
r AD—aM 15* OHIO STATE LMIV COLUMBUS COMPUTER AND INFORMATION SC——ETC F/B 9,2
I THE ARCHITECTURE OF A DATABASE COMPUTER. PART I. CONCEPTS AND C—’-ETC(U)

SEP 76 R I BAUM, D K HSIAO. K KANNAN N000l ’e— 75—C—05’73
UNCLASSIFIED OSU CISRC—TR—76 1 pit.

I•~4J~ •
.

1 *

I U n U
_I 2 7 I

I ’.’ ‘~ L ’~-~I U L —
I ’ •

L L

11 1.1 L’~ L
0

H 1.25 ~ L4 11.6
II _ _

MICROCOPY RESOLUTION TEST CHART
NATIO U~. Su.(~u O~ $TmOA~O I — I I I) - A

TECHNICAL REPORT SERIES

L

~D D C

tEI~1PLJTE~~~~~
A

~ 1FUBF1RT~UI~1
S E J ~~~ j~~~i~tFrION STATEME~~~~~

I ~~~~ ~~

~IESEFIEICI4 E EFITEFI

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO
______ __ Ill

I H
(OSU CISRC TR 76 1)

I
I

THE ARCHITECTURE OF A DATABASE CC~(PUTER
PART I: CONCEPTS AND CAPABIL ITIES

I by

Richard I. Baum , David X. Ha iao

Kriehn urthi V*nn.n

I

I
Work perfo r..d under

Contrac t N00014—75—C-0573

I Office of Naval Research

L

I

~~~~~~i~r1öN STA LMENT A

I Apptoved for public releGU

- 
D.~tnbuhon Unlunited

Co~~uter and Infor mation Science Research Center~~
The Ohio State UniversityI Columbus , Ohio 43210

September 1976



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

~~ 

-

~~~

CU~~ T v CLA ~ % ’I~ICATION OF THIA ~~~GE (V~In Th~ a t,.t. r.4)
- ,

I REPORT DOCUMENTATION PAGE READ DirSLUCTIONS
___ BEFORE _COMPLETING FORM

PORT NUNDE
J2.

GOVT ACCE SSION NO 3. REcI . ’rNrs CATA LOG NUMUER

TItLE ~~S4f tM) I. TYF C~~ F REPOF.T & PE~~OD COVERED

Th. Architecture of a Database Ccsputer0 Technical
Part I. Concepts and Capabiliti.sr

~~~~~~~~~ S. P E RFO ~~~I~~G ORG. R EPORt NUMS IR

7. TNOW.1 — - S. C0#ilfip.Ct 0* GRANT NUM SER(. )

I ~~~~ Richard I. /~a*a~ ~ (
~~ NØ~Øl4 75-C-O573~

1David K .ftsiao ‘N _ _ _ _ _ _ _ _ _ _ _ _ _ _Xrishn.murthi/T.nnan 
~ _____ _________________I • PtRIORMING ORGANIZATION NAME AND ADD*ESS 10. PPOG~~~~~~i.EMENT.PROJICT . TA SK

Off ice of Naval Research APEA A WO R K UNIT NUMSER S

Information Systems Program

C Washington, D. C. 20360
I t .  CONTROLLING OFFICE NAME AND ADDRESS ~~~~~~ IIA~~~1

I IL~
P_

c IS. M ONITO R ING AGENC Y N A M E  & AODRESS( if dlil.~~~t 

/ ~~~~~~ ~~ N~ M SER~~ W PAGES
______ 47

Ito.. ConUctlSng Otf ic.) IS. SECURITY CLASS. ,..t thl• rspoif) —

I ISa.
SCHEDULE

L I.. OSSTRISUTION STATEMENT (of 11.1. R.p .f l)
Scientific Officer DDC New York Area _______________________
ONR BRO ONR 437 fl ~ r1~ IBUT!ON STATEMENT :•1
ACO ONR, Boston I - 

A~~~~ cd foi public ~e~eazi 
-

L NRL 2627 ONR , Chicago D thUfiOn limited
ONR 1021P ONR, Pasadena 1_______________________ —

17. DISTRIWIJTI ON STATEM ENT (of ffi~ .b.f r. cS snt.r.d In Block 20, II dlff.rw.l frcu~ R.port)

IS. SUPPLEM ENTARY NOTES

It
IS. KEY WORDS (CcntMu. on r.,.u. .id. U n.c... ’y ond Id.ntlfy by block nu.tb.r)

L Database computer; security; clustering, partitioned content addressable

4 1 memory ; security atom; name mapping; structure memory ; microprocessor ;
-i ~ functional specialization

20. A~~ ACT (C.n~~ u. on ,,v r1 .1* Sf o.c•••~~~ ond ld.ntSfr by block m b.r)

hardware architecture for a database computer (DEC) is given in thisE paper . The proposed design overcomes many of the traditional problems of
database system software and is one of the first to describe a complete
data—secure computer capable of handling large databases.II Thi. paper b.giu. by characterizing the major problems f~~’1ng today ’s
database system designers . These problems are intrinsicall1~~elated to the
nature of conventional hardware and can only be solved by in oducing new

LI DO , 
~~~~~ 

1473 E0 T ON o~ i so s. is OSSOLETI

SECURITY CLASSI FI CAtION OF THIS P

- -
- ~~

*ICU~~TY C~MI A~~~~ SOF THI S PAGE(IP&.. Dm.t.I. ,.~ -

architectural concepts. Several such concepts are brought to bear in
the later sections of the paper . These architectural principles have
a aa3or Impact upon the design of the system• and so they are discussed
in some detail. A key aspect of these principles is that they can be
implemented with near—term technology. The rest of the -paper is de-
voted to the functional characteristics and the theory of operation of
the DEC. The theory of operation is based on a series of abstract mod—
els of the components and data structures employed by the DEC. These
models are used to illustrate how the DBC performs access operations ,
manages data structures and security specifications, and enforces
security requirements. Short ALGOL—like algorithms are used to show
how these operations are carried out . This part of the paper concludes
with a high—level description of the DBC hardware. The actual detail.
of the DBC hardware are quite involved and so their presentation is the
subject of Part II and Part III of this paper .

I
p

:1 1

I:
I
f
I
I

1
I

SECURItY CLASSIFICATION OF THIS PAOE(WP4Sps b~*a £RS.,.C

E

PUFAC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This work was supported by Contract N00014—75-C-0573 from the

Office of Naval Research to the Computer and Inf ormation Science Research

Center of The Ohio State University. The Computer and Information Science

Research Center of The Ohio State University is an interdisciplinary re—

search organization which consists of the staf f , graduate students , and

Ft. faculty of many University departments and laboratories. This report is

L based on research accomplished in cooperation with the Department of

Computer and Information Science.

I 

~ The research was administered and monitored by The Ohio State

- University Research Foundation.

1.
~~

F 

~~

1.

L
PL~~t~ -:i

Ii
NI - ‘- .

UJ ,~~ ~~~~~~~~~~~~~~~~~~~~ 
-

11 T~J ~L



—.-.-—-,- —--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ ———~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~

TABLE OF CONTENTS

Page

L INTRODUCTION 1

1. PROBL~ 1S AND SOLUTIONS 2

1.1 The Problems of Database System Software 2
1.2 The Problems of Building DEC Hardware 4
1.3 Problem Solving Concepts 4

2 • THE FUNCTIONAL CHARACTERISTICS OF THE DATABASE MACHINE 9

C 2.1 A Back-end Machine 9
2.2 The Functional Model 9

L 2.3 The Need for Front—end Support 14

ER

I ~ 3. THEORY OF OPERATION 15

3.1 The Data Mode]. 15

1: 3.2 The Basic DBC Operations 24
3.2.1 The Role of Security Enforcement 25

f 3.2.2 Name Mapping and the System components 26
0 3.2.3 The Operation of the SM, SNIP and MM 29

I t: 3.2.4 The Execution of Record Operations 35

- i-- 4. THE TECHNOLOGY OF THE DBC 41

• 1~ REFERENCES 46

Li

Li
ii
LI

~li ~

- • -

~~~~~~~~~~~~~

•

, 
~~~~~~~

- -- -

~~~~~~



— —_
~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~ 
i_ 

-~~~

__- 
•

1_ i  
-

• THE ARCHITECTURE OP A DATABASE COMPUTER
PART I: CONCEPTS AND CAPABILITIES*

Richard I. Batun, David K. Rsiao and Krishnamurthi Kannan**
• 

-~ INTRODUCTION

A hardware architecture for a database computer (DBC) is given in this

paper. The proposed design overcomes many of the traditional problems of
database system software and is one of the first to describe a complete
data—secure computer capable of handling large databases .

This paper begins by characterizing the major problems facing today ’s
database system designers. These problems are intrinsically related to the
nature of conventional hardware and can only be solved by introducing new
architectural concepts. Several such concepts are brough t to bear in the later
sections of the paper. These architectural principles have a major impact
upon th. design of the system and so they are discussed in some detail. A
key aspect of thea. principles is that they can be implemented with near—
term technology. The rest of the paper is devoted to the functional char-
acteristics and the theory of operation of the DEC. The theory of opera-
tion is based on a series of abstract models of the components and data • -
structures employed by the DEC . These models are used to illustrate how
the DEC performs access operations , manages data structures and security
specifications, and enforces security requirements. Short ALGOL—like
algorithms are used to show how these operations are carried out • This
part of the paper concludes with a high—level description of the DEC
hardware. The actual details of the DBC hardware are quite involved and
so their presentation is the subject of Part II and Part III of this paper.

*This research is supported by the Off ice of Naval Research, Contract
N00014—75—C—0573 and conducted at The Ohio State University .

**The last two authors are with the Department of Computer and Information
Science , The Ohio State University, Colu~~ua , Ohio; the first author is
with IBM, Poughkeepsie, N.Y.

I~i

-~~ -~~~~~~~~ —~~~ -



— .•--———-.--~~---~~~~~~~~
—--—-• 

•
~~~ ~~~~~~~~~~~~~ ~

--
• •

—2—

1. PROBL~ 1S AND SOLUTIONS

1 - A number of major problems have been faced by database designers for:1 a long time. These problems are of a very general nature and have fre-
quently plagued builders of both hardware and software database systems.

• This section of the paper contains a discuOion of these problems and of
the architectural principles adopted in the DBC design which solve them .

