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A CRITICAL REV IEW OF ThE NLJ4ERICAL SOLUTION OF NAVIER-STO KES EQUATIONS

by

Sin-I Oieng
Princeton University

Department of Aerospace and Mechanical Sciences

I. INTh)DUCTION

This article concerns the various practi cal problems of using high

speed electronic computers to obtain approximate solutions of various

fluid flow prob leam not with the mathematical techniques of solving

the Navier-Stokes equations throu gh di fference approximations in gener-

ality . Tha boundary cc~tditicns are as important as the partial differ-

eatial equations in the mathematical form ulati on defining a given physi-

cal problem. There are complicated practical problems of discretizing

the different ial formulation (of both the differential equations and

the boundary conditions) into appropriate difference formulation for its

ni .rical solution. There are quite a few unusual aspects in such at-

tempts . -

Flui d dynamicists usual ly ignore the question of ëcnvorgence in the

asymptotic differential approximations through perturbation argu ments .

They often consider the computational solution of the resulting system

of ordinary differential equations, as routine , even though it may be

— 1 —
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very tedious , and often i~i posed espe cial ly for the multi-cigen-value

problems . th~der diffi cult circu mst aflces , heu~isitc lotal treatments

are often introduced to remedy the situation , or a slightly di fferent

original approach will be e~~loyod. Such a h5t and miss approach has

been carried ove r to the direct comput ational solution of the partial

di fferential equations system of flui d dynamics . They lead to much

nore disappointment and often tia~ s with more serious consequences .

While it may not be crucial to app reciate the mathematical details ,

it is important to be aware of the implicati ons of some fundamental

math ematical results concerning ths di fference approximations of a

partial differential equation . According ly, a brief review of these

mathe matical aspects will be out linc d prior to the discussi.cn of the

practical art of numeri cally integrating the partial di fferen tial

equations system of flui d dynaa icc .

Within the cont inuum description, the flui d will be considered to

be ho~o~oneous and to possess two independen t the rmodynamic, or state
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variables , i.e., the density p and the internal energy e per unit mass.
V 

There is an algebraic equation of state , relating the thermodynamic
pressure p to its density p and internal energy e as p ~ p(p e). Let

be the velocity vector of a fluid oleu~nt with i 1 2  and 3 in a
th re~-di mcns1ong1 spstce xi. u~, p and e are the five dependent variables V

and will be considered as functions of x1 and t. The Eulori an descri p-
tion of the change of these dependent vari ables , is the set of five

parti al diffe rential equations , e zpressing the conservation of mass

momentum and energy written here in divergence form as:

(1.1)

a(pu
~) ~ 

V

+ 
~~~~~

_. • P~~j 
- — 0 (1.2)

~~~~ -
~~~~~~

- [pu~~
e.u

~
u
~iz 

+ Puj
_q
j
_ u
iTjj] 0 (1.3)

r

When the surface stress is related linearly to the strain rate as

au
+ ~_1) . (,c - 

~~
. p) (1.4)

and when the heat transfer vector qj is linearly related to the temper-
ature gradient as

(1.5)

the system of equations (l.j -1.3) will be refer-red to as the Navier-Stokes
equations for a compressible fluid. The Prandtl n*ther Pr and the specific
heat ratio y ar e properties of the fluid and are both of 0(1). The shear

viscosity coefficient ~ !s assumed to be a known algeb rai c ftmct.tcn of
temperature (or internal energy) . The bulk viscosity coefficient is

_~-~~~__.-~~
— — V. -~~~ — V.-— —-- - - V.-— —-—s--- —
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often taken as zero or otherwise absorbed in p. In dimensionless fo r-rn

a Reynolds nuther may be defined in ter~ns of some characteristic length

and velocity U0 as - where subscript o indicates that

the quantity is to be evaluated at some refer-once state. For most fluid

dynamics applications , the Reynolds number is very large.

The divergence form of the Navier-Stokes equations (l.l)-(l.3) may

be written as -

~~~. ~~-- F(v, ~~ 0 (1.6)

posed as an initial value proble m for the vector unknown v, having the

five scalar components p .  pU j i and o. F is the flux of v, given by the

nonlinear quantities in the square breck ~ts of Equations (1.l)-(l.3).

When j~9tysics11y meaningful, initial and boundary data a~e prescribed, Equa-

tice (1.6) is expected to give a satisfactory description of the temporal

development of the flow field at later times. This expectation is mathe-

matically Justifiable . The integration of this equation’s system is needed,

for example , in weather forecasting and in tho deter mination of the temporal

development of blast wavos , hurricanes, or turbulent fluctuations, etc.

(where the gravitational field and the coriolis forces are included where

necessary). In I2cst aer3nsutical applications, the steady state (or the

quasi-steady state ) probloms are more often of primary interest where the

temporal dependence is neglected. Thus Equation (1.6) becomea

~~— F(v , ~~~ 0 (1.7)

which is to be solved as a boundary valu e problem. The boundary can- 
V

ditions must , of course , be independent of time. But it is not clear

how such boundary conditions should be specified to provide the required

V. 
~~~~~~~~~~~~~~~ •~~~~ V •
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steady state solution or , indeed , any solution at all. Physical intuition

often provide s meaningfu l guidan ce but not all wh at is needed.

The stress and the heat c~’nducti on terms give rise to the second

and the highest orde r partial derivatives with coefficients proport ional

to Re ’. This steady state Nevier-Stokes Equation (1.7) generally assumes

an elliptical behavior. When Re become s large , the flow field may be

divided into sub-regions. In the region suffi ciently far away from any

solid boundary , the invisci d approximation, obtained by dropping ter ms

in (1.6) or (1.7) containing Re 1, is a valid appro ximation , known as

the Euler ’s Equation 
-

.0  (l.8a)

F(v) — 0 (1.81,)

The time dopendont inviscid Equation (l.8a) remains hyperbolic and is

posed as an initial value proble m as is Equation (1.6) . The steady state
• Equati on (1.81,) , however , can be pure ly elliptic (subsonic) or purely

hyperbolic (supersonic) or mixed , (i.e . ,  with both ellip tic and hyperbolic

regions , the boundary of which will depend on the solution and are not

known before hand such as in the superc ritical tr ansonic invisc~d flow

problem) .

In the regions near the solid boundary , or near whore there is a

large shear stress or heat conduction , some or all of th~ stress terms

contained in F(v , 
~~~~~
. 

~~
.)  have to be kept with the othe r ter ms despite

the large Re . If this viscous region should extend along a coordinate

surface (x11x2) such that the lateral extent (along x3) of this viscous

layer is small compared with its physical extent along the (x11x2) sur-

face , then Pran dt l’s boundary layer theory applies . Only the highest

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~ 111T.
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order partial deri vative in this late ral direction (~~2/~ 4) will sur-

viva the limit of very large Re. This asymptotic limi t at large Re gives

the boundary layer equations which are parabolic. h owever , not all

viscous layers are sheet like and c~n be treated by Pr sndt l’s boundary

laye r approxi mation . For such viscous layers like the near wake and the

interaction region between a shock wave incident on a boundary layer , the

full Navier Stokes Equation (Li) will have to be used and the problem be-

comes elliptic at least in a significant portion of the flow field of

intere st .

The change of the mathematical character of the flow field in di ffer-

ent regions when the fleynolds nuthe r is larg e is both a blessing and a

cause of concern . It is a blessing that enabled the development of flui d

dynamics , historically, in the form of the inviscid or perfect flui d

V theory and of the boundary layer theory. But it is also the funda mental

diffi culty in the analysis of the mixed flow reg ions , characteristic of

most of interaction flow problems . Now there are significant di fferences

in the numeri cal integration of the three types of partial differential

equations . The method that has been prov ed to be successful for one type

need not be so for the other. It is therefore important to recognize the

type of the partial diffe rential equation befor e formulating a di fference

approximation for its numeri cal integration . Clearly then there are

diffi culties in the numerical integ ration of mi xed problems . Such diffi-

culties are quite different from those encountered in the asymptotic

analysis of mixed flow proble ms . In a few examples , they have been

successful ly resolve d with appropriate cautiona ry measures . But there

is no theorem to guar antee its success in other problems .

.V •
1r
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It might be asked that if the elliptic steady state Navier-Stokes

Equations cl . 1) could be integrated for a given finite hut large Re , why

should the diffi culties arising from the asymptotic limit of Re 4- con-

cern us • An obvLous sns’~er may be that the nsympto t ic form of the par tial

differential equations system is such simpler. A more funda mental reason

is that , at finite but large Reynolds numbers , the asymptotic beh aviors

of the flow in di fferent regions bear strongly on the approp riateness of

the difference form ulation and the ntc~eric~l integration of the N avier-

Stokes equations when the resolution (or the ni.~~er of meshes per linear

dimension of the field of computation ) is s . .urely limited.

For a flow prob lem in three space dimensions , an average of 30

meshes per linear dimensicn will give rise to 3 x l0~ nodc l points ; and

will need 1.5 x 1O~ words of storage spaces for the 5 im!cnowns at each

point. Such storage spaces should pre ferably be provide d in the core

of the computer unit for ready access. Such a requi rement will stretch

the core r~ei~~ry capacity of most of the currently avail ab le large com-

put ers such as CX 6~0O or U~H 360-91. The solution of the full Navier

Sto&o~ Equation 0.7) for a well-posed boundary value problem will need

hours of computatiom in such machines. The parallel computers in the

stage of advanced development like IL LI AC IV and the STJI , can neither

promise audi improvement in this regard . To extend the core meaony

capacity , a hierarchy of external stor age3 will be provi ded. Frequent

reference to such extern al storage3 , howeve r , will greatly increese the

time required for data management because of the slow input-output devices

connected to the central processing un it. This problem is par ticularly

aggravated in the afo rementioned parallel computers where the promised

large gain in arith onatic speed can be ob tained only for specifi c modes
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of “parallel” or “vector ” computations in which a huge amount of data

suet be properly processed and continuously fed into the arithematic

un it(s) .

The concept of para Llel use of an array of mini-computers might

appear to rol ievo such a difficul ty associ ated with the specifi c mode of

high speed ar ithematic operations . The bene fit is likely to be illusory ,

however , at least for the presen t applicati ons. It simply transfe rs

onto the users the tremendous proble m of optimal coordination of the

operations of the arra y of mini-computers and the problem of data manage-

ment among the diversed “internal” and “exto~rnal” storage facilities .

The users are ill-equipp~d with the expertise of the co~~utor scientists

who designed the software s managing the businesses of the central pro-

cessing unit of the large compute rs . The users will be left to deri ve

whatever speed advantage each individua l program nay pr ovide . It should

bo remembered that without the order(s) of m~~iitude increase of the

“overall processing speed” of the computer(s) , the Increase - in the num-

ber of mesh points in a linear dimension for the integration of a prob-

lee can easily escalate tho computer processing time from hours to days

and months . It appears , oven projected slightly into the future , that

no more than a couple of hundred mesh points per linear dimension can

possibly be considered in the integration of the system of equations of

fluid dynonics . Wi th such a limitation on the resolution of computational

solutions , the integration of the full flavier -Stokes equation for the

flaw field over a vehicle , for exa’npla , (the extern~tl flow probl em) seems

futile. The field of computation is much like the test section of a

win~dtiain el . Without the “full scale ” facility , computers • like wind-

tunnels, should be used at presen t to study only the components or the

-— ~~~~~~

- 
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local flow fields . For such purposes, various asymptotic forms of the

Navior Stokes equa tion ’s system should be used for di fferent parts of

the flow field. The full Navier-Stokes equation’s system will be called

upon only for the study of those flow problems that cannot be consistently

treated with the simplified flow equation s , including notably those mi xed

interaction flow prob lems . Under the practical limitations of resolution

and of computer time , it is particularly important to delineate the vary-

ing nature of the flow regimes in the different treatments of the Navier--

Stokes equations end to consider the vario us possibilities of how the 1 
-

boundary condi tions may be imp lernanted. To quote the 1960 statement of

Forsythe and Wasow : “The nuxaeri cal solution of par tial differential

equations is no easy matter. Almost every problem arising out of the

physical sciences requires original thought and modifications of exist-

ing methods” . This statement is equally t rue today , and particularly so

for the type of flow problems under consideration here.



n ~~~~~~~~~~ ~~~~~~~~~~~~~~ - ,. -- - - - - r’c~r: nn—~~~a-

II. FUNDAMENTAL CONCEPTS

Consider now the problem of solving a partial di fferential equation

s~~ject to a set of initial and boundary data through numerica l integrntion .

A diff erence formulation is obtained by replacing the di fferential coeffi c-

ients by appropriate difference quotients cs an apprcxi ination to the

difforential problem. There will be some “errors” in the approximate

formulation both in the equation and in the initial and boundary data .

