) (14a),

8. set (D) union set (E) is in set (F) (8b).

Nonlocal set predicates may be similarly classified. The first dimension has three
levels:

1. The restricted expression is compared via a scalar comparator to a single-valued

expression, which yields a scalar value (and which is computed from some data in the

data base) (types 1-2).

2. The restricted expression is compared via a set comparator to a set-valued

e

Semantic Integrity Specification 65

expression, which yields a set of scalars. (type 3)

3. The restricted expression is compared via a set comparator to a set-valued

expression, which yields a set of tuples. (type 4)

The second dimension consists of two levels:

a. For types 1-2, the restricted expression is an aggregate function. For types 3-4, it is

an instantiation of the function "set”, which generates the set of values in some

column or the set of subtuples for some group of columns, taken over the constrained

tuple set.

b. For types 1-2, the re;tricted expression is a single-valued expression computed

from two or more of the aggregate functions described above. For types 3-4, it is a

set-valued expression, computed from two or more instantiations of “set”, as described

above.

Figure 6-5 illustrates this two dimensional classification for types la-4a. Note that the
computation of the restricting expression (scalarval ¢i setval) is independent of the

constrained tuple set for NI-type set predicates, but dependent for ND-type predicates.

6.2.5. Scope of Assertions

It was stated in section 6.2.2 that each assertion is actually an assertion schema: an
assertion is instantiated for and applies to each element of the constrained collection. But
there is another sense in which an assertion may be viewed as a schema. This is by
allowing described rather than explicit references to relation and column names within an
assertion

It may be desirable to state a "second order” assertion, e.g., each column in some
relation of the data base which has underlying domain NAME must be a subset of the

Name column in relation EMP. This may be handled by allowing column names (and

Semantic Integrity Specification 66

relation names) to be variables which range over the set of all columns or relations in the
data base (or some specified subset thereof). This is basically a universal quantification of
second order.

Without proposing a specific detailed solution to this problem of explicit scope vs.

described scope, we may observe that such a solution must facilitate a second order

quantification, on a level above the constrained collection. Consider the assertion that, for
each column in the data base named Cl, every pair of entries in this column sums to less
than 100. Here the constrained collection is a set of pairs of tuples. The property must hold
for each element of the constrained collection. Furthermore, the assertion actually applies to
each element in a set of constrained collections, viz., one such constrained collection for each
column (in the data base) which is named Cl.

It has been stated that the scope of a relation constraint assertion can either be
explicit (apply to relations and columns which are constants) or described (apply to relations
and columns which are variables whose ranges are described). It is certainly valid to
question the desirability and practicality of assertions with described scope, and we shall not
take a position on this matter here. Rather, for the purposes of the remainder of this
thesis, it is sufficient to assume that we are dealing with assertions having explicit scope,
although we believe that the extension to assertions having described scope is

straightforward.

6.3. Relation Constraint Validity Requirement

Another component of a relation constraint is the validity requirement(s): the
occasion(s) at which the assetion component of the constraint must hold.

One possibility is that an assertion must hold at all times, and consequently must be

checked after any data base change that may cause its violation. Such assertions must

Semantic Integrity Specification 67

theoretically be checked (verified) after every primitive data base change (such as update,
insert, or delete tuple). Assertions actually need to be checked only if some value(s) are
changed which may cause the assertion to be violated. Some success has been achieved in
automatically determining when an assertion actually needs verification [Eswaran 1975,
Stonebraker 1975¢).

In some cases, it is necessary to specify than an assertion need not hold during some
complex data base transaction(s), because it may not be meaningful to verify the assertion
until after the transaction(s) are completed. Such assertions are checked only at the end of
these transactions.

Suppose, for example, that there is an assertion for the example data base of figure 1
which states that exactly two employees in the sales department have a salary of more than
£15,000. Assume that at some time the assertion holds, as employees "Smith™ and " Jones”
both have salary $20,000 and work in the sales department. It is now desired to transfer
employee "Smith” out of the sales department, replacing him with employee "Davis® (with
salary 830,000). If the primitive operations update row, irsert row, and delete row are the
only operations available and the assertion is checked after each primitive operation, the
desired change cannot be legally accomplished. Thus the verification of this assertion must
be deferred until the entire transaction (which consists of two primitive operations) is
completed.

Consequently, it can be semantically necessary and/or desirable for the constraint
expressor to specify precisely when an assertion is to be checked. For reasons of efficiency,
it is also important to have the ability to specify that an assertion need only be checked at
certain limited times, because verifying it af:er every data base change that could cause its
violation might be catastrophically expensive.

Accordingly, the validity requirement of a relation constraint should be expressed in

Semantic Integrity Specification 68

terms of structured operations. For example, the validity requirement of some assertions
might be that the assertion is to be checked after operation raise-salary. Each relation
constraint validity requirement should consist of a list of structured operations after which
the assertion component is to be checked. The special validity requirement "always” has the
function of assuring that the assertion will be checked after any data base change that may
cause its violation.

It may be necessary to check one or more relation constraint assertions after each data
base change is attempted (by a structured operation). The simplest type of data base
change is a primitive update, insert, or delete tuple operation. Slightly more complex is the
set-oriented tuple update, insert, or delete which may be expressed in the high level
nonprocedural data selection and modification language (eg., SEQUEL). Since structured
operations are hierarchically organized, it may be necessary to check some assertions after
each hierarchic structured operation. Consider, for example, the structured operation A,
which is defined to have the effect of executing a delete tuple operation, followed by the
execution of operation B. Operation B consists of a single update tuple operation. It may
then be necessary to check some assertions after the delete tuple operation, after operation
B, after the update tuple operation (in B), and after operation A.

A special treatment of “null” (undefined) values as column entries is required. As
noted by Eswaran and Chamberlin (Eswaran 1975), the checking of a relation constraint
assertion should be such that the presence of "null” values should never cause the assertion
to succeed if it would otherwise fail (be violated), and should never cause it to fail if it
would otherwise succeed. An exception to this rule is made for assertions which explicitly

reference "null” values (eg., "Sex = null”).

Semantic Integrity Specification 69

6.4. Relation Constraint Violation-Action
Associated with every occasion at which an assertion is to be checked, is a violation-
action to be taken if the assertion is not satisfied upon attempted verification. Several types
of violation-action can be specified:
I An error can be signalled, and the requested data base change rejected. A message
is issued informing the user of the problem; the nature of this message may be
explicitly specified as a part of the violation-action, or it may be chosen by the
system.
2. A warning can be issued, but the illegal data base change allowed. The user may
be warned with a system-generated message, or a message specified as part of the
violation-action. The warning may be persistent, in which case it appears whenever
the potentially bad data is referenced.

8. A corrective action can be specified, which attempts to repair the error; the

assertion is then rechecked. This approach may be dangerous, but is appropriate in
some cases. There are several types of corrective actiou:

a. a substitute value may be specified to replace the offending data,

b. 7 structured operation may be performed,

c. an external procedure may be called.
If a corrective violation-action is attempted, the relation constraint assertion which
caused its invocation is rechecked after the corrective action is performed. It is
intended that corrected value and structured operation corrective actions handle the
bulk of the corrective violation-action needs. However, it is possible to call an
external procedure (which is written in some high level general purpose
programming language) as a corrective action. This external procedure receives no

special privliges with regard to data base interaction. There are of course other

Semantic Integrity Specification 70

problems which result from permitting such external procedures to be used, which

are similar to those discussed in the context of domain definition violation-action (see

section 3.4). (A more far-reaching set of problems of this type is discussed by Minsky

(Minsky 1976).)

The actual interface which reports relation constraint violations to the user should
actually allow this user to control the violation-action. The user should be consulted, if
appropriate. For instance, assume that the user wishes to perform an operation which gives
employee “Jones” a 107 raise in salary. Assume also that there is a relation constraint
assertion which states that the sum of salaries of all the employees in each department of
the company must be less than the budget of that department. Suppose also that this
assertion would be violated if the salary of "Jones® is increased by 10%. A reasonable
violation-action might be to r-ise the salary of "Jones” to its maximum permissible value,
while reporting this to the user and asking for approval before actually performing the
action.

