
A D A O3’4 133 MASSACHUSETTS COMPUTER ASSOCIATES INC WAKEF IELD FIG 9/2
NATIONAL SOFTWARE WORKS . CU)
SEP 76 R MILLSTEIN F3O6O2—76—C—O091s

UNCLASSIFIED CADD—7603—O’e11 RAOC—TR—76—275—VOL—j NL I

H U U
I

flfl
I

-
p

O IM 2.8 I~2.5I. L~
_ _ _

L1 IHH 2.2
L ~~~

I.’ ~L’~ ~III~________ 1.8

1.25 fIIII~•~ Ilin

— r- ---~-r W~~W~-

P~
F
~
W

~~~~~

c 2~R A D C - T R - 7 6 - 2 7 6 , V O L I J PI E 1 S E P T E M B E R  197 6
I /I
I
I

/ A TI 0 NA L
/ FTWA RE,”I • 

RKS
/ / ,ST~ATUS REPORT NO. 1/

F (
~):~~~~~/ u—c ~ ARPAN~

TERMINALS 
TOOLS.

DEBUGGERS

________CO-SPONSORED

F BY I
ADVANCED RESEARCH PROJECTS AGENCY U.S. AIR FORCEIIIFORMATION PROCESSING TECHNIQUES OFFICE AIR FORCE SYSTEMS COMMAND1400 WILSON BOULEVARD ROME AIR DEVELOPMENT CENTERARUNCTON. VIRGINIA GRIFFISS AIR FORCE BASE, N.Y.

—APPROVED FOR PUBLIC RELEASE ,~ ifDISTRiBUTION UNLIMITED -~‘b’ D C
COPY A t(M!J~ E TO fl~C ~~ NOTrr r’~rr ~~ ‘

~1~~kJ J j~t.U_~~~ u~1~
— 4



~~~~~~~~~~~~~~ -~~~~~~~~~~~~ — —,-
~~~
,- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—

I
This work was sponsored by the Defense Advanced Research Pro jects

Agency (DoD) tmdsr ARPA Order No. 3061.

The views and conclusions contained in this document are those of the
authors and should not be interpr eted as necessarily representing the off icial
policies , either expressed or Implied , of the Defense Advanced Research
Proj ect Agency or the U. S. Government .

This report has been reviewed by the RADC Infor mation Office (01) and
is releasa ble to the National Technica l Information Service (NTIS) . At NTIS
it will be relea sable to the general public including foreign istions .

This report has been reviewed and is approv ed for publication .

APPROVED;~~~~~~JJ0 4~~~~,~~

RICHARD A. ROBINSON
Proj ect Engineer

APPROVED: ,e~°f ~) ~~~~
ROBERT D. KRUTZ, Col, USAF . 4Chief , Inf ormation Sciences . Division

FOR THE COHMANDER

~~JOHN P. RUSS
Acting Chief, Plans Office

Do not return this copy . Retai n or destroy .

I

.

1 ’ 11
-~ - .

- -

NATIONAL SOFTWARE WOR KS . STATUS REPORT NO. 1

Contractor: Massachusetts Computer Associates
Contract Number: F30602—76—C—0094
Effective Date of Contract: 1 July 1975
Contract Expiration Date: 30 June 1977
Short Title of Work: National Software Works ,

Status Report No. 1
Program Code Nunber: 6P10
Period of Work Covered: Jul 75 — Feb 76

Principal Investigator: Robert Millstein
Phone: 617 245—9540

Project Engineer: R.ichard A. Robinson
Phone: 315 330—7746

Approved for public release,
distribution unlimited.

This work was supported by the Advanced Research ProjectsAgency of the Department of Defense and by Rome Air DevelopmentCenter. It was monitored by Rome Air Development Center underContract F30602—76—c—0094 and by the Office of Naval Research
under Contract N%)14—75—C—0073.

,--—-. - ~~~~~ ——---—~~~~~~~~
—- -

~~~ 
—- .- - — ..-~ 

-

UNCLASSIFIED
SECuRIYY~~~ ...~ SS FICA1ION OF THIF ~~&3I (U7i..i D.*. Et i f .r.d) 

__________________________________

READ LNSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLET IN G FORM

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ACC~~5SI 3. RECIP’ FNTS CATA LOG NUMSE~

r~~~L
& T I T L E (.sd SubUtS.) S. TYPE 3F ~ EPQ~~T~~ PERIOD COVERED

NATIONAL ~OFTWARE ~~RKS STATUS REP NO I 1 Jul 75 — 29 Feb 1~~~~~~ ~~~~g
~____________ _________________________ CADD-7643.-Ø411j .0~~~~

_________________ - I - I. CO N , RA ~~T O R GRANT NUMSER(.)7. AUTHOA(.) - /

M lti le
-

~~~~~~~~~~~~

~~ Ø~14—75—C—$73
,. PERPORMING OR GLIZATION NAM E AND ADDRESS PROGRAM ELEMENT. PROJECT , TASK

AR EA A WORK UNIT NUMBEMassachusetts Computer Associates
2702E,26 Princess Street i..-.

Wakefield MA 01880 
~~~~ 

i~~~3830
IL ..RfP~~BT f l&TRII. CONTROLLING OFFICE NAME AND ADDRESS
Sep__... 76J

—

Defense Advanced Research Proj ects Agency
1400 Wilson Blvd II. NUMBER OF PAGES
Arlington VA 22209 211
14. MONITORING AGENCY NAME B A OORESS(d l dlSf .r.f l ft.., ConSroflIn OWe.) IS. SECURITY CLASS. ~of thIs r.po,t ~

—

Rome Air Development Center (ISCP) - -

UNCLASSIFIEDCriffiss APE NY 13441 P I5~.
- . / -

~~

IS. DISTRIBUTION STAT EMENT (of this R.poct)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of IA. abstract .nt.r.d Sn Block 20, II dllt.,.rS from Report)
Same

II. SUPPLEMENTA RY NOTES
RADC Project Engineer:
Richard A. Robinson (ISCP)
Related NSW Documentation — User’s Guide, Manager’s Guide, Tool User’s Guide,
Tool Installation Guide, etc. (see reverse)
IS. KEY WORDS (Continu, on r,v.,.. sid. It n.c.... ,y ond Idsnllty by block ,n b.r)
Software Systems
Software Engineering
Computer Networks

20. ABST RACT (Coot lou, on r,..ra. .ld. lt n.e...wy aid ldsnti~~ by block iioub.t)
The National Software Works (NSW) is a facility, resident on the ARPANET intendi
to support the construction, use, maintenance, modification, verification, and
storage of programs and bodies of information on which these programs operate.
It is principally aimed at the construction of programs and at providing sof t—
ware tools which can be used in the construction activity.

NSW is intended to facilitate both the administrative and technical aspects of ~‘J~~
’

these activities. Thus, it provides mechanisms for the exercise of fiscal and

~~~~ 
FORM

W I JAN 72 1473 EO~TIO N OF I NOV 51 IS OBSOLETE UNCLASSIFIED
SECURITY CLAPIFICATION OP TNIS Pi55 (~~~io Dat. S tared)

F

,
~~ 

~~~~~~~~~

~

.~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -- ~~~~~~

r ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

UNCLASSIFIED

~~~~~~~~~~~~~ CLASSI FI CATION OF THIS PAGE(*7,ai Data Iotsr.d )

access control in the operation of a progra~~ing project, and also access and
storage conveiences to progr~~~ere for the management of their files.

The salient factor in the conception of NSW is the expectation that the
hardware, software and human resources needed for the execution of a task may
be geographically and administratively dispersed , although connected through
the network. Tools whose use is to be coordinated may be resident at different
computer installations, possible under the control of different organizations,
each with its own rules of operation .

Block 18. (continued)
This work was supported by the Advanced Re rch Projects Agency of the
Department of Defense and by Rome Air Development Center. It was monitored
by Rome Air Development Center under contract number F30602—76—C—0094 and
by the Office of Naval Research under contract number NOO14—75—C—0073.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE(aiioo Data totor.d)

.1 

- —— -----~-- - - - — -~~~—~~~~~~~“ . ---—- -- .- -~~--.~~- - . ---- ~~-.--- - .---- - - -~ - - -.--—--—.-.---



—. r — ..  -. ..~~~.. ....,.. ~ wr f l ’.~~~~~~~r.w-..-- .. —

-~~‘
-.— . -

TABLE OF CUL~TEL4TS

Cnapter 1: Introduction 1—1

Chapter 2: Works Manager Procedures 2—1

Chapter 3: MSG 1)esign Specifications 3—].

Chapter ~: File Package Design Specifications

Chapter 5: Foreman Specification 5—1

Chapter 6: Hardening , Scaling, and Optimizing of the 6—1
Works Manager

Chapter 7: Management Tools 7—1

Chapters 3 and 5 of this report were produced by Bolt Beranek
and Newman and by Massachusetts Computer Associates, Inc .
Chapter 3 i,s available separately as Bolt Beranek and Newman
Report No.~~3237 and Massachusetts Computer Associates Document
t4o. CADb—76O1—2611~~ Chapter 5 is available’ separately as Bolt
Beranek ar~d Newman Report Not~ 3266 and Massachusetts Computer - :
Associates Document No. CADD..J6014—O111.

The remaining chapters of this report were produced by

~lassachusetts Computer Associates. Chapter k is available
separately as CADD—7602—2011. Chapter 6 is available separately
as CA~~)—7 6O1—1511 Chapter 7 is available separately as
CALiD—7b02—021 1.

iii/iv

_ _ _ _ _ _ _  —-- - - - -.~~~~-—~~~~~~~~~~~~ 



1~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - --- --

~~~~~~~ I

Chapter 1: Introduction

1. A General Introduction

1.1 Pur pose

The National Software Works (NSW) is a faci l i ty, resident on the
Ar panet , intended to support the construction , use , maintenance ,
modification , verification , and storage of programs and bodies of
information on which these programs operate. It is principally
aimed at the construction of programs and at providing software
tools which can be used in the construction activity.

NSW is intended to facilitate both the administrative and
technical aspects of these activities. Thus , it provides
mechanisms for the exercise of fiscal and access control in the
operation of a programming project , and also access and storage
conveniences to programmers for the management of their files.

The salient factor in the conception of NSW is the expectation
that the hardware , software , and human resources needed for the
execution of a task may be geographically and administratively
dispersed , although connected through the network. Tocis whose
use is to be coordinated may be resident at different computer
installations , possibly under the control of different
organizations, each with its own rules of operation.

1.2 Design

NSW as an entire system contains large collections of information
about its users and the resources belonging to the system; it also
contains the programmatic objects whose execution constitutes the
operation of the system.

The software animating the NSW is called NSWExec; it is
partitioned into independent processes on different processors in
the network. These processes have individual names , such as Works
Manager (WM), Front End (FE), Foreman , File Package
(FP), Works Manager Operator (WMO), etc.

NSWExeo appears, operationally , as a state—of—the—art time—sharing
monitor. That is, it functions as a keeper and supplier of
computational resources , and as a mediator between the user and
these resources.

The essential functions of a time—sharing monitor which NSWExec is
to provide in the larger network—wide environment are:

Logging in and out —— permitting the user to make , and break ,
contact with the monitor , and authenticating his right to use
its services.

1—1

-
~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ -

Maintaining a file system , with access protection arid
provisions for shared use.

Handling I/O with the user ’s terminal.

Interpreting and honoring the user ’s requests for resource
usage (“Executive Commands”).

Setting a specified program into operation (“running a tool”)
at the user ’s behest , and linking hi~ terminal to the programin case the tool runs interactively.

Since the users , the resources , and the NSWExec software may a].].
be dispersed throughout the network , creating analogues of these
basic functions of a time—sharing monitor In this environment has
raised some complex design problems. This overview will be
organized as a consideration of these functions In the network
env ironment , with a description of the design solutions adopted In
the NSW . The functions we shall discuss are:

Maintaining a physically dispersed but conceptually integrated
file system , with adequate access controls.

Managing communication between the separate components of the
system.

Catering to the user at his on—line terminal —— connecting him
to NSWExec , accepting and interpreting his raw input ,
protecting him from intervention by non—NSW programs (local
host execut ives , etc.).

Responding to the user’s requests for resource use and
disposition —— i.e., the normal “Executive Commands” ,
permitting operations on files , inspection of current
information about resources and circumstances , Invocations of’
tools , etc

Initiating execution of a tool , and providing a File—System
interface so that the tool may obtain the input files it needs
from the NSW File System , and deliver the output files it
produces into the NSW File System , in a manner compatible with
the file—system conventions of the host system where the tool
is resident.

1—2 

~~~~~~~~~~~~~~~~~~~~~~~ 


- - ~~~~ ~~~~~~~~~~~~~~
-,. -

~~~~
..

2. FILE SYSTEM

2.1 Design Considerations

As does any contemporary Operating System , NSW provides a file
system to Its users , with naming conventions , protection , access
controls , and facilities for entering, deleting , copying , and
renaming individual tiles. However , it had been determined at the
beginning of the design that NSW would not “own” any on—line
storage device , dedicated to the storage of NSW files.

A principal element of the NSW concept Is to both facilitate and
constrain file access and file sharing by the members of a
programming project, in a manner which will allow the
implementation of a wide variety of management policies. To this
end , NSW has its own tile—naming conventions and mechanisms for
verifying access rights which are rather different from those of
the hosts’ operating systems.

In any case , the user must not be required to have any knowledge
of the individual  file systems on the hosts; rather , he must be —

able to use a uniform fi 1e—~ ystem vocabulary in any reference to
his f iles , regardless of what component of N SW he is communicating
with.

2.2 Design Solutions

The files in the NSW File System actually live in the various file
systems of Arpanet hosts: on any host which can provide storage
for NSW files, NSW “owns ” one or more directories (accounts), with
the maxim um protection available , in which it keeps its tiles.
Hosts providing tile storage are called “Storage Hosts ” . There is
al so a “principal NSW host” in the Arpanet . This is the host on
which the central elements of the NSWExeo software are executed ——in the current imp lementation, a TENEX.

N SWExec contains an information retrieval system , resident on the
principal NSW host in the Arpanet . The data base of this
information retrieval system does not contain the NSW tiles
themselves , but rather it constitutes the catalogue of the File
System. Every file name known to the NSW File System has a record
in this catalogue ; part of the information in the entry for a
particular file gives the location (identity of the host , plus
file identification within that host e system ) of any existing
copies of the file itself. Note that the existence of multiple
copies of a file is in formation whioh is not normally available to
users .

1—3



— , rW ~~- . t ~~~~~-~~~~~~~r . .-~~~~~~ .~ —.—--— . -

Some of the operations which the user might wish to perform on
files can be done merely by m aking changes in the catalogue , such
as deleting a file , renaming a file , or removing a semaphore
(access lock) which he had had set on a file; the user , of course ,
does not directly access the catalogue. But others require
operations on the bodIes of the files themselves , such as making a

-: copy of a file within the NSW file system , importing a file from
outside the NSW system , or exporting a file to a destination
outside USW.

For these operations of making physical copies of files , NSWExec
calls upon a “black box ” called the File Package , whose job is to
understand file transmission across the Arpanet so thoroughly that
it can accomodate any likely formats and perform any reasonable
conversions necessary to cause a copy of a file at one place in
the network to appear at another place. The specifications of
the File Package are described in Chapter II .

The portion of NSWExec software which includes the file—catalogue
information retrieval system is called the Works Manager (WM). It
has a number of’ other functions , which we shall discuss at the
appropriate places in this Overview. The host on which the WM
runs —— called above “the principal NSW host” —— Is termed the “WHhost” , In distinction to other hosts participating In NSW , such as
a “Front End host” , or a “Tool—bearing host”.

The two NSWExeC components mentioned In this section —— the Works
Manager (including especially the file catalogue system) and the
File Package —— are clearly new programs which have had to be
written for NSW.

3. COI4M’JNICATION SYSTEM

3.1 Goals

For acceptable operation the network connection between the user ’s
terminal and whatever system he is communicating with should be a
‘ast, character—by—character , full—duplex link. But such links
are expensive in Arpanet , in terms of traffic loads and response
time , so they should be direct , and used only when a person is at
one end of the connection.

None theless , there will need to be frequent communication between
— the dispersed software components of NSW , and this communication

should be as efficient as possible.

Normally , a program on a time—sharing system can be executed only
by a logged—in user of that system. Within NSW , the user should
only have to log In to NSWExec Itself , and not to any of the
individual Tool—Bearing Hosts (TBIls). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J


~-~-—~ ~~~~~~~~~~~~~~~~ “—-~
-

3.2 Decisions

The individual components of NSW software will be configured as
independent, coordinate , concurrent processes (even it they happen
to reside on the same host).

The standard communication between two NSW processes will be by
unitary messages , expressed in an 8 bit message format , and ‘I
dispatched through a message—handler (named MSG) , which is itself
an independent process on each host participating in NSW.

A process , then, does not call another as a subordinate , or
subroutine. Rather, it sends a message requesting a service,
and later receives a message in response.

Two NSW processes may establish a direct network connection , if
desirable for terminal response or for transmitting large
volumes of data. But the initial communication between them ,
and the agreement to set up the direct connection , are
accomplished via MSG.

In the Ar panet implementation, the several MSGs are privileged
processes on their hosts, with exclusive rights to reserved
network sockets. This permits bypassing the local host ’s login
procedure when executing a process on that host.

MSG is a new program , written for NSW. The specifications of
MSG are described in Chapter 3.

4. USER—TERMINAL CATERING

4.1 Situation

The user must be able to get in touch with NSWExec in a reasonably
straightforward fashion , preferably without having to log in to
any other systems along the way.

As discussed above, the direct connection between the user an d
NSWExec should be a fast, character—by—character full—duplex link
(for most terminals), so that the user will receive rapid and
convenient response to his typeins. It should include

Character echoing , perhaps with substitution for the Input
character , and suppression of echoing for passwords, and

Basic editing facilities, such as the ability to backspace
(delete) a character or a word , retype what has been typed for
inspection before confirming , or kill what has been typed so
that the user can start over.

1—5

- ~~-
.
~~~~~

—,- 
~~~~~~~~ - --~~~~~ 

- —,-- ~~~~~~~
.
~~~~ - -- - - -~~~~~~ - , .-- --——-- -~ — . - :

Any process the user may be connected to Is actually running on
some Arpanet host , under the host ’s own operating system.
Operating systems generally have some reserved character which ,
when received from the terminal , causes them to interrupt
communication between the terminal and the running process in
order to allow the user to communicate directly with the operating
system. The NSW user must be protected from the consequences of
mistakenly typing such a character.

Conversely, if’ the NSW user Is in communication with some process
other than NSWExeC , there must be some action he can take to
temporarily suspend his communication with that process in order
to communicate with NSWExec. Such actions (e.g., typing a special
character) must be intercepted before they are transmitted to the
connected process.

But the user will , in general , be only indirectly connected to the
WM host , so that , if these terminal—catering functions were to be
performed at the WM host , the response would be unacceptably slow.

Aside from these user—catering functions , the principal content cf
the communication between the user and NSWExec will be the the
use r ’s call ing for the execution of executive commands (see
below ) ,  and WMExec ’s displaying the response to these commands on
the user ’s terminal. The amount of Information necessary to
specify such commands is not large, and the display of NSWExec ’s
responses does not require two—wa y communication.

~.2 Decision

The user—catering funct ion of NS WExe c will be placed in a separate
process, called the Front End (FE), to which the user will always
be connected , and which will run on a machine as “close” to the
user as possible.

In the Initial system , the FE process resides on the principal
NSW host; a user can achieve connection to this FE by either:

Logging in to this host in the normal fashion , CONNECTing to
the appropriate directory , and running the program NSW;
(this mode of  operation will always be present as a —

tall—back option)

Executing , from his local host or TIP, an Initial Connection
Protocol to a reserved socket on the NSW host.

In an early stage of development , the FE will also run on a
dedicated minicomputer , connecte d to the Ar panet either as a
local host (through an IMP) or directly as a “smart TIP” . The
user will be have a broad—band connection to this minicomputer.

1—f;



-~~ ~ - _______________________________

However the user ’s connection to the FE process is achieved , he
will Immediately be permitted (In fact, required) to LOGIN to
NSWExec , identifying himself and giving a password. When the
LOGIN is acce pted by NSWExec , he will be able to issue any
Executive Commands.

• The FE process provides echoing on the user terminal, recognition
and completion of abbreviated command vords (if the user desires),
editing functions on the user ’s typein , and more sophisticated
display—control functions.

In the standard mode of operation , when the user is communicating
with NSWExec or with “integrated” tools, the user ’s interactions
with the terminal are driven by a “grammar” contained in the FE
process , which elicits from the user the information needed to
specify the operation he wishes performed. This information Is
then packed into an message and expedited through MSG to the
appropriate recipient (Works Manager or tool).

An “integrated ” tool is one which in fact handles its
communications with the user in the above fashion —— via MSG .

A tool which has not been “integrated” is called an “old” tool.
It will be put in contact with the user through a direct TELNET
connection between the FE process and the tool process. Thus
another feature of the FE is that it can establish and maintain
this TELNET connection.

In the standard mode of operation, no danger exists that the user
might send to the tool some special character which would place
him unwittingly in contact with the tool—host ’s Operating System.
In the TELNET—connection mode , either the FE or the Foreman
(see below) must filter out any such characters.

In either mode of operation , a reserved special character will be
• recognized by the FE process , having the effect of temporarily

suspending communication with the tool, an d return ing
communication to NSWExeo.

For the duration of his session with NSW, all commun ication
between the user and the system will thus be mediated by the FE,
whether the user is conversing with the Works Manager or with one
or more tools. This provides a consistent style of interaction
with all elements of NSW, except perhaps from some “old” tools
which will have their own conventions which the user must obey.

The FE Process is new software, designed and programmed by Charles
Irby at SRI/ARC, who also designed and implemented the language
for specifying grammars, the compiler for that language , and the
interpreter for the compiled grammars.

1—7

~ 

,-•--,~~~~~~ 



-———-- 
--~-— _ 

—--

~X~ C U TI V E COMMANDS

~.1 The component of NSWExec which implements the user ’s Executive
Commands is called the Works Manager (W M ) .  It resides on the
principal USW host , which is therefore called the WM Host.

The formats  of the Executive Commands are specified in the
Execut Ive  Grammar , which is always available to the FE Process.
When the user has specified a command to his , and the FE ’s,
sa ti s fact ion , it is packaged into a message which amounts to a
call cn some procedure within the wi-I; this message is then sent
‘rom the FE to the WM via MSG .

~.2 Executive Commands are essentially requests for the use of’computing resources (including requests to inspect the status of
resources). Hence the Wi-I Is fundamentally a purveyor and allocator
c~’ resources.

The WU mathtair is in its data base lists of the rights, privileges ,
and responsibilities of’ the users known to the system. When the
user logs in , his right to use NSW Is authenticated by checking
this information. Whenever he requests the use of any resource ,
his right to use it is verif’ied against these lists.

As mentioned above , the WM maintains in Its data base the
catalogue of’ the file system and uses this to control the
existence of copies of “iles on different hosts in the network.
The catalogue , together with the user ’s rights information , allows
the WM to control access to the files in the system.

The WM also maintains  information on the tools available within
NSW , which enables It to cause a tool process to be created and
run on its appropriate host. This information , together with the
user ’s rights information , allows the WM to control access to t he
tools.

~.3 As part of its resource—managing responsibilities , the WM
provides to the (human) managers of’ programming projects within NSW
“acilities for admit t ing new users to the system , and specifying the
r ights  the new user shall enjoy .

These management facilities will in Fact be embodied in a separate
Man agemen t Tool Kit , access to which will be restricted by the
rights of the user seeking to execute it , as with any other tool.

• The Management Tools are described in Chapter 7.

• 5.11 The types of Works Manager commands are d iscussed in Chapter 1.,
The problems Involved in making the VII more reliable, larger scale ,
and more ef~’icient are descussed in Chapter 6.

1_0

• ~~~~~~~~ -~~~~- -~~~~, • —~~~~~~~~~~~~~~~~~ •~~~~~~~ —~~~~~~~~~~~-—~~~~~~~ • •



- —•_——-.--~ —
•— ~——.,••.---—-—.- —- -.—-——— .-,•~ ~~~~~~~.— ~~~~~~~~~~~~ ~~~~~~~ w r -.~~-, 

~~~~~~~~~ 
.~~~~~ .u.— ~—

6. TOOL INTERFACE

6.3 Design Considerations

In a contemporary Interactive computer system , a tool runs un der
the control of the Operating System on its computer ; the Operating
System provides to the tool:

Means for commun icat ing with the user ’s terminal ;
• Means for using the file system;

Other miscellaneous services more directly associated with the
hardware , such as memory allocations , interrupt servicing ,
date—and—time and elapsed—time information , etc.

• In the course of its operation , the tool will interact with the
tile system in several different ways:

• It will need to open for read ing (or modification) some
already—existing tiles (input files).

It will need to create scratch files for temporary storage of
information during its operation (and perhaps for re—start
after a crash).

It may produce new files (or modifications of input files)
which are to be delivered to the file system after the tool—run
is completed (output files).

In NSW , where the tool, the user, and the “Operating System”
(NSWExeo) are, in principle , all on different network hosts ,
several considerations apply:

Communication between the tool and the user is handled through
MSG (perhaps plus a TELNET connection), as discussed above ;
hence tool/user communication must be diverted from the host
OS’s terminal—handling mechanisms to some other process.

The tool ’s input files must come from the NSW File System , and
not from the host’s own file system, hence requests for input
files must be diverted from the host OS to the VII. However,
once the tool has obtained the file from the NSW File System ,
it must be able to work within the local file system for

• operations within the file —— reading or writing at particular
locations within the file.

But to use the NSW file system for the storag. of scratch tiles
would be grossly inefficient, requiring frequent VII calls, and
frequent updating of the 1414’s File System catalo gue ; hence,
the tool should continue to use the host file system for these.

1~0

• ~~t.,_ -

— — • -~ - — •
~~~ 

•~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ • - .~~~~,-_

To keep the tool operation integrated within NSW , the tool’s
• ou tput  files must  be submit ted to the NSW File System for

storage. Hence , calls to the host OS to close , or deliver ,
• output files must be intercepted and re—directed to the WM.

The last category of local OS services —— the miscellaneous
ones —— must clearly be left intact , since it would be either
impossible or expensive to provide them from the VII.

Li Since it is intended to be an easy task to adapt an existing
program to run as an NSW tool , it is obviously desirable to
minimize the amount of’ programming required to do this.

For instance , a tool should not have to include the software
necessary to send and receive MSG messages.

6.2 Design

k new program , called the Foreman must be written to run
on each host which will provide tools.

The Foreman has at its disposal a number of empty file directories
(accounts , workspaces) within the local file system , which it
will provide to tools running on that host.

When the WM has decided to run a tool on a particular host , it
sends a message to the Foreman on that host, asking it to load and
start up an Instance of’ the tool process. The SF will select
one of its local directories and assign it for the tool to run
“out of”  (or “in ”) .

When the tool wants to Open an input file , It has presumably
gotten the NSW Filename of the file from the user. It passes
this name to the Foreman , requesting the file. The Foreman
then sends a message to the VII, requesting that a copy of the
file be sent to the local directory assigned to the tool. When• the copy has arrived in that directory, the Foreman returns
to the tool the local directory name of the copy , which it
will have “opened” for the tool In the local file system.

And similarly , when the tool wants to Close an output file, it
passes the local directory name of the file, together with the
NSW Filename the user has given , to the Foreman. The
Foreman , in turn , sends a message to the VII, “Delivering”
the file to the NSW File System —— that is, requesting the
VII to make a copy of the file in one of the NSW ’s own
directories on some host (perhaps the same host , if’ it is
also a NSW Storage Host).

When the tool is ready to stop running, it notifies the Foreman
so that control of the communication link to the user is not
returned to the local OS. The specifications of the Foreman
are described in Chapter 5.

S
- • 

1—if’



_ _ _ _ _ _ _ _ _ _ _ _ _  - ~~~~—----~~~~~—- —- -~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

Old tools which are to be made to run under NSW will need to be
modified only to the following extent:

Points of communication between the tool and the user terminal
must be detected and modifiedin one of two ways:

It it seems feasible to structure the communication in
message blocks , these messages should be composed for
transmission via IISG.

If , however , it is necessary to maintain TELNET—style
single—character communication with the user, “system calls ”
for implementing this must be replaced by accesses to the
TELNET connection to the FE.

Each tile used by the tool must be identified as an input file,
an out put file , or a scratch file.

All places where the tool Opens an input file —— i.e.,
requests by name a (presumably) pre—exiating file from the
local file system —— must be identified and replaced by
calls on the SF.

All places where the tool Closes an output file ——i.e.,
delivers a file name and contents for storage in the local• tile system —— must be identified and replaced by calls on
the SF.

The tool must notify the Foreman before terminating its
execution.

1—11/1—12



- —-- ——-- - -•.—-- —“ -fl •———.-— --,------ — —fl_ ____ . - —;- ____
~__ , -‘--- ,—-- -• ~~~~~~~~~~~ - -—----.-------- - • — • _---,t. ___ —-—.- -

Chapter 2: Wor ks Manager Procedures

- - 
~~. Introduction

The Works Manager (WM) is the central software of NSWExec. Its job
Is to authenticate users’ interactior.s with NSW, to carry out executive
commands , and to control access to all NSW resources.

Operationally , the Works Manager is a “server process” , which is
brought to life when a Works Manager call is made by a Front End (FE)
process or a Foreman process: there exists no single Works Manager
process which remains continuously alive while dealing with multiple
petitioners , as is the case, for exam ple, with the MSG and FE processes.

From ou tside, the Works Manager appears as a collection of
separately—callable procedures , each performing a specific function.
Coordination of’ the separate procedures and synchronization of separate

• 
• incarnations of the Works Manager process are effected by joint ly—

accessed , interlock—protected , data structures. Each Works Manager
call , either from a Front End or a Foreman , is a call on a specific
one of these procedures.

The principal shared data structure is the Catalogue in the NSW
Information Retrieval System , which contains all the long—lived data
about all elements of NSW.

Furthermore, whenever NSW Is In operation , there are tables of
current data , residing in the Works Manager Host , which depict the
momentary state of NSW —— e.g., a list of users currently logged in , a
list of the tools currently running , etc. Almost every Works Manager
call will result in some change being made to one or more of these
tables. It is these “hot” tables which give the appearance of
continuIty of service by “the ” Works Manager on behalf of a user.

The purpose of this chapter is to list these Works Manager
procedures and give a brief description of their effects.

Some of these procedures can meaningfully be called only from a
Front End process (e .g . ,  LOGIN , LOGOU T) , and others only from a
Foreman process (e.g., OPEN , DELIVER); the remainder may be
called from either source. It will be indicated for each procedure ,
explicitly, from where it may be called. Procedures marked with an• asterisk (5) may only be called from the Front End . Procedures marked• with a plus sign (+) may only be called by a tool. Unmarked
procedures may be called either by a tool or from the Front End• (except ENDTOOL which is called by the Foreman).

2— 1 

-~~~~~~~~~-• -~~~~~~- •~~



-~~~~~~~ 
• - - —r - - - - - • - -

~~~n

2. WORKS MANAGE R PROCEDURES

2.1 Connection

* LOGIN (project , node —name , password)
——> userid , node—profile , user—profile , system—message ,

login—message , qhave—cnail

LOGIN connects a user to the NSW , establishing him as an active
user with all the rights implied by the node at which he has
logged In. Mistakes (I.e., non—recognition by the WM) in
arguments will be handled by HELP returns. The user will then be
permitted to retype the incorrect argument or abort and re—start
the login.

project: STRING , node—name : STRING , password: STRING

This triple is collected from the user for the initial LOGIN
call; it identities and gives access to a node on the NSW
project tree. The user is then considered to be logged—in “at”
(or even “as”) that node. All rights to access files , use
tools , use WM procedures , and spend money are associated with

• the login node.

• userid:

• Internal VII identif ier of a logged— in user. It is assigned
to the user at login by the triM , and its thereafter regular ly
used in all messages between the FE and the WM , so that each
can be sure which user the message refers to.

node—profile : BIT—STRING , user—profile: BIT—STRING

These are encoded instructions to the FE (and perhaps also to
the WM), determining the style of communicating with the user;
they include specifications for lengths of heralds and prompts
to be displayed , degree of command —word recognition and

• completion desired , lengths of lists to be displayed , etc . The
information in node—profile is peculiar to the node , while the
information in user—profile applies to the person “owning” the
node in NSW reoords , regardless of’ which of his nodes he may• log in at (a person may own several nodes —— for example , a
project manager will own the top node in his project , but might
also set up some subsidiary nodes for his personal work).

system—message : STRING

This would be an important operational message from NSW (or
perhaps Project) management , to be displayed to all NSW users
at their next login (“system news”).

2—2

. •

~

••

~

•

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~ •~~~~~~~~~~~~~~~~ •



-- • • 
-

login—message : STRING

This would be an operational message from the VII or Works
Manager Operation (WMO) reporting on the status of previously
submitted batch jobs , the status of the tiles used by tools
which crashed in a previous session but which have subsequently
recovered , etc. It informs the user of changes to the user
environment which have occurred since his last logout.

qhave—mail: BOOLEAN

This, if TRUE , will cause the FE to inform the user that there
exists new mail addressed either to him personally, or to his
present login node; to read his mail , the user should call a - •

fleadmail tool.

* L000UT (user’id , qfast)
• —— > cost

LOGOUT disconnects a user from NSW. Normally, if any interactive
tools are still running for this user , he will be asked to
terminate those tooluses in the way appropriate for each tool , and
re—call LOGOUT. Alternatively , the user may ask the NSW to
terminate these tooluses for him (qfast set to TRUE); in this
case, output files which the tool has already DELIVERed
will be in the 143W File system , and any other files will
be lost. If the TBH has gone down while the user was running , the
WM will try later to recover and save the local workspace in
which the tool was running. At a subsequent LOGIN the user
will be told (via login—message) about the saved workspace,
and he will be given an opportunity to DELIVER the tiles to the
NSW File System . Batch Tools are , of course , asynchronous with
respect to user—NSW connection , and are not affected by logout.

cost: INTEGER

cost is returned by several WM procedures. It is to be
interpreted as the cost in cents of the use of a tool or of
an entire sess ion, as appropriate. The user is given the
opportunity to gripe about the cost by returning a non—null
message when invited to protest.

A WM— procedure RELOG was originally planned , which would enable the
user to move his login location from one node to another. This has
been replaced by a Front End command MOVELOG which executes
successive calls on the WM—procedures LOGOUT and LOGIN.

2—3 

----~~~~~~~ ~ -- ---——~~~~-- -- • -_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -


- • •~ • - ~~~~~~ • • • •t •

* REATTACHTONSW (project , nodename , password)
—— > userid , n ode— prof i le , user—profi le , LIST ((tool— info) 3

This procedure is intended to allow a user to resume his session
in the event that his FE—machine goes down , by re—contacting
NSWExec through another FE process. This is not a high priority
procedure and will not be available in early versions of the VII.
The LIST of “tool—info” in the returned items would contain , for
each tooluse the user had initiated , the information necessary for
the new FE to set up its tables as if it had been the one the user
had been using, presumably : tool—process—ID, tool—name ,
tooluse—name, (perhaps) tool—grammar.

2.2 Tools

* RUNTOOL (userld , tool—name , tooluse—name)
— — > tool—pr ocess— id , tool— grammar

RUNTOOL ver i f ies that the user has access to the tool called
tool—name. It creates an instance of the tool process , and
establishes a communication path. It returns to the FE a process
identification for the FE to use in calling the tool, along with
the tool grammar. The tooluse—name argument is provided so that
several active instances of the same tool can be distinguished.

tool—name : STRING

The name , e .g . , NLS , TECO by which a tool is known to the
VII. Retrievable under this tool—name in the WM Catalogue
is a lar ge block of data called the Interactive Tool
Descriptor. This descriptor supplies whatever information
the VII needs for success fully runnin g the tool and servicing
its file requests. More specifically, it lists the ARPAnet
hosts (called Tool—Bearing Hosts (TBHs)) and process
identifications of potential instances of the tool so the
WM can cause an instance of the tool process to be readied
for execution and it lists the file—attributes required for
input files and those to be attached to output files (see
OPEN and DELIVER).

tooluse—name : STRING

The name by which a particular instance of a given user ’s
active tool is known . This argument is necessary to
distinguish between , e.g., different concurrent uses of
NLS.

tool—pr ocess—id : t-ISG<proces s name>

(see MSG : T~-ie Interprocess Communications Facilityfor the National Software Works, Massachusetts
Computer Associates , Inc., CADD—7601—2611 ,
Bol t, Berane k & Newman , Inc., Report No. 3237.)

The tool—process—id is a name which the FE and Wil can use
for communication with the tool.

2~I


~~~~~~~~
_
~~~~~~~-“ ,_

_ •~~~~~~~~
____ _ _

~~~
_ __ -.- -

~~~~~~~~~
• • --—

~~~~~ -,- •- • _ - • -~~~~~~~~~— - _
~~_—~~~_  _.

~~

__
__

~~
_

tool— grammar : ?

The tool— grammar is an encodement of the Command tleta Language
(CML ) specification of the commands provided to the user for
interacting with the tool. When the FE process is on the WM
Hos t TE NEX , what is passed is the local name of the .REL file

• which embodies this grammar. When the FE process is on a
separate machine , the grammar itself will be passed , In some
format yet to be specified (perhaps BIT—STRING?).

* ENDTOOL (userid , tooluse—name)
——> cos t , LIST [NSW—filenames of files with semaphore left set

by tool]

ENDTOOL is called from the Foreman when a tool indicates It
has finished running; this procedure causes the WM to detach the
tool from the FE and terminate the tool process. The “return
items” shown above are actually sent to the FE (rather than
returned to the Foreman), along with a message instructing the FE
to remove this tooluse from its list of active tools and to break
its communication link with the tool. All semaphores set during
the tool ’s running are unset unless the Tool Descriptor
indicates that this tool is one which understands use of the
semaphore. If so, a list of files with semaphore set is sent to
the FE so that the user can either confirm for each file that he
wants to leave the semaphore set , or indicate that he wants it
unset .

• * RERUNTOOL (userid , t ooluse—name )
——> tool—pr ocess—id , tool—grammar

RERUNTOOL reestablishes the connection between a user and a tool
which was running on a TBH which had crashed and has subsequently
come back up.  This procedure is not defined yet and will not
be available in early versions of NSWExec.

2.3 Files , No Movement

DELETE (Id, filespec , qhelp)
—— > NSW—filename

DELETE verifies that f’ilespec designates a unique file to which
the user (identified explicitly by userid , or implicitly if DELETE
is called by a tool (first argument 0)) has DELETE access. This
access is blocked by a set semaphore. If’ any assistance is
required it is obtained via a HELP return (if qhelp is T or if
DELETE were called by a batch tool) or by a direct FE HELP call
(otherwise). Once a unique file has been found , its catalogue
entry is marked. It will no longer be accessible to OPEN , COPY ,
RENAME , EXPORT , etc., but the actual file catalogue entry and
file copies are not immediately deleted . The NSW—filename of
the deleted file is returned. This return could be a HELP
return , requiring confirmation before the actual delete occurs.
Alternatively , since the file does not immediately disappear , an
UNDELET E operation could be supported.

2—5

- _•_~~_~~__ _~~_ _ _ __ s_ _ _ _ _ _ _  -- -— • --- -- -~~~~~~~~~ - -~~~~ —~~~ - -~~ • -~~~~~~~



— -.-~~~~~--‘ -fi ,—.- -- 
~~~~~~~~~~~ 

—~~ .• --n--— _’__ •• _ -- ~~~~~~~~~~~~~~~~~~ ‘ “ ‘ !~W~~ ~~~ - , • ~~~~~~~~~~~~~~~
•

Id: userid 0

WM procedures which can be called from either the FE
or a tool require “Id” as their first argument. If, in an
actual call , the first argument is non—zero , then it is a
userid , and the call is from a Front End. If it is zero
then the call Is from a tool. WM procedures which show
“userid” as first argument can only be called from the FE.
If any other first argument is shown (except for the
procedures LOGIN and REATTACHTONSW which are only FE—callable),
then the VII procedure can only be called by a tool.

NSW—filename: STRING

The NSW—filename is the full identification of’ the file in
the NSW File System , which could amount to a rather long
string of text. However , the user will never have to type
in a full filename ; instead , he will use either a
“filespec” or an “entry—name” , depending on the intended use
of the file (see these terms below).

A (full) NSW—filename consists of’ two parts: the name—part ,
and the attribute—part , separated by a slash (I). The name—
part is a sequence of name—components , separated by periods
C.); the order of the name—parts is significant. The
attribute—part is a list of attributes , separated by semi—
colons C;); the order of the attributes is not significant.
An example of a full USW—filename might be:

IVTRAN. PHASE1.PARSE.SYMBOL—HASH/
UT:BCPL—SRC;CR:ILLIAC+BOLDUC ;DTC:1975:o8:25:46:03:38 -

•

Name—parts do not necessarily designate unique files. NSW
files have attributes and certain of these attributes (those
supplied by tools — syntactically indicated by UT:) may
be used for disambiguation. Thus It is entirely possible
for a user to have a file with name—part A.B and attribute
UT:FORTRAN—SRC and another file A.B with attribute
UT:360—FORTRAN—REL. The NSW—file—names of these two files
are unambiguous and consist of name—part/tool—supplied
attributes. E.g., A.B/UT:FORTRAN—SOURCE and A.B/UT:360—
FORTRAN—REL. The tool supplied attributes oonsist of those
file attributes which are supplied by tools through
WARRANT , DELIVER.

2—E’

~~~~~ •~~~~~~~~~~~~~ - —•.--- ~~~~~--~~~~~—



filespec : STRING

A filespeo is an abbreviated form of an NSW—filename , used
in contexts where the name of an existing file is required ——
i.e., COPY and DELETE accesses. A filespec -need contain only

• enough parts of the NSW—filename to unambiguously denote the
tile. As explained below under “scope”, an initial segment
of the name—part can be automatically supplied , and need not
be typed by the user. Any sequence of consecutive name—
components which are not necessary for identifying the
particular file may be replaced by three periods (...). Also ,
an attribute—part may be typed in a filespec , to distinguish
between two tiles which differ only in attributes (e.g., the
source—language and the relocatable binary forms of’ the same
program).

Thus , the file named by the example under “NSW—filename”
above , would be retrieved under the filespec

IVTRAN.. .PARSE/UT:BCPL—SRC

Any time a tilespec is used , if it does not happen to
designate a unique file, the WM will send to the Front End
for display to the user an indexed list of the full file—
names of all tiles which match the filespec ; the user may
Indicate which one he intends by responding with the index

• number.

More specifically: If the filespec matches a great many
files, the WM Information Retrieval System will protest
and refuse to retrieve them ; the user will be asked to
submit a more reasonable fil.spec. If the filespec matches

- • few enough tiles to retrieve, but more than some user—
settable limit (“maxlist”), the user will be informed of
the number of files matched , and asked if he wants to see
the list of names. Only it the number retrieved is less
than maxlist will the list be displayed automatically. In
any case , the user has the option, in response to any of
these messages, of ent•ring a different filespec .

qhelp: BOOLEAN

qhelp is used when a tool calls the VII and does not want the
W14 to directly contact the user at the FE for assistance.
In this case qhelp is set to FALSE.

RENAME (id , filespeo , entry—name, qhelp)
——> old—NSW—filename , new—NSW—filename

2—7

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- -- - - -~~~~ - — •
~~~—-~

—- •— —••--

— ~~~—~-~—-— ~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• — —_— —--- •._ — _—•- -—-• ---••‘_ —--•• ‘—-w -‘-• --- —-. -,,,_ • ~~~ —•‘--‘-~ 
-

RENAME verifies that tilespec designates a unique file to which
the user has DELETE access. This access is blocked by a set
semaphore. If any assistance is required it is obtained via HELP
return or direct FE call as above. RENAME forms a new NSW—
filename using entry—name and the tool—supplied attributes of
the old tile. It verifies ENTER access and unambiguity. As
usual assistance is sought should there by any difficulty.
The NSW catalogue is then altered to reflect the new name—part
and both old and new NSW—filenames are returned.

entry—name : STRING
• An entry—name Is an abbreviated form of an NSV—tilename used

in contexts where a new filename is to be created . As
described below under “sco pe” , the contents of the user ’s
ENTER scope will be prefixed to the entry—name as typed .
Aside from this scope abbreviation , however , the user must
type the entire name—component of the filename —— that is,no ellipses (...) are permitted. No attribute—part is
permitted , either , since the user may not assign attributes
to tiles (his identity as creator of the file , and the
date—and—time of creation attributes will be appended
automatically).