When there “errors ” vanish as the mesh sizes 1~t -
~~ 0 ~ ~x -

~~ 0 in some man-

ner , the diffe rence approximation is sai d to be “consistent” with the

differential problem . The solutions of this difference formulation pro-

vide a sequence of approximate solutions, which, in the limi t of ât ,~ x ~ 0 ,

is supposed to “converge” to the solution of the differential problem in

some sense; i.e., the “error” of the solution, as a measure of the depar-

ture of each member of the sequence of approximate solutions from the solu-

tion of the di fferential problem , tends to “zero”. This convergence is ,

however , not guaranteed for a consistent approximate di fference formula-

tion . Various aspects wil l  be considered in the following sections .

2.1 Well-Posed Differential Problem

The differential prcblein should not cnly possess a unique solution,

but also possess “neighborin g solutions” , whether the problem is to be

integrated analytical ly or numerically. This means that when the initial-

boundary data is slightly perturbed , the differential problem should still

provide a solution , which hopefully , departs from the unperturbed solution

of the problem only slightly. This is primarily a physical requirement

- 10 - 
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expounded by Hadamard if a mathematical problem is to describe a physical

situation appropriately. Mathematically speaking the solution of the

differential problem is said to vary continuously with the data; and the

differential problem is said to be “well posed”. Among other things , a

given partial differential equation is well posed only when the boundary

conditions are properly specified. For example , the Laplace equation,

in two vari ab les x and y,

a2u ~~u (2.1)

is well posed when the values of the funct ion u(x y) is specified on a

closed boundary enclosing th~ ~~main of x ,y of interest , (Dir ichlet Pr oblem) .

Now the function

u(x,y) a n~~ sin nx cosh fly (2.2)

is an exact soluti on of the Laplace equation with the initial data

u(x ,0) n~~ sin nx

(x ,0) a 0

This set of initia l data is small everywhere on x with a > 0 and n suffi c-

iently large . Now if the Laplace equation is to be solved when u(x ,0) and

(x,0) are speci fied , then a small perturbation of the initial data can

introduce the per-turbaticns of the type (2 .2) onto the s~1ution of the

problem. This per turbation (2.2) is not small in the iim~iediat e neighborhood

of y — 0 despite the small error of the initial data when n is large and

a is positive . While the perturbation (2.2) does vanish at y 0 for any

_ _ _ _ _ _ _  

-—-
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value of n including n -‘ ~, the value of u(x ,y) given by (2.2) at some

smal l but finite va lue of y, becomes infinitely large as n -‘- ~~. Thus

the Laplace equation is not “well posed” or “ill-posed” when u(x ,0) and

(x ,0) are sp~cified , (Cau chy P roblem) . I f we should proceed to inte-

gra te this “ill-posed” problem , the pert urbed initial data is expected to

contain components like ~.Z), and the numeri cal solution will not converge

to the desired solution even if ~x • 0 (i.e., n 
-~~

If the gradient of u(x ,y) is specified over a closed boundary (Neumann

Problem) or if either the gr adient or the value of u(x ,y) is speci fied over

a closed boundary , the problem of solving the Laplace equat ion is well posed

if some integral conditions are met . Ill-posed problems will result other-

wise , i .e. ,  either when the Diri chiet or Nouma~i conditions are specified

only on an open boundary , or when the Cau chy condition is used anywhere.

This state~~nt is applic ab le to elliptical partial di fferen tial equations

in general . The parabolic equaticns are well posed under similar conditions

but only on an “open ” boundary and when integrated in the “positive ” direction.

Th. hyperbolic problems are well posed only when the C~Uchy conditions are

specified on appropriate “open” portion of the boun dary . It become s then

di ffi cult to speci fy the boundary condition s that will render a mixed

differential problem well posed before atteii~ting to formulate a difference

approximation of the problem for numerical integration. From this point of

view , the algebrai c complexities of the ful l Navier-Stokos equation s system ,

either for the time depen dent hyperbolic pro blom (1.6) o~ for the steady

3ta te ellipti cal proble m (1.1) , may well be tolerated to facilitat e the

formulation of a well-posed problem.

_ -  

- 
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2.2 Well-Posed Difference Prob lem

It is not only that the diffe rential problem should be well posed

for a specific or a selected class of initial data , but al so that the

difference problem shou ld be well posed snd , for a more general clas s of

initial data , to provide a convergent numerical solution . This is becaus e

the perturb ations implici t in the n umeri cal solution of the approxi mate

difference formulation need not fall within the clas s of the initial data

for which the di fferential p roble m is well posed. The function

u(x ,t) — exp [ia(x + t)] (2.3)

satisfies thc firs t order hyperbolic equation

(2.4)

with the initial value

u(X ,O) exp(iax) . -

The complex notation with i. = V:T1~ used here for simplicity , to mean

that both the real and the imaginary parts of the expressions should be

valid simultaneously. A wide clas s of function u(x ,0) can be formed by

superposin g various tri gonometri c initial data corresponding to vari ous

choices of the value s of the constan t a. Each component can possess an

arbitrarily assi gned amplitude . By summing up the component solutions of

di fferent a’s , the solution of the problem with the generalized init ial

dat a is obtained. Any nu~~ers of the compon~.nt solutions can be perturbed

wish a correspondingl y srial l perturbation on the solution . The diffe rential

proble m is thus well posed. 
-

— _ _ _

~~~~
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Suppose now the forward tiz3 centered space difference algorithm is

used to provide a difference app roxi mation to (2.4) as:

?t ~~1 H~’ II’~ II ~- 

j  
— 

~Jf~~ 

- J_
~ (2 5)At 2Ax

- exp (iax)

where - U(j Ax ,nAt) .

An exact Solut ion of the di ffe rence problem (2.5) is

— U(J Ax ,nAt) a (1 + i sin cthx)~ exp(iax) (2.6)

where n - t/At. In the u nit of At -‘ 0 ~ Ax • 0, the di fference solution

given as (2.6) , converges un ifor mly to the solution u(x , t),  given

as (2.3), for the differential problem (2.4). The same holds

t rue for all the components and for their sum with a generalized initial

data. Now when the differ2nce problem (2.6) is computed for any small

£t and Ax, the computation is always intst~bie (as is well known) . It is

apparent that some compcnents of the perturbations introduce d by the

computation of the di fference form (2. 5) cannot be represented by the

trigonometric data and grow Out of bounds .

The Euler’s equation (l.8a) for inviscid gas dynamics is easily

cast into CaUchy-Kowaleski type quasi -linear hyperbolic equations system

~~~. A(u) ~~~~~~~~~ 0, (2.7)

where A(u) . . If the initial data of u(x , t a 0) - f(x) and A(u) are

analytic , then the solution u(x ,t) for all x and t is analytic. The

requirement of the analyticit y of the initial data might not appear to

_ _ _  _ _ _ _  _ _ _ _ _
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to be very restrictive in view of the Weiers trass approximation theorem.

True that any continuous function within a closed interval can be approxi-

mated arbitrarily closely by enc lytic finctions , including polyn omials

and sinusoida l functions . But arbi trarily close approximation of the

initial data does not promise the arbitrarily close approximation of

the solution . The two examples (2.1) and (2.5) given above illustrate

this point both for the diffe rential and the di fference equations.

Equation (l.8a) or (2.7) for inviscid gas dynamics is a well-posed

problem for a fairly broad clas s of initial data . Even if it is presu.ned

that a consistent difference app roximaticn possesses a solution that con-

ver ges uniformly to the solutions of the di fferen tial problem , stable

computation is not guaranteed. The inst ab ility of the computation is

attributed to the fact that the perturbations on the initial data intro-

duced by the computational procedure is beyond the class of perturbations

expressible in terms of the piecewise analytic data. For a di fference

problem to be well posed , its solution mus t be continuous with a much

wider class of perturbations on the initial data. This is the crux of

the concept of computational stab ility.

Computational stability in general calls for the boundedness of all

the pert urbati ons in the computed solution . Then when the magnitudes of

the perturbations in the initial data are made arbitra rily small in the

limit of vanishingly smal l mesh sizes , the resulting perturbations in

the computed solution will likewise vanish . The computed nei ghboring

solutions based on a consistent di fference formulation will then converge

to the solution of the diffe rential problem; i .e . ,  stability and consistency

- — - ‘ -~~~~-_ - — -— - _ -~-- - -_- - - -_ _rn-_-- —----. _---- - - .- - - _ - _ ---—- - - ——------ -
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means convergence. This is the essence of the equivalence theorem of

Lax. The success in obtaining a convergent approximate solution through

the computation based on a given difference formulation therefore lies in:

(i) the consistency of the difference formulation with the

well-posed diffe rential problem,

(ii) the stability of the difference formulation.

Here, the difference fcrmulation means collectively all the difference

relations connecting the values of functions at different time levels and

at all the mesh points in the interior of and on the boundary of the

field of computation .

2.3 Coaputational Stabi~~~y

Computational stability is a characteristic of a set of di fferen ce

equations , not of a difference algori thm how a di fferential coeffi cient in

the differential equation is to be replaced by a difference quotient.

It is incorrect to refer to an algorithm as stable or unstable . The same

algorithm when applied to different differential equations can lead to

different difference equations with entirely different stability character-

istics . Thus, the forward time and centered space difference algorithm

when applied to the simple wave equation (2.4) leads to an always unstable

difference equation (2.5). When the same algorithm is applied to the

heat diffusion equation, the resulting difference equation is stable if

5 . ~~~ < .~~. • Scan simple examples are given in Tables I and II.

Slightly different algorithms , applied to the sane differential equa-

tion may yield di fference equations with quite di fferent stability be-

havior. For the simple wave equation (2.4), the forward time and the

backward space difference algorithm will yield an a’ways unstable di fference
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equations

~~
+l Un Ufl

~~~~~ ________ a 0 (2. 8)

The forward time and the forward spatial difference algorithm will pro-

vide the di ffe rence equation

un+ 1 - u n 
~ -

~~~~~~~3— -c ‘

~~~ 
~ a 0 (2.9)

that will be stth le if C tit llax < 1. And , as mentioned previously, the

forward time end centered space di ffe rence algo rithm , Equation (2.5) , is

always unstable . The choice of difference algorithm for discretization to

obtain a stable difference equation is not trivial .

For a slightly more complicated equation, the situation is considerably

more complex. A partial differential equation of hi gher order may be

written as an equivalent system of lower order partial differential equa-

tions. (Contrary’ to the situation of higher order ordinary diffe rential

equations , this is not generally true for partial differential equations) .

A partial differential equation representing a physical principl e may be

writ ten in different but equivalent forms in terms of di fferent subsidiary

variables . When the sar.e difference algorithm is applied to discretize

these equivalent differential fo rms , the resulting di fference equations

are not equivalent and may possess widely di fferent stability behavior in

computation. Consider the simplest case of the second orde r wave equation

C2 (2 . 10)

which is equivalent differentially to a system of two fi rst order wave

equat ions . We may write the system in terms of different variables as:

L ~~~ — - - --•-— ——-~~~~~~~~~~~~ --—----~----—----——— 
-
~~ 

-- - —
~~~~~~~~~-
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(2.lla)
aV 

C
2 3 $

and

3v
- FL~~~~~E (2.llb)

3u 3v
.~~.-a C~ .j

When forward time and centered space difference algorithm is u5ed , the

following difference equations system results

•
n+ 1 ~,nj 

_
j _ v n

At (2.12)
- Vu •~ -2~’~ +j 2~~~ 

3+1 .1 3
At ~x2

and
U1

~ - U T
~

_ _ _ _ _ _  _ _ _ _ _ _ _

At 2Ax
(2.13)

u~~ ~~~~ 

- ~~

The system (2.12) is always unstable for any choices of At and -Ax (easily

verified by v. Neumann Analysis) while the system (2.13) is stab le if

C At/Ax j 1. Note also that the similar differen ce equation (2.5) for the

first order wave equation (2 .4) is always unstable. Thus, it is not a

matter of trivial consequence to rewrite a partial differential equation

into equivalent but different forms before discretizatio n with the same

di ffe rence algorithm.

The equatio Ta of flui d dynamics represent the three conservation laws

of mass, momentum and energy. They can be expressed in terms of 
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a great number of dependent and independent variables or in terms of

particular combinations of such variables and in diffe rent coordinate

systems . The second orde r equatio n s may be split into fi rst order sys-

tems. (For the moment , the question of nonlinearity is put aside.) For

all these varied forms of equivalent systems of partial differential equa-

tions (equivalent in the sense of physics and mathematics ) a given di ffer-

ence algorithm will give correspondingly varied difference forms with

quite di fferen t stability and oth~r computational beh aviors .

The complete difference formulation of a f luid dynamics problem

will call for the discretization of the boundary condition in addition to

the set of di f ferential equations. The set of difference relations connec-

ting the values of various functions at mash points neighboring the boun-

dary is generally diffe rent from the set of recurs ive relations for the

interior points derived from the differential equations . This boundary

set of difference relations may be unstable while the recursive di ffer-

ence relations for the interior points are stable. Apparently trivial

modifications of the difference formulation in the boundary conditions

thus often lead to substantial changes in the stability beh avior.

