AD=AD34 133 MASSACHUSETTS COMPUTER ASSOCIATES INC WAKEFIELD F/6 9/2
NATIONAL SOFTWARE WORKS,(U)
' SEP 76 R MILLSTEIN F30602- 76—(:-009!4
| UNCLASSIFIED CADD=7603-0411 RADC=TR=76=276=VOL~1

T —

£ | FX) m 2.5
o 32
; o

E.”EEFF

= = 5
i s pe

ADA034133

TIONAL
FTWARE,~
RKS .~

7

_ STATUS REPORT NO. 1

,'
,I
4
7’
7’
7’
7’
7
,/
P USER TOOLS:
. TERMINALS COMPILERS
EDITORS
DEBUGGERS
CO-SPONSORED
I BY
ADVANCED RESEARCH PROJECTS AGENCY U.S. AIR FORCE
INFORMATION PROCESSING TECHNIQUES OFFICE AIR FORCE SYSTEMS COMMAND
1400 WILSON BOULEVARD ROME AIR DEVELOPMENT CENTER
ARLINGTON. VIRGINIA

COPY AVAILALE TO BDG ROES NOT

APPROVED FOR PUBLIC RELEASE —
DISTRIBUTION UNLIMITED % DC

Ehwall FULLY LEGICLE i"’"lwbm}ﬂ

This work was sponsored by the Defense Advanced Research Projects
Agency (DoD) under ARPA Order No. 3061.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official

policies, either expressed or implied, of the Defense Advanced Research
Project Agency or the U. S. Government.

This report has been reviewed by the RADC Information Office (0I) and

is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign mations.

This report has been reviewed and is approved for publication.

smirs: ol 2 e

RICHARD A. ROBINSON
Project Engineer

>

ROBERT D. KRUTZ, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: %/%‘4/

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy.

SR S B o dee b i A A 0

NATIONAL SOFTWARE WORKS, STATUS REPORT NO. 1

Contractor: Massachusetts Computer Associates

Contract NMumber: F30602-76~C-0094

Effective Date of Contract: 1 July 1975

Contract Expiration Date: 30 June 1977

Short Title of Work: National Software Works,
Status Report No. 1

Program Code Number: 6P10
Period of Work Covered: Jul 75

Principal Investigator: Robert

- Feb 76

Millstein

Phone: 617 245-9540

Project Engineer:

Richard A. Robinson

Phone: 315 330-7746

Approved for public release,

distribution unlimited.

This work was supported by the Advanced
Agency of the Department of Defense and

Research Projects
by Rome Air Development

Center. It was monitored by Rome Air Development Center under
Contract F30602-76-C-0094 and by the Office of Naval Research

under Contract N0914-75-C-0073.

]

PR

i it

N —

UNCLASSIFIED
SECURITY CLASS!FICATION OF THIS ®AGE (When Date Entered)

]9 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NOJ 3. RECIP'ENT’S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYFE OF REPORT & PERIOD COVERED

NATIONAL SOFTVARE WORKS,JSTATUS REPGT, NO. 1, 1 Jul 75— 29 Feb 76,7) — e~
3 = = — BER
/4) caop-7603-g4s11 |

7. AUTHOR(s) ~ o \7 |~ T OR GRANT NUMBER(s)

Multiple -
Rol BT 7306027608495 | VE W
ober T /Millstein) ’
9. PERFORMING ORGANIZATION NAME AND ADDRESS ~ PPOGRAM ELEMENT, PROJECT, TASK
Massachusetts Computer Associates (PSR Tar Bl ey
26 Princess Street (v 2702E, 63728F)
Wakefield MA 01880 "/ (- J 55540830

11. CONTROLLING OFFICE NAME AND ADDRESS

e
Defense Advanced Research Projects Agency [’ ’\ Sep DU 7 6
1400 Wilson Blvd __~“| 13. NUMBER OF PAGES

Arlington VA 22209 211
T4, MONITORING AGENCY NAME 8 ADDRESS(I! dilferent from Controlling Office) | 15. SECURITY CLASS. (of this report)
Rome Air Development Center (ISCP) ﬁ N
Griffiss AFB NY 13441 2/(- || wcLasstFiep
s f’ * [T gECLAmCATION BowNGARGG]
TN /A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

|§. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
ame

18. SUPPLEMENTARY NOTES
RADC Project Engineer:

Richard A. Robinson (ISCP)

Related NSW Documentation - User's Guide, Manager's Guide, Tool User's Guide,
Tool Installation Guide, etc. (see reverse)

19. EY WORDS (C on re o side if y and | ify by block number)

So?tware Systems

Software Engineering

Computer Networks

20. ABSTRACT (Continue on reverse side If necess and identify by block number)

to support the construction, use, maintenance, modification, verification, and
storage of programs and bodies of information on which these programs operate.
It is principally aimed at the construction of programs and at providing soft-
ware tools which can be used in the construction activity.

NSW is intended to facilitate both the administrative and technical aspects of
these activities. Thus, it provides mechanisms for the exercise of fiscal and

The National Software Works (N 1s a facility, resident on the ARPANET, :lntend?

DD ,"an'5s 1473 eoimion oF 1 Nov s 1 oBsOLETE UNCLASSIFIED

e ——————————————————————————————————
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

092 Q{5+

e

i+

/
/

OQQV

i
g

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

access control in the operation of a programming project, and also access and
storage conveiences to programmers for the management of their files.

The salient factor in the conception of NSW is the expectation that the
hardware, software and human resources needed for the execution of a task may
be geographically and administratively dispersed, although connected through
the network. Tools whose use is to be coordinated may be resident at different
computer installations, possible under the control of different organizatioms,
each with its own rules of operation.

Block 18. (continued)

This work was supported by the Advanced Redearch Projects Agency of the
Department of Defense and by Rome Air Development Center. It was monitored
by Rome Air Development Center under contract number F30602-76-C-0094 and
by the Office of Naval Research under contract number N0014-75-C-0073.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

it it

TABLE OF CUNTENTS

Cnapter 1: Introduction 1=
Chapter 2: Works Manager Procedures 2-1
Cnaptet 3: M3G Design Specifications 3=
Chapter 4: File Package Design Specifications 4-1
Chapter 5: Foreman Specification 5-1
Cnapter.§: Hardening, Scaling, and Optimizing of the 6-1

Works Manager

Chapter 7 Management Tools T-1

Chapters 3 and 5 of this report were produced by Bolt Beranek
and Newman and by Massachusetts Computer Associates, Inc.
Chapter 3 is available separately as Bolt Beranek and Newman
Report No."3237 and Massachusetts Computer Associates Document
No. CADD-7601-2611)% Chapter 5 is available separately as Bolt
Beranek and Newman Report Nov“ 3266 and Massachusetts Computer
Associates Document No. CADD-7604-0111.

TN
Tne remaining chapters of this report were produced by
dassachusetts Computer Associates. Chapter 4 is available
separately as CADD-7602-2011. Chapter 6 is available separately
as CALD-7601-1511, /Chapter 7 is available separately as
CALD=7602=0211. ’,.‘

11i/1v

Chapte

%. A General Introduction

1.3

1.2 Design

r % Introduction

Purpose

The National Software Works (NSW) is a facility, resident on the
Arpanet, intended to support the construction, use, maintenance,
modification, verification, and storage of programs and bodies of
information on which these programs operate. It is principally
aimed at the construction of programs and at providing software
tools which can be used in the construction activity.

NSW is intended to facilitate both the administrative and
technical aspects of these activities. Thus, it provides
mechanisms for the exercise of fiscal and access control in the
operation of a programming project, and also access and storage
conveniences to programmers for the management of their files.

The salient factor in the conception of NSW is the expectation
that the hardware, software, and human resources needed for the
execution of a task may be geographically and administratively
dispersed, although connected through the network. Tocls whose
use is to be coordinated may be resident at different computer
installations, possibly under the control of different
organizations, each with its own rules of operation.

NSW as an entire system contains large collections of information

about its users and the resources belonging to the system; it also
contains the programmatic objects whose execution constitutes the

operation of the system.

The software animating the NSW is called NSWExec; it is
partitioned into independent processes on different processors in
the network. These processes have individual names, such as Works
Manager (WM), Front End (FE), Foreman, File Package

(FP), Works Manager Operator (WMO), etc.

NSWExec appears, operationally, as a state-of-the-art time-sharing
monitor. That is, it functions as a keeper and supplier of
computational resources, and as a mediator between the user and
these resources.

The essential functions of a time-sharing monitor which NSWExec is
to provide in the larger network-wide environment are:

Logging in and out -~ permitting the user to make, and break,
contact with the monitor, and authenticating his right to use
its services.

1-1

Maintaining a file system, with access protection and |
provisions for shared use. i

Handling I/0 with the user’s terminal.

Interpreting and honoring the user’s requests for resource
usage ("Executive Commands").

Setting a specified program into operation ("running a tool") |
at the user’s behest, and linking his terminal to the program |
in case the tool runs interactively.

Since the users, the resources, and the NSWExec software may all
be dispersed throughout the network, creating analogues of these
basic functions of a time-sharing monitor in this environment has
raised some complex design problems. This overview will be
organized as a consideration of these functions in the network
environment, with a description of the design solutions adopted in
the NSW. The functions we shall discuss are:

Maintaining a physically dispersed but conceptually integrated
file system, with adequate access controls.

Managing communication between the separate components of the
system.

Catering to the user at his on-line terminal -- connecting him
to NSWExec, accepting and interpreting his raw input,
protecting him from intervention by non-NSW programs (local
host executives, etc.).

Responding to the user’s requests for resource use and
disposition -~ i.e., the normal "Executive Commands",
permitting operations on files, inspection of current
information about resources and circumstances, invocations of
tools, ete

Initiating execution of a tool, and providing a File-System
interface so that the tool may obtain the input files it needs
from the NSW File System, and deliver the output files it
produces into the NSW File System, in a manner compatible with
ihe fii:-s{stem conventions of the host system where the tool
s resident.

1-2

2. FILE SYSTEM
2.3 Design Considerations |

As does any contemporary Operating System, NSW provides a file
system to its users, with naming conventions, protection, access
controls, and facilities for entering, deleting, copying, and
renaming individual files. However, it had been determined at the
beginning of the design that NSW would not "own" any on-line
storage device, dedicated to the storage of NSW files.

A principal element of the NSW concept is to both facilitate and |
constrain file access and file sharing by the members of a -
programming project, in a manner which will allow the
implementation of a wide variety of management policies. To this
end, NSW has its own file-naming conventions and mechanisms for
verifying access rights which are rather different from those of
the hosts’ operating systems.

In any case, the user must not be required to have any knowledge
of the individual file systems on the hosts; rather, he must be
able to use a uniform file-system vocabulary in any reference to
his files, regardless of what component of NSW he is communicating
with.

2.2 Design Solutions

The files in the NSW File System actually live in the various file
systems of Arpanet hosts: on any host which can provide storage
for NSW files, NSW "owns" one or aore directories (accounts), with
the maximum protection available, in which it keeps its files.
Hosts providing file storage are called "Storage Hosts". There is
also a "principal NSW host”™ in the Arpanet. This is the host on
which the central elements of the NSWExec software are executed =-
in the current implementation, a TENEX.

NSWExec contains an information retrieval system, resident on the
principal NSW host in the Arpanet. The data base of this
information retrieval system does not contain the NSW files
themselves, but rather it constitutes the catalogue of the File
System. Every file name known to the NSW File System has a record
in this catalogue; part of the information in the entry for a
particular file gives the location (identity of the host, plus
file identification within that host’s system) of any existing
copies of the file itself. Note that the existence of multiple
copies of a file is information which is not normally available to
users.

1-3

Scme of the cperations which the user might wish to perform on
files can be done merely by making changes in the catalogue, such
as deleting a file, renaming a file, or removing a semaphore
(access lock) which he had had set on a file; the user, of course,
does not directly access the catalogue. But others require
operations on the bodies of the files themselves, such as making a
copy of a file within the NSW file system, importing a file from
outside the NSW system, or exporting a file to a destination
outside NSW.

For these cperations of making physical copies of files, NSWExec
calls upon a "black box" called the File Package, whose job is to
understand file transmission across the Arpanet so thoroughly that
it can accomodate any likely formats and perform any reasonable
conversions necessary to cause a copy of a file at one place in
the network to appear at another place. The specifications of

the File Package are described in Chapter 4.

The portion of NSWExec software which includes the file-~catalogue
information retrieval system is called the Works Manager (WM). It
bas a number of other functions, which we shall discuss at the
appropriate places in this Overview. The host on which the WM
runs -~ called above "the principal NSW host" =~ is termed the "WM
host", in distinction to other hosts participating in NSW, such as
a "Front End host", or a "Tool-bearing host".

The two NSWExec components mentioned in this section -~ the Works
Manager (including especially the file catalogue system) and the
File Package -- are clearly new programs which have had to be
written fcor NSW.

COMMUNICATION SYSTEM
3.1 Goals

For acceptable operation the network connection between the user’s
terminal and whatever system he is communicating with should be a
fast, character-by-character, full-duplex link. But such links
are expensive in Arpanet, in terms of traffic loads and response

time, so they should be direct, and used only when a person is at
one end of the connection.

Nonetheless, there will need to be frequent communication between
the dispersed software components of NSW, and this communication
should be as efficlient as possible.

Normally, a program on a time-sharing system can be executed only
by a logged-in user of that system. Within NSW, the user should
only have to log in to NSWExec itself, and not to any of the
individual Tool-Bearing Hosts (TBHs).

3.2 Decisions

The individual components of NSW software will be configured as
independent, coordinate, concurrent processes (even if they happen
to reside on the same host).

The standard communication between two NSW processes will be by
unitary messages, expressed in an 8 bit message format, and
dispatched through a message-handler (named MSG), which is itself
an independent process on each host participating in NSW.

A process, then, does not call another as a subordinate, or
subroutine. Rather, it sends a message requesting a service,
and later receives a message in response.

Two NSW processes may establish a direct network connection, if
desirable for terminal response or for transmitting large
volumes of data. But the initial communication between them,
and the agreement to set up the direct connection, are ;
accomplished via MSG. i

In the Arpanet implementation, the several MSGs are privileged
processes on their hosts, with exclusive rights to reserved
network sockets. This permits bypassing the local host s login
procedure when executing a process on that host.

MSG is a new program, written for NSW. The specifications of
MSG are described in Chapter 3. '

4. USER-TERMINAL CATERING
4.9 Situation

The user must be able to get in touch with NSWExec in a reasonably
straightforward fashion, preferably without having to log in to
any other systems along the way.

L g vaamceNi) fed/ it 2 lon

As discussed above, the direct connectiorn between the user and
NSWExec should be a fast, character-by-character full-duplex link
(for most terminals), so that the user will receive rapid and
convenient response %0 his typeins. It should include

Character echoing, perhaps with substitution for the input
character, and suppression of echoing for passwords, and

Basic editing facilities, such as the ability to backspace
(delete) a character or a word, retype what has been typed for
inspection before confirming, or kill what has been typed so
that the user can start over.

1-5

Any process the user may be connected to is actually running on
some Arpanet host, under the host ‘s own operating system.
Operating systems generally have some reserved character which,
when received from the terminal, causes them to interrupt
communication between the terminal and the running process in
order to allow the user to communicate directly with the operating
system. The NSW user must be protected from the consequences of
mistakenly typing such a character.

Conversely, if the NSW user is in communication with some process
other than NSWExec, there must be some action he can take to
temporarily suspend his communication with that process in order
to communicate with NSWExec. Such actions (e.g., typing a special
character) must be intercepted before they are transmitted to the
connected process.

But the user will, in general, be only indirectly connected to the
WM host, so that, if these terminal-catering functions were to be
performed at the WM host, the response would be unacceptably slow.

Aside from these user-catering functions, the principal content cf
the communication between the user and NSWExec will be the the
user ‘s calling for the execution of executive commands (see
below), and WMExec ‘s displaying the response to these commands on
the user’s terminal. The amount of information necessary to
specify such commands is not large, and the display of NSWExec's
responses does not require two-way communication.

L,2 Decision

The user-catering function of NSWExec¢ will be placed in a separate
process, called the Front End (FE), to which the user will always
be connected, and which will run on a machine as "close" to the
user as possible.

In the initial system, the FE process resides on the principal
NSW host; a user can achieve connection to this FE by either:

Logging in to this host in the normal fashion, CONNECTing to
the appropriate directory, and running the program NSW;
(this mode of operation will always be present as a
fall-back option)

Executing, from his local host or TIP, an Initial Connection
Protocol to a reserved socket on the NSW host.