In this scheme, the violation-actions are associated with the assertion; they are part
of the relation constaint. This means that violation-action information is not a part of the
specification of the siructured operations. All information regarding the checking of an
assertion is localized in the relation constraint. This has the desirable effect of eliminating

the arbitrary procedural embedding of violation-action information.

6.5. Implementation Considerations

A relation constraint language processor may be used to “compile” relation constraints
into an internal form. Relation constraints may be added to and deleted from a data base.
(A constraint may be changed by deleting it and adding a revised version) Adding a

relation constraint consists of its compilation and initial checking. Normally, the constraint

Semantic Integrity Specification 71

must be satisfied when it is added to the data base.

The internal form into which a relation constraint is compiled is used by the semantic
integrity subsystem to check the integrity of the data base, and to take appropriate action
which violations are detected. Moreover, the integrity subsystem manages all four aspects

of semantic integrity, as discussed above and in chapter 7.

6.6. Remarks
The principal purpose of this chapter has been to impose some structure on the
problem of relation constraint specification in the context of the semantic integrity of a
relational data base. Important issues to be considered in future work include:
1. a detailed analysis of the applicability of specific high level, nonprocedural data
selection languages to assertion specification (eg., SEQ_UEL, QUEL, or Query by
Example),
2. a complete description of a disciplined specii:cition methodology for relation
constraints (including detailed example(s) of relaticn <onstraint specification),
3. specifications of the user interface of,the semantic integrity subsystem, vis-a-vis
relation constraints, ‘
4. an analysis of the impact of the semantic integrity subsystem on o&hgr aspects of
the data base system (eg., data security),
5. an assessment of the, ramifications of various problems concerning relation
constraints, including: - |
a. redundancies,
b. contradictions,
c. circularities (because of corrective action side effects),

6. a study of implementation techniques for relation constraint checking.

Semantic Integrity Specification 72

7. ON THE DESIGN OF A SEMANTIC INTEGRITY SUBSYSTEM

The purpose of this chapter is to present some brief comments on several important
aspects of the design of a semantic integrity subsystem. The purpose of such a subsystem is
to manage the semantic integrity of a data base, as indicated by the semantic integrity

specifications for that data base.

7.1. Components of a Semantic Integrity Subsystem
We propose that a semantic integrity subsystem possess four principal components:

1. The semantic integrity language processors translate the specificatioris in the high
level semantic integrity languages inta internal forms useful to the semantic integrity
subsystem. As discussec in this thesis, there are four semantic integrity languages, for
domain definition, relation structure, structured operations, and relation constraints.
(Actually, these four langauges may be viewed as sublanguages of a single semantic
integrity language.)

2. The semantic integrity checker determines which domain definitions and relation
constraints need to be checked after a given data base change is performed, and
performs that checking.

3. The semantic integrity violation-action processor takes appropriate action when a

domain definition or relation constraint is violated.

4. The relation constraint compatibility checker is responsible for insuring that the set

of relation constraints currently extant for a data base is free from contradictions and
other undesirable properties. The compatability checker may be called by the relation
constraint language processor when adding a new relation constraint, to make sure

that it is acceptable to add it. The problem of designing and implementing a

Semantic Integrity Specification 73
»

compatability checker involves general techniques of deductive inference, automated

theorem provers, etc. Only a very limited compatability checker could be practical at

the present time.

7.2. The User’s View of the Integrity Mechanism

It is extremely important to provide an effective user - data base system interface,
especially with regard to the creation, maintenance, and reporting of semantic integrity
information. There are actually three major types of users with which one needs to be
concerned:

L. the data base administrator (DBA), which may in fact be a single person or many

persons, whose job is to create and maintain the semantic integrity specifications,

2. the nonprogramming user, who deals with the data base by means of generalized

data selection and modification languges (e.g. SEQUEL, QUEL, or Query by

Example),

3. the applications program, which calls upon data base system facilities.
Of course, a single person may serve both as a DBA and a (nonprogrammini 1) user. The
distinction between nonprogramming users and applications programs is mac.e in order to
distinguish the types of communication with the semantic integrity subsystom which are
necessary.

The DBA should be provided facilities which allow the following types of actions:

1. add relation,

2. delete relation,

3. add domain,

4. delete domain,

5. add structured operation,

Semantic Integrity Specification 74

6. delete structured operation,

7. add relation constraint,

8. delete relation constraint.

It should also be possible for a DBA to change the structure of relations, and modify the
definition of domains, structured operations, and relation constraints. It is furthermore
desirable to allow the DBA to ask questions about the semantic integrity specifications,
especially the relation constraints. For example, it should be possible to ask which
constraints may possibly be violated if an entry in a given column is changed, or which
constraints have a given column entry as constrained data.

The nonprogramming user must be provided with high level reporting of semantic
integrity violations and violation-actions. In general, a (nonprogramming) user sees a set of
data structures (domains and elations), a set of structured operations, and a set of relation
constraints. When a domain definition or relation constraint is found to be violated, the
user is either informed of this fact or an automatic corrective action is attempted. In any
case, it must be possible to provide the user with a high level “"error message®. The
semantic integrity subsystem must not be completely silent (eg., see [Stonebraker 1974d,
Stonebraker 1975c]). It must also be possible for the user to interact with the semantic
integrity subsystem to attempt to repair an error, should that be appropriate.

The applications program must be provided with capabilities similar to those for
nonprogramming users, but all communication must be accomplished via procedure call and

return, and message passing protocols.

7.3. Some Thoughts on Integrity Subsystem Implementation
Although a detailed investigation of implementation techniques for semantic integrity

subsystems is an important research topic, little has been done on it to date. Stonebraker

Semantic Integrity Specification 75

and Wong (Stonebraker 1974d, Stonebraker 1975c] have proposed a very clean “query
modification® approach to integrity checking, but this scheme has some limitations (eg.
some useful types of techniques for the optimization of integrity checking are not handled).
Sarin [Sarin 1976] is currently investigating this topic in some detail. In this thesis, we are
not principally concerned with the specifics of implementation techniques. However, we
shall discuss a few important aspects of semantic integrity subsystem implementation.

First of all, it is important that a data base logging and backup facility exist. This is
crucial in allowing the actions of a structured operation (transaction) to be "backed out” and
"undone”, if occasioned by the violation of a domain definition or refation constraint.

It is sometimes the case that a data base change will cause several domain definitions
and relation constraints to be checked. (A data base change is accomplished by the
invocation of a primitive or structured operation.) A scheme must be developed for
determining in what order these are to be checked. One way to handle this is to assign
priorities to domain definitions and relation constraints; this may be done by the DBA or
automatically by the semantic integrity subsystem. Domain definitions should receive
priority over relation constraints (since they are always checked after primitive operations),
and the various types of relation constraints can be ordered by their complexity, importance,
or some other metric.

Since relation constraint checking is potentially a costly undertaking, it is crucial that
efficient checking techniques be developed. Much of the work on optimizing data selection
and modifiction languages is relevant here. Heuristics may be developed for determining,
on the basis of the patterns of data base interaction, which access paths and aids to
maintain [Hammer 1976b). One type of useful heuristic involves the maintenance of
aggregate values. For example, if there is a relation constraint assertion which states that

the sum of employee salaries is leSs than 8100,000, it may be helpful to maintain the sum

Semantic Integrity Specification 76

and update it as necessary, rather than constantly recalculating it when the assertion is
checked. Other types of heuristics may also prove useful, eg., dealing with characteristics
of individual types of physical storage devices (such as data clustering and page

arrangement), or dealing with the maintenance and use of inversions (indices).