1.1 The Problems of Database System Software

A. Name Mapping Complexity
The complexity of database system software is due , in large part ,

to the requirement for name mappin~ operations • Name mapping operations - .
-

conver t symbolic data names, called a query, into memory addresses
which identify where the data named by the query can be found. Since - -
the language which is used to name data is usually far more powerful than
the addressing scheme implemented by the hardware, it is normally nec-
essary to have rather involved name mapping algorithms. Name mapping
algorithms must be highly optimized if they~ are to perform well. In

particular, these algorithms must minimize their secondary storage -•

access requirements. To accomplish this most name mapping algorithms
use very complex auxiliary data structures to guide their operation.

To illustrate these problems consider the difficulties of the

following typical name mapping scenario . - First , the query is used to
. -

access a “directory”. The directory contains informa tion which allows
the algorithm to determine the approximate location of the requested
data (this information thus potentially reduces the number of secondary
storage accesses required by the algorithm) . The information retrieved
from the directory is then processed in some manner to yield secondary
storage addresses. Finally, the secondary storage is accessed and the
data is located . This softwar e name mapping algorithm requires auxiliary - -,
dat a structures in both the directory and the secondary storage. These
auxiliary data structures , which include elements such as pointers , allow
rapid retrie val of data from the secondary storage and the directory. I ~Al]. of these auxiliary data structures must be proper ly maintained.
This last requir ement is the underlying cause for the great difficulty
most contemporary systems have in executing upda t. operations. Update

• •.
~

. —
~

— - — — • • . • • — — — . — .—• . — - — • • .

________ ________
- -

-

-.3-

11 operations make changes to auxiliary structures and so they are frequently
-

very time consuming. A classic example is the process of modifying a
-

~~~ 

1~ network of pointers.

B. Performance Bottlenecks

j  Database system software normally consists of several distinct

functional parts which perform specific tasks. For example, separate

1 software modules which perform query parsing , directory a~cesa , directory
processing , data retr ieval and update, and data security are usually

- 

found in contemporary database management systems. To have a well—balanced

system with high throughput it is necessary for these modules
• to have diverse performance capabilities. Such diverse capabilities are

difficult to achieve when these software modules are usually implemented
with the same underlying hardware. When such performance capabilities

L cannot be met because of inherent hardware constraints, the system

- develops bottlenecks and its perf ormance is consequently degraded . Con—

• temporary database management systems are usually plagued by many such
bottlenecks.

C. Data Security Overhead
Powerful data security facilities are generally a performance hinderance

on contemporary systems. The most powerful data security mechanisms allow
security specifications to be written in the query language of the system.

To authenticate access operations it is therefore necessary to perform
multiple name~mapping operations——one for determining the requested data
and several for determining the data being effected by the security
specifications. The use of name -mapping algorithms to carry out security

enforcement is generally too much of a performance burden to be seriously
L considered in present systems. -

D • Add—on Approach to Security
Security capabilities are frequently just an “add—on ” to present

ii systems. This kind of design philosophy opens the way to not only per—

- . foraance difficulties but also to questionable reliability. With the high

degree of complexity of current systems it is extremely difficult to add •

on a security mechanism which will guarantee that all “backdoors” are ,

ii in fact , closed .



p.- -
~
--.- -

~
- -

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • T~~~. __~_~:i’-

-4- 1
1.2 The Problems of Building DBC Hardware I

A. The Need for Distant Technology
Attempts to build database computer hardware Live been made before (1,2 ,

3,4,5]. These efforts have been plagued by a number of critical draw-
backs. The most serious shortcoming in these sys tems has been their I
reliance on monolithic fully associative memories. Such memories are

not feasible for supporting a large on—line database (i.e., at least 1O9

bytes).

B. Incomplete Hardware Designs -

Many DEC attempts [1,6,7 ,8,9,10] have led to machines that could not
perform all of the functions necessary to suppor t a viable database

p management system. In particular, some of them can support just one data—
—

-

base management function in hardware such as directory processing or data t
retrieval; others cannot support a critical function, such as update, well ,
Previous DEC approaches have almost always lacked a data security cape—
bility ‘-— such an omission makes the use of the computer in a data sharing
environment very questionable indeed. A viable DEC must support all
database management functions equally well.

1.3 Proki Solving Conc~~ts

To overcome the problems described above a number of key design
concepts were used in the DEC . These design concepts include both
architectural principles and design philosophy .

A. Partitioned Content Addressable Memories
The use of hardware content addressing can significantly reduce the 1

need for name—mapping data structures . Content addressable memories
eliminate the need for knowing the actual location of a data item . In
such a memory the notion of “actual location” is nonexistent; instead , L

all data is accessed by specifying its attributes . This kind of access
gives us a very important capability: data items m a y be moved about with- L
out any need to modify name-mapping data structures This is because

few, if any, name-mapping data structures are needed in a content addressable
m ory. This characteristic greatly facilitates update operations.

I
El
U

• • - - - - .. •
~
- - .

~~~
- ---- -- .

~~~~~ 

. j-~~~~~~~~~~ -~_ _ _ -~ • —

- — ~~~~~~~~~~~~~~~~~~~ -
~
-

~~~~~~
_ _ _ _  - —-

- - 

-5-
‘—

I

- A fully associative memory large enough to hold a complete database
is not feasible . However , a storage system consisting of many blocks
(called, partitions) of memory each of which is content addressable is
quite feasible. We call this memory concept a partitioned content address-

able memory (PCAM) . It is possible to build PCAZ4~ of widely varying
performance characteristics. In particular, it is possible to design the

access speed and capacity of a PCAN to meet a particular performance re—

quirement. This flexibility allows us to design three PCA}ts for use in
the proposed DBC architecture with very different speeds and capacities.
As will be seen later, a PCAZ1 of gigabyte capacity is feasible with current
technology.

B. Structure and Mass Memories

- 
-. Since PCANs are block—oriented , it is necessary to have some name—

mapping data structures in the system. Our goal, of course, is to minimize

their use as much as possible. This leads to the architectural concept

( of the structure memory. A DEC employing this concept has two memories.
The mass memory contains the information making up the database and is by
far the larger of the two memories. The mass memory contains only update
invar iant name—mapping data structures . Once an update invariant data
structure is created for a data item it need never be modified so long as
that data item continues to exist anywhere in the database. The data
structures in conventional mass storage are not update invariant ; they must

t be modified whenever the location of a data item changes. The structure
memory contains all of the non—update invariant name mapping information

Li necessary to locate data in the mass memory. To access the database the

system first accesses the structure memory, obtains mapping information,
1 processes it and then accesses the mass memory.
- The proposed DEC employs the structure memory concept. Both the mass

f t  
memory and the structure memc-~~r are PCAIfs. They, of course, have very

• - different functional characteristics •

Li C. Area Pointers
To simplify the name—mapping data structures that are still required .4

by the DBC, a concept called the area pointer is used. An area pointer

- 
indicates the PCAIf partition in which a data item may be found by

- 
employing content addressing. Unlike the location pointeLs used in con—

- - 

t p orary systems, area pointers need not be modified when data items are
moved around within a parti;ion.

Ii



— 
— 

W 
~~~~~~~~~~~~~~~~~~~~ ______

I ~
— 6 —

Conventional mass memories do not support the area pointer concept.
-

Our mass memory, on the other hand, is a PCAZ4 and so area pointer support
comes naturally. Area pointers are stored in and managed by the structure
memory. :1

D. Functional Specialization -

The DBC contains a number of components with considerably different

processing speed and memory capacity requir!ments. The mass storage and
structure memory are examples of two such components. To keep any component

.

from becoming a bottleneck we employ the architectural concept of functional

specialization1. In a functionally specialized system, the components are I
individually designed to be optimally adapted to their function. The pro— ‘

cessing power and memory capacity of each component is determined by its

role in the system. Because all major components are specialized (i.e.,

functionally separate from other components), estimation of their required -

processing power and memory capacity is much easier. In the proposed DEC L ~
each of the major components is a physically separate hardware component.

This approach allows us to build a relatively well—balanced system and to
-j avoid bottlenecks by providing each component with the right amount of

proceesing_power and memory capacity.
-~~~~ •~

The proposed DBC has seven major functionally specialized components;

the keyword transformation unit (KXU), the structure memory (SM), the mass
-

memory (*1), the structure memory information processor (SHIP), the index -

translation unit (IXU) , the database command and control processor (DBCCP),
and the security filter processor (Sn). These seven components are the -~~

heart of a database computer that is able to support gigabyte database ca— • -

-

pacities while providing full, retrieval, update and security capabilities.

B. Look—Aside Buffering

When an update operation occurs it is sometimes necessary to modify -

name mapping data structures. To insure the correct execution of the

queries which follow the update, the execution of queries is normally post— Li
poned until the update operation and all of its related changes to data .. - .

structures are complete. This is because the data involved in an update

[~ ~1this term was suggested to us by B. Peustel.f,-

_____ —
— — —

~~~~~~

—

~

-

~~~~

-

~~~~~~~~~~~

operation could very well be the data the next operation depends on. Thus

update operations can become bottlenecks in contemporary systems.
- - 

- tn our DEC changes to name mapping data structures induced by an update
operation will be much fewer in number and much easier than in contemporary

systems; the changes, nevertheless, will require some time. To reduce the -‘

wait—time, a look—aside buffer is used to store update commands temporarily.
This buffer allows the results of updates to be immediately available to 

- 

-

the rest of the system before they are permanently recorded. These changes

can be stored in the look—aside buffer in much less time than it would
- - 

take to permanently record them in the system. In this way, queries fol—

lowing an update operation do not have to wait for the permanent effects of

that update operation to be actually stored before they are executed.

L F. An Integral Data Security Mechanism

At the outset the security mechanism was made an integral part of the

DEC design. This design philosophy not only allows us to construct a system

that has no “backdoors” but also insured that all access requests are, in

fact, controlled by the DEC’s security mechanism. We achieved this by

designing the security mechanism first and by then designing the rest of

the system around it. The DBC supports a security specification language

that is the same as the DEC’ s query language.
Security in the DBC is provided in terms of two distinct protection mech—

anisms. The first mechanism based the security atom concept [14] requries
some form of cooperation from the creator of the database. This mechanism
achieves enforcement in a rapid and elegant manner and is incorporated in the
DBCCP. The second enforcement mechanism allows the creator wide latitude in

the manner in which he can specify security related information. Since it

generally requires more (and different) processing than the first, the second

mechanism is incorporated in a functionally specialized component, the security

filter processor (Sn). Such an architecture tends to lead to good performance

while ensuring that security is not compromised.