Referring again to the NSW—fi].ename example above , if we
assume the user had an ENTER scope of IVTRAN.PHASE~ , thefilename shown could have been created (minus the UT:BCPL—SRC
attr ibute , which could only have been appended by a tool),
using the entry—name -

•

PARSE.SYMBOL—HASH

+ SETSEMAPHORE (fllespe c, qhelp)
——> NSW—filename

The WM verifies that the tool can use SETSEMAPHORE , that f’ilespec
designates a unique file to which the user has DELETE access , and
that the semaphore is not already set. Assistance is obtained
via HELP return or direct ’ FE call as above. If all Is well , the
semaphore is set and the NSW—filename is returned .

• The semaphore Is set by a tool on behalf’ of a user who is writing
into the file in order to warn other potential users that the
file may be undergoing change. The semaphore is either 0 —
meaning not set — or it is project + node—name indicating the
setter of’ the semaphore.

UNSETSEMAPHORE (Id , f’ilespeo, qhelp)
• ——> NSW—filename

The WM verifies that filespec designates a unique file to
which the user has DELETE access. Assistance is obtained as
usual. If all is well , the semaphore is unset and the NSW—
filename returned . 

~~~~~~~~~~~~~~~~ •• — ‘-•_ ~
-__-—- _ -—--•—- --- • -

~~~-— - .•--•---- ---•- —-- • - - - - - -_  - -----••• -‘- • • ----•- •- _ _ -• —



-• • 
- --- -

~~~~~~~ ~~~~~~~~~~~~ - - - -—
~~~~~~~

READSEMAPHORE (Id , filespec , qhelp)
——> NSW—filename , project—node

The VII verifies tha t filespec designates a unique file.
Assistance is obtained as usual . If all is well , the STRING
project + node—name Is returned if the semaphore is set. If
the semaphore is not set, the empty STRING is returned.

+ WARRA NT (attcode , NSW—filename)
• —— > new—NSW—f’ilename

WARRANT adds the attributes referenced in the Tool Descriptor
by attcode to the file whose current name is NSW—filename.
Since tool—supplied attributes are part of NSW—filenames , the
new NSW—filename is returned . WARRANT is not currently
implemented .

attcode: INTEGER

An index into the Tool Descriptor , where a large list of
required or known attributes can be referenced without a
large amount of net transmission.

* DISPLAY (userld, access—type filespec)
——> LIST (N SW—fil en amesj

DISPLAY lists file catalogue entries for the set of files
which match filespec.

access—type : COPY DELETE I ENTER

Denotes a particular kind of access to the NSW file system.

2.~$ Files, Movement

COPY (id , filespc , entry—name , qhelp)
——> src—NSW—filename , dst—NSW—tilename

COPY verifies appropriate accesses: COPY access for the source
file, ENTER access for the destination file, plus DELETE access
for the destination tile if the copying would “overwrite” an
existing file. It creates a new 143W catalogue entry and a new
copy of the source file.

EXPORT (Id , filespec, external—name , passwor d , qhelp)
——> sro—NSW—filename

EXPORT verifies COPY access and sends a copy of the
source file to the location designated by external—name.

I

2—9



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

external—name : STRING

Either an ARPAnet pathname with p~ssword or a device pathnamewith password . An external—name is needed for copying files
from a source outside of NSW (see IMPORT , TRANSPORT) or copying
to a destination outside of NSW (see EXPORT , TRANSPORT). An
external—name argument is always accompanied by a password
argument (which is a STRING) for gaining access to the
external directory , device , etc.

IMPORT (Id , external—name , password , entry—name , qhelp)
——> dst—NSW—filename

IMPORT is the inverse of EXPORT.
-

TRANSPORT (Id , src—external—name , password , dst—external—name ,
password , qhelp)

TRANSPORT Is an extended FTP for NSW users. It is not currently
• implemented.

+ OPEN (input—attcode , filespec , qset , qhelp)
——> NSW—f’ilename, local—filename , new—f’ilespec

OPEN is used by a tool to obtain a copy of an NSW file. The WM
verif’Ies that there is a unique file designated by f’Ilespec to
which the user has COPY access and which has the attributes
implied by input—attcode. Assistance is obtained as usual .
Should the user also have DELETE access to the file, then the WM
will set the semaphore on the file if either the Tool—Descriptor
indicates that it should be set, or if qset is TRUE. If
the semaphore is already set (and the user has DELETE access
rights), then this tool s access to this file is blocked unless
the user , in response to a message to the FE, indicates that he is
willing to use a copy of the filed version , even though someone
else may be planning to replace it soon. In any event , if’ the
semaphore is set , the user Is informed that it has been set , and
by whom . The WM makes a copy of the file into the workspace used
by the tool , performing whatever conversions are necessary and

• possible. The NSW—f’ilename of the copied file and the local
filename of the new copy are returned. If in the course of
disambiguatlng filespec , the user supplies a new filespec , then
that is returned also.

+ DELIVER (output—attcode , local—filename , entry—name , qhelp)
——> NSW—file name

DELIVER is used by a tool to insert a file into the NS W f i le
system. ENTER access and unambiguity are verified with assistance
sought as usual . An entry is made in the NSW file catalogue and
an 143W—owned copy is made of the file designated by local—
filename. The attributes implied by output—attcode are
appended to the file. The original file is left in the tool ’s
workspace. The NSW—filename of the new entry is returned.

2_in

- . - - —-- -- - --- • • • • --- -— •— •-
~~~~
-•—---



-~~~~~ 

- - -

~~ 

- - -

+ READDEVI CE (local—filename , device—code , qh elp)

READDEVICE is used by tools to input via local tape , card reader ,
• paper tape reader without making 145W files. The VII could figure

out from the userid which FE the user was at and therefore what
the external—name of the appropriate device is. Alternatively,
the node—profile (user profile?) could contain the association
betweeen device—code and actual external—name for the device.
After that , this procedure is just like IMPORT.

device—code: STRING

crd = card reader
pun = card punch
ptr : paper tape reader
ptp = paper tape punch
mt7 7 track mag tape
mt9 = 9 track mag ta pe
dta = DEC ta pe

+ WRITEDEVICE (local—filename, device—code, qhelp)

WRITEDEVICE is the inverse of READDEVICE. Neither READDEVICE
nor WRITEDEVICE are currently implemented.

2.5 Project Management

These project management procedures (and the display procedures
in section 2.6) are only temporary. They will be superseded by the
Management tools currently being designed and implemented . In fact ,
th ey should not be construed as even giving a flavor of the project
management facilities which 145W will  eventually have ; they are too
primitive to even do that.

* ADD NODE (userid, son—node—name , son— password)

ADDNODE creates a new node in the project tree. This new node
Is a son of the node at which the user logged in. Its name is
the STRING son—node—name and its password is the STRING son—
password .

* DELETENODE ~userid , son—node —name , qtree )

DELETENODE checks to see that son—node—name designates a son
of the node at which the user logged in. If so, that node (the
son) is deleted . If qtree is TRUE then the entire subtree
(if any) headed by son—node is also deleted. Otherwise, the
sons of son—node (grandsons of login node) are made sons of
login node.

2—li

4

_ _ _ _ _  _ _ _ _ _ _ _



* ADDRICHT (userid , son—node—name , rights)

ADDRIGHT checks to see that son—node—name designates a son of
the login node. The rights are checked to verity that the
login node possesses them. If so, the son node is given the
additional rights. Otherwise , an error is signalled , since a
node cannot give rights that it does not have itself.

rights: procedure—rights I tool—rights I file—rights
• procedure—rights: PROCEDURE , proc—names

tool rights: TOOL, tool—names
file rights: (COPY I DELETEIENTER), keys
proc—names , tool—names , keys: STRING ,...

A right authorizes access to some NSW resource. Before a
VII procedure consumes a resource on behalf of some user , th~ituser ’s login node Is checked to validate access to that
resource. Thus , a user ’s access to the system Is defined
by the rights stored at a node .

Procedure—rights is the STRING PROCEDURE followed by the
names of VII procedures which the user (and tools on his
behalf) are allowed to invoke. The reserved string ALL
designates access to every WM procedure.

Tool—rights Is the STRING TOOL followed by the names of
tools which the user is able to run. Again , ALL denotes
every tool.

File—rights Is one of the STRINGs COPY , DELETE , ENTER
followed by keys which define the parts of the file
system to which the user has access. In general a user will
have file—rights of each access type . Again , ALL is used
to denote any file.

key: STRING

A key is, syntactically , an Initial segment of the name
• part of an NSW—filename followed , optionally, by a slash(/)

and one or more attributes separated by semicolon (;). See
the description of NSW—filename above. A user has access to a
file if’ he has a key which matches the NSW—filename of the file.
A key matches an NSW—filename If (1) the name—part of’ the key
Is an Initial segment of the name—part of the filename , and

• (2) the attributes of the key are attributes of the filename.

• DELETERIGHT (userid , son—node—name , rights)

The VII verifies that son—node—name designates a son of
• the login node. If so , rights are removed from the son—node.

2—12



* CHANGERIGHT (userid , son—node—name , delete—rights, add—rights)

CHANGERIGHT does both ADDRIGHT and DELETERIGHT.

* ADDSCOPE (userid , scopes)

ADDSCOPE adds scopes to the information stored at the login
node.

scopes : (COPY I DELETE I ENT ER ) , scope, . . .

scope: STRING

Scopes are a method of abbreviating 143W—filenames for user
convenience . There are three types of scopes —— COPY ,DELETE , and ENTER —— corresponding to the three access—types. A user may have any number of COPY and DELETE scopes
active, but only one ENTER scope. Whenever a filespec is
typed by the user , the fi]espec, together with all of
either his COPY or DELETE scopes (depending on the context
of us.) are submitted to the Information Retrieval System.
When an entry—name is typed by the user , his ENTER scope is
prefixed to the entry—name typed , in order to construct the
full name—part of the file to be entered into the Catalogue .

Syntactically, a scope looks like a key: a sequence of
name—components separated by periods ( .) - ,  follwed, optionally,
by a slash (I)  and one or more attributes separated by
semicolon ( ;) .

Scopes are set and changed by the user to make It convenient
to reference files in a relatively small region of filename—
space , presumably because he expects to do most of his work• with those files. If be wishes to access a file outside of
his current scope, he may prefix a filespec or entry—name

• with a dollar—sign ($) (to be read as a barred “3”, meaning:
DON ’T SCOPE), to override the automatic scoping mechanism.

A scope cannot be set unless it is implied by a key which
the user has. A key implies a scope if (I)  the types
are the same and (2) the name~part of the key is an initialsegment of the scope and (3) the attribute s of the key are
attributes of the scope.

* DELETESCOPE (userid , scopes)
* CHANGESCOPE (userid , delete—scopes , add—scopes)

These are analagous to DELETERIGHT and CHANGERIGHT.

2—1 3



* CHANGEPASSWORD (userid , new—password )

This changes the password of the login node to new—password .

2.6 Display

The results of these procedures are given by direct display
at the FE rather than by returning values from the function calls.

* DISPLAYNODE (userid , node—name , qtree)

* DISPLAYRIGHT (userid , node—name)

* DISPLAYSCOPE (userid , access—types)

These procedures are similar in that they all show part or all
of the information stored at a node. They differ only In
details.

DISPLAYNODE shows all of the node designated by node—name. If’
qtree is TRUE then the entire subtree headed by node—name is
displayed. Otherwise only node—name is shown.

DISPLAYRIGHT shows all of the rights possessed by the node
designated by node—name.

DISPLAYSCOPE shows all of the scopes of type access—types
where access—types is a list containing one or more of
COPY , DELETE , ENTER. See also DISPLAY in section 2.3..

* SHOWJOB (userId , job—number)

When a user submits a batch job it Is assigned a job—
number (INTEGER) by NSW. The user can subsequently check the
status of the job with SHOWJOB.

2.7 WHO and lBS Support ’

There are currently eight procedures for WHO and three f’or
lBS (Interactive Batch Specifier). These procedures cannot be used
from the FE or by a tool. They are only of internal NSW use ; hence
they will not be described in this section. For completeness , they
are listed with their arguments and results (names and types).

GETDESCRIPTOR
processor INTEGER (IBS)
tool—name STRING
qavall BOOLEAN
jcl STRING

2—14 

-.--- ~~-• - - - - -~~~~~~ • •---—• ---~~~~~ —-~~~~~--~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~• - •~~~~~~



//
VERIFY

file—spec STRING (IBS)
userid INTEGER
qset BOOLEA N
qthere BOOLEAN
item—index INTEGER
number—recs INTEGER
max—length INTEGER
qctl INTEGER
qsem INTEGER
P45W—tile—name STRING
mail INTEGER

I,
ENTER

qref BOOLEAN (IBS )
file—name STRING
attrbs STRING
qdisp BOOLEAN
item— index INTEGER
NSW—file—name STRING

SENDBATCH
job—number INTEGER (WHO)
tbh—name STRING
wsd—name STRING
device—name STRING
file—name STRING
argument—vector INTEGER—VECTOR
error—code INTEGER

• error—number INTEGER
error—message STRING I NULL—STRING I EMPTY
local—file—name STRING I NULL—STRING I EMPTY

‘-DELI VERBATCH
job—number INTEGER (WHO)
tbh—name STRING
wsd—name STRING
device—name STRING
argument—vector INTEGER—VECTOR
local—file—name STRING I NULL—STRING I EMPTY
error—code INTEGER

- error—number INTEGER
error—message STRING I NULL—STRING I EMPTY

• II
RESERVEBATCH

job—number INTEGER (WHO)
tbh—name STRING
wsd—name STRING
device—name STRING
file—name STRING
argument—vector INTEGER—VECTOR

z) error—code INTEGER
error—number INTEGER
error—message STRING I NULL—STRING I EMPTY
local— file—name STRING I NULL—STRING EMPTY

2—15

—



- • • ----~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •—~-~!w——-— — w .
~
---.—,--•-•,—---

~

I,
DELETEBATCH

job—number INTEGER (WHO)
tbh—name STRING
wsd—name STRING
device—name STRING
file—name STRING I EMPTY
local—name STRING I EMPTY

a) error—code INTEGER
error—number INTEGER
error—message STRING I NULL—STRING I EMPTY

//
F I ND T BH

job—number INTEGER (WHO)
processor INTEGER
space INTE GER
time INTE GER
tool—name STRING
device—type STRING
error—code INTEGER
error—number INTEGER
error—message STRING I NULL—STRING I EMPTY

- tbh—name STRING
wsd—name STRING
devie—name STRING

//
EXECUTEJOB

• job—number INTEGER (WHO)
tbh—name STRING
wsd—name STRING
device—name STRING
argument—vector INTEGER—VECTOR
id STRING I NULL—STRING I EMPTY
error—code INTEGER
error—number INTEGER
error—message STRING I NULL—STRING I EMPTY
3 d — file—name STRING I NULL—STRING I EMPTY
job—name STRING I NULL—STRING I EMPTY

J OBAL LDONE
job—number INTEGER (WHO)
tbh—name STRING
wsd —name STRING
device-name STRING
time INTEGER
charges INTEGER
id INTEGER

= error-code INTEGER
error-number INTEGER

• error-message STRING NU LL-STRING ~ EM PTY

• 2—1(

4 - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-.- -“-
~~~

- -
~~
-

~~~~~~~

//
JOBINQ

job —number INTE GER (WHO)tbh—nam e STRING
wed—name STRING

a> error—code INTE GER
error—number INTEGER
error—message STRING I NULL—STRING I EMPTYstatus INTEGERtime INTEGER
charges INTEGERreport STRING
device—name STRING

2—17 /2—18


~~~~~ —- -~~~~ ---- —-

Chapter 3: MSG Design Specifications

1. Introduction

.1.1 Overview

The National Software Works (NSW) provides software
implementers with a suitable environment for the development of
programs . This environment consists of many software development
tools (such as editors , compilers , and debuggers), runn ing on a
var iet y of com puter systems , but accessible through a single
access—granting , resource—allocating monitor with a single,
uniform file system. By its very nature , t he NSW cons ists of
processes distributed over a number of computers connected by a
communications network. These processes must communicate with
one another in order to create a unified system. This paper
describes the communication facility (named MSG) which was
developed to provide interprocess communication for the
implementation of the NSW. The communications network
is currently the ARPANET. However , we have designed the
MSG facility to be as independent as possible of the ARPANET
implementation so that the concepts may be carried over to
implementations on other networks .

- We begin by describing the more Important of the processes
• which comprise NSW and discussing the pattern of communication

which those processes require. We then proceed to abstract from
those patterns a model of interprocess communication which is
sufficient for NSW. Finally , we develop the details of the MSG
facility itself.

It is our hope that both the description of the process of
defining MSG as well as the description of the structure of the
protocol will be of interest to protocol developers for the
ARPANET and other networks .

3—1



— •— ~~— ---—- •

1.2 NSW Components

The monitor of’ NSW is the Works Manager. It Is responsible
for servicing requests for system resources — e.g., runn ing a
tool , opening a f i le.  The Works Manager verifies that each such
request is valid (using In this verification a rather elaborate
access data base which serves as a domain for automated project
management machinery). The Works Manager then allocates to each
valid request the necessary resource. This allocation generally
involves either the creation of a tool (e.g., editor , compiler )
instance — i.e., the creat ion of a ne w NSW process — or the
movement of a file (which movement may be either inter— or
intra—host).

For each user of NSW an interface to the other components Is
provided by a Front End , which may be local to the user. In the
sequel we will tal k as if the Front End were local , so that
communication to the user is synonymous with communication to the
Front End. This Is not , however , an 1(3W system requirement. The
Front End filters the user ’s input stream , discarding bad
characters (e.g., control— C should not be sent to TENEX tools)
and interpreting system—wide control characters — delete line,
rety pe line , escape to the Works Manager, etc. In addition , the
Front End may provide local parsing of the Works Manager command
language and , conceivably , even tool command languages.

Just as users see the NSW environment through the Front End ,
so also do tools see an extended local system environment through
a Foreman component. Tools are software systems which are
written for a given host — e.g., MULTICS. To become NSW tools
they must be inserted into a slightly different milieu. This
different milieu is provided by a Foreman component on the tool’s
host. The Foreman provides the tool with access to NSW
resources , such as NSW files. Thus a tool gets NSW resources by
making a local call on the Foreman , which t hen forwar ds the
request to the appropriate NSW component. From the viewpoint of
ot her NSW componen ts , then , it Is t he Foreman ra ther than the
tool with which most communication must occur.

The final component of Interest here is the File Package.
There is an instance of the File Package on each tool—bearing
host. These File Packages are responsible both for local file
system manipulation — e.g., delete , local file copy — as well as
inter—host file transfers and reformatting.



- • - — ---. — ~~-~-— —--- --•—--—- -
~~
-—---- ----

4.3 Patterns of communication

We will now describe the anticipated patterns of
communication between the NSW processes. These communications
factor into six types :

• Front End — Works Manager
• tool/Foreman — Works Manager
• Works Manager — File Package

Front End — tool/Foreman
• tool/Foreman — tool/Foreman
• File Package — File Package

The other possible pairs — e.g., Front End — File Pac kage, File
Package — tool/Foreman — do not represent communication paths inNSW.

Front En d — Wor ks Mana ger

Commun icat ion between these two kinds of process consists of
user requests for NSW resources (Front End to Works Manager) and
Works Manager responses to such requests (Works Manager to Front
End). Examples of such requests are: run a tool , copy a file,
delete a file, etc. These requests are relatively infrequent — a
user may make only a few per hour. Each request is short —
almost all requests can easily be encoded in 4000 bits. The
response to each request is also short — again , less than 1000
bits. The time required to process a request is generally brief
— certainly on the order of milliseconds as compared to the
minutes between requests. There is no necessity for a request to
be processed by the same instance of the Works Manager that
processed any previous request (since all instances of the Works
Manager share the same common data base). Hence a communication
link need not be retained between a Front End and a Works Manager
between resource requests. Thus we can oharacterize Front End —
Works Manager communication as a sequence of unrelated elements ,
where each element is a short request, a brief delay, a short
res ponse , and a long delay until the next element of the
sequence.

tool/Foreman — Works Manager

These communications are exactly analogous to Front Err! —
Works Manager communications. A tool (on behalf of a user)
requests an NSW resource of the Works Manager. Examples of such

• requests are: open a file, create a subsidiary tool process,
deliver a file , etc. As above , these requests are generally less
than 4000 bits , are processed by the Works Manager in

3—3 

~~~~~~~ • • -- •—--—~~~~~~~~~~~
--- ‘

• W ‘ T ~ ~rr ‘ - - - - -

milliseconds , have responses of less than 1000 bits , and are
relatively infrequent. The only difference between this pattern
and the preceding pattern Is that tool requests are more frequent
than Front End requests , although the time between such requests
is still measurable In minutes.

Works lianager — File Package

These communications are again analogous to the above.
Indeed , these requests (of the Works Manager to the File Package)
occur in order to service a Front End or tool request of the
Works Manager. For example , when a tool asks the Works Manager to
open a file , the Works Manager must then ask a File Package
process to make a copy of that file, possibly across the ARPANET .
The time to make a cross—net copy of a file may be measured in
seconds (even in minutes for large files), b~zt such long copies
are expected to be infrequent. Thus , the same pattern of a short
request (not related to previous requests), a brief delay , a
short response , a long delay holds f0r Works Manager — File
Package communication also.

Front En d — tool/Foreman

Communication between these processes consists of user
commands to tools and tool responses to users. In some cases
these communications will f i t into the same pattern as the three
previous cases. Often , however , the pattern is d i f ferent.
Consecutive requests are related and must be serviced by the same
tool. The time between the user ’s command and the tool’s response
may be greater than the time between the response to the previous
command and the Issuing of the next command. Also , the frequency
of user commands to tools may be much greater than the frequency
of either user or tool requests to the Works Manager. In
addition , the length of a Front End — tool/Foreman communication
may be large. For example , In a typical session a user might
request the use of a text editor (Front End — Works Manager
commun ica t ion) , get a particular file to edit (tool/Foreman —

Works Manager communica t ion) , and then insert two hundred lines -
•

L of program text into that ‘Ile. Thus Front End — tool/Foreman
communication is expected to vary from the infrequent , shortL request pattern to f requent , long tran smissions of information.

. tool/Foreman — tool/Foreman

These communications are relatively infrequent . No tool
currently installed in NSW needs to talk directly to another
tool. Nevertheless , debugging tools for NSW as well as
multi—pr ocess tools have been proposed and are being implemented.

- -- — - - —.-~~~~~~~- - -~~~----—-~-
-
~~~~- —--- • •.~~-— •_ ~-~~~~~~ —.-••~~ —



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~- -~~~~~~~ - ----~~~~~ — ~~~~~——---,- — --

Such tools require communication facilities. We expect that
their patterns of communication will be analogous to Front End —
tool/Foreman communications.

File Pac kage — File Pac kage

Some very small fraction of these communications will
consist of short , infrequent messages — e.g., a source File
Pac kage tellin g a destinat ion File Packa ge the length an d
enco dement of a file — but t he bulk of suc h communicat ion will
consist of files being transferred. Thus, we can character ize
this pattern as infrequent transmissions of many bits.

3—5

~~~~~~~~~~~~~~~~~~~~~~~~



~ - — --
~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~

•
~~~~ • - -

~~~~~~~- - — -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~—~~~~~~~~~ — - -

4 1 4  Model of Commun icat ion

From these expect ed patterns ~f communication we can
abstract a model of the kind of interprocess protocol that NSW
requires. We have , roughly speaking , three patterns of
commun ication:

• . Infrequent short transactions between previously unrelated
processe s (Pat tern 4) :

Front En d — Works Manager
tool/Foreman — Works Manager
Works Manager — File Package

• More frequent , longer transactions between related
processes (Pattern 2):  —

Front End - tool/Foreman -

tool/Foreman — tool/Foreman - 
-

In fre quent , very long transactions (Pattern 3):• File Package — File Package.

3—~ -
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


1.5 Modes of Communication

MSG supports these NSW patterns of communication by
providing two different modes of process addressing:

. generic addressing;
specific addressing;

• and three d i f ferent modes of communication :

. messages;
direct communication paths (connections);

. alarms .

Each mode of process addressing and communication is
intended to satisfy certain NSW requirements and to be used in
certain kinds of situations. However, MSG itself does not impose
any limitations on how processes use the various communication
modes. MSG does not interpret messages or alarms , nor does it
intervene in communication on direct connections. The
interpretation of messages , alarms , or direct conn ect ions is
entirely a matter for the processes using MSG to communicate.

Generic addressing Is used by processes which either have
not communicated before or for which the details of any past
communication is irrelevant. It is restricted to the message

• mode of communication. A valid generic address specifies a
functional process class. When MSG accepts a generically
addressed message It selects as destination some process which Is
not only in the gener ic class add ressed but has also declared its
willingness to receive a generically addressed message. If there
is no such process , MSG may create one. Pattern 4 communication
is always initiated by the transmission of a generically
addressed message.

valid specific address refers to exactly one process and
thi~. idress remains valid for the life of that process.
Speci fic addressing may be used with all three communication
modes. Specific addressing is used between processes which are
familiar with each other. The familiarity is generally because
the processes have communicated with each other before , either
directly or through intermediary processes.

Message exchange is provided by MSG to support the
requirements of pattern ‘1 communication and some pattern 2
communication. It is expected to be the most common mode of
communication among NSW processes. To send a message, a process

3—7

• • ~~~~~~~~~•~~~~~~~~~~~~~~~~ • •

• ~-~- • •~_ _

addresses it by specifying the address of the process to receive
the message and then executes an MSG “send” primitive which
requests MSG to deliver the message. When MSG delivers a message
to a process it also delivers the name (i.e., specific address)
of the process that sent the message.

The second mode of MSG communication is direct access
• communication. A pair of processes can request that KSG

establish a direct communication path between them. Direct
• communication paths are provided to support the requirements of

pattern 3 communication , such as file trans fers between host s,
and some pattern 2 communication , such as terminal—like
communication between a Front End and tool/Foreman. (The ARPANET
realization for a direct communication path is a host/host
connection or connection pair.)

The alarm mode of communication is supported by MSG to
• satisfy a communication requirement typically satisfied by

interrupts in other interprocess communication systems. Alarms
-; provide a means for one process to alert another process to the

occurrence of an exceptional or unusual event. Processes may
• send and receive alarms much as they send and receive messages.

However , there are significant differences between alarms and
messages. The rules that govern the flow and delivery of alarms
are different from those that govern the flow and delivery of
messages. In particular , the delivery of an alarm to a process
is Independent of any message flow to the process. That is, the
delivery of an alarm to a process cannot be blocked by any
messages queued for delivery to the process. Unlike a message
which can carry a substantial amount of information , the
information conveyed by an alarm is limited to a very short alarm
code . This limitation implies that the delivery of alarms can be

• accomplished In a way that requires little In the way of
communication or storage resources. This makes it possible for
MSG to insure certain “priority” treatment for alarms which makes
them suitable for alerting processes to exceptional events .
While similar to traditional interrupts , alarms are different in
one Important respect: the delivery of an alarm to a process
does not necessarily imply that the process Is subjected to a
forced t ransfer of control by MSG . For this reason , we have
chosen to use the term alarm rather than interrupt.

All modes of Interprocess communication supported by MSG
follow the same basic pattern , which is roughly as follows :

1. One process tells MSG about a message or alarm to be
sent or a connection to be opened . It also specifies a
destination address and a signal by which MSG can

• 3—P

•
- • — ——-----

P.
- - - •

~~~~~~ 

• 

~~ ~~~~~~~~~~~~~~~~~~

inform it that the message or alarm has been ’sent or
the connection opened.

2. Another process which matches the above destination
• address tells MSG that it is ready to receive the same

• type of communication. It also specifies a signal by
• which MSG can inform this process that the message or

alarm has been received or the connection opened .

3. MSG sends the alarm or message or opens the connection.
• - 

It also signals the source process that the message or
alarm has been sent or the connection opened and
signals the destination process that the message or

• alarm has been delivered or the connection opened .
After it receives the signal , t he proce ss rece ivin g a

• message or alarm always knows the specific address of
• the sender.

3—9

_ _ _ _ _ _ _ _ _ _ _ _



- • . - --~~~• ••-- • • • ---•-~~
-•

~~~~
. -- -

~~~~
••-- -• • • ----- •—

~
---•- .- --

~~

- • ---•• 

1.6 Sequencing of Messages

Normally ?ISG does not guarantee that messages sent from one
process to another process will be delivered to the destination
process in the order in which they were sent. However, since it
is expected that NSW processes may frequently desire message
sequencing , it is possible for a process to ask MSG to sequence
certain messages.

To achieve sequencing a process can specify when it sends a
message that the message is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after al]. previous sequenced messages
from process A have been delivered to process B. A process may,
if it chooses, intermix sequenced and unsequenced messages.

• Several of the situations which motivate the presence of the
alarm communication mode within MSG also require that a process
receiving messages be able to distinguish messages sent before an
alarm was sent (or received) from those messages sent afterwards.
That is, it is often important for a pair of processes to
synchronize a message stream with respect to an alarm.

To facilitate such message—stream/alarm synchronization , MSG
supports the concept of message stream markers. A stream marker
is an attribute of a message. When sending a message a process
may specify whether or not the message is to carry a stream
marker. MSG guarantees that a message M , sent from process A to
process B, which carries a stream marker will be delivered to
process B only after all messages sent by A prior to M have been
delivered to B and before any messages sent after M by A.
Fur thermor e, MSG will notify the receiving process B whenever it

• delivers a message that  carries a stream marker. The
notification will be part of the information normally supplied by
u SC to the receiving process.

When it is necessary to achieve message stream
synchronization after an alarm , a pair of processes can use the
MSG stream marker. This can be accomplished by placing a stream

• marker on the first message sent after the alarm (was sent or
• received). Although stream marked messages are provided by MSG

to simplify message—stream/alarm synchronization by MSG
processes , It is important to note t hat MSG itsel f places no

• constraints upon how processes use stream marked messages.

3—lfl



-• ~— - -- - --- - --• • ~~~~ ~~~~~~~~~ - - - ----~ • •-—~- • 
•• ~~~~• ~~~~~~~~~ - • • —

1.7 Host Incarnations

The NSW is expected to provide continuous , 21* hour a day, 7
day a week service. However, t he var ious com puter systems which
support NSW processes may not provide such continuous service.
Pro per NSW opera tion re quires that MSG be able to determ ine
whether a name for a process refers to a process that MSG is
currentl y mana ging or to an obsolete one which MSG man aged dur ing
a previous period of MSG service by the host computer system in
question. (The term “inc~ rna tion ” is used synonymously with
“period of host MSG service” in the remainder of this document.)
To enable MSG to distinguish current from obsolete processes , an
MSG proc ess name (mor e prec isely , a specific address) includes an
indication of the host incarnation under which the process exists
(or existed).

3—11

____________________________ ___  __________ ~~~~~~~~~~~~ - -  ~~~~~~~~ •



-~~~~~ ~~
— ,.—-. - • . ——- - - --— • - • • - - . - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—- -

~~~~~~~~~~~ _ .
~~~~~~~~~~

— -
~~- - ~

-- ., .-
~~

— - -
~~

•.
~~~~ 

-

4.8 Organization of this Document

The remainder of this document specifies MSG in detail.
There are four parts to the specification:

• I. MSG process environment.
Section 2 defines in detail the environment MSG
provides to MSG processes. In particular, it defines
the set of primitives that MSG provides to such
processes.

Ii. MSG—to—MSG protocol.
NSW Is a multi—computer system. Parts of MSG will
reside on the various computer systems that comprise
the NSW. The inter—computer protocol used by the
components of MSG in order to support the MSG
primitives is specified in Section 3.

iii. MSG—to—MSG Protocol for the ARPANET.
The initial implementation of the NSW will make use of
the ARPANET as an inter—computer communication medium .
Section 1* specifies how the ARPANET host/host

• communication facilities are to be used to support the
MSG—to—MSG protocol.

iv. MSG—to—MSG Transmission Formats for the ARPANET .
Section 5 defines the formats to be used for the
transmission of MSG—to—MSG protocol messages between
ARPANET hosts.

3—12

- —
~~~~~~~~~~~~~~ - • • • - - •— •--- - - - • • -~~ • .---- - •


2. MSG process environment

This section defines in detail the environment ~ISG provides to
processes. This section covers those aspects of the MSG process
environment which are common to all hosts; it is not a
process—implementer ’s guide to MSG on any particular host. Such
a guide must also discuss aspects of the process environment
which are peculiar to that host.

3

• —---~~~~ - - —~~~~~~~~~~~~~ ~~

- ~~~~~~~~~~• • , • . -~~~~~-~~~‘r~~ 7-, ~~ r -” ~~~- --
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• -

2.4. Hosts

NSW is implemente d as a num ber of processes runn ing
concurrently on a number of different computer systems, calle d
hosts. MSG on each host can be thought of as an extension of that
host ’s operating system, creating a new operating system that
satisfies the P130 design. Because MSG specifies only a fraction
of the host environment for a process, it is generally true that
MSG processes will be sensitive to the type of host on which they
run.
NSW will operate continuously , but individual hosts may not be
continuously part of it. This can occur because a given host is
not scheduled for continuous NSW service, or because the host has
failed. We define a particular period of NSW service by a host as
a host incarnat ion , designated by:

<host incarnation name> ::~<host designator><incarnation designator>

where (host designator> is an integer which uniquely designates a
particular host computer and <Incarnation designator> Is an

• integer which designates this particular period of NSW service by
this host.

3—14

• - • •-- -
~~~

- • ---
~~~--~~~~~~~~

-• -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.2. Processes

The form of an MSG process is strongly host—dependent , since
the MSG design specifies only a part of the operating system
under which the process runs. An MSG process is what one
genera lly thinks of as a process , i.e. a collection of programs ,
local memory, etc. to which the operating system allocates system
resources such as CPU time. MSG processes must , however , have the
following pro pert ies:
4. The process can make at least some MSG primitive calls.
2. The process has a unique MSG process name through which

it can be addressed by other processes.

3—15

• ~~~•~~~~~- -~~~~~~~~~~~~~ •~~~~
•-

~~ - - • — — - - —- •  ~~-~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~• - •--  •~~~~~ - -~~~~~~ -~~~~~~~——--~~~~~~~ -~~~



-

1~

2.3. Process names

A host incarnation supports a number of MSC processes. Each
process has a name of the form

<process name> ::= <host incarnation name><generic designator>
<speci’ic designator>

The host incarnation name is the incarnation name the host
under which the process is running. The generic designator is a
character string which characterizes a process in terms of its
functional relationship to other processes. This characterization
determines whether a process could be chosen to perform a certain
function. For example , processes with generic designator WM are
candidates for messages which invoke Works Manager functions.
The specific designator is an Integer. A process name is always
unambiguous ; at all times it either corresponds to a single =process or is invalid .

3—1 F~



_ _ _ _ _ _ _ _ _ _ _  

_ 
• - 

‘1

~~~ Process addressing modes

There are two fundamental modes by which one process may
address another process: generic and specific. A specific
address Is always a process name . Generally process A will use a
specific address for process B because process A has had some
prior communicat ion with B , either directly or through some
intermediary process.

A generic address , however , is of the form:

<generic address> ::= <host designator><generic designator> I
<generic designator>

Unl ike specific addressing , which uniquely determines the
destination process , generic addressing implies a selection by
MSG of a destination process from a class of processes. This
selection allocates the destination process to the communication
implied by the generically addressed message. This is distinct
from process allocation , in which MSG creates and terminates =

processes.

The class of processes from which MSG can pick a destination
process for a generically addressed message is defined as
follows :
4. If the generic address is or~ form

<host design ator><gen erlc designator>
then the process selected must be on the designated host. If
<host designator> is not specified in the address , then the
process may be on any host.

2. The <generic designator> field of the process name must match
the <generic designator) field of’ the generic address.

3. The process must have a Receivegeneric primitive call
pending.

3—17

~

-- ~~~~~~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~

2.5. Modes of info rmat ion t ransfer

tISG supports three basic modes of Informat ion t ransfer between
processes: messages , alarms , and direct connections .

A message is a string of bits created in the local memory of a
sending process. MSG sends the message to a receiving process by
duplicating the bit string in a specified portion of the
receiving process ’s local memory. MSG itself imposes no further
structure on messages , nor does It Inter pre t the conte nts of’
messages. Messages are the only mode of communication which can
be generically addressed.

An alarm , like a message , is a string of bits created by one
process and addressed to another process. As with a message , MSG
transmits the bit string to the receiver process , which has
designated beforehand where the bit string Is to be put. In other
ways , however , alarms differ from messages. First , an alarm is a
fixed—length bit string and Is shorter than most messages.
Second , MSG will t ransmit an alarm independently of’ an y message
t r a f f i c between sender and receiver processes. In fact , MSG will
give alarms priority service over messages. It is anticipated
that alarms will be used to transmit informat ion about unusual or
exceptional conditions , while messages and direct connections
will be used to support normal communication.

A direct connection Is a one— or two—way dedicated channel -
•

between two processes. MSC assists the processes in opening and
closing the connection , but does not intervene in the actual use
of the channel.

Messages are further differentiated by whether they are
addressed to a specific process or to a generic class of
processes. Processes use different primitive calls to send and
receive generically—addressed messages than they use to send and
receive specifically—addressed messages.

For a specifically—addressed message it is fur ther possible to
specify either (but not both) of two types of special handling:
sequencing and stream marking. Normally MSG will not guarantee to
deliver messages In the order In which they were sent. Sequenced
messages , however , from process A to process B will be delivered
to B in they same order In which they were sent by A. A stream
marker message from A to B will not be delivered to B until all
other messages from A to B have been delivered . Furthermore , it
will be delivered to B before any other messages to B sent
subsequently by A.

3—1P

• • • • - • • • • - • - • • • - • • -• • • - •~~• •- -•-—“———-• - -~~~~~~~~~~~~~~~~~~ -•~~~~~- • -•-~~•• •---• •---- - • - • • ••

—‘v—-’- - — -‘ “ “~
‘ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

In all cases , MSG will inform the receiving process of any
special handling given any message it receives.

3—19

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
• -

~~~~
-

• ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ •- - - --~~~~ - • -- -•-~~ ~~~~~~~~~~~~~~~~~~~~ •• -~~~ ~~~~~~~~~~~~~~ •-~~~~~~~ L~~~
•
~~~~~~~~~~~~~~

•- - •  - • ~~~~~~~~~~~



- • 
-—-——,- ••~~_7~~_7-7~~~ • •~~~~ 

.~r~~~r-7 -’v’v~

2.6.  MSG pr imit ive operations

Each host supports a set of MSG primitive operations for the
processes that run under it. The method of calling these
primitives will be host dependent. Every primitive call produces
some time later a reply (return) from MSG. We divide the set of
primitive calls into two classes , differentiated by the meaning
of the reply MSG makes to the primitive call. For one class of
primitive cal.l the HSG reply signifies that the primitive
operation Is complete. For the other class of primitive call ,
however , the MSG reply signifies only that  the parameters of call
were reasonable enough for MSG to deduce what operation to
perform and tha t MSG has agreed to at tempt to perform this
operat ion.  When this primitive operation is finally complete or
has been aborted , MSG will signal the process , using a signal

-• specified in the primitive call. We call this uncompleted
primitive operation a pending event , where the event in question

• is the completion or abort ing of the operation. A pending event
has the form :

<pending event> : : <primitive> <signal> (disp><tlmer>

• where
<primitive> is the primitive operation to be performe d
<signal> is a means by which MSG can signal the process

that  the primitive operation is complete
<di sp> is a pointer to a field in the process ’s local memory
<timer > is a timer which tells MSG when it can abort the• operation.

Every host will o f fe r  processes a set of signals for use in
primitive calls that produce pending events . We shall discuss
signals at greater length later in this document. The disp field ,
which t4SG will have set before it sends the signal , tells the
process whether the pr imi tLv e operation completed normally or was
aborted.  

-

The set of all pending events for a process is called that
process ’s pending event set. When the process makes a primit ive
call of the second class , a pending event is added to its pending
event set. When MSG completes or aborts a pending event , It sets
the appropriate disp field , sends the signal , and then deletes
the pending event from that process ’s pending event set.

A process should ensure that no two elements simultaneously in
its pending event set have the same signal , but MSG will not
enforce this restriction. The simplest way for a process to
ensure this is never to reuse a signal in a primitive call until

3—2’~

— — - 
~~

—-—-—— - —- ‘--——- --—--- —



• that 5ignal has been received from the old call. It should be
emphasized that the signal for an operation is the only reliable
way for a process to ensure that this operation has completed.

-• • • -- — -•- -•— • -~~-~---—•-• -----__ - - • • •-- • ~~ ----- • 



--- —~~~-——- - -- - •~~ ‘- - . 

~~~- ‘- -  •

• 2.6.1 Primitives that create pending events

Many of the following primitives contain the parameter dt. This
is used to create the <timer> field of the pending event , and
either specifies a time Interval in local host clock units or
indicates that a default value should be chosen by MSG. Unless
the default is specified ,

(timer> tc+dt where tc Is the local host clock time when
the primitive was called.

1. Sendspecificmeasage(msgarea ,pnam ,signal ,d i sp , dt ,sph n d l)
where
msgarea points to a message to be sent
pnam is a process name
sph ndl specifies special handling for the message

o — ordinary handling
1 — sequenced message
2 — stream marker message

This causes the message pointed to by msgarea to be sent to
process pnam . At the very minimum , completion of this
primitive operation means that the msgarea has been read by
MSG , the disp field set , and the pending event deleted from
the sender a pending event set. Local hosts may opt to
guarantee more , such as that when the primitive is completed
the foreign host has accepted the message.

2. Sendgenericmessage(msgarea ,genadr ,signal ,disp,dt ,qwait)
where
msgarea points to a message to be sent
genadr is a generic address
qwait is a boolean

This is like Sendapecificmessage except that here a generic
address is specified instead of a process name , there is no
special handling , and there is the extra parameter qwait.
Unlike a Sendspeciflcmessage , a Sendgenericmessage may cause
MSG to create a destination process. Qwait Is a boo].ean;
setting it false will cause PISG to accept the primitive only
if there is a process available with a Recelvegeneric
primitive pending.

3—22

- — - — -~~ ---~~~~~~‘~~~~~~~~~~~~ ‘ “ — ~~~ ‘ - — -—‘--‘- ‘.‘- - —— ‘ ‘ ‘ ‘ ‘ ‘‘
~~ ~~~‘

Jr~’- r

I

3. Receivespecificmessage(msgarea ,srcnam ,signal ,disp,dt ,sphndl)
where
msgarea points to a block of local memory in which MSG

will put a message
sronam points to a field of local memory which MSG will

set to the process name of the sender
sphnd]. points to a field of local memory which MSG will

set to the special handling class of the message
= being received :

O — ordinary handling
1 — sequenced message

- 2 — stream marker message

If the primitive completes normally , I.e. If the specified
signal is received and the disp field does not indicate an
error , then msgarea will contain a message which was sent by
a Sendspecificmessage primitive call by some process. Srcnam
will contain the name of the process that sent the message ,
and sphndl will show if the message was sequenced or was a
stream marker.

~L. ReceIvegenericmessage(msgarea,srcnam ,signal ,disp,dt)
where
msgarea points to a block of local memory in which MSG will

put a message
• aronam points to a field of local memory which P43G will

set to the process name of the sender

This is like Receivespecificmessage except that here the
message received was sent by a Sendgenericmessage primitive
instead of a Sendspecificmessage primitive . There is also no
special handling field .

3—23

~~-- - • •

‘- - •~~~
• • - - • •

~~~~~~
• -~~~~•- • • - —7-.