73.1. The Use of Inversions in Relation Constraint Checking (An Example)

As an example illustrative of the usefulness of inversions in relation constraint
checking, consider an example assertion. Suppose that the assertion (for the example data
base of figure 1-2) states that-for each tuple B in relation BUDGET, the entry in the
Salary_budget column (B.Salary_budget) is greater than or equal to the sum of the entries
in the Salary column of the tuples in EMP (El, .., En) which have Department =
B.Department. Several primit‘ve operations which may require this assertion to be checked
are listed below, along with the method by which the necessary checking may be
accomplished and an indication of which inversions would be helpful in such checking:

1. for some tuple B in BUDGET, Salary_budget is changed:

a. find all tuples in EMP (EI, .., En) which have Department = B.Department,
b. calculate S = ElSalary + ... + EnSalary,
c. check that S <= B.Salary_budget,
useful inversions: Department in EMP (for step a),
2. for some tuple E in EMP, Salary is changed:
a. find all tuples in EMP (EL, .., En) which have Department = E.Department,
b. calculate S = ElSalary + .. + EnSalary,
c. find the tuple in BUDGET (B) which has Department = E.Department,
d. check that S <= B.Salary_budget,
useful inversions: Department in EMP (for step a), Department in BUDGET (for

Semantic Integrity Specification 77

step c),

3. for some tuple in BUDGET (B), Department is changed:

(same as 1),

4. for some tuple in EMP (E), Department is changed,

(same as 2),

5. a new tuple is inserted into BUDGET (B),

(same as 1),

6. a new tuple is inserted into EMP (E),

(same as 2).
In this particular example, no checking needs to be done when tuples are deleted from
EMP, since that can only cause the sum (S) to decrease. Of course, this is not true for all

assertions involving sums of this type.

[

|

Semantic Integrity Specification 78

8. REMARKS AND DIRECTIONS

The ma jor purpose of this thesis has been to provide a comprehensive, detailed

analysis of the issues and problems associated with maintaining semantic integrity in a
 generalized (relational) data base system. The principal emphasis has been on the high

level expression of semantic integrity specifications. The ma jor portion of the work
described herein has been concerned with providing a framework for semantic integrity
specifications. Both the functional requirements for a solution to the semantic integrity
problem and a specific approach to providing such a solution have been emphasized. An
attempt has been made to indicate important directions for further work on semantic
integrity.

By way of conclusion, there are several important general directions for the extension
of the work described in this thesis. The following are most significant:

1. an analysis of important integrity specification language design issues (eg., the

usefulness of constructs in languages like SEQUEL, QUEL, and Query by Example,

the adequacy of nonprocedural specification methodologies, the importance of

iteration and recursion, etc.),

2. the complete design of a language for semantic integrity specification, including

sublanguages for each of the four aspects of semantic integrity (in the relational data

model),

3. the development of a well-directed, structured, disciplined approach to data base

design (based on the semantic integrity framework),

4. a comprehensive example of the application of the semantic integrity specification

methodology described herein to a "real” application domain,

5. the implementation of the semantic integrity subsystem outlined in this thesis,

Semantic Integrity Specification 79

6. an analysis of the cost of building, maintaining, and enforcing semantic integrity
rules,

7. a study of the relationship of semantic integrity issues with those of security,
concurrent consistency, and query processing (including the use of deductive
techniques),

8. an evaluation of the ramifications of separating the four aspects of integrity to the
extent described above (e.g., an analysis of whether it is necessary to allow the
information within a domain definition to be referenced in relation constraint
assertions), and a study of the appropriateness of this approach,

9. an evaluation of the applicability of a behavioral approach to the description of
data semantics in an integrated data base environment,

10. the extension of the semantic integrity scheme to allow multiple “views" of a data
base,

11. an evaluation of possible extensions to permit a nonabsolutist approach to integrity
(involving the notions of guantized truth and confidence measures [Zadeh 1975)),

12. a study of the ability of the approach to the semantic integrity problem described

in this thesis to improve the overall effectiveness of a data base system.

Semantic Integrity Specification 80

REFERENCES AND BIBLIOGRAPHY

[Abrial 1974]

Abrial, J. R, "Data Semantics”, Data Base Management, North Holland, 1974.

(Allman 1975)

Allman, E., M. Stonebraker, and G. Held, Embedding a Relational Data Sublanguage in a
General Purpose Programming Language, Electronics Research Laboratory Report ERL-
M564, University of California; Berkeley CA, 10 October 1975.

[Aliman 1976)

Allman, E., M. Stonebraker, a1d G. Held, "Embedding a Relational Data Sublanguage in a
General Purpose Programming Language”, Proceedings of ACM SIGPLAN/SIGMOD
Conference on Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-2¢
March 1976.

(Armstrong 1974)
Armstrong, W. W, "Dependency Structures of Data Base Relationships”, Information

Processing 74, North Holland, 1974.

[Astrahan 1975)

Astraban, M M and D D. Chamberlin, “Implementation of a Structured English Query
Language” Procssdings of ACM SIGMOD International Conference on the Management
@ Theen Sas jese CA -6 May 97

Semantic Integrity Specification 81

{Bachman 1973]

Bachman, C. W., "The Programmer as Navigator”, Communications of the ACM, Volume

16, Number 1I, November 1973.

[Bernstein 1975)
Bernstein, P. A, J. R. Swenson, and D. C. Tsichritzis, "A Unified Approach to Functional
Dependencies and Relations”, Proceedings of ACM SIGMOD International Conference on

the Management of Data, San Jose CA, 14-16 May 1975.

(B jorner 1973]
Bjorner, D, E. F. Codd, K. L. Deckert, and 1. L. Traiger, The Camma-0 N-ary Relational
Data Base Interface Specifications of Ob jects and Operations, IBM Research Report

R JI200, San Jose CA, 11 April 1973.

(Borgida 1975}

Borgida, A. T., Topics in the Understanding of English Sentences by Computer, Technical
Report 78, Department of Computer Science, University of Toronto, Toronto, Canada,

February 1975.

[(Boyce 1973a)
Boyce, R. F. and D. D. Chamberlin, Using a Structured English Query Language as a Data
Defnition Facility, IBM Research Report R JI318, San Jose CA, 10 December 1973.

(Boyce 1973b]
Boyce, R. F., D. D. Chamberlin, W. F. King III, and M. M. Hammer, "Specifying Queries as

- -

Semantic Integrity Specification 82

Relational Expressions: SQUARE", Proceedings of ACM SIGPLAN-SIGIR Interface
Meeting, Gaithersburg MD, 4-6 November 1973.

(Boyce 1975)

Boyce, R. F.,, D. D. Chamberlin, W. F. King III, and M. M. Hammer, "Specifying Queries as
Relational Expressions: The SQUARE Data Sublanguage®, Communications of the ACM,
Volume 18, Number 11, November 1975.

[Bracchi 1972]
Bracchi, G. A, A. Fedeli, and P. Paolini, "A Language for a Relational Data Base
Management System®, Sixth Annual Princeton Conference on Information Sciences and

Systems, Princeton NJ, 23-24 1 farch 1972.

(Bracchi 1974)
Bracchi, G., A. Fedeli, and P. Paolini, "A Multi-Level Relational Model for Data Base

Management Systems”, Data Base Management, North Holland, 1974.

[Cardenas 1975)
Cardenas, A. F., "Analysis and Performance of Inverted Data Base Structures”,

Communications of the ACM, Volume 18, Number 5, May 1975.

[{Chamberlin 1974a)
Chamberlin, D. D, R. F. Boyce, and I. L. Traiger, "A Deadlock-Free Scheme for Resource

Locking in a Data Base Environment”, Information Processing ‘74, North-Holland, 1974.

D —

Semantic Integrity Specification 83

(Chamberlin 1974b)

Chamberlin, D. D. and R. F. Boyce, "SEQUEL: A Structured English Query Language”,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor MI, 1-3 May 1974.

(Chamberlin 1975)
Chamberlin, D. D., J. N. Gray, and L. L. Traiger, "Views, Authorization, and Locking in a
Relational Data Base System”, Proceedings of National Computer Conference, Anaheim

CA, 19-22 May 1975.

(Chan 1974)
Chan, A. Y., Automatic Selection of Inversions in an Integrated Data Base Environment, S.
M. thesis proposal, Department of Elecirical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge MA, 18 December 1974.

[Chen 1975]
Chen, P. P. S, "The Entity-Relationship Model: Toward a Unified View of Data", ACM"

Transactions on Data Base Systems, Volume 1, Number 1, March 1976 (to appear).

[Codasy! 1971a)
Codasyl Committee on Data System Languages, Codasyl Data Base Task Group Report,
ACM, New York NY, 197

(Codd 1970]
Codd, E. F., "A Relational Model for Large Shared Data Banks®, Communications of the

e ——

Semantic Integrity Specification 84

ACM, Volume I3, Number 6, June 1970.