In view of such a complicated situation and of the frequent experi-

ence of severe computational instability, it it highly desirable to be

able to analyze the stability behavior of a given di fference formulatio n ;

bu there is no simple means available except the so-called “energy

analysis ”. The “ener gy analysis” atte mpts to estab1 i~h a finite bound of

the solution (over the entire net or mesh space) in some suitably-chosen

norm, and the formulation is by definition stable . When such a bound is

established, the proof of convergence, existence, and uniqueness follows

trivially. For a nontrivial boundary value problem, such a proo f is very

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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di f ficult and very tedious even for a simple equation. Such proofs are

available for the Navier-Stokes equations for an incompressible fluid, but

only for the periodi c boundary conditions , a case which is really not that

much different from a pure initial value problem. With rather complicated

boundary conditions, it is not practical if not impossible , to ascertain

the stability property of a difference formulation of a f luid dynami cs

problem via such an approach . At present , it is a practical art to draw

f rom experiences with similar problems and inferen ces of mode l analysis

in formulating the recursive difference relations for the interior points .

The formulation of the boundary conditions is approached on an individual

basis and modified where necessary. The entire program is then tested in

actua l ccmputer computatio n for its stability . Considerable work will be

involved before stable comput ation is achieved. By then quite a few modi-

fications may have been introduced. It is opportune to check if the final

di fference formulation is consistent with the di fferential problem to be

solved both as to the differential equations and the boundary conditions.

It may well~be that the physical boundary conditions that should be

applied are quite different from those consistent with the difference

formul ation or that some spurious terms might have been introduced into

the di fferential equations that fai l to vanish in the limit of At ,Ax • 0.

The v. Neu ~~~~
‘ stability analysis tor the local linearized model will most

likely impose some restrictions on At and Ax for the computation to remain

stable. This restriction should be observed by all the approximate solu-

tions, as successive meir~ers in the Cauchy sequence , converging toward

the solution of the differential problem. The limi t pro cess in the t-x

space is not to be taken in any arbitrary manner. This restriction should

be considered while investigating the consistency of the difference formulation .

—~~~~~~~ ------- —~~ —‘~~~~~~.-- -‘ 
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* 

- 23-

Certain difference algorithms are often referred to as “unconditionally

stable” . What it means is that when such an algorithm is ‘is~ d to discretize

a certain typo of differential equation for the solution of pure ini t ial

value problems or of periodic boun dary va lue prob lems , there will not be

restrictive conditions on the choice of At (or of the iterative steps in

the solution of pure boundary value problems) for a given set of Ax , accord-

ing to the v. Neunan stability analysis of the linear equations. When such

an algorithm is used in the numerical solution of non-periodic boundary

value problems, even for that particular type of equations , computational

inst ability will often result especially for complicated boundary condi-

tions and for non-linear equations. Even if no question of stability

arise , the apparent advantage of permitting the use of too large time steps

At need not lessen the computing time while inevitably decreases the accur-

acy of the computed solution. Indeed it is advi~able under the circus-

stances to verify the consistency condition s for both the equation and the

boundary condition.

A case to illustrate the point is the following . The integration of

the simple heat diffusion equation

3u a2u
(2.14)

w ith the formally second order accurate , centered time , centered space

algorithm of DuPort-Frankel:

- ~n-l 
- 2~~~~~ + U~~1 ~~i

+l 
- 2U~ + 

~~~~~~fAt \ (2 15)2At xa At2 
.

is “unconditionally stable” for any positive values of s • 
~~~~~~~~ 

so that

At can be made as large as Ax or larger without leading to computational

____ ~~~-~~~---. ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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instability. Most other explicit di ffe rence algorithns when applied to

the heat diffusion equation will  impose a stability limi t like S < 1/2.

The restriction on At is particularly severe at small Ax. Now, in inte-

grating Equation (2 .15) . it is tempting to use as large a t~t as is practi-

cal, usually comparable to Ax, to save computing time . Indeed , this is

often credited as the “meri t” of the Dufort-Frankel scheme . Equation

(2 .15) is , ho~iever , consistent with the heat diffus ion equation only when

0 as Ax • 0. Otherwise , it is consistent with the wave equation,

having the wave speed

~~~~~~~~~~~~~~~~~~~ (2 .lSa)

With 0(1), the computed solution is expected to display waves coinpar-

able to the temporal and the spatial variations of the solution , and there-

fore loses much of its value as an approximation to the solution of the

diffusion problem (2.14) . Even with At/Ax 2 s < 1/2 for example , the com-

puted solutions will still display oscillations, albeit at smaller amp li-

tudes. The mean solution (taken over the waves) is neither a meaningful

app roximation of the solution to the di ffusion problem with Diri chlet

boundary conditions. If a Neuman boundary condition should be impos ed,

instability will re sult. The qualitative statements mentioned here should

not be generalized. The simple example is given above only to bring home

the point that every individual problem should be carefully examined

according to the fundamental principle . Our current understanding of the

nuserical integration of the partial diffe rential equations does not warran t

any simple generalization to be applied to the complicated situations of

fluid dynamics. 

.--- --. — 
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• III. STABILITY ANALYSIS

The numerical integration of the Navier-Stokes Equations, as an

outstanding example of complicated partial diffe renti al equations system

is expected to encounter quite serious practical di ffi culties . Such diffi-

culties fal l into three basic categories which may not be all independent:

(i) Computational Stability • - All disturbances will remain bounded

in the computation. Otherwise , the value of some quantity will  eventually

become so large as to ~e beyond the capability of any computer and no

results would be obtained. Hence, this is often referred to as computa- j -

bility .

(ii) Convergence Rate - The solution at some later time T or at the

V asymptotic steady state should be obtained with a reasonable amount of

computational work , i .e . ,  the nuni,er of time or iterative steps in the
V solution must not be too large and the computational work for each step

not excessive so that results can be obtained within a reasonable amount

of time ( and hence .cost) . ‘I 
-

(iii) Accuracy - The solution eventually obtained must in some sense V

approximate the physical results in question for it to be useful. The

criterion for its being an adequate approximation is , however , subject

to judgement . The accuracy criterion imposes limitations on the fineness

of the r esolution , both temporally and spatially, which in turn sets the

requiremen t on the convergen ce rate .

Computational stability is clearly the most pressing problem, since

it is the firs t one to be encountered in an attempt to get any solution.

Iduch work has been devoted to this question . As is explained in the pre-

vious chapter, its fundamental nature is essentially understood but there

are quite a few subtle aspect s in its implementation even for the simple

- 25 - 
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examples . The practical question of achieving a stable computation for

the complicated system of Navier-Sto~es Equations is expected to be

formidable. The various heuristic approaches that promise to guide the

formulation of a stable difference prob l.em uil l  be reviewed in the follow-

ing chapter. Generally speaking, with some hard work , stable computation

can usualily be achieved as may be verified in actua l computation . It

is important, however, at this jun cture to bear in mind that the convergence

rate and the accuracy of the formulation should not be seriously compromised

in an all-out-effort to achieve stab ility of the computation. The objec-

tive of the computation is to ootain valid approximations to a given

physical probl em . In the following review , it is therefore intende d to

bring out primarily the mathematical assumptions and their physical impli-

cations of various approaches when they are applied to the solution of

different types of practical problems. V

3.1 v. Neumann Stability ft~ alysis

A vector unknown function 1J(t~ x~) of dimension p is to be calculated

over mesh spacings Ax1, Ax2, Ax 3 for successive incremen ts of At from the

initial values of U (t’ O ,x . )  based on a system of linear difference equa-

tions .

The general form of the linear difference relation may be that some

linear conbinations of the values of the function at a group of

neighboring mesh points are given by some other linear combination of L?’

at various neighboring points . If only the evaluated at a single

mesh point is involved in the difference equations , the unknown values of

LJ~~~ at any given mesh point can be determined without refe rence to the

advanced values of at other mesh points . Such di fference equations

are explicit. If the advanced values of at more than one mesh point

- - - ~r n V V V . k V S - - -



are involved, a set of recursive difference relations written for all

the mesh points would have to be solved simultaneously so that the ad-

vanced values of all the mesh points in the entire field of computation

will be obtained at the same time . Such difference equations are implicit.

Sometimes it is pre ferred to solve simultaneously for the advanced values

at special groups of mesh points in succession , such as by rows, by

columns , or by diagonals , by blocks or by bands . Such difference equa-

tions are partially implicit and partially explicit by nature . The organi-

zations of the special group may change from one to the next , and such

different groups are often applied in alternate sequence or in some special

orders . They are then re ferred to as alte rnating direction methods . The

specific details of the difference algorithms that may be employed to

represent a differential problem is indeed very nui~erous . V

If all the coefficients of the difference equations are constan t , and

if the system of equations are to be solved under periodi c boundary con-

ditions (or under the presunption that the boundary is so far away as to

exert no influnece on the solution , i.e., the pure initial value problems) ,

the solution of the system of equations can be extended periodically

beyond the field of computation with both U” and represented by

Fourier series . The linearity of the di fference equations system permits

the treatment of each Fourier component separa tely. Thus by substituting

U by V(k~) cxp {ik
3

x~) into the system of di fference equations and can-

celling the common factor in each equation , an equation

H1V~~~ Ck~) H0V” (k~) (3.1)

•rn~~— -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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results . Here i is the complex number to represent the sinusoidal fun c-

tions with wave numbers k 1, k2, k 3 in the x1 x2, x3 directions respec-

tively. V(k~) is the amplitude of the particular wave component under

consideration. Each of the Fourier components may be considered either

as a part of the proper solution U or as a small perturbation (or error)

superposed on the solution U. H1 and H~ are the matrix operators de-

pending on the constant coefficients of the di fferen ce equations and of

At and AXJ . On the assumption that can be inverted , then Equation (3.1 )

becomes

a G(At 1Ax~~k .) V”(k.) (3.2)

where

G(ât , x
3
, 

~
) (H

1

) H
0

Equation (3.2) tells the evolution of each Fourier component either as a

part of the solution or as a perturbing error. Accordingly G(At ,Ax3, k
3
)

is called the amplification matri x of the system of difference equations.

The condition that the solution U should be uniformly bounded requi res

each and every component to be so bounded. Since the norm of

IIV”JI ~~ . IGIP.HV°II , it is necessary and sufficient that I I G IP  be so bounded

for all wave components and for all n = T/At where T is the time period

for which U is to be calculated with some choice of small but positive At.

Now IGJ~’.t R”(ht~Ax~~ k~) where R is the spectral radius of G , i.e., the

largest eigenvalue of G. Hence for such initial periodi c boundary value 
V

problems , the v. Neumann’s condition follows that all the eigenvalues of

the amplification matrix G be < l+O (At) . It is a necessary condition

for computational stability. The eigonvalues of the amplifi cation matri x

are often more conveniently obtained by direct substitution of ~~~ - Xu1’ 
V

L -- _ _ _ _ _ _ _ _ _ _ _ _  - - - 
-— —-— —~~
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into the di ffe rence equation to obtain the determinant which vanishes —

when A takes up the eigonvalues. The v.Neumani condition becomes sufficient

for the stability of the stated problem when the matri x G is normal. Both

this sufficiency aspect and the additional term O(At) axe without much

practical significance for the present consideration as WIll shortly be-

come clear . The important points to recognize from the above are the

physical implications of the various conditions under which the v.Neumann

stability analysis is formulated. V

3.2 Local Linearization

The application cf the v.Neuaann analysis for the stability of the

numerical integration of a system of nonlinear partial differential equa-

tions such as (1.7) calls for quite a few important additional approximations :

(i) The nonlinear difference (or differential) equation is linearized V

by conside ring the solution as the sum of a small perturbation (or variation)

superposed over the local solut ion of the problem. By substituting the

perturbed solution into the di fference equation and keeping only the terms

involving fi rst power of the perturbation , the result is the equation of

the fi rst variation with coeffi cients depending on the solution of the

differential problem , such coeffi cients will vary with x and t.

(ii) The coefficients , will be assumed to be slowly varying 50 that

these coefficients can be evaluated by the constant local va lues at

various mesh points . The system of equations of the first variation then

becomes linear and with constant coefficients for the first variation . It

is supposed to apply locally at each mesh point . The coefficients (end

hence the di ffe rence relations) vary from mesh point to mesh point.

(iii) The stability behavior of the computation at each mesh point

is independent of its neighbors and can be considered as the stability

II._ — —----— ~~~~~ ~~~ ~~~~~~~~~ ~~~~~~~~~ V~ — ~~~_iI~~~~~
’- _

~
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problem very far away from the boundary (it cannot be periodic) . Thus

the v.Neumann stability analysis may be app lied locally to find the local

stability limit on At.

(iv) The local stability limit is determined at every mesh point

in the interior with th. local computed value LJ”(x) rather than the genuine

solution u(x ,nAt) . The most restrictive of the local stability limits

over all the interior points will then be taken as the stability limit on

At for the integr~iticn of the difference problem.

Such a local linear stability analysis to be applied to fluid dynam-

ics problems is probably what led v.Neurtann to develop the Fourier method

for the constant coefficient linear difference equations . This method is

still the most valuable practical tool. It should be noted that slight

difference in the linearization procedure can lead to slightly di ffe rent

linearized equations of the fi rst variation . They will give slightly

different local linearized stability criteria. Consider the following

examplb :

- 
~jy (us) (3.3a)

4~~u V

