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PHOTOISOMERIZATION OF LINKED ANTHRACENES. A DEMANDING TEST OF
MOLECULAR GEOMETRY FOR INTERMEDIATES IN PHOTODIMERIZATION

ABSTRACT

Valence photoisomerization and photophysical properties of dianthrylmethanes,
(ls:sg, dianthrylethanes (13:2), and tetrabenzo(2.2)paracyclophane (lﬂ) have been
examined. Flourescence yields and lifetimes are significantly a function of the
bridging group for the linked anthracenes [e.g.,’T?(ethanes) >‘r?(methanes)].
Quantum yields for photoisomerization (¢]2). on the other hand, appear to be more
a function of the 9' substituent group Y. Evidence for emission from a weakly
stabilized excimer-like state is presented for la, whereas similar experiments on
1c-e in which "sandwich dimers" are produced by 254 nm photolysis at 77 K reveal
only normal anthracene flourescenece. The effects of structure on photoreactivity
and signlet excited state decay for the linked anthracenes are mechanistically
consistent with singlet lifetime-1imiting formation of diradical intermediates
which partition to reactant and photoisomer. The geometrical requirements for
excimerization exceed those for photoreaction of proximal anthracenes, suggesting

a subordinate role for excimers in photodimerization.




SRR SR ST A5, IR BRR IR AR

Sir:

We have examined the photoisomerization and emission characteristics of 1inked
anthracenes l, which represent a graded series of molecular constriction ending with
the rigid tetrabenzo[2.2]paracyclophane, 1f. Our results are informative with regard
to the nature of necessary intermediates in anthracene photodimerization. The data
are presented in Table I.

Ekglmgxg. Sandwich-1ike excimer states have long been assumed (by virtue of
similarity in structure to photodimers) to be intermediates in anthracene photodimer-
jzations, and a number of experiments have been interpreted as supporting this v‘iew.4
Examination of models of the linked systems l, in particular those with a one-carbon
bridge (lgag), revealg that the intramolecular counterparts to excimers should be
strained, beyond the normally expected4d 5-10 kcal/mol excimer binding energy if they

assume a sandwich-like geometry.

The synthesis of sandwich dimers is possible using the clever experimental ap-
proach of Chandross and Ferguson5 involving photolysis of anthracene photodimers at
77°K. We have applied this procedure to compounds lg;g and find only normal fluores-
cence (that observed for 1¢-¢ in glasses at 77°K) after irradiation (254 nm) of photo-
isomers 2c-e in 2-methyltetrahydrofuran glasses. Unusual or long wavelength excimer
emission found for a number of sandwich dimerss’6 is not observed, even on using a
more rigid hydrocarbon g1a556 (3:2, methylcyclohexane/decalin).

Rather different results are provided by 1,2-bis(9-anthryl)ethane, lg. After its
photoisomer %g is irradiated at 254 nm in a rigid glass at 77°K, a strong emission is
observed, the major part of which is very similar to the normal 77°K emission spectrum
except for an 8 nm red-shift. Melting and refreezing the glass restores the normal
spectrum. We interpret the red-shifted emission as resulting from an eclipsed con-

formation of lg. This interpretation is supported by the observation that the 25°C
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Table I. Photochemical and Photophysical Data for Linked Anthracenes l.

X Y o?z o;] 02 r?(nsec)
(a) CH,CH, H,H 0.26 0.55 0.16 1.7
(b) CH,CH, CHyCHy  0.04 s 0.14 2.0
(¢) CH, H,H 0.15 0.76 0.06 S 8
(d) CHOH H,H 0.29 0.81 0.02° 0.3
(e) CHOH H,0CH, 0.05 ) 0.02 0.3
(f) CH,CH, CH,CH, 0.36 0.60° < 0.001% (~0.01)®

A1somerization quantum yield, benzene, 25°; l > %, 366 nm, g > l, 285 nm. bF]uorescence
yield and lifetime in benzene, 25° (single photon counting measurements except where

d

noted). Cref. 1. YRef. 2. SFrom dimethylaniline quenching of photoisomerization

(kq assumed = 10]0 M'] sec'] as shown for 12¢~£¢NQ)°

fluid solution fluorescence spectrum of ]a is abnormally broad and doesn't clearly
show the characteristic vibrational bands noted in most anthracenes and in 15&5.7
The ambient temperature spectrum is presumably that of averaged conformations. The
observations concerning lg are consistent with low temperature studies recently re-
ported,8 in which two excimer-1ike conformations were assigned geometries with dif-
ferent degrees of interchromophore 1nteraction.9

We conclude that 1inked anthracenes lﬁ&ﬁ are negligibly stabilized in the excited
state due to interaction of the aromatic rings. On the other hand, a geometry which
is nominally acceptable for excimerization is available to 13- The striking result
is that photoisomerization proceeds readily for these diverse systems (including lx.

where a high degree of chromophore interaction is revealed in absorptiona). without
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significant penalty for geometrical constraint in quantum efficiency or reaction rate.