[Codd 197la)

Codd, E. F, "A Data Base Sublanguage Founded on the Relational Calculus®, Proceedings
of ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA,
1971.

[Codd 1971b)

Codd, E. F., "Further Normalization of the Data Base Relational Model”, Courant
Computer Science Symposia 6, New York NY, 24-25 May 1971, in Data Base Systems,
Prentice Hall, 1971

(Codd 1971c)
Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial®, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Contral, San Diego CA, 1971.

(Codd 1971d)
Codd, E. F., "Relational Completeness of Data Base Sublanguages”, Courant Computer

Science Symposia 6, New York NY, 24-25 May 197], in Data Base Systems, Prentice Hall,
1971

[Codd 1974a)

Codd, E. F., "Recent Investigations in Relational Data Base Systems”, Information

Processing "74, North Holland, 1974.

.

Semantic Integrity Specification 85

[Codd 1974b)
Codd, E. F,, "Seven Steps to Rendezvous with the Casual User", Proceedings of IFIP TC-2

Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5 April 1974,
North Holland, 1974.

[Codd 1974c)

Codd, E. F. and C. J. Date, “Interactive Support for Non-Programmers: The Relational
and Network Approaches®, Proceedings of ACM SIGFIDET Workshop on Data
Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

{Codd 1975a)

Codd, E. F, A List of References Pertaining to Relational Data Base Management, IBM
Research Laboratory, San Jose CA, 1975.

[Codd 1975b)

Codd, E. F. (editor), "Implementation of Relational Data Base Management Systems",
(Transcription of 1975 National Computer Conference Panel Discussion on Relational Data
Base Management), FDT - Quarterly Bullezin of ACM SIGMOD, Volume 7, Nmuber 2,
September 1975.

{Conway 1974)
Conway, R. W, W. L. Maxwell, and H. L. Morgan, "A Technique for File Surveillance",
Information Processing '74, North Holland, 1974.

(Date 1971a)

" —

Semantic Integrity Specification 86

Date, C. J. and P. Hopewell, “File Definition and Logical Data Independence”, Proceedings
of ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA,
1971.

[Date 1971b)

Date, C. J. and P. Hopewell, "Storage Structure and Physical Data Independence®,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, San
Diego CA, 1971

[Date 1972]

Date, C. J.. "Relational Data Base Systems: A Tutorial”, Proceedings of Fourth Annual
Symposium on Computers and Information Science, Miami Beach FL, 14-16 December 1972,
Plenum Press, 1972.

(Date 1974]

Date, C. J. and E. F. Codd, “The Relational and Network Approaches: Comparison of the
Application Programming Interfaces”, Proceedings of ACM SIGFIDET Workshop on Data
Description, Access, and Control, Ann Arbor MI, 13 May 1974.

(Date 1975)
iDate, C. J, An Introduction to Data Base Systems, Addison-Wesley, 1975.

[Engles 1971)
Engles, R. W., "An Analysis of the April 1971 DBTG Report”, Proceedings of ACM
SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

’

Semantic Integrity Specification 87

{Eswaran 1974)
Eswaran, K. P, J. N. Gray, R. A. Lorie, and I. L. Traiger, The Notions of Consistency and

Predicate Locks in a Data Base System, IBM Research Report R }I487, San Jose CA, 30
December 1974.

(Eswaran 1975)

Eswaran, K. P. and D. D. Chamberlin, "Functional Specifications of a Subsystem for
Database Integrity”, Proceedings of International Conference on Very Large Data Bases,
Framingham M A, 22-2¢ September 1975.

[Everest 1974a)

Everest, G. C,, "Concurrent Update Control and Database Integrity”, Proceedings of IFIP
TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, I-5 April
1974, North Holland, 1974.

(Everest 1974b)
Everest, G. C, "The Futures of Database Management®, Proceedings of ACM SIGMOD

Conference on Data Description, Access, and Control, Ann Arbor MI, I-8 May 1974.

(Fadous 1975)
Fadous, R. Y. and J. Forsyth, "Finding Candidate Keys for Relational Data Bases®,
Proceedings of ACM SIGMOD International Conference on the Management of Data, San

Jose CA, 14-16 May 1975.

Semantic Integrity Specification 88

[Fehder 1974)
Fehder, P, "HQL: A Set-Oriented Transaction Language for Hierarchically Structured
Data Bases”, Proceedings of ACM National Conference, San Diego CA, November 1974.

(Fernandez 1975)
Fernandez, E. B, R. C. Summers, and T. Lang, "Definition of Access Rules in Data

Management Systems®, Proceedings of International Conference on Very Large Data Bases,
Framingham MA, 22-2¢ September 1975.

(Florentin 1974)

Florentin,].], "Consistency Auditing of Databases”, The Computer Journal, Volume 17,
Number |, February 1974.

(Florentin 1976)
Florentin,).], “Information Reference Coding”, Communications of the ACM, Volume 19,
Number 1, January 1976.

(Fossum 1974)
Fossum, B. M., "Data Base Integrity as Provided for by a Particular Data Base

Management System"”, Data Base Management, North Holland, 1974.

[Coldstein 1970)
Coldstein, R. C. and A. L. Strnad, “The MacAims Data Management System", Proceedings
of ACM SIGFIDET Workshop on Data Description and Access, November 1970.

Semantic Ifltegrity Specification 89

(Cosden 1974)

Gosden, J. A., "Large Scale Data Base Systems - Current Deficiencies and User

Requirements, Data Base Management Systems, North Holland, 1974.

(Gotlieb 1975)
Gotlieb, L. R., "Computing Joins of Relations", Proceedings of ACM SIGMOD

International Conference on the Management of Data, San Jose CA, 14-16 May 1975.

[Graves 1975)
Graves, R. W, “Integrity Control in a Relational Data Description Language®, Proceedings
of ACM Pacific Conference, San Francisco CA, 17-18 April 1975,

[Gray 1975)
Gray, J. N, R. A. Lorie, and G. R. Putzolu, “Granularity of Locks in a Shared Data Base",
Proceedings of International Conference on Very Large Data Bases, Framingham MA, 22-
24 September 1975.

(Grossman 1975)
Grossman, R. W., "Representing the Semantics of Natural Language as Constraint
Expressions”, Working Paper 87, Artificial Intelligence Laboratory, Massachusetts Institute

of Technology, Cambridge MA, January 1975,

[(Crossman 1976)
Grossman, R. W., Some Data-base Applications of Constraint Expressions, S. M. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Semantic Integrity Specification 90

Technology, Cambridge MA, January 1976.

[Cuttag 1976)

Cuttag, J., "Abstract Data Types and the Development of Data Structures”, Proceedings of
ACM SIGPLAN/SIGMOD Conference on Data: Abstraction, Definition, and Structure,
Salt Lake City UT, 22-24 March 1976.

{Hall 1975)
Hall, P. A. V., 8.]J. P. Todd, and P. Hitchcock, An Algebra of Relations for Machine
Computation, IBM Scientific Centre Report UKSC0066, Peterlee, England, January 1975.

{Hammer 1974)
Hammer, M. M., W. G. Howe, and I. Wladawsky, An Interactive Business Definition

System, IBM Research Report RC4680, Yorktown Heights NY, 16 January 1974.

(Hammer 1975)
Hammer, M. M. and D. J. McLeod, "Semantic Integrity in a Relational Data Base System",
Proceedings of International Conference on Very Large Data Bases, Framingham MA, 22-

21 September 1975.

[(Hammer 1976a)
Hammer, M. M. and D. J. McLeod, A Framework for Data Base Semantic Integrity
Constraints, Very Large Data Bases Group Report, Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge MA, January 1976.

Semantic Integrity Specification 9l

[(Hammer 1976b)
Hammer, M. M. and A. Y. Chan, "Index Selection in a Self-Adaptive Data Base
Management System", Proceedings of ACM SIGMOD International Conference on the

Management of Data, Washington D. C,, 2-4 June 1976 (to appear).

[(Hammer 1976¢)

Hammer, M. M., "Error Detection in Data Base Systems", Proceedings of National

Computer Conference, New York NY, 7-10 June 1976 (to appear).

(Hawkinson 1975)
Hawkinson, L., "The Representation of Concepts in OWL", Proceedings of Fourth
International Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, 3-8

September 1975.