- ~~~~ (Su 
~~~~

)  (3.~~ )

t ith the initial condition

- u(x,t=O) - Y(v(x0-x)] V

and the boundary conditions

u(o,t) - ‘V(v(vt+x0)]

u(L,t) - ~[v(vt-L+ x0)]

-
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The following is a ’solution representing a running wave with constant

wave velocity v

u(x,t) — ‘V[v(vt-x+x0)] (3.4)

where the function ‘V is given implicitly as the inverse of

~~
- (u-u~,)

4 
+ ~~!. u (u-u ) 3 

+ is u2 (u-u )~ + 20 u0
3 (u-u)

+ 5 u~ £n(u-u) v(vt-x+x0) (3.5)

It is shown in Fig. 1 with a relatively sharp front and approximately a

quartic curie far downztre ams . It may be interesting to note that the

Equation (3.3) stands as a heat diffus i on equation with vari able diffus-

ivity 5u4 rather than an equation describing the steady propagation of

a ncndecaying wave .

Let the Equation (3.3) be discretizod with forward time and centered

space difference a1gorith~a with the spatial derivative evaluated in part

o at the advanced time stop and the other part (1-0) at the original time

step.

- = 
~~~~~~~~ 

{0(6 2 (u5)) ’~~ + (l-e) [62 (u5)]~ } (3.6)

where the second order spatial difference operator

[62( )]
1
~ C ~~ - 2( )‘ + ( (3.7)

The parameter 0 can be chosen at convenience. This is a nonlinear equa-

tion. The following linearized approximation

(U3)~~
1 QJ5f~ — S(U4)~ (url _ 

~~ 

~~~~~~~ •~~~~_ - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~
______________
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gives the equation of fi rst variation of (3.6) as

((J%+l - U~) - 
~~~~~~~~~~ [(u4)~,~(u~:~ -

- 2(U4)~ (1Jr1_ U~) + (U4)~~1 (U7~~ -

— ~~~~~~~
. [U ~~~~~

_ 2(U5)’~ + (tJ5) 1] (3.8)

Note that the equation is linear in the unknown Cur ’- U’~) if th. value s

of the function U at all the spatial mesh points at the time level a are

known. Otherwise , the equation would h ave retained its nonlinear for..

Alternatively, It is also appropriate to linearize in many other ways.

A particularly simple one is to approximate

[~2 cvs~J
n+1 

[4
2(us)]n 

V

— 5(U4f
~ [6

2u)rl_ (62U);]

and 
[
~2(0S)]n - 5(U4) (62U)’~ (3.9 )

Then the equation of the first variation of (3.6) becomes

(LP1 U”) - ~~~~ (u~)’~ [cu’:~ 
- 

~~~~~~~~~ 

- 2(U~
+l_ (Jfl) + (U~~~ -

— 5 ~~~~~~~
. (U4)’ [tç,1

_ 2U” • u~..] (3.10)

This last equation is indeed the same as what would result if the effec-

tive diffusivity 5u4 in Equation (3.3b) should be treated as a constant

before and during discretization.

With all ~~~~ U’ , and ~~~ taken to be constant, the v.Neumann

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ 
~~~~~~~~ V 

~~~~~~~~~~~~~~~~



V - -

- 3 3 -

stability analysis for Equation (3.8) will requi re the following absolute

value to be less than un ity for all w ave nuuber k .

1 — (1—O)s 1 (3.11)

w~cre s is the complex e~pressicn

$ a 5(U~)~ ~~~~~~~
. [z - (a+8) cos kAx - i (a-8) sin kAx ]

with a r

and 8 —

Th. restriction on the value of can be computed fo~ all k from

(3.11) for different values of ~ and 8 at every interior mesh point . This V

is a very tedious process. The v.Ncunana stability cnalysi.s for Equation

(3.10) lsa4s to the same relation (3.11) but with u-8-l. This provides

an axplicit limit on that when 0 < 1/2 , V

4 n  At 15(U )
~~ ~~r ~ 2(1-20) (3.12)

and there will be no limit on if e �. 1/2. This is the well-known

results for the simple heat equation.

To test the usefulness of the local linear stability criteri on,

computations were carried out at 0 — 0.4 and ~~~~~~~
. - 0.001 with Equation

(3.8). The parameters v and U0 were chosen as 0.075 and 5U4 
~~~~~~~-a 0.005.

The lest value is much less than 2.50 as is required by Equation (3.12) for

local computational stability. As the computation proceeds, the values

of U increases with t over the entire field of computation. According

to the local stability criterion (3.12), we would expect instability to

appear in the form of rapidly increasing amplitudes of oscil~~;’ions when

L 

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ y 
~~~~~~~~~~~~~~~~ 

V~

- 34

and where the values of (U~,u ) exceed (500) 1~’4 
~ 4.7. This was what

happened as is illustrated in Fig. (1 ).  The computed points lie very

close to the analytical solution except at the foot of each wave fron t

where the solution undergoe s a rap id change and in the region where

S and whore the computed solut ion oscillates , signalling the on-

set of computational instability.

It is remarkable that the simple local criterion deduced for the

difference Equation (3.10) provides highly satisfactory guidance for the

integration of Equation (3.8) although a and B generally differ fron

unity. Where the stability boundary of Eçuation (3.8) with a ~ 1 lies

with in the stable region of Equation (3.10) , the local linear stability

limit need not even be “nz~ceasa1y” at such interior points . Such regions

are likely to be small , hcwovor , if the model equation (3.10) i~ the

above example is appropriately chosen. It is clearly not suffi cient

since the v.Neuaann stability condition itself is not and since the in-

fluence of the boundary conditions on computational stability is yet to H

be investigated. Nevertheless, the local linear stability analysis does

app3ar to provide useful guidance in practi cal applications especially

if the influence of the boundary conditions can be separately investigated

and if the linearized ~odeI for the difference relations at the interior

points are properly selected. Such fortunate circunstances are , however, - 
-

not to be pre sueed in complicated equations systems .

3.3 Application to Navier Stokes Equations

The Navier-Stokes equations system is quasi-linear due to, (ii the

variable convective veloci ty , (ii) the vari able density and energy and

hence the variable diffusivity as illustrated in Equation (3.3) . It is

-~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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PIg. 1. Runi~ing.wavo solutions of the non-linear equation 8s481 — 82 (u9f Øx’. The
c’rves show the exact solution, given by equation (8.25) and the dots show the solution of the
dlilerence equation (8.27) with 0 — 0.4 and with ~S and ~x so choeen that r.~i/ 1z 0.075 znd

— 0.005. The numbers on the curves are cycle numbers.
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further complicated by the small diffusivity or large Reynolds number and

the presence of many such terms especially in multi-dimensional flow prob- 
V

lems. If the standard procedure of local linearization is followed, the

resulting lineari zed equation s are very long. The v.Neun.ann stability

enclysis for such equations wil l  inevitably lead to unwieldy algebraic

expressions so that the explicit limi t on At at each mesh point can only

be obtained at much more labor than what is required in the situation of

Equation (3.11). It is impractic3l to consider checking the stability

limit at many mesh points even if infrequently. It appears imperative 
V

to look for simple but meaningful model equations such as Equation (3.10)

in the previous example. This is consider ably complicated by the change

of the asymptotic behavior of the Navier -Stokes equation s system in di ffer-

ent regions in the field of computation, enumerated in the previous chapter.

Near the solid boundaries or whe re the viscous effe cts are important , the

region is locally parabolic or elliptic. Far away from the solid boun-

daries, the direct viscous eflect is negligible and the flow region is pri-

marily hyperbolic. It is unfortunate that a difference algorithm, when

applied to practical differential equations of different types, will lead

to difference equations with quite different stability behavior.

Tables I and II list a few common difference algorithms when applied

to th. simple wave equation and to the simple diffusion equation respec-

tively. M algorithm often yields a stable di fference equation for the

diffusion equation such as the forward time -cente re d space algorithm

(Scheme 1 in Table II) while it provides an unstable difference equation

(Scheme 3 in Table I) froL~ the simple wave equation. Friedrichs modifi-

cation, which renders the wave problem stable (Scheme 4 in Table 1), on

the other hand , leads to an unstable diffusion problem (Scheme 2 in

—
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Table 11) . The centered time and centered space algorithm is another

example which is given in these tables. There are many other examples

like these. Such schemes are therefore not useful for integrating

Navier-Stokes equations. V

There are many other schemes which are stable for both types of

equations but At are s~I jec t to diffe rent restrictions in diffe rent re-

gions. Usually c <1 for the w ave equation and !. some fractional

constant g for the di ffusion equation ; such as the forward time , backward

space, Scheme I and 2 respectively in the two tables . The condition

c ~1 is known as the Cour~nt-Fricdri ch-Levy (CFL) condition of zone

of dependence to be satisfied generally for di fferen ce fcrms for wave

equations statc s that the zone of dependence of the difference formu-

lation must include the zone of dependence of the differential equation.

~‘hen such a scheme is used in integrating the N avier-Stokes equations ,

computational stability might be expected if At is locally chosen to be

the mere restrictive of the diffu3ion limi t and of the wave limit : (2]

At < Inf[~~ , y (3.12)
j

where c is related to the local wave speed, V is the local kinematic vis-

cosity coefficient, and ‘~‘ is some constant less than unity . The precise

values of c and 
~ may be determined from the v.Neumann stability analysis

of the linearized Navier-Stokes equations after dropping the viscous

terms or the dyn ami c terms respectively. The mo5t restrictive of these

local limits over all the mesh points may then be taken as the At for the

next time increment . In actual computations , it is often necessary to

reduce this most restrictive limit on At further by introducing an empi r-

ical safety factor which may have to be rather small.
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Some safety factor may have to be needed because of the unknown

effect of the boundary conditions . But actua l computation often m di-

cates the instability to be initiated from the interior. Thus , it

appears to be , at least in part , due to the fact that the pure di ffusion

and/or the pure wave equation are rather poor models for the interior

points of the linearized N’avier-Stokes equations . It is true that in

the linearized form the Navier-Stokes equations may be visualized as

the superposition of a wave and a diffusion equation. The stability

limit is , however , not generally the superposed di ffusion and the wave

limit.  This is because the detor inination of the ei gen-values of a

linear equati on is not a linear problem , whi ch requi res the solution for

the root s of a polynomial equation with constant coefficients. A small

perturbation on a coefficient of the characteristic polynomial often leads

to an iflprOpOrti3flately large change in the largest ei genvalue (or the

spect ral radius) depending on the speci fi c di ffe rence algori thm.

To illustrate the situat ion , consider the one-dimensional Burge rs ’

equation with constant c and v .

au a2 u
+ c = v 

~~~~~~~
- (3.13)

When c and V are taken as the local values at a mesh point , it serves as

a linearized ~iodel of the Navior-Stokes equation in one space dimension ,

with the essential characteristics of changing type of the partial differ-

ential equation. If V3quation (3.13) is discretized with forward time

backward space di fference for the convective term and the centered space

difference for the diffusion term, the v.Netunann stability limit is

t~t ~~. (citx + 2v/t~x2)_
1 (3.14)

V ~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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which is almost half of the hyperbolic limit Ax/ c or the diffusion limit

£x2 /2v if they are approximately equal . Thus the safety factor to be

applied to the con dition (3.12) should be about 1/2 or less for the

stable computation of the interior points a1or~e.