G. Performance Enhancement by Clustering Techniques

A powerful clustering technique has been incorporated in the DBC, which

allows the creator of the database to optimize access times. The placement

of every record into the DEC can be controlled (in terms of its properties) 

-. . - -- - ---- . -
~~~

-
~
-- -~

-
- *

- ì ~H by the creator of the database in such a way that retrieval of records
with similar propertie s may be accomplished with minimal access delays.

H. Advanced Technology

A database computer for the near future should take maximum advantage -

of the technology that is likely to be available then. This design phil—
‘ •

osophy is especially important in an era of rapidly developing technology

such as the present one. The significant developments expected in the area
of high speed bulk storage (semiconductors: CCDs and dense RAMs, magnetic
bubbles and electron beam memories) and low cost processing power (micro—
processors) dictate a major rethinking of conventional machine archi-

tectures.

For example, an all—electronic storage component may replace the fixed
-

head disk as the fastest bulk storage device~in the system. Since these r
all—electronic fixed head disk replacements will offer at least an order of

magnitude improvement in access time, they will allow powerful data organi-
zations that were previously not feasible to become practical as well as

allowing a significant increase in the throughput of certain database

system components. Low—cost random access memory will allow the widespread

use of very large data buffers and independent functionally specialized

memories throughout the system. Low—cost microprocessors coupled with low—

cost bulk memory will allow parallel processing techniques to be used to - -
construct memories with powerful search capabilities .

~-_j

-1

__________________________ ______
-
__

-:
—

_
~T~~

—9—

2. THE FUNCTIONAL CHARACTERISTICS OF THE DATABASE COMPL’TER

The database computer must communicate with external systems and so
a DEC interface must be defined . The functional characteristics of the
DEC provide such an interface. The DEC functional characteristics define
the data management and security features supported by the DEC and show
how commands are sent to and executed by it -

21 A Back—end Machine

The DBC is not a general—purpose computer and does not have a typical
operating system. Instead, it is a separate machine dedicated to data—

- base operations, Other computers and systems communicate with the DBC

H by using DEC access commands and by sending or receiving database information .
H

-
The decision to design the DBC as a back—end machine to support database
operations in a general—purpose computer system is a result of applying the
concept of functional specialization. A number of advantages accrue from

• this decision (11]. First, the DBC is not constrained to be used with

t a particular kind of general—purpose computer system. Second, more than

one system can share a DBC. In this way, the back—end DEC can serve many

front—end computer systems. Third, several DBCs can become part of a general—
purpose computer system to facilitate distributed database applications.

This interconnection could be done with a geographically wide—

-
spread communications network. Finally, all DEC access channels can be

identified and controlled. This is necessary to insure that no “backdoors ”
into or out of the DBC exist.

We shall collectively call all of the systems which communicate with

-

- -

the DBC the program execution system (PES). - We aggregate all these systems

into one conceptual entity so that it will be easier to describe the opera—
• - tion of the DEC.

2.2 The Functional Model

The DBC proposed here implements the attribute—based model. This
- ‘ ? model has been extensively studied and is particularly well—suited to

- supporting contemporary database functions (12,13,14].

~ —••—~~ --- ------ -- - - - - - -- - ___i_ __ -- - -- ---- -- ~~~~~ --~~----

P —“-
-~~

— -
~~
-- - - -

— _ _ _ _ _ _ _ _ _ _ _

—10—

A. Queries — The Symbolic Data Names Used by the DEC .1
Our definition of a database starts with two terms : a set AT of

“attr ibutes” and a set VA of “values ” . These are left undefined to

allow the broadest possible interpretation. We shall denote a member

o f A T b y a n d a.~~~.r of VA by v.
A record B is a subset of the cartesian product AT x VA. To simplify

the notation we will assume without loss of generality that in a record
all attributes are distinct. Thus , R is a set of order ed pairs of the
form :

(an attribute, a value) . .1~

Records are physically stored in the mass memory. The set of all -~~~~

records in the mass memory is called a database (DB). The database may
be partitioned into subsets called files. To distinguish among several

files , each file is given a unique name F , called its file name.
The keywords of a record are those attribute—value pairs which

-

characterize the record. In practice it is useful to consider only
‘ a

succinct keywords. We shall denote a keyword by the notation K.

A keyword predicate T(K) is true for a keyword K if K satisfies the

condition specified by T. The most commonly used keyword predicate is . .

the equality predicate E(K) which is true for K when K is the same as a -

certain keyword, say, K’. For this special case, we shall denote the key—
word predicate by simply K’ . Another common keyword predicate is the less-
than predicate LT.t(K). This predicate is true for K when the attribute of
K is at and the value of K is less than some value, say, v - This keyword

predicate shall be denoted by (~~~ < v). This predicate can be easily

generalized to handle other relational operators. All queries are made up
of Boolean expressions of keyword predicates. Keyword predicates allow
queries to specify just about any conceivable keyword property. -

A keyword predicate is true for a record R if some keyword K in R

satisfies the keyword predicate. A query is a proposition given by a -

Boolean expression of keyword predicates. A query is true for R if this

proposition holds for the keywords in R; such a record is said to satisfy
the query. The set of all records in DB (or in a file of DB) that
satisfy a query Q will be called its response set and denoted by Q(DB) U

_____________________________ _ _ _ _ _ _ —-

-~

—11—

(or Q(P)). Every query is written in disjunctive normal form.

IL Q
1V Q2 v . . . vQk

where each conjunct Q~ of the query has the form :

-
T~ A T~ A - ..A T~

where T~ are keyword predicates. Some examples of queries follow. The
query K1 A K2 is true for R when K1 and K2 are both in B. The query

~ / A (Salar y IC 10,000) is true for R when is in R and the re is a key—
word in B whose attribute is Salary and whose value is less than 10,000.
More elaborate queries can be formed if they are in disj unctive normal form .

B , Security Specifications Tb. Protection of Data

A database access or simply an access is the name of a DEC operation
‘which transfer s information to or extracts information from DB. Examples
of accesses are retrieve, insert and delete. Let ACC denote the set of
the names of all the accesses available in DEC. Let a member of ACC be
represen ted by a and a subset of ACC by A.

A security specification is a relation

S~ DB + 2ACC where 2ACC is the power set of ACC.

- -
Thus, for a record R in DB, the security specification, S(R) — A, indicates
which subset A of accesses is permitted on R.

A file sanction or simply a sanction is defined as the couple (Q,A)
where Q is a query, and A is a subset of ACC. A sanction (Q,A) induces

I a relation S~FS
Q over records R of the database such that

(A if R satisfies Q.
S.FSQ,A (R) —

~~ACC , otherwise.

Thus, a sanc t ion induces a security specification which indicates that only
the accesses in A may be performed on the records satisfying Q. When B

j does not satisfy Q, all accesses may be performed on it. In this case we
L say that no sanctions of (Q,A) are applicable to R. The sanction is a very

r~~~~~

_

~~

- - - powerful type of security specification since it allows the full power of
-

-
- the query language (i.e., Q) to be used to specify records to be protected .

~~~~~~~~
- Li



• ~~
- — ——  

-12-

Consider a file named F and a set of sanctions where -

S

5 — ((Q~,A1), (Q2,A2) , s . . , (Q
~
,A

~
)}. 

—

A database capability (F,S) indwces m. security specification S.DC~ s over the
elements of R of P such that

S.DCp s (R) — i~l 
S.FSQ , A (R)

In words, S.DC is the set of all accesses granted for R by one or -,F, —

more file sanctions in S and not denied by any sanction of S. Security

specifications are therefore stored in the DEC as database capabilities. -.

The database capabilities specify exactly what access operations are
allowed on records. The DBC maintains database capabilities for each 

-

active user .
For example , consider the database capability {(Q1,A1), (Q2,A2)}.

Suppose Q1 and Q2 specify overlapping sets of records as shown in Figure 1. -

Then the records in the intersection of Q1 and Q2 have the access privileges , ‘ .

A1 fl A2 associated with them.

C. Command Execution —— The Processing of Access Requests -

An access co nand has the form <U ,(F ,Q) ,a> or the form cU ,(F,R) , a>. -

U represents the name of the user issuing the command, a is an access,
(P,Q) represents the response set Q(F) on which the access is to be per.-
formed, and (F,R) represents a record R of F that is to be used in the 

-

access. Before an access is executed, file P must be protected from 
-

unauthorized access by the user U, This is accomplished by first employing
U to locate the appropriate database capability (F ,S). Then for
the command CU ,(F ,Q), a> , th. access a is performed on each record R of Q(?) ~ -~~

for which S.DC~ 5(R) contains a. For the command cU,(F ,R), a> the access a
- 

- 
is performed onR if a is in S.DC,5(R). If any data need be sent to the

— 
- user as a result of the access command, it is sent to the PES to be routed

to that user. El]

El



~
- -

—13—

-
- 

-

Accesses in A1 are Accesses in A2 are
permitted on permitted on
these records these records

L
I~ Records Records

Satisfying Satisfying

Only Accesses in
(A1 fl A

2
) are per-

mitted to the records
in the shaded area. -:

Figure 1. The Security Specification Induced by ((Q 1,A1), (Q2,A2)}

( I



_________________ — _~ iT~~~~~
’

—14—

2 • 3 The Need for Front—end Support -

• *
Before a user issues any access cOmmands for a file, the database 

-

capability specifying the user ’s acces. rights to that file is sent to the 
~
-

DEC by the PES . An access co and is rejected by the DBC unless the appro-
priate database capability is found . It is the responsibility of the PES
to send the correct database capabilities to the DEC and to authorize the
use of access operations by users by constructing appropriate database
capabilities . In this way our DBC design does not impose any restriction t ~

on the nature of the PES ’s secur ity mechanisms or on the authorization - 

-

policies it supports.

- 

L

[1 - i 



— - ~~~~~~~~~~~~ 
— - - -

!~

—15—

3. THEORY OF OPERATION

A model which describes the basic components of the DEC and how they
interact to realize the DEC ’s functional characteristics is now given .

- In the presentation we do not emphasize the intricacies of hardware design.
- Instead , we describe the operation of the components at a -conceptual level.

In Part It and Part III of the paper , we shall show how these components can
actually be implemented with existing and emerging technology.

- The theory of operation is presented in two sections . In the first see-
tion a data model is developed. In the next- section we show how the data

-
~~ model described above is realized by the DBC with the aid of functionally

specialized components .