{Hawley 1975)
Hawley, D. A., J. S. Knowles, and E. E. Tozer, "Database Consistency and the CODASYL
DBTG Proposals, The Computer Journal, Volume 16, Number 3, November 1975.

Hawryskiewycz 1972)

Hawryskiewycz, I. T. and J. B. Dennis, "An Approach to Proving the Correctness of Data
Base Operations”, Proceedings of ACM SIGFIDET Workshop on Data Description, Access,
and Control, November 1972.

[Hawryskiewycz 1973)

a8
Hawryskiewycz, 1. T., Semantics of Data Base Systems, Massachusetts Institute of

e

S

Semantic Integrity Specification 92

Technology Project MAC Technical Report TR-112, Cambridge M A, December 1973.

[Heath 1971]

Heath, 1.], "Unacceptable File Operations in a Relational Data Base”, Proceedings of

ACM SIGFIDET Workshop on Data Description, Access, and Control, San Diego CA, 1971.

[Held 1975a)

Held, G. and M. Stonebraker, Storage Structures and Access Methods in the Relational
Data Base Management System INGRES, Electronics Research Laboratory Report ERL-
M505, University of California, Berkeley CA, 3 March 1975.

(Held 1975b)
Held, G, M. R. Stonebraker, and E. Wong, “INGRES: A Relational Data Base System",
Proceedings of National Computer Conference, Anaheim CA, 19-22 May 1975.

(Held 1975¢]
Held, G., Storage Structures for Relational Data Base Management Systems, Electronics

Research Laboratory Report ERL-M533, University of California, Berkeley CA, Il August
1975

[(Hewutt 1971)
Hewitt, C. E., Procedural Embedding of Knowledge in PLANNER, Proceedings of

International Joint Conference on Artificial Intelligence 2, September 1971.

[Housel 1976)

Semantic Integrity Specification 93

Housel, B. C. and N. C. Shy, "A High Level Manipulation and Query Language for
Hierarchical Data Abstractions”, Proceedings of ACM SIGPLAN/SIGMOD Conference on
Data: Abstraction, Definition, and Structure, Salt Lake City UT, 22-24 March 1976.

(IBM]
IBM, IMS/360 Application Description Manual, GH20-0765, White Plains NY.

[Jervis 1974)

Jervis, B. M., Query Languages for Relational Data Base Management Systems, S.M.

Thesis, Department of Computer Science, University of British Columbia, Canada, May
1974.

[Joyce 1974)
Joyce, J. D., J. T. Murray, and M. R. Ward, "Data Management System User Requirements"”,

Data Base Management Systems, North Holland, 1974.

(King 1974)
King, W. F. III, On the Selection of Indices for a File, IBM Research Report R JI341, San
Jose CA, January 1974.

[Liskov 1974]
Liskov, B. and S. Zilles, "Programming with Abstract Data Types”, Proceedings of a

Symposium on Very High Level Languages, Santa Monica CA, March 1974.

(Lorie 1974)

AD-AOS4 184 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2
HIGH LEVEL EXPRESSION OF Seh ANTIC INTEGRITY SPECIFICATIONS IN A==ETC(U)
SEP 76 D J MCLEOD nooou-n-c-oau

UNCLASSIF {1 MIT/LCS/TR=165

P———

‘ .
-

=
===

o

N
O

“ 22

22

ee

s |

1.6

Hil?

L."

Semantic Integrity Specification 94

Lorie, R. A, XRM - An Extended (N-ary) Relational Memory, IBM Cambridge Scientific
Center Technical Report 320-2096, Cambridge MA, January 1974.

[Machgeels 1976)

Machgeels, C., "A Procedural Language for Expressing Integrity Constraints in the
Coexistence Model”, Proceedings of IFIP TC-2 Conference on Modelling in Data Base
Management Systems, Freudenstadt, W. Germany, 5-9 June 1976 (to appear).

(Marill 1975)
Marill, T. and D. Stern, "The Datacomputer: A Network Utility", Proceedings of National
Computer Conference, Anaheim CA, 19-22 May 1975.

(Martin 1975)
Martin, J. T., Computer Data-Base Orgranization, Prentice Hall, 1975.

(Maynard 1974)
Maynard, H. S, "User Requirements for Data Base Management Systems (DBMS)", Data

Base Management Systems, North Holland, 1974.

(McDonald 1974a]
McDonald, N., M. Stonebraker, and E. Wong, Preliminary Design of INGRES Part I -
Query Language, Data Storage and Access, Electronics Research Laboratory' Report ERL-

M 435, University of California, Berkeley CA, 10 April 1974.

(McDonald 1974b)

Semantic Integrity Specification 95

McDonald, N. M., M. Stonebraker, and E. Wong, Preliminary Design of INGRES Part II -
Protection, Concurrency and Graphics, Electronics Research Laboratory Report ERL-M 436,
University of California, Berkeley CA, 9 May 1974.

[McDonald 1974c)
McDonald, N. and M. Stonebraker, CUPID - The Friedly Query Language; Electronics

Research Laboratory Report ERL-M 487, University of California, Berkeley CA, 16 October
1974.

(McDonald 1975a]
McDonald, N. and M. Stonebraker, "CUPID: The Friendly Query Language”, Proceedings
of ACM Pacific Conference, San Francisco CA, 17-18 April 1975.

{McDonald 1975b)
McDonald, N. H,, CUPID: A Graphics Oriented Facility for Support of Non-Programmer
Interactions with a Data Base, Electronics Research Laboratory Report ERL-M563,

University of California, Berkeley CA, 12 November 1975.

it 1cLead 1974)

McLeod, D.], Relational Data Management in Minicomputers, S$.B. Thesis, Department of
Electrical Engineering, Massachusetts In:titute of Technology, Cambridge MA, February
1974.

[(McLeod 1975)
McLeod, D. J. and M.). Meldman, "RISS: A Generalized Minicomputer Relational Data

Semantic Integrity Specification 96

Base Management System", Proceedings of National Computer Conference, Anaheim CA,
19-22 May 1975.

[McLeod 1976a}
McLeod, D.], High Level Domain Definition in a Relational Data Base System, IBM
Research Report RJ1716, San Jose CA, 9 February 1976.

(McLeod 1976b)

McLeod, D. J., "High Level ‘Domain Definition in a Relational Data Base System”,
Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction, Definition,
and Structure, Salt Lake City UT, 22-2¢ March 1976.

(McLeod 1976¢)

McLeod, D.], Query by Example and SEQUEL: Translation and Compatibility, IBM
Research Report R Ji730, San Jose CA, 1976.

[(Mettzer 1973]
Meltzer, H. S., Current Concepts in Data Base Design, IBM Report to GUIDE 37

Information Systems Division, 2 November 1973.

(Minsky 1974a)
Minsky, N., "On Interaction with Data Bases”, Proceedings of ACM SIGFIDET Workshop
on Data Description, Access, and Control, Ann Arbor MI, 1-3 May 1974.

[Minsky 1974b)

Semantic Integrity Specification 97

Minsky, N., Protection of Data Bases and the Process of User Data-Base Interaction,
Department of Computer Science Technical Report SOSAP-TR-II, Rutgers University, New
Brunswick NJ, September 1974.

(Mommens 1975)

Mommens, J. H. and S. E. Smith, "Automatic Generation of Physical Data Base Structures”,
Proceedings of ACM SIGMOD International Conference on the Management of Data®,
San Jose CA, 14-16 May 1975.

(Morgan 1970)
Morgan, H. L., "An Interrupt Based Organization for Management Information Systems®,

Communications of the ACM, Volume 13, Number 12, December 1970.

(MRI 1972)
MRI Systems Corporation, System 2000 General Information Manual, Austin TX, 1972.

(M ylopoulos 1975)
Mylopoulas,], S. A. Schuster, and D. Tsichritzis, "A Multi-Level Relational System"®,

Braceedings of National Computer Conference, Anaheim CA, 19-22 May 1975.

(N1 jssen 1974)

Nijssen, G. M, “Data Structuring in the DDL and Relational Data Model", Proceedings of
IFIP TC-2 Working Conference on Data Base Management Systems, Cargese, Corsica, 1-5
April 1974, North Holland, 1974.