~~
- - -- • • • ---—~~

-

5. Sendalarm(aeode,pnam ,slgnal ,dlsp)
where
acode is an alarm code =

pnam is a process name

This sends the alarm code acode to the process named pnam .= When this primitive completes , the disp field will indicate
one of the following outcomes:

1. OK. Either the alarm was delivered to the process or it
was queued and will be the next alarm to be delivered to
the process.
2. Rejected . Process pnam is not accepting alarms at all

now , or another alarm is already queued for this process ,
or some error has occurred .

6. Enablealarm(acode ,srcnam ,signal ,disp)
where
acode ,srcnam point to fields of local memory

This enables the process to receive an alarm . When the alarm
is rece ived , acode will be set to the alarm code and srcnam
will be set to the name of’ the alarm sender. In order for an
alarm to be rece ived , not only must an Enablealarm primitive
be pending but also the iaccept boolean state for this -

process must be true. This boolean value is changed by the
primitive Acceptalarms.

3—2 4

— —— - -- - --—-S- - —



~ _ _ ,
~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~ ‘-

7. openconn (conntype ,connid ,pn am ,signal ,disp,dt)
where
conntype Is a connection type

TELETYPE
BINARY SEND—RECEIVE(s)
BINARY SEND(s)
BINARY RECEIVE(s)
where s is a byte size

connld is a connection identifier
pnam Is a process name

This opens a conn€ tion of type conntype to process pnam.
The connection will be identified by connid. In order for the
primitive to complete normally, process pnam must also
execute an Openconn primitive addressed to this process , with
the same connid and a compatible conntype . Some hosts may
return a host—dependent identifier for the connection.

8. Closeconn(connid ,pnam ,signal ,diap,dt)
whe re
connid is a connection identifier
pnam is a process name

This refers to the connection created before by the primitive
Openconn(conntype ,oonnid ,pnam ,...). If the connection was
never opened , Closeconn will abort with an error code in the
disp field. If the corresponding Openconri is still pending,
the Openconn also will abort. Whatever the outcome , however ,
when the Cloaeconn primitive completes , the connection , if it
ever existed at all , will be closed.

9. Terminationsignal(tsignal ,disp) where
tsignal is a signal

If this primitive ever completes , i.e. if tsignal is ever
received then it should be taken as a request by MSG for the
process to terminate. The disp field may be used , at host
option , to specify why the termination is being requested.

3—2 5

--

~

---

~

-- •

~ 

-~~~ -~~~~~~~~-~~ --•--- -
—• -- -~~~- - - --~~~~- - - - - -~~- - -- — - ---~~~~~~~~



- — -~~~~~~~ -r - fl-~~ 
- -~~~~~-— ~~~~~~~~ “-‘- ~~~~ ~~ .• • 

~~• • ~~~~~~~~~~~~~~~~

2.6.2 PrimitIves that do not create pending events

1. Stop m e ( )

• This primitive Indicates that the process wishes to
terminate. Control will never return from this primitive.
The process will be terminated by MSG as soon as possible.
Well—behaved processes will ensure that their pending event
sets are empty before issuing this primitive.

2. Rescind(rsignal)
where
rsignal is a signal

This is used to delete a pending primitive operation. The
parameter raignal must be the signal of a pending event , i.e.
an uncompleted primitive operation. If the Rescind call
returns successfully then the corresponding primitive will
not occur and rsignal will not be sent. The Rescind may fail
because the primitive operation Is partially complete and it
is too late to stop it , or because rsignal no longer
corresponds to a pending event. The latter case generally
means that the corresponding primitive has already completed.
It is a host option what primitives may be rescinded at all.
Some hosts ma y wish to return an event han dle wit h

rescindable primitive calls. In this case, the call will be
Rescind(event handle).

3. Acceptalarms (qaccept)

Each process has a boolean state value , iaccept. If an alarm
is sent to a process whose iaccept state is false , the
Sendalarm will fall with a disposition indicating that the
process Is not accepting alarms. If, however , iaccept is true
then the Sendalarm will either match an Enablealarm , be
queued , or be rejected because another alarm Is already
queued for this process. Acceptalarms sets iaccept to the

• value of qaccept .

i . Resynch (pnam)

It’ MSG had been rejecting sequenced messages to process pnam
due to failure of a sequenced message transmission , then MSG
will now stop doing so.

3—26 

_—_  —--~~~~~ -~~ 
__ -  — - - - ------ --



2.7. Signals

Each host provides for processes running under it a set of
signals. A signal is a means by which P130 can inform a process
that some event has occurre d , in particular that MSG has
completed some primitive operation.

Different hosts will offer different signals , but all signals
must sat isfy certa in cri ter ia:
4. At any point in time , t he process can determ ine whether or

not the signal has been received.
2. Signals must be distinguishable , i.e. if one of several

possible signals has been receive d , the process must be able
to determine which one.

• 3. Signals are local. A signal to one process does not
directly affect any other process.

The restrictions listed above allow hosts to specify a wide
variety of signals for processes. It is not the function of this
section to further specify what signals will be available on any
host. We list here some examples of signals that a host might
provide. These are strictly examples; they imply no MSG
requirement that these particular signals be supported :
4. Block/Unblock

The process waits and control does not return from the
primitive call until the event has occurred.

2. Flag
MSG sets a field in the proce ss s local memor y nonz ero
when th~ event has occurred. This field could be the<disposition> field itself.

3. TENEX PSI on channel n
On TENEX , MSG sends an interrupt on PSI channel n when the
event has occurred.

Z~• Flag plus TENEX PSI
MSG sets a field in the process’s local memor y nonzero ,
then sends an interrupt on an agreed—upon PSI channel
which is the same for all signals of this type . This

• differs from example 3 in that here different signals
cause interrupts on the same channel. Because TENEX
queues PSI5 on a channel only one interrupt deep, some
PSIs may be lost if MSG sends several signals of thie
type sufficiently close to each other in time. With
care , a process can handle the resulting race without
undue difficulty .

3—27



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —“- ‘v. —- —“--~ 
—

2.8 Information transmittal

The sending of messages and alarms and the opening and closing
of connections all involve a pairing of’ compatible primitive
operations in the pending event sets of (usually) different
processes. Such a pairing defines an interchange of’ information
between two processes which MSG must cause to happen. The
possible pairings are :

1. Specifically—addressed message
This pairs the primitives
Sendspecificmessage(ma,pb ,...) in process pa
Receivespecificmessage(mb ,snam ,...) in process pb

This causes the message pointed to by ma to be transmitted by
MSG to process pb and put into the memory area pointed to by
mb. In addition , snam in process pb will be set to pa so that
the receiving process will know the name of’ the sending
process.

2. Alarm
This pairs the primitives
Sen dalarm (aco de ,pb ,...) in process pa
Enablealarm(cdval ,snam , . . .)  in process pb

This pairing is possible only if the boolean state ~ariableiaccept in process pb is true . This causes the alarm code
acode to be transmitted from process pa to process pb and put
into field cdval. In addition snam will be set to pa, the
name of the sending process.

3. Generically—addressed message
This pairs the primitives• Sendgenericmessage (ma ,genadr ,...) in process pa
Reoeivegenerioa.ssage(mb ,anain ,...) in process pb

This is like a specifically—addressed message pairing except
that here genadr is a generic address which matches process
name pb instead of being pb directly .

i—2e



—-‘

U• Opening a connection
This pairs the primitives
Openconn (ta ,conn ida ,pb,...) In process pa =
Openco nn (t b ,connidb ,pa,...) in process pb -

•

where
connida = connidb
ta and tb are com pat ible conn ection ty pes:
1. ta = tb = TELET YPE
2. ta tb BINARY SEND—RECEIVE(s)
3. ta = BINARY SEND(s)

t b = BINARY RECEIVE (s)
where s is a byte size.

This opens a connection of the indicated type between
processes pa and pb. The connection will be hereafter
identified to both processes as connlda (= connidb).

5. Closing a connection
This pairs the primitives

Closeconn(conni d ,pb,...) in process pa
Closeconn(connid ,pa ,...) in process pb

This will close for both processes the connection between
them which is identified by connid .

These pairings define tasks that MSG is to perform , but they
allow MSG hosts a great deal of freedom in scheduling computer
time and resources to the multitude of concurrent operations they
must perform. We must , however , specify a few more rules :

3. Fairness. MSG will not grossly favor any one process , mode of
commun ication , or particular operation over any other.
Exce pt ions are :
a. Alarms will be favored over messages.
b. Transmission of messages with special handling

attributes may be delayed until other related messa ges
have been transmitted .

2. Access to communication. A process must always be able to
have in its pending event set:
a. One message send primitive.
b. One message receive primitive.
c. One alarm send primitive.
d. One alarm enable primitive.
e. One primitive to open or close a connection.

3. Efficiency. Within limits set by the above rules, MSG will
arrange its workload so as to perform it in a reasonably
efficient manner . -

3—29

~~ • _ 1  - - - -  -~~_ - ~~~----~~~-—-- -
~~~~~~~~ 


- • • --

2.9 Sequencing of messages -
•

As noted in Section 1.6 , MSG normally does not guarantee
that a collection of’ messages sent from one process to another
process will be delivered to the destination process in the order
in which they were sent . Some applications will require that the
messages between two processes be sequenced. In such cases , the
commun icating processes could observe a private protocol to
insure proper sequencing of messages. However, since it is
expected that processes may frequently desire message sequencing,
it is possible for a process to ask P150 to sequence certain
messages.

To achieve sequenc ing a process can specify when it sends a —

message that the message is to be sequenced. MSG will guarantee
that a sequenced message from process A to process B will be
delivered to process B only after all previous sequenced messages
from process A have been delivered to process B. A process may,
if It chooses , intermix sequenced and unsequenced messages.

The sending and receiving disciplines required of MSG to
support sequenced messages are discussed below. Processes should
be aware that a cost is associated with the use of the message
sequencing option ; that cost will be reduced message throughput .

P4SG cannot guarantee that every message will be delivered.
(The destination host may be temporarily inaccessible, the
destination process may spontaneously disappear, the messa ge may
be timed out , etc.) When uSC is unable to deliver a normal ,
unsequenced message, the sending process is signalled and
notified (via the disposition information normally supplied by
MSG) that the message could not be delivered. The sending
process can then take whatever action it feels is appropriate
with respect to the message in question.

Sequencing introduces an additional complexity here
since a sequenced message is not independent of other messages in
the sequence. To illustrate the nature of the problem , suppose
that process A has attempted to send process B the sequenced
messages Ml , P12, M3, M1$, P15. Furthermore , suppose that MSG
successfully delivers Ml but is unable to deliver M2. What
should MSG do with 143, ~~ and M5? In particular , its inability
to deliver P12 does not necessarily mean that MSO will be unable
to deliver the remaining messages in the sequence. Delivery of
M 3 , M11 and 145 without P12 may confuse process B; processes A and
B are commun icatIng via sequenced messages presumably because
sequencing is important. Therefore, tI SG will not attem pt to
deliver the remaining pending sequenced messages.

3—30

- --• — - - - - --~~~~~~~- -.--——-• ---—---- - - - - • • - __--- _______ _______~,__________________4


~~~ - •~ -~w - . • - --~ 

I

If MSG ‘~ -not deliver a sequenced message from process A to
process B, it till stop the flow of sequenced messages to process
B from process A until process A takes some explicit action to
“resynchronize” the message sequence. MSG does this by marking
process A as being out of synchrony with process B after a
sequenced message from process A to process B fails. MSC will
then abort all pending sequenced Sendspecificmessage primitives
in proces s A ’s pending event set which are addressed to process ‘

.1

B. Furthermore it will reject all such primitive calls
subsequently made by A until A resynchronizes the message
sequence with B by executing the primitive Resynch(B).

As noted in Section 1.6, in situations in which an alarm Is
transmitted or received , It is often important for a pair of
processes to ident ify a point in a stream of messages between
them corresponding to “where” the transmission (or receipt) of
the alarm occurred . To facilitate such message/alarm
synchronization , MSG supports the concept of message stream
markers. A stream marker is an attribute of a message. When a
process sends a message it can specify whether or not the message
Is to carry a stream marker.  The default  is no stream marker.

MSG guarantees that a message M , sent from process A to
process B, which carries a stream marker will be delivered to
process B only after all messages sent by A prior to M have been
delivered to B (or have been determined by MSG to be
undeliverable) and before any messages sent after P1 by A.
Fur thermore , MSG will notify the receiving process B whenever it
delivers a message that carries a stream marker. The
notification will be part of the Information normally supplied by
MSG to the receiving process. We emphasize that MSG itself
places no constraints upon how processes use stream markers.
However , we expect that standards regarding their use will be
adopted for NSW.

MSG observes a queuing discipline with respect to
Reoeivespecif’icmessage primitives. The Receivespecifiomessage
primitives executed by a process are to be satisfied in the order
in which they are issued in the sense that the first
Receivespecificmessage should be satisfied by the first message
MSG accepts for the process , the second by the second message ,
etc. We note that this does not necessarily imply that the
signals associated with a collection of pending receives will be
delivered to the receiving process in the order in which the
receives were satisfied.

3—31 

- - - -~~~~- — —- _ -• . - _ • •- —-—-——-• -_----•. ---------- ~



~~~~~~~~~ --

In addition , we note that this MSG receiving discipline does
not imply that messages from a given sending process will be
delivered In the order in which the sending process sent them.
If in—order delivery is required , the sending process must
request “sequenced” or “stream mar ker ” handling. When sequencing
for a message is requested , the sending MSG observes a sending
discipline whereby it transmits the message only after the
receiving MSG has accepted all previous sequenced messages (from
the sending process to the receiving process). Similarly, when
stream marking for a message is requested , the sending MSG
observes a sending discipline whereby it transmits the message
only after the receiving MSG has accepted all previous messages
from sender to receiver and additionally transm its no further
messages from sender to receiver until the receiving MSG accepts
this message. These sending disciplines , together with the -

•

receiving discipline described above and always followed by MSG5,
Is suff ic ient to insure in—order delivery of sequenced and stream
marked messages.

3—32

——•=~~———_ - -•~~•. ~~~~~~

- r- -.-~~~~~~~~~~~~~~~~~~~
_
~

--~~~ -~~~r~~~~~ - ,fl ’v~~r —. ~ _ -• _ •

2.10. Process creation and termination

To create a process MSG performs the following operations:
1. MSG assigns a process name to the process and creates

an empty pending event set for it.
2. MSG creates the process on the host operating system.
3. P150 starts the process in some host—dependent agreed—upon

initial state.

= An MSG host may create processes for one of’ only two reasons:
• 1. In order to fu l f i l l its obligation to find a destination for

a generically addressed message.
2. As part of’ system Initialization or restart.

• To terminate a process , MSG performs the following operations :
1. MSG marks the process for termination in such a way that

it will no longer be a candidate for any communication
- from other processes and such that it is blocked from

Issuing any more P130 primitives.
2. MSG completes or rescinds all elements in the process ’s

= pending event set.
• 3. MSG deletes the process from the host.
•

IL. MSG forgets about the process.

3—33

• • ~~~

2.11 Summary of terms
We present here a brief summary of the terms defined in

this section:
1. Host incarnation name

<host incarnation name> ::=
<host deslgnator><incarnation designator> :

2. Process name
<process name> ::~<host incarnation name><generic designator)<specific designator>

• 3. Generic address
• <generic address> ::= <host designator><generic designator> I

<generic designator>

~~~ Generic designator =

<generic designator> ::: character string

5. SpecIfic designator
<specific designator> ::= Integer

6. Host designator
<host designator> ::= integer

7. Incarnation designator
<incarnation designator> ::= integer

3—34

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~• ~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~_ • • • • • •~~



• • 

3. MSG—to—M3G Protocol

This section specifies the inter—host MSG protocol whichsupports the primitives provided to processes managed by P13G.The concern in this sect ion is t he informat ion commun icate dbetween MSGs rather than how it is communicated . This sectionassumes the existence of a bi—djrectional communication pathbetween each pair of MSG host systems. Issues such as how theseMSG—tO—MSG paths are supported by ARPANET communicationcapabilities or how MSG—tO—MSG messages are delivered are thesubjects of Sections li and 5.

3—35



• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.1. Transaction Identifiers.

The completion of an inter—host MSG transaction (such as the
transmission of a message or an alarm) generally requires a
protocol exchange that involves several inter—MSG messages. When
an MSG initiates an inter—host transaction on behalf of a process
It manages , it generates an identifier for the transaction which
it places into the J.nter—MSG message which initiates the
transaction. In addition , the initiating MSG generally places

• the name of the initiating process into the inter—MSG message.

When an t4SG responds to an inter—MSG message that Initiates
a transaction , the responding MSG includes the transaction
identifier chosen by the initiating MSG In its response . If the
transaction in question is one that requires fu r the r interaction
between the MSG5, the responding MSG generates a second
Identifier (its identifier) for the transaction and places It
Into the response message. All subsequent inter—MSG messages
which refer to the transaction will include both transaction
identifiers. .

3—36

~~~•.~~• • . • . • .. • • • • _______ ______________________________________________________________________



— -
~

3.2. On the use of “sourc e” and “destination ”.

Most inter—MSG messages are transmitted to support
Interactions between a pair of processes. Consequently, most of’
these messages include the names of two process and many Include
two transaction identifiers. In the specification that follows ,
we adopt the convention of’ using “source ” when referring to a
process or transaction identifier managed by the initiating MSG
and “destination” when referring to a process or transaction
identifier managed by the responding MSG. “Source” is then
relative to the initiator of the transaction ; it is not relative
to the sender of’ a particular message in the series of protocol
messages needed to carry out the transaction.

3-fl

_____________ 
•~~~—~~~

• . -
~~~~~~~~~~ 

I_
-


~~~~~ r!’r• ~~~~~~~~~~~~~~~~~~~~~~ —--- . . - . .~~~~~~~ -,~~~~ -.-,~ --.— - -,--———•—• . .- --- • - -- . -— . ~~~~~~~~~~~~ • • -~~~~~~~~~~ •

3.3. MSG—to—MSG Protocol Items.

In the specifications of inter—host MSG protocol items that
follow, the items are grouped according to the primitives they

• support. In these specifications all information exchanged
between HSGs is explicitly represented as parameters of the
various protocol messages. In some cases some parameters may be
implicit from the protocol exchange context and are therefore
redundant. Section 5 defInes the transmissi~n formats for theprotocol items in detail.

1. MSG—to—MSG protocol for interprocess messages
• (SendSpecificMessage, ReceiveSpecificlleasage,

SendGenerlcMessage , ReceiveGenericMessage)

MESS (source—process , destination—process , source—ID , —

destination—ID, handling , length , message-. data)

This initiates an inter—MSG message transaction It
indicates that the source—process has requested that a message
(defined by length , message—data) be delivered to the
destination—process. The source ID Is the identifier selected by
the source MSG to identify the message transaction. The
destination MSG should include source—ID in all communication
concerning this message transaction. The destination—ID is empty
if it is unknown ; it takes on meaning for interactions requiring
more than a simple request and acknowledgement (see descriptions
of MESS—HOLD , HOL D— OK , MESS — CANCE L and XMIT below) . The
destination—ID is an identifier selected by the destination MSG
for the message transaction. The handling parameter specifies
the special handl ing (if any)  required b~ the receiving MSG in
order to properly deliver the message. Examples of’ spe cial
handling include: include a synchronization marker with message ;
MESS — HOLD not an accept~ ble response (see below) ;  MESS—HOLD
acceptable and this ME~~ is an implicit HOLD — OK (see below) .

Protocol requires the destination MSG to promptly acknowledge
MESS with one of the following three messages.

MESS — OK (source—process , destination—process , source—ID)

This response to MESS indicates that the destination 1430
takes full responsibility for buffering the message data and
subsequent delivery of the data to the destination—process. This
reply implies that destination—process is currently a valid name.

3—3q

_ _ _ _ _



— ~~~~~ ~~~~~~~~ 
-_.~~.y- ~~~~~ 

~~~~~~~~~~~~~~ —‘-—-‘ -.— —-—~~~ —~—
---- -— —- —— • - ——— --—-. -- •~ • ~ —•—----—_-,..-.—-._—,---. ••• .

It does not im ply that t he message dat a has been actuall y
• received by destination—process , nor does it guarantee that

destination—process will ever accept the data.

MESS—REJECT (source—process , destination—process , source—ID ,
• reason)

This response to MESS indicates that the destination MSG
will not accept the request for the transaction identified by

• source—ID. Reason indicates the reason for rejection. Possible
reasons inclu de: no suc h process , no buffer space , too many
messa ges alrea dy queue d for this process , etc. The reason
supplied might be one which attempts to stimulate retransmission

• by the source MSG if the rejection is known to be of a temporary
nature.

• The following four MSG—MSG protocol items provide an
important extension to the basic message transmission discipline
of HESS , M ESS—OK , and MESS—REJ described above. These additional
protocol items are motivated by the need for flexible flow
control within HSG. Their inclusion introduces complexity to the
protocol. However , the flexible flow control they support is
sufficiently Important to justify this complexity.

• MESS—HOLD (source—process , destination—process , source—ID,
destination—ID)

This response to MESS indicates that the destination MSG
will not accept the message data associated with the specified
message transaction but that it will remember that the message
transaction has been requested and at some time in t he future
will ask the initiating HSG to retransmit the message data. The
destination—ID Is the identifier selected by the destination MSG
for the message transaction. Both source—ID and destination—ID
should be included in any subsequent MSG—to—MSG communication
concerning this message transaction.

Protocol requires that the source MSG acknowledge the MESS—HOLD
promptly with one of the following two messages.

3—39

—_ • - • - — — - - •-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -~ •~~~ • • _~~

,• ~~~~~~~~ . r -~~~~~- -- -~
-,

~~~ • • ~~~~~~~~~~~~
—--.-.— -

HOLD—OK (source—process , destination—process , source—ID ,
destination—ID) -

•

This reply to MESS—HOLD indicates that the source MSG agrees
to buffer the message associated with the transaction specified
by source—ID and destination—ID. The destination MSG will
remember the pending message transaction and request transmission
of the message when it is able to accept the message data.

MESS—CANCEL (source—process , destination—process , source—ID,
destination—ID, reason )

This reply to MESS—HOLD Indicates that the source MSG is
unwilling to buffer the specified message. In addition , it may
be used by a source MSG to Indicate that it has ceased buffering
a message which it had previously agreed to buffer.

XMIT (source—process , destination—process , source—ID ,
destination—ID)

This is used by a destination MSG to request a source MSG to
transmit a message previously buffered . The XMIT signals that

• the message will , in all probability , be successfully accepted.
On receiving a XMIT, the source MSG is expected to transmit the
message identified via a MESS message (using the specified
source—ID and destination ID to Identify the transaction in
question). All legal responses to a MESS request are appropriate
for the redelivery .

A destination MSG can send a MESS—REJ rather than an XMIT in
order to abort a message transaction for which the message is
buffered at the source. It might choose to do this if the
destination—process terminates without requesting the message.

We note that since a destination MSG can utilize the
MESS—HOLD option , it may be important to provide processes
managed by MSG means to declare that a MESS request be accepted
or rejected immediately (i.e. not held) by a destination MSG .
This concept Is not currently supported at the process—MSG
interface level; should it become important to do so , the
“i~andling ” parameter of the MESS item will be used to support the
concept at the inter—MSG protocol level.

- —--~~~~~~~~~~~ —• — • —— -—-—-- -  — • •  - ——~~~~~~~~~ •—•.- -- -
~~ - •~~ 

- --- •- —_
~~ 

-_
~~~~~ --rn---— - •

~~~~ ~~~~- •  --



2. MSG—to—MSG Protocol for Interprocess Alarms =

(Sen dAlarm , EnableAlarm )

ALARM (source—process , destination—process , source—ID ,
alarm—code)

This initiates an inter—MSG alarm transaction. It Indicates
• that the source—process has requested that an alarm be

transmitted to the destination—process. A few bytes of’ data
(alarm—code) are to be conveyed to the destination—process along
with the alarm. The ALARM message should bypass the flow control
mechanism applied to normal interprocess message transactions
(MESS) . Source—ID is the identifier selected by the source MSG
to identify this transaction.

Protocol requires that one of the following two messages be sent
promptly to acknowledge the ALARM.

• ALARM—OK (source—process , destination—process , source—ID )
• This response to an ALARM request indicates that the alarm

request has been accepted by the destination IISG. It does not
mean that the alarm has been received by the destination—process ;
it may be the case that the alarm is never actuall y delivere d to
the destination—process.

ALARM—REJECT (source— process, destination—process , source—ID,
reason)

This res ponse to an ALARM re quest indicate s t hat the
destination MSG refuses to accept the alarm. Reason indicates

• the reason for rejection (e.g. incorrect destination process
name , process not accepting alarms , anot her alarm is alrea dy
queued , etc).

3—4 1



• -~~ 
_ -

~~~ _-_  •—~~ 
_

3. MSG—to—MSG Protocol for Direct Access Communication
(Openconn , Closeconn)

Because of’ the symmetric nature of the following three
protocol messages , we change our conventions with respect to
“source ” and “destination” . In the description of these three
items , “source process” alwa ys indicates t he proce ss local to the
sending MSG and “destination process ” always indicates the
process at the receiving MSG. The same convention is used for
the transaction ID fields.

CONNECTION—OPEN (source—process , destination—process ,source—ID,
destination—ID, user—connection—ID , type ,
source—socket)

• This message Indicates that the source process desi!~ s to
establish a direct communication path to the destination—process
of the “type” specified . The source—ID is the identifier
selected by the source MSG to identify the operations concerned
with establishing and breaking the connection(s). Destination—ID
is empty when unknown .

[For implementations which make use of the ARPANET , the
• source— socket specifies the socket(s) at the source MSG host •

which is (are) to be used in establishing the connection which
implements the communication path. Protocol states that the
ARPANET RFC5 required to establish the connection(s) are to be
exchanged immediately after both source and destination MSGs have
agreed to the connection (by exchanging matching CONNECTION—OPEN
messages).]

CONNECTION—CLOSE (source—process , destination—process , source—ID ,
- • destination—ID, reason)

This protocol message indicates that the sending MSG wants
to close the connection identified by source—ID and
destination—ID. Protocol specifies that the receiver should

• close the connection an d acknowledge the request with a matching
-: CONNECTION—CLOSE. CONNECTION —CLOSE may be sent to abort a

connection which has not yet been completely opened . Reason
indicates the reason the connection Is being closed . Possible
reasons Include: process requested close , byte size mismatch ,
type mismatch , and entry timeout.

1—47

-~~ - •w—r - - : • • -

CONNECTION— REJECT (source—process , destination— , rocess ,
dest inat ion—ID , reason)

This item is used to reject a CONNECTION — OPEN or a
CONNECTION—CLOSE request. It does not require an
acknowledgement. Reason indicates the reason for rejection .
Possible reason s include : no such destination ; no such
connect ion. The transaction identifier returned Is the
“ source—ID ” for the request being rejected.

LL~ MSG—t o—MSG Protocol for Obtaining Process Status
(Ge t— sta tus pr imit ive)

An MSG primitive to be used to obtain in formation regarding
the s ta tus of an MSG process is to be specified in the fu tu re .
The “get—status” primitive will not be required in the first MSG
imp lementat ion. The following describes , in general terms , three
protocol items which are intended to support the “get—status ”
pr imi t ive .

SEND—STATUS (source—pr ocess , destination—process , source— ID)

This protocol message requests the status of ’ the
destination—process on behalf of’ the source—process. Source—ID
is the identifier selected by the source MSG for the status
t ransact ion.

Protocol requires that one of’ the following two messages be
F promptly sent in acknowledgement of SEND— STATUS.

STATUS—OK (source—process , destination—process , source—ID,
sta tus—wor ds)

This returns the status information requested by the source
MSG . The information to be included in the status report has not

I yet bGen completely specified. We expect that it will Include
the state of destination—process including pending Sends and
Receives as well as pending alarms.

[Note: It may not be desirable to allow a process to obtain• detailed status information about processes with which it is not
actively communicating. The precise access controls (if any)
that are required for the Get—status primitive will be defined in
the fu t u r e . J

3—4 3

-~~~~~
- •-

~~~
- - 

~~~~~~~~~ 
r.-~r~ - r ~~~~~~~~ -~~~~~~~~~~ —

• -~--.-~• -~--~ • •-~~-.---~~~~ -• -~-- —-•- •--- -- --•

STATUS—REJECT (source—process , destination—process , source—ID ,
reason)

This response is used to indicate the rejection of a
SEND—STATUS probe request. Reason indicates the reason for the
rejection.

5. MIscellaneous MSG— to—MSG Messages.

The following MSG to MSG messages are provided because they
have proven useful In communication system Implementations and
for experimental extensibility .

NOP

• This message is a no—operation. It has no effect and is
• immediately discarded by the receiving MSG. No reply is
• required .

ECHO (data—byte)

This protocol message requests the receiving MSG to echo the
data—byte. It can be used to see if a remote MSG is actively
“unotioning. Protocol specifies that the data—byte o” an ECHO
message be promptly returned to the sending MSG in a matching - I
ECHO—REPLY message.

ECHO—REPLY (data—byte)

Reply to ECHO.

EXPERIMENTAL (comman d , length , data)

• This message provides for experimentation and extensibility
• within the MSG—to—MSG protocol. The command specifies the• function requested ; the length specifies the number of bytes in

the EXPERIMENTAL protocol message ; data Is information relative
to the function requested .

3—44

—--- • •—-~~~~~~~ —— •~~~~~~ - -- • - —~~~~~~~~~-— ~~~--—~~~~ -~~~ -—

• • • ,~-• :~~~~~ • r €~~~r r -

U ,, MSG—t o—M SG Protocol for the ARPANET

~‘.1 Implementation of MSG—to—MSG paths by ARPANET connections.

• Section 3 introduced the notion of “1ISG—to—MSG paths” across
which inter—host MSG messages are sent. A single such MSG—to—MSG
path exists between each pair of host MSGs.

MSG—to—MSG paths are virtual entities in the sense that they
are implemented by ARPANET host/host protocol connections. At
an y given t ime , a given MSG—to—MSG path may be Implemented by
zero , one or more pairs of ARPANET host/host connections. The
standard byte size for ARPANET connection which implement
MSG—to—MSG paths is 8 bits.

The set of ARPANET connections which implement an MSG—to—MSG
path are equivalent In the sense that any legal inter—host MSG
message can be sent over any one of’ the ARPANET connections in
the set.

To send a message to another MSG, an MSG selects one ARPANET
connection from the set that implements the MSG—to—MSG path and

• transmits the message over the connection. If no such ARPANET
I connection exists , the sending MSG must act to establish one.

• 3—4 5

- • • • ~~-•-•- --•—- -~~-~~~~~~~~~~~~~•-----~~~-- - • •-

• -r~~ • •
~~~ 

• •,•. •~~~~~~~~~ . r -

U.2 Establishing the ARPANET connections.

A pair of ARPANET connections which supp orts  an MS G—to—MSG
path is established via an ICP to a “well known ” contact socket
in the normal way. The contact socket for MSG is 27 (decimal)

• 33 (octal).

After a new pair of ’ connections is established by an ICP ,
the pair of MSGs must engage in a synchronization exchange before

• they can use the connections to carry the inter—M SG messages
• defined in Section 3. The purpose of this MSG—MSG

synchronization is to allow the two MSGs to exchange the ir
current “incarnation” num bers an d an y ot her in formation pertinent
to subsequent interaction via the connection pair.

An MSG incarnation number identifies a particular period of
• MEG service. (We frequently use the term “MSG incarnation” to

mean such a period of MSG service.) A period of MSG service ends
and a new period of’ MSG service begins when ~n MSG re—initializesitself. This typically occurs after its host has restarted or
the PISG itself’ has crashed and been rest.~ -‘ted. An MSG is
expected to know its current incarnation number and to change its
incarnation number when a new period of service begins . (An MSG
could do this by storing its incarnation number in a file which

I; is preserved over host and MSG crashes. When a new period of
service begins , the MSG could increment the stored incarnation
number and use the number obtained to identify the new period of
service.)

As noted in Sections 1 and 2, MEG process names include an
incarnation number  component which serves to ident i fy  the
incarnation of’ the MEG that  generated the process name and is
responsible for managing the process. The MSG incarnation number
component of a process name is used to determine whether the

• process named is one that  cur ren t ly  exists or is an obsolete one
which was managed by the MSG dur ing one of’ its previous periods
of service.

The MSG—to — MSG protocol for the synchronizat ion exchange is:

1. The MSG that  Ini t ia ted the ICP ini t iates the
synchronizat ion exchange by using the send connection

• of’ the pair to send the message :

SYN CH (my—incarna t ion , your—incarnat ion , version , da ta)

where :

3—” 

~~~~~ • — - -~~~~•--—----- - -- -~~~~~ •- - • • • -- ~~--~~ -• • - • - ---- ~~~—-----


- - • • •

my—incarnation identifies the cu~’rent incarnation
of the Initiating MSG.

your—incarnation is empty.
version identifies the version of the MSG—to—MSG

protocol to be used on this connection.
data is other synchronizat ion informat ion.

(To be defined in the f u t u r e .)

2. The other MSG responds to the SYNCH by using the send
connection of the pair to send the message :

SYNCH (my— i ncarnation , your—incarnat ion , version , da ta)

where :
my—incarnation identifies the current incarnation

of the responding MSG.
version identifies the version of the MSG—to--MSG

protocol to be used on this connection.
your—incarnation echoes the incarnation number

specified in the initiating MSG ’s SYNCH
message.

data is other synchronization information.

After the synchronization exchange is completed , the connections
may be used to carry any of the inter—MEG messages defined in
Section ~ ~.:-~ Il the connections are closed (see Section 1L .3
below).

An MSG may wish to ascertain that the enti ty at the other
end of’ a new connection pair is indeed another MSG before it
commits any of its host resources to acting upon protocol
messages received over the new connection. Section li.Zi bel ow
defines a procedure which MSGs may use to reliably authenticate

• one another .

• 3—47

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ pIprr — 
~~~~~~~~ 

— ‘
~~

- •
~~~~~

• 
• — .,• • • — -—- ~~~~~~~~~~~~~~~~~~~ “ ,r ’ i  —--

IL .,3 Breaking the ARPANET Connections.

A pair of ARPANET connections to another host represents a
• resource which an MEG may not want to keep open indef in i te ly  in =

the absence of MSG t r a f f i c . If an MEG were to close a connection
pair unilaterally , messages in transit  from a remote MSG could be
lost or garbled.  A protocol mechanism is defined for closing 

•pairs of connections in an orderly manner  that eliminates the 
=

possibility of such lost or garbled messages.

The protocol for  closing a pair of connections is:

1. MSG sends an M SG—to— M SG “CLOSE ” message over the send
connection of’ the pair that  is to be closed and then
closes the send connection of the pair ;

2. Upon receipt of’ an MEG—to — MEG CLOSE message an MSG is
expected to: close the connection which carried the
message ; return a CLOSE message on the send connection
of the pair (when it Is convenient to do so ) ;  and
close the send connection.

The protocol exchange defined above is the mechanism for
= breaking pairs of’ connections. At present , we refrain from

specifying in detail a policy which defines when MSG may use this
mechanism.

An MSG that does not wish to communicate with the ent i ty
that has initiated an ICP should respond to the initiator ‘s SYNCH
message by initiating the CLOSE protocol exchange. An MSG might
choose to do this if’ the synchronization data supplied by the
initiating MSG is incompatible or if the initiating entity can
not properly be authenticated as another MSG .

• ~~~- . • •  •—•——_~~~~~ ~~~~~~~~~~~~~ — -  •-• ~~~--- _••~~~~~~~~~ •
_. • •~~ ~~

-•  — ••— -• --- -



— — — — — - Pr • - -~~~~~~~~~~~~~~~~ —•- • - •  • -

h • U Authent icat ion of’ MSGs .

As noted in Section U .2 above , it may be important for an
MSG to be able to reliably authenticate the entity at the remote
end of’ a pair of’ ARPANET connections as another MEG -before host
resources are committed to requests made by that entity. The
problem here is one of mutual  authent icat ion.  Each ent i ty  must
authenticate the other as an MSG.

[In the absence of’ an authentication procedure , there is no way
for an MSG to determine whether the entity at the remote end of a
connection is another MEG or a bogus process which follows the
MSG—to—t-ISG protocol. Failure to distinguish between an MSG and a
process masquerading as an HSG could result in the inadvertent
disclosure of’ private information or unaccountable use of
expensive resources.]

The use of’ passwords is one approach to MSG authentication.
Only an MEG would know the password and thus be able to properly
identify itself to another MSG. We reject the password mechanism -

•

as unreliable and operationally impractical for the following
reasons:

• 1. Use of a password requires that the password be stored
In the sending program or be accessible to it in some
way thereby increasing the likelihood that the privacy

• of’ the password will be compromised.

2. If’ a password is compromised , it must be changed at
both sending and receiving hozts; this represents a
synchronization problem .

3. Truly secure authentication would probably require
passwords for each pair of’ hosts; this would require
NaN passwords for an N host NSW.

The mechanisms to be used for MEG authentication are based
upon the properties of’ ARPANET host/host communication. First ,
we assume that the ICP is a secure procedure. That is , we assume
that a host can guarantee that MEG is the only entity that has
access to the MSG ICP contact socket and that MEG is the only
entity that has access to the connections resulting from the ICP.
This is the standard assumption made in the ARPANET regarding the
ICP. Thus , the authentici ty of’ the ent i ty  responding to an MEG
ICP as an MEG is based up on the security of the ICP procedure.

The authenticat ion pr oblem that remains is that  of
authenticating the entity that initiates the IC?. This

3—40 

S—-- —



-•

authentication can be achieved in a manner similar to that of the
ICP responder. Just as a single well known ICP contact socket is
defined , a collection of well known “ICP— from” sockets (i.e.,
sockets from which ICPs are initiated) could be defined. (A
collection of ICP—from sockets are required due to the nature of
the ICP which prevents reuse of the ICP—from socket until the
connections resulting from the ICP are discarded.) A host would
be required to limit access to the ICP—from sockets (and the
connections that result from the IC?) to MSG just as it is
required to limit access to the ICP contact socket (and the
connections that result from the ICP). If this were to be done ,
an MEG responding to an IC? could authenticate the initiating
entity as an MSG by checking that the socket from which the IC?
was initiated was one of the well known ICP—from sockets.

Some hosts find it inconvenient to limit access to a
collection of sockets but have no difficulty in controlling
access to a connection once it is established. Therefore , a
variation of the above approach is used for authenticating
initiating MSG5. A single send socket is defined for MSG
authentication; access to the MSG authentication socket Is
limited to MSG. The authentication socket is to be maintained by
MSG in a listening state. In response to an RFC for the
authentication socket , MSG should open the requested connection
(with byte size 32) and send a specification of the sockets
which it is currently using in active MSG—to—MSG connections .
The connection shoul d then be closed an d the aut hentication
socket returned to the Listening state.

An MSG at host A responding to an ICP initiated by a remote
entity at host B can authenticate that entity by the following
simple procedure:

1. The MSG at A notes the remote sockets, Si and S2, used
In the connections that result from the ICP.

2. It opens a connection to the authentication socket at
B, reads the socket specification that the MSG at B
sends , and closes the authentication connection .

3. If the remote sockets , S4 and S2, are included in the
specification then the entity at B is an MSG ;

• otherwise, it is not. (Note that when the MSG at B
initiates an ICP to the MSG at A , it must  remem ber the
sockets it uses so that it can Inclu de them In the
socket specification sent to the MSG at A.)

ii - -



The reliability of this authentication procedure depends
upon the ability of host B to insure that only MSG has access to
the authentication socket and to the sockets named in the
specification sent over the authentication connection. (This is
exactly what host B must do to insure the security of ICPs to its
well known contact sockets.) In addition , it re quires that t he
MSG at A have means to reliably determine sockets in use at the
remote end of connections. Socket identity is part of the
information NCPs must exchange In order to open a host/host
connection. Thus , the socket Information is available to the NC?
at A. The authenticity of the information depends upon the
trustworthiness of’ the NC? at B. We assume NCPs to be secure;
If they were not, there could be no reliably secure communication

j  between ARPANET hosts.

The MSG authentication socket is 29 (decimal) 35 (octal).
The specification of MSG sockets returned over the authentication
connection may be a range of sockets or a list of sockets. A
socket ran ge Is tr ansmitte d as 3 bytes:

byte 1:
0 In dicates ran ge spec
byte 2:
Sa
byte 3:
Sb

All sockets within the range defined by Sa and Sb (including Sa
and Sb) are MSG sockets. A list of N sockets Is transmited as
N+2 bytes:

byte 1:
I indicates list spec
byte 2:
N the number of bytes that follow
byte 3:
Si
byte ~4:S2

byte N+2:
SN

The MEG sockets are SI, S2, ..., SN. 

•---- —- —-- —--• -- — -•• —• — —-— -•--- -- a—



U.5 Error Control for MSG—to—MSG Paths

ARPANET host to host communication is reasonably reliable.
However , communication failures can occur . For example ,

• host/host messages are lost occasionally. A lost host /host
message may manifest itself’ at the MSG—to—MSG path level as a
“hung ” connection (if the message lost was a host/host allocate)
or as a totally or partially lost MSG—to—MEG message (if’ the
message lost was a host/host data message) .

In addition , communication between a pair of hosts can be
interrupted temporarily. The interruption may be the result of a
transient network failure (e.g., the source or destination IMP
crashes and is restar ted)  or a transient host service

• interruption (e.g., TENEX hosts occasionally experience BUGCHK
interruptions and resumptions). At the IISG—to—MEG level this may
manifest itself’ as a spontaneously closed host/host connection.
If the connection was being used at the time , this could result
in a lost or garbled MSG—to—MSG message.

Mechanisms to insure reliable communication in an
environment where messages can be lost are reasonably well
understood. These mechanisms typically require positive
acknowledgement of’ all messages and the use of a time out and

-

• 

retransmission scheme . This generally requires that the
• communicating entities (in this case pairs of MSGs) use unique

• identifiers or sequence numbers to identify messages in transit
and employ techniques for detecting duplicate messages (the
message may have made it but its acknowledgement may have been
lost). Note that these message identifiers serve to identify

• i ndividual  inter—M EG messages and are therefore different from
• the transaction identifiers used in the inter—MEG protocol to

identify transactions that involve a number of inter—MSG
messages.

The question here is:

Should such a reliable transmission mechanism be used
for error control on the MSG—to—MSG paths?

Our position with regard to error control for MSG—to—MSG paths
• is:

1. The most effective error control mechanism for the
MEG—to—MEG application is that described by Cerf and
Kahn (i.e., that used in the InterNet or TCP protocol).

1— c2 
-

• - _•___ •_~_w__-__•-•-•- • • --•- •—•-=-—--—- - —
~~~~~~~


r
—-

~~

— • —
~
-—- - • • • - • • • • • --- —-

•• • • •~~~~~.

2. The overhead incurred by using a TCP—like error control
mechanism would not significantly degrade performance
for the NSW MSG application.

3. Use of a TCP—like mechanism would approximately double
the time and effort required to implement inter—host
MSG.

ft . The TCP mechanism can be made orthogonal to the
MSG—to— M SG protocol and to a pro perly designed MSG
implementation. That is, the information required to
enable TCP—like error control would envelope inter—IISG

= messages. We estimate that 5 or 6 additional 8 bit
bytes are required for each inter—MSG message to
support TCP—like error control. Furthermore , we
believe that the processing required to perform the
error control function can occur in series with the
“higher level” processing required to implement the MEG
protocol.

It is not clear , at present , whet her error con trol stron ger
than that normally provided by ARPANET host to host communication
will be required by the NSW application. Therefore , the initial
inter—host MSG specification does not include TCP—like error
control for the MSG—to—MSG paths nor does the transmission format
for inter—MSG messages include fields for the information
required to support TCP—like error control. However , the MSG
implementations should be done with the expectation that it may
be necessary to add TCP—like error control later , should
experience Indicate that the lack of’ error control for the
MSG—to—MSG paths is resulting in unacceptable performance.

3—5~

___________________________• ——-—
i

-—-~~~~~- ~~~ -- •rn --~~~~~~~~~~~ --• -•• - - • — -~~~~
• - • - • • •~ ~~-

_
~~~~~

. 
~~~~~~~~~~~~~~~~ 

- - , • , • .- ~~~~~~~~~~~~~~~~~~
-- — —-rw ,q’Pr • ••-,~~•~~~~~~~~ • - • • ---~~.-.-~~~~~~~~~~~~~ •~~~~~-;-

5. MSG—to—MSG Transmission Formats for the ARPANET

ThIs sect ion specifies in detail the formats for the
MSG—to—MSG protocol commands as sent over ARPANET connections.
Only the syntax of the commands is specified here; for a
discussion of the semantics of the MSG—to-.MSG protocol see
section 3 of’ this document.

I

3—54

~~~-~~~~~~~~~ a-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •



-‘--—,
~~~~~~ --—--- - ~-

-
~~~~~~ ~~

—•-------- ‘- —
~ ~~~~~

- -•-
~~

---
~~ 
—.-—, ---- 

~
_-_ -_ 

~-_ ---

• —- • -~~-•-, a • • -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • • • • — — — • — — • -——————- — —

5.1 General format for MSG—to—MSG messages:

An MSG—to—MSG message is a sequence of 8 bit bytes. The
first two bytes contain the length of’ the message in bytes; the
third byte is a command code that identifies an MSG—to—MSG
protocol item ; and the remaining bytes contain information
relative to the command .