We conclude that a sandwich-like excimer state is not a necessary intermediate for

anthracene photodimerization.

Qlﬁﬁﬂlﬁﬁli' Linked anthracenes l have relatively short fluorescence lifetimes.
The results in Table I show moreover that the rate of excited state decay is dependent

on structure. With increasing anthracene proximity (note Table divisions), singlet

lifetimes fall, but not in a way that can be rationalized by the yield of photoproduct.

A mechanism, which accounts economically for the results, involves formation of an

intermediate which partitions to reactant and photoisomer.

e s e 1
1 R 1
kgrke
kr
1-p
2 & 5 I

The ensuing kinetic relationships are kf = ¢f/rf, kr + kd =1 - of/rf, and
P = °]2/kr1f' where kes Ky and kd are rate constants for fluorescence and reactive]2
and unreactive radiationless decay, respectively, and where P is a partition factor.
If kd is < lOssec'] (normally associated with intersystem crossing and triplet

decay),4d’]]’]3

then reactive decay (kr) is lifetime limiting and intermediate parti-
tioning largely controls quantum efficiency.

The variety of geometrical constraints offered by the linked anthracenes (which
significantly affects excited state decay rate but not quantum yieldl4), provides a
clue to the nature of a sufficient intermediate for photoisomerization. Differences
in the arrangement of anthracene moieties largely disappear with the formation of
a 9,9' bond. Identification of intermediate I as diradical s would provide a unifying
mechanism consistent with (1) singlet l1ifetime dependence on X, (2) lifetime independ-

ence on Y, and (3) quantum wastage. In short, the strict requirement for high

10
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Table II. Kinetic Parameters for Photoisomerization of l.a

b
ke k. *+ kg P

la 0.94 4.9 0.31
1b 0.70 4.3 0.05
Ic 0.55 8.6 0.16
Ved

1d 0.67 33 0.29
4

le 0.67 33 0.05
~ .

o <N ~1000 0.36
N~

1

3Rate constants X 1078 sec™!. bcalculated

assuming kﬁh>kd-

reactivity does not include a sandwich arrangement of aromatic rings or even a parti-
cular inter-ring dihedral angle, but more a proximity of two meso positions for sigma-
bond formation. It follows that quantum efficiency for internal cycloaddition will
depend largely on the nature of Y, and the effects observed in lk, £, and { are not

surprising.

The proposal of diradical as sufficient intermediate in anthracene cycloaddition

is supported by current theories concerning reactive radiationless decay.]5

Inter-
mediate g is presumably the "pericyclic minimum" available to S] as the result of
attempted crossing of ground and doubly excited states for the system. The theory
permits that diradical 3 be a common intermediate for l~+¢and g l, in which case
0 + 0y, + % = 1] (excluding unreactive decay of g). Within experimental error,
our results are consistent with this scheme.16

That the geometrical requirements for excimerizat1on]7 exceed those for photo-

reaction of the linked anthracenes suggests a subordinate role for excimers in
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photodimerization but does not exclude their intermediacy in the general case. The
data speak more to the nature of reactive decay of proximal anthracenes, whatever

the degree of overall excited state stabilization of aromatic moieties due to exci-
tation resonance4d or other factors. The issues are: what is the minimum arrangement
of anthracenes necessary for rapid photoreaction and, given that a number of geometries
may be acceptable, is photodimer formation a one- or two-step process? The observed
structure-reactivity relationships for the linked anthracenes provide valuable insight

for both of these questions.

ngggxlgﬁggmgn&i. This work was supported by the Office of Naval Research and the
National Science Foundation (through a fellowship to W.R.B.). We thank Professor
M. Z. Hoffman for use of a fluorescence spectrophotometer and Professor A. M. Halpern

for the lifetime measurements and most helpful discussions.
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