In an early stage of development, the FE will also run on a
dedicated minicomputer, connected to the Arpanet either as a
local host (through an IMP) or directly as a "smart TIP". The
user will be have a broad~band connection to this minicomputer.

However the user’s connection to the FE process is achieved, he
will immediately be permitted (in fact, required) to LOGIN to
NSWExec, identifying himself and giving a password. When the
LOGIN is accepted by NSWExec, he will be able to issue any
Executive Commands.

The FE process provides echoing on the user terminal, recognition
and completion of abbreviated command vords (if the user desires),
editing functions on the user’s typein, and more sophisticated
display-control functions.

In the standard mode of operation, when the user is communicating
with NSWExec or with "integrated" tools, the user’s interactions
with the terminal are driven by a "grammar" contained in the FE
process, which elicits from the user the information needed to
specify the operation he wishes performed. This information is
then packed into an message and expedited through MSG to the
appropriate recipient (Works Manager or tool).

An "integrated" tool is one which in fact handles its
communications with the user in the above fashion -~ via MSG.

A tool which has not been "integrated" is called an "old" tool.
It will be put in contact with the user through a direct TELNET
connection between the FE process and the tool process. Thus
another feature of the FE is that it can establish and maintain
this TELNET connection.

In the standard mode of operation, no danger exists that the user
might send to the tool some special character which would place
him unwittingly in contact with the tool-host’s Operating System.
In the TELNET~connection mode, either the FE or the Foreman

(see below) must filter out any such characters.

In either mode of operation, a reserved special character will be
recognized by the FE process, having the effect of temporarily
suspending communication with the tool, and returning
communication tc NSWExec.

For the duration of his session with NSW, all communication
between the user and the system will thus be mediated by the FE,
whether the user is conversing with the Works Manager or with one
or more tools. This provides a consistent style of interaction
with all elements of NSW, except perhaps from some "old" tools
which will have their own conventions which the user must obey.

The FE Process is new software, designed and programmed by Charles
Irby at SRI/ARC, who also designed and implemented the language
for specifying grammars, the compiler for that language, and the
interpreter for the compiled grammars.

EXECUTIVE COMMANDS

5.1 The component of NSWExec which implements the user’s Executive
Commands i3 called the Works Manager (WM). It resides on the
orincipal NSW host, which is therefore called the WM Host.

The formats of the Executive Commands are specified in the
Executive Grammar, which is always available to the FE Process.
When the user has specified a command to his, and the FE’s,
satisfaction, it is packaged into a message which amounts to a
call cn scme procedure within the WM; this message is then sent
frcm the FE to the WM via MSG.

.2 cxecutive Commands are essentially requests for the use of
computing resources (including requests to inspect the status of
resources). Hence the WM is fundamentally a purveyor and allocator
cf resources.

The WM maintains in its data base lists of the rights, privileges,
and responsibilities of the users known to the system. When the
user logs in, his right to use NSW is authenticated by checking
this information. Whenever he requests the use of any resource,
his right to use it is verified against these lists.

As mentioned above, the WM maintains in its data base the
catalogue of the file system, and uses this to control the
existence of copies of files on different hosts in the network.
The catalogue, together with the user’s rights information, allows
the WM to control access to the files in the system.

The WM also maintains information on the tools available within
NSW, which enables it to cause a tool process to be created and
run on its appropriate host. This information, together with the
user s rights information, allows the WM to control access to the
tools.

.3 As part of its resource-managing responsibilities, the WM
provides to the (human) managers of programming projects within NSW
facilities for admitting new users to the system, and specifying the
rights the new user shall enjoy.

These management facilities will in fact be embodied in a separate
Management Tool Kit, access to which will be restricted by the
rights of the user seeking to execute it, as with any other tool.
The Management Tools are described in Chapter 7.
5.4 The types of Works Manager commands are discussed in Chapter #%.,
The problems involved in making the WM more reliable, larger scale,
and more efficient are descussed in Chapter 6.

I L e ¢

6. TOOL INTERFACE
6.3 Design Considerations

In a contemporary interactive computer system, a tool runs under

the control of the Operating System on its computer; the Operating

System provides to the tool:
Means for communicating with the user’s terminal;
Means for using the file system;
Other miscellaneous services more directly associated with the
hardware, such as memory allocations, interrupt servicing,
date-and-time and elapsed~time information, etc.

In the course of its operation, the tool will interact with the
file system in several different ways:

It will need to open for reading (or modification) some
already-existing files (input files).

It will need to create scratch files for temporary storage of
information during its operation (and perhaps for re-start
after a crash).

It may produce new files (or modifications of input files)
which are to be delivered to the file system after the tool-run
is completed (output files).

In NSW, where the tool, the user, and the "Operating System"
(NSWExec) are, in principle, all on different network hosts,
several considerations apply:

Communication between the tool and the user is handled through
MSG (perhaps plus a TELNET connection), as discussed above;
hence tool/user communication must be diverted from the host
0S°s terminal-handling mechanisms to some other process.

The tool’s input files must come from the NSW File System, and
not from the host’s own file system, hence requests for input
files must be diverted from the host OS to the WM. However,
once the tool has obtained the file from the NSW File Systen,
it must be able to work within the local file system for
operations within the file -~ reading or writing at particular
locations within the file.

But to use the NSW file system for the storage of scratch files
would be grossly inefficient, requiring frequent WM calls, and
frequent updating of the WM’s File System catalogue; hence,

the tool should continue to use the host file system for these.

1-0

To keep the tool operation integrated within NSW, the tool’s
output files must be submitted to the NSW File System for
storage. Hence, calls to the host 0S to close, or deliver,
output files must be intercepted and re-directed to the WM.

The last category of local 0OS services -- the miscellaneous
ones -- must clearly be left intact, since it would be either
impossible or expensive to provide them from the WM.

Since it is intended to be an easy task to adapt an existing
program to run as an NSW tool, it is obviously desirable to
minimize the amount of programming required to do this.

For instance, a tool should not have to include the software
necessary to send and receive MSG messages.

6.2 Design

4 new program, called the Foreman must be written to run
on each host which will provide tools.

The Foreman has at its disposal a number of empty file directories
(accounts, workspaces) within the local file system, which it
will provide to tools running on that host.

When the WM has decided to run a tool on a particular host, it
sends a message to the Foreman on that host, asking it to load and
start up an instance of the tool process. The SF will select

one of its local directories and assign it for the tool to run
"out of" (or "in").

When the tool wants to Open an input file, it has presumably
gotten the NSW Filename of the file from the user. It passes
this name to the Foreman, requesting the file. The Foreman
then sends a message to the WM, requesting that a copy of the
file be sent to the local directory assigned to the tool. When
the copy has arrived in that directory, the Foreman returns

to the tool the local directory name of the copy, which it

will have "opened" for the tool in the local file system.

And similarly, when the tool wants to Close an output file, it
passes the local directory name of the file, together with the
NSW Filename the user has given, to the Foreman. The

Foreman, in turn, sends a message to the WM, "Delivering"

the file to the NSW File System -~ that is, requesting the

WM to make a copy of the file in one of the NSW’s own
directories on some host (perhaps the same host, if it is

also a NSW Storage Host).

When the tool is ready to stop running, it notifies the Foreman
so that control of the communication link to the user is not
returned to the local 0S. The specifications of the Foreman
are described in Chapter 5.

1-10

0l1d tools which are to be made to run under NSW will need to be
modified only to the following extent:

Points of communication between the tool and the user terminal
must be detected and modifiedin one of two ways:

Each file used by the tool must be identified as an input file,
an output file, or a scratch file.

The tool must notify the Foreman before terminating its
execution.

If it seems feasible to structure the communication in
message blocks, these messages should be composed for
transmission via MSG.

If, however, it is necessary to maintain TELNET-style
single-character communication with the user, "system calls"
for implementing this must be replaced by accesses to the
TELNET connection to the FE.

All places where the tool Opens an input file -~ i.e.,
requests by name a (presumably) pre-existing file from the
local file system -- must be identified and replaced by
calls on the SF.

All places where the tool Closes an output file --i.e.,
delivers a file name and contents for storage in the local
file system -~ must be identified and replaced by calls on
the SF.

1-11/1-12

Chapter 2: Works Manager Procedures

3. Introduction

The Works Manager (WM) is the central software of NSWExec. Its job
is to authenticate users interactions with NSW, to carry out executive
commands, and to control access to all NSW resources.

Operationally, the Works Manager i1s a "server process", which is
brought to life when a Works Manager call is made by a Front End (FE)
process or a Foreman process: there exists no single Works Manager
process which remains continuously alive while dealing with multiple
petitioners, as is the case, for example, with the MSG and FE processes.

From outside, the Works Manager appears as a collection of
separately-callable procedures, each performing a specific function.
Coordination of the separate procedures and synchronization of separate
incarnations of the Works Manager process are effected by jointly-
accessed, interlock-protected, data structures. Each Works Manager
call, either from a Front End or a Foreman, is a call on a specific
one of these procedures.

The principal shared data structure is the Catalogue in the NSW
Information Retrieval System, which contains all the long-lived data
about all elements of NSW.

Furthermore, whenever NSW is in operation, there are tables of
current data, residing in the Works Manager Host, which depict the
nmomentary state of NSW -~ e.g., a list of users currently logged in, a
list of the tools currently running, etc. Almost every Works Manager
call will result in some change being made to one or more of these
tables. It is these "hot" tables which give the appearance of
continuity of service by "the" Works Manager on behalf of a user.

The purpose of this chapter is to list these Works Manager
procedures and give a brief description of their effects.

Some of these procedures can meaningfully be called only from a
Front End process (e.g., LOGIN, LOGOUT), and others only from a
Foreman process (e.g., OPEN, DELIVER); the remainder may be
called from either source. It will be indicated for each procedure,
explicitly, from where it may be called. Procedures marked with an
asterisk (*) may only be called from the Front End. Procedures marked
with a plus sign (+) may only be called by a tool. Unmarked
procedures may be called either by a tool or from the Front End
(except ENDTOOL which is called by the Foreman).

oo o et

2. WORKS MANAGER PROCEDURES
j 2.1 Connection

* LOGIN (project, node-name, password)
~=> userid, node-profile, user-profile, system-message,
login-message, qhave-mail

user with all the rights implied by the node at which he has
logged in. Mistakes (i.e., non-recognition by the WM) in
arguments will be handled by HELP returns. The user will then be
permitted to retype the incorrect argument or abort and re-start
the login.

4
!
i LOGIN connects a user to the NSW, establishing him as an active
|
§

project: STRING, node-name: STRING, password: STRING

This triple is collected from the user for the initial LOGIN
call; it identifies and gives access to a node on the NSW
project tree. The user is then considered to be logged-in "at"
(or even "as") that node. All rights to access files, use
tools, use WM procedures, and spend money are associated with
the login node.

userid:

Internal WM identifier of a logged-in user. It is assigned
to the user at login by the WM, and its thereafter regularly
f| used in all messages between the FE and the WM, so that each
can be sure which user the message refers to.

node-profile: BIT-STRING, user-profile: BIT-STRING

These are encoded instructions to the FE (and perhaps alsn to

i the WM), determining the style of communicating with the user;
4 they include specifications for lengths of heralds and prompts
i to be displayed, degree of command-word recognition and

3 completion desired, lengths of lists to be displayed, etc. The
information in node-profile is peculiar to the node, while the
information in user-profile applies to the person "owning" the
node in NSW records, regardless of which of his nodes he may
log in at (a person may own several nodes -~ for example, a
project manager will own the top node in his project, but might
also set up some subsidiary nodes for his personal work).

system-message: STRING
This would be an important operational message from NSW (or

perhaps Project) management, to be displayed to all NSW users
at their next login ("system news").

2-2

| &

login-message: STRING

This would be an operational message from the WM or Works
Manager Operation (WMO) reporting on the status of previously
submitted batch jobs, the status of the files used by tools
which crashed in a previous session but which have subsequently
recovered, etc. It informs the user of changes to the user
environment which have occurred since his last logout.

qhave-mail: BOOLEAN

This, if TRUE, will cause the FE to inform the user that there
exists new mail addressed either to him personally, or to his
present login node; to read his mail, the user should call a
Readmail tool.

LOGOUT (userid, qfast)

-=> cost

LOGOUT disconnects a user from NSW. Normally, if any interactive
tools are still running for this user, he will be asked to
terminate those tooluses in the way appropriate for each tool, and
re-call LOGOUT. Alternatively, the user may ask the NSW to
terminate these tooluses for him (qfast set to TRUE); in this
case, output files which the tool has already DELIVERed

will be in the NSW File system, and any other files will

be lost. If the TBH has gone down while the user was running, the
WM will try later to recover and save the local workspace in

which the tool was running. At a subsequent LOGIN the user

will be told (via login-message) about the saved workspace,

and he will be given an opportunity to DELIVER the files to the
NSW File System. Batch Tools are, of course, asynchronous with
respect to user-NSW connection, and are not affected by logout.

cost: INTEGER

cost is returned by several WM procedures. It is to be
interpreted as the cost in cents of the use of a tool or of
an entire session, as appropriate. The user is given the
opportunity to gripe about the cost by returning a non-null
message when invited to protest.

A WM-procedure RELOG was originally planned, which would enable the

user to move his login location from one node to another. This has 1
been replaced by a Front End command MOVELOG which executes '
successive calls on the WM-procedures LOGOUT and LOGIN.

2-3

REATTACHTONSW (project, nodename, password) f
-=> userid, node-profile, user-profile, LIST [(tool-info)]]

This procedure is intended to allow a user to resume his session
in the event that his FE-machine goes down, by re-contacting
NSWExec through another FE process. This is not a high priority ;
procedure and will not be available in early versions of the WM. :
The LIST of "tool-info" in the returned items would contain, for
each tooluse the user had initiated, the information necessary for
the new FE to set up its tables as if it had been the one the user
had been using, presumably: tool-process-~ID, tool-name,
tooluse-name, (perhaps) tool-grammar.

2.2 Tools

RUNTOOL (userid, tool-name, tooluse-name)
~~> tool-process-id, tool-grammar

RUNTOOL verifies that the user has access to the tool called
tool-name. It creates an instance of the tool process, and

| establishes a communication path. It returns to the FE a process
| identification for the FE to use in calling the tool, along with
| the tool grammar. The tooluse-name argument is provided so that
several active instances of the same tool can be distinguished.

tool-name: STRING

B The name, e.g., NLS, TECO by which a tool is known tc the
WM. Retrievable under this tool-name in the WM Catalogue

i is a large block of data called the Interactive Tool

' Descriptor. This descriptor supplies whatever information

] the WM needs for successfully running the tool and servicing

i its file requests. More specifically, it lists the ARPAnet
hosts (called Tool-Bearing Hosts (TBHs)) and process
identifications of potential instances of the tool so the

% WM can cause an instance of the tool process to be readied ﬂ

for execution and it lists the file-attributes required for
input files and those to be attached to output files (see
OPEN and DELIVER).

tooluse-name: STRING

The name by which a particular instance of a given user’s
active tool is known. This argument 1s necessary to i
b distinguish between, e.g., different concurrent uses of »
! NLS. g

tool=process-id: MSG<process name>

(see MSG: The Interprocess Communications Facility
for the National Software Works, Massachusetts
Computer Associates, Inc., CADD=7601-2611,

Bolt, Beranek & Newman, Inc., Report No. 3237.)

The tool-process-id is a name which the FE and WM can use
for communication with the tool.

2=4

A N = R

tool-grammar: ?

The tool-grammar is an encodement of the Command Meta Language
(CML) specification of the commands provided to the user for
interacting with the tool. When the FE process is on the WM
Host TENEX, what is passed is the local name of the .REL file
which embodies this grammar. When the FE process is on a
separate machine, the grammar itself will be passed, in some
format yet to be specified (perhaps BIT-STRING?).

* ENDTOOL (userid, tooluse-name)
-=> cost, L}ST [NSW-filenames of files with semaphore left set
by tool

ENDTOOL is called from the Foreman when a tool indicates it

has finished running; this procedure causes the WM to detach the
tool from the FE and terminate the tool process. The "return
items" shown above are actually sent to the FE (rather than
returned to the Foreman), along with a message instructing the FE
to remove this tooluse from its list of active tools and to break
its communication link with the tool. All semaphores set during
the tool’s running are unset unless the Tool Descriptor

indicates that this tool is one which understands use of the
semaphore. If so, a list of files with semaphore set is sent to
the FE so that the user can either confirm for each file that he
wants to leave the semaphore set, or indicate that he wants it
unset.