* length • comman d ~ data *

2 1 l e n g t h — 3

3—55

- . • - -- - • -  --~~~~~ --- • •



5.2. Formats for Message Components

1. Process names:

As described in Section 2, a process name has four
components which specify a host , a host incarnation number , a
generic process class , and a process instance number. The
representation for process names at the MEG—to—process interface
is:

* host * host * process * coun t * string *
* * incarnation 0 * instance S * * *

2 2 2 1 count

Host is a 16 bit host address . (Whether the host address is an
ARPANET host address or an NEW host address whose correspondence
to an ARPANET host address is defined by a table MSG maintains is
to be decided shortly.) If MEG is modified to allow processes
with no generic names , the null generic name will be represented
by a zero length string.

For a generically addressed message the destination process
name is only partially specified. Either only the generic
process class is specified , or only the host and generic class
are specified In a generically addressed message. The other
components are lef’t unspecified. “Unspecified” is a special
value used in generically addressed messages for host , host
incarnation 0, and process instance S. Unspecified is
represented by two zero bytes.

When a process name appears as the parameter of an
MSG—to—MEG message , the host component of the name need not be
represented explicitly since it is implicit from the hosts of’ the
sendIng and receiving MEGs. There are two representations for
process names at the KSG—to—MSG level: normal and compact . The

- only difference in the two is the representation of the generic
process class. In the normal represenation the generic class is
represented by a string whereas in the compact form it is

• represented by a one byte generic class code. MSG
• implementations must be able to deal with both representations

for process names. The compact representation is defined to
allow for greater transmission e f f i c iency .  Use of ’ the generic

• codes is internal to MSG in the sense that the codes never appear
in a process name given by MSG to an MEG process or accepted by
MEG from an MSG process. Generic class codes for the NSW will be
defined in the near future.

__________________



- _—_-—-;--_ _,__~,• -•

— — —- -— —•. —— — 
—

Normal Format : count < 128 (5 + count bytes)

* host * process * count * strin g *
* incarnation I * instance I * * *

• 2 2 1 count

Compact Format: Generic code >= 128 (5 bytes)

* host * process * gener ic *
* incarnation I * instance ~ * code a

2 2 1

Generic code 128 + n (n < 128)
where n = integer which specifies a generic class - •

n = 0 — null (i.e., process has no generic name).

2. Host Incarnation 5:

• 16 bit (2 byte) number..
0 unspecified (used for generically addressed messages)
1—255 reserved for special use

3. MSG transaction Identifiers (source—id , destination—id)

16 bit (2 byte) number.

3—57



• —-~~ •---- -----~--- -- -•--~~~
-r - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-- •
~~~~~~~~~~~ ‘~~~~‘~~ 

• • •

~$. Alarm code

a acode a

2

46 bit (2 byte) number.

5. Failure/Rejection codes

* reason ~

2

16 bIt (2 byte) number . -

See descriptions of’ individual messages for discussion of
specific codes. Values have not yet been assigned , nor are
those codes given necessarily exhaustive.

y 3—58

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~~~
•
~~~~~~~

-— — -
~~

• • • ——--- _______

— --- —~~~ -•-- •~~~~- • ----~~~~~ •- -—--~~

~--- -- •~~~~~~~ •
•• ---

~
--•-

~

~~ —~—~~~--- ~~~~~~-~~~~--— __ • _ • _ _ ~~~~~~_ _~~~~__,_- -~~~~

5.3 Identifying Transactions.

In the format specifications that follow all inter—MSG
messages concerned with inter—process transactions carry the
source and destination process names as well as the MEG source
and destination transaction identifiers. The redundancy provided

• by t he process names is use ful to an MSG in detecting and
recovering from protocol errors or violations resulting from
malfunction of a remote MEG. With the exception of MESS
messages , all protocol messages will fit into a single ARPA NET
packet (assuming the compact representation of process names or
generic names of’ a few characters); hence , the cost assoc iated
with the redundancy is not great.

-t

3—59

LA • • •~~~~~~~~~~~~~~~~~~
_ . • - ~ -- - •~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -- • •

~~~~~ ~~•- - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



5. ft M SG— t o—M SG protocol messages

1. tIESS (src—proc , dat—proc , handling, src—id , dat—id , message)

* length * HESS * arc—id * dst— id * First byte * Handling

2 1 2 2 1 1

* src—proc * dst—proc * message *

5+j 5+k H - •

length = 19+j+k+M
j  I chars in source generic name / 0 if’ compact format.

W k S chars In destination generic name / 0 if’ compact
format.

MESS = 8 (10 octal)
Handling = bit flags (numbered 0—7 from left to right )

bit 0 — generically addressed message
bit 1 — sequenced message
bit 2 — synchronization mark on message
bit 3 — immediate decision on delivery (prohibit HOLD)

First byte — Position of first byte of’ the message (zero is
the position of the first byte of the length field of’ the
MSG—to—MSG message)

2. HESS—OK (src—proc , dat—proc , arc—id)

* length * MESS—OK * arc—Id * arc—proc * dat—proc a

2 1 2 5+j 5-i-k

length = 15+j+k
MESS—OK 9 (11 octal)

3~6fl

- •— —



~~ - --- r—~• •~~~~~ -.- -- • • - • • r-r.---- -~~ —_ -__ ~. _______

3. MESS-.REJ(src—prOc , dat—proc , arc—id , reason )

* length * MESS—REJ * arc—Id * reason * arc—proc * dat—proc *

• 2 1 2 2 5+j 5-i-k

• length = 17+j+k
MESS—REJ = 10 (12 octal)
reason = To be specified , but including:

dat—proc unknown
no buffer space
message queue for process full

ft . MESS—HOLD(src—proc , dat—proc , arc—id , dat—id)

* length a MESS—HOLD * are—id * dat—id a arc— proc * dat—proc a

2 3 2 2 5+j 5+k

length = 17+j+k
MESS—HOLD = -1-1 (13 octal)

5. HOLD—OIC(arc—proc, dat—proc , arc—id , dst—id)

* length a HOLD—OK * src—id * dat—id * arc— proc a dat—proc a

2 1 2 2 5+j 5+k

length = •17+j+k
• HOLD—OK = 12 (4 1L octal)

3—61

-•---• •~~ • •- -• ••— -• . •—- - •--—-- ~~~~~~~~~~—•- •- — • — •— • - - •  - ~~~~~~ - ••- • - • - • •



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  —~-• n,— —

6. MESS—CANCEL(src—proc , dst—proc , arc—id , dat—Id , rea son)

* length a MESS—CANCEL * arc—id * dat—id * re ason 

2 -1 2 2 2

* arc—proc a dat—proc a

5+j 5+k

length = -19+j+k
MESS—CANCEL = 13 (15 octal)
reason = To be specified , but including:

arc—proc unknown
arc—id unknown
message rescinded
arc—proc terminated
no buffer space

7. XMIT(arc—proc , dst—proc , arc—id , dat—id)

* length * XMI T * arc—id * dat—id * arc—proc * dat—proc a 

2 1 2 2 5+j 5-i-k

length 17-i-j.i-k
XM I T 1~ (16 octal)

8. ALAR M(src—proc , dat—proc , arc—id , acode)

* length * ALARM * arc—id * acode a arc— proc * dat—proc *

2 1 2 2 5+j 5+k

length = 17+j+k• ALARM = 16 (20 octal)

~—62

• • • • ~~• ~~• •.•. . —• - . ,~nrr.&±t.t!kt~p-a -  —~fr _~*~••—



I AU AO3’4 153 MASSACHUSETTS COMPUTER ASSOCIATES INC WAKEFIELD 
— 

F/G 9/2I NATIONAL SOFTWARE WORKS. (U)

F SEP 76 R MILLSTEIN
UNCLASS IFIED CADD— 7603— O’31l RAO C— TR — 7 6— 2 76—V O L .—1 NL

2 3

U

I p
I I



I O ~~~L~ L
_ _ _  

LLI I~22

Ii

~III~111111.25 IIIII~ IIHIk6



9. ALARM — OK(src—proc , dst—proc , src—id)

* length * ALARM—OK • src—id * arc— proc * dat—proc *

2 1 2 5+j 5i.k

length = 15+j+k
ALARM—OK 17 (21 octal)

10. ALARM—REJ(src—proc , dat—proc , arc—id , reason)

* length * ALARM—REJ * arc—id * reason * arc— proc * dat—proc *

2 1 2 2 5+j 5+k

length : 17+j+k
ALARM—REJ = 18 (22 octal)
reason = To be specified , but including :

dat—proc unknown
dat—proc not accepting alarms
alarm already queued for dat—proc

11. CONNECTION—OPEN (src—proc , dat—proc , arc—id , dat—id , oonn— id ,
type , socket)

* length * CONN—OPEN * arc—id * dat—id * oonn—id * type

2 1 2 2 2 2

* socket * arc—proc * dat—proc *

11 5+j 5+k

length 25+j+k
COHN—OPEN = 20 (2k’ octal)
type : 0 — Teletype (TELNET)

bit 0 + size — binary send/receive pair + size
bit 1 + size — binary send + size

3—63

__a

~

_

~

4

~ 

—~~——~~~———————.— ~~~~~~~~~~~~~~~~~~~~~~~~ — —  -



-

~~~~~~

—

~~~~

-

~~~~~~~~

- .-..—,“ -

~~~

.-, - —— ..—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

bit 2 + size — binary receive + size
socket: 32 bit socket number = H

Teletype N = odd send socket
N+1 = even = receive socket

Binary send/receive pair (same as Teletype)

12. CONNECTION—CLOSE(src—proc , dat—proc , arc—id , dat—id , reason) •

* length * COHN—CLOSE * arc—id * dat—id * reason * arc— proc

2 1 2 2 2 5+3

* dat—proc *

5+k 4

length = 19+j+k
CONN—CLOSE 21 (25 octal)
reason To be specified , but including:

normal close
arc—proc terminated
timeout of open
byte—size mismatch
type mismatch

13. CONNECTION—REJECT(arc—proc , dat—proc , arc—id , dat—id , reason)

* length * CONN—REJ * arc—id * dat—id * reason * arc—proc

2 1 2 2 2 5+3

* dat— pr oc *

5+k

length = 19+j+k

a
—

• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
. .

~~~~~~
. 

~~~
_,

CONN—REJ = 22 (26 octal)
reason = To be specified , but including:

dat—proc unknown
dat—id unknown
byte—size Invalid
type invalid
timeout

4~ . NOP

* length • HOP *

2 1

length = 3
HOP = 0 (0 octal)

15. ECHO(data byte)

* length * ECHO * data byte *

2 1

leng t h = l i
ECHO 1 (1 octal)

16. ECHO—REPLY(data byte)

* length * ECHO —REPLY * data byte *

2 1

length =~~ECHO—REPLY = 2 (2 octal)

3—es

!• .—.- --— - ~~~ ______

17. EXPERIMENTAL(command , length , data)

* length * EXP * command * data *

2 1 1 N

length = 1*,N
EXP = 21* (30 octal)

18. SEND—STATUS(aro—proc , det—proc , arc—id)

* length * SEND—STATUS * arc—id * arc— proc * dat—proc *

2 4 2 5+3 5+k

length 15+j+k
SEND—STATUS = 1* (1* octal)

19. STATUS—OK (aro—proc , dat—proc , arc—id , status bytes)

* length * STATUS—OK * arc.id * arc— proc I dat—proc

2 * 2 5+3 5+k

* status bytes *

N

length = 15+J+k+N
STATUS—OK = 5 (5 octal)
status bytes = (to be defined)

20. STATUS—REJ(arc—proc , dat—proc , arc—id , rea son)

* length * STATU S—REJ * arc—id * reason * arc—proc * dat—proc *

2 1 2 2 5+3 5+k

length •17+j+k

3—~45

I

________ - - • ~~ ~~~~~~- - -~~- ---.-;‘.-~- •- • -~~~ - - -

STATUS—REJ = 6 (6 octa l)
reason To be specified , bu t inc lud ing :

dat—proce ss unknown

21. CLO SE ()

* length * CLOSE *
2 1 -

length = 3
CLOSE 7 (7 oc ta l)

22. SYNCH(sen der ’s incarnation I , recej ver a incarnation # ,
version # , data)

* length * s~uca * sender S * receiver S * version 5 * data

2 1 2 2 2 N

length = 9+N
SYNCH = 3 (3 octal)
aender/receiver # s = Host Incarnation # s = 2 bytes
version 5 = version of MSG protocol to be used by the sending

MSG = 2 bytes
data additional synchronization information (to be defined)

23. PTCL—ERR(error code , bad message)

* length * P TCL — ER R * error code * bad message *

2 1 2 N

length = 5+N
PTCL— ERR = 25 (3 1 octal)
error code : To be specified , but including:

command not implemented
command unknown
command syntax error

bad itessage s The bad MSG—MSG message.

L 3—67

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- • - - • .—

5.5 Summary of Commands

Code Command Length
Dec Oct

O 0 NOP 3
-1 1 ECHO LI

2 2 ECHO—RE PLY Li

3 3 SYNCH 9+N
1* 1* SEND—S TATUS 15+J+k
5 5 STATU S—OK - 15+j +k+N
6 6 STATUS — REJ 17+j +k
7 7 CLOSE 3
8 10 MESS 19+j +k
9 11 HESS —OK 15+j +k

10 12 MESS — REJ 17+j +k
31 13 MESS —HOLD 17+j +k
12 1LI HO LD— OK 17+j +k
33 15 MESS—CANCEL 49+3 .-k
31* 16 XMIT 17+j+k
15 17 reserved
16 20 ALARM 17+j+k
37 21 ALARM—OK 15+j+k
18 22 ALARt I—REJ 17+j+k —

19 23 reserved
20 21* CON N—OP EN 25+3 .-k
21 25 COHN —CLOSE 39+j +k• 22 26 CO N N — REJ 19+j +k

• 23 27 reserved
2~i 30 EXP Zi +N
25 31 PTCL —ERR 5+N

3 = Extra  bytes needed If arc—pro c name Is not in compact format .
k = Extra bytes needed if dat—pr oc name Ia not in compact format .
N = Number of bytes in data or message contained in command .

I

3—68



____________________________

Chapter  II : File Package Design Specification

Section 1: Overview

The primary funct ion of the NS W File Package (F?) is the
creation of a copy of an NS W file which will be suitable as input
‘or a tool. That is, the primary concern Ia to make the output
of one tool (e.g., an editor) acceptable as the input to another
(e.g., a language processor). Secondary functions Include the
“importing” of files external to NSW Into its ‘Ile system , and
associated peripheral operations: creating listings , reading
and writing tapes and cards , etc.

A File Package resides on every NSW Tool Bearing Host.
Every such host aldo includes some NSW—c ontrolled file apace ; that
is , files to which only the NSW Works Manager (WM ) has access. The
Vt-f contains a File Catalog of NSW files ; the NSW f i le system consists
of all files which have entries in the WM file catalog. At one
level , an NSW file can be viewed as an NSW name and a list of’ names of
physical copies. The NSW name is (generally ) assigned by the NSW
user and is syntactically uniform for the entire HSW file system.
Th e list 0” physical copies includes the complete network address
of each.

The multiple physical copies are logically indistinguish-
able, and the choice of the one actually selected by WM/FP is of no
concern to the NSW user. This Is clearly the case when physical
copies reside on several machines running the same operating system
(a “host family”), but what of two “copies” on different host types?
We use only the following general notion: At the logical level ,
the physical copies represent Identical sequences of lines (or  records).

The WM grants access to given files by given users ; once
granted it is the job of’ the F? to make a copy suitable for the
desired accesa. Note that unless a local copy is available two
PP ’s are involved in a copy operation: “receiver ” PP (on the host
desiring the copy) and “donor” PP (On a host containing an original).
The case in which the two PP’s reside on hosts in the same family
is used to good advantage (see below). Of the two FP’s, however ,
the receiving FP drives the copy procedure : it has the task of
creating a copy with equivalent logical structure.

The receiving FP is given a list of physical copies (originals)
and the right to select among them. Three situations may arise:

1) Local copy . There is an original on receiver ’s host.

2) Family copy. There is an original on a foreign host
supporting the local file formats .

3) Forced translation. There is an original on a host
which does not support local file formats.

4—1



____________________________________________________

Local Copy

The most efficient way to make the copy is by using an
original on the local host , for obvious reasons. The local copy
procedure can be implemented entirely within the local operating
system , but serves to identify procedures common to other modes of
copying. Only one F? is involved in a local copy operation .

Family Copy

The analogy with archival of files on magnetic tape is
useful. Suppose the host operating system supports archival. Such
a process encodes an arbitrary file in serial fashion so that the
original file may later be reproduced in programmatically india—
t inguishable fashion. We characterize the save portion of the
operation by the following steps:

A l. Locate the contents of a named file.

A2. Read its physical structure characteristics.

A3. Record its physical structure.

AlL Until end—o f—file

AI4R. Read a “block” (machine dependent unit) of
the file and serially encode it.

A1*W . Write the block on tape.
— 

AS. Close the file.

A similar procedure is used to reat~ re the file.

The “save” procedure is exactly what the donor ’s PP needs
to send a family copy , while the “restore” procedure is used by
receiver; a one—way MSG direct connection assumes the role of the
magnetic tape. Thus , two hosts in the same family can exchange
files with as much fidelity as one finds with save/restore. Host
families will use a private (i.e., determined by a consensus of

• impl.ementors in that family) dump/restore encoding for file transfers
among members.

4—2



Forced Translation

When no family copy exists , the receiving F? must attempt to
reproduce the logical structure of a foreign file in the local file
encodement. The receiver has the right to select the “donor”, or
host containing the original. Once selected , donor ’s file package
will be requested to send an encodement of the file, which receiver
must then decode and store.

We choose a single “intermediate language” (IL) to be used
when a donor must encode the file and its logical structure for
translation. There are several properties which such an IL should have.

f 1) It should preserve a maximum of the information
contained in the logical structure.

2) It should be host independent.

3) It should be compact — indeed , files must be compressed
for eff ic ient  network transmission.

U) It should be reasonably easy to encode and decode.

A chapter of this document is devoted to IL spec’ - - 
- ~tion.It is our feeling that no physical file encodement adequa~eLy satisfies

the above objectives; therefore, we propose an Intermediate language
which is nobody ’s encodement. Its compression techniques apply

- 
- equally well to binary files and to files of text , and even to

the private intra—family save/restore encodement.

A Note on Devices

The preliminary design of the File Package does not include
a detailed presentation on the handling of non—sharable devices.
It was a necessary omission , and the subject will be covered fully
in a subsequent document. The main topics omitted were:

• How devices are assigned;

. How devices are controlled ;

How the device handler will communicate with the computer
operator;

What the standard device names are.

Two “hooks” are built into the File Package to allow
future expansion in this area:

I
4—3 

—~ -



— - —~
---•- 

The physical  copy name (see chapter 2 , section II)
allows host— dependent strings for the f i le  name
and location/physical structure . A file residing on a
non—sharable device can be named and located using these
physical copy name elements.

- The intermediate language for translation (see chapter
5) has constructs which would allow files on a tape volume
to be moved as a logically related group. (See subsec-
tion 11.5 in paricular.)

Section 2: File Package Functions

I. Introduction

This chapter deals with functions performed by the File
• Package , together with their argumenta and results. The functions

which can be called externally (i.e., by the Works Manager or another
FP) are: copy a file, delete a file, and analyze a file. (Here
“file” refers to a physical copy of a file, rather than an NSW
file , which is a set of physical copies.)

In the next section we introduce the syntax of the physical
copy name , which is the argument to any FP function . In the third
section we discuss the delete and analyze functions , leaving the
copy function to the next cha7ter , due to its complex communication
problems .

II. The Physical Copy Name

The physical copy name is the main piece of information
exchanged in messages between the WM and the FP, and between two
FP’s. A physical copy name is a list with the following components:

ELEMENT TYPE MEANING

HOST string Name of host where file resides.

DIR string Directory in which file resides.

PSWD string Password needed to access the directory.

NAME string Host—dependent name (see below).

4—4

_ _  
--~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -

PH YS s tring Host—de pendent loeation/physical
s t ructure in formation

LS character Logical s t ructure.  One of :

A — Text file
- i 

- 
F — Formatted text: same as A ,

except that overprint and
line—skips may be present

- B — Binary: sequences of n—bit
bytes , with all 2”n bit
patterns allowed .

(Note: A “text file” Is a file which contains only graphic
characters. No format ef’fectora may be present (i.e. linefeeds ,
horizontal and vertical tabs , etc.).)

HOST, DIR , PSWD , and LS are all optional (i.e., each element
may be null). If HOST Is null , the local host is assumed . If LS

• is null , F is assumed . No assumptions are made for DIR or PSWD:
as will be shown , their meaning is host—dependent , therefore the
defaults will be host—dependent also.

The NAME will be a string containing the file’s name ; this
is necessarily In host—dependent format. PHYS contains physical
structure and/or location information , again in host—dependent
format. Since these formats will vary between families, the WM
will make no attempt to interpret these strings. Furthermore ,
an F? on a host not in the same family as the host on which a
given copy resides does not interpret the string. The F?, if it
chooses to copy that particular physical file , provides the name to
an F? on that file a host. That FP, upon receiving the name of 

-

•

the file , can then mak c use of the host—dependent strings to locate
the file in question. (More precisely, it knows how to map the
“canonical” name which It receives to a name which makes sense to
the host ’s file system.) In other words , if a physical file resides
on a host in host family H, the host—dependent string “or that file
will contain in ”ormation which need only be intelligible to any
other H—host. Therefore , for each family H in the NSW system ,
we leave the decision as to the information contained in N A M E
and PHYS and the mapping from the H—family naming structure to the
“canonical” naming structure to the H—implementors .

To show that different families ’ naning structures may be
mapped onto our canonical name form , we give examples for the TENEX
and OS/360 famlliea. (These examples are not to be construed as being
in any way final or required mappings , merely possible mappings.)

4—~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~ —-~~~~~—~~~~ j~~
_
~~ —— --

TENEX : Pile is t-ITAO:<BAB BAGE>DIFF.ANALYZER; 12 with password
‘CHAS ’ and is a text file residing on BBN—TENEXB .

HOST = ‘BBNB
DIR = ‘<BABBAGE)’
PSWD = ‘CHAS’
NAME = ‘DIFF.ANALYZER ;12’
PHY S = ‘MTAO: ’
LS = ‘F ’ or null

03/360: File is NSW.PDS.PROGRAMS (FILEPKG). It is uncatalogued ,
but resides on a disk with aerial number NSWDSK. It
is a binary file at UCLA—CCN .

HOST = ‘CCII ’
DIR = n ull
PSWD : null
NAME ‘NSW.PDS.PROGRAMS(FILEPKG)’
PHYS = ‘IJNIT:3330,VOL SER:NSWDSK ’
LS ‘B ’

Suppose the above file were catalogued . Then a
variant of the above would be:

DIR ‘NSW.PDS.PROGRAMS ’
NAME (FILEPKG)
PHYS = null

III. The Functions Delete and Analyze

Both functions described below are presented in the form:

-• FUNCTION (argument— t ,... ,argument—n)
—> (result—l ,...,result—m).

The result is a list of at least three elements , of which the first
three are :

A: Result code (INTEGER)
B: Error number (INTEGER)
C: Error message (STRING or null)

4—6

— — ~~~~~~~ . -~--~~~~—~ • - - _ _• _ - • - _-—-•-• _
-—

_ — —-_-~~-• . -- —--—--- rn •_--_ - ~~~~~~~~~~~~~~~~~~~~~ ~
_ -•~ -~~~~ --• -~~~~~

On success A:B:0 and C is empty. Otherwise , B and C detail
the actual error and A describes the recovery type as follows:

0 => success
-1 => file not yet available (try again later)
2 => user error
3 => internal FP error
U :> net trouble (unable to establish/maintain a direct

connection)
5 => remote FP error

The cases A= h and A~5 can ar ise during a file copy operation.The values of B and C are currently undefined in the case of errors .
They will be defined in a subsequent document.

1. DELETE (physical copy name)
— > (A ,B,C)

The name is removed from the host ’s file catalog and the
file is deleted.

2. ANALYZE (physical copy name , structure—type , content—type)
—> (A,B,C,result—liat)

Before a file copy operation takes place , the FP which will
send the physical file may be requested by the receiver of’ the file
to provide information about the physical structure of the existing
file. Invoking the ANALYZE function will provide this structural
Information . This will aid machines which require pre—allocation
of file space , and will help insure that the file created as a
result of the copy operation will be physically acceptable to the
tool which requested the file.

We conceptually divide the world into record—oriented machines
and paper tape—oriented machines. Record machines see files as
sequences of logically grouped bytes (these “groups” being called
records). Paper tape machines see files as streams of bytes with no
logical grouping structure overlaid on the bytes. (The name “paper
tape” is not meant to refer literally to that specific device alone.)

The arguments are both integers:

a) Structure type :

o :> Record — analyze the file as a sequence of
recor ds

1 => Paper tape — analyze the file as a stream of’
bytes

2 :) Either — the F? which analyzes the file may
analyze it as either record or paper
tape , whichever is more congenial.

4—7

b) Content type : -

0 => Text — analyze the f i le as a text f i le

1 s) Binary — analyze the file as a binary file

The “result—list” is a list of’ three lists COMMO N , R ECORD ,
and PT, which contain (respectively) information common to both a
record and paper—tape analysis , information pertaining only to a
record analysis , and informat ion per ta in ing only to a paper —tape
analysis.

LIST ELEME NT VALUE/MEANI N G

COMMON 1 0: Argument content—type was text
1: Argument content—type was binary

2 0: PC—name component LS indicated - •

text (A or F)
1: PC—name component LS indicated

binary (B)
3 Byte size , in bits
Ii Word size , in bytes
5 Longest line , in bytes (text files

only)
6 0: Sequenced file (text only)

1: Unsequenced file (text only)
2: Can ’t tell (text only)

7 Number of pages (empty, if paging not
used)

8 Page sIze , in bytes (empty , if pagin g
not used)

RECORD 1 Logical (or maximum) record size
2 Records per block
3 N umber of ’ records

0: Fixed—length records
• 1: Variable—length records

PT I Total number of bytes

Notes:

1. The argument content—type determines whether a text
or binary analysis is done , even though content—typ e
may differ from that indicated by the physical copy
name ’s LS value.

2. Page (in COMMON elements 7 and 8) Indicates size of
physical pages (in the sense of virtual memory).

•1 3. COMMON is always a non—empty list. RECORD is empty
If a paper—tape analysis was specified (i.e.,
structure—type 1), and vice versa .

4—R

— ,— -‘— - -~ ----~ — -—-.-—- — • - __ r,-_
~~~~~,~~~~~~~ _ —

Section 3: File Package Communication

I. Introduction

In this chapter we will outline the patterns of ’ communication
between the Works Manager (WM) and a File Package (FP), and between
t wo FP ’s. We only discuss communication in the case where the WM
requests creation of a logical copy of an exist ing f i le .

We implici t ly assume that any given instance of a File
Package is capable of handl ing  one file request at  a t ime , where
a file request would be a message from the WM or another File
Package instance requesting that a fi le be copied , del eted , or

- • analyzed . At this stage of the design we do not allow file requests
to be queued by a given File Package instance .

File motion fal ls  into three dis t inct  cases:

1) Importation : a file from outside the NSW file
system is moved into the system as a new NSW file ;

2) Exportation : a f i le in the NSW “ile system is
moved outside the system , i.e.,  to a host ’s local
operating system;

3) Copy : a file is moved within the NSW file system.

Importation will almost always be a local operation . Every —

NSW host will have a File Package (which directs the importation) and
NSW—controlled file space into which to copy the file to be imported .
Thus the ~Jt-1 will relay the importation request to an FR on the samehost as the file to be imported , and the resulting copy can be done
locally , the only exception arising when all NSW file space on the host
is full. In that case , another host must be chosen to accept the copy.
It is more likely that export and copy will involve interaction between
PP ’s. (N. B. File motion can only occur between NSW hosts , since NSW

• will not implement file transfer  protocols other than those specified
• by this document.)

~1

4_ fl

• 
•



• -- - • - - - - - 
~~ r-~~-- ~~~~~~~‘ . - - -—

II. Works Manager — File Package Interaction

When the WM receives a request for a file t ransfer , the
requestor can be a Foreman (on behalf of’ a tool, in the case of a
copy) or a user at a terminal (in the other cases) . The WM invokes
the File Package COPY function , which takes five arguments:

1) SOURCE—LIST : a list of names of physical copies
from which the FR can choose one to copy. In the
import case , there is only one source file to choose• from; in the other cases there may be a set of
names of physical files.

2) PHYS—STRUCT: a specification of the desired physical
structure of the copy to be made (e.g., record length ,

• blocking factor, etc.).

3) COPY—NAME: the name to be entered in the host ’s
— local file catalog. This is specified in the export

case , and may be null in the other cases , signifying
that the F? should generate a unique name.

1~) HOST—PREF: This is a pair of lists, originated in
the copy case by the tool/Foreman, by which the

• tool can specify its likes and dislikes concerning
where the copy is to come from . The elements of the
first list specify preferred host families (i.e., the FP
would try to select a physical file residing on one of
these families); the second list specifies unacceptable
families. One or both lists may be empty, meaning
“no par ticular pre”erence ” (for first list null) and
“no unacce pta ble families ” (for second list null). Not
all host families need be specified , i.e. ,  the union of
the lists need not be the universe of NS W host families .

5) WORKSPACE: This specifies a file space (apart from
NSW—controlled file 3pace) in which the receiver FP
is to create a working copy (i.e., a physical copy
created for the exclusive use of a tool). The Foreman
creates the workspace and informs the Works Manager of
its name . WORKSPACE is null if no working copy is
to be made.

Note that the name of the NSW—oontrolled file space into which
the new copy will go is not a COPY argument. The receiver
FP will select a file space , thus relieving the Wt-I of the
burden of ’ keeping track of the status of the file space(s)
(there may be more than one). This suggests the existence
on eac h host of a “File Package Data Base” , a short file
which contains the names of all NSW file spaces on that host.
This approach allows for easy addition of more NSW file spaces.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


F—
-

~~~~~~

- -b—- - ~~~~~~~~~~~~ 
•_•__• _ — •

~~~
-,

~ -—Th•_ __ ._~~~~~~_____ _ ~~~~~~~~~~~~~~

The COPY function is invoked via a Sendgenericmessage
add ressed to any F? on the same TBH as

. the tool , in the copy case;

. the source to be imported , in the import case;

• the destination file, in the export case.

After invoking the COPY function, both the Works Manager and
• the receiver PP execute Acceptalarse and Enablealar.s primitives.

The File Package must recognize at least two WM alarm codes (to be
specified). One alarm represents an NSW user’s typing X to
abort the processing. The second alarm is analogous to ~Ton TENEX : the File Package must print a (necessarily host—dependent)
message detailing the status of the transfer (e.g., number of bytes
or records trans ferred , name of donor host, etc.).

The WM then executes a Receivespeoificmessage to await the
FR ’s response. This response (the CONFIRM message in figure 1 below)
contains:

-1) A physical copy name which is the name of the new
physical copy (if the FP generated a nsa.) or is null
(otherwise).

2) A physical copy name which is the name of the working
copy (if the WORKSPACE argument was non—null) or is
null (if the WORKSPACE argument was null).

At the successful completion of the file copy operation , the
value of WORKSPACE is checked . If it is null, the receiver PP
sends the CONFIRM message. Otherwise, a local copy is made into the
file space specified by WORKSPACE; a name is generated for this
copy (the “working copy”), and the receiver PP includes it in the
CONFIRM message. (The WM does not enter the name of the working
copy in the NSW file catalog , but merely passes it back to the
Foreman. The PP should then execute a Stopme primitive to disappear.
(This could easily be modified to be a Receivegenericmessage primitive:
the F? would lie dormant until awakened by another generically
addressed file request from the VII. This approach might lighten
the burden of process allocation by MSG if it turns out that requests
for File Package activity occur fairly frequently within NSW.)

Figure .1 summarizes the communication between the Works
Manager and the File Package. File transfer begins after receipt
of the COPY message.

1?

4—11

—
__—

~~_- ___-__ --_--- _-- ~~~~~~~~~~~~~~~~~~~~~ — ------ ~~------

- • ~~~~~~~~~~~~--~~~~~~~~~-r
__-,.• __

Works Manager File Packa ge

CoPY (S—LIST ,P—STRUC ,COPY—N ,H—P ,WKSP)
>~ Time

Both processes: I I
I V
I 1) Acceptalarms , Enablealarms
I I
I I

CONFIRM (new copy PC—name , working copy I
PC—name) I

1<
OK (got the confirmation)

I >1
I I
I I

V V

Figure 1.

The astute reader will notice that a number of potentially
messy issues have been ignored. Due to the lack of implementation
knowledge of MSG , this was a necessary omission; fur thermore , we did
not want to overspeci fy the design at this stage. We br ief ly note
some of these issues:

1) Error checking: To insure that the WM received the
new physical copy and working copy names , it could echo
the names in its “OK” mess age to the FR.

2) What j4’ the FR does not receive the “OK” after some
period of time? This is the thorniest issue , and
it would be beyond the scope of this document to
suggest any one technique as the solution.

4—12

~~~ •~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - - - — -~~~~- - — - • • •



-- - r - -S- — ~ - - ~~~~~~~~~~~r -‘--‘- - _• _ •-  —--w - - -

III. Interaction Between File Packages

When the Works Manager first contacts the F? with a COPY
request , the WM is speaking to the Resource Allocator. The Allocator ,
given a list of physical copy names , determines which file to try to
copy, and then calls either the Transmission module (to get a copy
from one of the host ’s family) or the Translation module (to get a
copy from a host outside the host family).

(If a copy exists on the FP ’s host , the Localcopy module
(see “The Structure of the File Package” , section 111.3) is called.
This module is self—contained ; therefore in the rest of’ this section ,

• “FP” will refer only to the Pure Transmission and Translation modules
of the File Package.)

• The sending host being determined , the receiving F?
(i.e., the one to receive the copy) executes a Sendgenericmessage to
an FR on that host. The “SEND—ME” message contains:

. PC — NAME : the name of the file to be copied ;

TYPE: transmission or translation; 
—

WIDTH: Connection width. If TYPE is translation:

8 bits for text files (7—bit ASCII with a
• high—order zero bit)

n bits for binary files, where n = donor byte
or word size (selected by receiver from
information returned by its invoking the ANALYZE
function (Chapter 2, section 111.2)).

It then executes a Receivespecificmessage to await the
sender s reply. The donor executes a Sendspecificmessage to transmit
its willingness to make the copy.

This done , both donor and receiver execute Acoeptalarms
and Enablealarms primitives (to allow commun ication of abnormal
conditions) and Openconn primitives to establish a direct connection
between them. The receiver ’s connection type should be BINARY—RECEIVE(m)
and the donor ’s BINARY—SEND(m), where m = WIDTH. They will then
transfer the file via the direct connection. The receiver , meanwhile ,
executes a Receivespecificmessage primitive to await an EOF message
from the donor. When this message is received , the receiving FR
executes a Sendspecificmessage primitive to inform the donor it is
airight to close the connection. Both FP ’s execute a Closeconn
primitive , and the donor executes Stopme to disappear. (The remark
in section II about this primitive also applies here.) After informing
the Wor ks Manager of the completed trans fer , the receiver does the
same.

Figure 2 summarizes the communication between File Packages .

4— 13

IL •• _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--• - - - -
~
- -- •~~~~~~~~~ --—— ~~~

--
~
•--- -

- --- -~~~~ -~~~~~~~~~- r

Receiving PP • Sending FP

I SEND—tIE (PC—NAME , TYPE , WIDTH) I
I > I

OK (I can do it) Time
I I I

Both processes: I v
I 1) Acceptalarms , Enablealarms I

2) Openconn I
3) Transfer the file I

I I
EOF

I <
I OK (to disconnect) I
I > I
I Both processes: $

li) Closeconn I
I 1

Figure 2.

V

As in the case of Works Manager — File Package interaction ,
we have glossed over all issues which arise when we consider what
happens if file transfer or process communication errors occur. A
file transfer error might be noted by the sending of an alarm , which
could be echoed by the other FP, followed by a closing of connections .

-; Another attempt to copy the file might be made , or the receiver might
try a different physical copy.

Section ~: The Structure of the File Package

I. Introduction

This chapter deals with the organization of’ the File• Package, i.e., the modules required for the F? to carry out the
functions described in the second and third chapters of this• report. This chapter is meant as a guide for implementors , and
does not represent a mandatory way to organize the File Package.

• The File Package can be thought of as consisting of three
groups of modules:

1) Top—level control: This consists of modules for
F? initialization , reception of messages/alarms
passed by MSG , and interpretation of requests for
F? functions.

4—14

______ —.~-----—- —~~--—— -
~~—---——-- — -- --—‘-- ~~

—-----—-—-- —-- - - - — - -—-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
—

~~
---—-—‘— ,‘---—- -- -- - - - • -—-“-fl —

I

-•
2) Function controllers : There is a controller for each

of the F? functions (COPY, DELETE , ANALYZE). The
COPY controller has several layers o~’ modules beneathit.

3) MSG interface and local operating system interface• modules.

We discuss each of these groups in turn .

II. Top—Level Control Nodules

1. Initializer

Any necessary initialization is done by this module. In
particular , it makes use of the MSG interface modules to set up
and execute a Receivegenericmessage primitive , specifying that
when a generic message is received , the Dispatcher should pass
control to the Request Analyzer.

2. Dispatcher

The Dispatcher functions in much the same way as a PL/I
ON— unit . When MSG signals the File Package that a message or
alarm has been delivered , the Dispatcher :

verifies that the message or alarm comes from a
valid source ;

saves the source process address ;

passes control, to the appropriate routine , providing
it with the message text or alarm code received .

3. Request Analyzer

This module is only called to analyze a request to
perform a File Package function , i.e., one of COPY , AN A LYZE , or
DELETE. It calls the appropriate function controller.

-
~~ 4—15

~~~~~~~~~~~~~~~~~~~~~~~~ -- — —



-~~~~~ -~~~ -— —---
~~~~~~~~ ~~~~~~ r-~

11 . Function Controllers

1. DELETE

This module calls the appropriate LOSIIIs (local operating
system interface modules) to delete a file.

2. ANALYZE

This module calls the appropriate LOSIMs to analyze a file
and MSGIMS (M SG interface modules) to report the results of the
analysis.

3. Resource Allocator

This is the COPY function controller. To perform resource
aliccation , it calls modules to:

refine the list of’ physical copies , i.e., omit from
consideration any copies residing on hosts which the
tool/Foreman may have specified as unacceptable , and
order the remaining copies according to some scheme
(e.g., local copies first , followed by other “preferred
host” copies , followed by all others);

select a file to be copied from the ref ined list .

Based on the physical 4’ile selected for copying, the Resource
Allocator calls one of the modules Localcopy , Pure Transmission , or
Translat ion. Localcopy only calls LOSIMs and possibly MSGItIs. Pure
Transmission calls LOSItIs and MSGIMs , but there may also be two
modules to encode and decode the file according to some private host
family protocol.

Translation consists of two modules:

• Encoder , which builds the header record and encodes
the file; and

• Decoder , which sets up decoding parameters (by decoding
the header record) and decodes the file.

in addition , LOS Ms and MSGIMs are called to read/write the file ,
send/receive data from the MSG direct connection , etc.

4—16

_ _ _ _
- •~~~~~~~

-
~~~

• •-—
~~~~~~~ •~~~~~~~~~~~ --•


-~~~~~~~
- • ,~ ,,•.

,_ —_ — fl, ,_ .— ------ ---- - -.- — -~ — --,-- r’ -

I
IV . Local OS Inter’ace Modules (LOSIMs)

The following functions will be supported :

. Verify legality of a name of a physical copy

• . Connect to a directory (i.e. establish a means of accessing
a f’ile)

Create a unique file name

Enter a name in the local catalog

• Open a file

- Read a machine—dependent unit of ’ a file (e . g . , bl ock ,
page , track , etc.)

Write a machine—dependent unit of a file

Close a file

• Delete a file

Read the catalog parameters of ’ a f i le

Send data over the direct connection

Receive data from the direct connection

Clearly, not all FR implementations will have a separate
module for each function , e.g. in TENEX , sending to/receiving from
the direct connection is identical to writing to/reading from a
file and can be done by the same module.

4—17

_ _ __ _ _ _ _

- - •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

• _—-:-•-—-—-_——• -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— • • _ • - _•n_—_•———__•- —_-•,._-••— —•——•_.n--___-.-•.•_—-•- • n••

V. uSC Interface Modules (MSGIMs)

1. Signal Handler

This module will ensure that mc two pending events have the
same signal , and will tell the Dispatcher (section 11.2) how to
associate a signal with the location at which to start processing
when the signal occurs.

2. Buffer Handler

This module creates a buffer of a specified length to hold
a message or alarm .

3. BuIld Argument List

This module will encode argument/result lists in some manner
(e.g., using PCPB8 data structures) and place the encodement in an
assigned buffer.

-•

Build Message/Alarm

This is used to set up an MSG argument list preparatory to
executing a primitive.

5. Execute Primitive

This executes a specified MSG primitive . There may be
separate modules for the different primitives , depending on the
local MSG implementation.

6. Add/Delete Process Address

To aid in verification of the source of a communication
passed by MSG and to aid in addressing a message or alarm to a given
destination process , modules to maintain a list of addresses of
processes with which the FR is actively engaged should be provided.

The above modules are in some sense speculative , since they
depend heavily on the currently unknown local MSG implementations .

4—lq

_ _ _ _ _ _ _ _ _ _ _ _ _ _

a r~~~~ r~~w~~- •~~~r ‘ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -nr • - • - • - —•-,---- , -

V I. Graphic Representat ion of the F? Structure

•

- As an aid to understanding the F? structure as presented
in sections II—V , we present an indented version of the structure ,
where the n—th level of indentation represents modules called by
the immediately preceding (n—1)—st level module.

1. File Package (called by the WM or another FR)

A. Initializer

B. Dispatcher
i. verify message/alarm source
ii. save source process address
iii. pass control to appropriate place

C. Request Analyzer
i. DELETE driver

a. LOSIMs
b. MSGIMs

ii. ANALYZE driver
a. LOSIMs
b . MSGIMs

iii. Resource Allocator
a. Refine PC list
b. Select PC
c. Copy Controller

(1) Localcopy
— (2) Pure Transmission

(A) Family encoder
(B) Family decoder

(3) Translation
(A) Encoder

(1.) create header
(ii) Encode file

(B) Decoder
(i) Set up decode parameters
(ii) Decode file

(Note: LOSIMs and MSGIMs can be called from all (A), (B), (i),
(ii) level copy modules.)

4—19

~

- •--- • - -~~~—-——-~~---~~~~~~~~
—----- • -— -—-- ----

~~~~~~~ 
-- - — - - ---

~~~—~


— - ~•,• ~~~~~~~~~~~
- - -

~~~~~~~~~~~~~ 
_ ‘

~~~~~~~~~
‘ -

~
-‘r

~
- -

_
-

~~~~ - - —- -
~

Section 5: An Intermediate Language for File Transfers

Introduction

This chapter discusses a grammar to describe text and
binary rile transfers between NSW TBH ’s of differing families , using
the ~SW File Package (FR) as the transfer protocol . The sending FR
would encode the file according to the grammar , and the receiving
FR would parse it — i.e., it would recreate the file as close to
the original as possible.