The situation is even more critical for multidimensional flow prob-

lems . Consider the two different models for 2-D problems

2 2
C (~~~+ ~~) = V( ~~4. +

au au ~~u a 2uand E + cE  V( ~
.._

~_ +  
~~ y )  (3.15)

with the convective term v ~~ in the dyn amic terms represented by c

and zero respectively. The stability limits for the two cases assuming

Ax Ay are

At 
~~~~~~~~ 

(c/Ax + 2V/Ax2)1

and At < (c/Ax + 4 ,/Ax2)~~ (3. 16)

respective!y~ This mearts that the safety factor to be applied to con-

dition (3.12) should be “.1/4 and 1/3 for 2D flow problems and even

smaller for the 3D flow problems . Thus , the stability condition (3.12) ,

based on superposing the wave ~nd the diffusion parts of the Navier-

Stokes is not very useful although it is simple and convenient.

The local stability condition based on the linearized Burgers’

equation was found to be quite satisfactory for the integration not cnly

of the nonlinear Burgers ’ equation without a safe ty factor , but of the

full Navier-Stokes equations when the boundary conditions are p~operly

treated~
31The one-dimensional Burge rs ’ mode l should be applied locally

V
~ S~~~~~~~~~~~~~

- ~~~~~~~~~~~~~ -
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to the flow along the streamline through a mesh point. This wi l l  yield

Stability limits of the form of Equation (3.14) and (3.16) in which c

shoul d be interpreted as the local signal speed I~1 + f a f .  Here q is

the stream velocity. Bot.’ the local speod of sound a and the kinematic

viscosity coefficient v should be evaluated at the local temperature

or energy. Ax should b~ evaluated along the streamline in some manner

and ~ay well be taken as the smaller of (Ax , Ay) for 2-D problems for

example. The diffe rent details how these local quantit i~es may be approx-

imated by those expli citly calculated at each point, will  give large

varieties of expressions for evaluating the local stability limit on At

for a given choice of the diffe rence algorithm for discretization . It

is advisable to choose a simple form convenient for the explicit deter-

mination of the limit on At at each point , al though less accurate .

This calculation is to be carried out at many points and at many time

intervals for an estimate of the most restrictive limit (the sma llest

valu3 of )  on At for the next time interval. It may also be convenient

to check the local linearized stability limit once every few time steps

rather than at everyt ime step and to adjust the magnitude of At adopted

in the computation for the next few steps accordingly.

3.4 Treatment on the Boundary

When the appropriate local linearized stability limit is obeyed,

computational instability at the interior points can usual ly  be avoided

although oscillations of fairly large but bounded amplitudes are often

present in the calculated results. These oscillations originate from

the boundaries, both interior and exterior and do not represent computa- —

tional instability in the sense of boundedness of the solution discussed

~ 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~ &~~~~ VVV V~~ VVV ~
V 

~~~~~~~~~~~~~~~~~~~~~~



-. __ V~ V_ ~fl ~ ~~~~~ -~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~“-~~~~ ~~~~~~~~~~~~~~r~ 
-~~~~~ ~~~~~~~~~~~~~~~~~~~ V~~~ V

- 4 0 -

previously . Such bounded oscillations are often referred to as the

Nonlinear Instability which is basically a di ffe rent phenomenon more

directly related to the question of accuracy and can doubtfully be

clarified by the heuristic local linear stability treatmen~
4
~ iscussed

in the previous section.

Genuine unstable computations can result when certain boundary

treatment is applied to some difference algorithm. For such cases, the

local linearized analysis can often tell the impending computational

instability. Consider the integration of the inviscid gas dynami c equa-

tion (2 .7) with the Leap-Frog scheme, (Scheme 5 in Table I)

u~~
1 u’~~ -A 

~~ 
[u +~~ LJ~~I] (3.17)

which is second order accurate in both time and space and is always

stable for any values of A t/Ax at all the interior points. To initiate

the integration, both and should be available at all j = O ,l ,2 ,...J

and boundary conditions must be provided at both boundaries j = 0 and

j J. Note that both the initial value and the boundary data at j J

are not specified by the initial data of the differential problem of the

propagation of a small wave in an unboun ded flow field. These data are

extraneous and are brought about by the use of the higher order accurate

difference algori thm in which a first order differential coefficient is

replaced by a second order difference quotient.

The extraneous initial data U~ are usually obtained from and the

temporal derivatives through Taylor series about t * 0. The higher order

temporal derivatives are obtained from the inithu l data in the vicinity

~ 
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of the point based on the differential relatiun and its time derivatives .

It is not obvious how the extraneous boundary data at j = J should be

defined. One of the natural ways is to extrapolate along x assuming

that U is small is

Uzj a 

~~-l 
(3.18)

This is not a bad physical approximation . Computationally it leads to the

difference relation

~~~~~~~~~~~~ ti~::~ -A~~~~ ~~ [ ~~_ 1 -u~_2] (3. 19)

for advancing the mash value at J-l immediately preceeding the boundary

point J. If the v.Meumann stability analysis is applied locally to this

difference equation with A~~1 taken as a constan t, and U taken as a scalar

unknown, this difference relation (3.19) is locally always unstable with

the amplification factor l x i a U~~~~~/U~~_ 1l>  1. This is because the

v.Netuann analysis leads to the algebraic relation

A - ku. _A~_ 1 ~~~~ [(1-cos kAx) • i sin kAx J 
~~~~~~~ 

• ifi) (3.20)

whore k is the wave nu~ther wider consideration and 2f
~~ 
and 2f ~ are the

real and the imaginary parts of the right hand side . Thus

1/2
A a ~~r + if ~) ± [1 + ( f .  if

i
) 2]  (3.21)

For some choice of k , f~ will be zero and the absolu te va lue ~A I will

be greater than unity regardless of the magnitudes of A~.1 ~~ . Actual

computation confi rms the instability that IU~I dive rges as n. If A~~1 ~~
V should be taken as unity and if the initial dat a satisfies • (_1) i+fl



- 42

for n • 0 and 1 and all j a Q~ 1...J-t , the solution of the di fference

equation actual ly can be shown to continue as

IJ~ (...1)i ’n 
+ (_ 1) i F(j  + n)

with F ( j + n < J ) = o  and

+ J) (_ 1) n_ l 2fl (3.22) 
- 

-

Higher order accurate extrapolation forz~ulas based on zero higher order

derivatives instead of Equation (3.16) will only change 
~r 

and and V

still load to computational instability in the same manner.

Careful examination of the local stability analysis will suggest

that stable computation will result if the eztraneous boundary value

is obtained as:

U
’
~ ~~

. (U’j~~ + 

~~~ (3.23)

i.e., U~~1 in the first order extrapolation formula (3.18) is replaced

by the average of its temporal neighbors . Then the difference relation

on the boundary is

.n.l 1-a .n-l 2a .n
Uj_ 1 — j~~~ 

U
j4 

+ j~~ 
Uj _~ (3.24)

with a >  0.

I ~~~ I £ max. cIu~~i, h l
~~_2 1) (3.25)

and the advanced values ~~~~ remains bounded. Altereatively if the

v.Netm*ann analysis is followed, then

V 

- V~~~~~~~~ V~~~~~ - V - ~~~ - — -



_V 
_~~~~ V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 4 3 .

1-a 1 2a - ikAxe

~~ 1—a 1 2cz 
V

and IA I~~~I1;~ Tri-~ r;~
Thus -l ( - 

£ H < 1 if cs<l

a-ior -l ‘C l x i < ‘C 1 if a>l

and computational stability ccn be expected.

Thus the local linear stability analysis will help to avoid unfortu- V

nate choices of the unstcMe boundary conditions and sometiites suggest

appropriate choices to secure stable comput ation . It must be cautioned

that if the particular choice of the boundary condition fails to represent

the physical situation , the com puted stable solu tions need not be a good

approximation to the solution of the physical problem. It is co~ton that

oscillations of finite amplitudes appear to be generated at the various

boundaries in a computed stab le solution and that such oscillations appear

to propagate into the interior of the field of computat ion , (or ~~ay from

the shock wave or other interior boundaries) . They represent oscillatory

error components , superposed on the correct solution of the 1.hysical prob-

lem and are likely introduced by the “errors” in the di fference treatments

of such boundaries . Indeed there are also nonoscillatory errors caused

by the difference treatmants on the boundary and such errors may actually

be more serious because of its deceptively smooth appearan ce in the re-

sults of a stable computati on. Such errors tend to be overlooked especially

in view of the diffi culties in securing a stable computation . An important

aspect of studying the accuracy of the computed results is to recogni ze if

the various boundary conditions are appropri ate and to estimate the associ-

ated errors .

- 
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IV. IMPLICIT COMptrr ATION ±N D RATE OF CONVERGENCE

Implicit difference algoritbma generally lead to stable difference

equatio ns when applied to simple wave and cimple diffusion equations as is

indicated in Tables I and II. The local linear stability analysis for

equation (3.3) illustrates further that stability 1. “improved” when the

fraction 0 of the spatial derivative evaluated at the advanced time level

(and hence implicit) is increased from zero to 1/2 . The system becomes

uncondit ionally stable when e > 1/2. The implicit difference algorithms

are traditionally used in the solution of Laplace or Poisson equations

without any problem of computational stability. The implicit difference

algorithm then appears to be the most desirable from the point of view

of avoiding computational stability especially for complicated problems

with mixed behavior. It will be demonstrated that the a~crit of the

implicit schemes is not really that obvious. There are indeed other

difficulties which may be more serious than computational stability.

In Implicit difference algorithm., the difference relation at a given

m.sh point contaix~s the unknown advanced values of quantities at it neigh—

bor ing nesh points. It is neceseary to tr eat th. system of difference

relations at all the interior mesh points simultaneously to solve for all

th. unknowns at all the interior m.sh points. Thus the difference f ormu—

lation based an & tot ally implicit schema will req uire th . inversion of

aat ricc~s of V3T7 large dimension s. Thu imposes severe require ments on

th. m~~~ry capacity and on the arit hmetic speed of the computer. This

also calls for skills in render ing efficient in-,orsion of the sparse but

large matrices &nd inevitably through some form of iterative procedures .

- 4 4 -  
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The rate of convergence or the number of iterations require d to solve the

system of equations to a prescribed accuracy is of great concern . This is

because the computational effort required to complete a “sweep” over the

field of computation (i.e. to advance the values of the functions at all

the mesh points for one time step) is generally much larger for the 1n

plicit difference formulation than for the explicit difference formulation.

It is hcped , however, that , in the absence of a stability limit On ~t with

the implicit difference formulation, the time steps may be taken so many

times larger than the time step allowed by the stability limit of the ex-

plicit formulation as to more than compensate for the much larger computa-

tional effort per time step for the Implicit for mulation . In the following

sections this question vill be examined .

4.1. Simple Time Dependent ?robl.e1!.~
The advantage of the implicit formulation is best illustrated in the

solution of the time dependent beat transfer problem. in aultispace dimen-

sion or In the solution of Laplace equations for the steady state problem.

- ____  — vV2u (4.1)

For such problems, the syst~~ of simultaneous difference equation. to be

solved can be conveniently arranged to be

M i — f  (4.2)

where U is the vector unknown representing the temperature at all the N

interior mesh points, arranged in some appropriate order . f is a known

vector of dimension N and A ii an N x N tridiagonal matrix often diagonally .

dominant. The solution of the system (4.2) for the unknown vector U is

— 

~~~~~ ~~ -~-~--~~~ - - .-~~ - --- ——~--~~ - - - -— -
~
-

~
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equivalent to the inversion of the matrix A, giving U as U —
Cosputationally , a highly efficient nethod can be used to solve the system

(4.2) with approximately 5N operation counts . (Conventional ly, each multi—

plicat ion and division coun ts as one operatio n while addition 5 substraction

LAd other data management operations are neglected) . This is to be compared

with N counts for the solution of an explicit system. (The evaluati on of

coefficients is ignored hare on the presumption that the same amount of

computational work is needed in both the implicit and the explicit cases) .

Thus the computational effort to advance the solution for one time step

with the implicit formnt is about 5 times as much as that with an explicit

format . Ac is ill~tstrated in Table 2 , most stoble explicit schemes will

possess th. stability li~.it (easily verified by v. Neumann analysis) of the

type s a ‘

~~ (1/2 , 1/4); here 1/4 is for two dimensional problems (ace

equation 3.16 with c a.) .  Wit h good spatia l resolution , i.e. a small t~x,

the time step for the explicit scheme will be limited to t~t ~ ~~—dix2 which

is indeed very snail . Thus if computations with the implicit formulation

should be carried Out with a time step larger than 5 ~~2 or even taken

as at — ~x, considerable saving in the computational effort results in the

determination of the t~,4~~ratwre ffeld if at that later time.

The benefit that results is, however , illusory if the determination

of the solution at cone specific later time is required to possess a specif ic

accuracy. Suppose that all the variables are properly non—dizencionalired

and that it is requirod to achieve an accuracy of io 2 , assumed to be solely

dependent on the truncation error (i.e. all the other errors are suppressed

in the formulation and computation). Then if the explicit algorithm 1 in

—~ ~~~~~~~~ - -—
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table U is used , which is first order accurate in time and second order

accurate in space (i.e. e
~ 

— O(At,Ax2), the field of computation defined

by x — 0 to 1 and y — 0 to 1 for a two dimensional problem from time t • 0

to 1 should be dividcd into at least 10 equal. parts in both the x and the

y direction, i.e. ax — ay — 1/10, preferably say with ax — 6y a 1/20 to

allow son’ margin of safety. Th. stability limit vii]. require a at (with

time uon—dimansionaliaed by the square of characteristic length divided

by the diffualvity) as snail as 
~ 

ax2 
~ l0~~ if ax 1/20 or 1/4 x io 2

if bx — l0~ . The relative sagnitu~les of t~t and ax are such that the local

truncation error e
~ 

O(ât ,~x2) and hopefull y the computed results will

remain consiotent with the accuracy requirement. (lb this case, the

accumulation of the local trun cation error will renain of the same order)

If now, the scheme (1) in Table U is modified so that the spatial

derivative is replaced by the implicit difference

.n+1 .n+l .n+1 
--

•( u~~1 — 2u~ + u3_~1 
)

for both x and y direction with the same local truncation error e~ 
a 0(At ,Ax 2).

This scheme (Laason.n) is unconditionally stable, i.e. at can be taken

arbitrarily large compared vithax vitbout suffering computational instability.

h owever, with at much larger than Ox2, the local truncation error is of

0(at) >> 0(b.x2). Thua with Lx — 1/20 as was in the explicit cave and if

At is taken as Lz/5, which i. 16 times larger than the stability limit of

the explicit scheme, the computational effort will be only 4’ 1/3 of that

with the explicit scheme . The solution so obtained is; however , less

accurate with e~ 0(Lt) and At —