3,1 The Data Model

- The need for auxiliary data structures arises from the fact that the

• mass memory is not fully associative. Therefore, a technique to minimize
mass memory accesses is required to insure high performance. We shall
employ a PCAM—based mass memory to Implement the structure memory concept.

I The mass memory’s content addreasability allows it to contain only update

invariant mapping structures • The data model will allow us to determine
the nature of the information to be kept in the structure memory.

When a PCA14 partition is used to store records , record placement with-
in the partition does not affect the system’s performance. When a set

-. of records is not placed in the same partition, the system~s performance
can be affected since multiple PCA}1 accesses may be required to retrieve

~LJ the records. To address this problem a database is normally partitioned into

- groups of records whose records should all be physically close to each

other. The exact nature of “closeness” is dependent on the properties of the
memory. For .va~ple, on a disk with. movable read/write heads, records
could be considered close if they are stored in the same cylinder. This

seems reasonable since the cost of initially accessing a cylinder of the
disk is usually much greater than the cost of immediately following sub —
sequent accesses to the same cylinder. The underlying reason for this is

r 
~~ 

th. requirement for mechanical motion to access a new cylinder .
- In the data model we shall consider records to be close when they are

stored in the same partition of the PCAM mass memory . To distinguish

t - J



_ _ _  
-~~~

—i-u—

partitions in the mass memory PCAM from those in other PCAI(s , we shall
call each of these partitions a minimal access unit (MAD).

There are many reasons for placing one record close to another record .
A basic reason, related to performance, is the likelihood that these records
will be accessed simultaneously .. There are other reasons for grouping
records . For example , comparteentalisation of records for security reasons
is one. Precisely what features of these records allow the designer to
deduce a particular record grouping does not concern us at this t ime. Our 1

goal as builders of generalized hardware to support a database system is

not to choose a specific way to partition the database but instead to . -
a -

provide a general mechanism with which many possible partitionings may be
realized. Such a mechanism will be presented shortly.

Let there be L MAUs in the mass memory and let L be called the minimal
access unit count. All L MAUs are of fixed size. We denote the minimal
access unit size by MAUI. Associated with the database DB is the set of 

- 

-

records denoted by M(DB) and defined as {R:R is in DB}. -

If the set M(DB ) is further partitioned into L subsets and each of
these subsets represents the records which are placed in a MAli , then the
union of the subsets is called a database configuration of M(DB) . The - - 

- 

-

size of a record, i.e., the number of bits needed to represent it in
memory is denoted by RI. A database configuration is valid if each 

-

subset X of M(DB) satisfies the constraint 
-

( E IRI ~~ IK&UI •

ReX ‘ H

In other words , a database configuration is vaiid if all of the records of -

M(DB) fit into MAUs of the mass memory. A valid database configuration

results in a memory map which describes how the records are placed in the
mass aemory .~

Each MAD is represented by a unique name called the minimal access
unit address (MALI address), denoted by f where 0 ~ f < L. Let Mf repre—
sent the contents of the f—th MAD.

The DI stor sie structure is defined as the ordered sequence
F - .

( M0,M1,...,M1 1 ).

This sequence represents the distribution of records in the MAUs.
Let F be a file whose records contain just m different keywords de—

noted by K1’ K2,. .,K~. To keep track of the -MAlls in which records con—
tam ing the keyword K~ ar e to be found , we form the set of D(F ,Ki) defined as



________ 
_ _ _ _ _ _ _ _  __________ _ _ _ _ _ _ _ _  ---

m

l

- 

_
i~ -~ —17 —

{fI R is in F -and is in R and Rcflf }.

- 

- 
D(F ,K ) is called a directory entry and each element f of D(F ,K ) is called
an index term. In words , D(F ,Ki) is the set of all names of MAU which con—
tam one or more records with the keyword K1.

-- - The directory of file P is defined as the set DIR(F) defined as

{D(F ,K1),  D(F ,K2) , . ..  ,D(F ,K~)) .

The directory of a file represents the structural information needed to
access the mass storage. We shall see how it is used shortly.

As mentioned earlier, the DBC allows the creator of a file to enhance
performance by allowing records of the file to be identified as a group (or
a cluster) and by accessing such records with minimal access delay . Let us
motivate the concept of clustering and the resulting performance improvement

by a simple example. Let a file F (to be placed in the DBC) have n records

( 
- 

of which we choose four records for our discussion. These four are shown in
Figure 2a.

In figure 2b we have shown an arbitrary placement of records in the

two MAUs that have been made available in the database for the file F. Now,

if a query for retrieval is received in the form, “Retrieve records which

satisfy the conjunct (K1AK3)” , then the DBC has to make two MAli accesses.
However , if the records are placed in the MAils grouped according to the
occurrence of keywords (K1,K2 and 15) in a record , theu the resulting con—
figuration will be as shown in Figure -2c. Such a configuration will facili—

tate the retrieval of all records which satisfy the given query with a

single access to the mass memory.

The above discussion implies two things: First, the creator of the
file has an idea of the type of queries that will be made on the file .
Second, the system (DBC) provides him with a mechanism of effectively con-
veying that knowledge to the DBC. While we, as system designers , cannot
predict how much knowled ge a creator may have of his file usage, we must t~ -~

ensur e that he is provided with an easy yet powerful mechanism to utilize
- - that knowledge to his best advantage . The mechanism that we have adopted

L and shall describe here is capable of being naturally integrated into the
query language used by the users. - 

- 
-~ 



~

- ——-~~~~--~~--~~ - - - - — 
~~~~~~~ ~~~

- .- - - - -
- - -— - -

L—18— - - - - - -

) ,~~~

RECORD 1 H 1X 2 1

RECORD 2 I K~ ~~ 1
1~~0”) 3 rX2 1 1 3 1 1. .
RECORD fl

IL
~~ ~~

.

—

Pi~ure 2a. Records Belonging to a File
-

MAU l M&U 2

_ _ _ _ _ _ U~ I ~1

t K l I ~I 1 -
I K l ~~

-
Figure 2b. An Arbitrary Assignment of Records to MAli.

-

r w ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - ----—- - _

~— - ~~~~~~~~~~~ 
- 

— — - -——-— - ---—. —~~— -- -——— — -

—19—

L’

MAU l 
- 

MAU 2

N~1 
K21 L~J K4

~ 1’3 I ~~l~~~ 15f 1

Figure 2c. An Assignment of Records to MAUs which Results in
t. .J Minimum Number of Access f ,r  Certain Queries

(

-
~~~~~

Ii
L]