The main requirements of the grammar are two: first , it
should be possible to encode files with a minimal loss of structural

• information; second , it should capture the structural
information of the file system of’ any TBH. (As a corollary to
the latter , it should be easily extendable to include new types of

• TB~-!
’s as they are brought into NSW.) Clearly, the fulfillment of

• the first requirement is dependent on the fulfillment of the seccod .
in the first pass at defining the grammar , we have not attempted to
capture all the structural complexity of’, say, the OS/360 rile
system. Still , the grammar is quite rich and can be easily expanded.
The main feature of the grammar which leads to ease of expansion is
the separation between structural information and data. The structural
information , which at the moment consists of byte size information ,
sequence number size , and format effector definitions , is contained in
a ‘header ’ record . This information can be redefined in—stream by a
‘control’ record . The header arid control records are separate
from the ‘data 0 records which contain the actual data of the file.
Thus , structural information for a new TBH can be incorporated as
new productions in the header and/or control records , leaving the
rest of the grammar undisturbed .

in moving text files from paper tape—oriented machines to
unit record—oriented machines , the inevitable problem of’ ASCII format
e”fectors (e.g., horizontal and vertical tabs) arises. The grammar
allows the definition of vertical format effectors and the spacing
of horizontal tabs (and could easily be expanded to allow for
defining more exotic horizontal format effectors). In this way, the
receiving FP can build a “dictionary ” of format effectors used by the
sending (paper tape machine ’s) FR. When a format effector Is
encountered during the parsing of the encoded file , the “dictionary ”
is consulted and the decoder can take the action which is most
appropriate for the host operating system and/or the tool which
will use the file. For example , horizontal tabs may be expanded into
blanks , vertical tabs into blank lines or blank lines with ASA
format effectors as the first character , etc. Similarly on trans—
mission from a unit record machine to a paper tape machine , leading
blanks may be collapsed by the receiving FR into horizontal tabs , etc.
The grammar makes no assumptions and imposes no restrictions on how

4—2’~



-•~

the file is to be stored at the receiving end ; its purpose is to
provide as much information as possible concerning how the sending
FR stores the file.

The problem of moving text files with iSA format effeotors
to paper tape—oriented machines is not quite as severe. There
are syntactic tokens (see section III) which enable the sending FR
to say “begin the next record , skipping two (or three , or more)”.

• Thus a 133—byte print line with a zero as the first byte would be
encoded as “begin next record , skipping ~~o” followed by anencoding of 132 bytes of data. The receiving FR could reproduce
the effect by inserting the right number of carriage returns .

Moving binary files between TBH ’s of differing byte size
presents a different problem . The header record allows the
definition of’ the byte size (in bits) of’ the TBH upon which the
file was created . Beyond that , any manner of transmission may
be considered . For example , the file may be considered as an
unstructured stream of bits , broken up into 8—bit bytes f~r pux~~uses - •
of’ transmission. Alternatively , a connection could be opened between
the sending and receiving FR ’s , the width of which is the byte size of
the file. The file may (as in the case of text files) be stored in
any manner the receiving host chooses , but the byte size information
should probably be saved somehow (perhaps in the NSW file catalog).
This is an open question which , while it requires further discussion ,
does not immediately affect the grammar.

In the following section, the productions of’ the grammar are
presented in groups , and the meaning of each group is discussed.
Extended BNF is used. When a number is quoted (“255”) it represents
an 8—bit (i.e., the low—order 8 bits of a byte which is the same size
as the width of the connection) control item (see section III). An
unquoted number is an 8—bit integer (unless otherwise noted). Where
a non—terminal of the grammar is followed by “(p:qP’ it signifies
the presence of from p to q copies of the non—terminal .

II. The File Transfer Grammar

1. <FILE—XFR> ::= (HEADER><TEXT—FILES>”251”

An NSW file transfer is defined as a header (the structural
information ) followed by a sequence of text files (see
~ubsection 11.5), followed by an end—of—transfer byte.

4—2]



- •
~~~~

••••• — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PF !JI~~

2. (a) <HEADER> ::= “2Z18”<HEADER~INFO>
(b) <HEADER— INFO> ::: O<SEQ—DESC><TAB—DESC>
(b’) 1<BYTE—SIZE>

• The header of a text file (2b) defines the characteristics
of the sequence numbers and the horizontal and vertical
format effectors. The binary file header (2b’) describes
only the byte size (in bits) of’ the computer originating
the file.

3. (a) <BYTE—SIZE> ::: 8l9I...~ 255(b) <SEQ—DESC> ::=

The sequence number descriptor is the number of bytes in
the sequence number (zero for unsequenced files). The
sequence number may be “identification data” of some sort
rather than a true sequence number , in which case the
receiving host may choose to discard the sequence numbers
i’ they do not meet the specification of sequence numbers
for the tool requesting the file.

Z~. (a) <TAB—DESC> ::~ <STOPS><VERT—DESC>
(b) <STOPS) ::= <NUM—OF—STOPS><STOP>(1:n)
(b’) 1 <STOP—INCR>
(c) <NUM—OF—STOPS> ::: O (1~ ...~,127(d) (STOP—INCR> ::= 128~...2M7I2~L9~ ...I255(e) <STOP> ::: O~1l...~255(f) <VERT—DESC> ::= <VERTICAL>(O:m)
(g) <VERTICAL> ::= <CTL—CHAR><STOPS>
(h) <CTL—CHAR> ::=

The tab descriptor (1’a) consists of the horizontal tab
descriptor (Zi b , ~‘b

’) followed by a sequence (possibly
null) of descriptions of vertical format effectors (‘If).
The horizontal tab character is understood to be 9
(decimal), but there can be any number (up to 30) different
vertical format effectors. Production (JIg) allows for the
definition of these vertical format effectors by naming the
character (Zih) and its stops (‘Ib , ~‘b

’).

The stops definitions work as follows : (14b) indicates
the number of stops on a page (or line , in the case of
horizontal tab) followed by that number of’ line (column)
numbers describing the stop locations. If the stops are
evenly spaced , (Ji b ’) indicates the stop increment plus 127,
i.e., 135 implies stops every eight columns or lines.

4 — 2 2

---~ • •-~
- - - - -- ~~~~~~~~~--~~~~ - -

~~
•

~~~~~
- - - _

~~~~~~~~~~~~~~~ - -— ----— - -—~~—~~~~~~~~~~~ -~~~~~~ -~~—----~~~ --~~~ -

5. (a) <TEXT—FILES> ::= <TEXT—FILE>
(a’) 1 <SUBFIL.ES>
(b) <SUBFILES> ::: <SUBFILE>(1:p)
(c) <SUSFILE> ::: <TEXT—F1LE>”255”

The file to be transferred may be a single “ile (5a) or
a concatenated sequence of files (5a’, 5b), each of which
is a single file followed by an end—of—file byte (5c).

6. (a) <TEXT—FILE> ::= <RECORD>(1:q)• (b) <RECORD> ::~ <DATA—REC>
(b’) kCTL—REC>
(c) <DATA—REC> ::~ <REC—CTL><SEQ—NUM>(O:1)<ITEM>(*:s)
(d) <CTL—REC> ::: “251L”<ctl—info>

A file is a sequence of one or more records (6a), each of
which may be a data record (6b) or a control record (6b ’).
The latter (6d) is basically undefined at the moment , but
may potentially be used to redefine information contained
in the header. A data record (6c) consists of a record
control byte (or bytes; see below), an optional sequence
number (which must conform to the descriptor in the header),
and a sequence of items. (If the header has indicated that
sequence numbers of length n are present , the n bytes
following the <REC—CTL> item are to be interpreted as the
<SEQ—NUM>.)

7. (a) <ITEM> ::= <STRING>
(a’) I<REPEAT>
(a’’) kFILL>
(b) <STRING> ::= <STR—LEN><CHAR>(O:r)
(c) <REPEAT> ::: <REP—LEN><CHAR>
(d) <STR—LEN> ::~ “O”~ ”P’~ ...l” i27”(e) <FILL> ::: “128”l. ..$”191”
(f) <REP—LEN> ::= “ 19 2 ” I . . . l” 2 2 3 ”

An item is a string (7a), a repeated character (7a ’), or a
fill character indicator (7a ’’). The string is a length
factor followed by that number of characters (7b). The

• repeated character is a factor followed by the character
(7c). The string length explicitly ranges from O—~27.The fill number k is expressed as •128+k, and the repeat
factor k as 192+k. (The compression implied by these productions
is optional , e.g., a string of blanks may be passed un-
compressed if the implementor so desires.)

I

4 — 2 3

— -

~~

- ————-

~~~~~~~ 

——---—- 

~~~~~~~~~~~

— . - • — - —-
_____ I

— -- ~~~—- — ~~~~~~~~~~~ --—-—-—-- - -- — ---
~~~~~~~ -~~ -~~ -



- - 
- - - -- ~~- r

8. (a) (REC—CTL> ::: “22Ji”~ ...~ ”239”~”2JI9”~ ”25O”
I “252”<N1> I “253”<N2>

(b) (CHAR> ::= any 8—bit pattern
(c) <Ni> ::= unsigned 8—bit quantity
(d) <N2> ::: unsigned 16—bit quantity (formed by concatenating

• ‘2’ 8.-bit bytes)

See section Iii of this chapter for a further description
of’ (8a).

III. Syntactic Tokens

The following is a table of syntactic tokens which represent
record and text control information. They do not represent control
information in the header (see section II.2—’I).

Bit Pattern Value Range Meaning

Oxxxxxxx 0— 127 String of length 0 <~ n <~ 127
l0xxxxxx 128—191 Fill character repeated 0 <: n <: 63 times
llOxxxxx 192—223 Repeat next char. 0 <= n <: 31 times
lilOxxxx 22 ’I—239 Begin new record , skipping 0 <= n < : 15

recor ds
i l i l O xxx 2’~0— 2 ’I7 (Reserved )
111 11000 2’I8 Begin header
11111001 2’I9 Begin first record
111)1010 250 Form feed
11111011 251 End file transfer
11)11100 252 Begin new record , skipping 0—255 records
11111101 253 Begin new record , skipping O— (2”16—1)

records
11111110 25” Begin control record
11111 111 255 Delimiter of’ subfiles

The above set of syntactic control items allow for an easy
implementation of a generator and a parser for the grammar. Every
control item is one byte long and indicates , explicitly or implicitly,
the length of the following data item .

4—24



- -
~ 

- ~~~~~~~~~~~~~ ~~~~ • —

• Section 6: Translation Semantics

File translation is a major problem which the File
Package must address . When the FP is forced to translate a file ,
it must map a foreign representation of the file onto its “logical
equivalent” in the local file system.

Definition of this equivalence seems beyond the current
state of the art. One can , however , state some desired properties.
Suppose identical line printers are connected to donor and receiver.
Then rece iver ’s copy is logically equivalent to the original only
if their listings are visually identical. The same applies to
decks of punched cards (both binary and text) which may be read
or punched. The hope is that equivalence at this level will extend
to tools. Indeed , most tools tend to deal with their text input
files in units of’ lines , irrespective of file organization . Solving
the listing problem is very close to solving the “line of text”
problem which should provide the desired mapping of the output of one
tool into the input of another.

What kind of’ difference in file systems causes this
problem? It is that some file systems represent text files as
“unit—records” and others as “ paper—tape s” . sequential access to
lines of text is available at the file system level in a unit—record
machine. That is, a low level access method can easily produce
the next line of text; that line will conaist of only characters and
blanks.

1.

The situation is entirely different in a paper—tape machine .
A low—level access method is used to read bytes from the file which
must be interpreted in order to produce a line of text in the above
sense. Besides characters and spaces , “format effectors” are
stored in paper—tape files. Indeed the paper—tape file organization
is a descendant of the paper—tape controlled typewriter. Format
effectors may be grouped into horizontal ones (e.g., carriage return
(CR), backspace (BS), and horizontal tab (HT)) and vertical ones
(e.g., line feed (LF), form feed (FF), and vertical tab (VT)).
Vert ical effectors have no horizontal component, and vice—versa.
Vertical motion is always down the page.

Those format effectors which cause horizontal motion to the
left have no analog in unit record machines and a mapping onto a
reasonable equivalent must be found . Of course , if such motion is
paired with vertical motion no problem arises; in fact , sender is
requested to treat CR—I..? and LF—CR pa±rs as record delimiters in
the intermediate language sense. The basic question is this: if
the paper tape sequence “b 85 I” is to become the two records:

4 — 2 5

— r~
1
~~~~~~- - ~~~~~~~~~

—- -
~~
—— --

~~~~~~~~~ 
£4



• - •

(record) b
( s k ip  0) /

should the sequence “b BS BS a”

become

(record) b
(skip 0) a

or

(record) ab

For purposes of’ display the single record version is both
correct and optimal , but for tool use , it should be left to FP
and tool implementors to make the choice.

A brief discussion of ’ each of ’ the format ef’fectors is in
• order:

lIT — never poses a translation problem as it is
equivalent to one or more blanks . However , hosts
are free to choose their own
tab—stop conventions ; therefore , we have included
a description of’ them in the file ’s HEADER record .

33 — has already been discussed .

CR — unless paired with a vertical format effector
is equivalent to back—spacing to column 1.

LF — causes the beginning of a new record beginning
at current column . The new record is blank to the left
of current column .

FF — easily translates to record environments , but
with the same column proviso attached to LF.

VT — is similar to HT. Stops are specified in
HEADER record .

The following algorithm sketch may be useful. It describes
a procedure by which consecutive characters from a paper tape are
encoded into a compact record file — compact because “a BS BS b”
produces only one record . It is called by the following control
program:

CHARACTER PT(LTH) /‘PAPER TAPE’/
INTEGER LTH /‘LENGTH OF PT’/

4—2(,

_ _ _ _ _ _  --• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~
- - - - - - - -

~~~~~~ -• -  - - — - -~~ 
- -

~~~~~~~~~~
-
~~~~
-‘- - - -

-— —----- -,__- —--—— -— - •
-

/~CHARACTER ARR AY z~’OR BUILDING RECORD—EQUIVALENT OF PT’/

CHARACTER C(MAXLRECL ,LPP ,1IAXPAGES ,t-IAXOVPRT)

/
~
PARAMETER S OF C’/

INTEGER MAXLR ECL , /‘MAX LENGTH OF RESULTANT RECORDS’/
LPP , /5LINES PER RESULTANT PAGE*/
HAXPAGES , I1PAGE CAPACITY OF C’/
MAXOVPRT , /‘MAX OVERPRINT CHARACTERS

PER CHARACTER POSITION’/
BOTTOM , /~BOTTOM MARGIN OF PAGEIN LINES (BOTTOM < LPP)*/
HTSTOP, /0HORIZONTAL TAB STOP ,

IN COLUMNS’/
VTSTOP /*VERTICAL TAB STOP ,

IN LINES*/

/‘INDEX VARIABLES FOR ACCESSING THE ELEMENTS OF C’/

NTEGER COL , /5NUMBER OF COLUMN WITHIN LINE’/
LIN E, /‘NUMBER OF LINE WITHIN PAGE~/PAGE /*NUMBER OF PAGE WITHIN C’/

/‘PRE—BLANK THE ENTIRE CHARACTER ARRAY , C, AND INITIALI ZE
COLWIU , LINE, AND PAGE TO THE UPPER LEFT—HAND
CORNER OF’ PAGE 1.~ /

COL = 1
LINE : 1
PAGE = I

FOR I : 1 TO LTH DO
CALL UREC(PT(I))

• The procedure UREC will build the character array C whose
slices C(’,LINE,PAGE ,OVPRT) represent unit records which
result from a compacting paper—tape conversion. For
illustration , PT can contain TWO—LINES and THREE—LINES (skip to
next multiple of’ 2 or 3 lines) as well as HALF—PAGE and
THIRD—PAGE vertical format ef’fectors.

—
-

PROCEDURE UREC(CHAR):

CHARACTER CHA R

4—21

_ ~— -—~--- — ---~~~~~
-•- ~~~~~~~~~~~~~~ ~‘—“---

- ~~~~~~~~~ - -~~~~~- -—,-

PROCEDURE FtIFEED:
BE GIN

LINE : 1
PA GE = PA GE + 1

END FMFEED

/~PROCEDURE OF UREC TO ADVANCE TO A VERTI CAL TAB STOP
WHEN STOPS ARE EVERY “FRAME” LINES ON A PAGE OF “LPP” LINES.’/

PR OCED URE ADVA NCE(FRA ME):
BEGIN

INTEGER NE WLINE , FRAME

NEWLIHE = FRAHE’CEIL(LINE/FRAHE)+l
IF NEWLINE > LPP THEN CALL FMFEED

ELSE LINE = NEWLINE
END ADVANCE

/~IS—GRAPHiC HEANS CHARACTER VISIBLY PRINTS’/IF IS—GRAPHIC(CHAR) THEN
BEGIN

IF COL > MAXLRECL THEN SIGNAL (”LRECL EXCEEDED”)
IF C (COL , LINE, PA GE , MXOVPRT) NE ‘ THEN

SIGNAL(”TOO MANY OVERPRINTS”)
OVPRT :1
UNTIL C(POS, LINE, PA GE , OVPRT) EQ ‘ ‘ ‘

—

DO OVPR T : OVPR T + 1

C(COL, LINE , PAGE , OVPRT) = CHAR
COL = COL + 1

END

ELSE

CASE OF CHA R

SPACE: COL : COL + 1
BKSP: IF COL > 1 THEN COL = COL — 3
CR: COL = 1
HTAB: COL = HTSTOP5CEIL (COL/HTSTOp) + 1
LF: IF LINE > LPP — BOTTOM THEN CALL FMFEED

ELSE LINE = LINE + 1VTAB: CALL ADVANCE(V TSTOP)
HALF — PAGE: CALL ADVANCE(LPP /2)
THIRD—PAGE: CALL ADVANCE(LPP/3)
TWO—LINES: CALL ADVANCE(2)
THREE—LINES: CALL ADVANCE(3)

RETURN

END LJREC

4—28

--

Section 7: Glossary

DONOR: A File Package instance which is the “sla -’ ”
in a copy operation . The donor reads the file
in the local operating system and sends it to
the receiver File Package via an MSG direct
connection.

FILE SPACE ,NSW: A collection of fiLes to which only the Works
!-lanager has access.

HOST FAMILY : A group of’ NSW hosts running the same operating
system.

LOGICAL COPY: The copy (of a file) made by a receiver File
Package. Its logical structure is equivalent
to that of the physical copy sent by the donor ,
but the physical structures of’ the “o~— iginal”and the logical copy may differ.

LOGICAL STRUCTURE , The logical structure of’ two text files are
EQUIVALENT: equivalent if the files appear to be the same

when listed on a line printer. (No similar
definition has been formulated fcc binary
files.)

PHYSICAL COPY: An NSW file name represents a set of physical
copies which are logically equivalent. When it
is created , a physical copy may be called a
logical copy , to emphasize the logical eguiv—
alenee between the newly created physical copy
and the “original” physical copy.

PHYSICAL COPY NAME: A list which contains the network address
and host—dependent name and structure inf’or—
mation of’ a physical copy . See Chapter 2
(“File Package Functions”), section II
(“The Physical Copy Name”).

PHYSICAL STRUCTURE: The physical characteristics of’ a file ,
e.g., logical record length , blocking factor ,
number of (memory) pages, total number of
bytes , etc.

RECEIVER: A File Package instance which is the “master” in
a copy operation. It is contacted by the Works
Manager and in turn selects and contacts a
donor File Package and drives the copy process.

WORKING COPY: A physical copy of a file created in the work
space of a tool.

4—29/4—30

~~~~~~~- 

Cnapter 5: Foreman Specification

The Foreman: Providing the Program Execution
Environment for the National Software Wor ks

I. Introduction

1.1 Overview

The National Software Works (NSW) is a facility resident on
the ARPANET , principally intended to support the construction of
computer programs and to provide software tools (e.g., editors ,
compilers , debuggers , etc.) which can be used in the construction
activity. A prominent factor in the conception of NSW is the
expectation that the hardware , software , and human resources
needed for the execution of a task may be geographically and
administratively dispersed , although connected through the
network. As such , the NSW is a distributed , multi—computer
system.

The ma jor co.ponerits of the NSW are the ARPANET , a
collection of tool—bearing hosts, one or more front—end (FE)
systems through which the users access the NSW , and an
access—granting , resource—allocating central component called a
Works Manager (WM). A tool—bearing host (TBH) is a computer
system which houses software development tools made available to
users through the NSW , and which additionally may provide storage
for I~S~ user files. To become a TSR, a host must implement a set
of supervisory software modules. Included in this set are the
modules which handle the NSW communication needs (see 1430: The
Interprocess Communication Facility for the NSW , Bolt Beranek and
Newman Inc. Report No. 3237 and Massachusetts Computer Associates
Inc. Document No. CADD—7601—2611), the modules which handle NSW
file transfer requirements (see File Package: The File Handling
Facility for the NSW , Mass. Computer Associates Document No.
CADD—7602—2011), and the modules which provide the local host
functions for invoking and controlling NSW tools, as well as 

—providing a local host NSW tool execution environment. These
latter tool—oriented modules are collectively known as the
Foreman component of the NSW , and are the subject of this
document.

The Foreman specification is especially intended for those
persons responsible for implementing TSR Foremen. In many cases,
we are merely presenting approaches to problems which must be
faced. While we do require that most (if not all) of’ the
functionality we will specify be made available to the tools , the
form in which it is presented to the tool is a purely local
decision . The only strict requirement  is that  each Foreman must
implement the various functions which can be invoked externally
(see Appendix 1). The exact time and sequence for the Foreman
itself invoking functions in the other NSW components (e.g., WM)

s—i _

____________ 
—•—

~~~~~
--•--

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~
— — -

~~~~~~~ ~ -~~~~~-r  ~~~~~~ -

is discretionary . In most areas, this document also suggests
Implementation strategies which we feel are worthwhile. However,
because of the discretionary nature of the Foreman/tool
interface, aspects of this interface mentioned in this document
should not be considered as final specification to the tool
builder. Each Foreman implementer is responsible for providing
the exact details of his tool interlace through a host specific
tool builder ’s guide . Potential tool builder ’s shoul d con tact
NSW TBH personnel for the tool’s implementation host before
beginning to integrate their tool(s) into the NSW .

1.2 The Role of the Foreman

The Foreman is the local—to—the—tool component of the NSW
system. Each instance of a tool has a Foreman which is
responsible for the smooth operation of the tool with the other
NSW components. In conjunction with the facilities supported by
the Works Manager (WM ) component , and to a lesser extent the • -~

Front End (FE) component , the Foreman provides the tool instance
with its NSW execution environment. Every tool instance runs
under the control of a Foreman. Components which do not run
under a Foreman are considered part of the implementation of’ the
NSW structure itself.

Note carefully the distinction between the concept of a
“tool” and the concept of a “tool instance”. A tool refers to a
computer program, while a tool instance corresponds to the
abstract notion of’ a process. A tool is a static concept in NSW ,
while a tool instance is dynamic . The difference is also
reflected in the nature of the information maintained by the NSW
about each. A tool has a static tool descriptor , maintained by
the WM , which describes information pertinent to each use of’ the
tool. Information pertaining to a tool instance is maintained in
a dynamic data base, partly within the W14 and partly within the
Foreman. The dynamic entries referring to a tool instance are
maintained for the duration of the tool session only. In this
specification we shall often simply refer to “the tool” instead
of “the tool instance”, in order to avoid the constant repetition
of the word instance. However , it should be clear from the
context whether we are referring to the static concept of a tool
as a program (hardly ever) or the dynamic concept of a tool
instance as the execution of that program (almost always).

The Foreman has two well defined parallel interfaces, both
of which are described in this specification. One interface is
between the Works Manager processes and the Foreman. This
interface is organized around the MSG message passing capability ,
and involves both the WM instructing the Foreman about handling
the tool instance , and the Foreman requesting WM services on
behalf of its tool. The responses to these commands/requests are
obviously also part of the WM/Foreman message interface. The

5—2



p.,. ~~~~~~ 
- - _ _ _ —_ -

~~
—..-— —.

~
- —. -—— -—- ~~~~ ..— — “— ‘ .r~~~~ 

- “~~~~~~~~~~ — -—— —- -- - —  ‘~~~‘ - ~~‘ -~~ 
‘ 

~~ 
—_

~~
._. 

~~~~~~~~~~~~~~~~~~~~~~ ‘~
. -

~~
-

other well defined interface is between the Foreman and its tool
instance. The Foreman has a special relationship with the tool
it is monitoring. In addition to having the responsibility for
creating and subsequently removing the actual instance of’ the
tool , the Foreman maintains an operating—system—like Interface to
the tool. It is through this interface that the tool can invoke
the various functions provided by the NSW environment to augment
the host operating system environment. The tool/Foreman
interface can take any of a number of forms , the selection made
by the implementer of the Foreman for a particular host.
Examples of the various types of tool/Foreman linkage include
subroutine call (as in MULTICS), operating system call (sVC in
the IBM series, 4SYS in TEN~X), and short messages (ELF). A
host—specific tool implementer ’s guide will detail the exact
nature of the tool/Foreman linkage (for each system) as well as
the exact nature of the NSW system calls available to tools on
that host. In this document , we attempt to specify the functions
which the Foreman is expected to implement , help implement , or
provide access to. Some implementation details are given. In
addition , we mention an optional Foreman function (encapsulation)
which can greatly ease the task of bringing into the NSW selected
tools which a lready exist as local host programs .

This document should be viewed as the first of a series of
specifications of functions to be performed by the Foreman. The
initial tools do not require sophisticated system support , nor
has there been adequate time to fully investigate important areas
such as error recovery . Because of this, and because of ne
phased implementation plan for the NSW , this document is vague in
some functional areas , and incomplete in others. (It is clearly
noted where we intended to have functions incompletely specified .
Other instances of this are oversights , and should be immediately
noted in any response to this specification.) Future revisions
of the Foreman specification will clarify and further define
these areas. In addition , as the NSW concept and the NSW system
evolve , extensions to the capabilities supported by the Foreman
can be expected. As a statement of intent , we feel that it is a
sound design strategy to provide tools with mechanisms for doing
(almost) all of the things a user at his terminal could do. The
initial specification of the Foreman only partially reflects this
goal.

It is important to emphasize that the NSW project is not
involved in or based on writing new operating systems . Rather ,
we are building the NSW by allocating subsets of the resources of
the participating machines , and using the existing operating
system to help manipulate these resources (and at times transform
them into resources more appropriate to the NSW environment).

— This approach is obvious upon examination of the a~~tract -~~c~’ineunder which tool instances are run. The tool environment is a
blend of the environment originally provided by the host
operating system , augmented in selected areas with facilities

5—3

• • - - - ~~ --_~~~~ - - ~~~
- ---—---

_ _ _ _ _ _ _ - • .—--- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- . •-~ - ~~~ • -

implemented by NSW components. Sometimes it will, be necessary to
mold existing local host facilities into new specifications .
This is the case when we utilize an existing local file system
capability to support access to files under the NSW system.
Other times the NS~ facilities will be completely new to a hostenvironment , so that adopting NSW standards directly in the
operating system is a possibility . Such may be the case with an
1480 communication facility. Accordingly , the structure and • 

-

flexibility of the existing operating system will greatly
influence the structure of a Foreman component for any machine .
In specifying the role of the Foreman , we have tried to be as
independent as possible of the structure of any operating system
and avoid reliance on particular features of any system. We hope
an implementation is not only possible but reasonably efficient
on a wide variety of operating systems .

1.3 Aspects of the Foreman

There are five aspects of the functioning Foreman which are
of concern in this document. They are:

‘ proviiiing for tool startup/control/termination

‘ providing the NSW runtime environment for tools written to
function In the NSW

* (optionally) providing for encapsulation of programs
written exclusively for the local host operating system by
defining mappings from existing local operating system
functions to NSW system functions

* providing for batch type tools

a providing mechanisms for debugging tools and recovering
from errors and malfunctions

Additionally, each tool must be prevented from interfering with
other tools and other processes running on the host operating
system. Toward this end , we envision a protection domain
surrounding the tool , and a temporary workspace for tile
manipulation during a tool session . In some implementations the
host operating system may provide support for these requirements
(e,g. separate work directories temporarily assigned to the tool
for the duration of the tool session, and subsequently cleared
and used by other tools). ere the host operating system does
not provide such support , t Foremen themselves must assure tool
separation and maintain boundaries between workapaces.

5—4 

~~--



-~ ~~~~~~~~ - ---- - -~~~~ ~~~ _-~ --- — --•—- ~~~—“.,,. ~~~~~~~~~ —•- - — 
~-- - _-~~~~~~ -• - - -- 

~~~
-
~~~~-1~~ ~~~~~~~~ -~ 

- _-,--,—-_-

1.~ Short Scenario of Beginning an NSW Session

At this point , we provide a scenario of the beginning of a
typical NSW session. It serves to illustrate the roles of’ the
various NSW components and sets a proper context for the
discussions to follow. The reader is assumed familiar witn the
documents referred to above , and in addition the document Works
Manager Procedures , reproduced within Mass. Computer Associates
o’cument CADD—76O3—O~ 11 (also available separately as PICA
document CADD—76O3—O~ 12).

In this  scenario we assume that  there exists  an NSW process in
the (local to the user) Front End machine which is receptive to
an attention character on a terminal. We also assume that WM
command interpretation is done within this FE process. Our
scenario begins from the point where the user has a dedicated FE
MSG process assigned to handle his terminal port.

The FE process starts by prompting the user for his login
informatIon~ After accumulating the pertinent information , the FEprocess sends the data to a Works Manager process using the
generic addressing facility of 1430. The WM receiving the login
message will verify the login parameters and note the full name
of the FE process servicing this user. (The return address on
the message indicates the FE process name.) A specifically

- 
- addressed message from the WH process to the FE process

communicates the success or failure of the user login.

If’ we assume a successful login , then , when the user wants to run
a tool, the FE gathers the name of the tool along with any other
pertinent information and sends the request generically to any
WM. The request is ac tua lly  one in which the FE process is
aski ng the WM to establish a new instance of the tool on behalf
of the N.~W user. The receiving WM verifies whether the user can
Indeed run such a tool , and , if so, retrieves the tool descriptor
from an internal WM data base. Based on information accessible
to it , the WM formulates a message containing the tool
informat ion and sends it generically to a Foreman process on the

• host which has been selected (by the WM) to run the tool
instance. This information includes the nature of the tool (e.g.
encapsulated , uses IISG directly, etc.) and the MSG process name
of the FE proces~ for this user. The Foreman selects a workspace
for the tool and establishes the tool instance in this workspace.
The Foreman then returns (to the WM which called it) the MSG name
of’ the tool which was created . This is done using the specific
send (ISO capability . The tool name may be different from the
Foreman (ISO name in the case of’ non—encapsulated tools using MSG
facilities. The WM then replies to the original calling FE
process with a specifically addressed message whic~i indicates the(ISO addresses of the tool process and the Foreman process.

5—5

~~~. _ - —~~~~~~~~~~~~~~~~~~~~ — _ _ _



~~~ “~~‘‘~“

For the case where the tool and FE communicate via MSG messages ,
our scenario is complete since both the FE and tool/Foreman have
each other ’s specific name and can send messages directly to each
other. For the case where the tool is encapsulated , or where the
tool requests to use a network Telnet connection to the FE , the

• Foreman sends a message to the FE indicating that a direct
FE—Tool connection is needed. Using each other ’s specific names ,
the FE and tool/Foreman use MSG primitives to establish a direct
communication path. As soon as the MSG connection requests
match , and the connections are established , data can flow from
the user to the tool and vice—versa .

1.5 Conventions Used in this Document

To avoid confusion arising from the ambiguous nature of the
names of the various functions implemented within and for the
Works Manager , the Foreman and the tool , we adopt a convention
within this document to help the reader understand which
component implements a given function. We are using a prefix of
F$ to indicate an externally callable function implemented within
the Foreman (e.g. F$BEGINTOOL), a prefix of W$ to indicate a
function within the Works Manager (e.g. W$DELIVER) and all
capitals with no $ prefix to indicate Foreman—Implemented ,
tool—callable primitives (e.g. DELETELOCAL). The F$ and W$
prefixes are only used as expository aides, and are not part of
the actual function name in either the Foreman or the WM. The
actual function name is the string remaining after stripping off
the F$ and W$, as appropriate . Lnterprocess request transmission
conventions are currently those specified by Jon Postel (SRI) in
his network message of 10 March , 1976. These requests utilize a
modified PCPB8 format. However , this format is subject to
fur ther  changes. The exact specification of the arguments  to be
sent to a Foreman and returned from a Foreman are compiled in
Appendix 1 of this document.



—

II. Controlling the Execution of a Tool

2.1 InItiating an Instance of a Tool

The MSG facility itself is responsible for the allocation ~~
• Foreman processes in response to demand for their use. Thus we

can begin our specification assuming the existence of the Foreman
as an MSG process , and control lying within the Foreman. After
initialization , a Foreman must be receptive to a F$BEGINTQOL
message from a Works Manager process. The F$BEGINTOOL. message is
sent as a generic message addressed to a Foreman of the proper

-• variety (i.e. host type), and can be received via the
Receivegeneric capabili ty supported by (ISO . The Receivegeneric
by the Foreman indicates that it is ready to support a new
instance of some tool, on command from a Works Manager. The
F$BEGINTOOL. message contains a host specific name of the tool to
be run. (The IM retrieves the host specific name for this tool
from a static tool descriptor it maintains for each tool.) On
the basis of’ this name , the Foreman is expected to be able to
invoke an instance of the tool , while mainta ining control over
the runn ing  tool.

Prior to initiating the tool , the Foreman selects a
workspace in which to run the tool. It then initializes this
workspace , usually by clearing it of any remaining files. The
set of Foremen processes on a TBH are responsible for managing
the set of workspaces the TBH has for NSW tool support . The
organization and utilization of the workspaces are left
completely to the Foreman. However , the WM must be informed as
to which workspace a tool has been assigned , so that it can
initiate proper file movement into and out of’ the tool workspace.
The host specific parameters describing the workspace (e.g. in
TENEX they are a directory name and (if necessary) a password )
are returned to the WM as results of the F$BEGINTOOL . If there
Is currently no available workspace, then the WM request must be

• rejected. The WM maintains lists of the TBH workspaces which are
running tools , and these play an important role in helping a
Foreman recover from system crashes without losing user files
lef t  in the workspace.

The F$BEGINTOOL. message includes flags indicating whether or
not to start execution of the tool and whether or not the tool
knows about the NSW (new tool/old tool). The message also
includes the name of the process on whose behalf’ the tool was
created (usually the FE representing the user), and the process
which serves as the FE to the user (if different from the above).
An option of the F$BEGINTOOL message is the inclusion of a list
of’ local to the tool file names which are to be directly
accessible to the tool. These files are non—NSW files to ‘~iehthe tool should be allowed direct access without any intervention

‘ from the Foreman.

5—7



—-~~~~~~~~~~~~ -~~~~~ - - 

— ——~-- ~---~ —~~-v-- - ----~~~~~ -~---~--,- - • •~~~~~~~ ‘~~_ . -‘,.~-,- ••~~- - ~~~ ---.-•- --•~ --~~~~~ 

2.2 Removing an Instance of a Tool

Throughout the tool session , the Foreman must be receptive
to an F$ENDTOOL specifically addressed MSG message from any Works
Manager process. The message will contain a reason for ending
the tool session. In all cases, the Foreman will return to the —

caller the cost incurred by the tool which has been run , after
the actual termination of’ the tool. The Foreman will terminate
itself after responding to the F$EPIDTOOL request , and the 

-
•

-
• association between the tool/Foreman and the NSW system will be

broken.

To help Foremen be receptive to the F$EP4DTOOL request , tne
WM will precede a F$ENDTOOL request with an MSG alarm of code~ 1.
Receipt of this alarm code will signal the Foreman of the

• forthcoming F$ENDTOOL. message. Once a Foreman has received an
ala rm wi th  code:1 , it is ex’e~ ted to immediately begin processing
its incoming messages , discarding all except the F$ENDTOOL —

request. Once a Foreman begins processing a F$ENDTOOL message it
need not be receptive to any further messages or alarms . A
F$E 4DTOOL message which was not preceeded by an alarm with code=1
should be processed nonetheless.

The accounting information returned in response to an
F$ENDTOUL is a 1’-~ t of accounting data items . The first entry in
the list is an integer which is the cost in cents of running the
tool for this session. The remaining items in the list are host
specific measures of various resources consumed by the tool.
Each TBH implementation registers with the NSW which resource
measurementa it takes and will return to the WM .

(Note: at some future time , it may be advantageous on
certain systems to simply halt the tool instead of terminating
it , with the possibility of eventually re—initializing the tool
as a different instance of the same tool. If such a mode of
operation were possible , and if the WM kept track of the tools

• assigned to each Foreman , then startup costs for tool invocation
might be reduced by selecting a Foreman with the appropriate tool

• already in place. Since this may not be relevant to all hosts ,
we recommend that part of the F$ENDTOOL message specify whether
or not to try to maintain the tool in the inactive state , and
that the reply to F$ENDTOOL. correspondingly indicate whether or
not this was done.)

2.3 External Control of Execution

If possible , the Foreman should be able to handle
F$STARTTOOL. and F$STOPTOOL messages. These are u!ed
externally control the progress of the tool through its
algorithm. F$STARTTOOL can be used to initially star ” the too]

5—p



- -
~

----
~

-• - -
~

•, - --
~

- --•-•—-
-- -

in cases where F$BEGINTOOL. did not specify immediate s ta r tup . A
minimal start/stop facility would provide for suspending the
execution of the tool while maintaining its complete current
state. The tool would be subsequently continued from the point
it was stopped , or it would be aborted. If the tool can be
stopped , then it must at least be able to be started (continued )
again. The suspending and resuming of tools on certain hosts may
not be possible because the host operating system does not
support such behavior. In these cases, tool execution will
automatically begin with the F$BEGINTOOL message , and F$STARTTOOL
and F$STOPTOOL messages will be rejected.

A more extensive s tar t /s top fac i l i ty  encompassing stopping
as well as starting through an entry vector is often desirable ,
and we have made provision for this at the WM command language
level. The implementation of this extension is highly desirable
where it is possible. We specify the characteristics of the
richest facility. It is the responsibility of the Foreman
implementation to either reject requests for which it has no
mec han ism , or to map the request into an alternative well
documented in the tool builders guide . The facility the WM
supports builds upon the (required of all implementations)
F$BEGINTOOL and F$ENDTOOL messages. These requests initiaily
create the tool instance and ultimately (forcefully ) cause the
tool to immediately cease its existence. These requests roughly
translate to the user saying to the WM “runtool” and “aborttool” .
During the execution of a tool , the user can of course request
that the WM stop the tool. To do this the WM sends to the
appropriate Foreman a F$STOPTOOL message , indicating the reason
for stopping. [Note that all messages originating in the WM and
destined for a Foreman of an existing tool are sent using the
Sendspecific MSG facility, and can be received using the
Receivespecific (ISO facility. The responses (if’ any) are sent
directly to the WM which made the request. Requests emanating
from the Foreman , however , are sent generically to any WM , with
the reply obtained as a message specifically addressed to the
appropriate  Foreman. j  During a period of tool inact iv i ty  due to
the effect of a F$STOPTOOL , the Foreman still must process MSG
messages concerning the tool. It must always be able to process
an F$ENDT OOL message , and may have to process any replies to
outstanding requests made to other NSW processes (e.g. a request
to the WM to retrieve a copy of an NSW file). However , any
results to be returned to the tool may have to be queued awaiting
the command to continue tool execution.

2.1k Entry Vectors

In a complete Foreman implementation , a stopped tool can be
started in a number of ways. We introduce the notion of’ entry

‘ vector to unify the start tool concepts. The WM recognizes
several standard entry points for its tools. These are an

5_0



~~~~~~ -- r r~~~’ - ’

initial entry point (cold start), a standard re—entry point (warm
sta r t) , a terminat ion entry point , and a cont inue from where
stopped entry point. (Other system wide entry points will be
defined as needed . It may also be possible for to~44.3 toimplement private entry points invocable via the 4M command
language.) The meaning of all of the standard entry points is
obvious , except perhaps for termination. The intent of the
termination entry point is to allow a user to force control to be
passed to a final tool cleanup routine , which may also involve
saving some of the work of the session. Tools will normally
implement commands to do this without UM intervention. However ,
circumstances may exist (e.g. runaway tool , depletion of
resources) where it is useful to force an orderly termination
while circumventing the normal tool dispatching. It is expected
that the termination sequence implemented by the tool will
complete reasonably quickly. If the tool has not signalled its
Foreman that tool processing is complete within some host
specified time frame, then the Foreman has the right and
obligation to forcibly abort the tool execution without further
notice.

When installing a tool in the NSW , the tool supplier
indicates which entry point functions are available in the tool.
This information is maintained by the ~H in the interactive tooldescriptor , and is used to regulate the type of F$STAHTTOUL
requests that are sent to the Foreman. In the WM tables the
various entry points are statically denoted by a small integer —

(index). The standard entry points are denoted by the same ir~ ex
for each tool. It i~ entirely the responsibility of the Foremanand its host operating system to devise a method of converting
these indices into actual program entry points (e.g. program
counters) for executing the proper function . A Foreman
implementation can impose coding standards for these purposes on
the NSW tools which want to support the entry point concept.

N.B. When using any form of start/stop facility for tool control ,
it is the responsibility of’ the WM command language interpreter

• to insure the correct sequencing of the start and stop requests.
Since in general MSG makes no assurances regarding the order of
message delivery , and since WM command language requests are sent
generically to any WM , it is most convenient to enforce
sequencing at the command language interpreter. All this really
means is that to ensure correct behavior , individual tool start
and stop requests should not be allowed to be pending
simultaneously. A final note on tool control is also in order.
The concept of tools controling other tools , as contrasted to the
NSW user controling a tool through the WM command language , is
currently being defined. We envision the same set of Foreman
procedures to be used in tool—tool control . This ~~~~ ~ scusr ”
further in a subsequent section of this document. However ,
detailed elaboration of these concepts is postponed ‘o a later *

date.

c—in

__

2.5 Detail ing the Functions

Foreman procedures for tool control: (called by any WM process)
The reply to each function invocation includes a “result”
var ia ble , which indicates if’ the operation was successful , and ~:

• not supplies a code indicating the reason.

F$BEGINTOOL (program—name , tool—type , entvec , FE—addr , cr—addr ,
• filename—list) —> result , qstart , workspace—descriptor ,

tool—addr

A request of this type brings the tool instance to life.
Program—name is a character string naming the program which
forms the body of the tool. Tool—type is a variable
indicating the nature of the program as an NSW tool (values
defined below). Entvec indicates whether or not to start
execution of the tool, and if started , through which entry
point. FE—addr and cr—addr are (ISO process addresses of the
front end process and the creating process respectively.
Filename—list is an optionally specified list of non-NSW local
files (in the local host syntax) to which the tool is allowed
unrestricted access. Some Foreman implementations may not
care to protect the access to non—NSW local files. Tools
running under such a Foreman would not need a file access list
passed to the Foreman at tool initialization time. Tools
which do not use non—NSW files would also not need a file list
recorded with the WM for the tool initialization procedure .
Qetart indicates whether or not the tool execution was begun .
A workspace—descriptor is returned to the WM to allow file
movement into the tool workspace. Tool—addr is the (ISO
address of the tool, which is often the same address as the
Foreman (see Appendix 2).

F$STARTTOOL. (entvec) —> result

The entvec variable indicates how the tool is to be placed
back in the executing state: either to be continued from where
it was last stopped , or through a specified entry location .