~~~~~ 

— io
_2
, marginally acceptable to

the required accuracy io 2, allowing no room for the accumulation of the

local t runcation errors. Formally this solution fr om the implicit scheme

-L 

_____________ 
I
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should be compared with the solution fro m the exp1~icit scheme with Ax . 10~~
with — 0(Ax2) and Ax2 — ] 0_2

. The computational effort of this explicit

scheme is actuall y only 802 of the implicit echeme with the same local

tr uncation error . Alternatively if the implicit scheme is to produce a

result ‘with accuracy comparable to the explicit solution computed with

Ax — 1/20 and At a 1/4 x( ~~-~~~— )2 • The t ime step At for the implicit

calculation should be t~1~en at most as ax2 a 5~ ti~at e
~ — o(At — Ax2).

Than the computational effort for the explicit format ‘viii. again be 80%

of that of the implicit forma t of compara! le accuracy.

The effectiveness of the izplici algorit hm is largel y nullified by

the first order temporal accuracy of the difference scheme in the above

emsaple. It may be that implicit schemes with second order temporal

accuracy will be more effective in reducing the overall computational

effort, but such higher order schemes viii be cumberso me. Pro s thi s 
-

point of view alone , the implicit schemes would appear to be certainly ad—

vantageous in the solut ion of steady state problem s via asymptotic temporal

app romch since the temporal accuracy is of little concert. Rut , as ‘viii be

discussed in the next section, it is not certa in if the large t emporal step s

is conducive to rapid convergence to the steady stai e. It should be noted

in th. above exa~pie, that the solution of the implicit formulation calls

only for the inversion of a tridiagonal matrix which can be implemented

most efficiently in 4’ SN operations. For fluid dynamics problem., the

matrices resulting from an implicit formulation will be far more complex

and tb.. solution of such matrix equation. will be far more t ime consuming.

It appear s prudent not to expect significan t savings in the computation al

effort by the use of implicit difference algorithm , without some detailed

investigation .

L~~~
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4 2  Iterative Solution of Steady State and Asymptotic Temporal Approach

Most of the fluid flow problems of practical interest are at steady

state or quasi—stead y state in which the temporal variations of the flow

variables are negligible. Discretization of such steady state equations

‘viii generally lead to implicit difference relations in ter ms of the steady

state values of various physical quantities at all the interior points and

the boundary values. Except for the solution of potential flow problems

of incompressible fluids, the differential equations will be non—linear

and considerably more cor~plicated than the Laplace equation . The re-

sulting implicit difference relation s will give rise to a rather sparse

matrix A, when written in the format of equation (4.2).  The sparse matrix

A will not be trid iagonal or block—tridi agonci , or other spcial forme convenien t

for the solution of the system of equations. In fact the nonlinear terms

will first have to be quasi—linearized so that th~ coefficients in matrix

A can be evaluated with some a~~uaed approx imate values. The system of

linear equation. will then be solved iteratively until the solution from

(4.2) agrees with the assumed solution under certain convergence criteria.

Let superscript n indicate quantities evaluated with the ~th iterate

of U and use the system of difference relations (4.2) to calculate the

(n+l~~iterate. Then equation (4.2) becomes

- f’~ a 0 (4 3a)

which is indeed the same as

A~(u~
1
~ U~) — - AUUfl (4.3b ) 

-.--— -~~~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Equation (4.3b) can now be considered as obtained from a t ime dependent

equation in which ter ms with spatial derivative s are th e came as those in

the oteedy state equation (4.2) but with an added temporal term

li.m A An ~~~~~~ 4’ 3 U
Lit + o At — LitA~u,

with forward temporal difference quotient replacing

The iterative solution of a steady state problem based on an implicit

algorithm then is not substantially different from the solution of a time

dependent problem, albeit the artificial tv~poral term v~ay not correspond

to the temporal terms in the time d’~pe~ident form of the Navier—Stokes

equations. Tb. physical meaning of the individual fictitioue temporal

terms can be easily identified when the matrix operator A is written in

expanded form. Thus the iterative index n can be identified with the

temporal index n in the tine dependen t formulation although the equivalent

time dependent physical problem may contain artLf icial source s of mass ,

momentum and energy. These artificial sources are small but distributed

over the entire field of compu tat io~a ,Ln the interior as w~ll as on the

boundary, and vanish in the stead y state limit .

In the numerical colution of the Navier—Stoke s equations in multi—

space dimensions , there will be a few thousand mesh points and 4 or 5

*iknown quantities at each u~sh point. The dimension N of the vector

U is c~~~only O(l0~) or larger. To solveequat ion (4.3a) for the successive

approximations to the solution of the nonlinear equation (4.2) at each

time or iterative step by the standard Gaussian elimination process,

requiring 4’ ~ N
3 operations per step, is out of the question. It is

imperative to develop highly efficient iterative methods. Thus in equations 

- ________ -~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- 
- .-
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(4.3), the matrix operator An is split into two parts with B1’ operating on

~~~ and (An_En) operating on U1’. Thus

+ (A1’-B1’) Ufl - f1’ (4 .4u)

or -

— U1’) — — A1’U1’ (4.4b)

where 31’ may be cone conveniently invertible matrix so that U”~~ can be

conveniently solved. This will replace U” in the next iteration until

finally UM~~ U
I1 according to sone steady state criterion. In this manner,

the iterative solution of the qucei—linear ized equation (4.3) has incor-

porated the iterations that wcte called for by the quasi -iinearization of

the nonlinear equation.

If B i~ chosen ao the identity matrix I,equation (4 .4b) becomes

identical with the difference equation obtained from the explicit scheme,

using the forward time difference algorithm and the spatial difference

algorit hm of the implicit equation (4.3a). Thus, like the solution of

time dependent equation . with explicit schemes, the iterativ e solut ion

of equation (4.4b) with B — I corresponds to tracing the physical

development of the time dependent flow field from an initial state toward

the steady state. The local accumulations of mass, momentum and energy

in the cell around each mesh point are precisely how they would be

expressed in the explicit scheme for the time dependent flows.

The matrix B may be chosen to be diagonal with its diagonal elements

equal to the diagonal elements of A, i.e. b
ii a~1 and ~~ 0 for i #

Such an iterative process is known as Jacobi iteration . Since ~~

are not identically unity, the temporal terms may be larger (or smaller)

— ——- — —— - -- - - -  —~— ~~~~~ —j -— 
—

~ 
.
~f— 

~~~~~~~
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than the accumulation term in the physical , time dependent flow. The

excess (or deficiency) of that particular quantity U may be attributed to

the prosence of a source (or sink) of that quantity at the mesh point wider

consideration. These artificial sources (sinks) will tend to zero when

the asymptotic steady state is approached.

If the matrix B is chosen to be the main tzidiagonal elements of A i.e.

b1~ 
a a

~1 
for t i—i t ~ 1 and ~~ a 0 for l i—i l 

> 1; then the artificial

temporal terms will contain spatial derivatives . They represent the

doublets and quadrup les of the source—sink pairs aroun d the mesh point .

The situation is quite complicated al~ebraic~ally and physically, but it

is very natural physicall y how a steady state may be reached via such

time dependent states provided that all these sources and doublets etc.

properly vanish in the steady state limit. In practice the choice of B is

dictated by the desire to reduce the computational effort in obtaining

the .teady solution, irrespective of its physical correspondence to seine

temporal flow field . The purpoce here is to show that the asymptotic

temporal approach and the iter at ive solution of the implicit formulat ion

to obtain steady state results are fundamentally similar. The iterative

method does take much larger computational effort per iteration or per t ime

step . But it permits the use of a much wider variety of temporal arti-

fices to produce & very rapid convergence to the steady state , possibly

with less overall computational effort . It is possible, of course, that

for some choices of B, there may not be any steady state s~1utioos or

there may be steady state solutions different from what is desired as

the corresponding physical situation may suggest. 
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4.3 Iterat ive Methods

One of the most popular choices of B is the lower triangular matrix

Part of k i.e. bik
a O i f k > i a n d blk

_ a
Jk i f k < i .  This is the

Gauss—Seidel iteration or successive relaxation procedure. The cn+l)th

iterat e is given as

U
i 

a7~ 
~ 

- a~~ ~~~ — t a
J~ U~ )  (4.5*)

from which the successive scalar com ponents of UZ1~ . can be explicitly

calculated in the order of increasing .1 in which the latest available mesh

values are used throughout. This semi—explicit solution of U1’~~ can be

given in matrix form as:

— if’ + (B”)~~ (in — A~U~) (4.5b )

Here (in—A 1’U~) is the residue and (t)~~~~ is the inverse of the matrix

If the vector calculated from equations (4.5) is taken as a provisional

solution and if the new iterat e is evaluated as acme weighted average

of ~~ and this provisional value with weights (l-~) and ~ respectively,

then ,

— (14) it’ + ~[U1’ + (B5 (f” — A°it’ )]

which is the same as

— + ~ (t) ~~ (f~..A~U~) -. 
(4.6b )

or • it’ +
The B is often called the acceleration or relaxation parame ter. Equation (4.6b)

suggests that B may be interpreted alternatively as a multiplier of the

~~~ - ~~~—
— —b. - — — — -~-- —— —
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re sidue in equation (4.5) or of the operator B” of the artificial temporal

sources in equat ion (4.4b). The purpose is to effect a faster convergence

of the iterat ive sequence by choosing an appropr iate value of 8. This

process is ref erred to as successive over (or under ) relaxation when B > 1

(or B -c 1). For th. integrati on of Laplace equation in a rectangular

domain, the optimal relaxatio n par eter 8* for the fastest convergence

can be evaluated fro. the mesh spacing and is usually aro und 1.8 — 1 5 .

For mere complicated situation s, the choice will have to be empirical

and the optiaal choice need not even be an over—relaxation. Unfortunate

choices of B could lead to diverging sequences , even for Laplace

equation (i.e. beyond 2 > 8 > 0 ) .

Each Causa—Seide l iterat ive step r.quizs. operations. This is to

be compared with the counts of for Gauss elimination solution for the

quasi—linear stead y state. The iterat ive solution would be advantageous

if it converge s within N/3 iterations since the nonlinear iterat ioni -

for the solution of equation (4.3) would then be avoided. Nov with

N — O(i0~), it is hoped that by proper choice of the relaxation par~~~ter

B, much fewer iterations than N/3 may be needed to reach a steady state.

In principle, if the steady state is def ined by l I u ”~ — u”I lit LU” II < lO~~,

the nunber of iterative steps required to converge can be estimated by

mm where & is the rate of convergence with H ~ log10( —
~~—) and p is the

geometric mean of the spectral radii of the matrices ~~ )~~ A
” at successive

iterative steps n. Such an estimate of H is not possible in practice be-

cause of the complexities of the matrix A and its dependence on the

soluUon U”.

_ _  _  

_ _  

I
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‘ For the integration of some form of hydrodynamic equat ions, it is not

unco~~~n that hundreds of such iteration s were needed . This is partly due

to the nonlinearity of the equat ions system and partly due to non-optimal

choices of the relaxation parameter It is also often that such iteration s

fail to converge despite wide range of choices of the acceleration parameter.

Now, if the physical state of the flow is steady or quaoi—steady, the asym-

ptotic temporal approach of usin3 the correct time dependent equations

(B—I) may be expected to converge on purely intuitive grounds, provided

that the difference system is stable and cousiotent with the time—dependent

Navier—Stokes equations. Put when the inpl±cit iterative mzthod is used,

its convergence to the steady stat e cannot be pre sumed on physical ground ..

The artificial sources of mass, aomentin’~ and energy are introduced purely

algebraically. The particul ar temporal variation s of these sources need

not provide any stead y state , although without Such external artificial

sources , nature has demonstrated that a steady stat e will eventually be

reached. It might even be legitimate to question if the steady state

so reached should be the same as the one reached under :cro external sources

since the time integrals of the artificial sources may have altered

appr eciably the integr als of motion of the system. It is regrettable that

no useful answer can be derived physically.

Nathemat teally speaking, the matrix B in equation (4.4b) can be quite

arbitrary and chosen in a great many different ways and even be chosen

differently for differát steps. Convergence to steady state is assured

provided that

Jj~ (BD)~~ (BD 1 ) (~f l 2 )~~ • . . (B1
) (gO) ,  ~ 

(4.7*)

h.’—____________________________________ 
_ _ _ _ _  ____________-~~~~~~ ~~~~~ - - ~~~~~~~~~ --~- -~~ S— ~~~~~~~- ~~~~~~~ — -~~ ---~ -----~~- - ~~~~~~~ --  - - ~~-SS _______
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and 
~~~ [(B”) 1A~] [ (t~ )~ A”~