4_ f

_J_s~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ —

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
— --

~~~~~~~ 

—

~~

----

~~ 

i— — -
~
--

~ 
—,

~~
- 

-20-
a-

A mendatory clustering condition (MCC) is a query which is used to
interrogate the MAlls assigned to a file in order to determine which MAlls
are eligible containers of a given record . (We use the word “interrogate”
in a literal sense here; i.e., to ask questions about the MAlls.]

An optional clustering condition (0CC) is a query which is used to
determine which M&U ong a set of MAlls will ultimately contain a record. -

A clustering condition (CC) , either MCC or 0CC , is formed by considering I

a disjunctive normal form of a set of clustering keyword predicates (CKPs).
A clustering keyvord (CK) is a keyword which participates in the formation of a 

-

CKP. The set of all clustering keywords is called the clustering keyword 
-

H

A cluster c is defined as the Set of records each of which contain

exactly the same set of clustering keywords. This set is known as the
basis of the cluster. Thus , - -_

Cluster defined by (C i~~
K2s~~

a,
~
Kn) E (R~ cK1~cK2 , . . .~ CK~ £ R}

— Notice that a cluster may be empty if no record in the file satisfies the
above condition. Each cluster is identified by a unique number within the 

-

system. Such a number is called the cluster identifier. An optional clus—
tering condition is associated with a number called a cluster weight (CW).

We shall elaborate on the use of cluster weights shortly.

We now describe how the above concepts can be used to place a record
in the database.

A record for insertion is associated (by the creator) with a single -

mandatory clustering condition (MCC) and a set of optional clustering
conditions (0CC1, OCC2~•••~OCCq}• In addition the record contains a set

of clustering keywords as part of the record definition. Obviously, in or— 
-

der to produce meaningful clusters, a record’s clustering keyword set must
satisfy its 11CC.

- I

I

— —



______________ -_ -~----- —.- -~~~~ — - ---S -‘________________ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—21—

~ j-

-
In order to determine the MAll(s) in which the record could be placed,

we need to know the identities of the clusters whose basis satisfy the MCC
- - l

associated with the record and the MAlls in which these clusters reside .
ObviOusly , if we have to access each MALI to determine the cluster identifiers

- our purpose of performance enhancement would be defeated . Thus-, it is

essential that clustering information is kept outside the MAUs themselves,
perhaps, in the structure memory. Now having determined the set of MAlls

where the record can be placed, we use the ~5ptional clustering conditions
to choose one of the many MAlls determined earlier. This is done as follows. —

Let CW1 be the cluster weight of the optional clustering condition 0CC1.
Then define, for MAli f,

q (CW~ if MAU contains a record which satisfies 0CC1.OW(Mf)~~ E .~
i—i 10, otherwise.

- The record is then placed in the f—th MAD such that,
Yk (OW(Mf)

-
~~

OW(M.~))

The meaning of the cluster weights associated with each of the OCCa is now
- clear. It is to incorporate relative importance of the OCCa with respect

to one another. It may be desirable to set a threshold OT 80 that a
- record is assigned to the f—th MAU only if OW(Mf) ‘ OT.

- It should be noted that the role played by the clustering keywords of

L. a record is minimal in the process of insertion of that record. However,

it plays an important role in the insertion of subsequent records.

-
We now show how the DEC can group records for security purposes. Cer-

tain attributes of a file may be designated as security attributes by the
creator of the file. A security keyword is a keyword whose attribute is a

-

security attribute. Each record belonging to such a file with security

attributes contains a set of security keywords (possibly empty). This
I set defines a security atom. A record is said to belong to a security

I
- atom if and only if its security keywords define the security atom in - -

-

question. The concept of security atoms is due to (14]. In figures 3a,

3b and 3c, we have illustrated this concept by means of an example (19].

L

- Li

_________ _ _ _ _ _ _ — — ~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~

—2 2—
-

(1.4, 16) (11, 13, 15, 1.6) (11, 1.4, 16) -

(12, 13, 15, U) (12, 1(3, 1(4, KS, 1(6) (1(2, 1(4)
(12, 13, 1.4) (1], 13, 1(4, 1(6) (1.3, 1.5, 1.6) ,1
(El , .3,iL5}

-

(13, KS) (1(1 1(2, K4}
(1.3) (11,1 (1 1 . 5W

-

(1.4, 13, ~6}
-

(12, 1.5)
-

Figure 3a. Records (only keywords in the records are shown)
to be Partitioned into Security Atoms • Keywords

-
- 1.4,1.5,1(6 are Security keywords.

Security Atom 0 Security Atom 1 - Security Atom 2

(14,16) (11,1(2,1(4) (1.2,13,1(5,1.6)
(1.1, 1.3, 14, 1.6) (12,13,14) (1.1,1.3,1.5,1(6)
(11, K4, K6}

-~__

(12, 14)
L (1~3,15, 1.6)

a M
Security Atom 3 Seáurity Atom 4

(12, 1.5) (12,13,14,1C.S,r6)
(13, 15} (1.4, 15, 16) -

-_ -_ - -

(xi,13,x.s} - (11, K2, K4 , 15, 16}
(xs)

1!
Security atoms sets Security atom 0 (14, 16)

-and their corresponding Securi ty atom 1 (14)
security keywords: 3e~~~ity atom i (15, 1.6)

. Security atom 3 (Es)
-

- $scvrfty ato.4 (1.4, 15, 16)

Figure 3b. The Security Atoma of the Records of Figure 3a.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

-

- 

-23-

1 -

1 - — —-i 

- - 

- . 

- 

—

- 

S . 

-

L - - Security Ie~~~rd Conj~~ct Security Atoms Satisfying Conjunct

14 0,1,4 
-

15 2, 3, 4

U 
-

- 

0, 2, 4

- 
14 A 15 

- 

-

. 
• 4

E 4 A 1 . 6  . 
- - 0, 4

K S A.16 - 2, 4 
- -

S I .  
14A 15 A 16 

- 
-

- . 

4

S_ I 
-

Figure 3c. Security Atoms Satisfying Boolean Conj uncts of
Security Keywords

L
- 

- .



2 7  
— --‘---

—24—

The concept of security atom can be used to implement a penetration—proof pro—
tection echanisa when file sanctions are specified in terms of security key-
words only. This is so because of two reasons . First , security atoms are
disjoint Ci. e. a record viii belong to exactly one and only one atom) and
second , a file sanction made up of security keywords will apply to either
all records of an ato. or none at all . Thus , it is easy to create a list
of security atom identifiers and the applicable file sanctions (or , better
still , the correspoading access privilege sets). Whenever an access is re- -

quested , the security atom(á) described by the keywords in the que ry or record
are looked up in the list. If the access is permitted by the access privilege
set of the atcuCs) , then the request is accepted; otherwise it is rejected .
It may be argued that a creator may wish to protect his record s at the sub-
atomic level or in a manner which effects portions of different atoms . In
such cases , full search of the file sanctions is necessa ry to determine which - -~

of the file sanctions are applicable to an access request . Thus , the data
model supports two prot ection mechanisms. The first is geared towards reduci ng
security costs to a minimum, while the other aims at provid ing maximum flex—
ibility to the user. For the cake of convenience , we shall call the protec-
tion mechanism based on security atoms Type A prote ction mechanism. The other
protec tion mechanism based on full file sanctions search will be called Type B ‘- t
protection mechanism. 

- 

-

From the above discussions , we conclude that the data model specifies
three steps by which a record may be evaluated for placement. First , the MAlI
where the record is to be placed , is determined by the clustering conditions - -

specified by the creator for the record ; second , the cluster to which it be-
longs is determined by the clusteri ng keywords in the record ; and finally the
security atom (if the creator has chosen to specify file sanction in terms of
security keywords) to which a record belongs is determined by the set of
secur ity keywords appearing in the record.

3.2 The Basic DIC Operations
The basic DEC operat5ons are security enforcement , record insertion

record retrieval and record deletion . We first give a brief description ) - -



- - 
—---------------- - - 5~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~

-
~~~~:: ~~~~~~~~~ 

- -
~~~~~~~~~~~~~~~~~~~~~~~ 

— - .—--- - -- - -  - 
-

—23—

[J
- 

of these operat ions and relate the. to their supporting components. Then

we show in some depth the data structures and algorithms involved in the
- - - 

operations.

- - 3.2.1 The Role of Security ~~forc ent
The security filter processor (SIP) and the database cosmand and control

(. . processor (DBCCP) jointly maintain the database capabilities for the active
users of the system . In order for them to correctly enforce a security policy ,

- - 
the pr oper database capabilities must be provid ed by the PES. A table is

kep t for each user with the database capabilities for each active file .
Let each table entry have the form :

H 
- 

- 
(F ,{(Q1,A1) ,(Q2,A2)~ ...~ (Q~,A~)})

• wher e the set of couples is a database capability.

Co ands of the form

I t
1 (U , (F ,Q) , a) and

(U, (P ,R) ,  a) - .

-
~ 

- 

pass through the SIP or the DBCCP depending on the type of protection mech-

anism chosen by the user. If the creator has chq~en Type A protection

mechanism, the DBCCP converts the file sanctions/into a list called the

atomic access privilege, list (AAPL). The AAPL ~as the form
I 

-

1. (U, F, C (SA15, APD1) ,  
~~~~ ~~~~2~ ’” • , (sANe ,APD~)) )

S

where SAN~ is the n e of the i—t h security atom of the file F and APD~ is

I -
~ the access privilege set associated with SAN~ for the user U. In forming

the AAPL , the DBCCP makes use of all the DBC components except the mass

I -

memory and the SIP . This results in minimal delay in creating the list . If
the creator has chosen Type B protection mechanism , the SIP takes over the

- maintenance and usage of the file sanctions .

I Records are sent into the DEC by way of commands of the form

- (U , (F ,R ,MCC,(OCC~}), “insert ”)

~~,

When such a comeand is received by the DBCCP, the record to be inserted is

~~

- n
L U

- -~~ -
-

- : - ~~
_

—26—

checked for security clearance with the aid of the AAPL (Type A protec-
tion mechanism) or the file sanctions . If the result of the check indi-
cates that the record may be inserted, then the DBCCP proceeds with the -
actual insertion process . -

When a command (U , (F,Q) , “retrieve”) is received by the DBCCP, .
—

the query Q undergoes a similar check. If the check is successful , the
mass memory is instructed to retrieve the relevant records which form the
response set Q(F) . Each record in the set Q(F) is tagged with the user

-

identification and file name , (F ,U ,R) . If the user has specified Type B

protection mechanism, then the retrieved records are subject to a security
check by the SIP before the records are passed on to the PES. This is
because the records may contain keywords (in addition to and including -

those that are required to satisfy the query Q) which satisfy the query
parts of file sanctions . The access privilege sets of such file - -

sanctions then become applicable to the records . As a resul t some of the .

retrieved records may not be passed Onto the user . Such a drop in pre— p

cision is part of the price a user pays for the wide latitude the system
-

-

provides in specifying security information.
To execute the command (U ,(F ,Q) ‘delete ’) the query Q is put through

a similar check. If the access “delete ” is not granted , the command is
rejected . If the access is granted , the mass memory is instructed to
proceed with the access . In case of type B protection mechanism, as each
record is accessed, it is sent to the SIP for a check against the set of
file sanctions. The rationale for this check is the same as the one

given for the “retrieve” command . If the check is successful , the mass 2
memory proceeds to delete the record from the database; otherwise , the

record is not deleted . [1

3.2.2. Name—Mapping and the Systea Components

The retrieve and delete coismands both employ Q as a para meter. The —

subsequen t processing of Q that is necessary to execute these commands . -

had the greatest effect in determining the architectural components of the -

system. We shall now provide an introduction to these components.

U - -- — - -- -- ---- - -
~~~~~~~~~~~

-—-—
~~~~~~~~~~~~~~~~~

“

~~~ 
- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- . 
- 

— 2 7 —

A query Q in these coimsands is in a disjunctive normal form as follows:

- (T~A . . . A T1 )v ...v(T~A ...A T )
U1

I where T1 are keyword predicates . The i—th conjunct of this query is de—
noted by Q . To form the response set Q(F) the mass memory must be given
two arguments: a query Q and a MAU address f. Given these arguments the

- 

mass memory will locate all records in M~ that satisfy the query Q. We
had earlier seen that each of the index terms in the directory entry of a
keyword defined an MAU address f .  In the light of later discussion (on
clustering techniques and the secur ity atom concept) it became apparent

that the index terms must carry information not only about MAli addresses
but also about cluster identifiers and security atoms. Thus an augmented
directory intry for a keyword K of file f is defined as

¼ D(X ,F) C (f ,c,s) I 3 R 3 ReMf~ R € cluster c, R c security atom s and K c

The triple (f ,c,s) will be called an augmented index term. In cases

where the user has chosen Type B protection mechanism the security atom
- 

concept is not applicable and the third member of an augmented index
term is null. In future discussions, by index terms we will always mean
augmented index terms. To obtain MAUs for a conjunct Q~, all index terms

I for keywords satisfying each T~ of the conjunct must be found. Once found,
L ~ a set intersection operation is performed over the index terms . The

- resulting index terms are those whose keywords will make the conjunct Qi

• - true . The MAU address is derived fr om these index terms are then used as

S 
arguments to retr ieve records from the mass memory.

( t An algorithm which forms the response set Q(F) is given in Figure 4.
In the algorithm, we have temporarily ignored security considerations for
the sake of clarity . In line 5 of this algorithm, the index terms are
fetched from all directory entries (D(K,F)) whose keyword K satisfied
and are placed in a set w(j ) .  In line 8 MA lI addresses are extracted.

I - In lines 3—6 , one set w(j ) is formed for each keyword predicate

-

-

~

•

- 
--



___  ~~~
- 

- -~~ ~---- - r ~

-4
-