RERUNTOOL (userid, tooluse~name)
-=> tool-process~id, tool-grammar

RERUNTOOL reestablishes the connection between a user and a tool
which was running on a TBH which had crashed and has subsequently
come back up. This procedure is not defined yet and will not

be avallable in early versions of NSWExec.

2.3 Files, No Movement

DELETE (id, filespec, qhelp)
-=> NSW-filename

DELETE verifies that filespec designates a unique file to which
the user (identified explicitly by userid, or implicitly if DELETE
is called by a tool (first argument 0)) has DELETE access. This
access is blocked by a set semaphore. If any assistance is
required it is obtained via a HELP return (if qhelp is T or if
DELETE were called by a batch tool) or by a direct FE HELP call
(otherwise). Once a unique file has been found, its catalogue
entry 1is marked. It will no longer be accessible to OPEN, COPY,
RENAME, EXPORT, etc., but the actual file catalogue entry and
file copies are not immediately deleted. The NSW-filename of
the deleted file is returned. This return could be a HELP
return, requiring confirmation before the actual delete occurs.
Alternatively, since the file does not immediately disappear, an
UNDELETE operation could be supported.

2=5

id: wuserid | O

WM procedures which can be called from either the FE

or a tool require "id" as their first argument. £, in an
actual call, the first argument is non-zero, then it is a
userid, and the call is from a Front End. If it is zero

then the call is from a tool. WM procedures which show
"userid"” as first argument can only be called from the FE.

If any other first argument is shown (except for the
procedures LOGIN and REATTACHTONSW which are only FE-callable),

then the WM procedure can only be called by a tool.
NSW=filename: STRING

The NSW=filename is the full identification of the file in
the NSW File System, which could amount to a rather long
string of text. However, the user will never have to type
in a full filename; instead, he will use either a

"filespec" or an "entry-name", depending on the intended use
of the file (see these terms below).

A (full) NSW-filename consists of two parts: the name-part,
and the attribute-part, separated by a slash (/). The name-
part is a sequence of name-components, separated by periods
(.); the order of the name-parts is significant. The
attribute~part is a list of attributes, separated by semi-
colons (;); the order of the attributes is not significant.

An example of a full lISW-filename might be:
IVTRAN.PHASEY.PARSE.SYMBOL~-HASH/
UT:BCPL-SRC;CR:ILLIAC+BOLDUC;DTC:1975:08:25:%6:03:38

Name-parts do not necessarily designate unique files. NSW
files have attributes and certain of these attributes (those
supplied by tools - syntactically indicated by UT:) may

be used for disambiguation. Thus it is entirely possible
for a user to have a file with name-part A.B and attribute
UT:FORTRAN-SRC and another file A.B with attribute
UT:360-FORTRAN-REL. The NSW~file-names of these two files
are unambiguous and consist of name-part/tool-supplied
attributes. E.g., A.B/UT:FORTRAN-SOURCE and A.B/UT:360-
FORTRAN-REL. The tool supplied attributes consist of those
file attributes which are supplied by tools through
WARRANT, DELIVER.

T

ST TR

T

2-6

i

TR G e i

filespec: STRING

A filespec is an abbreviated form of an NSW-filename, used ,
in contexts where the name of an existing file is required -~ 4
i.e., COPY and DELETE accesses. A filespec need contain only
enough parts of the NSW-filename to unambiguously denote the
file. As explained below under "scope", an initial segment
of the name-part can be automatically supplied, and need not
be typed by the user. Any sequence of consecutive name-
components which are not necessary for identifying the
particular file may be replaced by three periods (...). Also,
an attribute-part may be typed in a filespec, to distinguish
between two files which differ only in attributes (e.g., the
source-language and the relocatable binary forms of the same
program).

Thus, the file named by the example under "NSW~filename"
above, would be retrieved under the filespec

IVTRAN...PARSE/UT:BCPL-SRC .

designate a unique file, the WM will send to the Front End
for display to the user an indexed list of the full file-
names of all files which match the filespec; the user may
E indicate which one he intends by responding with the index
f - number. {

Any time a filespec is used, if it does not happen to i

More specifically: 1If the filespec matches a great many
files, the WM Information Retrieval System will protest
and refuse to retrieve them; the user will be asked to
submit a more reasonable filespec. If the filespec matches
few enough files to retrieve, but more than some user-
settable limit ("maxlist"), the user will be informed of
the number of files matched, and asked if he wants to see
the list of names. Only if the number retrieved is less
than maxlist will the list be displayed automatically. In
any case, the user has the option, in response to any of
these messages, of entering a different filespec.

qhelp: BOOLEAN ;

3 qhelp is used when a tool calls the WM and does not want the
WM to directly contact the user at the FE for assistance.
In this case ghelp is set to FALSE.

RENAME (id, filespec, entry-name, ghelp) {
=~=> 0ld=NSW~filename, new-NSW-filename 5

2=7

RENAME verifies that filespec designates a unique file to which
the user has DELETE access. This access is blocked by a set
semaphore. If any assistance is required it is obtained via HELP
return or direct FE call as above. RENAME forms a new NSW-
filename using entry-name and the tool-supplied attributes of

the old file. It verifies ENTER access and unambiguity. As
usual assistance is sought should there by any difficulty.

The NSW catalogue is then altered to reflect the new name-part
and both old and new NSW-filenames are returned.

entry-name: STRING

An entry-name is an abbreviated form of an NSW-filename used
in contexts where a new filename is to be created. As
described below under "scope", the contents of the user’s
ENTER scope will be prefixed to the entry-name as typed.
Aside from this scope abbreviation, however, the user must
type the entire name-component of the filename -~ that is,
no ellipses (...) are permitted. No attribute-part is
permitted, either, since the user may not assign attributes
to files (his identity as creator of the file, and the
date~-and~time of creation attributes will be appended
automatically).

Referring again to the NSW-filename example above, if we
assume the user had an ENTER scope of IVTRAN.PHASE?, the
filename shown could have been created (minus the UT:BCPL-SRC
attribute, which could only have been appended by a tool),
using the entry-name

PARSE.SYMBOL-HASH .

+ SETSEMAPHORE (filespec, gqhelp)
==> NSW=filename

The WM verifies that the tool can use SETSEMAPHORE, that filespec
designates a unique file to which the user has DELETE access, and
that the semaphore is not already set. Assistance is obtained
via HELP return or direct FE call as above. If all is well, the
semaphore is set and the NSW-filename is returned.

The semaphore is set by a tool on behalf of a user who is writing
into the file in order to warn other potential users that the
file may be undergoing change. The semaphore is either 0 -
meaning not set -~ or it is project + node-name indicating the
setter of the semaphore.

UNSETSEMAPHORE (id, filespec, qhelp)
~=> NSW-filename

The WM verifies that filespec designates a unique file to
which the user has DELETE access. Assistance is obtained as
usual. If all is well, the semaphore is unset and the NSW-
filename returned.

READSEMAPHORE (id, filespec, ghelp)
-=> NSW-filename, project-node

The WM verifies that filespec designates a unique file.
Assistance is obtained as usual. If all is well, the STRING
project + node-name is returned if the semaphore is set. If
the semaphore is not set, the empty STRING is returned.

+ WARRANT (attcode, NSW-filename)
~=> new-NSW-filename

WARRANT adds the attributes referenced in the Tool Descriptor
by attcode to the file whose current name is NSW-filename.
Since tool-supplied attributes are part of NSW-filenames, the

new NSW-filename is returned. WARRANT is not currently
implemented.

attcode: INTEGER
An index into the Tool Descriptor, where a large list of
required or known attributes can be referenced without a
large amount of net transmission.

% DISPLAY (userid, access-type, fileSpec)
~=> LIST [NSW-filenames]

DISPLAY lists file catalogue entries for the set of files
which match filespec.

access-type: COPY | DELETE { ENTER
Denotes a particular kind of access to the NSW file system.
2.4 Files, Movement

COPY (id, filespc, entry-name, ghelp)
==> src-NSW-filename, dst-NSW-filename

COPY verifies appropriate accesses: COPY access for the source
file, ENTER access for the destination file, plus DELETE access

for the destination file if the copying would "overwrite" an

existing file. It creates a new NSW catalogue entry and a new

copy of the source file.

EXPORT (id, filespec, external-name, password, ghelp)
==)> src-NSW-filename

EXPORT verifies COPY access and sends a copy of the
source file to the location designated by external-name.

2-9

external-name: STRING

Either an ARPAnet pathname with password or a device pathname
with password. An external-name is needed for copying files

b from a source outside of NSW (see IMPORT, TRANSPORT) or copying
to a destination outside of NSW (see EXPORT, TRANSPORT). An
external-name argument is always accompanied by a password
argument (which is a STRING) for gaining access to the

external directory, device, etc.

IMPORT (id, external-name, password, entry-name, ghelp)
==> dst-NSW-filename

IMPORT is the inverse of EXPORT.

TRANSPORT (id, src-external-name, password, dst-external-name,
password, qhelp)

TRANSPORT is an extended FTP for NSW users. It is not currently
implemented.

+ OPEN (input-attcode, filespec, gset, qhelp)
-=> NSW-filename, local-filename, new-filespec

OPEN is used by a tool to obtain a copy of an NSW file. The WM
verifies that there is a unique file designated by filespec to
which the user has COPY access and which has the attributes
implied by input-attcode. Assistance is obtained as usual.
Should the user also have DELETE access to the file, then the WM
will set the semaphore on the file if either the Tool-Descriptor
indicates that it should be set, or if gset is TRUE. 1If

the semaphore is already set (and the user has DELETE access
rights), then this tool’s access to this file is blocked unless
the user, in response to a message to the FE, indicates that he is
willing to use a copy of the filed version, even though someone
else may be planning to replace it soon. In any event, if the
semaphore is set, the user is informed that it has been set, and
by whom. The WM makes a copy of the file into the workspace used
by the tool, performing whatever conversions are necessary and
possible. The NSW-filename of the copied file and the local
filename of the new copy are returned. If in the course of
disambiguating filespec, the user supplies a new filespec, then
that is returned also.

+ DELIVER (output-attcode, local-filename, entry-name, qhelp)
-=> NSW=filename

DELIVER is used by a tool to insert a file into the NSW file
system. ENTER access and unambiguity are verified with assistance
sought as usual. An entry is made in the NSW file catalogue and
an NSW-owned copy is made of the file designated by local-
filename. The attributes implied by output-attcode are

appended to the file. The original file is left in the tocl’s
workspace. The NSW-filename of the new entry is returned.

2=10

+ READDEVICE (local-filename, device-code, ghelp)

READDEVICE is used by tools to input via local tape, card reader,
paper tape reader without making NSW files. The WM could figure
out from the userid which FE the user was at and therefore what
the external-name of the appropriate device is. Alternatively,
the node-profile (user profile?) could contain the association
betweeen device-ccde and actual external-name for the device.
After that, this procedure is just like IMPORT.

device-code: STRING

crd = card reader

pun = card punch

ptr = paper tape reader
ptp = paper tape punch
mt7 = 7 track mag tape
mt9 = 9 track mag tape
dta = DEC tape

+ WRITEDEVICE (local-filename, device-code, ghelp)

WRITEDEVICE is the inverse of READDEVICE. Neither READDEVICE
nor WRITEDEVICE are currently implemented.

2.5 Project Management

These project management procedures (and the display procedures
in section 2.6) are only temporary. They will be superseded by the
Management tools currently being designed and implemented. In fact,
they should not be construed as even giving a flavor of the project
management facilities which NSW will eventually have; they are too
primitive to even do that.

% ADDNODE (userid, son-node-name, son-password)
ADDNODE creates a new node in the project tree. This new node
is a son of the node at which the user logged in. Its name is
the STRING son-node-name and its password is the STRING son-
password.

® DELETENODE (userid, son-node-name, gqtree)

DELETENODE checks to see that son-node-name designates a son

of the node at which the user logged in. If so, that node (the
son) is deleted. If qtree is TRUE then the entire subtree

(1f any) headed by son-node is also deleted. Otherwise, the
sons of son-~node (grandsons of login node) are made sons of
login node.

e o s e

2-11

ADDRIGHT (userid, son-node-name, rights)

ADDRIGHT checks to see that son-node-name designates a son of
the login node. The rights are checked to verify that the
login node possesses them. If so, the son node is given the
additional rights. Otherwise, an error is signalled, since a
node cannot give rights that it does not have itself.

rights: procedure-rightstool-rights|file-rights
procedure~rights: PROCEDURE, proc-names

tool rights: TOOL, tool-names

file rights: (COPY|DELETE|ENTER), keys
proc-names, tool-names, keys: STRING,...

A right authorizes access to some NSW resource. Before a

WM procedure consumes a resource on behalf of some user, that
user’s login node is checked to validate access to that
resource. Thus, a user’s access to the system is defined

by the rights stored at a node.

Procedure-rights is the STRING PROCEDURE followed by the
names of WM procedures which the user (and tools on his
behalf) are allowed to invoke. The reserved string ALL
designates access to every WM procedure.

Tool~-rights is the STRING TOOL followed by the names of
tools which the user is able to run. Again, ALL denotes
every tool.

File-rights is one of the STRINGs COPY, DELETE, ENTER
followed by keys which define the parts of the file

system to which the user has access. In general a user will
have file-rights of each access type. Again, ALL is used

to denote any file.

key: STRING

A key is, syntactically, an initial segment of the name

part of an NSW-filename followed, optionally, by a slash(/)
and one or more attributes separated by semicolon (;). See
the description of NSW-filename above. A user has access to a

file if he has a key which matches the NSW-filename of the file.

A key matches an NSW-filename if (%) the name-part of the key
is an initial segment of the name~part of the filename, and
(2) the attributes of the key are attributes of the filename.

DELETERIGHT (userid, son-node-name, rights)

The WM verifies that son-node-~name designates a son of
the login node. If so, rights are removed from the son-node.

2-12

{ # CHANGERIGHT (userid, son-node-name, delete-rights, add-rights)
CHANGERIGHT does both ADDRIGHT and DELETERIGHT.
® ADDSCOPE (userid, scopes)

ADDSCOPE adds scopes to the information stored at the login
node.

scopes: (COPY|DELETE|ENTER), scope,...
scope: STRING

Scopes are a method of abbreviating NSW-filenames for user
convenience. There are three types of scopes -~ COPY,
DELETE, and ENTER -~ corresponding to the three access-
types. A user may have any number of COPY and DELETE scopes
active, but only one ENTER scope. Whenever a filespec is
typed by the user, the filespec, together with all of
either his COPY or DELETE scopes (depending on the context
of use) are submitted to the Information Retrieval System.
When an entry-name is typed by the user, his ENTER scope is
prefixed to the entry-name typed, in order to construct the
full name-part of the file to be entered into the Catalogue.

Syntactically, a scope looks like a key: a sequence of
name-components separated by periods (.), follwed, optionally,
by a slash (/) and one or more attributes separated by
semicolon (;).

Scopes are set and changed by the user to make it convenient
to reference files in a relatively small region of filename-
space, presumably because he expects to dc most of his work
with those files. If he wishes to access a file outside of
his current scope, he may prefix a filespec or entry-name

with a dollar-sign ($) (to be read as a barred "S", meaning:
DON’T SCOPE), to override the automatic scoping mechanism.

A scope cannot be set unless it is implied by a key which
the user has. A key implies a scope if (1) the types

are the same and (2) the name-part of the key is an initial
segment of the scope and (3) the attributes of the key are
attributes of the scope.

® DELETESCOPE (userid, scopes)
% CHANGESCOPE (userid, delete-scopes, add-scopes)
These are analagous to DELETERIGHT and CHANGERIGHT.

2-13

® CHANGEPASSWORD (userid, new-password)
This changes the password of the login node to new-password.
2.6 Display

The results of these procedures are given by direct display
at the FE rather than by returning values from the function calls.

® DISPLAYNODE (userid, node-name, qtree)
® DISPLAYRIGHT (userid, node-name)
DISPLAYSCOPE (userid, access~types)
These procedures are similar in that they all show part or all

of the information stored at a node. They differ only in
details.

DISPLAYNODE shows all of the node designated by node~name. If

qtree is TRUE then the entire subtree headed by node-name is
displayed. Otherwise only node-name is shown.

DISPLAYRIGHT shows all of the rights possessed by the node
designated by node-name.

