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VALENCE PHOTOISOMERIZATION OF 1-ETHOXYCARBONYL-TH-AZEPINE.
EXCITED STATE ENERGETICS AND MULTIPLLCITY.

Guilford Jones, II* and Laura J. Turbini

Department of Chemistry, Boston University

Boston, Massachusetts 02215

The general importance of photochemical valence isomerization l > % for
systems related to 1,3,5-cycloheptatriene is well recognized.1 Quantitative
studies directed to the identification of excited states responsible for isomer-
jzation and the general location of states for the cyclic trienes are rare.

We supply here such detail concerning the previously r‘epor‘ted'|d isomerization
lg > %ﬂ' The absorption, photosensitization and quenching data fortuitously
combine to provide quantitative information which is normally unavailable in

the absence of triene luminescence.

hv X™ i
? \
a) X = CH,
b) X =10
1 2
& c) X =NR Iy
d) X = NCO,Et

Irradiation of lg in the region of n,II* absorption2 gave %ﬂ in high yield.

Quantum yields for isomeri:ation in solution with and without additives are



Table. Quantum Yields for Photoisomerization lﬂ =% %ﬂ-

[3] Solvent Additive (M) p?

0.08 cyclohexane ——— 0.010
0.09 diglyme — 0.013
0.10 benzene ——— 0.013
0.03 n-propyl bromide == 0.013
0.08 benzene cvclooctatatraene (0.11) 0.014
0.10  benzene ~eneP (0.02-0.08) 0.012
0.10  benzene fluorenone (0.9) (53)C <0.0034
0.09 benzene benzophenone (1.0) (69)¢ <0.003¢
0.007  benzene valerophenone (0.4) (72)C <0.0034

3Rayonet reactor (325 - 385 nm), 30 * 1°C, valerophenone actinometer,
estimated error + 15%. b2,4-d1’methy1-2,5-hexad1ene (ET <58 kcal/mol).
CSensitizer ET’ kcal/mol. dUpper Timit corrected for azepine absorption.

shown in the Table. The Tack of quenching by diene and cyclooctatetraene (for
" which a very Tow triplet energy has been ca]cu]ated3), along with the lack of
sensitization in experiments where sensitizers absorbed >75% of the Tight,
implicate a singlet excited state for valence isomerization of 14.

That a triplet state of lglis available was inferred from its quenching
behavior. Conventional Stern-Volmer analysis of the quenching of valerophenone
photoeﬁmination4 and biacetyl phosphorescence in benzene as a function of [1g}
gave kq t=56+8and 2.5 +0.3x10°M], respectively. Using triplet

4

Tifetimes of valerophenone (8.0 x 1079 sec)4 and biacetyl (4.6 x 10~ 5

sec)”,
quenching constants are calculated (kq = 7.0 x 10° and 5.3 x 108 M']sec'1,

respectively).
Photolysis of 1% in benzene near its onset of absorption using an argon

fon laser (457.9 nm) gave 2d with a quantum yield of 0.013 + 0.004 (ferrioxalate
iy



actinometry). Luminescence of 1d was not observed in benzene at room temperature
H¥aY)

or in an EPA glass at 77°K.
The reactivity of S] and the unreactivity of T] for 1d complete an excited
Ny

state structure - reactivity pattern already in evidence for ig]a’b le

and lg.
The data further allow the relative Tocation of states for lg on the basis of
the following (1) the effectiveness of laser emission (61 kcal/Einstein) at

a wavelength which must be near the 0-0 transition (2) the quenching of valero-
phenone photoelimination at near the diffusion controlled rate,6 (requiring

E (lg) <70 kcal/mol); and (3) the quenching of biacetyl (ET = 55 - 56 kcal/mol)
phosphorescence at a rate short of the diffusion 1imit.6 The following Jablon-
ski diagram is consistent with the data for lg and respects a reasonable n, r*

S - T separation.

(n’ﬂ*) S,

- AV emmmea Tz(ﬂ,-n-)
60 + 1
T T:(n,ﬂ*)
55 + 1
REL E
(kcal/mo1)
SO
-0

Importantly, a very Tow lying triplet (ET <50 kcal/mol), either of a planar,
"resonance" stabilized 8e variety, as suggested for 4N cyclic hydrocarbon pi

3 or similar to la (ET = 47 kca1/mo11b) does not obtain for 1d. However,
My N

systems,
a m,n* triplet at 60 kcal/mol or less seems likely if lg be diene-h’ke.7 This
raises the possibility of an intrinsically rapid8 intersystem crossing to an
unreactive triplet manifold which would account in part for {%2 Tow isomerization
quantum yield and the lack of quenching by a heavy atom solvent (n-PrBr).

Triplet counting experiments did not confirm the efficient formation of a reasonably

- A T T T TS r—



Tong Tived triplet. Thus, 1d was no more than 1/10 as efficient in sensitizing
fw .

the dimerization of 1,3~cyclohexadiene (ET = 5] -~ 52 kca1/mo17) compared with
benzophenone under parallel irradiation conditions. Intersystem crossing remains

a possibility however, if the resulting triplet be very short lived or if energy

transfer be insufficiently exothermic.6

The assignment and location of states for lﬂ provide impcrtant reference points
for the heterocyclic trienes generally. In addition, the indirect photochemical
and photophysical methods employed here may be extendable to such systems

with somewhat unusual chromophores where detection of Tuminescence may be impossible.
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