~~~~ H -

1 -1

0. begin -

-

1. For I — l,2 ,...,ad o I

2. begin
3. ~2~~j — l,2 ,...,n1~~~ d
4. begin

w(j) {(f ,c,s)I K satisfies T~ and (f ,c,s) c D(F,g3)
—

7. e(i)~
8. e’(i). (fI(t-,c,.)te(i) } L-.
9. end

10. z {(Q k,f) f £ e’(k) } L
11. Q(P) k U (*IlgMf andEsatj sfi .e Qk)

-
~~~~

( Q , f)cZ I -
12. ;

E i 1
Figure 4. A Name Mapping Algorithm

;: ; j

L S



____________________________________ ____________________________ - - — ~ 1

— 
- —29—

1 - - -

T~ in Qt• Then in line 7 these sets are intersected to give the set 6(i) .
Li In line 8, the MAlls to be searched are extracted from the index terms

obtained in line 7. (Line 7 carries out an intersection operation since
the keyword predicates of Qi are ANDed together.) In lines 1—9 , a set 8(i)

- 
is formed for each conjunct Q~ and finally in lines 10—11 the records are

{J - retrieved from the mass memory. In line 10 the response set is defined as
the union of the following sets

C R  I 1€ Mf and R satisf ies Qk }

This algorithm also shows how the data structures defined in the data model
are used for name—mapping . The content addressability employed by the DEC
will , in fact , allow the actual realization of the data structures to be
just as simple as those illustrated here.

- 

This algorithm shows us what the structure memory must do. The 
•

structure memory must store directory entries and be able to accept a key—
word predicate T and retrieve all index terms for all keywords which
satisfy T~ (as in line 5). Clearly, the structure memory will also have to

- . be able to add, delete and modify directory entries as well. It also shows

ç us the natu re of the structure memory information processing, namely, set

manipulation (1Ln~~Y). ~~ssà it,servations help us outline the architecture
of the DEC. Th~ DEC contains at least six functionally specialized corn—

- 

ponents: the database command and control processor (DBCCP) , th. security
filter processor (SIP) , the mass a ory 000, the structure memory (SM),
the structure memory information processor (SNIP) , and the index transla—

- 

tion unit (EnS). The DICCP is responsible for translating DBMS command s
into lower level c~~~~ nds for the mass memory and coordinat ing the actions
of the other components. The )I1 contains DE , the * stores the directory

- 
entries and the SNIP is a set operation processor. The index translation - -

-

- unit is responsible for extracting the MAli addresses from the augmented

• index terms • The organization of these components to a first ord er detail
is shown in Figure 3. We shall see later in Part II that a seventh corn—
pon.nt , namely the keyword transformation unit (EXU) , is needed from .the

Li point of view of an efficient physical realization of the DEC.

{ 3.2.3 The Operation of the SM, SNIP and ? 4  : - ~

- The theory of operation continues ,dth an exposition of the operating

•



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - 

~

Information Path L——— - Control Path

H
SMIP SM

/
/ i - S/

S /
/

/
/

/
/

/ 1~~/
/

I XU /, KXU

DBCCP: Data Base
F o PES Command &DBCCP Control
To PES Processor

KXU: Keyword
,‘ \ TransformationMM: Mass UnitMemory / SM: StructureSFP: Security MemoryFilter SMIP: StructureProcessor Memory L I

SFP • MM information -

Processor
I X U: index

Translation
- -

- Unit

Figure 5. Architecture of DEC

-
—

~~~~~~
-
~~~~~

-- _____

principles of the structure memory, structure memory information processor ,
and the mass memory. The carefully tailored functional characteristics of

these components allow them to readily carry out numerous steps of DES
ç algorithms to be given. The description of the components that follows is

1 only conceptual in nature, the actual hardware organization used to

- r i realize them is given In Part II and Par t III of the paper .

Li
- - ,, A. Structure Memory

The SM is the repository of the directories of the files in the DB.

—
Each index term (f ,c,s) of D(F ,K) is stored in the SM as the tuple (F,K,f,cs).
The contents of the SM may therefore be viewed as a set , known as structural
memory basis SME , of such tuples defining the directories of all f iles .

The SN retrieve command has the form SMcretrieve , (F ,T)> where F is a file
—

- - - - name and T is a keyword predicate. The command is carried out by constructing
a set containing all index terms of each directory entry D(F ,K) whose keyword

-
~ K satisfies T. Formally , the ’~M executes the command SMcretrieve,(F ,T)> by

- outputting the set

{(f ,c,s) (F ,K,f ,c,s) € SMB and K satisfies T }

- The insert command has the form SM-cinsert,(F ,K,f,.c s)> and is executed

by adding (f ,c,s) to the set D(F ,K). In other words, the insert comeand is
executed by replacing SMB with SME U (F ,K ,f ,c ,s).

The delete command has the form SMcdelete ,(F ,K ,f ,c ,s)> and is executed
by removing (f ,c,s) from D(F ,K). Formally , the deletion cimeand is executed
by replacing 5MB with 5MB — (F ,K ,f c ,s).

To model its operations the SM can be viewed as a PCAM with N
content—addressable blocks . The SM partitions the set SME into N subsets,

- designated SMB~, 0 ~ I < N, where N 5 N. Each subset is stored in one or more

r blocks of the PCAM.

Li The retrieve co and is executed by first applying to T a hash

- function which maps it into an integer j where 0
~
j < N. Then the set

- -
p SMB

J
is searched by accessing the appropriate block(s) of the PCAN to

locate and retrieve the tuples (t ,K ,f ,c,s) whose keyword K satisfies T.
Insert and delete co ands are executed by applying to K a hash function

which maps it into an integer j. The tuple (F,X,f,c,s) is then added to or

• removed from the subset SMBJ
by accessing the appropriate block of the PCAZ4.

_ _ _ - - ~~~~- ~~-~~~~~- -~~~ ~~~~~~~~~~~ - - ~~~~~~~~~ - -~ - , -~~~~~~ •

~
— — --5- —- —

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -: - - - ~~~~~~ -
- - - —-- - -~~~~~~ - - - — - - -  -~~~~~~~~~~~ - - - - - ~~~ -

.32.- 
-

The nature of the hash function will strongly influence the kinds of
keyword predicates that may be used by the system . This issue along wi th 

-

a description of how the sets are stored in the PCAN and how

SM and its PCAN is realised are addressed in Part II of this paper. 
- -

Consideration is now given to the fact that the SM is a two—level
system containing a directory entry storage and a look—aside buffer. We

now extend the aforementioned operations to the two—level SM. Let the 
- -

directory entry storage be represented by the set SMB defined above. The
time required to update this set (i.e.,  add or delete an element) is
fairly long compared to the time required to update, say, a fast access
semiconductor RAM memory. The look—aside buffer allows SM update opera— - -
tions to appear as though they were executed Immediately.

The look—aside buffer may be conceptually represented by an ordered
set LKA of SM update commands : -

co and1, command2,. . .  command~

where command1 preceeded commandj +i in time. The look—aside buffer has 
-

two functions: it acts as a command queue for the SM and it contains the g

information which allows the SM to appear updated. The look—aside buffer

would be realized with high—speed random access memory and so its access

time would be much less than that of the directory entry storage.
Whenever an update command is received by the SM it is placed in LKA. - - 

-

If an insert (delete) command negates the effect of a previous delete

(insert) command then the insert (delete) command is not added to LKA .
and the negated delete (insert) command is removed from LICk.

To execute a retrieval command the two level SM first examines
LKA for commands which add index terms (f ,c,s) to directory entries []
D(F,K) whose keyword K satisfies T. All index terms so found are output.

Then the set SMB is searched for additional index terms. When an index 
-

term (f,c,s) of a directory entry D(F,K) whose K satisf ies T is retrieved -

from SME it is checked in the following way: If there is a command in
LKA to delete (f,c,s) then that index term is t~ot output from SM.

B. Structure Memory Information Processor I .~

The SNIP is a processor for set manipulation. Set manipulation

[ 3 :  