DISPLAYSCOPE shows all of the scopes of type access-types
where access-types is a list containing one or more of
COPY, DELETE, ENTER. See also DISPLAY in section 2.3..

SHOWJOB (userid, job-number)

When a user submits a batch job it is assigned a job-
number (INTEGER) by NSW. The user can subsequently check the
status of the job with SHOWJOB.

2.7 WMO and IBS Support

There are currently eight procedures for WMO and three for
IBS (Interactive Batch Specifier). These procedures cannot be used
from the FE or by a tool. They are only of internal NSW use; hence
they will not be described in this section. For completeness, they
are listed with their arguments and results (names and types).

GETDESCRIPTOR
processor INTEGER (IBS)
tool=name STRING
=> qavail BOOLEAN
jel STRING
2=14

T

//
VERIFY

//
ENTER

SENDBATCH

//
DELIVERBATCH

=)

//
RESERVEBATCH

file~spec
userid

qset

qthere
item-~index
number-recs
max-length
qetl

qsem
NSW=file-name
mail

qref
file-name
attrbs

qdisp
item~index
NSW-file-name

job=number
tbh=-name
wsd=-name
device~name
file~name

argument-vector

error=code
error-number
error-message

local=file~name

Job=number
tbh-name
wsd-name
device-~name

argument-vector
local-~file~name

error-code

. error=number

error-message

Job~number
tbh-name
wsd-name
device-~name
file-name

argument-vector

error=code
error-number
error-message

STRING (IBS)
INTEGER
BOOLEAN
BOOLEAN
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
STRING
INTEGER

BOOLEAN (IBS)
STRING
STRING
BOOLEAN
INTEGER
STRING

INTEGER (WMO)

STRING

STRING

STRING

STRING
INTEGER-VECTOR
INTEGER

INTEGER

STRING | NULL-STRING
STRING | NULL-STRING

INTEGER (WMO)

STRING

STRING

STRING
INTEGER-VECTOR
STRING | NULL-STRING
INTEGER

INTEGER

STRING | NULL-STRING

INTEGER (WMO)

STRING

STRING

STRING

STRING
INTEGER-VECTOR
INTEGER

INTEGER

STRING | NULL-STRING

local=file~name STRING | NULL-STRING

2-15

EMPTY
EMPTY

EMPTY

EMPTY

EMPTY
EMPTY

//
DELETEBATCH

2>

//
FINDTBH

2>

//
EXECUTEJOB

JOBALLDONE

job=number
tbh-name
wsd=-name
device-name
file-name
local-name
error-code
error-number
error-message

job=number
processor
space

time
tool-name
device~type
error-code
error-number
error-message
tbh=name
wsd=-name
devie-name

job=number
tbh-name
wsd=name
device-name

argument-vector

Jjel
error=code
error-number
error-message
jel~file-name
job~name

job=number
tbh~name
wsd~name

device-name
time

charges

id

error-code
error-number
error-message

INTEGER (WMO)

STRING

STRING

STRING

STRING | EMPTY
STRING | EMPTY
INTEGER

INTEGER

STRING | NULL-STRING

INTEGER (WMO)
INTEGER
INTEGER
INTEGER
STRING

STRING
INTEGER
INTEGER
STRING | NULL-STRING
STRING
STRING

STRING

INTEGER (WMO)

STRING

STRING

STRING
INTEGER-VECTOR
STRING | NULL-STRING
INTEGER

INTEGER

STRING | NULL-STRING
STRING | NULL-STRING
STRING | NULL=-STRING

INTEGER (WMO)
STRING
STRING

STRING

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

—

EMPTY

EMPTY

EMPTY

EMPTY
EMPTY
EMPTY

STRING | NULL-STRING | EMPTY

2-16

ek Salatid

//
JOBINQ

s>

Job=number
tbh-name
wsd-name
error-code
error-number
error-message
status

time

charges
report
device-name

INTEGER (WMO)
STRING
STRING
INTEGER
INTEGER

STRING | NULL-STRING | EMPTY

INTEGER
INTEGER
INTEGER
STRING
STRING

2-17/2-18

Chapter 3: MSG Design Specifications

%. Introduction

1.1 Overview

The National Software Works (NSW) provides software
implementers with a suitable environment for the development of
programs. This environment consists of many software development
tools (such as editors, compilers, and debuggers), running on a
variety of computer systems, but accessible through a single
access-granting, resource-allocating monitor with a single,
uniform file system. By its very nature, the NSW consists of
processes distributed over a number of computers connected by a
communications network. These processes must communicate with
one another in order to create a unified system. This paper
describes the communication facility (named MSG) which was
developed to provide interprocess communication for the
implementation of the NSW. The communications network
is currently the ARPANET. However, we have designed the
MSG facility to be as independent as possible of the ARPANET
implementation so that the concepts may be carried over to
implementations on other networks.

‘We begin by describing the more important of the processes
which comprise NSW and discussing the pattern of communication
which those processes require. We then proceed to abstract from
those patterns a model of interprocess communication which is
sufficient for NSW. Finally, we develop the details of the MSG
facility itself.

It is our hope that both the description of the process of
defining MSG as well as the description of the structure of the
protocol will be of interest to protocol developers for the
ARPANET and other networks.

3-1

W S—— T — .

.2 NSW Components

The monitor of NSW is the Works Manager. It is responsible
for servicing requests for system resources - e.g., running a
tool, opening a file. The Works Manager verifies that each such
request 1s valid (using in this verification a rather elaborate
access data base which serves as a domain for automated project
management machinery). The Works Manager then allocates to each
valid request the necessary resource. This allocation generally
involves either the creation of a tool (e.g., editor, compiler)
instance - i.e., the creation of a new NSW process - or the
movement of a file (which movement may be either inter- or
intra-host).

For each user of NSW an interface to the other components is
provided by a Front End, which may be local to the user. In the
sequel we will talk as if the Front End were local, so that
communication to the user is synonymous with communication to the
Front End. This is not, however, an NSW system requirement. The
Front End filters the user’s input stream, discarding bad
characters (e.g., control-C should not be sent to TENEX tools)
and interpreting system-wide control characters -~ delete line,
retype line, escape to the Works Manager, etc. In addition, the
Front End may provide local parsing of the Works Manager command
language and, conceivably, even tool command languages.

Just as users see the NSW environment through the Front End,
S0 slso do tools see an extended local system environment through
a Foreman component. Tools are software systems which are
written for a given host - e.g., MULTICS. To become NSW tools
they must be inserted into a slightly different milieu. This
different milieu is provided by a Foreman component on the tool’s
host. The Foreman provides the tool with access to NSW
resources, such as NSW files. Thus a tool gets NSW resources by
making a local call on the Foreman, which then forwards the
request to the appropriate NSW component. From the viewpoint of
other NSW components, then, it is the Foreman rather than the
tool with which most communication must occur.

The final component of interest here is the File Package.
There is an instance of the File Package on each tool-bearing
host. These File Packages are responsible both for local file
system manipulation - e.g., delete, local file copy -~ as well as
inter-host file transfers and reformatting.

T WS T =

4.3 Patterns of communication

We will now describe the anticipated patterns of
communication between the NS¥ processes. These communications
factor into six types:

Front End - Works Manager
tool/Foreman -~ Works Manager
Works Manager - File Package
Front End - tool/rForeman
tool/Foreman -~ tool/Foreman
File Package ~ File Package

The other possible pairs - e.g., Front End - File Package, File

Package ~ tool/Foreman - do not represent communication paths in
NSW.

. Front End - Works Manager

Communication between these two kinds of process consists of
user requests for NSW resources (Front End to Works Manager) and
Works Manager responses to such requests (wWorks Manager to Front
End). Examples of such requests are: run a tool, copy a file,
delete a file, etc. These requests are relatively infrequent - a
user may make only a few per hour. Each request is short -
almost all requests can easily be encoded in 3000 bits. The
response to each request is also short - again, less than 1000
bits. The time required to process a request is generally brief
- certainly on the order of milliseconds as compared to the
minutes between requests. There is no necessity for a request to
be processed by the same instance of the Works Manager that
processed any previous request (since all instances of the Works
Manager share the same common data base). Hence a communication
link need not be retained between a Front End and a Works Manager
between resource requests. Thus we can characterize Froat End -
Works Manager communication as a sequence of unrelated elements,
where each element is a short request, a brief delay, a short

response, and a long delay until the next element of the
sequence.

. tool/Foreman - Works Manager

These communications are exactly analogous to Front En? -
Works Manager communications. A tool (on behalf of a user)
requests an NSW resource of the Works Manager. Examples of such
requests are: open a file, create a subsidiary tool process,
deliver a file, etc. As above, these requests are generally less
than 3000 bits, are processed by the Works Manager in

3-3

milliseconds, have responses of less than 1000 bits, and are
relatively infrequent. The only difference between this pattern
and the preceding pattern is that tool requests are more frequent
than Front End requests, although the time between such requests
is still measurable in minutes.

. Works Manager - File Package

These communications are again analogous to the above.
Indeed, these requests (of the Works Manager to the File Package)
occur in order to service a Front End or tool request of the
Works Manager. For example, when a tool asks the Works Manager to
open a file, the Works Manager must then ask a File Package
process to make a copy of that file, possibly across the ARPANET.
The time to make a cross-net copy of a file may be measured in
seconds (even in minutes for large files), but such long copies
are expected to be infrequent. Thus, the same pattern of a short
request (not related to previous requests), a brief delay, a
short response, a long delay holds for Works Manager - File
Package communication also.

. Front End - tool/Foreman

Communication between these processes consists of user
commands to tools and tool responses to users. In some cases
these communications will fit into the same pattern as the three
previous cases. Often, however, the pattern is different.
Consecutive requests are related and must be serviced by the same .
tool. The time between the user’s command and the tool’s response
may be greater than the time between the response to the previous
command and the issuing of the next command. Also, the frequency
of user commands to tools may be much greater than the frequency
of either user or tool requests to the Works Manager. 1In
addition, the length of a Front End - tool/Foreman communication
may be large. For example, in a typical session a user might
request the use of a text editor (Front End - Works Manager
communication), get a particular file to edit (tool/Foreman -
Works Manager communication), and then insert two hundred lines
of program text into that file. Thus Front End - tool/Foreman
communication is expected to vary from the infrequent, short
request pattern to frequent, long transmissions of information.

. tool/Foreman - tool/Foreman

These communications are relatively infrequent. No tool
currently installed in NSW needs to talk directly to another
tool. Nevertheless, debugging tools for NSW as well as
multi-process tools have been proposed and are being implemented.

=l

g

it

s Such tools require communicatior facilities. We expect that
their patterns of communication will be analogous to Front End -
tool/Foreman communications.

. File Package - File Package

Some very small fraction of these communications will
consist of short, infrequent messages - e.g., a source File
Package telling a destination File Package the length and
encodement of a file - but the bulk of such communication will
consist of files being transferred. Thus, we can characterize
this pattern as infrequent transmissions of many bits.

3-5

e

|
]

3.4 Model of Communication

From these expected patterns ¢of communication we can
abstract a model of the kind of interprocess protocol that NSW
requires. We have, roughly speaking, three patterns of
communication:

. Infrequent short transactions between previously unrelated
processes (Pattern %):
Front End - Works Manager
tool/Foreman -~ Works Manager
Works Manager - File Package

. More frequent, longer transactions between related
processes (Pattern 2):
Front End - tool/Foreman
tool/Foreman - tool/Foreman .

. Infrequent, very long transactions (Pattern 3):
File Package - File Package.

3-6

AR A IRt Rl [AL b 5

R e

.5 Modes of Communication

MSG supports these NSW patterns of communication by
providing two different modes of process addressing:

. generic addressing;
. specific addressing;

and three different modes of communication:

. messages;
. direct communication paths (connections);
. alarms.

Each mode of process addressing and communication is
intended to satisfy certain NSW requirements and to be used in
certain kinds of situations. However, MSG itself does not impose
any limitations on how processes use the various communication
modes. MSG does not interpret messages or alarms, nor does it
intervene in communication on direct connections. The
interpretation of messages, alarms, or direct connections is
entirely a matter for the processes using MSG to communicate.

Generic addressing is used by processes which either have
not communicated before or for which the detajils of any past
communication is irrelevant. It is restricted to the message
mode of communication. A valid generic address specifies a
functional process class. When MSG accepts a generically
addressed message it selects as destination some process which is
not only in the generic class addressed but has also declared its
willingness to receive a generically addressed message. If there
is no such process, MSG may create one. Pattern 4 communication
is always initiated by the transmission of a generically
addressed message.

. valid specific address refers to exactly one process and
this Jddress remains valid for the life of that process.
Specific addressing may be used with all three communication
modes. Specific addressing is used between processes which are
familiar with each other. The familiarity is generally because
the processes have communicated with each other before, either
directly or through intermediary processes. :

Message exchange 1s provided by MSG to support the
requirements of pattern 1 communication and some pattern 2
communication. It is expected to be the most common mode of
communication among NSW processes. To send a message, a process

3-7

O R T

-

addresses it by specifying the address of the process to receive

the message and then executes an MSG "send" primitive which

requests MSG to deliver the message. When MSG delivers a message ,

to a process it also delivers the name (i.e., specific address) 3
of the process that sent the message.

The second mode of MSG communication is direct access
communication. A pair of processes can request that MSG
establish a direct communication path between them. Direct
communication paths are provided to support the requirements of
pattern 3 communication, such as file transfers between hosts,
and some pattern 2 communication, such as terminal-like
communication between a Front End and tool/Foreman. (The ARPANET
realization for a direct communication path is a host/host
connection or connection pair.)

The alarm mode of communication is supported by MSG to
satisfy a communication requirement typically satisfied by
interrupts in other interprocess communication systems. Alarms
provide a means for one process to alert another process to the
occurrence of an exceptional or unusual event. Processes may
send and receive alarms much as they send and receive messages.
However, there are significant differences between alarms and
messages. The rules that govern the flow and delivery of alarms
are different from those that govern the flow and delivery of
messages. In particular, the delivery of an alarm to a process
is independent of any message flow to the process. That is, the
delivery of an alarm to a process cannot be blocked by any
messages queued for delivery to the process. Unlike a message
which can carry a substantial amount of information, the
information conveyed by an alarm is limited to a very short alarm
code. This limitation implies that the delivery of alarms can be
accomplished in a way that requires little in the way of
communication or stcrage resources. This makes it possible for
MSG to insure certain "priority" treatment for alarms which makes
them suitable for alerting processes to exceptional events.

While similar to traditional interrupts, alarms are different in
one important respect: the delivery of an alarm to a process
does not necessarily imply that the process i1s subjected to a
forced transfer of control by MSG. For this reason, we have
chosen to use the term alarm rather than interrupt.

All modes of interprocess communication supported by MSG
follow the same basic pattern, which is roughly as follows:

Y. One process tells MSG about a message or alarm to be

sent or a connection to be opened. It also specifies a
destination address and a signal by which MSG can

3-8

2.

inform it that the message or alarm has been "sent or
the connection opened.

Another process which matches the above destination
address tells MSG that it is ready to receive the same
type of communication. It also specifies a signal by
which MSG can inform this process that the message or
alarm has been received or the connection opened.

MSG sends the alarm or message or opens the connection.
It also signals the source process that the message or
alarm has been sent or the connection opened and
signals the destination process that the message or
alarm has been delivered or the connection opened.
After it receives the signal, the process receiving a
message or alarm always knows the specific address of
the sender.

3-9

1.6 Sequencing of Messages

Normally MSG does not guarantee that messages sent from one
process to another process will be delivered to the destination
process in the order in which they were sent. However, since it
is expected that NSW processes may frequently desire message
sequencing, it is possible for a process to ask MSG to sequence
certain messages.

To achieve sequencing a process can specify when it sends a
message that the message 1s to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after all previous sequenced messages
from process A have been delivered to process B. A process may,
if it chooses, intermix sequenced and unsequenced messages.

Several of the situations which motivate the presence of the
alarm communication mode within MSG also require that a process
receiving messages be able to distinguish messages sent before an
alarm was sent (or received) from those messages sent afterwards.
That is, it is often important for a pair of processes to
synchronize a message stream with respect to an alarm.

To facilitate such message-stream/alarm synchronization, MSG
supports the concept of message stream markers. A stream marker
is an attribute of a message. When sending a message a process
may specify whether or not the message 1is to carry a stream
marker. MSG guarantees that a message M, sent from process A to
process B, which carries a stream marker will be delivered to
process B only after all messages sent by A prior to M have been
delivered to B and before any messages sent after M by A.
Furthermore, MSG will notify the receiving process B whenever it
delivers a message that carries a stream marker. The
notification will be part of the information normally supplied by
MSG to the receiving process.