Semantic Integrity Specification 98

[Nordstrom 1976]

Nordstrom, B., “An Outline of a Mathematical Model for the Definition and Manipulation
of Data”, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction,
Definition, and Structure, Salt Lake City UT, 22-24¢ March 1976.

[Notley 1972)
Notley, M. G., The Peterlee IS/l System, IBM United Kingdom Scientific Center Report
UKSC-0018, England, March 1972.

[Otlle 1974)
Olle, T. W,, "Current and Future Trends in Data Base Management Systems", Information

Processing 74, North Holland, 1974.

(Ozkaran 1974)

Ozkaran, E. A, S. A. Schuster, and K. C. Smith, A Data Base Processor, Technical Report
CSRG-43, University of Toronto, Toronto, Canada, November 1974.

(Ozharan 1975)
Ozkaran, E. A, S. A. Schuster, and K. C. Smith, "RAP: As Associative Processor for Data

Base Management”, Proceedings of National Computer Conference, Anaheim CA, 19-22
May 1975.

[Pfister 1974)
Ptister, G. F, The Computer Control of Changing Pictures, Technical Report TR-I35,
Project MAC, Massachusetts Institute of Technology, Cambridge MA, September 1974.

Semantic Integrity Specification 99

~ [Redell 1974)

Redell, D. D, Naming and Protection in Extendible Operating Systems, Technical Report
TR-i40, Project MAC, Massachusetts Institute of Technology, Cambridge MA, November
1974.

(Reisner 1975)

Resiner, P, R. F. Boyce, and D. D. Chamberlin, "Human Factors Evaluation of Two Data
Base Query Languages: SQUARE and SEQUEL", Proceedings of National Computer
Conference, Anaheim CA, 19-22 May 1975.

[Robinson 1967)
Robinson, J. A, "A Review of Automatic Theorem Proving®, Proceedings of Symposium in

Applied Mathematics, American Mathematical Society, Providence RI, Volume 19, 1967.

(R.obinson 1975)
Rabinson, K. A, "Data Base -- The Ideas Behind the Ideas” The Computer Journal,
Volume 18, Number 1, January 1975.

(Rothnie 1972)

Rothnie, J. B, The Design of Generalized Data Management Systems, Ph. D. thesis,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge MA,
September 1972.

{Rothnie 1974)

Semantic Integrity Specification 100

Rothnie, J. B, "An Approach to Implementing a Relational Data Management System”,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor M1, 1-3 May 1974.

[Rothnie 1975]
Rothnie, J. B, "Evaluating Inter-Entry Retrieval Expressions in a Relational Data Base

Management System®, Proceedings of National Computer Conference, Anaheim CA, 19-22
May 1975.

[Roussopoulos 1975)
Roussopoulos, N. and J. Mylopoulos, “Using Semantic Networks for Data Base
Management”, Proceedings of International Conference on Very Large Data Bases,

Framingham MA, 22-24 September 1975.

[Sarin 1976)
Sarin, S. K., Design of a Semantic Integrity Subsystem for Relational Data Base Systems,
S M. Thesis Proposal, Department of Electrical Engineering and Computer Science,

Ma:sachusetts Institute of Technology, Cambridge MA, 29 January 1976.

(Schlotnick 1975)
Schlotnick, M., "Secondary Index Optimization®, Proceedings of ACM SIGMOD
Inzernat.onal Conference on the Management of Data, San Jose CA, 14-16 May 1975.

[St hrmid l975]

Schm:d, H. A. and J. R. Swenson, "On the Semantics of the Relational Data Model®,

Semantic Integrity Specification 10l

Proceedings of ACM SIGMOD International Conference on the Management of Data, San
Jose CA, 14-16 May 1974

[Senko 1973)
Senko, M., E. Altman, M. Astrahan, and P. Fehder, "Data Structures and Accessing in Data

Base Systems”, IBM Systems Journal, Number |, 1973.

[Senko 1975)

Senko, M. E, "Specifications of Stored Data Structures and Desired Output Results in
DIAM II with FORAL®, Proceedings of International Conference on Very Large Data
Bases, Framingham M A, 22-2¢ September 1975.

[Sibley 1974)

Sitley, E. H,, "Data Management System User Requirements”, Data Base Management

Systems, North Holland, 1974.

[Smith 1976)

Smith, J. M. and D. C. P. Smith, "A Semantics for Relational Data Bases Founded on
Abstraction®, Proceedings of ACM SIGPLAN/SIGMOD Conference on Data: Abstraction,
Definition, and Structure, Salt Lake City UT, 22-2¢ March [976.

(Software AG 1974)
Software AG, ADABAS ADASCRIPT User's Manual, Reston VA, 1974.

[Steuert 1974)

Semantic Integrity Specification 102

Steuert, J. and). Goldman, "The Relational Data Management System: A Perspective”,
Proceedings of ACM SIGFIDET Workshop on Data Description, Access, and Control, Ann
Arbor MI, 1-3 May 1974.

[Stonebraker 1974a)
Stonebraker, M. R., "The Choice of Partial Inversions and Combined Indices”,

International Journal of Computer and Information Science, Volume 3, Number 2, June

1974.

[Stonebraker 1974b)
Stonebraker, M. R., "A Functional View of Data Independence”, Proceedings of ACM

SIGFIDET Workshop on Data Description, Access, and Control, Ann Arbor MI, 1-3 May
1974.

[Stonebraker 1974c)

Stonebraker, M. R, High Level Integrity Assurance in Relational Data Base Management
Systems, Electronics Research Laboratory Report ERL-M473, University of California,
Berkeley CA, 16 August 1974.

(Stonebraker 1974d)

Stonebraker, M. and E. Wong, Access Control in a Relational Data Base Management
System by Query Modification, Electronics Research Laboratory Report ERL-M 438,
University of California, Berkeley CA, 14 May 1974.

(Stonebraker 1975a)

Semantic Integrity Specification 103

Stonebraker, M. R. and G. Held, Networks, Hierarchies, and Relations in Data Base
Management Systems, Electronics Research Laboratory Report ERL-M504, University of

California, Berkeley CA, 3 March 1975

(Stonebraker 1975b)
Stonebraker, M. R., Getting Started in INGRES - A Tutorial, Electronics Research
Laboratory Report ERL-M518, University of California, Berkeley CA, 23 April 1975.

(Stonebraker 1975¢]
Stonebraker, M. “Implementation of Integrity Constraints and Views by Query
Modification®, Proceedings of ACM SIGMOD International Conference on the

Management of Data, San Jose CA, 14-16 May 1975,

[Summers 1975)
Summers, R. C, C. D. Coleman, and E. B. Fernandez, "A Programming Language
Extension for Access to a Shared Data Base”, Proceedings of ACM Pacific Conference, San

Francisco CA, 17-18 April 1975.

[T aylor 1974)
Taylor, B. J. and S. C. Lloyd, "DUCHESS - A High Level Information System®,

Proceedings of National Computer Conference, Chicago IL, 6-10 May 1974.

[T homas 1975)
Thomas, J. C, and J. D. Gould, “A Psychological Study of Query by Example”, Proceedings
of National Computer Conference, Anaheim CA, 19-22 May 1975.

Semantic Integrity Specification 104

(Tsichritzis 1975) .
Tsichritzis, D., Features of a Conceptual Schema, Technical Report CSRG-56, Computer

Systems Research Group, University of Toronto, Toronto, Canada, July 1975.

[Valle 1975)
Valle, G, “Interactive Handling of Data Base Relations: Experiments with the Relational

Approach®, Technical Report, University of Bologna, Bologna, Italy, March 1975.

[Weber 1976)

Weber, H., "A Semantic Model of Integrity Constraints on a Relational Data Base®,
Proceedings of IFIP TC-2 Conference on Modelling in a Data Base Management Systems,
Freudenstadt, W. Germany, January 1976.

(Whitney 1974)

Whitney, K. M., "Relational Data Management Implementation Techniques®, Proceedings of
ACM SICFIDET Workshop on Data Description, Access, and Control, Ann Arbor M], 1-3
May 1974.

(Wilkes 1972]
Wilkes, M. V., "On Preserving the Integrity of Data Bases”, The Computer Journal,
Vclume 15, Number 3, 1972.