F$STOPTOOL (entvec) — > result

When a WM invokes this function the Foreman stops the
execution of’ the tool and saves its state. We have provided
entvec as an argument as a convenience in performing the dual
operation of first stopping execution , and then commencing
execution elsewhere through an entry point. At tempt ing to
start an already executing tool , or stopping an already
stopped tool will elicit an error condition.

c—il

~

- -

~

— —

- ~~~~~~~~~~~~~~~~~
- •—•— - — - ,- ---•-—-

~
-‘-—•--•-•- — --•--..—--—•,- •—- •- —,.‘- - - ,- -

~
-—

•w’ -

F$Et~DTOOL (reason , termtype , qmaintatn) —) result ,
accounting—list , qmaintained

Reason is a code indicating why the tool instance is being
removed. Teretype indicates the type of tile processing
required of the Foreman before completing the F$ENDTOOL . This
will be further clarified in later parts of the document.
Qaaintain is a boolean indicating whether or not the Foreman
should attempt to maintain the tool image Lor use as another
instance. Qmaintained is another boolean which the Foreman
uses to communicate to the WM whether or not the image has •

been maintained . Accounting-list indicates the resource cost
and utilization for the tool session .

tool—type : value is an index
:1 —> encapsulated tool

• =2 — > tool uses NSW calls, does not use MSG
:3 —) tool uses NSW calls, also use (ISO facilities

entvec: value is either empty or an index
empty —> do not start tool (if possible)
:0 —> continue from point where stopped (illegal in
F$BEGINTOOL)
:1 —> cold start entry point
:2 —> warm start re—entry point
:3 —> termination routine entry point
:1~ —> reserve d for expansion
:5 —> reserve d for ex pansion
=6 ... —> tool specific entry points

2.6 Voluntary Tool Termination

As mentioned above , the Foreman must provide its tool with a
primitive operation for indicating that the tool has completed
execution. The HALTME primitive is the means by which a tool
voluntarily relinquishes control for the final time. The Foreman
may yet have to save files for the tool (see subsequent sections
on the file system and encapsulation) before actually removing
the job from the NSW domain. Through the termtype parameter of
HALTME , the tool can indicate the type of’ Foreman file processing
it expects. The current choices are:

I termtype:1 —> no Foreman file processing

* termtype=2 —> Foreman asks user which files need saving and
saves them

* termtype=3 —> Foreman automatically saves latest copy of’
modified files

5—12

- - — — -- --~ -~~~ -~~- -— — --- - -—--~ - ----~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ — — - — - - - -—-—-—- -~~~~-

- - -~~~~~~~~~~~ -p.. -_

After all peripheral operations by the Foreman are comp lete , the
Foreman notifies the WM of the tool completion by calling the WM
W$TOQLHALT procedure . The associated parameters of the WM
request include the accounting data list describing the tools
resource utilization . The tool can be terminated (in the local
host sense) any time after it issues the KALTME primitive. The
Foreman terminates itself (in the (ISO sense) after receiving the
response from the wM to its TOOL—END call. A positive response
indicates that the association between the tool/Foreman and the
NS~~~ has been broken.

Tool primitive operation:

HALTME (termtype) —> never returns to tool

WM procedure for HALTMF. support:

W$TOOLHALT (reason , account ing list) — > result

‘p

5—13


~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~

~~
.-- -- ----- - - - -

Ill. Status Probes and Resource Utilization Bounds

The Works Manager , as well as the NSW user through his FE
process , may at times wish to closely monitor a tool execution in
terms of resource utilization and progress through its algorithm .
Toward this end , we specify two functional aspects of a Foreman
implementation which can be used to achieve a degree of “tool
watc h ing”.

Each Foreman must implement an externally invocable function
(e.g. requested by a WM process) for probing the status of the
tool Currently being executed . We have taken the approach of
allowing many types of probes . Invoking a status probe is
different from invoking almost all other Foreman functions in
that it is not done using an MSG message. Rather a status probe
takes the form of’ an (ISO alarm signal. The code transmitted as
part of the alarm indicates the type of probe. In response to a
probe alarm , the Foreman is expected to gather the requisite
values an d send them via an (ISO message (which itself requires no
reply) to the invoking process. Status probes are assigned
Foreman alarm codes with values between 10 and 20 (octal). Two
probe types are initially identified here, with others added as
their need arises. One initial probe (alarm code 10) queries the
curren t state of the tool as a program in execution. In response
to a state probe , the Foreman returns the tool’s curren t ex ternal
NSW state (e.g. running , stopped , running at termination code ,
etc.), the tool ’s current internal NSW state (e.g. executing,
waiting NSW primitive completion , etc.), and the tool ’s curr ent
local operating system state (e.g. running, blocked for I/O,
dismissed , etc., and its program counter). The second initially
defined probe (alarm code 11) queries the current state of the
tool resource utilization for the session. It returns the
accounting list referred to earlier. This includes the cost of
running the tool so far , and other resource utilization measures
maintained by the host operating system.

Currently there are no immediate implementation plans
involving these probes other than as an indicator that the
host/Foreman/tool co.ple~ is still functioning. At this point it
is unclear wh ich processes should be allowed to invoke which
status probes , and we may have to specify an (as yet undefined)
option for results to be prepared for a huma n rather than for
program processing . Additionally, more thought needs to be
applied toward determining a useful set of measures in each probe
class. Because of these uncertain ties , and because the “still
working ” function can be fulfilled by responding with an
“unimp lemented function” response , we postpone the exact
specification of the values to be returned in a status probe.

A Foreman should also support the enforcemen t of resour ce
utilization bounds on the tool it is running. These hounds would
specify an approx imation to the maximum use of a particular

5—14

_ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  -—~~~~~~~~~~~~ -~~~~~--~~~~~
-_  •

~~~~~~~~~ ~~
- • _ - - —

- — ._-~~--.•- --- - - _--~~•-_-.~ ~~~
— —__ -‘- - - - ~~~ •- -~—• • - •-

~

‘1

resource or a measure of tote I resource consumption to which a
tool session is limited. Exceeding these bounds would force a
cessation of tool execution (i.e. placing the tool in a stopped
state) along with the Foreman immediately notifying the Works
Manager of the excessive resource utilization. The WM could th~~.apply more resources to the tool session , or cause the tool to
execute at its termination sequence , or abort the tool
altogether. The initial bounds are passed as part of tne
F$BEGINTOOL request. We mean these resource bounds to be -

approximate monitors, and ~e have no interest in requiring veryclose scrutiny of the tool execution in order to shut off’ service
the instant the tool exceeds a bound . On the other hand , we
would require that the tool be monitored as closely as is
reasonable to ensure that it does not consume an a rb i t rar i ly
large piece of’ the specified resources (e .g . cpu time).

The WM procedures to support these bounds and the strategies for
their use have not as yet been defined . The management tools in
the NSW will surely have an impact on the nature of the facility
which is actually used. Thus , as with the status probe and other
features yet to be discussed , care should be taken not to exclude
such behavior , but implementation is not required or yet
possible. Future documents will detail the specification of
these functions , and we solicit suggestions on their form and
use. —

Foreman Function :
(invocable via an alarm with code in the range 10—20 octa~ j

F$STATUSPROBE (type) —> status item list

I ;

5—15

--

IV. NSW Huntime Environment

The HSW tool environment differs in a few key areas from the
environment provided bY the host operating system . The NSW has
its own means for inter—component communication and for
dynamically creating HSW entities , and maintains its own file
system. These facilities are in addition to any similar
facilities which the host operating system may already provide ,
and may be used simultaneously if there is no conflict with
providing NSW services. The Foreman and other NSW components
provide access to the NS~ facilities through enhancements to the
set of primitive operations available to tools. There are
primitive operations for dealing with each of the areas
mentioned :

~ NSW file system
* NSW process communication
• NSW process creation

These are discussed individually . The common thread is that the
operations are provided in operating system—like fashion to
tools, with the exact means of’ invoking a function or obtaining
Its result/status dependent on the host implementation. We are —

concerned nere with the semantics associated with the primitive
calls , and the WM—Foreman message exchanges used in implementing
these semantics. It is the Works Manager which actually supports
the substance of much of the NSW environment. It is the Foreman
which provides the local interface to the NSW facilities.

The functionality of each of the specified primitives must
be made available to all tools. However , the exact form of the
Foreman calls and returns , and the exact nature of the Foreman
tool interface is left to the discretion of the Foreman
implementer. Thus where it is deemed desirable , certain calls
may be subsumed by a parameterization of’ other calls , or calls —

may be coupled to perform multiple functions. These are local
optimization issues. We are concerned only that it be possible
for each tool to somehow perform all of the operations which we
feel to be important in the NSW context.

5—1 f

- • —

_ • - _ - -~ - — —~ _~ ----—- ----
~

--

V. t~SW File System

5.1 Two File Spaces

A tool running under the NSW system can independently
manipulate items in two distinct file spaces. One file space is
the sharable NSW global file space managed by the Works Manager
and maintained independently of any tools that manipulate the —

files. The other space is the non—sharable , temporary workspace
(local file space) for the copies of the files in use by a tool
during the current tool session. A file entered in the centra l
catalog must have a unique global name , and hence is able to be
referenced (though perhaps not accessed) by any tool. A file
which exists in the workspace for a tool can be referenced only
by the tool operating in that workspace , and the mere existence —

of such a file may be unknown to other tools and even to the WM.
It may also be the case that the name of’ a file in the workspace
is not unique in the H SW file system. There is no conflict as
far as the WM is concerned since the workspace file is unknown
outside of the tool domain , and the tool itself’ is provided with
a means for resolving any local name conflicts. Explicit name
conflict resolution tt’ust occur whenever a file is to be entered
into the global NSW file space.

5.2 Using Local Workspace

There is a considerable cost associated with inserting a
file into the global filespace. The coat of synchronizing local
activity with the global directory includes name conflict
resolution , file copy (possibly network copy) and delay
associated with synchronizing the WM and Foreman. Insertion into
the local workspace is immediate. The same cost relationship
holds when retrieving files for use by the tool. Therefore , it
is often good strategy to build tools which utilize the workspace
for storing and retrieving as much as possible, often waiting
either until it is explicitly desired to synchronize the file use
with other tools or until the end of the tool sessin’ efore
delivering selected files. Delivering files to thc ~~obal filespace at the end of a tool session means that only iles which
actually need to be permanently saved invoke the large system
overhead , while files which do not require permanent name status
(e.g. files which are subsequently deleted during the course of a
tool session, or files which are only intermediate versions of a
part icular f i le) incur a minimal overhead. Savings can also be
achieved by delivering multiple files in a single WM request , an
obvious optimization if files are batched locally.

5—17

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

5.3 Version Numbers

Another aspect of the local workspace is the automatic use
of version numbers to distinguish files of the same name . In
essence , version numbering adds another field to “local” file
names. The Foreman knows about the use of this part of the name
field and supports certain default options for it. A version
number is a small integer which gets bumped automatically when
creating a file with an already existing (local name space) name
and a version number is not otherwise specified. The use of
version numbers is not part of the global NSW file space.
Therefore the user must disambiguate name conflicts when files
are moved from local space to NSW global space. In addition to
providing automatic local disambiguation through version
numbering , the Foreman must allow a tool to specify version
numbers when referencing files in local space , as well as provide
reasonable defaults for obtaining latest local copy and creating
a newest copy in the absence of specified version numbers . If
local files are cached for delivery (highly recommended) the
Foreman should provide a means for the user to select from among
the “new ” NSW files only the ones he actually wants preserved.
Suitable defaults are required in the absence of this information
(e.g. the highest version number of each different file name is
delivered at the end of the tool session).

5. 14 Maintaining an LND

In the course of implementing the local workspace concept ,
the Foreman is required to maintain a local name dictionary (LND)
for the tool it is running. The LND is used to specify the
relationship between the NSW file name and the name of the file
(in local operating system terms) which represents the local copy
of that NSW file. Other information about the files which are
created and maintained during a tool session is also appropriate
for the LND. This includes information about version numbers ,
indications of whether a file has been modified since the copy
was obtained (and therefore may need to be delivered), and short
abbreviated strings which the NSW user or tool uses to refer to
the NSW file. Some of the primitive operations provided to the
tool are expressly for the purpose of manipulating the contents
of the LND , and hence indirectly manipulate the local workspace .
It is imperative that the LND for each tool instance be kept in a
“crash—proof” manner (or as near to this as is reasonable an~possible), so as to make feasible a recovery procedure in the
event of a host system crash. Maintaining the LND in a carefully
maintained and identifiable file on the local file system is one
technique for achieving this. After a system crash which is not
so catastrophic as to destroy the file system also, it would be
possible to run a scavenger program in the tool workspace to
retrieve the appropriate LND and save some of the results of the
tool session. When the host again becomes available , it may also

5—is

—- — ---S -- - —- -~~~~~~~~ -~~~~~ - --- --- - - ~~~~~.- ~~~~-



“~~ ‘ “ ‘ ‘~“ - “~~~~~~~~ ‘~~~~~“ ‘ r  ~~~~~~~~~~

be possible to re—start (or continue ) the use of the tool in the
same workspace and working with the saved LND. These issues are
further discussed later in this document. In any event , the
Foreman should attempt to insure that the effect of the host
system crash is no worse for the NSW tool user than for the
direct (non—NSW) users of that system .

5.5 File Names in NSW

• The general syn tax  and semantics associated with file names
in the NSW are described elsewhere . Here we are concerned with
the impact of the Foreman and local workspace concepts on the use
of NSW file names. The impact is two—fold: first in the
conventions used by tools in providing names as parameters for
file system operations , and second as extensions to the name
syntax to provide for the manipulation of files in the local
workspace.

To discuss file names as parameters to file system
operations we must first describe certain aspects of the central
NSW filing system as implemented via Works Manager procedures.
Generally , the WM file system procedure for retrieving a copy of
a file requires only a partial name (filespec ) to specify the NSW
file for the operation. Specifically, only enough of the name
need be specified to disambiguate it. Thus we have the concept
of files being retrieved (and saved) using abbreviated names.
For example , WALDO.AUTHOR.TEXT might be addressed simply as
WALDO. Additionally , when a file name provided to the WM is
ambiguous (for retrieval) or already exists (for delivery), the
WM often negotiates directly with the user to clear up any
uncertainties. This is done only when requested by the tool.
Because of these features, most calls involving file names return
values which indicate the full NSW name of the file which was
actually operated on , as well as any change in the filespec for
the file as determined from the interaction with the user. (If
the user dialog results in a new filespec , the user will
presumably use this new name in future references to the file.)
It is a Foreman responsibility to keep an up to date LND
reflecting the latest information about NSW file names , as well
as to make these names available to the tools which may be
unaware of the change or clarification from the user. The names
can be provided to the tools either by returning their values
directly as part of the tool file operation , or (recommended ) by
providing functions by which tools can retrieve the names when
they are needed. Since the names are kept in the LND anyway,
such an operation is rather simple.

To insure that a tool can achieve a maximum utility r ’~ nf
— 
. the separation of global and local file spaces and the properties

of both , the file manipulation primitives each imply an exp 1i ’i t
domain (i.e. global or local space). This allows the tool to

5—10

I

,—-.

~

- - - . —

~

--- -‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --— --—— —. .“~~-— — — - —~---- --- —-



• - -‘—~~—.- “--‘-.-—-- - -.— --—-‘~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ---— -,

~
‘——.—--- -— • - - - —

~~
—---.-- - -•--—- -•-——- -, •- -~~

— - .—---—- -•- -•.-- • --- .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •-‘~-—-‘•.--- •— -,-~• -- - - - -

directly control the spaces individually in the manner most
appropriate to its particular purpose. Primitives dealing with
workspace files also provide for the explicit selection of a
particular version of a file, to enable a tool to override any
defaul t  assumptions.  Supporting a reasonable set of default
parameters is encouraged , provided the defaults can be overriden
where appropriate.

5.6 File Semaphores

Associated with each file in the NSw (global) file spa~e Isa semaphore. This semaphore can be set by a tool on behalf of a
user (who intends and is able to modify the file) in order to
warn other potential users that the file may be undergoing
change. In general , this semaphore serves as a loose lock— the
NSW system will, only warn other users , not restrict their access.
Under some circumstances , however , users will ~e prevented from
accessing a file with the semaphore set. Note that the general
looseness of the lock does not cause a multiple writers problem.
NSW files are not directly modified by tools. Only local
workspace copies of NSW files are directly modified. The NSW
file is not modified until it is explicitly replaced. Thus a
user can obtain an internally consistent copy of an NSW file with
semaphore set , since it is only a workspace copy of that NSW file
which is actually undergoing modification . The user is warned by
the set semaphore that the modification is taking place (by some *
other user), and that at some time in the future , the NSW file
may be replaced by an altered , updated version.

Tools may be divided into two classes: tools which
explicitly use 3emaphores and tools which do not. In the first
class go tools wntch note when a user performs a file modifying
action and which ~re then willing to request the setting of asemaphore . Tools of this class may request that a semaphore be
set when a copy is obtained of an NSW file. If this request is
made , then the Works Manager presumes that the tool does not want
access unless the semaphore can be set. If’ it is already set (by
some other user) then the access request is blocked. In all• other cases of copy access, the requester of a file is merely
informed that the semaphore is set (and by whom— project and
node—name). Delete access is always blocked by a set 3emaphore .

Whenever a tool of the first class (explicit semaphore
users) requests a file, it may also request the setting of’ the
semaphore. As noted above , inability to set a semaphore blocks
the access request. Subsequently , a tool of this class may
request the setting of the semaphore for a previously obtained
file. The semaphore may be read or unset at any time , either
the tool or directly (via a WM command) by the user. If the
semaphore has been explicitly requested , then it may remain set
after the end of the use of the tool.

5 —70  

—--— ~~- - ~~~~~ • —-~~~~~-— -~. - ---- —---— —----. -~~~~ - -~~~— - •~~ -— .—---



- ~~ —- - -

Whenever a tool of the second class (non—s’~ma phore user)
requests a file, the WM automatically tries to set the semaphore.
Failure to do so does not block the access; the user is merely
warned that the semaphore is already set. Again , the semaphore
may be read or unset at any time . The semaphore is automatically
unset when use of the tool is ended .

In all cases , a semaphore is unset whenever an NSW file is
replaced (or, obviously, deleted). The tool primitives to be
implemented for interfacing to the semaphore procedures of the WM

• are listed below. See the Works Manager Procedures document for
details of the implementation within the WM .

SETSEMAPHORE (filespec , qhelp) — > result , NSW filename
U~~ETSEMAPHORE (filespec , qhelp) —> result , NSW filenameREADSEMAPHORE (filespec , qhelp) —> result , NSW filename

5.7 File Manipulation Primitives

A tool is provided with distinct sets of primitive
• operations to individually manipulate the NSW global filespace

and the local workspace. An additional set of operations is
provided for moving file copies between the two spaces. In this
section , we in t roduce the major file manipulation primitives in
each of the three sets.

A tool is provided with primitives for deleting, renaming
and copying files within the global NSW namespace. The WM
implements procedures which actually perform the DEL.ETEGL.OBAL,
RENAMEGLOBAL and COP~GLOBAL operations within the global space ,so these primitives are merely a packaging operation for calls on
those procedures.

Two tool primitives (GET and PUT) are provided which are
normally used to relate the files spaces in an automatic fashion.
These provide for obtaining a local workspace copy of a global
space NSW file (GET), and for depositing a local workspace file
as a global space NSW file (PUT).

To support local workspace file access, the Foreman provides
primitives for deleting , renaming and copying workspace files,
and OPEN and CLOSE primitive operations. DELETEL.OCAL ,
RE N AMEL OCA L , and COPYLOCAL are all implemented totally within the
Foreman , and merely result in changes to the LND. The OPEN
primitive is used , with appropriate parameters , to gain acc ess to
a local workspace file, or to create a new workspace file in
cases where one does not already exist. The CLOSE primitive is
used to signal the Foreman that the file access is complete , and
that the Foreman should assume responsibility for that version of
the file. It is the intent that OPEN should prepare a local

S—21 

~~~~ - - ~~T’ • ~:;:±~ - - ~~~~~~~~


-~~~
—

workspace file for direct access and modification by the tool ,
and generally to return to the tool a handle on the file for such
access. The type of handle , as well as the types of file data
manipulations which are permitted , are local host operating
system dependent , based on the file system which underlies the
workspace implementation . One aspect of the CLOSE primitive is
the invalidation of such a handle so that the Foreman can
maintain a consistent copy of’ the file (via the LND) for possible
introduction into the global file catalog . After executing a
CLOSE operation on a file , the file data is not accessible to the
tool unless it executes another OPEN.

As a general scenario , a tool GETs a local workspace copy of
the global space NSW file it wishes to access. The workspace
OPEN provides for direct access to the file data . The file
actually accessed is always a local workspace file. It may be a
copy of a global space file, or it may be a newly created ,

• currently empty local workspace file , or it may be a previously
referenced local workspace file which was originally one of the
above . We assume that the local host system provides the actual
data manipulation primitives for local workspace files. The tool
ultimately CLOSEs the file and may subsequently repeat the
OPEN—CLOSE sequence some number of times during the tool session.
These operations affect only local workspace file images, and new
versions of the original file copy may be created. Ultimately
the tool decides that some version(s) of the workspace file
should be placed into the global catalog , and it instructs the
Foreman to do so using the PUT operation. Although these
operations give the tool complete control over all phases of its
file system interactions , Foreman implementations can and perhaps
should often provide simplified means for performing common file
functions. As examples , we could consider a Foreman which
provides a GET which has the option of automatically opening the
retrieved copy of the file, or an OPEN which searches the local
space and if unsuccessful tries to GET a copy of’ the file , or
automatic PUTting of the highest new version of each different
workspace file upon tool termination. Any such local options
will be clearly noted in the host specific tool builders guide.

5.8 Specification of the File System Primitives

In specifying the parameters of the main file manipulation
primitives, there are many common arguments. Some are described
here as a general introduction to the primitive descriptions.

NSW—filename: The NSW—filename is the full identification of a
file in the NSW file system. This is generally a rather long
string of text. However, a user will never have to type in a
full filename . Instead , he will use either a “filespec” or an
“entry—name ” (defined below) depending on the intended use of
the file. A full NSW—filename consists of two parts: the name

5—22

_____________________________ - - - -

part and the attribute part , separated by a slash (I). The
name part is a sequence of name components , separated by
periods (.). The attribute part is a list of attributes
separated by semi—colons (;) . (For a more complete
description of NSW—filename and attributes , see the document

• Works Manager Procedures.)

filespec: This is basically the supplied identifier for an N.~W
filename . It is an abbreviated form of an NSW—filename , used
in contexts where the name of an existing file is required . A
filespec need contain only enough parts of the NSW—filename to
unambiguously denote the file. Unless changed by the tool , a
workspace file copy and all its derivative versions will be
referred to for the duration of the tool session by the
filespec. A filespec may also contain file attributes as part
of the name . (For a more complete description of filespec ,
see the document Works Manager Procedures.)

entry—name : An entry—name is an abbreviated form of an
NSW—filename used in contexts where a new filename is to be
created. As described in Works Manager Procedures , the
contents of the user ’s enter scope is prefixed to the
entry—name by the WM when a file is delivered . Aside from
this abbreviation , however , the user (or tool) must specify
the entire name component of the file. (For a more complete

• description of entry—name , see the document Works Manager
Procedures.)

version #: When the local workspace is searched , the version
number parameter guides the selection of a particular instance
of the files associated with the filespec. Version number is
either null (default) or is a decimal integer in the range 1
to 32. Special indicators exist for referencing the highest
vers ion , one more than the current highest version , and the

• lowest version of a filespec. The default value of version
number is different for the various primitives and is given
along with each primitive description . In general though ,
defaulted version numbers use the highest version for file
access and creates a new highest version for file deposit.

• When searching the global space , any version number
information is ignored.

qhelp: This argument has three possible values and conveys to the
WI’l how the tool would like filename conflicts handled. It is
used in conjunction with the various file system primitives.
The possible values and their meanings are:

* qhelp=O —> allow the user to supply help, through a help
call on his FE process

* qhelp:1 —>allow the tool to provide help through a help call
back to the tool

5—23

_
_

-n

* qhelp:2 -> do not provide any help but instead report a
failure on filename conflict , indicating this as th. reason

The qhelp parameter applies only to calls involving the WM and
the global NSW file space. Primitives dealing with workspace
files need not support these help notions. Version number
defaulting provides a form of automatic disanbiguation for
local space files. The Foreman must not allow the •xi~t~rice
of different workspace files named with the same tilesp.e —

(although different versions of the same tile are obviously
permitted). The WM interactive tool descriptor provides for a
static default of the qhelp parameter , if the tool builder so

• desires. For these tools, the value of qhelp is obtained
-

• (each time) from the WM tables , regard less of the value passed
by the Foreman. This is especially useful for encapsulated
tools.

- : qreplace: This argument is a boolean , and it indicates whether or
not a file being placed in the global space should force
replacement of an existing file of the same NSW name.

- • Qreplace with value true means that such replacement should be
automatic , with the old file no longer accessible. Qreplace
with value false means that replacement is not automatic and
that the WM should revert to the qhelp variable to determine
how to deal with the conflict.

success/failure code: An integer value representing the
- -

success/failure code for the operation is always returned as a
result of each primitive. Each individual primitive has
associated with it a set of interpretations of these integers.
This code is always returned as a primitive result , but it
will not be ex plicitly shown as a return value in the
following primitive descriptions.

The descr iption following eac h primitive operation reflects
the nature of the operation as seen by the tool. In this section
we limit ourselves to a description of the tool primitive (i.e.

• what does the primitive do?), leaving implementat ion
considerations for the next section .

The tool has unrestr icte d access to all of the files within
its workspace. Once a copy of a global space file has been
obtained , all references to the local copy are permitted . The
global space, however , is tightly controlled , based on the
capabilities of the user and the tool he is using. Each
operation involving a global NSW file undergoes strict access
checking by the WM before it can be accepted . This is not of
concern to the Foreman implementat ion , since the WM provides all
of the access checks. The types of checks are mentioned here

• only to completely describe the primitives that the tool uses.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Tt~ WM file system and its access controls are described in the
Works Manager Procedures document.

-t 5.8.1 Global NSW Filespace Primitives

1. DELETEGLOBAL (files pec , qhelp) —> NSW—filename

This is the primitive a tool uses to delete an existing file
from the global NSW file space. Global space deletion cannot
take place until the WM verifies that filespec designates a
unique file to which the user has delete access. This access
is blocked by a set semaphore . Assistance is obtained as
indicated by qhelp. Once a file has been deleted , it will no
longer be accessible for GET , COPYGLOBAL , RENAMEGLOBAL , etc.
The actual full NSW filename of the deleted file is returned
to the tool after a successful DELETEGLOBAL operation .

2. RENAMEGLOBAL (filespec , entry—name , qhelp, qreplace) —>
src—NSW—filename , dst—NSW—filename

A tool uses this primitive to change the name of an existing
global space NSW file. It renames one global space file to be
another global space file. The WM verifies that filespec
designates a unique file to which the user has delete access.
Enter access is also required for generating the new file
name . The new tile acquires any tool supplied attributes of
the old file. A set file semaphore blocks a RENAME operation.
Qhelp and qreplace are used according to their definition.
Both source and destination NSW filenames are returned to
inform the tool of the operation which actually took place.

3. COPYGLOBAL (filespec , entry—name , qhelp, qreplace) —>
src—NSW—filename , dst—NSW—filename

A tool uses this primitive to create a new global NSW file
which is a copy of an existing global space NSW file. It is
similar to RENAMEGLOBAL. with the exception that on completion
both the source and destination tiles exist. For global
space copy , enter access is required as well as delete ac cess
if copying to an already existing tile name. Qreplace is a
boolean which when true causes file replacement to be the
default on collision of file names. Qreplace with value false
means that either help must be obtained or the operation must
fail. Both the source and destination full NSW—filenames
actually used to complete the COPYGLOBAL are returned for the
information of the tool.

5—25



5.d.2 Primitives for File Movement Between Spaces

~4. GET (filespec , input—attribute—code , qset , qhelp) —>
NSW—filename , new—filespec (only if changed), version #

A tool uses this primitive to cause a copy of the global space
file denoted by filespec and having the attributes specified
b~~ input—attribute—code to be moved into the tool workspace.
This working copy can then be manipulated by the tool using
workspace file access primitives. When GETting a copy of’ a
file obtained from the central catalog , the WM verifies that
the user has copy access to the file, and that the file has
the input—attributes specified by the tool. If these
conditions are met , the WM initiates the proper actions to
have a copy of the file moved into the tool workspace. This
file movement may involve a network file transfer. When
calling for a file transfer, the Wtl also insures that any file
conversions which are necessary and possible are indeed
performed. File conversions are based on the current state of
the file and the intended use of the file by the tool (see The
File Package document). Qset indicates whether or not the
tool desires to set the semaphore associated with the original
copy of the file. Note that in the event that the tool does
not choose to utilize semaphores (this is indicated in its
static tool descriptor) then the WM may automatically set the
semaphore regardless of the value of qset. Qhelp indicates
how the tool wishes to handle name ambiguity. The full
NSW—filenaine of the file actually copied into the workspace is
returned , as is any new filespec for this file (possibly
obtained via user help). The version number of the workspace
copy is also returned for the information of the tool.
GETting a copy of a file for which the workspace already has
the matching filespec and NSW—filename causes a new highest
version to be created. GETting a copy of a file for which the
workspace already has a matching filespec with a different
NSW—filename will cause an error return to the tool.

5. PUT (filespec , ver sion # , entry—name ,
output—attribute—code , qreplace , qhelp) — > N SW—f ilename

A tool uses this primitive to place a copy of a workspace file
into the global NSW catalog . The file is identified by
filespec and version number. Entry—name is the full
NSW— filename (less any defaulted Entry scope) the tool wishes
the file to have . If not specified , entry—name defaults to
the name part of the full NSW—filename contained in the LND
entry for the filespec (this is usually the same name as the
one returned from the GET operation). If the LND has no
NSW—filename and entry—name is not specified , then the Foreman
returns failure to the tool. The WM requires that the user
have enter access in order to deliver new files into the

5—2V



global space. The output—attribute—code is a tool dependent
code denoting an a t t r i b u t e  which should be associated with the
file. The WH will convert these codes to textual attributes
which become part of the full NsW—filename . Qhelp guides the
WM in seeking help with filename conflicts , and qreplace
indicates whether the tool desires that the current file
replace any file which may already exist with the same name.
The full NSW—filename of the file as it is put into the global
catalog is returned to the tool. A copy of the file also

• . remains in the workspace, and can be referenced again using
any workspace file manipulation primitive.

5.b.3 Primitives for Workspace File Manipulation

6. OPEN (filespec , version # , new— file—flag ,
old— file—only—flag , type—of—access) —> file—handle

The tool uses the OPEN primitive when it wants to actively
access file data in a workspace NSW file, or to create a new
workspace NSW file. A successful OPEN returns a handle for
the referenced file. The handle is intended to be used when
subsequent manipulations of the file data are requested. The
nature of the handle , as well as the primitive operations
available for the actual data manipulation are host dependent ,
based on the existing host file system , and are beyond the
scope of this document. The handle is necessary since tools
use NSW syntax for dealing with NSW domain files, and for the
most part remain ignorant of the intermediate representation
of’ the file in the local host file syntax. However , a Foreman
implementation is not forbidden from using the local host
syntax for the file as the handle returned from the OPEN ,
although this is not recommended . The file handle is also
used to query the Foreman regarding any NSW information the
Foreman maintains about the file, including the full NSW
filename , known attributes , etc., should such a primitive be
implemented.

If the new—file flag is set, a new local workspace file is
created using filespec and version number (default is next
higher version). The only failure for creating new files,
other than failures due to the nature of the specific
workspace implementation , is when specifying a version number
of a filespec which already has such a version.

If the old—file—only flag is set, then success can be returne d
only if an existing file adhering to the filespec ,vers ion
specification is found. If neither the new file flag nor the
old file flag is set, then a failure to find an existing
wor kspace file results instead in creat ing a new local file
referenced by filespec .

5— 2 7  



- — - -

The type—of—access parameter is optionally specified by the
tool to indicate more precisely the type of file access it
requires (e.g. read , write , read&write). The default for
type—of—access is read & write. A Foreman may find the
type—of—access information useful in determining whether a
file is being modified (and may need to be delivered back into
the global space), and in utilizing the structure of the
underlying file system.

The search for an existing file matching filespec is within
the local workspace only. Version number defaults to the
highest existing version (except for new file as outlined
above).

.. CLOSE (handle, output—attribute code, qdisp) — )

The tool uses this primitive to indicate that it has completed
accessing the file denoted by handle and that the system
should now assume responsibility for it. In addition , using
qdisp the tool can guide the Foreman as to the ultimate
disposition of the file i.e. whether it needs to be placed as
a global NSW file (qdisp:true), thereby becoming referenceable
by other NSW tools; or whether it can remain a workspace file —

unt il the end of the sess ion or until such time as the tool
instructs the Foreman to do otherwise (qdisp=false). The
default value of qdisp is true, i.e. deliver the file at the
end of the session. Completion of the CLOSE invalidates the
handle for the file, and further access to the file must be
preceeded by another OPEN.

The output attribute code is a tool dependent code denoting an
attribute(s) which should be associated with the file. When
the file is delivered to the global NSW space , the WM will
convert these codes to textual attr ibutes which become part of
the full NSW filename.

8. DELETELOCAL (f ilespec , vers ion •) —> vers ion of deleted
- 
- file

This is the primitive a tool uses to delete an existing file
from its workspace. For DELETELOCAL only the workspace is
searched for the matching filespec . The default version
number is the lowest numbered version. Once a file has been
deleted , it will no longer be access ible with OPEN, PUT , etc.
The version number of the file actually deleted is returned to
the tool on a successful deletion.

9. RENAMEL.OCAL. (from—filespec , from—version 9, to—filespec ,
to—version 9) — >  from—version 9, to—version 9



- - -—- —-•-•- _~~~~~

A tool uses this primitive to change the name of an existing
workspace file. It renames one workspace file to be another
workspace file. The new file acquires any tool supplied
attributes of the old file. For RENAMELOCAL , from—version 1
defaults to the highest existing version and to—version 1
defaults to a new highest version for the file. The version
num ber of the files actually operated on are returned to the
tool.

10. COPYLOCAL (from—filespee , from vers ion 1, to—filespec ,
to—version 1) —>  from—version 9, to—version 1

A tool uses this primitive to create a new workspace file
which is a copy of an existing workspace file. Both the
“from” and “to” files exist in the workspace on successful
completion . Note carefully that COPYL.OCAL merely makes a
copy of the file. It does not provide access to the file
data. In general , since the actua l local host name of the
file remains unknown to the tool and no handle for it is
provided through COPY , accessing the file requires an OPEN
primitive . The from—filespec can not normally be defaulted ,
but the to—filespec defaults to that selected for the
from—filespec . Default versions are highest version and next
higher version for from—version and to—version respectively.
The version numbers of both the “from” and “to” files are
returned to the tool.

5.9 Other File Related Primitives

There are a few other file related primitives which are
thought to be needed but not necessarily for the current set of
tools in the initial configurations.

5.9.1 Global Space Primitives

11. WARRANT (f’ilespec , attribute code) — >  new NSW—f’ilename

This primitive is used by a tool to assign attributes to a
global space NSW file . (Recall that attributes can also be
assigned to an open file at the time it is CLOSEd , an d also
when it is PUT into the global catalog. These are probably
the most prevalent means for assigning attributes to files).
The attribute code is a tool specific indicator for textual
attributes which become part of the file name . The new full
NSW—filename is returned to the tool , since the result of a
WARRANT may actually change the filename. Filespec must
uniquely identify an NSW file. Help is not provided , since
only tools (i.e. not users) can assign attributes to a file.

5—2q 

-—-- - -~~~~~--—. •~~~~~~~~~~~~~~~ •~~~



P..— —--•
~~~~

•-- ••--•-•---- --—

~

-- _ - - - - —-.

~~~~~~

- --•-

~~ 

_•— - - _ ---•-,- ------—-- • - --

~~

•--,- . ---- - —--- •- -- - --—-- _•-• -.- -——_ — --—— - _•••__
~--•_--_ -•—__;

_ ______ ••__ _ _ ___ _ - - -
~

The warrant capability is not yet supported by the WM and
therefore need not now be supported by the Foreman.

[For completeness , we refer the reader to the previously
men tioned semaphore related operations , which are also global
space primitives.]

5.9.2 Local Space Primitives

12. GETFILEDESCRIPTOR (local filespec or handle , version 1,
data fields) —> data structure with specified items

(A primitive of this type is an optio~aal implementation item).This priziitive is used to view the information associated with
a workspace file through its LND. Typical data fields will
include: full NSW—filename , file attributes , existing
vers ions , etc.

13. CHANGEFILEDESCR IPTOR (local filespec or handle , version 1,
data structure with changed items ) —> change outcome
indicators

(A primitive of this type is an optional implementation item).
This primitive is used to change the LND information
associated with local workspace files. Some LND information
may not be subject to change. The exact nature of the
information kept in the LND will be implementation dependent . - —

5.9.3 File Movement into and Out Of the NSW System

The following four primitives are used essent ially to move
files into and out of HSW controlled spaces, either the global
NSW fi]espace or the tool workspace. The primitives serve as

- • interfaces to Works Manager facilities of the same name .
READDEVICE and WRITEDEVICE are used to move copies of non—NSW
files into a tool workspace , and to move copies of workspace
files into non—NSW controlled space. IMPORT and EXPORT perform
the same functions using the global NSW filespace as its base of
operation. By non—NSW file space we mean not only space on file
oriented devices , but also physical devices such as card readers,
line printers , magnetic tape, etc. A user profile guides the
default locations for the various physical devices. That is, a
tool might request that a part icular file be written
(WRITEDEVICE) to the LPT (lineprinter). The user profile would
indicate which lineprinter was local to the user , and perform the
transfer. The details of using the user profile are currently
being worked out.

5—30 

- •~~~~~~~ • • ~~~~~ , ~~~~~~~~~ - •~~ -



-
~

— . .— . — -- —- — — -  -— _ ,-

P1. EXPORT (filespec , external—name , password , qhelp) —>
NSW—filename

EXPORT copies a global space NSW file to a non—NSW
destination. EXPORT verifies COPY access and sends a copy of
the source file to the location designated by external—name .
An external—name is either an ARPANET pathname or a device
pathname . Password is a string which is used for gaining
access to the external directory , device , etc. The full
NSW—filename of the file actually EXPORTED out of the NSW file
system is returned for the information of the tool.

15. IMPORT (external—name , passwor d , entry—name , qhelp) —>
NSW—filename

IMPORT is the inverse of EXPORT , i.e. bringing a non—NS W f i le
into the global filespace.

16. READDEVICE (external, password , filespec , version 1) —>
version 1

READDEVICE is used by tools to input from sources outside the
NSW without making a global space file. The file is placed
directly in the tool workspace. Version 1 defaults to a new
highest version. The actual version number of the created
file is returned to the tool. When (if) the file is placed in
the global file space , it must be given a full NSW—filename .

17. WRIT ED EV ICE (fi] .espec , version 1, external—name , passwor d )
—> version U

WRI TED E V I CE is the inverse of READDEVICE i.e. copying a
workspace file directly to a source outside the NSW domain.
Version 1 defaults to the highest existing version. The
version number of the file actually transferred is returned to
the tool.

[Only IMPORT and EXPORT are available for tool invocation in
the current version of the WM.]

5.10 Implementation of the File Primitives

The WM has procedures that can be invoked by the Foreman to
implement the global space file manipulation operations. There
are procedures for delet ing, renaming, and copying global space
files. These procedures and their call/return sequences are
described in the Works Manager Procedures document. Each

• procedure is invoked by sending a generically addressed message

5—31 

- • • - -—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~
— - - - •~~~~~~~~~~~~ - -—-~~

to a Works Manager process. Every procedure call generates a
reply which can be obtained using the ReceiveSpecific MSG
primitive. Replies to multiple outstanding procedure call
messages can be distinguished through the conventional use of
transaction IDs. These IDs are generated by the invoking process
(Foreman) and are included in the message specifying the
procedure call. The recipient of the message (a WI process)
includes the transaction ID of the call in any reply that it
generates. The NSW message transmission conventions (see
Postel’s note of 10 March 1976) also include indicators of
whether a message is a new request or a reply to a previous
request. This enables the Foreman to distinguish replies for its
WM requests (e.g. W$DELETE) from WM commands regarding the tool
(e.g. F$STOPTOOL), since both ty pes of messages are rece ived
using the same ReceiveSpecific MSG primitive .

For GETting a local workspace copy of a global space file ,
the Wor ks Manager ’s W$OPEN procedure is invoked. The local host
syntax tile name (of the new workspace file) which the WM returns
is used as part of the basis of a new LND entry reflecting the
NSW name given to the copy . For PUTting a file into the NSW
global space, the Foreman merely invokes the Wor ks Manager ’s
W$DELIVER procedure regarding the local host file indicated by
the LND entry associated with the workspace filespec.

For local workspace file delete , rename and copy the obvious
L.ND manipulations are performed . The local host operating system
will usually provide help in actually deleting the files, should
this be desirable. If not, and also in the case of RENAMELOCAL ,
merely changing the contents of the appropriate LND entry is
sufficient , since the tool does not deal with host syntax file
names anyway. The OPEN and CLOSE primitives are implemented
entirely within the Foreman to perform the function of relating
the NSW file syntax and conventions to the underlying host file
system.

The Foreman is not expected to implement controls over the
type of access a tool has to workspace file copies since there is

• no NSW concept of file write access, append access , etc . The NSW
is based on getting xerox copies of files, performing arbitrary
opera tions or the copies , and then trying to deposit the altered
copies back in the global space . It is the act of obtaining a
copy (co py access) and the act of placing a new file (enter and
possibly delete access) in the system that require access
control. (However , since t he host file system may require more
specific access type information , the imp lementat ion of a Foreman
for a part icular host may require addi tional parameters
indicat ing the type of access a tool needs to the part icular file
(i.e. the type—of—access parameter of the OPEN primitive).
Whether or not this is included , at file CLOSE time , it is the
responsibility of the Foreman to attempt to determine whether or
not a file has been modified , and may therefore be a candidate

5— 32

~
—— - .

~~~~~~~~~~~~~~~~ 
— — 

—

for re — del ive ry  into the global catalog . Mod4fied files should
be so marked within the LND as an aid in post—tool delivery
decisions.

5.11 Extension of the File Name Syntax

In the implementation of primitives which refer to a tool
user ’s files , it is often useful to have the system itself (in
this case the Foreman) gather from the user the strings for
identifying files. An example of such a facility is the GTJFI-I
(Get ,JFN) system call in the TENEX operating system , where as an
option , the program can defer the actual accumulation of the
filename string to the operating system. The alternative is to
have each tool gather its own filenames by using available
communication facilities. For tools that utilize direct channel
communication with the user , having the option of specifying the
connection to the user instead of’ a filespec , and letting the
Foreman gather the filename string can lead to a much simplified
tool implementation. It is recommended that Foreman implementers
consider such an interface to their file system primitives.

Howev er , whether the Foreman or the tool gathers the filenames ,
the user is often the ultimate source of the parameters supplied
with the file system operations and as such , the NSW user must be
provided wi th  a way to syntacticly specify the exact file on
which to operate. That is, the user level NSW file syntax must
at least include an option for specifying a particular version
from a set of workspace files. If a tool does not provide
separate user commands for operating on local and global files,
then it may also be necessary to syntactically specify the space
to which a filespec refers. We think it important tc. present
these features uniformly to the user , independent of the
tool/Foreman he is currently using. In that regar d , we are now
specifying a syntactic extension to the NSW f’i~ ,name , which can
be used by NSW tool users to explicitly specify a version of a
particular file. Further extensions delimiting the domain of a
filespec may also become appropriate. We emphasize , however ,
that these extensions are usable only within tools and Foremen ,
and have no meaning whatsoever at the WM command language level.
A user must understand the local workspace concept and when it
applies to grasp the meaning of the syntactic extensions.