When it is necessary to achieve message stream
synchronization after an alarm, a pair of processes can use the
MSG stream marker. This can be accomplished by placing a stream
marker on the first message sent after the alarm (was sent or
received). Although stream marked messages are provided by MSG
to simplify message-stream/alarm synchronization by MSG
processes, it is important to note that MSG itself places no
constraints upon how processes use stream marked messages.

3-10

i
|
)
1
i

1.7 Host Incarnations

The NSW 1s expected to provide continuous, 24 hour a day, 7
day a week service. However, the various computer systems which
support NSW processes may not provide such continuous service.
Proper NSW operation requires that MSG be able to determine
whether a name for a process refers to a process that MSG is
currently managing or to an obsolete one which MSG managed during
a previous period of MSG service by the host computer system in
question. (The term "incdrnation" is used synonymously with
"period of host MSG service" in the remainder of this document.)
To enable MSG to distinguish current from obsolete processes, an
MSG process name (more precisely, a specific address) includes an
indication of the host incarnation under which the process exists
(or existed).

3-11

; 3.8 Organization of this Document

The remainder of this document specifies MSG in detail.
There are four parts to the specification:

1. MSG process environment.
Section 2 defines in detail the environment MSG
provides to MSG processes. In particular, it defines
the set of primitives that MSG provides to such
processes.

ii. MSG-~to-MSG protocol.
NSW is a multi-computer system. Parts of MSG will
reside on the various computer systems that comprise
the NSW. The inter-computer protocol used by the
components of MSG in order to support the MSG
primitives is specified in Section 3.

iii. MSG=-to-MSG Protocol for the ARPANET.
The initial implementation of the NSW will make use of
the ARPANET as an inter-computer communication medium.
Section U4 specifies how the ARPANET host/host
communication facilities are to be used to support the
MSG~to-MSG protocol.

iv. MSG-to-MSG Transmission Formats for the ARPANET.
Section S defines the formats to be used for the
transmission of MSG-to-MSG protocol messages between
ARPANET hosts.

2. MSG process environment

This section defines in detail the environment MSG provides to
processes. This section covers those aspects of the MSG process
environment which are common to all hosts; it is not a
process-implementer ‘s guide to MSG on any particular host. Such
a guide must also discuss aspects of the process environment
which are peculiar to that host.

1-13

2.3. Hosts

NSW is implemented as a number of processes running
concurrently on a number of different computer systems, called
hosts. MSG on each host can be thought of as an extension of that
host ‘s operating system, creating a new operating system that
satisfies the MSG design. Because MSG specifies only a fraction
of the host environment for a process, it is generally true that
MSG processes will be sensitive to the type of host on which they
run.

NSW will operate continuously, but individual hosts may not be
continuously part of it. This can occur because a given host is
not scheduled for continuous NSW service, or because the host has
failed. We define a particular period of NSW service by a host as
a host incarnation, designated by:

<host incarnation name> ::= :
<host designator><incarnation designator>

where <host designator> is an integer which uniquely designates a
particular host computer and <incarnation designator) is an
integer which designates this particular period of NSW service by
this host.

3-14

2.2. Processes

The form of an MSG process is strongly host-dependent, since
the MSG design specifies only a part of the operating system
under which the process runs. An MSG process is what one
generally thinks of as a process, i.e. a collection of programs,
local memory, etc. to which the operating system allocates system
resources such as CPU time. MSG processes must, however, have the
following properties:

3. The process can make at least some MSG primitive calls.

2. The process has a unique MSG process name through which
it can be addressed by other processes.

3-15

2.3. Process names

A host incarnation supports a number of MSG processes. Each
process has a name of the form

<process name> ::z <host incarnation name><generic designator)
<specific designator>

The host incarnation name is the incarnation name d& thé host
under which the process is running. The generic designator is a
character string which characterizes a process in terms of its
functional relationship to other processes. This characterization
determines whether a process could be chosen to perform a certain
function. For example, processes with generic designator WM are
candidates for messages which invoke Works Manager functions.

The specific designator is an integer. A process name is always
unambiguous; at all times it either corresponds to a single
process or is invalid.

it g

3-1¢

e S I TR el o sa

2.4, Process addressing modes

There are two fundamental modes by which one process may
address another process: generic and specific. A specific
address is always a process name. Generally process A will use a
specific address for process B because process A has had some
prior communication with B, either directly or through some
intermediary process.

A generic address, however, is of the form:
<generic address> ::= <host designator)><generic designator> |
<generic designator>

Unlike specific addressing, which uniquely determines the
destination process, generic addressing implies a selection by
MSG of a destination process from a class of processes. This
selection allocates the destination process to the communication
implied by the generically addressed message. This is distinct
from process allocation, in which MSG creates and terminates
processes.

The class of processes from which MSG can pick a destination
process for a generically addressed message is defined as
follows:

4. If the generic address 1is of form

<host designator><generic designator>

then the process selected must be on the designated host. If
<host designator> 1is not specified in the address, then the
process may be on any host.

2. The <generic designator> field of the process name must match
the <generic designator> field of the generic address.

3. The process must have a Receivegeneric primitive call
pending.

3=17

ikl) e

2.5. Modes of information transfer

MSG supports three basic modes of information transfer between
processes: messages, alarms, and direct connections.

A message is a string of bits created in the local memory of a
sending process. MSG sends the message to a receiving process by
duplicating the bit string in a specified portion of the
receiving process’s local memory. MSG itself imposes no further
structure on messages, nor does it interpret the contents of
messages. Messages are the only mode of communication which can
be generically addressed.

An alarm, like a message, is a string of bits created by one
process and addressed to another process. As with a message, MSG
transmits the bit string to the receiver process, which has
designated beforehand where the bit string is to be put. In other
ways, however, alarms differ from messages. First, an alarm is a
fixed-length bit string and is shorter than most messages.
Second, MSG will transmit an alarm independently of any message
traffic between sender and receiver processes. In fact, MSG will
give alarms priority service over messages. It is anticipated
that alarms will be used to transmit information about unusual or
exceptional conditions, while messages and direct connections
will be used to support normal communication.

A direct connection is a one- or two-way dedicated channel
between two processes. MSG assists the processes in opening and
closing the connection, but does not intervene in the actual use
of the channel.

Messages are further differentiated by whether they are

addressed to a specific process or to a generic class of
processes. Processes use different primitive calls to send and

receive generically-addressed messages than they use to send and
receive specifically-addressed messages.

For a specifically-addressed message it is further possible to
specify either (but not both) of two types of special handling:
sequencing and stream marking. Normally MSG will not guarantee to
deliver messages in the order in which they were sent. Sequenced
messages, however, from process A to process B will be delivered
to B in they same order in which they were sent by A. A stream
marker message from A to B will not be delivered to B until all 1
other messages from A to B have been delivered. Furthermore, it
will be delivered to B before any other messages to B sent

subsequently by A.

3-17

| ROR— —a— , - “ ; .

] In all cases, MSG will inform the receiving process of any
special handling given any message it receives.

1 3-19

2.6. MSG primitive operations

Each host supports a set of MSG primitive operations for the
processes that run under it. The method of calling these
primitives will be host dependent. Every primitive call produces
some time later a reply (return) from MSG. We divide the set of
primitive calls into two classes, differentiated by the meaning
of the reply MSG makes to the primitive call. For one class of
primitive call the MSG reply signifies that the primitive
operation is complete. For the other class of primitive call,
however, the MSG reply signifies only that the parameters of call
were reasonable enough for MSG to deduce what operation to
perform and that MSG has agreed to attempt to perform this
cperaticn. When this primitive operation is finally complete or
has been aborted, MSG will signal the process, using a signal
specified in the primitive call. We call this uncompleted
primitive operation a pending event, where the event in question
is the completion or aborting of the operation. A pending event
has the form:

<pending event> ::= <primitived<signal><disp><timer>

where
<primitive> is the primitive operation to be performed
<signal> is a means by which MSG can signal the process
that the primitive operation is complete
<disp> is a pointer to a field in the process’s local memory
<timer> is a timer which tells MSG when it can abort the
operation.

Every host will offer processes a set of signals for use in
primitive calls that produce pending events. We shall discuss q
signals at greater length later in this document. The disp field,
which MSG will have set before it sends the signal, tells the
process whether the primitive operation completed normally or was

)

aborted. . :

The set of all pending events for a process is called that
process’s pending event set. When the process makes a primitive
call of the second class, a pending event is added to its pending
event set. When MSG completes or aborts a pending event, it sets
the appropriate disp field, sends the signal, and then deletes
the pending event from that process’s pending event set.

A process should ensure that no two elements simultaneously in
its pending event set have the same signal, but MSG will not
enforce this restriction. The simplest way for a process to
ensure this is never to reuse a signal in a primitive call until

'S

fehcade. o Bhadinre i s Loty 2t

3 that signal has been received from the old call. It should be
’ emphasized that the signal for an operation is the only reliable
way for a process to ensure that this operation has completed.

B
i
]
bt
4

2.6.1 Primitives that create pending events

Many of the following primitives contain the parameter dt. This
is used to create the <timer> field of the pending event, and
either specifies a time interval in lccal host clock units or
indicates that a default value should be chosen by MSG. Unless

the
the

1.

default is specified,
<timer> = tc+dt where tc is the local host clock time when
primitive was called.

Sendspecificmessage(msgarea,pnam,signal,disp,dt,sphndl)
where . ;

msgarea points to a message to be sent

pnam is a process name

sphndl specifies special handling for the message

0 - ordinary handling

1 - sequenced message

2 - stream marker message

This causes the message pointed to by msgarea to be sent to
process pnam. At the very minimum, completion of this
primitive operation means that the msgarea has been read by
MSG, the disp field set, and the pending event deleted from
the sender’s pending event set. Local hosts may opt to
guarantee more, such as that when the primitive is completed
the foreign host has accepted the message.

Sendgenericmessage(msgarea,genadr,signal,disp,dt,qwait)
where

msgarea points to a message to be sent

genadr is a generic address

qwait is a boolean

This is like Sendspecificmessage except that here a generic
address is specified instead of a process name, there is no
special handling, and there is the extra parameter qwait.
Unlike a Sendspecificmessage, a Sendgenericmessage may cause
MSG to create a destination process. Qwait is a boolean;
setting it false will cause MSG to accept the primitive only
if there is a process available with a Receivegeneric
primitive pending.

3-22

3. Receivespecificmessage(msgarea,srcnam,signal,disp,dt,sphndl)
where
msgarea points to a block of local memory in which MSG
will put a message
srcnam points to a field of local memory which MSG will
set to the process name of the sender
sphndl points to a field of local memory which MSG will
set to the special handling class of the message
being received:
0 - ordinary handling
1 - sequenced message
2 -~ stream marker message

If the primitive completes normally, i.e. if the specified
signal is received and the disp field does not indicate an
error, then msgarea will contain a message which was sent by
a Sendspecificmessage primitive call by some process. Srcnam
will contain the name of the process that sent the message,
and sphndl will show if the message was sequenced or was a
stream marker.

U, Receivegenericmessage(msgarea,srcnam,signal,disp,dt)
where
msgarea points to a block of local memory in which MSG will
put a message
srcnam points to a field of local memory which MSG will
set to the process name of the sender

This is like Receivespecificmessage except that here the
message received was sent by a Sendgenericmessage primitive
instead of a Sendspecificmessage primitive. There is also no
special handling field.

3-23

A G T Y S T T—

5. Sendalarm(acode,pnam,signal,disp)
where
acode is an alarm code

i pnam is a process name

This sends the alarm code acode to the process named pnam.)
| When this primitive completes, the disp field will indicate S
@ one of the following outcomes:

1. OK. Either the alarm was delivered to the process or it
was queued and will be the next alarm to be delivered to
the process.

2. Rejected. Process pnam is not accepting alarms at all
now, or another alarm is already queued for this process,
cr some error has occurred.

6. Enablealarm(acode,srcnam,signal,disp)
where
acode,srcnam point to fields of local memory

This enables the process to receive an alarm. When the alarm
is received, acode will be set to the alarm code and srcnam

will be set to the name of the alarm sender. In order for an
alarm to be received, not only must an Enablealarm primitive
be pending but also the iaccept boolean state for this :

process must be true. This boolean value is changed by the |
primitive Acceptalarms.

3-24

e —— i ———]

7.

Openconn(conntype,connid,pnam,signal ,disp,dt)
where

conntype is a connection type

TELETYPE

BINARY SEND-RECEIVE(s)

BINARY SEND(s)

BINARY RECEIVE(s)

where s is a byte size

connid is a connection identifier

pnam is a process name

This opens a conne.tion of type conntype to process pnam.

The connection will be identified by connid. In order for the
primitive to complete normally, process pnam must also
execute an Openconn primitive addressed to this process, with
the same connid and a compatible conntype. Some hosts may
return a host-dependent identifier for the connection.

Closeconn(connid,pnam,signal ,disp,dt)
where

connid is a connection identifier
pnam is a process name

This refers to the connection created before by the primitive
Openconn(conntype,connid,pnam,...). If the connection was
never opened, Closeconn will abort with an error code in the
disp field. If the corresponding Openconn is still pending,
the Openconn also will abort. Whatever the outcome, however,
when the Closeconn primitive completes, the connection, if it
ever existed at all, will be closed.

Terminationsignal(tsignal ,disp) where
tsignal is a signal

If this primitive ever completes, i.e. if tsignal is ever
received then it should be taken as a request by MSG for the
process to terminate. The disp field may be used, at host
option, to specify why the termination is being requested.

3-25

2.6.2 Primitives that do not create pending events

1.

Stopme ()

This primitive indicates that the process wishes to
terminate. Control will never return from this primitive.
The process will be terminated by MSG as soon as possible.
Well-behaved processes will ensure that their pending event
sets are empty before issuing this primitive.

Rescind(rsignal)
where
rsignal 1s a signal

This is used to delete a pending primitive operation. The
parameter rsignal must be the signal of a pending event, i.e.
an uncompleted primitive operation. If the Rescind call
returns successfully then the corresponding primitive will
not occur and rsignal will not be sent. The Rescind may fail
because the primitive operation is partially complete and it
is too late to stop it, or because rsignal no longer
corresponds to a pending event. The latter case generally
means that the corresponding primitive has already completed.
It is a host option what primitives may be rescinded at all.

Some hosts may wish to return an event handle with
rescindable primitive calls. In this case, the call will be
Rescind(event handle).

Acceptalarms(qaccept)

Each process has a boolean state value, iaccept. If an alarm
is sent to a process whose iaccept state is false, the
Sendalarm will fail with a disposition indicating that the
process is not accepting alarms. If, however, iaccept is true
then the Sendalarm will either match an Enablealarm, be
queued, or be rejected because another alarm is already
queued for this process. Acceptalarms sets iaccept to the

value of qaccept.
Resynch(pnam)
If MSG had been rejecting sequenced messages to proc¢ess pnam

due to failure of a sequenced message transmission, then MSG
will now stop doing so.

3-26

il

2.7. Signals

Each host provides for processes running under it a set of
signals. A signal is a means by which MSG can inform a process
that some event has occurred, in particular that MSG has
completed some primitive operation.

Different hosts will offer different signals, but all signals
must satisfy certain criteria:

3. At any point in time, the process can determine whether or
not the signal has been received.

2. Signals must be distinguishable, i.e. if one of several
possible signals has been received, the process must be able
to determine which one.

3. Signals are local. A signal to one process does not
directly affect any other process.

The restrictions listed above allow hosts to specify a wide
variety of signals for processes. It is not the function of this
section to further specify what signals will be available on any
host. We list here some examples of signals that a host might
provide. These are strictly examples; they imply no MSG
requirement that these particular signals be supported:

4. Block/Unblock
The process waits and control does not return from the
primitive call until the event has occurred.

2. Flag
MSG sets a field in the process’s local memory nonzero
when the event has occurred. This field could be the
<disposition)> field itself.

3. TENEX PSI on channel n
On TENEX, MSG sends an interrupt on PSI channel n when the
event has occurred.

4, Flag plus TENEX PSI
MSG sets a field in the process’s local memory nonzero,
then sends an interrupt on an agreed-upon PSI channel
which i1s the same for all signals of this type. This
differs from example 3 in that here different signals
cause interrupts on the same channel. Because TENEX
queues PSIs on a channel only one interrupt deep, some
PSIs may be lost if MSG sends several signals of this
type sufficiently close to each other in time. With
care, a process can handle the resulting race without
undue difficulty.