(Zadeh 1975)

Zadeh, L. A, Calculus of Fuzzy Restrictions, Electronics Research Laboratory Report ERL-

- i

Semantic Integrity Specification 105

M502, University of California, Berkeley CA, 19 February 1975.

(Zloof 1974]
Zloof, M. M., Query by Example, IBM Research Report RC4917, Yorktown Heights NY, 2
July 1974

[Z1oof 1975a)
Zloof, M. M., "Query by Example”, Proceedings of National Computer Conference,

Anaheim CA, 19-22 May 1975. -

[Zloof 1975b)
Zioof, M. M., "Query by Example: The Invocation and Definition of Tables and Forms",
Froceedings of International Conference on Very Large Data Bases, Framingham MA, 22-

24 September 1975.

(Zook 1975)

Zook, W., K. Youssefi, P. Kreps, G. Held, and]. Ford, INGRES - Reference Manual,
Electronics Research Laboratory Report ERL-M519, University of California, Berkeley CA,
29 April 1975.

Semantic Integrity Specification 106

Figure 1-1. Relation EMP

column -> Name Sex Salary Manager Depar tment
under lying
domairi -> NAME SEX MONEY NAME DEPT

Jones, Richard male $12,808 Jones, Richard research
Phillips, Jeff male $10,008 Smith, Kathy sales

Smith, Kathy female 811,008 Jones, Richard sales

Semantic Integrity Specification 107

Figure 1-2. Example Data Base

Domains:
NAME QUAN
SEX ORDER_NUM
MONEY CusT
DEPT DATE
ITEN
Relations:

EMP (Name, Sex, Salary, Manager, Department)
NAME SEX .MONEY NAME DEPT

SALES (Item, Department, Quantity_on_hand, Cost)
1TEM DEPT QUAN MONEY

ORDERS (Order_number, Customer, [tem, Date_shipped)
ORDER_NUM CusT 1TEN DATE

BUDGET (Department, Salary_budget)
OEPT MONEY

Semantic Integrity Specification 108

Figure 1-3. A Possible Set of Relational Primitive Operations

create domain
delete domain
create relation
delete relation

insert tuple
delete tuple
update tuple

add column to
relation

delete column
from relation

copy relation

intersection

union

di fference

join

(these operations allow domains and
relations to be defined and deleted)

(these operations allou changes to be
made to data in relations)

(these operations facilitate relation
modification and relational algebraic
manipulation of a data base)

Semantic Integrity Specification 109
Figure 3-1. Selected Example Data Base Domain Definitions

domain NAME ("Smi th, John")
description
last: string

L]
first: string
ordering
last, first
violation-action
error

domain SEX ("female")
description
oneof 'female’, "male’
ordering ;
none
violation-action
error "sex must be female or male’

domain MONEY ("8186")
description
's.
value: number where >«8
where length(right(x, *." + 1)) = 2
or not present x, *.'
ordering
value
violation-action
subsatitute null 'value in error, null has been assumed’

domain 1TEM ("AB-75-326")
description ’
string where not has numerics, '-'
il '’
i2: string where not has alphabetics, '-'
uhere repititions il through i2 >=]1 and <=3
or
str ing where call check_item
ordering
call compare_item
violation-action
subatitute left(x, 5)

Semantic Integrity Specification
Figure 3-1. (continued)

domain QUAN (17)

description

value: number where integer

and >=8

ordering

atomic
violation-action

call fixup_quan

domain DATE ("1/20/1376*)
descrintion
month: oneof 1, ..., 12
'/0
day: number where integer and >=1 and <31
*/197°
year: number where integer and >=5 and <=9
where (if (month = 4 or =5 or =9 or =11) then day<=38)
and (if month = 2 then day <= 29)
‘ and (if (month = 2 and year ~= B6) then day <= 28)
ordering
year, month, day
violation-action
error

110

Semantic Integrity Specification 1l
Figure 3-2. Syntax of the Domain Definition Language

domain-definition ::= DOMAIN domain-name
DESCRIPTION
description-clause
{ORDERING
order ing-c!ause)
[VIOLATION-ACTION
violation-action-clausel

domain-name ::= string-constant

description-clause ::= description-subclause
| description-clause
OR

description-subclause

description-subclause ::= description
(uhere-restriction)

description ::= [label:] subunit
} description
[label:) subunit

label ::= string-constant

subunit ::= STRING [WHERE string-boolean)
| NUMBER (WHERE number-boo!ean)
| ONEOF string-constant-list
| ONEOF number-constant-|ist

string-constant-list :1:= string-constant-component
| string-constant-list, string-constant-component

str ing-constant-component ::= string-constant
| ALPHABETICS
| NLMERICS
| SPECIALS

number-constant-list ::= number-constant
| number-constant-list, number-constant

string-boolean ::= string-boolean-term
| string boolean OR string-boolean-term

string-boolean-term :1= string-boolean-factor
| string-boolean-term AND string-boolean-factor

Semantic Integrity Specification
Figure 3-2. (continued)

string-boolean-factor ::= string-boolean-primary
| NOT string-boolean-primary

string-boolean-primary ::= string-predicate
| (string-boolean)

string-predicate t3= comparator string-constant
| IF string-predicate THEN string-predicate
[ELSE string-predicate)
| SIZE comparator number-expression
| HAS string-constant-list
| CALL procedure

comparator 3:= = | v | >'| >= | < | <=

number-boolean st= number-boolean-term
| number-boolean OR number-boolean-term

number-boolean-term ::= number-boolean-factor
| number-boolean-term ANO number-boolean-factor

number-boolean-factor ::= number-boo!ean-primary
| NOT number-boolean-primary

number-boolean-primary ::= number-predicate
| (number-boolean)

number-predicate s:e comparator number-constant
| IF number-predicate THEN number-predicate
(ELSE number-predicate)
| INTEGER
| EXPONENTIAL
| CALL procedure

where-restriction ::= boolean

boolean t:= boolean-term
| boolean OR boolean-term

boo!ean-term 131= boolean-factor
| boolean-term AND boolean-factor

boolean-factor ste boolean-primary
| NOT boolean-primary

boolean-primary tt= predicate
| (boolean)

n2

Semantic Integrity Specification 113
Figure 3-2. (continued)

predicate ::= expression comparator expression
| IF predicate THEN predicate
(ELSE predicatel
| PRESENT expression, string-constant-list
| CALL procedure

expression ::= [addition-operator) unsigned-expression

unsigned-expression ::= arithmetic-term
| unsigned-expression addition-operator arithmetic-term

arithmetic-term ::= arithmetic-factor
| arithmetic-term multiply-operator arithmetic-factor

arithmetic-factor ::= subexpression
| (expression)

subexpression ::= atomic-expression

| set-function(expression-|list)

| APPEND(expression, expression)

| SUBSTRING (expression, expression, expression)

| LEFT (expression, expression)

| RIGHT (expression, expression)

| LOCATION(expression, expression)

| LENGTH (expression)

| REPITITIONS label THROUGH label

atomic-expression ::= label
| string-constant
| number-constant
| »

expression-list ::= expression
. | expressicn-list, expression

set-function 3= MAXIMUM | MAX | MINIMUM | MIN | string-constant
addi tion-operator :te + | -
multiply-operator s:e % | / | »%
ordering-clause t:= ordering-|list
| NONE

| ATOMIC
' | CALL procedure

Semantic Integrity Specification 114

Figure 3-2. (continued)

ordering-list ::= |abel
| ordering-list, label

violation-action-clause :t= violation-action
| violation-acticn-clause
violation-action

violation-action ::= ERROR
| ERROR message
| SUBSTITUTE expression
| SUBSTITUTE expression message
| CALL procedure
| CALL.proceduro message

message ::= string-constant
| SYSTEM-GENERATED

procedure ::= string-constant

Notes:

The nonterminals string-constant and number-constant are not
further defined.

ALPHABETICS refers to the characters "A" through "Z" and "a"
through "z", NUMERICS refers to the digits 8 through 8, and
SPECIALS refers to all other characters.

SIZE returns the length of a string subunit. HAS sl, ..., sn
returns "true" if a subunit has an occurrence of each of the
strings sl, ..., sn (otheruise "false"). SIZE and HAS appear
cnly in subunit where restrictions.