The syntactic extension consists simply in adding a field to the
end of the NSW filename syntax. This optionally specified field
is to be delimited at the beginning by a semi—colon (“ ;“)

• character. Following the “ ;“ can currently only be a decimal
integer between 1 and 32. This Indicates a part icular  version of
a file. By its very nature , a file specified with a version
number must be a workspace file , since version numbers are not
supported at the global space level. Other extensions will be
defined as necessary. Filenames which do not include any

5 •3•3



- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -•-~~“‘-~~~~ - - - —-— _—•---- —- - • - •~~~~~~~~~~~~~ -~—-—- -~~~~~~~

extensions (currently a version number is the only possible
extension) will take t~ - ’ normal default for the particular
operation.

exam ple:

WALDO . GEORGE. TXT; 23
the local workspace for use or creation depending on the context
in which it is used.

The determination of’ the version can be derived from either the
parameters associated with a call (i.e. version 1) or explicitly - •
from the syntax of the f’Ilespec provided. FIlespec syntax takes
precedence over tool parameters in the event of conflicts , since
we assume the user to be responsible for most syntax related
directives.

I

5—34

- •~~~~~~~~ - —--- -—----~~~—-• _~~~~~ — - —-- • —~~~~—-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

— --~ -~-. ,—,.~~•--
--- •-.•--•-— -_ - •.-- —.•—- --— —•-- - _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —•~~~-~~~~~ ----- .- ~~~~~~•.~~~—-—----~•_----• —- •— ——-

VI . Tool to Front End Communication

The NS~ user accesses the NSW system through a Front End
process. For those tools that require direct user involvement ,
the Foreman and the Front End must cooperate to provide channels
for the communication . We are firmly committed to providing
tools with the ability to utilize MSG for both message type
communication and direct connections with the FE. The FE could
interpret and package user input and transport the pertinent data
to the tool in a network MSG message . The tool to FE
communication could be handled in an analogous fashion. Another
approach to tool/FE communication is through the use of direct
network connections. This would typically take the form of an

• ARPANET telnet connection pair from the FE directly to the tool.
The decision as to which type of communication facility a tool
uses is left entirely to the tool builder. The extent arid type
of user interaction which the tool supports , as well as the
possibility of additional burden on the FE system must be weighed
in selecting a mode for tool communication. Using the techniques
outlined in the MSG document addition NSW Note #11 (and included
as Appendix 2 of this document ) we will support tool
communication with the FE using direct (but controlled ) tool
access to both the message and connection oriented MSG
facilities. A tool will be able to selectively use messages , or
sets of connections , or both , depending upon the tool
circumstances. However , again letting immediate necessity drive
our initial efforts, we find that the Initial tools are not
wri t t en  using a message type FE interface. Rather , they utilize
a terminal oriented interface , best served by a direct connection
from the tool to the FE (and hence the user). Because of this ,
we temporari ly defer  extensive details of the tool—FE message
interface. These details will be of primary concern immediately
after the initial Formen implementations are complete. We do
require however , that the Foreman support direct FE to tool
connections as an immediate objective. This does not require any
of the modifications mentioned in Note #11 , and hence is in line
with the short term implementation plan for all NSW components.

The Foreman in i t ia l ly  received the MSG process name of the
FE process servicing its tool (see description of F$BEGINTOOL
request). Based on this information , the Foreman is requir ed to
implement a CONNECTION—TO—FE primitive operation for its tool.
To establish the (Telnet) communication path between the FE and
the tool , the Foreman sends an MSG message to the designated FE
process. The message is a request to exchange MSG connection
operations , and indicates that the connection should be of type
telnet. After sending the request , the Foreman immediately
issues its MSG Openconn primitive directed toward the FE process.
If the Openconn succeeds , the handle for the connection(s) is
returned to the tool as the response to the CONNECTION—TO—FE
primitive . If the Openoonn fails after a sufficiently long
timeout and retry period , then the Foreman reports failure to the

5—35

I

~~L. - ~~• • ~~~~~~~~~~~~~~~~~~ 



- • •.—.--- -- - — —- - ‘-—~~---, — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,;--- - • --,-n •--

tool. The MSG message sent to the FE process requesting the
connection requires no acknowledgement.  The completing of the
connection serves as a positive acknowledgement to the request .

In cases where the Foreman knows that the tool requires a
direct FE connection (e.g. encapsulated tool), the implementat ion
may be such that the Foreman acts to create the connection
without requiring the tool to request it. However it is
accomplished , the initial Foreman requirement is that each tool
be provided with a means of using a direct telnet connection to
Its FE process. The exact nature of the FE support for to°l
connections is detailed in the forthcoming document describing a
minimal Front End .

5—36

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “---.--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _

VII. Tool to Tool Invocation and Communication

7.1 Present State

The mechanisms for tools invoking other tools or interac ting
with other existing , background tools, and then for tool—to—tool
communication certainly constitute a part of the abstract tool
environment. However , no tool from the set of initially
anticipated tools needs to use such facilities. Therefore, we
are postponing the precise description of the mechanisms provided
to tool builders for dynamically creating other NSW entities and
communicating/synchronizing with them. At this point however , a
rough sketch of the planned mechanisms and a possible
implementation strategy can be given. It must be emphasized that
much of the content of this section is still in the design stage ,
and is presented here only to give a more èomplete picture of a
future direction , The emphasis placed on these areas is
dependent on the nature of the tools which will populate the NSW ,

• and on whether or not people are willing to customize their tools
for the NSW. To even allow the possibility of extensive
customization , we are present ing the conce pts surrounding these
other aspects of the tool environment. It is difficult to judge
the impact of these extensluns in the absence of tool candidates
which need to make use of them. However , we will pursue the
refinement of somt of the tool—to—tool concepts so that as tools
emerge which require such facilities (as they surely will), we

• will have a cohesive approach for handling them. Implementation
may await an expected use. To this end , we invite comments and
suggestions on these more complex uses of the NSW .

7.2 Emerging Tool—Tool Concepts

As in the file system operations , the WM and the Foreman in
combination are responsible for the dynamic creation and
communication aspects of the tool virtual machine , with a large
assist from MSG . A general overview of the supported facilities
is that there is a variant of the Works Manager ’s W$RUNTOOL
procedure which can be invoked via the Foreman by a tool to
create a new instance of another tool. Each tool will be able to
use MSG facilities for sending and receiving specifically
addressed messa ges, sending and receiving alarms , and setting up
and taking down direct connections , all to a selected list of
conversants which Includes any tools it has started . Some of the

H ancillary features of MSG are expected to be included in the tool
domain (e.g. Rescinding MSG primitives , Resynchronization with a
correspondent). The direct use of MSG by tools is based on the
concepts outlined in Appendix 2. The tool will also be provided
with primitives for locating service facilities which are

• implemented as tools, but which do not dynamically become part of
the initiating tool’s job , as Is the case with tool—to—tool
creation . With proper verification , the tool can then engage in

5—37

~~~~~~~~~~~~~~~~~ -~~~~~- --~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.
— • - ~~

___
~--v-_-~~-- ~~~~~~~~~~~~~~~~~ 

—-a 
~~~~~

- — .,
~~

message and/or connection oriented exchanges with the service
tools.

For dynamic tool creation as well as for trying to locate
and utilize a background service tool, we provide tool primitives
which are fielded by the Foreman. The WM implements procedures
which perform the access checking as well as establishing new
components where needed using MSG facilities , and returns the
pertinent information to the initiating Foreman. The Information
returned includes the MSG process address of the new tool. The
Initiating Foreman then manipulates its tool’s environment using
1450 primitives to allow message and/or connection type of
communication between the tools. The Initiating tool can specify
the MSG process name of a process in Its family tree which is to
serve as the FE process to the new tool. The Foreman of the
newly created tool receives the address of the creating tool as
well as the process which Is to serve as the tool FE (if any) and
adjusts its tool’s environment to facilitate communication with
these processes. In addition , we envision providing primitives
with which the creating tool can control the progress of the new
tool and terminate it , in much the same fashion as the user can
control a tool through the WM command language.

Once the tools are in communication , they can pass around
- the names of other tool instances that they know about. We

• perceive a Foreman call by which a tool can ask that
“communication to process xxx ” be allowed. The Foreman would try
to get the WM to consent to the pair as legitimate conversational
partners. If they are , the appropriate Foremen are notified to
adjust the MSG environment for their tools, and communication can
proceed without further Foreman intervention. How the WM decides
if two tools should be allowed to communicate is an aspect of the
tool—tool model still undergoing Investigation. Another very
important aspect of the tool—tool problem , which also has no
immediate solution , is handl ing the s i tuat ions in which system
failures cause breaks in the process trees.

5—38

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



VIII. Tool Encapsulation

The initial TENEX approach to integrating tools into the NSW
was through an encapsulation technique . This approach has proven
very successful , an d we , therefore , feel that each Foreman
Implementation should consider a similar facility. -

In general terms , NSW encapsulation implies the automatic
trapping and translation of local host operating system calls
into calls meaningful in the NSW system. Any trapping and
translation is done within the Foreman process. Using an
encapsulation technique , we take programs which are written
exclusively for the local host operating system execution
env ironment , and with little or no modification execute them as
NS~ tools. This is possible only because of the similarity, inmany as pects , of the NSW system to a conventional single host
operating system. As an example , when an encapsu lated tool issues
a local system primitive to gain access to a file , the Foreman
could get control and translate the request into one which
provides access to an NSW file . This assumes that the “old style
tool” is somehow capable of handling the NSW filename syntax
within the local host file manipulation primitives. In TENEX , for
exam ple , this is often be very easy since the tool will
frequently allow the “system ” to gather the filename from the
user. In TENEX encapsulation , the Foreman is interposed between
the tool and the operating system only for selected system calls.
With its intimate knowledge of both the local system primitives
and the NSW system structure , the Foreman gathers the NSW
filename and ensures that the tool utilizes NSW files. Using both
local host facilities and facilities supported by other NSW
components (e.g. WM), the Foreman “implements ” the local host
file primitive in a new context.

Encapsulation àannot be discussed in terms of its
algori thms . It requires an extensive knowledge of the local host
operating system primitive operations , and a determination of how
they can be made to relate automatically to the NSW environment.
Thus each TBH approach to encapsulation will  probably be
different. As far as the other NSW components are concerned ,
running an encapsulated tool is no different from running a tool
which was written to function in the NSW. The behavior of the FE
and the WM Is identical in the cases of the Integrated and
non—integrated tool , with the exception that the WM notifies the
Foreman in the F$BEGINTOOL. message that it will be running a tool
which requires encapsulation. We can , however , speak in general
terms about certain aspects of encapsulation.

Encapsulation requires some mechanism with which the Foreman
can gain control after the tool executes certain operating system
functions , but before the operating system proceeds with the
local implementation of the operation. The TENEX JSYS trap
facility is an example of such a mechanism. It is entirely left

5_3Q

L - - - ~~~~~~~~~~~~ -~~~~~~~~ ~~ -~~~~~~~~~~~~
—-• —•

~--~~~~~~ ——-~~~~~~~ 
-- -- - --

~~~~~~~ 
-
~~~~~~~~~ 

- -
~~~~~~~~~~~~ 

- -
~~~~~~~ ~~~~~

—- -



-

~~~ 

-

~~~ 

- -

to the encapsulation implementation to determine which system
calls need trapping and how to Integrate these calls with NSW
fac ilities. For the mos t part , the tool initialization and
termination conditions , interactions with the file system , and
the communicat ion with the tool user will all require careful
attention within the encapsulation component of the Foreman. In
some cases , mapping the local system operation into a comparable
NSW facility will be straightforward . An example is the terminal
interface which drives many tools. The Foreman can simply request
the creation of a direct FE connection of type Telnet , and

• provide this “t4SW connect ion ” to the encapsulated tool. In other
areas , the Foreman has a w ide range of poss ible implementation
strategies. An examp le of this type is the handling of file
delivery into the NSW tile system. Since encapsulated tools are
no t aware of the NSW f ile system , they cannot guide the Foreman
as to the disposition of the files. The Foreman must choose an
implementation strategy for delivering new and changed files to

— the global NSW file space. This can be done as the files become
• available (i.e., closed in most operat ing systems) , or only at

the end of the tool session , or even anywhere in between. Each
enca psulation implementat ion selects the strategy most
appropriate for the anticipated needs of the tools for that host.

TENEX NSW encapsulation already exists for selected tools.
In general , the simpler a tool is, the more easily it can be
encapsulated . By simple , we mean the straightforward use of
common operating system facilities. Such facilities a~-’e apt tohave analogous mechanisms in the NSW , since the NSW caters to
many of the same aspects of the tool environment but with wider
domain. Depending upon the effort placed into translating system
calls , a Foreman will be capable of encapsulating an expanding
set of “old tools.” However , let us emphasize that  encapsulation
has limitations. There will always be local host programs which
cannot be NSW encapsulated . This is because the NSW system IS
different from the local host sys tem , an d substituted components
can be made to appear similar only to a certain degree. Tools
which utilize obscure features , or features peculiar to a
particular operat ing system are sure to be diff icult or
impossible to encapsulate correctly. Very often this will mean
that certain features of a tool are not available when using the
tool encapsulated. If this is not satisfactory , or if other
problems prevent the tool from being encapsulated (e.g., the
local host does not have system facilities for building an
enca psulator) then the tool program must be modified to directly
call Foreman NSW primitives if it is to function as an NSW tool.
Let us also emphasize that for a tool to be most effect ive in the
NSW domain it should be coded using the NSW facilities directly.

We feel that for some TBHs enca psulat ion can have a high
payoff in establishing a large class of programs as NSW tools,
and should be actively explored . It is often undesirable to
recode existing programs , and it is in this area that

5—4 n 

— ---.-•- —--• - --—-——-———--- --- --•~ -- -- - - • -~--—.-—.‘-——- -—--- - - — — ‘-—-•~———- -- •~~~~~
— ---•-

~--—-—- - - •~~
--—-- - .-• -- ---• —-- ---- — - “  .

~~~—-


encapsulation has its maximum effect. Designing an encapsulator
is in many way s similar to designing a tool which directly
utilizes the NSW facilities. As such , much of the discuss ion in
the preceding sections of this document will be helpful. As a
note of interest , the form of the TENEX encapsulator for the
initial test NSW system has influenced the design of the Foremancomponent , since in a way , the encapsulator was an integrated
tool. Some of the concepts embodied in the TENEX encapsulator are
discussed as part of Appendix 1 , to serve as a model to other
encapsulator builders.

5—41

~~~~~~~~~~~~~ — ——
~~

- - —



- •  -

IX. Batch Tools

Until the present section , this document has primarily
focused on interactive tools. Interactive tools are tools whose
users are on—line while the tool is running. There are also
batch tools - tools whose users may not be on—line. The primary
difference between batch and interactive tools, therefore , is the
time at which information about input/output files, parameters ,
etc. is obtained. A user can supply information to an
interactive tool at any time while it is running. A user must
supply information to a batch tool before it is run. Thus , an
interactive tool needs controlled access to NSW resources while
it is running , and an active Foreman supplies the controlled
access. Access control for batch tools can be done before the
tool is run , so a much less complex For eman is needed. (Note
that nothing in this discussion precludes building a Foreman for
batch tools with all of the functions described in this
specification . We are merely pointing out that such a complex
Foreman is not required.)

We shall sketch the features  that  are absolutely necessary
in a batch Foreman. Since batch tools in NSW will be handled by
the IP protocol for the immediate future , we defer details until
a later version of this specification .

In the curr en t NS W model , execution of a batch job is
handled by the Works Manager Operator (WMO) process. The WMO is
given (by the Wt4 ) tables which contain skeleton job control
language (JCL)  and a mapping between dummy parameters in the
skeleton IJCL and NSW files, real values , etc. The WHO prestages
the job on a selected batch host by asking the WH to move (via
the File Package) all input files to that host. The skeleton JCL
is then edited to Insert local file names (obtained as a result
of the file movement) and parameter values. The IP server on the
batch host is then given the JCL and told to run the job. When
the job has run to completion , the IF server informs the WHO ,
which then moves (again via the FP) the result files into NSW
file apace. The minimum batch Foreman must support this model.
That is, it must have a WtlO—invokable F$SUBPIITJOB procedure and
it must invoke a WHO procedure W$JOBHALT . (In addition , it must
support status probes.)

A slightly more complex model requires that the batch
Foreman receive the tables now given to the WHO. The batch
Foreman would then be responsible for moving input files (either
prestaging or during execution) to the batch host , editing the
JCL , running the job, moving result files to NSW file space , and
informing the WM that the job was complete. We expect that many
batch hosts will prefer to control job execution more completely
in this later fashion.

5—42



:1 

- . I

Finally , some hosts may choose to imp lement a comp lete -

Foreman. F$SUBHITJOB would then be F$BEGINTOQL. and file motion
would be handled dynamically. This last case is the least -

explored of the possibilities although we expect that batch jobs
on interact ive hosts (TENEX , MULTICS) will be handled by this
mechanism.

The WM and ~MO will support these several different kinds ofbatch Foreman so that batc h tools may be run on hosts as diverse
as B1$700, 360/91 , and TENEX.

I 

-•- — --— - -- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



~~‘~~~~~~~~~‘ ‘  -
~
-- --

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • 
_,-,-__~ -_,~~_,.r_____ - - • _

“fl— - —•- .,.
~~~~ 

-

A ppendix 1. Functional Summary

This appendix summarizes the externally invocable functions which
must be Implemented by each Foreman , and proposes parameter value
conventions for the functions. Transmissions currently follow
the SRI conventions except where noted. That is, transmissions
are modified PCPB8 data structures of the form:

LIST (ty pe , length , tid , parameter , arge).

This appendix will, be modified from time to time , as needed .

5—44

.

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - -

- ~~~~~~~~~~~~ - • •- - ---.

~

-.-—. -

- ———- - - ---- --.,-—
~
--—

~~~~ 

- -

~~

---

~~ 

— —
~

--• • 
~~

--- - •- — • -

Functional Description and Transmissi-i Formats

A. Functions implemented within each Foreman

(Hote:  Because of a phased implementation plan , and because all
functions may not be applicable to all host systems ,
implementation may consist simply of replying with a rejection
message. In that sense , all functions must be implemented
(recognized) by all Foreman from the outset. The error code reply
value of 177777 ( 16 bit value) will be taken to mean
unimplemented function.)

All functions are Invoked with a reply requested (i.e., using
TID) except where explicitly stated. Recall that the F$ prefix is 

—

used as an expository aid in indicating a funct ion  implemented in
a Foreman. Where the string “n— ” prefixes an element , it should
be read as the element repeated n times.

A. 1 F$BEGINTOOL (program—name , tool—type , entvec , FE-addr ,
cr—addr , filename—list )—>result , qstart ,

workspace—descriptor , tool—addr

Program—name :
charstr: local host syntax completely specifying the program to

be run as NSW tool -

tool—type :
index :1 —> encapsulated tool

=2 —> tool uses NSW calls, does not use MSG
=3 —> tool uses 1’1SW calls & uses MSG

entvec: —

index =O— >do not start tool (Illegal except in F$BEGINTOOL)
:1—>continue from point stopped (illegal in F$BEGINTOOL )
:2—>co],d start entry point
=3—>warm start entry point
=~4—>termination routine entry point=7—>tool specific entry point

(Please note that the index value assignments for entvec
are changed from those indicated in the text of the
Foreman document.)

FE addr:
procaddr (new data type corresponding to MSG process address)

cr— addr :
procaddr

5—45

I

L _ _ _  _ _  



-~-‘—--‘ .----~ - -—-~•-.—
~~~~ -~--~

__
— - -••- ~.., ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~—-• ~~~~~~~~~~~~

•
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

filename—list:
list ( n—filenames)

filename : I 
-•

charstr: full local host syntax
result :

empty — > success
Index —> error code (error codes to be def ined)

qstar t :
boolean = true —> program started

false — ) program not started

workspace—descriptor :
list (name, access—Info)

name : charstr
access—info: charstr —> info used by File Package

to access workspace via name
empty —> access info  not needed by File

Package

tool—addr:
procaddr

A.2 F$STARTTOOL (en tvec)  —> result

entvec: Index (see above)
— result: index (see above )

A.3 F$STOPTOOL. (entvec) —> result

entvec index (see above)
result: index (see above )

A .14 F$ENDTOOL. (reason, termtype , qmaintain)—> result ,
accounting— list , qmaintained

reaso n : -

index = 1— > user request
=2—> WM decision
=3—> user disconnected

termtype
Index = 1— > no LN D processing necessary

=2—> step thru LND directly with user
:3~> automatically deliver latest copy of changed files

qmaintain
boolean = true —> maintain tool image if possible

: false —> don ’t maintain tool image (default)

account ing—lis t :
list (cost , n— l i s t ( t y p e ,am o u n t ) )

• 5—46

‘I

_ _ _ _ _ _ _  — ---~~~~—- -



cost: an in teger  r e f l ec t ing  the cost in cents of
running the tool.

type : an index i nd i ca t i ng  the type  of resource
accounted for

=1 —> CPU milliseconds
=2 —> connect minutes
=3 —> I/O operations
=~ — > pr imit ive calls
=5 —> core usage

to be defined as needed
(note: each TBH will select the types of
resource measures it will provide)

• amount: integer
reflects the session u t i l i z a t i o n  for  the
corresponding resource type (either in
resource units or in cents).

qmaintained:
boolean true —> tool image has been maintained

false —> tool image has not been maintained
(default)

B. Alarms to be recognized by each Foreman

6.1 alarm code = 1 —> forthcoming tool termination request
response : immediately begin processing input

messages looking for F$ENDTOOL. request ;
all other messages are discarded

B.2 alarm code 10 —> status probe (name = STATUS)
response: return list (k—statevariables) to

invoking process
statevariablel: NSW external state

index = 0 —> running
= 1 —> stopped , never started
= 2 —> stopped
= 3 —> running at termination code
= ~4 -.> terminated (tool did HALTM~)statevariable2: N SW in ternal  state

index = 0 —> running
= N —> awaiting completion of NSI

primitive # N
(note: the primitive name used
by tools need not be uniform
across all  TBHs. However , for
status reports , we s tandard . ze

F 5—47



-~~~ 
- — - 

~~~~
-
~~~~~~~~~~ - - ~~~~~ ~~~~~~~~~~~~~~~ —•~~.- -~~~~~~ - -~~-. •~~~ 

— -
~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

all tool functions by
equating each one with a code
indicating particular function
classes. It is this code
(non—zero ) which indicates the
type of NSW function the tool
is executing). *

statevariable3: current local operating system
state

index = 0 -> running
= 1 — > I/O walt
= 2 —> dismissed

statevariable 1l: current program counter
in teger

NSW primitive functional classes:
1—> global file space manipulation
2—> local file space manipulation
3—> MSG commun icat ion
~4 — > tool, invocation

~.3 alarm code = 11 —> accounting probe (name = ACCOUNT)
response: return accounting—list (defined earlier)

to invoking process

other alarms will be defined as needed

5—4R 
— 

— ~~~~-- -~~~--~~~~~~ ~~~~~~~~~~~ - -~~~~~~~~~~ • - - — — •  ~~~~~~~~~ — -~~~~~~~~~~~~~~~ --—-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - -~- --~----~~~ ~~~~~

A note on responses to alarm codes —

There is currently no convenient way to signify a response
to an alarm. Accordingly we are proposing the following addition
to the transmission conventions as outlined by Postel.

the standard message transmission format Is:
LIST (type, length , tid , parame ter , args)

for a response to an alarm we specify that

type = 3 (definition of a new type)
length (same as before)
tid = alarm code (the Id field contains the 1 . bit

alarm code for type 3 messages)
parameter (same as for type 2 acknowledgement)
args (same as for type 2)

In accordance with this format , a defined alarm code which has no
• Foreman implementation should return an error reply value of

177777 (unimplemented function).
Receipt of an undefined alarm code can simply be ignored.

‘l

c—/i q

--

~

~~~~~~~~ --~~~~~~~~



--

C. T~~~~EX Encapsulation

This section , which sketches selected aspects of the T~t~~XNSW encapsulator , is included as a model for potential
encapsulator builders. Encapsulation provides the implementer
with large margins of flexibility , and each such implementer must
decide upon the nature of an encapsulator best suited for the
existing local host programs .

An NSW encapsulated TENEX tool is automatically set up with
a network v i r tua l  terminal (NVT) to the FE process as its primary
input and output device. The structure of the TENEX operating
system has allowed the encapsulator to be programmed as an
ordinary user process. With respect to the tool it is running,
the encapsulator can gain control when the tool executes selected
system calls, and in addition can read from and write to the same
NVT which was given to the tool.

When a TENEX encapsulated tool requests access to a file
(using GTJFN operation), the call is such that in general the
program either provides a filename string or indicates a device

— or file which can be read to obtain the filename . To simplify
matters , in this discussion we will consider only the cases where
the program has specified that the filename is to be obtained
from the NVT (i.e., from the user) or is provided as a text
strIng parameter of the system call. If the call indicates the
user as the source of the file name , the encapsulator reads the
file name using the NVT. Since the file name has been supplied
by the NSW user , we can be certain that it is an NSW syntax
Filename referring to an NSW file. As such , we can simply check
the LND for a copy of the file, and failing to find one , we can

• try to obtain a copy from the global workspace. In either of
these cases, the tool is provided a direct handle for the TENEX
file representing the NSW file copy. In the case of a parameter
supplied filename string , the complexity increases. The filename
may refer to an NSW file (in NSW syntax) whose name was
previously obtained from the user. Alternatively , the filename
may refer to a TENEX file (in TENEX syntax) whose use Is outside
the NSW (e.g., a documentation file). The WM provides a list of
such locally accessible files to the encapsulator at tool startup
time . Using this list , and based on its knowledge of both the
NSW and TENEX file name syntax , the encapsulator determines if
the file is a legally referenceable TENEX file or an NSW file .

• Access to a TENEX file can be granted outright. Once we
determine a file name to be an NSW name then we search the LND
and consult with the WM as necessary to provide file access.

For those cases where the program requests a “new ” file (as
• indicated by the TENEX system call parameters ) it must de facto

be an NSW file, since encapsulated tools are not aware of the two
different file systems. In this case , an LND entry is crea ;ed
and the encapsulated tool is given a handle on a TENEX file

S_ 5()



nfl -. -~~~ - r ’ ~’~~ 
—.

~~~
—-—- .

~~~~~~~~
.- - - - - -

representing the NSW file. TENEX also has the facility to create
temporary files , i.e., files which disappear on logout. We have
taken the position that tools can ut ilize temporary files
unimpaired , since by their very nature they would not be
candidates for being maintained in the central catalog .

Since the encapsulated tools are not reprogrammed for t)~eNSW environment , they do not indicate which files need to be
delivered to the WM and when. Thus when an encapsulated tool
indicates (in TENEX terms) that it has finished accessing an NSW
file, the encapsulator determines whether or not the file has
been modified. If it has, then the file is marked in the LNI) as
possibly requiring delivery to the global space at a subsequent
time. We have taken the approach that file references are always
interpreted locally where possible. That is, in general , file
operations will, only create new local workspace copies of NSW
files and access these copies when they exist. No files are
delivered to the global space until the tool terminates , and then
only selected files ( e . g . ,  latest versions of changed original
copies). Version numbering and defaulting are supported as in

• TENEX , with some assist from the LND. The TENEX encapsulator
supports l imited TENEX style command ed i t ing  while accumulat ing a
file name from the user.

5—51 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


— — --
-. . , - . - - - *.---~~-*, -,~~,-__- - , •-_,,.-..__. _ • • • - -. •— .. .

~~ , , ~~~~~~~
“ ‘,‘r —,——--.--—

A ppendix 2. Foreman Induced MSG Additions

The following pages reproduce an appendix to the original NSG
design document. The document was originally introduced under
the name NSW Note #11. Because of the relevancy to the subject
of this document , and because it was not included in the
originally distributed 1430 report, we are including it as part of
the Foreman specification document.

I

5-52

—---- —~~ — - - -~~~~—-- —-- - - --- -— - - -

NSW Working Note #11
January 27, 1976

The Impact of the Foreman Concept on 1450

The needs of the Foreman component of the NSW have
motivated some proposed additions to the MSG facility. In
essence, a Foreman is a local—to—the—tool component of the NSW.
The Foreman provides an interface to the tool for the facilities
provided by the Works Manager , and in addition helps to provide
the NSW environment in which the tool is run . This note
discusses one aspect of that environment , the communication
facIlities made available to the tool.

To a f i rs t approximation , the message oriented
communication modes provided by MSG to the components that
create the NSW environment are also appropriate for tools to
communicate with other tools and with the user through a front
end process. However tools, especially those In the debugging
stage , cannot be allowed to function directly in the uncontrolled

• MSG env~,ronment.

The interprocess communication (IPC) needs of a tool , along
with the IPC needs of the Foreman component imply the existence

• of two logical communication streams. One set of messages is
destined for the Foreman , while the other stream is dest ined for
the tool itself. If the IPC needs of a tool can be satisfied
using direct connections only , then message traffic can be
dedicated to the Foreman implementation. If, on the other hand ,
the tool must be provided with a message oriented IPC facility
which is supported by or derived from the MSG message passing
cap abil ity , then a mult iplexing problem exists. In the following
we assume that it is indeed desirable to provide tools with a
message oriented communication facility for many of the same
reasons that such a facility was desirable for building the NSW
i tself . We also assume , for obvious reasons , that such a
facility will indeed make use of similar MSG functions.
Therefore, we must address any problems this situation causes.

For the tool/Foreman complex in the current MSG context
there seem only two possibilities: either the Foreman and the
tool occupy a single MSG process or they do not. (Note that in
any event , the Foreman must maintain a special re lat ionship to
the tool. That is, It is the Foreman that provides much of the
NSW virtual environment for the tool.] In the case where both the
Foreman and the tool occupy the same uSC process, the Foreman is
required to receive all incoming messages in order to filter out
the ones intended for the Foreman. This filtering would have to

5—53

~~~ _ _



- —.- --- ---~
,—__•‘ - - 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
- -~~~~~~~~~~~~~~ ‘*~~~ ‘~‘ ~~~~~~~

be based on NSW addressing conventions transmitted as part of the
message data. Messages intended for the tool would be passed to
the tool by the Foreman using local operating system facilities
outside the scope of MSC. The major advantage of this approach
is that it is very convenient to apply the needed access controls -

•on the tool’s use of the message facility. The Foreman
implements for the tool a new abstract IPC fac i l i ty which is
built upon the Foreman ’s use of 1480. The “new” IPC facility can
be customized for tool use if this is desirable. The major
disadvantage for the NSW stems from the fact that the IPC
facility we want to provide to the tools Is indeed very similar
to that offered by MSG. We would like a somewhat restricted
version of MSG. Yet to achieve this , we must incur an extra
transfer of control between the MSG facility and the Foreman for
each incoming and outgoing message of the tool. In addition ,
this may involve additional handl ing/copying of the messages an d
duplicating ;ome of the functions already performed by MSG (e.g.
sett ing up and queuing alarms , handling mul t ip le operat ions) .
Furthermore , the Foreman ’s use of the MSG fac i l i ty may confl ict
(interfere) with that of the tool (e.g. MSG queues only a single
alarm ; also , message sequencing is on an entire MSG process
basis). Such conflicts may force an otherwise unnecessary change
in the nature of the IPC facility available to tools.

An alternative NSW design is one in which the Foreman and
its tool are separate MSG processes. Their distinct MSG
addresses would mean that HSG itself could mediate the separation
of Foreman messages from those of the tool. The main
disadvantage of this approach is that MSG , as current ly defined ,
does not provide any way for the Foreman to limit the tool ’s use
of the message passing facility. The type of control needed for
the NSW application is fairly well understood . That is, we would
like to be able to limit the conversational partners with which
the tool can communicate , and have the Works Manager/Foreman
combination responsible for changes in the set of legal
conversants. In addition , it may be necessary to forbid a tool
from executing certain MSG primitives which are not directly
related to the sending and receiving of messages.

In the following sections we outline several additions to
MSG , which , if implemented , would allow an N SW tool to directly

• utilize the MSG IPC facility while allowing the Foreman to
specify limitations on how the facility can be used . The MSG
additions are in two basic areas. First , we would like to
establish the abil i ty of an MSG process to “introduce ” to MSG a
new process which MSG will then support. Such a new process has
presumably been created using whatever facilities are provided by
the local host operating system. The resu lt of a process
introduction is that the new process Is given an MSG process name
and can issue MSG primitives. Second , we would provide
additional MSG primitives which allow an introducing MSG process
to selectively manipulate an access control mat r ix which would be

5—54

~~~~~~~~~~~~~ •~~~~~ -- - - ~~~~~~ - - -- -— -- 



associated with every introduced process. Such an access control
matrix would indicate for each process the allowable objects of
each MSG primitive . (In general , the object of an MSG primitive
is an MSG process name.]

We view these additions to MSG as the cleanest , most
effective way to bring tools into the NSW environment while
providing them with  a flexible message passing communication
fac i l i ty .

Introducing New MSG Processes

Many modern day operatIng systems provide mechanisms for
dynamic process creation . There has been no limitation placed on
the nature  of an MSG process , so that mult iple processes (in the
local host operat ing system sense) can serve as a single MSG
process. In this way MSG programs can continue to utilize any
dynamic process creation primitives available on the local host
operating system. However , as currently const ituted , these MSG
processes must share a single MSG address and hence a single I4SG
message stream. In some cases this is exactly what is desired
(e.g. a structure which has one process (in the local system
sense) sending all messa ges , while another does the receiving).
However , in other instances (e.g. tool/Foreman) the concurrent ,
asynchronous operation of multiple processes would be impeded by
the single message stream , an d force each such MSG process to
implement its own local dispatching.

As suggeste d above , one way to allow MSG itself to mediate
the message stream between concurrent but cooperating processes
is to assign each a separate MSG address. It may at first seem
attractive to add to MSG the notion of a general purpose “create
new process”. Such a general facility is not necessary for
building the NSW. To be sure, such a general inter—host process
creation and manipulation mechanism is a goal we have In creating

-: the support environment for the tools themselves, but it need not
be implemented by MSG alone. The current discussion is concerned
with being able to more flexibly use within the MSG context
whatever local host operating system process creation facilities
are available. With that goal , there are a number of reasons for
refraining from defining a standard KSG “create process ”
primitive. One is that in many cases the creating process needs
to maintain a special relationship between itself and the created
process to maintain a particular type of cooperation. This may
take the form of being ab le to d irec tly manipulate certa in
aspects of the created p rocess , or perhaps results from sharing
parts of an address space . In any event , it would be difficult
to be able to represent all of the potential relationships from
all of the constituent systems , and even more d i f f icu l t  to
implement some of them . A second argument against a standard MSG
“create process” primitive is that it would have to be
accompanied by a suitable way of describing the process that was

5— 55

-—-
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -~~~— - —- - --~ -- fl -—-- -~~~~-- -- - — - — -~~-. - - ~~~ -- -

to be created . Typical ly thIs is handled in the context of a
fIle system , but there does not exist a unified ~4SG f I le store .
[Although a unifIed multI—host file system Is part of the NSW
design , It is not realized at the MSG level.]

An alternative to a unified 14SG “create process” primitive
•1 is the approach which acknowledges the local nature of the

creation and specification of new processes , but allows the
creating process to “introduce ” to MSG the created process. Any
special relat ionship between the processes, as well as the means
of specifying how to create the process is handled on a strictly
local host basis. It is presumably complete before the
introduction is made.

A f t e r introducing a new process to 1450 , we will have
establIshed two separate MSC addresses. The Foreman and tool can
have separate $80 message streams, with 1480 mediating between
them. However , process introduction by itself does not solve all -]
of the problems raised by the NSW Foreman application.

LImiting the Use of uSC Facilities

lip unt i l thIs point , the MSG documentation has been careful
— to avoid specifying any hierarchy of control among the MSG

processes. The MSG processes are largely independent of one
another from a control standpoint. Communication between
processes via MSG messages is unrestricted , with each process
determin ing for itself the va l idIty of any message it receives.
The concept of “in t roducing ” another process into MSG establIshes
a natural place for integrating a form of control by selected MSG
processes over other 1450 processes. The Introduction of any such
control is again motIvated by the Foreman application . However ,
we attempt to define the use of the control facilities in a way
which does not preclude its application in other contexts.

As a result of process introduction , the introducing
• process is established as the superior of the introduced process.

The superior/Inferior relationship represents a tight coupling
among MSG processes , as contrasted to the loose coupling provided
through message communicat ion . Termination of a superior MSG
process also causes the termination of its inferiors. Superior
processes are permitted to regulate their inferior ’s use of the
MSG facilities. ~ u s is accomplIshed through the addition of a
control mechanism associated wi th the execution of 1450
primitives. In general terms , the control consists of
associating an access control matrix with each new MSG process ,
and allowing superior processes to manipulate (through MSG
pr imi t ives) the contents of the matr ix for the i r in fer iors .
Entries in the matrix represent permission to execute a - -

particular MSG primitive on a particular object. MSG will reject
a primitive call from one of its processes If the access control

5~~5A

- - - •

matrix does not indicate that this (call, object) pair is
allowable. An object is usually an MSC process name . However ,
some 1480 primitives (e.g. Stopme) do not take objects as
arguments. In such cases , a single entry regulates the ability
to execute such a primitive .

• It may be helpful to view an MSG process which has no 1450
superior (i.e. has not been “introduced” by another 1480 process)
as having an unrestricted access control matrix. An MSG process
can only supply its Inferiors with rights that it currently has.
Removal of a right from an immediate inferior causes removal of
that right from any MSG process further down the hierarchy .
Applying access control to the sending of messages (data) has the
beneficial side effect of reducing bandwidth consumption by
unauthorized messages. It also increases the confidence in the
val id i ty of messages which are received.

MSG Primitives

-: The fol lowing is a set of primitIves which , if added to
MSG , would allow the Foreman to function in the previously
discussed mode. (This is just a rough sketch of the primitives ,
along with some possible implementation details).

1. Introduce New Process (pointer to process descriptor , pointer
to initial access control information , location of returned MSG
name , disposition)

This is the primitive which Is used to introduce a new process
into MSG . In response to this primitive , MSG establishes an MSG
address for the introduced process. The generic component of the
generated name is always null, implying MSG has no knowledge of
the funct ion performed by the process.
It also establishes the issuing MSG process as the superior of

the process , and initializes the access control matrix based on
- : the data passed in the parameter list. The new MSG name is

returned to the calling process.

process descriptor : local host operating system dependent
parameter for conveying to MSG the iden t i ty of the new process.
The exact nature of this parameter is dependent on the entity
which is discernable as a process on the local operating system.

access control information: list of pairs , where each pair is of
type (primitive , list of objects). Primitive denotes a particular
MSG primitive , and list of objects is a list of’ MSG process
names. Special designations exist for the classes of objects
“all” and “none ”. IndivIdual process names include all defined
MSG process name fields , with the additIon that each field may

.• optionally have the “all” designator.

5—57

- -~~ -- - - - - — -~~~~ -- -- ~~
_ _

~
- - —

~
-
~~

--
~~~~~~~ - •-•

~~
- ‘- -

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~
- •~~

2. Renounce Process (MSG process address , dIsposition )

This primitive is the inverse of process in t roduc t ion .  MSG
checks to see if the Issuing process is the superior of the
object process , and if so 1480 causes the removal of the object
process (including removing any knowledge of Its existence from
1480 tables). This also forces immediate rejection of all
outstanding uISG operations on behalf of the object process. Any
MSG processes introduced by the object process are similarly
renounced . Note that this does not have to necessarily result in
the destruction (in the local operating system sense) of whatever
constituted the MSG process. It only makes MSG itself unaware of
its existence .

3. ipdate Control Table (1430 process name , add/delete indicator ,
pointer to access control information , disposition)

Tnis primitive is used to manIpulate the access control
information associated with an inferior MSG process. MSG checks
to see if issuing MSG process is the superior of the object
process, and if so updates the access control matrix of the
object process according to the supplied parameters. In the case
of additions , the (p r imi t ive , objec t )  pair specif ied must  be
currently accessible to the issuing process in order for this
update to succeed . A deletion causes the same pair to be removed
from any inferiors of the object 1430 process.

access control information : same as def ined in the introduce
primitive .

add/delete : boolean which distinguishes adding entries from
removing them.

5—5P

~‘1 

• .  • . •  ~~~~~~
-‘  •- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ . •~~~~~~~~ ~~~ • ~~~~~~~~~ •


—••-— -__-,__—.,••n••,,.•__ __ —__,- — •__.__•_• ___.. --___.
______________ - - — -~~~~~

Chapter 6: Hardening , Scalin g , and Optimizing of the Works Manager

I Introduction

This document is a plan for hardening , scaling , and optimizing
the Works Manager (WM) component of’ the National Software Works (NSW) .
As such it does not directly treat other components of NSW — e.g.,
Front End , Foreman , etc. Nevertheless , the (not surprising)
conclusion we have reached is that large scale and reliability of’

• NSW as a whole can be obtained by distribution of’ the Wt1 over many
computers.

The other components of NSW — namely, Front Ends , Foremen ,
tools , MSG (protocol) servers , and File Packages — are already
distributed . Further , failure of a Single one of’ these components
only reduces the available resources of’ NSW ; it does not halt the
system. Conversely , the resources of NSW can be increased by adding
additional instances of these components. Thus , if we are able to
make the WM (the only centralized component) both reliable and large
scale , then we will also make NSW as a whole both reliable and large
scale. —

- The remainder of this document is organized into three parts.
The first part consists of a statement of the problem — what do we mean
by hardening , scaling , and optimization. Part two is a brief discussion
of various alternate solutions to our problem. Part three is a more
detailed description of the solution we chose — 1;he Pluribus multi—
processor. Part two is considerably shorter thai~ part three sincewe chose not to describe the inferior choices in great detail.

II Hardening , Scaling , and Optimization

The external statement of the problem to be solved was to
design a reliable , efficient system capable of supporting 1000

• concurrent users.

In this section we present our interpretation of this problem.
The first comment to make is that the three goals are , to some
ex tent , mutually exclusive. To make a system large scale generally
requires either many components or complicated components. More
components mean greater probability of single component failure , and
presumably, less reliability. Similarly , complex components will fail
more often than simple ones. Reliability usually involves much checking
of’ correctness and therefore degraded performance . (A component
performing a reliability check is not serving a user directly, so with
similar sets of components the more reliable system will usually provide
less service.)