3-27

2.8 Information transmittal

The sending of messages and alarms and the opening and closing
of connections all involve a pairing of compatible primitive
operations in the pending event sets of (usually) different
processes. Such a pairing defines an interchange of information
between two processes which MSG must cause to happen. The
possible pairings are:

1.

3.

Specifically-~addressed message

This pairs the primitives
Sendspecificmessage(ma,pb,...) in process pa
Receivespecificnessageznb,anam,... in process pb

This causes the message pointed to by ma to be transmitted by
MSG to process pb and put into the memory area pointed to by
mb. In addition, snam in process pb will be set to pa so that
the receiving process will know the name of the sending
process.

Alarm

This pairs the primitives
Sendalarm(acode,pb,...) in process pa
Enablealarm(cdval,snam,...) in process pb

This pairing is possible only if the boolean state variable
iaccept in process pb is true. This causes the alarm code
acode to be transmitted from process pa to process pb and put
into field cdval. In addition snam will be set to pa, the
name of the sending process.

Generically-addressed message

This pairs the primitives
Sendgenericmessage(ma,genadr,...) in process pa
Receivegenericmessage(mb,snam,...) in process pb

This is like a specifically~addressed message pairing except

that here genadr is a generic address which matches process
name pb instead of being pb directly.

3-28

S it o

4, Opening a connection
This pairs the primitives
Openconn(ta,connida,pb,...) in process pa
Openconn(tb,connidb,pa,...) in process pb
where
connida = connidb
ta and tb are compatible connection types:

1. ta = tb = TELETYPE
2. ta = tb = BINARY SEND-RECEIVE(s)
3. ta = BINARY SEND(s)
tb = BINARY RECEIVE(s)
where s is a byte size.

This opens a connection of the indicated type between
processes pa and pb. The connection will be hereafter
identified to both processes as connida (= connidb).

5. Closing a connection
This pairs the primitives
Closeconn(connid,pb,...) in process pa
Closeconn(connid,pa,...) in process pb

This will close for both processes the connection between
them which is identified by connid.

These pairings define tasks that MSG is to perform, but they
allow MSG hosts a great deal of freedom in scheduling computer
time and resources to the multitude of concurrent operations they
must perform. We must, however, specify a few more rules:

3. Fairness. MSG will not grossly favor any one process, mode of

communication, or particular operation over any other.
Exceptions are:

a. Alarms will be favored over messages.
b. Transmission of messages with special handling

attributes may be delayed until other related messages
have been transmitted.

2. Access to communication. A process must always be able to
have in its pending event set:
a. One message send primitive.
b. One message receive primitive.
¢. One alarm send primitive.
d. One alarm enable primitive.
e. One primitive to open or close a connection.

3. Efficiency. Within limits set by the above rules, MSG will

arrange its workload so as to perform it in a reasonably
efficient manner.

3-29

p—

2.9 Sequencing of messages

As noted in Section 1.6, MSG normally does not guarantee
that a collection of messages sent from one process to another
process will be delivered to the destination process in the order
in which they were sent. Some applications will require that the
messages between two processes be sequenced. In such cases, the
communicating processes could observe a private protocol to
insure proper sequencing of messages. However, since it is
expected that processes may frequently desire message sequencing,
it is possible for a process to ask MSG to sequence certain
messages.

To achieve sequencing a process can specify when it sends a
message that the message is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after all previous sequenced messages
from process A have been delivered to process B. A process may,
if it chooses, intermix sequenced and unsequenced messages.

The sending and receiving disciplines required of MSG to
support sequenced messages are discussed below. Processes should
be aware that a cost is associated with the use of the message
sequencing option; that cost will be reduced message throughput.

MSG cannot guarantee that every message will be delivered.
(The destination host may be temporarily inaccessible, the
destination process may spontaneously disappear, the message may
be timed out, etc.) When MSG is unable to deliver a normal,
unsequenced message, the sending process is signalled and
notified (via the disposition information normally supplied by
MSG) that the message could not be delivered. The sending
process can then take whatever action it feels is appropriate
with respect to the message in question.

Sequencing introduces an additional complexity here
since a sequenced message is not independent of other messages in
the sequence. To illustrate the nature of the problem, suppose
that process A has attempted to send process B the sequenced
messages M1, M2, M3, M4, M5. Furthermore, suppose that MSG
successfully delivers M1 but is unable to deliver M2. What
should MSG do with M3, M4, and M5? 1In particular, its inability
to deliver M2 does not necessarily mean that MSG will be unable
to deliver the remaining messages in the sequence. Delivery of
M3, M4 and M5 without M2 may confuse process B; processes A and
B are communicating via sequenced messages presumably because
sequencing 1s important. Therefore, MSG will not attempt to
deliver the remaining pending sequenced messages.

3-30

Rome 2oy

e

If MSG ¢ not deliver a sequenced message from process A to
process B, it /ill stop the flow of sequenced messages to process
B from process A until process A takes some explicit action to
"resynchronize" the message sequence. MSG does this by marking
process A as being out of synchrony with process B after a
sequenced message from process A to process B fails. MSG will
then abort all pending sequenced Sendspecificmessage primitives
in process A’s pending event set which are addressed to process
B. Furthermore it will reject all such primitive calis
subsequently made by A until A resynchronizes the message
sequence with B by executing the primitive Resynch(B).

As noted in Section 1.6, in situations in which an alarm is
transmitted or received, it is often important for a pair of
processes to identify a point in a stream of messages between
them corresponding to "where"” the transmission (or receipt) of
the alarm occurred. To facilitate such message/alarm
synchronization, MSG supports the concept of message stream
markers. A stream marker is an attribute of a message. When a
process sends a message it can specify whether or not the message
is to carry a stream marker. The default is no stream marker.

MSG guarantees that a message M, sent from process A to
process B, which carries a stream marker will be delivered to
process B only after all messages sent by A prior to M have been
delivered to B (or have been determined by MSG to be
undeliverable) and before any messages sent after M by A.
Furthermore, MSG will notify the receiving process B whenever it
delivers a message that carries a stream marker. The
notification will be part of the information normally supplied by
MSG to the receiving process. We emphasize that MSG itself
places no constraints upon how processes use stream markers.
However, we expect that standards regarding their use will be
adopted for NSW.

MSG observes a queuing discipline with respect to
Receivespecificmessage primitives. The Receivespecificmessage
primitives executed by a process are to be satisfied in the order
in which they are issued in the sense that the first
Receivespecificmessage should be satisfied by the first message
MSG accepts for the process, the second by the second message,
etc. We note that this does not necessarily imply that the
signals associated with a collection of pending receives will be
delivered to the receiving process in the order in which the
receives were satisfied.

3-31

i i

ki

el it ? s aan A datos T a— II‘

s

i e s e R

In addition, we note that this MSG receiving discipline does
not imply that messages from a given sending process will be
delivered in the order in which the sending process sent them.

If in-order delivery 1s required, the sending process must
request "sequenced" or "stream marker" handling. When sequencing
for a message is requested, the sending MSG observes a sending
discipline whereby it transmits the message only after the
receiving MSG has accepted all previous sequenced messages (from
the sending process to the receiving process). Similarly, when
stream marking for a message is requested, the sending MSG
observes a sending discipline whereby it transmits the message
only after the receiving MSG has accepted all previous messages
from sender to receiver and additionally transmits no further
messages from sender to receiver until the receiving MSG accepts
this message. These sending disciplines, together with the
receiving discipline described above and always followed by MSGs,
is sufficient to insure in-order delivery of sequenced and stream
marked messages.

3-32

2.10. Process creation and termination

To create a process MSG performs the following operations:
1. MSG assigns a process name to the process and creates
an empty pending event set for it.
2. MSG creates the process on the host operating system.
3. MSG starts the process in some host-dependent agreed-~upon
initial state.

An MSG host may create processes for one of only two reasons:
1. In order to fulfill its obligation to find a destination for
a generically addressed message.
2. As part of system initialization or restart.

To terminate a process, MSG performs the following operations:
1. MSG marks the process for termination in such a way that
it will no longer be a candidate for any communication
from other processes and such that it is blocked from

issuing any more MSG primitives.

2. MSG completes or rescinds all elements in the process’s
pending event set.

3. MSG deletes the process from the host.

u, MSG forgets about the process.

3-33

| e e oAl e S R o s b o

o L

2.11 Summary of terms
We present here a brief summary of the terms defined in
this section:

".

Host incarnation name
<host incarnation name)> ::=
<host designator><incarnation designator>

Process name
<{process name> ::=
<host incarnation name)><generic designatord><specific designator>

Gener’c address
<generic address> ::= <host designator><generic designator> |
<generic designator>

Generic designator
<generic designator> ::= character string

Specific designator
<specific designator> ::= integer

Host designator
<host designator> ::= integer

Incarnation designator
<incarnation designator> ::= integer

R T s

3. MSG~to-MSG Protocol

This section specifies the inter-host MSG protocol which
supports the primitives provided

between MSGs rather than how it is communicated. This section
assumes the existence of a bi-directional communication path
between each pair of MSG host systems. Issues such as how these
MSG-to-MSG paths are supported by ARPANET communication
capabilities or how MSG-to-MSG messages are delivered are the
subjects of Sections 4 and 5

3-35

3.1. Transaction Identifiers.

The completion of an inter-host MSG transaction (such as the
transmission of a message or an alarm) generally requires a
protocol exchange that involves several inter-MSG messages. When
| an MSG initiates an inter-host transaction on behalf of a process
: it manages, it generates an identifier for the transaction which
it places into the inter-MSG message which initiates the
transaction. . In addition, the initiating MSG generally places
the name of the initiating process into the inter-MSG message.

1 When an MSG responds to an inter-MSG message that initiates
1 a transaction, the responding MSG includes the transaction

H identifier chosen by the initiating MSG in its response. If the
] transaction in question is one that requires further interaction
3 between the MSGs, the responding MSG generates a second

i identifier (its identifier) for the transaction and places it

; into the response message. All subsequent inter-MSG messages
which refer to the transaction will include both transaction

i identifiers. .

3.2. On the use of "source" and "destination".

I Most inter-MSG messages are transmitted to support

§ interactions between a pair of processes. Consequently, most of
I these messages include the names of two process and many include
! two transaction identifiers. In the specification that follows,
{ F we adopt the convention of using "source" when referring tc a

§ process or transaction identifier managed by the initiating MSG
§ and "destination" when referring to a process or transaction

i identifier managed by the responding MSG. "Source" is then

i relative to the initiator of the transaction; it is not relative
to the sender of a particular message in the series of protocol

] messages needed to carry out the transaction.

3-37

.
i
-1
i
i

3.3. MSG-to-MSG Protocol Items.

In the specifications of inter-host MSG protocol items that
follow, the items are grouped according to the primitives they
support. In these specifications all information exchanged
between MSGs is explicitly represented as parameters of the
various protocol messages. In some cases some parameters may be
implicit from the protocol exchange context and are therefore
redundant. Section 5 defines the transmission formats for the
protocol items in detail.

3. MSG-to-MSG protocol for interprocess messages
(SendSpecificMessage, ReceiveSpecificMessage,
SendGenericMessage, ReceiveGenericMessage)

MESS (source-process, destination-process, source-ID,
destination-ID, handling, length, message-cata)

This initiates an inter-MSG message transactionr It
indicates that the source-process has requested that a message
(defined by length, message-data) be delivered to the
destination-process. The source ID is the identifier selected by
the source MSG to identify the message transaction. The
destination MSG should include source~ID in all communication
concerning this message transaction. The destination-ID is empty
if it is unknown; it takes on meaning for interactions requiring
more than a simple request and acknowledgement (see descriptions
of MESS-HOLD, HOLD-OK, MESS-CANCEL and XMIT below). The
destination-ID is an identifier selected by the destination MSG
for the message transaction. The handling parameter specifies
the special handling (if any) required by the receiving MSG in
order to properly deliver the message. Examples of special
handling include: include a synchronization marker with message;
MESS-HOLD not an acceptable response (see below); MESS-HOLD
acceptable and this MES3 is an implicit HOLD-OK (see below).

Protocol requires the destination MSG to promptly acknowledge
MESS with one of the following three messages.
MESS-0K (source-process, destination-process, source=~ID)

This response to MESS indicates that the destination MSG
takes full responsibility for buffering the message data and

subsequent delivery of the data to the destination-process. This
reply implies that destination-process is currently a valid name.

3-38

It does not imply that the message data has been actually
received by destination-process, nor does it guarantee that
destination-process will ever accept the data.

o e et et B S St e b L L et oo b dln s

MESS-REJECT (source-process, destination-process, source-ID,
reason)

This response to MESS indicates that the destination MSG
will not accept the request for the transaction identified by
source-~ID. Reason indicates the reason for rejection. Possible
reasons include: no such process, no buffer space, too many
messages already queued for this process, etc. The reason
supplied might be one which attempts to stimulate retransmission
by the source MSG if the rejection is known to be of a temporary
nature.

The following four MSG-MSG protocol items provide an
important extension to the basic message transmission discipline
of MESS, MESS-~0K, and MESS-REJ described above. These additional
protocol items are motivated by the need for flexible flow
control within MSG. Their inclusion introduces complexity to the
protocol. However, the flexible flow control they support is
sufficiently important to justify this complexity.

MESS-HOLD (source-process, destination-process, source-ID,
destination-ID)

This response to MESS indicates that the destination MSG
will not accept the message data associated with the specified
message transaction but that it will remember that the message
transaction has been requested and at some time in the future
will ask the initiating MSG to retransmit the message data. The
destination-ID is the identifier selected by the destination MSG
for the message transaction. Both source-~ID and destination-ID
should be included in any subsequent MSG~t0o-MSG communication
concerning this message transaction.

Protocol requires that the source MSG acknowledge the MESS~HOLD
promptly with one of the following two messages.

3-39

HOLD-OK (source-process, destination-process, source-ID,
destination-ID)

This reply to MESS-HOLD indicates that the source MSG agrees
to buffer the message associated with the transaction specified
by source-ID and destination-ID. The destination MSG will
remember the pending message transaction and request transmission
of the message when it is able to accept the message data.

MESS~-CANCEL (source-process, destination-process, source-ID,
destination-ID, reason)

This reply to MESS-HOLD indicates that the source MSG is
unwilling to buffer the specified message. In addition, it may
be used by a source MSG to indicate that it has ceased buffering
a message which it had previously agreed to buffer.

XMIT (source-process, destination-process, source-ID,
destination-ID)

This is used by a destination MSG to request a source MSG to
transmit a message previously buffered. The XMIT signals that
the message will, in all probability, be successfully accepted.
On receiving a XMIT, the source MSG is expected to transmit the
message identified via a MESS message (using the specified
source~ID and destination ID to identify the transaction in
question). All legal responses to a MESS request are appropriate
for the redelivery.

A destination MSG can send a MESS~REJ rather than an XMIT in
order to abort a message transaction for which the message is
buffered at the source. It might choose to do this if the
destination-process terminates without requesting the message.

We note that since a destination MSG can utilize the
MESS-HOLD option, it may be important to provide processes
managed by MSG means to declare that a MESS request be accepted
or rejected immediately (i.e. not held) by a destination MSG.
This concept is not currently supported at the process-MSG
interface level; should it become important to dc¢ so, the
"handling" parameter of the MESS item will be used to support the
concept at the inter-MSG protocol level.

=40

.

2. MSG-to-MSG Protocol for Interprocess Alarms
(SendAlarm, EnableAlarm)

ALARM (source-process, destination-process, source-~ID,
alarm-code)

This initiates an inter-MSG alarm transaction. It indicates
that the source-process has requested that an alarm be
transmitted to the destination-process. A few bytes of data
(alarm-code) are to be conveyed to the destination-process along
with the alarm. The ALARM message should bypass the flow control
mechanism applied to normal interprocess message transactions
(MESS). Source-ID is the identifier selected by the source MSG
to identify this transaction.

Protocol requires that one of the following two messages be sent
promptly to acknowledge the ALARM.

ALARM=0K (source-process, destination-process, source-ID)

This response to an ALARM request indicates that the alarm
request has been accepted by the destination MSG. It does not
mean that the alarm has been received by the destination-process;
it may be the case that the alarm is never actually delivered to
the destination-process.