1)] . . . [ OP ) ‘ (A0)] — 0 (4. lb)

—1 —l
They can be secured if the spectral radii of all. (B”) and (B”) A” are

lees than unity . If the for m of B chosen s!~ould be the same for all

iteration s, (4. 7b) is not reall y much different from the local linearized

stab ility criterio n of v. Neumann with the amplification matrix C re-

placing B 1A. (See Chapter III, Section 3.1 and 3.2). The essential

difference lies then in the freedom of choices of the form of the matrices

at different iterative steps n. It is not clear if the condition

(4.7*) would imply the physical requirement of the conservation of the

int.egrals of motion. It is also not practical to find the spectral

radii or bounds of the eigen values of these complicated matrices. There

is no counterpart of the local , linear stabi lity analysis to provide some

idea of the rate of convergence of a complicated problem . There is only

the practical solut ion of trying it out on the compute~r. - . -

In practice, the possible choices of the form of B i. severely limited

by its being easily invertible to f&cilitate the computation . It is diffi—

cult to find one that may show significant improvement over the optimal

overrelaxation process if the inferences from th. study of the solution

of Laplace equation is any guide . 1?urther substantial reduction of operation

counts per iteration step is derived from cyclic processe. built upon the

Gauee—Seidel iterative procedure. If the field of computat ion constitutes

p columis of q element, in each row with p q N , the matrix B may be

chosen block—lower—triangular so that each of the q blocks consists only

the p (or q) elements in each colimu (row) . Then ~~~~~~ s”~ ’2 . ,
can be assigned as the 1o~’er triangular matrix in successive blocks with
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zero elements everywhere else • This is the line Gauss—Seidel process oper-

ating on successive column s, (or rows). S~.ch a line process can be

accelerated by employing some proper acceleration parameter.

The line processes along colum~o and rows (diagonals or other con-

venient directions) say be employed in succession such as the sequence of

operators (5n—q—p+1 ~~_q )(~n_c+l• . . B”) end its cyclic repetition. A

set of acceleration parameters may be employed with the cyclic coitmu—row

sequence • This La Imown as the alte.~nating direction methods or the
( 6]

method of Peaceman an~i Rachford ~‘bo first demonstrated the power of such

cyclic iterative methods for the solutIon of Laplace eç’~atians. Such line

methods derive the benefit of lesa computational work from the basic fact

that the operation counts of Gausa—Seidel process is proportional to the

“square” of the vector length of the un~ town. Thus the operational counts - 

-

of a complete cycle is , with p — q N112 for example,

p•q 2 + q .p 2 
— (p+q)pq ~“ 2N3”~ (6.8)

compared with the N2 for the point Gauss—Se idel proces s. This means a

decrea se of the operation counts per sweep by the factor2/1T, significant

to the order of magnitude with N — 0(l0~). The extension of such cyclic

process to problems in th ree space dimensions with ~~q ’ ~i1
~
’3 is oWious.

The total operat ional counts per cycle is ‘~‘ 3N6’~
3 and the factor of

operational counts reduction will be 3/N213. The pre ference of alternating

direction iter ation (ADI) or any euch cyclic l ine iterat ion process over

the point Gauss—S.idel relaxation process is clear. The success df re ducing

the overall computat ional effort in the solution of steady flow problems

with such schemes requires, in ddit ion, the appropriate choice of the

-- — --- —--—-—-—-- --- —~ — —--—- -— -- — --—- -—--—
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acceleration parameters suitable for the type of problems with the class of

prescribed bounda ry data. This is where the uncertainty resides.

For the solution of Laplace equz~tion s , the opt imal acceleration para—

metere and the mazimum rates of convergence of these processes can be

explicitly determined • The ADI process is certainly the moat efficient.

The same is likely to be t rue for the integration of purely elliptical

equations especially those with the Laplacien operator as the leading term s.

For mor e complicated equations , including the equations of hydrodynamics ,

auch depends on the ability of selecting the appropriate cccelera tion

parameters for the problem at hand and on how the boundary conditio ns ar~
implemented. For hyperbolic problems with discontinuous solutions as interior

boendaries, success vft!r the implicit methods is yet to be demonstrated.

4.4 FractIonal Time end otl er Alternating Direction Methods

An alternating direction iterative method has been developed extensively
[51

in the Soviet Union by Yanenko, tiarchuk, etc., known as the time splitting

or fractional time step methods. The key idea is to split the operator

as a sum of implicit difference operators, each of which will lead to an

easily invertible trtdiagonal matrix. The successive split operations in

a complete cycle serves as a “weak” approx imation of the orig inal operator.

They prefer unconditional cosputat ional stability and formal second order

accuracy of the Crank-Nicholson algorithm. This was illustrated in Equa-

ticu (3.6) when e t~k~s the value . Second order accuracy is needed

since a first ardor accurate scheme can hardly meet the accuracy requirement

of practical problems with the currently available comput ing machine.

Its development and its relat ive merits pertinent to the gas dynamic

L - - _p_~~~~~~~ r _ ~~..~~~~~~
- -

~

-
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applications are presented below.

Consider first the equation

(4 9)

where L is a linear spatial differential operator explicitly independent

of time t. Discretized with the Crank—Nicholson algorithm which is

second order accurate in both ti and space ,

n+1 n n+1 n,~~~ + L (  )~~~O (4.10)

Let I be the identity operator , we have

(I + —
~~~~~ L) •

n+l 
- (I - ~~~~~

— L) 4~
n

or

•
n+l 

— 
~~~~ + —

~~~~~ L)~
1 (I - L) •

n 
— ~

2
For the simple heat diffusion equation L

~ ~ —a , the matrix ( 1+ .  L )
S

is tridiagonal and the spectral radius of the matrix C is obtained as

p(C) — with 4’ — 4 siu2( 4— )

when 0 C x  - j~x C (J+l)~x

Thus 

~ ~~~ ii < :
~ i i ~~i i < ... .  )

fl 
11,0 1 1

which establishe s the boundednesa and unconditional stability. Indeed

with At/ 1~x taken as constan t , the computational error is bounded

lie U ~ lie 0 I I  + OcAx 2). When the C.F.L. condition tit/t~x C 1 for the

wave equations is satisfied, this scheme was expected to work for both the

diffusion and the wave equations, and was hoped to work for the Navier—Stokes

_ _ _ __ _ _ __ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  
- ~~~~~~~~~~~~

________________
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type equation. at lease for the 1—0 case, (which is not necessarily true

as is shown in section 3.2 for other difference algorithms).

Consider now the heat diffusion problem in three space dimensions

2 2 7 4
_3

~ 
- G ( —-j - +—-~~+ 2~~~~~~°’ax a y

Now L — L5 + L~ + L2 or L1 + L2 ÷ L3. While the operations (I + 
~~~~~

— L
~
)
~~

can be easily inverted, the conblned matrix [I + -f. (L + L + L
~
)j

is no longer tridiagonal, and although highly sparse, cannot be simply

inverted . So the equation is to be integrated in three successive steps

for the time interval t~ < t < t~~1 and is formally designated as the

fractional tine steps t~~1,3, t~~2,3 and t1~13,3 — t~~1 For each step

~t tfl + ~~~ 
the Crank Nicholson algorithm,

— (I + 
~~~~~

— L ) ’~
1• (I ~f 

L )  .~‘—r
is uaed, thus: 1

:

- 

a—l 
(I + i—. L ) ~’ (I ~~~~~~~~ 

La 
) 

~

2 3 3
— — ~CL + [ L2 + Z (L L

8 
— L

8
L )+ . . .3 +O(M3)}.~a-i ~~~~ 

a a

and is “ (I + ~~~~~
— L) ’1 (I — -

~~~~~~

. L) + O(~t
3)} $~

if L
~ 

L0ia coaautab le,

Thus the split difference scheme will be second order accurate if the

split operators are comautable. Otherwise, it is only first order accur ate.

When such comeutativity of split operator, for different dimensions (x,y & a)

is not true, the sp lit scheme of only first order accuracy can give second 

L — —
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order accurate results in two cycles if the cycle is repeated in the opposite

direction. For the two consecutive cycles, i.e.

3
TI (I+ — L )~~~(I-~~ — L  ) ,

fl

a-i a a

and

•
n+2 

— fl (‘~~ 
—

~~~~~ L ) l(Z — —
~~~~~ L ) •

n+l
cs-3 a a

the t~o non—co~sutative terms would cancel and the second order accuracy

is r.s~~~d for non—comeutative operctors L0’s. This statement will be

true evon if La’s involve differential operators with varying coefftcients

or even depend on $ for gao dynamic quasi—linear equations so long as

s’ich coefficient. are smooth and proper ly treated .

For uncondit ional stability, it is required tb~t the operator L

and all the split operators L1, L2 & L3 are semi—positive definite , that is ,

the inner product of (I4,~V )  > 0 for any arbitrary function and defined

over the entire field of computation. This condition is crucial in

securing imconditicnal coiaputat ional stability. Take ti~c norm of

and define the norms of an operator as the natural norm deduced from any

vector norm then 
- 

-

[ ( i + — ~~- L ) 1 (r-~~-- L) •‘~, ( z + ~~~— L )~~~U — - 4 L) $

11
]

I Is~
i 
~ 

- 

I1.~ ll~
( $

fl ,$U
)

Def ine
t~t - i n  a( x + — ~— L )  $ —~~

then
11(1 —-~~-L 

n~~2

lt ,fl
~~II2 

u ~ II,f11
2 A 2lI,~jJ 2

il (I+—~-L )~ II - 
-

- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~
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Here

Ilu —~~ —L)~~ i i 2— [I —— ~~~L)c fl
, (I — — M L) F~’j

— i I ~~~I I 2 
— At [L(~)~ ,t~] +~~~-—1!L (~~) 11 2

11(1  +~~ —L ) ~ Il 2 — [(I + — ~~~L)t~ , (I +~~~~L) ~
n]

— IWIi 2 +At [L(~ ), ~~fl
] + 

At l tL(~ )Il 2.
This A 2 corre sponds to the sq~~re c the spectr al radiu s p(C) for the simple

1—D heat diffusion problem with the Crcnk—Nicholaon algorithm. Since both

Il ~ i l 2 end IlL(~)Il 2 are posit ive and At > O the amjli-~ication factor

A 2 will be > or < than unity depending on wheth er CL (F ~) ,  ~
) > or < 0

The successive applic ation of the split operator at each step leads

to
ii n+l~~2 2~ 2 2i, a1i2
11+ i i — A 1n 2 A3 11$ i i  - - -

The conditions for A 1
2
,A2

2 & A 3
2 to be less then or equal to unity are

equivalent to the semi—positive definitions of the split operators L1,
& L3, i.e. (L0$, $)  > 0 for a — 1,2,3. It is true then that unconditional

stability results if all operators La of L are semi—positive definite ,

i.e. (La$~
$) > 0. TI-do semi—positive definiteneca is a sufficLent condition

for stability for the entire cycle but not a necessary cue.

Nov if this restriction of semi—positive definiteness is to be assured

this will practicall y limit its applicability to the simple diffueton

equation or the Lap lace equation in rectangular domain and for the Dirichelet

problems . It is only a matter of intuition that the method chould be

applicable to a wider c1a~a of circumatances than those for which proofs

could be given. The situation is really no better off than what was en—

- 

- 
countered for the explicit schemes on the question of stability . There

_____ - ______ - _____ ~~—~~~~~- ~~
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is indeed not even a necessary criterion of computational stability of

this split method comparable to the von flsw~ann stability criterion for

explicit schemes.

In the th~x,retical tr~atncnt of the gas dynamic problem., (Marchuk,

Yamenko, etc.) the semi—positive definite condition is satisfied by imposing

the special “periodic” bounda ry cond~ciona to the problem; in which case

it is clear that

(L$,+)—0

co that A2 — A 1
2 — A 2

2 ‘A 3
2— 1, i.e. the norm is preserved, i.e.

ii n +l i i  i i  f l u  i i  oI i ,  I I  — 11+ H~ • • • — ii $

This appears to be an excellent featur e for initi al value probl ems. But

it also implies that whatever error in the initial dote (if it is a guess)

viii not decrease in the mean square norm , for example . The splitting

scheme should not be used to obtain steady state solutions with the periodic

boundory conditlcn because the results will never be better than the

initial guess within the integral norm.

For treating practical problezza the physical significance of this

stebil±ty requirement of (L$ ,$) > 0 need be wrs carefully ezanined.

Post—multiply with $ the equati on

+ i~ - 0

and sum (or integrate) over the entire field of computation to give