6—1

_ - - --- —~~~~~~~----~~~~~ ------- -~~~~~~

- - - -C
~~~~~~~~~~~~~~~~ -_ — -~~ _ _ _  - -~~~~~

Thus , part of our task is to reconcile the conflicting demands
of the three goals. We have made the following explicit choices:

Large scale Is an external requirement. If’ we cannot
propose a system capable of handling the requisite
number of concurrent users ()000) at acceptable cost ,
then we have set our sights too high , and the external
requirement must be restated.

Reliability means a fail soft rather than a fail safe
capability. That is, the proposed system should try to - -

• always provide some level of service , but this level
may degrade in the event of’ multiple hardware failures.
Further , the system should be able to recover on its own
from almost all hardware failures. In addition , even
in the event o’ catastrophic failure , the state of the
system should be saved so that users do not lose m ore
than insignificant amounts of work.

Optimization is less important than either scale or
• reliability. Since the WM provides only monitor , not

computing, services , users can tolerate some sacrifice
in performance if such sacrifice is necessary to achieve
either the desired scale or reliability.

The next section discusses some of the possible alternates
which would implement a system with these characteristics.

III Alternate Solutions

This section discusses various approaches to the problem of
hardening , scaling, and optimization and briefly sketches reasons
for rejecting all but one approach. This discussion is presented in
a logical order which should not be construed to be an exact reflection
of actual chronological order. In fact , all approaches were considered
more or less concurrently. Whenever some approach was determined to
have a substantial defect , we shifted attention away from it and
concentrated on other possibilities. We do not intend , in this section ,
to present a detailed view of every possibility we considered . Instead ,
we will only summarize those possibilities and briefly describe the
deficiencies of each .

We first considered the possibility of’ optimizing the current
TENEX implementation to handle 1000 users. We can currently handle
approximately 2 5—30 concurrent  users. Optimization of’ existing
code might conceivably increase this capacity by a factor of 2 to 3.

The TENEX software milieu levies a high cost for this application.
Further improvement could be obtained by rewriting the timesharing

— ~~~ - ~~~~~~~~~~ - • - -- - --~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ --~~~~~~~~~ - • ---~~~~~~~~~~- - -~~~~~~~~~-~~~~~~~~~~- • • ~~-~~~~~~~~~~~ -



_______ - • — ---,—----.•- -— ---- ---—- -•

software , especially the f i le—handling an d inter process commun icat ions
systems. Total improvement from optimization and software rewrite
might be as much as a factor of 40. This falls short of a planned
system capacity of 1000 concurrent users. It would also be very
vulnerable (no reliability improvements), expensive (a dedicated
PDP—1O with a lot of new software), and incapable of further expansion.

Other single system milieus seemed equally unattractive for
the sane reasons. We were thus led to consider multiprocessor systems .
Such systems can be composed of hardware distr-~ buted overthe Arpanet (RSEXEC ) or locally distributed (Illiac , DCS, Pluribus).

We first considered multiprocessors distributed over the
Arpanet. With any multiprocessor system there exists a synchronization
problem with respect to shared data (the Dijkstra problem , etc.). For
the WM this problem is particularly severe since the shared data base
is extremely large and references to it are frequent. We devised
techniques for cross—net synchronization [1], but it is an unfor tuna te
fact of’ life that such synchronization is a multiple of network message
times. Such times are measured in seconds instead of the microseconds
of internal computer times.

We were thus led to the choice of either adding many seconds
(for synchronization) to the time required to service a user request
or else not synchronizing before servicing the request and occasionally
being forced to rescind a previously granted request (e.g., a user puts
away a file under some name and is told subsequently that the name had• already been used). The first choice is clearly unacceptable (actual
estimates of’ delays are about 30 seconds if we include the time needed
to detect processor failure). The second choice Is unpalatable , but
marginally acceptable if there are no alternatives.

Notice also that multiprocessors distributed over the Arpanet
do not , by their mere existence , solve the reliability problem.
Additional software is required to provide system reliability. Further ,
distribution over the net only makes Increased capacity possible ; it
does not make it cheaper.

Thus, we next considered locally distributed multiprocessors .
Illiac was rejected out of hand . - The Distributed Computer System [2 ,
3, 1&, 5, 6] was investigated. It suffers from at least two deficiencies.
One, it was not designed for and has not been tested on the Arpanet.
Two , it has been developed and supported by a university rather than
industry. Hence, its continued support and development is problematic .

The fourth multiprocessor we considered was Pluribus (7, 8 ,
9, 10, 11). We found that Pluribus seemed able to provide the capacity
we needed , fail—soft capability had been considered part of the
Pluribus problem from the beginning, the hardware was operational
and installed on the Arpanet , and it had been developed by
industry under an Arpa contract. 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



A 0 A034 133 MASSACHUSETTS COMPUTER ASSOCIATES INC WAKEFIELD Ff6 9/2
NATIONAL SOFTWARE WORKS .(U)
SEP 76 R MILLSTEIN F306 02—76—C—QQ9L&UNCLAS S IFIED CA DD— 7603— O’el l  RAD C—TR— 75—275 ~ vOL—1 NL

I END
DATE

FiLMED

I

a



_ _ _  ~~~ ~ 2.2

L~ mH2.O1.1 ~~~~~ uiii~~
II I.8

111111.25 IIIII~ IIIII~



______________________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~

-.
~~~

‘——-——.- ,. -——
~

-— 
~~~~~~~~~~~~~~~~~~~~~ 

-1

A Pluribus with approximately 10 Sue processor !, the requ ired
memory , inter ’aces etc., would have the rAecessary processing capability
combined elegantly with a significant improvement in reliability , at
considerably less cost than a PDP 10. In the remainder of th is report
we discuss: the main featues of Pluribus and how they relate to the
Works Manager task; the capacity requirements of the Works Manager ;
a Pluribus configuration that would satisfy these requirements; some
potential difficulties; our conclusions and suggestions for future
tasks to undertake ; supporting notes and rough calculations for
the estimates made.

IV Pluribus

Major Attribute! of Pluribus

(1) Ap propriateness

Pluribus is a ~nultiprocessor developed for communications
networks. It employs a number of independent processors
with independent control streams in a cooperative and equal
fashion. Its effectiveness in a given problem depends upon
the ease with which the solution can utilize concurrent
processing capability. A Pluribus packet—switching store
and forward communications processor (the IMP) is very cost
effective because packets of data can be treated independently
of one another. The NSW Works Manager problem has similar
potential , because requests to the Works Manager , generated
by a large number of concurrent users (approximately 1000)
on geographically distributed hosts , lend themselves to the
same treatment.

(2) Reliability

A main goal of Pluribus is to provide hardware which can be
exploited by the program to survive the failure of any
individual component. To this end all processors are treated
as equal units and all jobs are treated uniformly. A
processor is viewed as a resource to advance the algorithm
and individual processor identification Is irrelevant. A
Pluribus configuration includes at least two of every
vital hardware resource. Both hardware and software
organization reflect a deep concern with reliability. Note
that Pluribus is not a ‘non—failing ’ device. Rather , it
recuperates automatically within seconds or at most minutes ,
following a failure. The system survives not only transient
failures but also solid failures of any single component .
This approach works best in a situation where the system is
embedded in a larger system that has the ability to resend
lost or destroyed messages and resupply status information.
This is the case with a Pluribus IMP on the Arpanet ; it would
also be the case with a Pluribus Works Manager in NSW.

“—4

-— ---

Such a Wor ks Manager would be extremely reliable , compared
with a TENEX implementation. Efforts at providing this degree
of reliability on conventional equipment by the employment of
several Works Managers on dedicated computers at different
sites would prove both costly and difficult. The difficulty
arises in connection with the problem of keeping two separate
Works Managers In synchronization . System degradation due to
transmission delays of synchronization messages would be
significant.

If protection from a local disaster (e.g., regional power
failure) is regarded as an NSW imperative , it would be necessar y
to have two geographically separate Works Managers. Pluribus
would still be a cost effective hardware basis for this
situation , but would certa inly suf fer from degradation due to
the need to transmit synchronization messages between the two
Pluribus sites.

(3) Capacity

The Pluribus approach relates capacity and reliability.
Adding additional co pies of scarce resources (such as
processors) not only makes the system more reliable , but
increases its processing capacity in a natural way. Thus,
the Pluribus approach differs from ‘reliability by replication ’
which exploits the extra hardware only for error checking
and subst itution in the case of failure , but not for
Increased processing bandwidth when all Is going well.

(U) Expandability

The approach (to capacity and reliability) also permits
graceful expansion of the system. The addition of more
processor s, memory and input/output can be done without
significant alteration of software, and without bringing
the whole system down for a long time. Thus the Works
Manager implementation can be realized initially on a
smaller hardware configuration and be expanded as the NSW
user population grows.

—. •
~~~~

••
~•fl•~••••~ 

— ————-S.—-, —* ~~~~~~~~~~~~

(5) Resource Locking

Pluribus has taken a basic approach to the locking of
critical resources. This is the mechanism by which the
algorithm enforces sequentiality when it is needed . An
example of a lockable resource is the queue of free buffers.
The system uses an uninterruptable load and clear operation
as its primitive locking facility.

The Works Manager requires such a locking mechanism in a
variety of circumstances. The Works Manager information
retrieval subsystem makes heavy use of interlocks to
properly interlace read and update activities in its data-
base. Conventional hardware/software milieus make these
interlocks slow and costly. Pluribus provides an interlcck
capability that is extremely fast and cheap.

(6) File Handling

Pluribus provides no software associated with file handling
or secondary storage management. Since the Works Manager must
do a considerable amount of just this , it would appear at
first glance that a conventional hardware/software milieu ,
such as TENEX , has an advantage in this area. On the
contrary , the capacity of the Works Manager to handle
a large number of concurrent users will depend critically
on efficient use of the disk. Conventional file directory
structures and disk management software make it more
difficult to attain this objective.

Pluribus Configuration for NSW Works Manager

The task of configuring a Pluribus for the NSW Works Manager
is now under investigation. A preliminary study of what will be
needed has been made to obtain upper bounds on the cost of this
approach.

(1) Processors

On the basis of current understanding of the Wor ks Manager
task, rough calculations (see notes) suggest that 5 Sue CPUs
would provide adequate processing capacity. Given that a
processor is cheap (the processor itself is appr . $600; with
Ilk local memory + power , rack etc. it is around $3000), it
seems reasonable to plan on eventually having a 10 CPU
configuration.



- -
- — _S..- 

~~~~~~~~ ,.~_ -

(2) Shared Memory

High speed memory requirements for the Works Manager
-; depend in part on intelligent use of secondary storage.

For the moment we assume that the bul k of sta tus
information pertaining to each active user must be stored
in fast memory. For 1000 users this requires a lot of memory ;
we estimate 1/2 million words of shared memory for the
P].uribus (a word is 16 bits). This memory plus necessary
busses and bus couplers account for a significant part of
the whole configuration. Further investigation may show
that disk storage can reduce this cost. In any case we
should add memory gradually as the actual number of NSW users
grows. -

(3) Secon dar y Storage

Secondary storage for the system would be provided by disk,
most likely of the IBM 3330 type. Two controllers on
different i/o busses, each with 2 to 3 drives, would
provide the capacity and reliability required. In the
initial configuration each controller should have only one drive.

(Il) Cost Estimate

The cost for a Pluribus with 20 CPUs , 1/2 million words
of shared memory and 2 I/o busses is estimated at approximately
$1150,000. This figure is very ooneerva~ive in several
respects:

(a) 20 CPUs is twice our already conservative estimate
of 10 CPUs for the final system.

(b) The cost of 4/2 million words of shared memory is
based on the memory modules currently used in Pluribus

• configurations. These come in 8k units that require
3 cards on the memory bus. Considerably cheaper
approaches are available but have not yet been explored.

(a) A reduction in the number of CPU ’s and the number of
memory bus cards (an d hence memor y busses) would reduce
the costs associated with busses and bus couplers.

In addition to the above hardware, additional costs would be incurred
- for the required disk interfaces (2) and for the two disk systems.

- -

—, ~~~~ .

Potential Difficulties with a Pluribus Implementation

(1) New Hardware/Software

Pluribus is a new system. The first machine has been
running approximately two years. The reliability concepts
have not yet been thoroughly verified by experience.
Some of the reliability software has not been tested .

(2) Disk Storage

No existing Pluribus configuration has disk storage. In
principle disks should not create any new problems. However ,
the transmission rate of a suitable disk (Il megabaud) is
higher than the transmission rate of any i/o device that
has been utilized in Pluribus so far (1.5 megabaud).

An inter face with adequate buffering would have to be
designed and built. A rough time estimate for this is
approximately three man months at a cost of $20,000.

(3) Software Aids

There are only minimal software aids available for prcg ra n
construction. All Pluribus programming is now done In
assembly language.

(~~) Applications Programming

The Pluribus approach to reliability and robust software
requires that algorithms be organized into ‘ribbons ’ and
‘strips’. A ribbcn can be thought of as a serial
process. It is divided into strips with the requirement
that no strip ever take longer than a certain time to
execute. This maximal strip time is determined by the
application and is related to the maximum time that can
elapse before the most demanding i/o interface is
serviced.

This approach does away with many of the problems associated
with interrupt handling of input/output . It also encourages
program design which is understandable and programs which
are predictable , with f irm comm itments for the maximum
time processes may take.

However , it must also be recognized that algorithms are
not usually organized in this way and programmers are not
accustomed to this idea. Some additional programming

• time may be required as a result.

- 11 ~~~~~~~~~~~~~

• • .

~_R

—

~~~~~

---•---•- • ~~~~~~~~~~~~~~~~~~~~~~~~~ - -- ---,—
-

There is some software already developed as part of the
Pluribus concept , namely the Rel iability Software , which
could be used with the WM application software.

Conclusions

Despite the potential difficulties noted in the preceding
sect ion , we believe that Pluribus provides the best environment for
a Works Manager implementation offering large scale, expandability,
and reliability. Such an environment wi].]. be of relatively low

• 
• 

cost and acceptable risk.

We believe that the following tasks should be undertaken
in order to continue the investigation. These tasks are listed
in the approximate chronological order in which they should be
begun . We suggest that Task 6 should begin no later than
1 October 1976 in order to ensure cont inu ity of WSW e f fo r t .

1. Definition of plausible user scenarios and associated WM
actions in order to refine Pluribus sizing specifications.

2. Investigation of possible Pluribus disks.

3. Investigation of possible Pluribus memories.

f. I& • Redesign of kM code with respect to recoding in ribbons
and strips .

5. Study of IMP , kM coexistence on a single Pluribus .

6. Procurement of a suitable P].uribus .

7. Recoding of WM.

8. Debugging of Pluribus—based NSW .

Notes

In what follows we use some abbreviations : -

FE = Front End
• kM z Works Manager

FP = File Package
IR z Works Manager information retrieval system

I

_______________________________ —--—•.--— - - • ,



• — .  • .~~~~~~~~- • . W ,~~~~ S . S ~~~~’ ’ - ‘<“‘_ “ ‘•• • •  --~~~
—

~
- ,.—- •— “S~~~

. ~~~~~~~~ rS ” ~~flF ‘~~~~~ ‘~~‘~~~~~~ ‘‘

Fo~ the purpose o” making a rough estimate of the work load placedon the ~ 1 by 1000 users , the following scenario will be assumed to
Jes~ribe a~ average user.

(1) The user logs in (< 1 minute)

The FE , in order to process login , calls the WM. A
message is sent from the FE to the WM including such
information as projct identification , node name and
password. The WM must verify the login request , using
the IR to identify user, establish user rights and so on.
The kM generates a user Id and stores information In the
kM user status table. The kM sends a message to the FE.
The message includes the assigned user Id. The WM must
also update the history file.

(2) The user edits a program file (5 minutes)

(a) The FE calls the WM in order to run a tool (an
editor). The kM must check the rights of the user
with respect to this tool. This may involve the use 4

of the IR. The kM gets the tool descriptor , using
the IR. The WM locates a suitable host to run the
tool and sends a message to that host. The response
provides the name of the tool instance which is then
sent to the user FE. The WM must also update the
history file.

(b) The tool (editor) calls the kM to obtain a file. The
WM must check the rights of the user with respect to
thi~ file (this may use the IR). The kM uses the IR
t~j  determine an unambiguous file name. (Bad names
require more work; we assume that they are the
exception , rather than the rule). The WM sends a

• message to the FP which produces a copy of the file on
the sane host as the tool. (This requires transmission
of the file over the network if the file is not already
at the tool host site). The FP sends to the WM the
new local name for the file. The Wtl then updates the
history file (possibly using the IR) and then sends a
message giving the local file name to the tool.

(c) The tool (editor) calls the WM to put the result file
away. We assume that this is considerably less
costly than step 2b. (No file transmission is necessary
at this time.)

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - S. ~~~~~ • -.---~~.,

(3) The user compi].es/aseembles the edited program (5 minutes)

(a) Similar to step 2a where the tool now is a compiler

(b) Similar to step 2b where the tool now is a compiler

(a) Similar to step 2c where the tool now is a compiler

(14) The user link—edits in preparation for debugging session
(5 minutes)

(a) Similar to step 2a where the tool now is a link editor.

(b) Obtain N files, where each file requires the
activities described in 2b above. Each file is a
relocatable file, which we assume consists , on the
average, of -1000 lines x 5 bytes/line = 5000 bytes,
plus a symbol table of -100 entries x 10 bytes/entry —

1000 bytes. This is a total of 6000 bytes per file.
Any file not local to the link—editor will have to
be transmitted over the network.

Cc) Put the result file away , as in 2c above. This is
the load module for a debugging run.

(5) The user debugs the program (60 minutes)

(a) As in 2a above , with DDT being the tool.

(b) Obtain file, as in 2b above. This file is the load
module.

Cc) Debugging session. This may use an output file for
DDT messages. The program being debugged may also
use some files. We assume here that these files are
not NSW files.

After step 5 the user returns to step 2 (the user edits a file) to
correct errors uncovered during the DDT session and to try again.

(6) The user logs out (< 1 minute)

We assume this is the same in terms of requirements
as login (step I above).

6—11 
•

‘V.
.
- 

~~~~ -- --~~~-- - - - •-~~~~~ • - - • - • • - • .•- • - - - - __


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~- -• - ——- - • - • -

The dominant component in terms of network load and Works Manager
load is determined by the edi t— c ompi le— linked it—debug cycle. Within
this, the following interchanges with the kM are required :

edit 6
compile 6
link—edit II + 2 x N
debug 6

We assume that N , the number of relocatable files to be linked ,
is, on the average , 15. Thus the l ink—editor accounts for 311
interchanges with the WM (out of a total of 52).

The interchange rate is 52/75 per minute , or approximately 2 every
3 minutes of .011 per second . For 1000 users , this results in
1I interchanges per second with the works manager.

Since this also exercises the UN information retrieval subsystem ,
it seems reasonable to estimate capacity requirements in terms of the
rate of file requests. Therefore, assume all interchanges are about
files. As described in 2b above, there are 2 interchanges per
file. Thus there are 5.5 file requests per second . If each file is
6000 bytes (as in lab) and a file is never on the right host, transmission
requirements on the net (as a whole) would be 26Il Kilobaud . The
pattern descr ibed would tend to guarantee that most of the relocatable
files input to the link—editor did not change during an iteration of
the edit—debug cycle. Thus, i~ we Imagine that at the beginning of
a session (day) all files have to be moved , but thereafter only a few,
we see that the 2611 KB rate must be high by a factor of 11 or 5.

In accordance with the description In 2b above (The user edits a
file) , we can estimate the number of disk accesses made by the kM
as a result of using the IR. The rate of file requests has been
extimated at 5.5/sec. This requires use of the IR at least once
to check the file name for ambiguity), possibly another time
(to check the user ’s rights with respect to the file) and possibly
a third time (to update the history file). The number of accesses
to the disk made by the IR is roughly a function of the number of
descriptors (plus one). If we assume:

name check: 3 descriptors
user rights: 2 descriptors

history file: 2 descriptors

we see that 10 accesses are required per file request. On this basis
the load on the disk storage system is approximately 55 accesses/second .

A disk controller with 2 to 3 drives (capable of Independent seeks)
and modestly intelligent disk software could provide the requisite
capacity .

—

6-12

.—.-- .--- -- -- ---~~~~~~— — --- -- — —- •------- ---—--.-~—--—

-----— S. — -S. ~~~~~~~~~~~~~~~~~~ - -_____________________________

If we assume that the disk system is providing data at close to
transmission speed (11 megabaud) degraded only by rotational latency
(-12.5 milliseconds), with 8 pages per track, actual transmission
would be 625 K bytes x .2 = 125 K bytes/second. If we assume
that , typically , 2 bytes are handled together in an Instruction loop
comprised of 10 instructions , the system must execute .5 x 10 x 125 k =
625 K instructions per second .

This estimate does not include:

(1) Whatever is required for the operation of a second disk
controller. This system would be intended as backup. It
could function in several ways:

(a) all write operations to the primary disk system would
be replicated on the second system. If the primary
fails , then the secondary is switched in; when the
primary comes back up it is brought into agreement
with the secondary and their roles are switched.

(b) all operations are replicated for both disk systems.
Consistency checks are performed at various points.

(2) Other reliability and maintenance activities.

(3) Extra capacity for burst load situations.

(1*) Extra capacity for disk optimization with respect to
sector positioning (rotational latency). This would in
effect increase realized disk transmission speed , thus
requiring more processing capacity and would also make
more critical fast processor response to disk i/o.

We assume these four taken together would require another factor of
2 in instruction execution rate :

instruction rate = 2 x 625 K : 1.25 M instructions/sec .

With a typical Sue instruction taking 11 microseconds , 5 processors
would be required to sustain this execution rate.

6—13

TTTT T T .~~~~~ :-

_______________ — -‘-S. —
S.~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,—.

~~~~~.‘S.-—1’—--’- ’-— - —

Re ferences

1) Lamport , I.. Distributed multiprocese systems without central
control . In preparation.

2) Farber , D. J. The design of the distributed computer system.
3) Farber , D. J. The status of the distributed computer system.
11) Farber , D. J. and Larson , K. The system architecture of the

distributed computer system , presented at Polytechnic Institute
of Brooklyn Symposium on Computer Networks .

5) — —— , Progress report on the distributed computer system.
April -1972.

6) Farber , D. J. and Larson , K. The structure of a distributed
com puter system , presented at Polytechnic Institute of Brooklyn
Symposium on Computer Networks .

7) Heart , F. E., Ornstein , S. H., Crowther-, U. R., and Barker ,
U. B. A new minicomputer/multiprocessor for the ARPA
network, Proceedings of the National Computer Conference ,
1973, pp. 529—537 .

8) Ornstein , S. N., Barker , W. B. ,  Bressler , R. D. ,
Crowther , U. R., Heart , F. E., Kraley, N. F., Michel, A.,
and Thrope , M. J. The BBN multiprocessor , Computer Nets
Supplement to the Seventh Hawaii International Conference
on System Sciences , January 19711.

9) Ornstein , S. M., Crowt her , W. R., Kraley, M. F., Bressler , R.
D., Michel, A., an d Heart , F. E. P].uribus —— a reliablemult iprocessor , Proceedings of the National Computer
Con’erence , 1975, pp. 551—559.

-10) Bressler , R. D., Kraley, M. F., and Ilichel , A. Pluribus:
a multiprocessor for communications networks , Computing in
the Mid—70’s: An Assessment , June 19, 1975.

4 1) Private communication with Kraley, H. F., and Crowther , U. R.

6—14

_ _  _ _ _  _ _ _ _ _ _ _ _ _  - -~~~~~
-—--



— ‘•
~~~~

• •
~
‘ ‘

~~~~~
•
~~~ 
-

Chapter 7: Management Tools

1. OvervIew

It is our object to create a set of tools for the support
of management in its control and tracking o’ the activities of groups
of NSW users. Specifically, we intend to support the following

•

-- managemen t funct ions :

Authorization

Access to the resources of the NSW is effected
by “logging In” (supplying user ’s name and password).
The system attempts to match this log—in information
against a set of authorized user descriptions . If a match is
found , the log—in is accepted , and that user ’s activities
during the session are precisely restricted to the
authorizations found in his description. The tools
required here are those which support the manager in the
creation and deletion of authorized user descriptions .

Scheduling

Managers frequently find it useful to create and
manipulate documents which record expectations. Such
documents include predictions of the progress of work
and budgetary plan s. No matter what is being predicted ——
program creation or dollar evaporation —— , we use the
word “schedule” to designate any document which maps
anticipated change in some variable against time. The
tools here are those which support the manager in the
creation of schedules.

Projection

A principal use of schedules is projection: the
prediction of values for the var iables ment ioned in the
schedules at some given time in the future. The tool to
be supplied is a projector which , given a schedule and a
date , automatically produces an est imate of variable
va lues on that date , as predicted in the schedule.

7-1

—~~- -- •~~ inr -~
-

~
- “

~~~~~~~~~
- - -

~~~~~~
‘ - -

• --

- ---~-‘..‘ S.,_- .-” -—- --S.•,-’- --—-~---’_-—_’—-_—S_SS-:-----’— -- _ — ~--- —_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - S. _ ~~~~~~~~~~~~~~~~~~~~~~~

Tracking of’ machine—observable activity

Managers may wish to obtain reports of what has
actually happened. A primary source of this information
is the history file , a journal whose entries fully describe
every access to system resources permitted by the Works
Manager (the NSW monitor) and include all cost—incurred
information. The history file is to be archived and a
given entry will remain available on—line “or a considerable
time after it has been created . The tools required here
are those to support the manager in creating useful status
reports from the history file.

Tracking of human—reportable activity

Machine—observable activity (resource access) is
not the only source of management information as to progress.
The other major source is assertions by human subordinates :
which phase of a lengthy process is presently being worked
on , what is the current percentage of completion of some job ,
what is the current best estimate as to when something will
be finished , and so on. The tools required here are
those which support the manager in defining the form of
reports he wishes to receive and those which support the
subordinate in satisfying his manager ’s reporting require-
ments.

Comparison of projection with actuality

Managers may wish to compare status reports
(derived from either the history file or assertions by
subordinates) with projections. The tools required here
are those which assist him in bringing these into relation ,
either displaying them “side—by—side ” or isolating
potentially dangerous disagreements.

Automation of routine report creation

Managers may wish to create certain reports ——
specifically, status reports derived from the history file ,
projections , and comparisons (exception reports) —— on
a regular basis, without having to bother to log in and

• use the appropriate tools in a perfectly routine way.
The new tools required here are those which support him
in defining a regular schedule of such routine activities
and cause the NSW to carry out his instructions automatically.

7—2

— ~~ .~~~~ •• - • . ~~~~~~~~~~ * J S ~S~~- _ S . - •

- - —S.-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - -S.

Automation of routine management strategies

A primary function of a manager is to close the
loop between tracking and authorization. That is to say,
the manager observes what has happened (status reports),
and responds to what he has learned by changing authori—
zations. Thus , if’ an item in the budget has been over—run ,

• he may restrict some or all of the activities of certain
users. If a certain report from a subordinate has not
been received by a certain time , he may restrict that
subordinate ’s activity until the report is submitted.

Similarly , a manager may act to close the loop
between tracking and scheduling: an observed violation of
some schedule may lead him to produce an altered schedule.

Certain of these loop—closing activities may be
routine in nature. The manager can decide in advance
when to check for some situation , and what action to take
if’ it arises. In principle , tools can be built which
support him in the specification of those routine acts of’
management and cause the NSW to perform them automatically.

It is not our intention to give general support to
management in the automation of routine strategIes , not
because tools are unbuildable , but because they are likely
to be unusable: the class of all possible strategies Is hard
to represent in anything less than a full programming
language .

-

•

Within the scope of this proposal , we intend to
give only limited support for routine strategy automation:
specifically , we will supply tools to support him In
creating automatically implemented rules for at least :

1. Budgetary enforcement: regular comparisons
of costs incurred with projections , with
violations resulting in limitation of already—
given authorizations.

2. Reporting schedule enforcement: regular
verification of’ the timely submission of reports
from subordinates , with violations resulting in
limitation of the authorization of’ subordinates
until the missing reports have been submitted .

7—3

~=~~~~~~~~~-~~~—-• ~~~~~~~~~~~~~~~~~~

_____________________ -
‘ ~~~~~~~~~~~~~~~ - • •

~~~~
-
~~~~~~~~~~~

2. Support Ilechanisms

The remainder of’ this document describes a set of’
mechanisms —— tools and files —— to support the management functions
outlined in the previous section. Our sole object is to explain
more fully the nature of the support we have in mind and to lend
credibility to our claim that such support is possible. To keep
the relation between mechanisms and intent clear , we have described
the mechanisms to support each management function as independently
as possible. Since the mechanisms will not in fact be programmatically
independent , the result is that the sequel is frankly false as a
literal description of our intended program design; this is a natural
by—product of the artificial separation of an integrated system
into parts for ease of exposition.

2.-i Authorization

An authorized user description is a file which defines the
recognition code (user name, password) for an accredited NSW user
and specifies his rights of access to NSW facilities; these rights
are represented as a list of’ authorizations. An authorization is
best thought of, for present purposes , as a vector whose components
corres pond to:

1. Agent -

2. UN procedure
3.

An authorization means: “This user may through the tool
(component 1) call on the UN procedure (component 2) to operate
on the portion of NSW file space defined by (component 3).” Example:

-
, COPY , NSW. COMPASS

HENRY , DELETE, NSW.COMPASS.MASTER
-

, RUNT OOL , NSW.STDTOOLS

7—4

-—— - -~~~~~~ -~~~~~~~~~~~~~~
-

~~
-

~~~~~~~~
-
~~~~~~~~~~~~~~~~~~ -• - - - -  —~~~~~~~ -~ -— -~~~--- - --•~~~~- —- --S. - - -~~~~- - -


-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - • — ~~~~~~~ Wr — - •

The user may , through any tool , call for a copy of any file in
NSW.COMPASS or run any tool in NSW.STDTOOLS. The user may also
delete any file in NSW.COMPASS.MASTER , but only through the tool
HENRY as agent.

An authorized user description is created by use of a tool ,
the authorizer. Since the system guarantees that no two authorized
user descriptions can refer to the same recognition code , the
relation “A created B’s authorized user description” induces a
partial ordering (a tree structure) over the set of’ authorized user
descriptions and thus over the set of users.

The set of’ users whose authorized user descriptions A has
created are A ’s immediate subordinates; the set of users lying in
the subtree rooted at A (save A himself’) are A ’s subordinates.

When A creates an immediate subordinate B, he can determine
whether B can develop subordinates by granting or denying B access
to the authorizer.

The authorizer limits the authorizations which a manager
can give to a subordinate , by insisting that a manager can give
a subobdinate no more authority than he himself possesses.

Change of an authorized user description can be performed
only through use of the authorizer. A manager may so use the
authorizer on the authorized user descriptions of’ his immediate
subordinates only. However , the authorizer will automatically
restrict authorizations of the immediate subordinate ’s subordinates
as needed to preserve consistency with the rule that no user has
more authority than his manager.

2.2 Scheduling

By a schedule we mean a two—dimensional structure whose columns
are labeled with dates and whose rows correspond to variables whose
predicted values as a function of time are recorded in the entries
of the schedule.

The variables may be of several types . A type determines the
units of measure (integers , dollars , etc.), constraints on the
sequence of values in its row (e.g., monotonically increasing), and
whether the entries are intended as lower or upper limits for the
variables. For exam ple:

7—5

_ _ _ _ _ _ _ _ _ _ _ _ - --—- -~~~~~~~~~~~ -

— - — - —--- S. -~~~-S.S.S.~~~~ .S.-
~~-) p~~~~—--,~~~

SENI—A NtJUAL.REPORT

a. Expenditures —— dollar—valued , monotonically increasing ,
upper limit

b. Funds Remaining —— dollar—valued , tnonotonically decreasing,
• lower limit

c. Percent Completion —— integer—valued , nonotonically increasing,
lower limit

Here is a sample schedule:

Type 1 July 78 1 Oct 78 1 Jan 79

TECO—USE LX $5000 $10000 $10000
NLS—USE LX $10000 $20000 $30000

• St4ITH LX $1000 $2000 $3000
JONES LX $0 $8000 $16000
PARSER PC 20% 50% 100%
USER—GUIDE PC 0% 20% 50%
TOTAL—PROJECT—REM FR $150000 $100000 $50000

By a scheduling tool we mean simply a specialized editor
which supports the manager in the creation of a schedule. Such a
tool asks the manager to supply critical dates of interest (column
headings) and the names and types of the variables he wishes to
include as rows , and supports him in filling in the entries
consistently.

(It may be better packaging to have different kinds of’
schedules , discriminated by the type of variable they contain , a
percent completion schedule , an expenditures schedule , etc. In
this event , the scheduling tool would , in effect , become several
tools, each specialized to handle one type of variable.]

-i

7—#c

- S. -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—— —.~.--- ~~~-~~~~~~~-~~ -

2 . 3 Projection

By a projection we mean the one—dimensional structure which
results from applying a date to a schedule. Each entry in the
projection corresponds to a variable in the schedule , and is com-
posed of a value for that variable preceded by either of two signs:
<: or >=.

A projection is created from a schedule and a date by a tool:
the projector. The rule for generating an entry depends on the
variable type —— specifically on whether it is an upper or a lower
limit.

1. If it is a lower limit , the >= is generated. If it is
an upper limit , the <: is generated.

2. If’ the date coincides exactly with a column heading of
the schedule , the value in that column is used for
projection. If’ the date falls between two columns of’
the schedule , the two “bracketing values” are examined .
The larger is used if’ the variable is an upper limit;
the smaller , if it is lower limit.

lower limit: smaller value , >~upper limit: larger value , <=
Here is the projection derIved from the schedule given
above for the date 1 Nov. 78:

TECO—USE < $10000
NLS—USE <~ $30000

- - SMITH <: $3000
JONES <~ $16000
PAR SER >~ 50%
USER—GUID.E >= 20%
TOTAL—PROJECT—REM >: $50000

7—7

-S.,--— ~~~ ~~~~~~~~ — S.~~~~f ~~~~ ~~~~~~~ ~~~~~

2.~ Tracking of machine—observable activity

By an accounting report we mean a one—dimensional structure ,
exhibiting the values of variables, prepared for a manager from data
recorded in the history file.

An accounting report is created b~ a tool called the accounting
reporter , which requires three var iables of call: a beginning date ,
an end ing date , and the name of’ an accounting report definition. The
first two variables isolate the portion of’ the history file to be
inspected by the accounting reporter. The third deter’Thines the
behavior of the accounting reporter (which is a “table—driven” =
program).

An accounting report definition describes a procedure for
constructing an accounting report from a segment of the history file.
It contains two kinds of’ information:

Declarations of’ the (names and types of)
variables to be included in the accounting

• report ,

Rules for mapping from the history file segment
into values for the declared variables.

The different types of variables which may be declared will probably
• not be very numerous. The most interesting type is dollars.

The rules look much like the sorts of’ rule found in RPG -J
definitions. They include:

recognizers , which select a subset of the entries
in the history file segment (e.g., all bills for
TECO use);

. primitive counts , which collect numerical informat ion
from a selected subset into temporaries (e.g.,
sum the costs of all such bills);

mapping program , which defines the map from the
temporaries to the declared variables.

If the rules are permitted to be very general in form
(e.g., arbitrar y recognizers , arbitrary mapping programs), it
becomes very difficult for a manager to define his rules correctly.
For present purposes , and to show the power of’ a very restricted
form , we assume:

s__s ~~~~~~ -

- ~~~-~~~~~~~~
— —S.-

- - — - — ~~~~~~~~~ -—- -~~ • -
~~~~~~~~~~~~ ~~~~~ - ~% •S.—~S.~ -

-i
A recognizer is a vector of values (to be matched)
and “don ’t cares ” whose components match one— one
with the fields of a history file entry. Thus , if’
tool cost is delivered as part of the ENDTOOL. entry,
a recognizer for all TECO bills would look like :

ENDTOOL - - - TECO - - -
where means “don ’t care ”.

A primitive count is either a simple count of the
num ber of entr ies in the subset , or a sum , over
the subset , of’ the value in one field of’ the entry.

Thus , if COST is a field name , the sum of all TECO
- bills is represented by the following recognizer ,

primitive count

ENDTOOL - - - TECO - - - , COST

— The number of’ TECO uses is given by

RUNTOOL - TECO - - - ,

A mapping program is a sequence of assignment j
statements in constants , variables , primitive

• counts and local temporaries.

Example: -1 -

V-I . TECO—COST — IN— STERLING

V2. NET—SOS—PREFERENCE

TI. RUNTOOL - - - SOS - - - , I
• T2. RUNTOOL - - - TECO - - - , I

T3. ENDTOOL - - - TECO - - - , COST

Vi <— T3/2 . ’4

V2 (- Ti— T2

Note: The search of’ the history file is always - 

-

-: restricted to those entries associated with
users on the subtree below the manager
( includ ing entries f’or the manager himself’) .
A reserved string SUBS will match entries for

a subordinates only , excluding the manager
• himself.  If the manager uses the name of’ a

particular subordinate in the recognizer , that -
=name matches not only that subordinate but —

his subordinates as well.

7—9

____



- -  

~~~~~~~~~~~~~~~~ 
-

--~~~~~~~~~~~~~~~~
“

=-~~~—- - - - --
~~~~

-

2.5 Tracking of human—reportable activity

By a staff report we mean a file prepared by a subordinate
for delivery to his manager. A report consists primarily of a
one—dimensional structure each element of which designates a value
for some named variable. (In addition , every staff report includes ,
conventionally , the name of’ its author arid the date of preparation.)

The varibles whose values may be given in a status report
are of’ several types; for example :

a. status variables
b. percents
a. dates

When a subordinate wishes to prepare a staff report , he uses a tool
called the staff reporter. This interactive tool collects variable
values from the subordinate and assembles them into a staff report
of ~ form previously defined by the manager . That is to say, the
staff reporter is a “table—driven ” tool , where the driving table (or
file) Includes a description of a particular form of’ staf’f report
de~’1ned by the manager.

A sta”f report definition is a file used to drive the staff’
reporter. A staff report definition is created by a manager , and -

•

defines the form of some report he wishes from his subordinates.

The form of a staff report definition is as follows : it
consists of a list of variable descriptions ; each such description
includes a variable name , a variable type , and an arbitrary character
string. For variables of type status variable , a list of possible
values is included in the staff’ report definition. S.

A staff’ report definition is prepared by the manager with a
tool: the staff’ report definer. Here is an example of a staff
report definition prepared with the aid of’ this tool:

Name Type String

= E STIUATE D—C OrIP LE TI ON—D A TE DATE WHE N WILL THIS PROJECT BE
FINISHED?

CUR—PHASE—PARSER STATUS IN WHAT PHASE IS THE
PAR SER ?

LEX—DEBUG G IN G PC HOW DEBUGGED IS THE
LEXICAL ANALYZER ?

CUR—PHASE—PARSER: DESIGN , CODING , DEBUGGING , DOCUMENTATION



- - - - - ~~~~~~~~~~~~~~~~~

Once this staff’ report definition has been created , the
subordinate who wishes to make his report calls the staff reporter ,
which asks him which definition to use. If the above sample definition
is chosen , the staff reporter proceeds to use the strings in the
definition to conduct the conversation , and the subordinate sees
the questions:

WHEN WILL THIS PR OJCT BE FINISHED? (DATE):
IN WHAT PHASE IS THE PARSER?  (DES IGN , CODIN G ,

DEBUGGING , DOCUMENTATION) :
HOW DEBUGGED IS TUE LEXICAL ANALYZER?  (PC):

The staf’ reporter verifies that the answers are consistent with the
variable types (i.e., with prompting information in parentheses)
and assumes that the created staff report is well—formed .

2.6 Comparison of projection with actuality

By a comparison tool we mean a program which accepts two
inputs:

. the name o” a projection ,

• a list of names of’ either accounting reports or
staff reports.

A comparison tool uses the variable names found in the projection to
select variable values from the accounting and staff reports. It
then takes the relations found in the projection and the selected
variable values and creates a new file.

There may be several comparison tools: one which simply
produces a 2 x a structure , displaying the projected and actual
values side by side ; one which displays only violations of the
projections ; and perhaps others. For present purposes , we will
give a name to but one comparison tool , the exception reporter ,
which is called an exception report , produces a file of which the
following is an exam ple:
Date: 1 Nov . 78

Variable Name Actual Projection

TECO—USE $10500 <~ $10000
NLS—USE $3000 <= $30000
PAR SER 115% > 50%
TOTAL—PROJECT—REM $li0000 >= $50000

a

7—li

________ ~~~- - --- - -S.- — -- -



r~~ 
- -~~-—- - -- - 

___
~w—_ ~~~~~~~~~~~

- -  - -
~~~~~~~~~

— ~~~~~ —~~~~~

2.7 Automation of routine report creation —

An automated report schedule is a file (created by a manager
with the support of a tool: the automated report scheduler) which
specifies the manager ’s desires to have certain types of files prepared
automatically on a routine basis. It consists of:

a sequence of WM calls to be performed (drawn from
a very limited set),

a specification of the times when the sequence is to
be performed .

Thus , by way of’ example:

Program :

RW’ITOOL ACCOUNTING—REPORTER (TOOL—EXPENDITURES , 1 JULY 76 , NOW; TERPT)
RUNTOOL PROJECTOR (TOOL—EXPENDITURE—SKED , NOW; TEPROJ)
RUNTOOL EXCEPTION—REPORTER (TERPT, TEPROJ; TE—OVEBRUNS)
DELETE TERP ROJ

Beginning Date: 1 August 76 —

Frequency: Monthly
End Date: 1 July 77 S.

This sample automated report schedule is intended to direct
the NSW to execute the program portion on a monthly basis , from
1 August 76 through 1 July 77. Each execution will produce an
accounting report and an exception report (the intermediate product—— projections —— is deleted after each execution). After each
execution , there will exist in the USW file system two new files , one
with a name of’ the form TERPT.date and one with a name of the
form TE—OVERRUWS.date .

(If we restrict the set of Wt1 functions which can be called
to the running of a few tools and file deletion , we can
obviously make the form of the automated report schedule look a good
deal simpler. We have chosen to give the example in the above form
to suggest to the reader that we are dealing here with a special
case of a general problem : the specification of a pattern of NSW
use to be stored for later execution.)

) S.

I

7—12
-

____________ -- - - — - - -- - - - - ~~~~~~~~~~~~~ —~~~
- ~~~~~~~~~~~~~~~~~~~~ --

- - - - -~~~~~ - -~~ ~~~
~~~~~~~~~ - --~~ -

2.8 Automation of routine management strategies

By an automated management schedule we mean an extension of’ the
idea of an automated report schedule , which permits managers to

t schedule a general class of routine managment actions in advance. If
we were to extend the form of an automated report schedule to include

-

. control statements and the possibility of specifying any WM procedures ——
including those which alter authorizations in arbitrary ways —— , the

z extended form could represent a very wide class of prespecified
management strategies. Unfortunately, so general a form is both hard
to write —— linguistically, it looks like a program —— and hard to
verify for consistency with intent. Thus , we wish to proceed
conservatively in this area. Initally we will restrict the set of
authorization changes to a very simple population , as follows:

Let us assume that the form of an authorization
file is made slightly more complex , by permitting
the managers to associate, with any single
authorIzation , an arbitrary number of boolean
variables. An authorization is ignored by the
access control machinery of the WM if any of its
associated boolean variables is FALSE. We will
restrict the changes in authorization representable
in an automated management schedule to changes in
the values of these boolean variables.

Thus we imagine an automated management schedule to look very
much like an automated report schedule , save that the set of forms

— possible In the program section is extended to include forms like:

IF <cond ition> THEN A ,B,C <— TRUE: D,E <— FALSE

where A ,B,C,D,E are the names of boolean variables. The forms
possible for the type <condition> should at least include presence
of a named variable on an exception report and time relations (e.g.,
NOW >= 1 June 77).

It should be noted that this mechanism is sufficient to provide
budgetary enforcement in the sense that if some authorized activity
(say, TECO use) is associated with a boolean variable Z and invoked/
scheduled by a variable TECO—USE , then the statement:

IF TECO—USE IN T B —OVERRUNS THEN Z <- FALSE

blocks further budgetary overrun .

Horeover , since successful submission of’ a staff report is
machine—detectable (entry by the staff reporter of a file of some
recognizable name into NSW file space), presence or absence of’
anticipated staff reports can be defined as part of’ a regularly
produced accounting report. If desired appearance of such reports is
included -in a schedule , dereliction will turn up in exception reports.
Thus the same boolean~ variable mechanism can be used to turn
of” all authorizations (except the right to report) whenever a report
is late ; and to turn authorizations on again when the report appears.

7—13/1—14

- - ~~~~~~~~~~~~-~~~~---- - - ---- ~~~ -~~ -- --- ~~ 



—-;-,-‘—,-----—,--_-_- 
~~~~~~~~~~ 

- ------- - - —S.- -_~ ~~~~~~~~~~~~~~~~~
-

-- --
~

-
~ .—-~

--- — -- -

-

- a . . *~~ - - -4*t,~ ;,~~- _%*t

‘
1

J 1

MISSION -

of
Rome Air Development Cenier

‘4 -
RAX p1w and conducts research, exploratory and advanced -

-

dev.1o~atent pr ogr a in commend, control, and oo wiication,
- -(C3) activities, and in the C3 areas of inf ormation sciences -

and intelligence. The princip al t.cheical mission areas
are co wiicatlons, electromagnetic guidanc, and ~cratrol,
surveillance of ground and aerospace objects , intelligence
data collection and handling, inf ormation syst t.~~~ology, ~ionospheric propagation, solid state sCiences, microwave 4
physics and electronic r liability, amintainability and
compatibility.

8~1~~)J

I

-

~s f l . S~’~ __—4 “

- -~~~~ ~~~~—~~—-- ~~~~~~~~~~~~~~~ — S .~~ - - - - -~~~~~~ ----- —-S. —~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -~~~~~~- - -- - S.