~~~ - - -~~~~~~~~~~~~~~~~~~~~~- -~~~~~- -

_____________ —

1.-

S—i

S -
operation are performed by maintaining an intermediate set in the SNIP
while the argument sets which modify it are passed through the SHIP .
The SNIP’s intermediate set is designated SW and consists of couples
(m,d) called SHIP data units . The first part a of the couple is called
the

~~~~~~ 
and the second par t d is called the data . Operations ~re per—

j formed on SW by identifying a SNIP data unit and by performing an oper—
ation on it. There are two kinds of SNIP commands. The first kind of

SNIP command is represented by SMIP<m,g> where m is a key and g is a
L - manipulation function. The manipulation function can do two things:

• first, it can specify how the data part of a SHIP data unit (m,d) with
key m should be modified; and second, it can specify what should be done

- 
if no SHIP data unit with key in is in SW. When no SHIP data unit with

key a is found and no action is specified by g then SHIP takes no action.
- - 

The second kind of SNIP command has of the form SMIP<g> where g specifies
an action that is to occur.

To illustrate the set manipulation functions, let us show how the —

- SNiP can be used to perform an N—set intersection. Let X~ represent one

of these N sets and let xjj  represent an element of X~. The algorithm

- which performs the intersection is shown in Figure 6.

- In lines 1—4 of the algorithm a SHIP data unit of the form (x~~ 1) is

- created for each element of X1. In steps 5—11 each element of the sets

-
~ X2, X3 , . . . ,  X is examined and whenever a matching SMIP data unit is

found its data part is incremented by 1. When these steps are corn—
pleted , SW contains SNIP data units which indicate in how many of the

- 

sets X~ each element of X1 appears. Those elements appearing in all sets
— 

- 

make up the set Xl~~••~
Xn• In line 12 all such elements are retrieved

frorn the SMlP. -

The SNIP is also realized with a PCAN . To model the operation of the

SHIP, a PCAN with H content—addressable blocks is used. The SNIP parti—
- 

r tions the set SW into N subsets designated SWBi wher e N ~ H. Each subset
is stored in one or more blocks of the PCAN.

- 
The command SMI& m,g>  is executed by applying to m a hash function

which maps it into an integer ~ where 0 s j < N. Then SWB
J 

is searched for
a SNIP data unit with the key a. If it I. found , g is applied to its

r -,

I -- - I

LI



--~~~~~~~~~~~~~~~~ 5- 
— -w- ----- - 

~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~- ----- — ~~- — - - - - - - - - - - — -- 5- -

.

Li
0. beg~~ - 

-

1. Par each element Xli of X
1 g2

2. begin

3. execute the command SMIP-cx 11, “create (x11,1)”> -

4. end
5. F o r j — 2 , 3, ..., N d o  -

6. begin 
- -

!~~. each element xj j  of
- - 8. begin

9. execute SMIP<x~1~ “replace (xji~
d) with (x~1~d+l)”>

- 10. -

11. !.~~.
12. Execute the SNIP<”retrieve the key a from all (tn ,d) where d — N”>

13. end •~~~~~~~~ 

-

Figure 6. An N—set Intersection Algorithm Using the SHIP
t

i - i
i t  ~- -~1

I I



_ _

- 
__________- 

- - -

- 
data part. If no SHIP data unit is found , then any other action that g
specified is carried out on SWB~. The cOmmand SNIP<g> is executed by

- ordering each block of the SNIP PCAM to perform the operation specified

- by g. In Part II of this paper we shall go into detail about the con—
L 
~ struction of the SHIP and its PCAII.

L -

C. Mass Memory
The )*~ is the repository of the database itself. To retrieve data

from the DB, queries and MAIl addresses in which data reside must be
given to the NM . (These MAIl addresses are normally provided by the SM ,
SHIP and IXU after processing a given query Q.)

Mass memory commands have two forms . The first form MM<a,U,(F ,Q) ,f>
specifies an access type a, a user U, a query Q, and a MAIl address f. It

- - - - is executed by performing access a on the records in Hf satisfying Q.
While executing this command the NM may use the SFP to validate an access.
The second form, IIka,U ,j I,fi- , is used to insert a record B into -

Hf .

~1 -

3 .2 .4  The Execution of Record Operations

In this section we discuss the record insertion, deletion and re—

I - - 

trieval operations. We indicate the basic requirements of these opera—

I tions and give algorithms to show how these operations are carried Out by
L -- the DEC’s components.

- Record retrieval ~s simply the formation of the response set Q(F);

an abstract algorithm to do this has already been given in Figure g. An

- equivalent algorithm, using explicit SM, SHIP and NM co~mands is given in

Figure 7. This algorithm executes the DEC retrieval cosinand <U , (F,Q) ,

- 
- 

“retrieve”> as discussed in Section 2.2, where Q has the form

(T1 T1 ... T1 )v...v (Tin Tm ... Tin ).
1 2 n1 1 2  rIm

L

1 - —  -~~



- -  — — — - -- - - — -  -—-
.

- 
-__________ —-5 -

—36—

1. !!&IA
— 

2. Q (P)~~~~( }

-l 
- 

3. ~~E ( )

4. ~~~ I — 1, 2, ... , a do
5. begIn Li
6. SM<F,T~> ; S11IPc”reset”>
7. For every element (f,c,s) in a] ~~
8. be~~~ - -
9. SHIPc”create ((f,c,s),l)”>
10.

11. For j — 2 , 3, ...,n1 do LI- - 

12. be~~~ 
- -

13. SN<F,T~>

14. For every element (f,c,e) in a
1 

do
15. begin
16. SMIPc(f), “replace ((f ,c,s),x) by ((f,c,s),j) if x —

17. end

18.

19. w SMIPc”output key (f ,c ,s) for all elements ((f ,c,s),d), where d—n 1”>
20. E U ((Qi, (f ,c,s) (f ,c,s) c w)

21. end

22. E’ ( ) 
-

23. For every element (Qk, (f ,c s)) in E do
24. begin

25. IXU<Extract (f) from (f ,c ,s)> Li
26. Z’ V U ((Qk , (f))
27. end

1 - 28. For every element (Qk , (f))  in V do
29. begin

30. Q(F) Q(F) U NM-cretrieve , U , (~ ,Qk) ,  (f) >
31.

32. end - - - -

Figure 7. An Algorithm to Form Q(F)



~~~~~
— -

~~
— ~~~~~- ~~~~~

- — - - -

—37—

--- In lines 5—21 of the algorithm, one conjunct Q1 of the query is

- processed . In lines 6—10 all index terms for T~ are fetched from the SM
-- L and data elements are loaded into the SNIP. The command SNIP(”reset”>

clears the SHIP storage areas. In lines 11—18, all index terms for each
are fetched from the SM and the elements of all of these sets are

-
intersected in the SHIP. The SHIP command in line 16 insures that multiple

- f J occurrences of the same index term for one keyword predicate will not
affect the intersection process by incrementing the occurrence count x of
a SNIP data unit at most once for each T~ In line 19 alJ. index terms

- in the intersection are retrieved and in lines 22—27 they are used to build
- a set containing the information needed to issue NM commands . In lines

3—21 all conj uncts are processed and all of the inf ormation needed to
- - access the NM is then placed in Z. Finally, in lines 28—32 the NM com—

-

• mends are formed and executed resulting in actual retrieval of the
records .

The SM, SNIP , IXU , NM and DBCCP would operate in parallel to execute
the above algorithm. The DBCCP would execute the control statements of

the algorithm while the other components are executing commands. To do

this the DBCCP would order a component to execute a command and then con—
tinue to process the algorithm as far as possible. The SM, SNIP and 1KV
operate in a tightly coupled parallel fashion. Whenever an element is
output from the SM (line 6 or 13) it is sent directly to the SHIP where

it is processed (line 9 or line 16). Whenever an element is output from

- SHIP (as in line 19) it is directly sent to the 1KV for translation .

I L (This parallelism is not evident in the algorithm] . The *1 can also oper—

-
ate in parallel with other elements. The controller can create NM commands

on—the—fly when it executes line 26 and send them directly to the NM. This
technique would be equivalent to the operations specified in lines 26 and

28—32. The NM could also execute commands for other queries while this
£ algorithm was being executed . The SFP would , of course , also be executed

in a parallel with the algorithm to check (if necessary) all records
leaving the DEC.

1 Record insertion requires three major operation s . First , the MAU

•~ I which is to contain the record is chosen. Then , the information in the

- I~

-- - --5 — - - ~~-- - — -- — —---—----——, —~,---————-~~~~~~~~~~ . -~~~~~~~~~
-:--

~~~ :-~~~

38

structure memory is updated . Finally, the record is placed in the mass
memory. The last two operations are carried out by the structure memory
and the mess memory , and we shall discuss them later in the paper.

The MAU selection operation is a two step process . First , all MAIls
satisfying the mandatory cluster condition associated with the record are - - 

-

found; second , the HAIls are examined to find the one with the greates t
optional clustering weight. Since both the MCC and the set of OCCs are
queries made of clustering keyword predicates, the SM, SHIP and IXU can -

once again be used in parallel to extract the required MAU address(es). 
- -

An algorithm which does this is given in Figure 8. In this algorithm 
-

the mandatory clustering condition for the record to be inserted is

represented by 
-

MCC NCQ1 V MCQ2 V.. • V M~Q~

where MCQ1 is a conjunct of clustering keyword predicates of the form

(cKP~ A CKP~ A. • A ~j~pi)

There are n optional clustering conditions (0CC1, 0CC2, ... 0CC,~) each of 
-

which is in the disjunctive normal form . Each 0CC1 is associated with a
cluster weight cw1.

In lines 1—5, the set of index terms (f ,c,s) whose cluster component - -

identifies the cluster satisfying the conjuncts of the MCC are determined.
In line 6, all of these index terms are identified in one set w, and in

line 7 , the MAIls are extracted and placed in w ’ . The SM and SHIP are -

used in line 4 to obtain the index terms while the IXU is used in line 7
to extract the MM!. In lines 9 thru 12 , the OCCs are processed in a - -
similar fashion by the SM, SHIP, and the 1KV to produce the set e. In line
13 and 14 the total cluster weights a8sociated with each f in w ’ are calcu— 

I 5;

lated . Finally in line 15 the MALI with the largest weight is chosen .
Like the record retrieval algorithm, this algorithm requires three

basic operations — directory entry retrieval, set intersection and index

translation.

The process of physically adding a record or removing a record from

the mass memory is quite simple due to its content addressability. The Li

S Li



I 
Li - .

H Let MCC E NCQ1V NcQ3 V ... V NcQ

OCC~ E ocx4 V OCQ~ •.. V 0~Q

1. begin
2. f o r i — l , 2 , ... m d o  - -

- 
3. begin

L “• ( (f ,c,s) cluster c c Hf and V R c c - R satisfies MCQ~}

- 

- 
6. w~~~w1 U w 2 U ... U w
7. w’ { f (f,c,s) c w }

8. f o r i — l , 2 , . . . n d o
- 

i_ — 9. begin
10. { (f ,c,s) ( cluster c e Hf and V R £ c — R satisfies OCC1}
11. { f I (f ,c ,s) c 8~ ~
12. 

~~~~ 
S

- 13. ~~~~every f in w’4g
14 (cwi i f f e e

~OWf E
10, otherwise

It 15. Find
~r ~ Wf >

~~
I
~

Y f £

~t i 16.

Figure 8. An Algorithm to Choose an MALI f or a Record

(H

F
-

-
-

Li
_ _ - — _ _ _ _ _ _ _

-~~~~~~

- -
-
- -

~~~~~~~~~~~~~~~~~~~

--—

-40-

deletion process may, however, also require modification of the structure
information in the SM. This will occur whenever the record deleted is the 

-

last record in a cluster that contains certain keywords. When a record B
in cluster c security atom a , and MAlI f is -r emoved from Hf , ths index term
(f ,c,s) must be removed from each directory entry D(F ,K) in SM where K is - . 

-

a keyword appear ing in R but in no other record in the cluster c. To
handle this operation we provide the mass memory with the capability of
determining whether or not a keyword appears in more than one record of a 

-

cluster. Full details of the insertion and deletion algorithms are discussed
in Par t II and Part III of - this paper . 

-

• S

~t I

- I

[1 
~:iii -

--



- 

-41-

4. THE TECHNOLOGY OF THE DEC

The DICCP, SF? , and the 1KV are conventional processors that would be
specially microprogrammed for their task . The SHIP and the 1*1 employ cur-
rently available technology in a new way. The SM can also be built with
available technology but the most povsrfu l SM organizat ions employ new tech-
nology that will become available In the near future.

-
~~~~~ The SM is most dependent on technol~~iial developments. Ità PCAN

-
~ could be built today by using a fixed—head disk as the storage medium .

Each block of the PCAM would be stored on one or more tracks of the disk.
The memory would be accessed by reading and searching the track(s) repre—

-

senting a block. This organization would have two limitations: First ,
the block access t ime would be relatively slow (5mm ~r greater); this is

a potential system bottleneck . Second , the PCAN would consist of many rela—
tively small blocks and so only equality predicates c~uld be readily
handled by the SM. This is because the small block size implies small hash

- table buckets which, in turn , implies that the hash function mus t be used
-
‘ for exact—match searches . This is because inequality searches would cause

- access to large number of small blocks .
The rapid development of electronic bulk memory technologies (CCDs and

RAMs [16] magnetic bubbles [17 ,18] and electron beam memories [15]) may
j make an all—electron fixed—head disk replacement available very soon. This

would allow the construction of a much faster PCAN—based SM which would
- not be a bottleneck. An “electronic—disk” PCAM would still , however, have
-

many small blocks and so would suffer from the same keyword predicate
limitations as a fixed—head disk PCAN.