ALARM=REJECT (source-process, destination-process, source-ID,
reason)

This response to an ALARM request indicates that the
destination MSG refuses to accept the alarm. Reason indicates
the reason for rejection (e.g. incorrect destination process
name, process not accepting alarms, another alarm is already
queued, etc).

3-41

BT v L e T T e

ol o ikt i i S SRR

3. MSG-to-MSG Protocol for Direct Access Communication
(Openconn, Closeconn)

Because of the symmetric nature of the following three
protocol messages, we change our conventions with respect to
"source" and "destination". 1In the description of these three
items, "source process" always indicates the process local to the
sending MSG and "destination process" always indicates the
process at the receiving MSG. The same convention is used for
the transaction ID fields.

CONNECTION-OPEN (source-process, destination-process,source-ID,
destination~ID, user-connection-ID, type,
source-socket)

This message indicates that the source process desir=s to
establish a direct communication path to the destination-process
of the "type" specified. The source-ID is the identifier
selected by the source MSG to identify the operations concerned
with establishing and breaking the connection(s). Destination-ID
is empty when unknown.

[For implementations which make use of the ARPANET, the
source-socket specifies the socket(s) at the source MSG host
which is (are) to be used in establishing the connection which
implements the communication path. Protocol states that the
ARPANET RFCs required to establish the connection(s) are to be
exchanged immediately after both source and destination MSGs have
agreed to the connection (by exchanging matching CONNECTION-OPEN
messages).]

CONNECTION-CLOSE (source-process, destination-process, source-ID,
destination-ID, reason)

This protocol message indicates that the sending MSG wants
to close the connection identified by source-ID and
destination-ID. Protocol specifies that the receiver should
close the connection and acknowledge the request with a matching
CONNECTION-CLOSE. CONNECTION-CLOSE may be sent to abort a
connection which has not yet been completely opened. Reason
indicates the reason the connection is being closed. Possible
reasons include: process requested close, byte size mismatch,
type mismatch, and entry timeout.

3-42

CONNECTION-REJECT (source-process, destination-process,
destination-ID, reason)

This item is used to reject a CONNECTION-OPEN or a
CONNECTION-CLOSE request. It does not require an
acknowledgement. Reason indicates the reason for rejection.
Possible reasons include: no such destination; no such
connection. The transaction identifier returned is the
"source~ID" for the request being rejected.

4, MSG-to~-MSG Protocol for Obtaining Process Status
(Get-status primitive)

An MSG primitive to be used to obtain information regarding
the status of an MSG process is to be specified in the future.
The "get-status" primitive will not be required in the first MSG
implementation. The following describes, in general terms, three
protocol items which are intended to support the "get-status”
primitive.

SEND-STATUS (source-process, destination-process, source-ID)

This protocol message requests the status of the
destination-process on behalf of the source-process. Source-ID
is the identifier selected by the source MSG for the status
transaction.

Protocol requires that one of the following two messages be
promptly sent in acknowledgement of SEND-STATUS.

STATUS-0K (source-process, destination-process, source-ID,
status-words)

This returns the status information requested by the source
MSG. The information to be included in the status report has not
yet becen completely specified. We expect that it will include
the state of destination-process including pending Sends and
Receives as well as pending alarms.

[Note: It may not be desirable to allow a process to obtain
detailed status information about processes with which it is not
actively communicating. The precise access controls (if any)
that are required for the Get-status primitive will be defined in
the future.]

3-43

R Sk i

T S Y

R SRR

STATUS-REJECT (source-process, destination-process, source-ID,
reason)

This response is used to indicate the rejection of a

SEND-STATUS probe request. Reason indicates the reason for the
rejection.

5. Miscellaneous MSG~to-MSG Messages.

The following MSG to MSG messages are provided because they
have proven useful in communication system implementations and
for experimental extensibility.

NOP

This message is a no-operation. It has no effect and is
immediately discarded by the receiving MSG. No reply is
required.

ECHO (data=-byte)

This protocol message requests the receiving MSG to echo the .
data-byte. It can be used to see if a remote MSG is actively
functioning. Protocol specifies that the data-byte of an ECHO

message be promptly returned to the sending MSG in a matching
ECHO-REPLY message.

ECHO-REPLY (data-byte)
Reply to ECHO.

EXPERIMENTAL (command, length, data)

This message provides for experimentation and extensibility
within the MSG-to-MSG protocol. The command specifies the
function requested; the length specifies the number of bytes in
the EXPERIMENTAL protocol message; data is information relative
to the function requested.

3=44

u, MSG-to-MSG Protocol for the ARPANET

4,1 Implementation of MSG~to-MSG paths by ARPANET connections.

Section 3 introduced the notion of "MSG-to-MSG paths" across
which inter-host MSG messages are sent. A single such MSG-to-MSG
path exists between each pair of host MSGs.

MSG-to~MSG paths are virtual entities in the sense that they
are implemented by ARPANET host/host protocol connections. At
any given time, a given MSG~to-MSG path may be implemented by
zero, one or more pairs of ARPANET host/host connections. The
standard byte size for ARPANET connection which implement
MSG-to-MSG paths is 8 bits.

The set of ARPANET connections which implement an MSG-~to-MSG
path are equivalent in the sense that any legal inter-host MSG
message can be sent over any one of the ARPANET connections in
the set.

To send a message to another MSG, an MSG selects one ARPANET
connection from the set that implements the MSG-to-MSG path and
transmits the message over the connection. If no such ARPANET
connection exists, the sending MSG must act to establish one.

3-45

it lam

ki bt St

: 4,2 Establishing the ARPANET connections.

| A pair of ARPANET connections which supports an MSG-to-MSG
path is established via an ICP to a "well known" contact socket
in the normal way. The contact socket for MSG is 27 (decimal) =
33 (octal).

After a new pair of connections is established by an ICP,
the pair of MSGs must engage in a synchronization exchange before
they can use the connections to carry the inter-MSG messages
defined in Section 3. The purpose of this MSG-MSG
t synchronization is to allow the two MSGs to exchange their
current "incarnation" numbers and any other information pertinent
to subsequent interaction via the connection pair.

An MSG incarnation number identifies a particular period of
MSG service. (We frequently use the term "MSG incarnation" to
| mean such a period of MSG service.) A period of MSG service ends
and a new period of MSG service begins when 3n MSG re-initializes
itself. This typically occurs after its host has restarted or
the MSG itself has crashed and been rest=ted. An MSG is
expected to know its current incarnation number and to change its
incarnation number when a new period of service begins. (An MSG
could do this by storing its incarnation number in a file which
is preserved over host and MSG crashes. When a new period of
service begins, the MSG could increment the stored incarnation
number and use the number obtained to identify the new period of
service.)

As noted in Sections ?t and 2, MSG process names include an
incarnation number component which serves to identify the
incarnation of the MSG that generated the process name and is
responsible for managing the process. The MSG incarnation number
component of a process name is used to determine whether the
process named is one that currently exists or is an obsolete one
which was managed by the MSG during one of its previous periods
of service.

The MSG-to-MSG protocol for the synchronization exchange is:

1. The MSG that initiated the ICP initiates the
synchronization exchange by using the send connection
of the pair to send the message:

SYNCH (my-incarnation, your-incarnation, version, data)

where:

3=46

my-incarnation identifies the cu.'rent incarnation
of the initiating MSG.

your-incarnation is empty.

version identifies the version of the MSG=to-MSG
protocol to be used on this connection.

data is other synchronization information.
(To be defined in the future.)

ot bl o B

2. The other MSG responds to the SYNCH by using the send
connection of the pair to send the message:

” SYNCH (my-incarnation, your-incarnation, version, data)

i where:

g my-incarnation identifies the current incarnation
4 of the responding MSG.

: version identifies the version of the MSG-to-MSG
: protocol to be used on this connection.

] your-incarnation echoes the incarnation number

i specified in the initiating MSG’s SYNCH

: nessage.

4 data is other synchronization information.

] After the synchronization exchange is completed, the connections
‘ may be used to carry any of the inter-MSG messages defined in

Section 2 ::til the connections are closed (see Section u.3
below).

i
3
|
b
)
¢
il

An MSG may wish to ascertain that the entity at the other
end of a new connection pair is indeed another MSG before it
commits any of its host resources to acting upon protocol
messages received over the new connection. Section 4.4 below

defines a prccedure which MSGs may use to reliably autheanticate
one another.

3-47

anitrs

i g il A

i
4
=]
]
|
‘)
|
&

u,3 Breaking the ARPANET Connections.

A pair of ARPANET connections to another host represents a
resource which an MSG may not want to keep open indefinitely in
the absence of MSG traffic. If an MSG were to close a connection
pair unilaterally, messages in transit from a remote MSG could be
lost or garbled. A protoccl mechanism is defined for closing
pairs of connecticns in an orderly manner that eliminates the
possibility of such lost or garbled messages.

The protocol for closing a pair of connections is:

1. MSG sends an MSG-to-MSG "CLOSE" message over the send
connection of the pair that is to be closed and then
closes the send connection of the pair;

2. Upon receipt of an MSG~to-MSG CLOSE message an MSG is
expected to: close the connection which carried the
message; return a CLOSE message on the send connection
of the pair (when it is convenient to dc so); and
close the send connection.

The protocol exchange defined above is the mechanism for
breaking pairs of connections. At present, we refrain from
specifying in detail a policy which defines when MSG may use this
mechanism.

An MSG that does not wish to communicate with the entity
that has initiated an ICP should respond to the initiator s SYNCH
message by initiating the CLOSE protocol exchange. An MSG might
choose to do this if the synchronization data supplied by the
initiating MSG is incompatible cr if the initiating entity can
not properly be authenticated as another MSG.

J=4R

u,u Authentication of MSGs.

As noted in Section 4.2 above, it may be important for an
MSG to be able to reliably authenticate the entity at the remote
end of a pair of ARPANET connections as another MSG before host
resources are committed to requests made by that entity. The
problem here is one of mutual authentication. Each entity must
authenticate the other as an MSG.

[In the absence of an authentication procedure, there is no way
for an MSG to determine whether the entity at the remote end of a
connection is another MSG or a bogus process which follows the
MSG-to-MSG protocol. Failure to distinguish between an MSG and a
process masquerading as an MSG could result in the inadvertent
disclosure of private information or unaccountable use of
expensive resources.]

The use of passwords is one approach to MSG authentication.
Only an MSG would know the password and thus be able to properly
identify itself to another M3G. We reject the password mechanism
as unreliable and operationally impractical for the following
reasons:

1. Use of a password requires that the password be stored
in the sending program or be accessible to it in some
way thereby increasing the likelihood that the privacy
of the password will be compromised.

2. If a password is compromised, it must be changed at
both sending and receiving hosts; this represents a
synchronization problem.

3. Truly secure authentication would probably require
passwords for each pair of hosts; this would require
N®*N passwords for an N host NSW.

The mechanisms to be used for MSG authentication are based
upon the properties of ARPANET host/host communication. First,
we assume that the ICP is a secure procedure. That is, we assume
that a host can guarantee that MSG is the only entity that has
access to the MSG ICP contact socket and that MSG is the only
entity that has access to the connections resulting from the ICP.
This is the standard assumption made in the ARPANET regarding the
ICP. Thus, the authenticity of the entity responding to an MSG
ICP as an MSG is based upon the security of the ICP procedure.

The authentication problem that remains is that of
authenticating the entity that initiates the ICP. This

3-49

authentication can be achieved in a manner similar to that of the
ICP responder. Just as a single well known ICP contact socket is
defined, a collection of well known "ICP-from" sockets (i.e.,
sockets from which ICPs are initiated) could be defined. (A
collection of ICP-~from sockets are required due to the nature of
the ICP which prevents reuse of the ICP-~from socket until the
connections resulting from the ICP are discarded.) A host would
be required to limit access to the ICP-~from sockets (and the
connections that result from the ICP) to MSG just as it is
required to limit access to the ICP contact socket (and the
connections that result from the ICP). If this were to be done,
an MSG responding to an ICP could authenticate the initiating
entity as an MSG by checking that the socket from which the ICP
was initiated was one of the well known ICP-from sockets.

Some hosts find it inconvenient to limit access to a
collection of sockets but have no difficulty in controlling
access to a connection once it is established. Therefore, a
variation of the above approach is used for authenticating
initiating MSGs. A single send socket is defined for MSG
authentication; access to the MSG authentication socket is
limited to MSG. The authentication socket is to be maintained by
MSG in a listening state. 1In response to an RFC for the
authentication socket, MSG should open the requested connection
(with byte size = 32) and send a specification of the sockets
which it is currently using in active MSG-to-MSG connections.
The connection should then be closed and the authentication
socket returned to the listening state.

An MSG at host A responding to an ICP initiated by a remote
entity at host B can authenticate that entity by the following
simple procedure:

1. The MSG at A notes the remote sockets, S% and S2, used
in the connections that result from the ICP.

2. It opens a connection to the authentication socket at
B, reads the socket specification that the MSG at B
sends, and closes the authentication connection.

3. If the remote sockets, S% and S2, are included in the
specification then the entity at B is an MSG;
otherwise, it is not. (Note that when the MSG at B
initiates an ICP to the MSG at A, it must remember the
sockets it uses so that it can include them in the
socket specification sent to the MSG at A.)

3-50

-

|
o
E
{
F i
4
H
|

The reliability of this authentication procedure depends
upon the ability of host B to insure that only MSG has access to
the authentication socket and to the sockets named in the
specification sent over the authentication connection. (This is
exactly what host B must do to insure the security of ICPs to its
well known contact sockets.) In addition, it requires that the
MSG at A have means to reliably determine sockets in use at the
remote end of connections. Socket identity is part of the
information NCPs must exchange in order to open a host/host
connection. Thus, the socket information is available to the NCP
at A. The authenticity of the information depends upon the
trustworthiness of the NCP at B. We assume NCPs to be secure;

if they were not, there could be no reliably secure communication
between ARPANET hosts.

The MSG authentication socket is 29 (decimal) = 35 (octal).
The specification of MSG sockets returned over the authentication

connection may be a range of sockets or a list of sockets. A
socket range is transmitted as 3 bytes:

byte 1:

0 indicates range spec
byte 2:

Sa

byte 3:

Sb

All sockets within the range defined by Sa and Sb (including Sa

and Sb) are MSG sockets. A list of N sockets is transmited as
N+2 bytes:

byte *%:

1 indicates list spec

byte 2:

N the number of bytes that follow
byte 3:

S1

byte U4:

S2

byte N+2:
SN

The MSG sockets are St, S2, ..., SN.

‘n
-

e e atities

4,5 Error Control for MSG-to-MSG Paths

ARPANET host to host communication is reasonably reliable.
However, communication failures can occur. For example,
host/host messages are lost occasionally. A lost host/host
message may manifest itself at the MSG-to~MSG path level as a
"hung" connection (if the message lost was a host/host allocate)
or as a totally or partially lost MSG-to-MSG message (if the
message lost was a host/host data message).

In addition, communication between a pair of hosts can be
interrupted temporarily. The interruption may be the result of a
transient network failure (e.g., the source or destination IMP
crashes and is restarted) or a transient host service
interruption (e.g., TENEX hosts occasionally experience BUGCHK
interruptions and resumptions). At the MSG-to-MSG level this may
manifest itself as a spontaneously closed host/host connection.
If the connection was being used at the time, this could result
in a lost or garbled MSG-to-MSG message.

Mechanisms to insure reliable communication in an
environment where messages can be lost are reasonably well
understood. These mechanisms typically require positive
acknowledgement of all messages and the use of a time out and
retransmission scheme. This generally requires that the
communicating entities (in this case pairs of MSGs) use unique
identifiers or sequence numbers to identify messages in transit
and employ techniques for detecting duplicate messages (the
message may have made it but its acknowledgement may have been
lost). Note that these message identifiers serve to identify
individual inter-MSG messages and are therefore different from
the transaction identifiers used in the inter-MSG protocol to
identify transactions that involve a number of inter-MSG
messages.

The question here is:

Should such a reliable transmission mechanism be used
for error control on the MSG~to-~MSG paths?

Our position with regard to error control for MSG-to-MSG paths
is:

1. The most effective error control mechanism for the

MSG-to~-MSG application is that described by Cerf and
Kahn (i.e., that used in the InterNet or TCP protocol).

3-52

e ey By o s o N s

2. The overhead incurred by using a TCP-like error control
mechanism would not significantly degrade performance
for the NSW MSG application.