SUBSTRING (s, i1,i2) returns the substring of string s starting
at character il and extending i2 characters. LEFT(s,i) and
RIGHT (s, i) return the left and right substring (respectively)
of s having length i. SUBSTRING, LEFT, and RIGHT may also be
invoked with @ second argument which is a string. This means
that the substring is to start at the leftmost or rightmost
occurrence of the second string argument, e.g., “"LEFT(x, *.")"
and "LEFT(=x, INDEX(%x, *.'))" are equivalent. LENGTH(s) returns
the length of string s. APPEND(sl,s2) concatenates sl and s2.
LCCATION(sl,82) returns the index of the first occurrence of
32 in sl (or @ if s2 is not a substring of sl). REPETITIONS
sl THROUGH s2 returns the number of repetitions (of the domain
value) for subunits labeled sl through s2.

1.

7.

Semantic Integrity Specification 115
Figure 6-1. Some Simple Assertions (for data base in figure 1-2)

Note: CC means constrained collection, PR means predicate

The salary of every employee is less than $50,000.
CC: each tuple in EMP
PR: Salary < 580808

The manager of each employee is also an employes.
CC: each tuple in EMP
PR: Manager is present in set of all Names from tuples
in EMP

The salary of each employee in the toy department is less
than the salary of his manager.
CC: each tuple in EMP where Department = °toy’
PR: Satary < Salary of the tuple where Name = Manager
in constrained tuple

The salary of an employee cannot decrease.
CC: each tuple in EMP
PR: new Salary >= old Salary

The average employee salary is at least equal to the salary
of Robert Jones.
CC: set of tuples in EMP
PR: average(Salary) >= Salary of tuple where Name =
*Jones, Robert’

Each department has at most two employees with a salary of
more than $50,000.
CC: set of tuples in EMP where Salary > 500808, grouped
by common Department
PR: count(Name) <= 2

The number of female employees is at least 40% of the total
number of employees.

CC: set of tuples in EMP uwhere Sex = 'female’

PR: count(Name) >= .4 x count(Name) for tuples in EMP

Employee names are unique.
CC: set of tuples in EMP
PR: multiset(Name) has no duplicates

Semantic Integrity Specification 1i6
Figure 6-2. Local Tuple Predicates

Types of Predicates (a):

la. col scalarcomp const
2a. col scalarcomp col
3a. col scalarcomp colexpr

4a. col setcomp {const-l, ..., const-m}

Sa. co! setcomp {col-1, ..., col-m}

6a. col setcomp {colexpr-1, ..., colexpr-m}
7a. col setcomp setexpr

8a. (col-1, ..., col-n) setcomp {((const-11, ..., const-1n), ...,
(const-ml, ..., const-mn))}

9a. (col-1, ..., col-n) setcomp {(col-11, ..., col=1n), cc.,
(col-ml, ..., col-mn)}

18a. (col-1, ..., col-n) setcomp ((colexpr-1l, ..., colexpr-1n), ...,
(colexpr-ml, ..., colexpr-mn)}

11a. (col-1, ..., col-n) setcomp setexpr

Definitions:

col: column name uith optional "old" or "new"
(col-1, col-11, etc., are cols; all cols must
reference entries within the constrained tuple)

const: constant from an appropriate domain

scalarop: 4+, -, %, /, %k, max, min, etc., or a user-defined
scalar operator

setop: union (also uritten as (}), intersection, difference,

\ or a user-defined set operator

colexpr: a legal combination of col, const, op, and setop which
yields a single value

setexpr: same as colexpr except yields a set of values

scalarcomp: =, ~s, >, >=, <, <w, OF a user-defined scalar
comparator

setcomp: is in, contains, properly is in, properly contains,

or a user-defined se: comparator

Semantic Integrity Specification
Figure 6-3. Nonlocal Tuple Predicates

Types of Predicates (a):
la. col scalarcomp scalarval
2a. col setcomp setval
3a. (col-1, ..., col-n) setcomp setval

(In type 2a setval is a set of values, and in type 3a setval
is a set of tuples.)

Definitions:
ODefinitions here are the same as figure 6-2, except:

scalarval: a scalar value computed from the data base
setval: a set value computed from the data base

ND predicates are the same as NI predicates, except that the
process selecting scalarval and setval may reference the entries
in the constrained tuple.

n

TS

Semantic Integrity Specification

Figure 6-4. Local Set Predicates

Types of Predicates (a):

la.
2a.
3a.

4a.
Ga.
6a.

7a.
8a.
9a.

108a.
11a.
12a.

13a.
1l4a.
15a.
16a.

aggfn(col) scalarcomp const
aggfnlcol) scalarcomp aggfnlcol)
aggfn(col) scalarcomp aggfnexpr

aggfn(col-1, ..., col-n) scalarcomp const
aggfnicol-1, ..., col-n) scalarcomp aggfnicol-l, ..., col-m)
aggfnlcol-1, ..., col-n) scalarcomp aggfnexpr

set(col) setcomp {const-1, ..., const-n}
set(col) setcomp set(col)
set(col) setcomp setfnexpr

set(col-1l, ..., col-n) setcomp {(const-11, ..., const-1n), ...,
(const-ml, ..., const-mn)!}

set(col-1, ..., col-n} setcomp ((coi-11, ..., col-1ln), ...,
(col-ml, ..., col-mn)}

set{col-1, ..., col-n) setconp setfnexpr

col crel col

col crel (col-1l, ..., cal-m)

(col-1l, ..., col-n) crel col

(col-1, ..., col-n) crel (co!-1l, «e., cOl-m)

Definitions:

(col,

const, scalarop, setop, colexpr, scalarcomp, setcomp are as

in figure 6-2)
aggfn: set, max, min, avg, sum, count, or 3 user-defined

crel:

aggregate function (also all these with "'", e.g.,
"set’'", meaning duplicates are retained)

one-to-one, functionally-dependent, or a user-defined
column relationship comparator

aggfnexpr: a legal combination of aggfn, col, const, scalarop, setop,

and colexpr

setfnexpr: a legal combination of "set”, col, const, scalarop, setop,

.lsatll

and colexpr

returns the set of values in a column (or tuples in a group

of columns. It is an aggfn, but is also treated separately since
it yields a set value.

(Note that "max(set(Salary))" is equivalent to "max(Salary)".)

s

o i

Semantic Integrity Specification
Figure 6-5. Nonlocal Set Predicates

Types of Predicates (a):

la. aggfnlcol) scalarcomp scalarval
2a. aggfnlcol-1, ..., col-n) scalarcomp scalarval

3a. set(col) setcomp setval
4a. set(col-l, ..., col-n) setcomp setval

(In type 3a, setval is a set of scalars, and in type 4a, setval
is a set of tuples.)

Definitions:
Definitions here are the same as figure 6-4, except:

scalarval: a scalar value computed from the data base
setval: a set value computed from the data base

ND predicates are the same as NI predicates, except that the

process selecting scalarval and setval may reference the data in
the constrained tuple set.

19

Defense Documentation Center

Cameron Station
Alexandria, Va 22314

Office of Naval Research

Information Systems Program

Code 437
Arlington, Va 22217

Office of Naval Research
Code 1021P
Arlington, Va 22217

Office of Naval Research
Code 200
Arlington, Va 22217

Office of Naval Research
Code 455
Arlington, Va 22217

Office of Naval Research
Code 458
Arlington, Va 22217

Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, Ma 02210

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, I1 60605

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, Ca 91106

copies

copies

copies

copy

copy

copy

copy

copy

copy

Official Distribution List

New York Area Office
715 Broadway - 5th floor
New York, N. Y. 10003 1 copy

Naval Research Laboratory

Technical Information Division

Code 2627

Washington, D. C. 20375 6 copies

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps

(Code RD-1)

Washington, D. C. 20380 1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division
Code 5200 '

San Diego, Ca 92152 1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Canter
Computation & Mathematics Department
Bethesda, Md 20084 1 copy

Captain Grace M. Hopper

NAICOM/MIS Planning Branch (OP-916D)
Office of Chief ~f Naval Operations
Washington, D. C. 20350 1 copy

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350 1 copy