- i The availability of cheap and very powerful microprocessors opens the
way to a very powerful PCAM organization. This PCAN consists of a small
number of very large content—addressable blocks and is realized by a large
nt~~ er of microprocessor—memory pairs as shown in Figure 9 • This kind of
PCAM would be capable of supporting a much greater variety of keyword

- -
predicates . This is because all keywords of a given attribute could prob —

[I ably be stored in a single PCAM block and so, therefore , any predicate

-
could be applied to all keywords of that attribute with a single access.

~~-1~; ~~ -~
-

- - L i

___________ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

-
- I II

S D

Memories

2 N 
~ 

IPro cessor t 1~~ ntrol1e~ ~ 
—

I i  ~ 
2 1 . . .  IN] .. IPro cessor l

To search the i—th partition - -• of the PCAM all processors I - —• search the i—th sector of •

• their memory in parallel .

71TT N~~~~~~~ cessor

Each Memory consists of 
-
~

N sector s —

Figure 9. The Architecture of the Structure Memory

I

H

Li
L~T~

_ _ _ _ _ _ _  ______ - - - — -  ~~~~- - —-- - 
- - -  -



- 5 -
~~~~~~~

---- - - -
—- ---~~~- --

H

Since almost all keyword predicates used in a database system would, in
- all likelihood, only deal with a specific keyword attribute, it follows
- that most keyword predicates likely to appear in a query would be proc—

(
essable by the SM.

The SNIP (see Figure 10) is primarily a processing element and is
consequently not limited by memory technology. The small amount of memory
required by this component can be realized with current technology. The

t j

SNIP achieves very high speed by using many processor—memory pairs to
execute operations in parallel. The SHIP is feasible with today ’s tech-
nology and could become quite inexpensive in the future as RAMs and
microprocessors become cheaper

The mass memory (see Figure 11) uses a moving head disk to realize a

PCAH. Each cylinder of the disk represents one PCAM block. For high

performance, all of the data on a cylinder is accessed in parallel,
searched and stored in a buffer in a single disk revolution. The mass
memory therefore uses a cylinder—size interleaved buffer memory, multiple
read/write ass~~~ly registe rs and a fast processing unit. This can be
done with current technology. I -

A detailed description of the logical and physical structure of the
S

computer is given in Part II and Part III.

For maximum applicability to current computer systems we designed an
independent DEC with a very simple interface. The DEC directly implements

- the attribute—based data model and a very powerful query language based on
Boolean expressions of keyword predicates. The DEC supports a security

- - specification called a database capability. This construct allows access
privileges to be given to sets of records named by queries . The power of
the database capability comes from its ability to protect any data item 1 -

that is retrievable .
The theory of the DEC’s operation was based on clusters of records of

14

- like properties stored in NAVe (Minimal Access Unit). The structure mem— L
ory contained directory entries that enabled the DEC to determine the
MAIls where records characterized by keyword s were to be found in the
database. The nature of the directory entries and the structure of the
queri es deter -mined the properties of the access algorithms. These prop—

erties, in turn , influenced the structure of the machine . They showed us

_ _ _ _ - - - ----- ~~-~~~~~~~~~~~~~~ - -5 - - .~~- - -5
~~~~



“—-5—~
-
~~ -~~~

-— ---.- 
~~~~~~~ -—~~~~~~~~~~~ ~~~~~ 

_ _ _ _ _

_ _ _ ~~~~~~~~~~~~~~
- -

- --- —~~~--
- - - -

.44.. L I

~ I

~~~~~~~~~~~~~ Each Partition of the SHIP - -

~Procsssor 2[~~~~~ PCAM is realized by a
separate processing element.
All partitions may be

• • processed in parallel. —
• 

- 
. ~~~~~~~~~~

E~~~~~~~~~~ N

Figure 10. The Architecture of the SHIP

S S

Interleaved Disk
Memory

Processor 
- - —1____ ~ ~ -1-

_ _  —

Figure 11. The Architecture of the NM

- -5 J-I—- -~~



-5 —-5-

rr ~~~~~~~~~~~~~~~~~~~~ 

- _ _____-

I 
~- 1 - - -

- the need for- a high—speed set manipulation processor , a structure memory
- that could process keyword predicates, and a mass memory that could

proper ly support MAUs . They also showed us the need for- a way to manage
- 

the MAU5 of the database. To supply this last requirement the DBC supports
- 

a sophisticated clustering mechanism that allows records to be automatic—
- - 

ally assigned to MAlls. The other- requirements ware met by a specialized
component (the SHIP) to do set operations, a PCAN—based structure memory
with very large—capacity partitions that could use hashing to handle a

- broad class of keyword predicates and a mass memory in which MAUs
veze parititioned into clusters to distinguish records with different sets 

- 
-

— I 
of properties from one another within the mass memory. Security enforcement

- -  
was realized by two mechanisms. The first mechanism, introduced to enhance
performance, utilized the concept of security atoms to form clusters of F

I - 
record s that were protected the same way. The second mechanism ( the security
filter pro cessor) used the actual file sanctions to enforce security.
These two types of security mechanisms allow security specifications to be

- I 

readily processed and thoroughly enforced.

Part II and III of the paper gives detailed specifications of the data
and instruction formats of the database computer and its componenents , the
structure, speeds and capacities of the components and the technology re—
quired to build the machine. It will be shown there that the architectural
principles used in the database computer do not require distant technology
and so can be realized in the near future. Preliminary study on how the

L i DEC should support higher—level data models (such as the network model) - -

- is underway. Early work shows that the propsoed DEC can indeed support
high—level data models. -

I- - -— ,

I_ _ i

- 

-
‘

L r

a— - ~~~~~~



_____ 
- - 

- 
- -

—46—

References

1. Coulouris , G. F., Evans , J,M and Mitchell, R.W., “Towards Content

Addressing in Data Eases,” Com~uter Journal 15, 2 (February 1972) ,

95—98. 
-

2. Su, S.Y .W. and Lipovski , G.J., “CASSM: A Cellular System for Very - ;

Large Data Bases,” Proceedings of Ver-y Large Data Base Conference ,

Sept. 1975, 456—472.

3, Orkarahan , E.A.,  Schuster , S.A. and Smith, K.C., “RAP——Associa tive .1
Processor for Data Base Management,” A1I S~ Conference Proceed in~s,

44 (1975), 379—388. 
- J

4. Moulder , R. ,  “An Implementation of a Data Management System on an
Associative Processor ,” Proceedi~~e of the APIPS National Computer

Conference 42 (1973) , 17l~.176.

5. Deliore, C.R. and Berra , P. 1., “A Data Management System Utilizing
An Associative Memory,” Proceedings of - the AFIPS National Computer

Conference, 42 (1973), 181—185.

6. Minsky, N., “Rotating Storage Devices as Partially Associative

Memories,” Proceeding~ of the APIPS Pall Joint Computer Conference,

41, (1972), 587—596.
7. tin, S.C., Smith, D.C.P. and Smith, J.M., “The Design of a Rotating

Associative Memory for Relational Database Applications,” ACM

Transactions on Database Systems, 1, 1 (March 1976), 53—65.

8, Stellhorn, W.H., “A Specialized Computer for Information Retrieval,”
University of Illinois Department of Computer Science Report No.
R.74e637 , October 1974.

:~ 9. Hollaar, L.A., “A List Merging Processor for Information Retrieval

Systems,” Presented at the Workshop on Architecture for Non—Numerical

Processing, October 1974, Dallas Texas.

10. Berra, P.1. and $inghania, A,L , “A Multiple Associative Memory F
Organization for Pipelining a Directory to a Very Large Data Base,”

Digsst of Papers COMPCON 76, 109—112.
11. Canaday R .H ., Harrison, R.D ., Ivie , E.L., Ryder , J.L. and Wehr, L.A.,

“A Back—End Computer for Data Management ,” Comsunications of the ACM t- -

17, 10 (October 1974) , 575—582.

I
--  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  - - _ _

r 
~~ .47.. 

—

~~~~ 

-

4 12. Hsiao, D.K . and Harary, F. , “A Formal System for Information Re—
trieval from Piles ,” Coimnunications of the ACM 17 , 10 (Februar y 1970) ,

IT 67—73.

13. Hsiao, D.K., Syate,ns -Progràmaing, — Concepts of Operating-am&Data

1 Base System~, Chjpts~~~,. Addison—Wesley , 1975.

L ~~~
‘ 1.4 , McCauley , E,J. III, “A Model for- Data Secure Systems,’ Ph.D . -

I r Dissertation, Department of Computer and Information Science, The
Ohio State University (1975). Available as Research Center Report

-
~~~

- OSU.~-CISRC—TR—75 —2 .
15. Hughes, W.C. et. al., t~A Semiconductor Nonvolatile Electron—Beam

Accessed Mass Memory,” Proceedings IEEE, 63, 8 (August 1975), 1230—1240.
16, Hodges, D A , “A Review and Projection of Semiconductor Components

I for- Digital Storage,” Proceedings IEEE, 63, 8 (August 1975), 1136—1147.
17 Bobeck, A H , Bonyhard , P.1 and Geusic, J E , “Magnetic Bubbles—-

- 
An Emerging New Memory Technology,” Proceedings IEEE 63, 8 (August 1975)

~ 
I: 

1176—1195.

1 18. Cohen, M.S. and Chang, H., “The Frontier of Magnetic Bubble Technology,”

I ~ Proceedings IEEE 63, 8 (August 1975) 1196—1206.

1 J &~ 19. Baum, Richard I., ‘‘The Architectural Design of a Secure Data Base —
7 

Management System.” Nov . 1975, Ph.D. Dissertation, The Ohio State Uni—
- -~ 

versity, Tech . Report No . OSU—CISRC—TR—75—8 .

L 20. Baum, Richard I. and Heiao, David K , “Database Computers —— A Step4 [ Towards Data Utilities,” IEEE Transactions on Computer, Dec. 1976,
Vol. C—25, No. 12.

/1

iI~i- 1~

II