3. Use of a TCP-like mechanism would approximately double
the time and effort required to implement inter-host
MSG.

4, The TCP mechanism can be made orthogonal to the
MSG-t0-MSG protocol and to a properly designed MSG
implementation. That is, the information required to
enable TCP-like error control would envelope inter-MSG
messages. We estimate that 5 or 6 additicnal 8 bit
bytes are required for each inter-MSG message to
support TCP-like error control. Furthermore, we
believe that the processing required to perform the
error control function can occur in series with the
"higher level" processing required to implement the MSG
protocol.

It is not clear, at present, whether error control stronger
than that normally provided by ARPANET host to host communication
will be required by the NSW application. Therefore, the initial
inter-host MSG specification does not include TCP-~like error
control for the MSG-to-MSG paths nor does the transmission format
for inter-MSG messages include fields for the information
required to support TCP-like error control. However, the MSG
implementations should be done with the expectation that it may
be necessary to add TCP-like error control later, should
experience indicate that the lack of error control for the
MSG-to-MSG paths is resulting in unacceptable performance.

3-53

Y

T L)

5. MSG~to-MSG Transmission Formats for the ARPANET

This section specifies in detail the formats for the
MSG-to-MSG protocol commands as sent over ARPANET connections.
Only the syntax of the commands is specified here; for a

discussion of the semantics of the MSG-to-MSG protocol see
section 3 of this document.

3-54

R T

5.1 General format for MSG-to-MSG messages:

An MSG-to-MSG message is a sequence of 8 bit bytes. The
first two bytes contain the length of the message in bytes; the
third byte is a command code that identifies an MSG-to-MSG
protocol item; and the remaining bytes contain information
relative to the command.

% length ®* command * data L

2 1 length - 3

3-55

5.2. Formats for Message Components
4. Process names:

As described in Section 2, a process name has four
components which specify a host, a host incarnation number, a
generic process class, and a process instance number. The
representation for process names at the MSG-to-process interface
is:

v G e S G G G G G G G S G G G G G T R G S G G S I G S G G G G G G G G G G GRS G .

* host * host # process # count #* string #*
* # jncarnation # #* instance # * * #
2 2 2 1 count

Host is a 16 bit host address. (Whether the host address is an
ARPANET host address or an NSW host address whose correspondence
to an ARPANET host address is defined by a table MSG maintains is
to be decided shortly.) If MSG is modified to allow processes
with no generic names, the null generic name will be represented
by a zero length string.

For a generically addressed message the destination process
name 1is only partially specified. Either only the generic
process class is specified, or only the host and generic class
are specified in a generically addressed message. The other
components are left unspecified. "Unspecified" is a special
value used in generically addressed messages for host, hcst
incarnation #, and process instance #. Unspecified is
represented by two zero bytes.

When a process name appears as the parameter of an
MSG~to-MSG message, the hcst component of the name need not be
represented explicitly since it is implicit €from the hosts of the
sending and receiving MSGs. There are two representations for
process names at the MSG-to-MSG level: normal and compact. The
- only difference in the two is the representation of the generic
process class. In the normal represenation the generic class is
represented by a string whereas in the compact form it is
represented by a one byte generic class code. MSG
implementations must be able to deal with both representations
for process names. The compact representation is defined to
allow for greater transmission efficiency. Use of the generic
codes is internal to MSG in the sense that the codes never appear
in a process name given by MSG to an MSG process or accepted by
MSG from an MSG process. Generic class codes for the NSW will be
defined in the near future.

3-5¢6

2.

3.

Normal Fcrmat: count < 128 (5 + count bytes)

* host * process ® count * string *®
jncarnation # * instance # # Ld L
2 2 1 count

Compact Format: Generic code >= 128 (5 bytes)

host # process % generic *
% incarnation # ® instance # * code b
2 2 1

Generic code = 128 + n (n < 128)
where n = integer which specifies a generic class
n =0 - null (i.e., process has no generic name).

Host Incarnaticn #:

16 bit (2 byte) number..
0 = unspecified (used for generically addressed messages)
1-255 reserved for special use

MSG transaction Identifiers (source-id, destination-id)

® MSG id *

2
36 bit (2 byte) number.

3-57

4, Alarm code

2

16 bit (2 byte) number.

5. Failure/Rejection codes

% reason #

16 bit (2 byte) number.]

See descriptions of individual messages for discussion of
specific codes. Values have not yet been assigned, nor are
those codes given necessarily exhaustive.

3-58

5.3 Identifying Transactions.

In the format specifications that follow all inter-MSG
messages concerned with inter-process transactions carry the
source and destination process names as well as the MSG source
and destination transaction identifiers. The redundancy provided
by the process names is useful to an MSG in detecting and
recovering from protocol errors or violations resulting from
malfunction of a remote MSG. With the exception of MESS
messages, all protocol messages will fit into a single ARPANET
packet (assuming the compact representation of process names or
generic names of a few characters); hence, the cost associated
with the redundancy is not great.

3-59

Sl 2ol

5.4 MSG-to-MSG protocol messages

1. MESS(src-proc, dst-proc, handling, src-id, dst-id, message)

D L Lt e et L L L T ——— - 1

* length # MESS * src-id * dst-id * First byte * Handling

2 1 2 2 1 1

s

* src-proc * dst-proc * message #

5+J 5+k M
length = 19+j+k+M
J = # chars in source generic name / 0 if compact format.
k = # chars in destination generic name / 0 if compact

fcrmat.
MESS = 8 (10 octal)
Handling = bit flags (numbered 0-~7 from left to right)
bit 0 - generically addressed message
bit 1 - sequenced message
bit 2 ~ synchronization mark on message)
bit 3 -~ immediate decision on delivery (prohibit HOLD)
First byte -~ Position of first byte of the message (zero is
the position of the first byte of the length field of the ¢
MSG-to-MSG message)

2. MESS-OK(src-proc, dst-proc, src-id)

- g - o -~ O G S G S G G S G S S O G I S ST G G G G G S G G G - -

%# length * MESS-OK * src-id * src-proc * dst-proc #

O S G G G S G G G G G G G G G T G P G G G P G S - - -

2 1 2 5+ S+k

length = 15+j+k
MESS-0K = 9 (11 octal)

3=AN

" - O o 5 s >

: 3. MESS-REJ(src-proc, dst-proc, src-id, reason)

D T P R e e . e

% length # MESS-REJ * src-id #* reason * src-proc # dst-proc *

2 1 2 2 5+J 5+k

i : length = 1T7+j+k :
: MESS-REJ = 10 (12 octal)

: reason = To be specified, but including:
L dst=-proc unknown

no buffer space

3 message queue for process full

o T b

4 4, MESS-HOLD(srec-proc, dst-proc, src-id, dst-id)

% length * MESS-HOLD * src-id * dst-id * src-proc * dst-proc ¥

2 R 2 2 5+J 5+k

B

length = 17+j+k
MESS-HOLD = 3% (13 octal)

b g A

5. HOLD-OK(src-proc, dst-proc, src-id, dst-id)

! * length * HOLD-OK * src-id * dst-id * src-proc * dst-proc *

i 5

2 1 2 2 5+J 5+k

length = 17+j+k |
HOLD-OK = 32 (34 octal) 1

e e e

GG o it i BT R e

|
i
i
i
!}

3-61 E

L " " ’ "
o o o e
" hsla e s aula diae -....._......‘.J

6. MESS-CANCEL(src-proc, dst-proc, src-id, dst-id, reason)

length # MESS-CANCEL #* src-id * dst-id * reason

2 1 2 2 2

% src-proc % dst-proc #

5+ S+k

length = 19+j+k
MESS-CANCEL = 13 (15 octal)
reason = To be specified, but including:
src=proc unknown
src-1id unknown
message rescinded
src=proc terminated
no buffer space

7. XMIT(src-proc, dst-proc, src-id, dst-id)

o O G G G G S G G G G G G G S S P G -

Jength * XMIT * src-id * dst-id * src-proc % dst-proc *#

o= om gm - g - o o o

2 1 2 2 5+] S+k

length =z 17+j+k
XMIT = 14 (16 octal)

8. ALARM(src-proc, dst-proc, src-id, acode)

- o G S O S G G P G G R SR G S G G G S G S G S S S S R S G S G -

length * ALARM * src-id * acode * src-proc * dst-proc *

- - - - o~ o= o - o o on o o= o o=

2 1 2 2 5+J 5+k

length = 17+j+k
ALARM = 16 (20 octal)

=62

AD=AD34 133 MASSACHUSETTS COMPUTER ASSOCIATES INC WAKEFIELD F/6 9/2
NATIONAL SOFTWARE WORKS, (U)
SEP 76 R MILLSTEIN F30602=76=C=0094
UNCLASSIFIED CADD=7603=0411 RADC=TR=76=276=VOL~1

- g Y
e s i
e t s =
T =
i 25 8

B

lizS fles. e,

1
k|
!
i
i
!

9. ALARM-OK(src-proc, dst-proc, src-id)

length ® ALARM-OK ® src-id * src-proc ® dst-proc *#

2 1 2 5+ S5+k

length = 15+j+k
ALARM=-OK = 17 (2% octal)

10. ALARM-REJ(src-proc, dst-proc, src-id, reason)

®)Jength * ALARM-REJ * src-id * reason * src-proc % dst-proc #

2 1 2 2 5+J S5+k

length = 17+j+k

ALARM-REJ = 48 (22 octal)

reason = To be specified, but including:
dst-proc unknown
dst-proc not accepting alarms
alarm already queued for dst-proc

13. CONNECTION-OPEN(src~proc, dst-proc, src-id, dst-id, conn-id,
type, socket)

- omon

length ® CONN-OPEN #* src-id ®* dst-id ®* conn-id * type

2 1 2 2 2 2

#® socket ®* src-proc ®* dst-proc #

u 5+ S+k

length = 25+j+k

CONN-OPEN = 20 (2u octal)

type: O - Teletype (TELNET)
bit 0 + size - binary send/receive pair + size
bit 1 + size - binary send + size

3-63

bit 2 + size - binary receive + size
socket: 32 bit socket number = N
Teletype N = odd = send socket
N+1 = even = receive socket
Binary send/receive pair (same as Teletype)

12. CONNECTION-CLOSE(src-proc, dst-proc, src-id, dst-id, reason)

®# length * CONN-CLOSE #* src-id * dst-id * reason * src-proc

2 1 2 2 2 5+3

® dst-proc *

S+k -

length = 19+j+k
CONN-CLOSE = 2% (25 octal)
reason = To be specified, but including:
normal close
src-proc terminated
timeout of open
byte~size mismatch
type mismatch

13. CONNECTION-REJECT(src-proc, dst-proc, src-id, dst-id, reason)

% length # CONN-REJ * src-id * dst-id * reason * src-proc

2 1 2 2 2 5+J

* dst-proc *

5+k
length = 19+j+k

T ST

CONN-REJ = 22 (26 octal)
reason = To be specified, but including:
dst-proc unknown
dst-id unknown
byte~size invalid
type invalid
timeout

q4. NOP

% length ® NOP ®

2 1

length = 3
NOP = 0 (0 octal)

15. ECHO(data byte)

!
|
i
!
|
]
i
' §

length ® ECHO *® data byte L

2 1 1

u
(1 octal)

%

length
ECHO =

- i

16. ECHO-REPLY(data byte)

length ®* ECHO-REPLY * data byte *®

2 1 1

length = U4
ECHO-REPLY = 2 (2 octal)

3=65

17. EXPERIMENTAL(command, length, data)

® length ® EXP ® command * data *

2 1 1

length = UeN
EXP = 24 (30 octal)

18. SEND=-STATUS(src-proc, dst-proc, src-id)

® length ® SEND-STATUS * src-id * src-proc * dst-proc ¢

2 1

length = 15+j+k
SEND-STATUS = 4 (U4 octal)

2 5+J 5+k

19. STATUS-OK(src-proc, dst-proc, src-id, status bytes)

% length ®* STATUS-OK #* src-id * src-proc #* dst-proc

2 3

® status bytes *®

N

length = 15+j+k+N
STATUS-0K = 5 (5 octal)

2 5+J 5+k

status bytes = (to be defined)

20. STATUS-REJ(src-proc, dst-proc, src-id, reason)

length ® STATUS-REJ * src-id * reason ® src-proc * dst-proc *

2 1
length = 17+j+k

3-66

2 2 5+] S5+k

-

——

bl s st : & -

STATUS-REJ = 6 (6 octal)
reason = To be specified, but including:
dst-process unknown

2. CLOSE()

length * CLOSE *

- o o o o S S = - = o o S

2 1

length = 3
CLOSE = 7 (7 octal)

22. SYNCH(sender’s incarnation #, receiver’s incarnation #,
version #, data)

- om e o o o= - -

% length * SYNCH * sender # * receiver # ®* version # ®# data ¥

2 1 2 2 2 N

e length = 9+N
SYNCH = 3 (3 octal)
sender/receiver #°s = Host incarnation #'s = 2 bytes
version # = version of MSG protocol to be used by the sending
MSG = 2 bytes
data = additional synchronization information (to be defined)

23. PTCL-ERR(error code, bad message)

length ®* PTCL-ERR * error code * bad message *

2 1 2 N

length = SN

PTCL-ERR = 25 (31 octal)

error code = To be specified, but including:
command not implemented
command unknown
command syntax error

bad message = The bad MSG~MSG message.

S R AT e

: 5.5 Summary of Commands

Code Command Length
Dec Oct
0 0 NOP 3
1+ 1 ECHO u t
2 2 ECHO~REPLY u
3 3 SYNCH 9+N
u u SEND~STATUS 15+j+k
5 5 STATUS-0K 15+ j+k+N
6 6 STATUS-REJ 17+j+k
7 7 CLOSE 3
8 10 MESS 19+ j+k
9 11 MESS~0K 15+ j+k
10 12 MESS~REJ 17+j+k
1 13 MESS-HOLD 17+3+K
12 14 HOLD-OK 17+j+k
13 15 MESS-CANCEL 19+j+k
1 16 XMIT 1T+j+k
5 17 reserved

20 ALARM 17+j+k

2% ALARM-OK 15+ j+k -

ALARM-REJ 17+j+k
23 reserved

24 CONN-OPEN 25+ j+k
5 CONN-CLOSE 19+ j+k

N ot b
oW
n
N

21

22 26 CONN=-REJ 19+ j+k
23 27 reserved

24 30 EXP U4N
25 131 PTCL-ERR 5+N

Extra bytes needed if src-proc¢ name is not in compact format.
Extra bytes needed if dst-proc name is not in compact format.
Number of bytes in data or message contained in command.

= X
noaun

3-68

T Al

PRI

Chapter 4: File Package Design Specification
Section 1: Overview

The primary function of the NSW File Package (FP) is the
creation of a copy of an NSW file which will be suitable as input
for a tool. That is, the primary concern is to make the output
of one tool (e.g., an editor) acceptable as the input to another
(e.g., a language processor). Secondary functions include the
"importing" of files external to NSW into its file system, and
associated peripheral operations: creating listings, reading
and writing tapes and cards, etc.

A File Package resides on every NSW Tool Bearing Host.
Every such host also includes some NSW-controlled file space; that
is, files to which only the NSW Works Manager (WM) has access. The
WM contains a File Catalog of NSW files; the NSW file system consists
of all files which have entries in the WM file catalog. At one
level, an NSW file can be viewed as an NSW name and a 1list of names of
physical copies. The NSW name is (generally) assigned by the NSW
user and is syntactically uniform for the entire NSW file system.
The 1list of physical copies includes the complete network address
of each.

The multiple physical copies are logically indistinguish-
able, and the choice of the one actually selected by WM/FP is of no
concern to the NSW user. This 1s clearly the case when physical
copies reside on several machines running the same operating system
(a "host family"), but what of two "copies" on different host types?
We use only the following general notion: At the logical level,
the physical copies represent identical sequences of lines (or records).

The WM grants access to given files by given users; once
granted it is the job of the FP to make a copy suitable for the
desired access. Note that unless a local copy is available two
FP s are involved in a copy operation: "receiver" FP (on the host
desiring the copy) and "donor" FP (on a host containing an original).
The case in which the two FP’s reside on hosts in the same family
is used to good advantage (see below). Of the two FP’s, nowever,
the receiving FP drives the copy procedure: it has the task of
creating a copy with equivalent logical structure.

The receiving FP is given a list of physical copies (originals)
and the right to select among them. Three situations may arise:

) Local copy. There is an original on receiver’s host.

2) Family copy. There is an original on a foreign host
supporting the local file formats.

3) Forced translation. There is an original on a host
which does not support local<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>