~~~~~~~~ 
11.11÷ (L$,+) — 0

i.e.

a ~~ ,1T I~~~I I  — — (14,$) 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — ~~~~~
- 

~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~
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If L is semi—positive definite, i.e. (L4,$) > 0, then 
~~~~~

— I I~I 1 2 
< 0.

This of course implies the boimdedness of the solution $ at all t imes and

a decreasi ng sequence of ~ ~ J (~• Now the gas dyna mic equations in primary

physical variable s are such conservation 1a~rs for mass , momentum, and

ener gy.L$ is the net ñuxee of these conserved quantities out of unit

physical volume. If $ and hence 14’ ar e periodic over the parallelopiped

in the physical space to secure (I4,$) — 0, then the outfiux and the

inf lux across the boundary of compi~taticn e~act1y balances. Thus with

$ identified as mass, momentum and energy, this condition excludes the

ba , of mass, momentum, and energy tb~coughout the ent ire field of com—

putation. This means that tha computed results should not be expected

to show body forces acting on some immersed body or heat transfer to

and from the body. If there should be any in the computed results with

periodic boundary conditicns, whatever lift, drag and heat transfer as

may be present in the computed reoults originate from some computational

artificea and era physically meaningless.

If now the flow field is computed with periodic (asyi~ etric) boundary

condition. in the transverse plane, then A2
2 

— A3
2 

— 1. A deficit of

the out—flux 14 and a positive $ will render (L1$,$) < 0 and hence A1
2 

> 1

when there is a body drag (or energy sink to the body). Hence A 2 — A1
2 

> 1

and the computation will be “unstable”. To aecure computational stability

under the circu mstances , it is necessary to aodify the boundary conditions

in the transverse plane so that A 2
2 & are sufficiently umaller than imity

to render A 1 A2
2 A 3

2 
< 1. Guidance is badly needed here for handling

these boundary conditions properly to secure computational stability wi th

- ~~~~~

_
-

__ 
~~~~
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the split schemes. And even if computational stability is achieved by

some means , there is little idea how the resu lts of such importan t quantities

as body drag, lift , and heat transfer , a~ calculated , will compare with the

physical situation.

The fractional time step method outlined above was not meant to be

applied to the steady state problems because each of the iterative tolutions,
n+1/3 n+2/3 ni-b
$ , $ and $ , satisfy differen t equations, none of them approximates

the steady state equations. Even if the exact steady state soluttoe of a

given problem is substituted and used as the initial data , the fractional

time step method vii]. generate solutions for different fractional eteps

which will not quite settle do’~nt to some sort of a steady atate limit.

This situation can be remedied by retaining those terms, dropped in the

fractional step method , to be evaluated with the previous or otherwise

known iterate, for example,

$f l + a / 3 _ ( 1~~~~4~. La) 1 {I + —
~~~La

_
~~~

— E  La } $
fl+•i_

trhicb would indeed be the same as the alternat ing direction iterative

solution of the iwplicj~t forwlation of the steady state problem vith

B (I + —
~~~~~~ L0

) end A — -4!~. L Z La given as equation (4.4a)
U

This method is then similar to the Douglas and Gunn’s extension of

Peaceaan—Rachford ’ a Alternating Direction methods for the saint I on of steady

state problems. With the additional terms, it is not possible to con-

jecture what the stability behavior of the difference formalat ior and

the convergenc e rate will be . Som. experience of the research group

at Langley Research Center , NASA (the author is grateful for thi, private

communicat ion) indicates that the overall computational effort of using

such scheme s for the numerical integration of the Navier—Stoke s !.~uations

~

--—— - 
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for some mixed supersonic—subsonic flow fields is much larger than that

experienced by the author on similar probicus with explicit formulation.

tihile no generalization is implied , the fundamental reasons expounded

in this tnd the previous sectiono and some practical experienc e may

serve an appropriate caution against being over opt imistic to the ad-

vantage of such implicit methods.

The fractional step method was developed primarily for time dependent

flow proble ms . The split operator L~ , for example , can be split further as

— L
~ 

+ L,~, where L~~ is the convoctive part and L,~, the viaco~s part

respectively of L
~
. In this wanner , each I~3men ttnn equation is split into

6 parts. Each of the 6 parts gives rise to either a wave operator or a

diffusion operator. The question of rendering a stable computation for each

step i~ much simplified altho’igh the split scheme iS not unconditionally

stable under realistic boundary conditions • There will be some inconøis—

tenciec in the formi~1ation that can be remedied by including some higher

orde r ter ms • The process rapidly becomes mere complex especially when high-

er orde r temporal accursoy is decired~
8’93 All the complexities must be

weighed in the light of other difficul tiee in treatin g tim! dependent compu-

tati ons for 3—I) flows. Such developments in dynamic meteorology and ocean-

ography can be important in aerospace applications in the near future if

not of much immmd iate concern .

- - 

-
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V. ACCURACY AND CONSERVATIVE FORMU LATION

The physical conservation laws of mess momentum and energy are

established over arbitrary macroscopi c volumes of a homogeneous fluid.

By reducing the volume to a macroscopically small “point ”, but a micro-

scopically large domain to justify the continuum model , the Navier-Stokes

partial differential equations were dcri ved as a convenient mathematical

relation governing smooth point function s in the flow field. Now , in the

inte est of determining sor~e flow fields, the Navier-Stokes equations are

disc~etizod into a system of diffe rence equations for finite elements of

spatial domains to facilitate the numerical integration of the part ial

differential equations system. Such diffe rerce equation s may as well be

obtained directly from the consideration of the fundamental physical laws

• for such finite , discrete , spatial domains with the help of interpolati on

formulas . It is, however, more co”imon that discretization is effected by - -

replacing a differential coefficien -~ with difference quotients according

to some truncated Taylor series to some order of accuracy . The errors

associated with the interpolation forwia or the truncated Taylor series

are called truncation errors , some of which are given as e~ in Tables I

a~d II. The aathe~atical requirement of consistency means only that the

truncation error will vanish as ~t , &x • 0.

The conservation laws for each finite spatial element are properly

approximated to some formal order of accuracy, according to the trunca-

tion error , by the difference equations deduced in either manner mentioned

above . When the difference forms of such conservation laws are suam~ed

- 67- 
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and examined over a large but arbitrary collection of such finite spatial

elements, however , the conservation laws may be seriously violated. This

is because the higher order small errors will accumulate to much large

errors when summed over a very large number of the small discrete elements

which add up to the finite domain of computation . Now for an appropriate

description of a physical problem to the accuracy, say 0(~x
2) ,  it is pri-

marily and essentially over arbitrary finite volumes , not only over the

differential elements, that such conservation laws should be accurate to

O(Ox2). If the tnmcation errors of the conservation laws in finite space

is to be of O(Ax2), it must not accumulate when neighboring mesh cells are

stumsod ip. If the truncation errors are allowed to accumulate, the dif-

ference formulation should be higher order accurate so that the accumula-

tion of such higher order small truncation errors over arbitrary mesh

combinations throughout the field of computation will not exceed 0(â~x
2) ,

for example . The dif ference form of Navier-Stokes equations, a ccurate

uniformly to bctte: than O (Ax2), is extremely cumbers ome to construct and

execute. With limited spatial resolution currently available, it is imper-

ative to prevent or limit the accumulation of truncation errors.

It is highly coimsendable to verify a pos-teziori , to what extent the

computed results conserve the mass , momentum end energy over the entire

field of computation. But this is not an alternative to the requirement

of no accu~nzla-tion of the truncation errors. The truncation errors are

generally in the form of dipoles or quadz uplca rather than simple sources

or sinks. They distort the local flow field such - more than they cause

apparen t doviations in the ovc rail mass , momentum and energy balances.

The consequence of such dipoles and the like is indeed familiar to aero-

dynamicists. A circular cylinder in a uni form incompressible flow is

-
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represented by a do~I let . A thin airfoil or a thin wing in a s~I’sonic

or a supersonic flow is represented by some distribution of sources and

sinks or dipole pairs within the framework of some linearized theory,

known as the method of singularities. If a series of tiny little vones

or thin sheets are not to be tolerated in the test section of a windtimnel ,

such distributed dipoles arising from the t runcation errors of every compu-

tational cell must be suppressed if not completely eliminated. Such sup-

pression ca~ be achieved with some at tention paid to the formulation of

the difference problem.

5.1 Conservative Difference Formulation

The conzervation relations are written in divergence form as Equations

(1.1) to (1.3) for the density P, the ircimrtum Pu1 , and energy density

per unit volume. They are the scalar components of the vector function

V in Equation (1.6), etc. These fi ve quantities will be considered as

the “Primary Dependent Variables” in terms of which the physical laws are

stated and the practical results desired. They provide the integrals of

motion when proper initial and boundary data are provi ded o’ier a specifi c

but az~itrary volume. Whon neighboring volumes are sumeed, the contribu-

tions on their coamon boundary cancel identically so that the integrated

conservation laws retain their identical form. This is th . crucial pro-

porty that enables the integral theorems of Stokes and Green to cast the

conservation principles into field descriptions in terms of different

variables (Fig. 2). An adequate approximation of the 
- 

conservation l.~s

in difference form should preferably retain this property at least to

the order of accuracy required. Such a su~~~hle property is implicit in

the mathematical abstraction of continuity and differentiability of the

S
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(X)NSERVATION LA~1S OF SOURCE-FRE E FLUI D FLOW FOR ARBITRARY VCUB!ES
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functions in question . Thus , the differential formulations in terms of

different dependent and independent vari ables are al l equivalent al though

the forms of the partial di f fe rentiat equations may be much di fferent.

This is not the case for the diffe rence approximations of the conserva-

tion laws that may be formally “derived” from the varieties of forms of

equivalent partial differential equations . This is becaus e the diffe r-

ence functions over the mesh points or cells are discrete or at least not

differentiable beyond a certain order. The sunmiable di fference formula-

tion, in the sense that when cells in the field of computation are summed,

the fluxes in the physical space (x
i
) of the prirnary dependent vari ables

cancel identical ly along their common boundary will be called “Conservative
[3,10]

Difference Formulation”. The computational space need not be the physical

space . The dependent variables computed need not be the primary ones .

While the computation can be done in this manner , it is still the fluxes
in the physical space and of the primary variables that are required to

be s~~~thle for the conservative difference formulation .

For illustrative purposes , consider the discretization of the conti-

nuity relation from the intograted conser.aticn law expressed in the pri-

mary variables p, pu, and pv in the two dimensional physical space (x ,y)

divided into uniform rectangular cells ~x ~y. is the average density

of the fluid in the cell ~~x, kAy. The net increase of mass in the cell

during At is (p’~~ - p~ ~)Ax.Ay . The mass fluxes of pU and pV should be
.1~~

evaluated on the boundary while pU and pV are known only as the average

momentum of the fluid in the cells . Thus th• boundary fluxes are evaluated

through linear interpolation (but of second order accuracy) as the arithe- - 

-

matic average of the mean momentum in neighboring cells . If increasing

j  and k are po~ ttive directions , the conservation of mass is stated as:



- PJ,k
)AXAY • 

A t’ 3 [(Pu~~+1,k. (PU)’,k] - [Pu~~~k + (PU)
~~l,k] ~

A~~x 
~[~

v~~~ +1+ (PV)~~k] 
_- [PV)~ ,k 

+ (PV)
~~k_ l]~

(5.1)

Fcr the neighbcring cell (j-l)Ax.k~y, the difference form of mass conti-

nuity relation can be obtained from (5.1) by replacing j by j-l. The

two cells have a common boundary at (j9Ax.kAy . - The out flux from the

cell j-l,k crossing this common ~~~~~~~~~~~~~~~~~~~ + (PU)
~~1k

], which

is identically the same as the in flux to the cell (j ,k ) .  When the two

mass continuity equations (5.1) for the cells (j,k) and 0-1 k) are added,

the flux terms across the co~rnon boundary cancel out. The resulting

differor.ce equation is identical with the one that will be obtained whcn

the conservation law is applied directly to the combined cells and is

accurate to O (Ax2). The addition of other neighboring cells behave in the

same manner. Similar results will be obtained for the momentum and the

energ y ~c1ations . Thus a ~v~fl5e~va~jve difference formulation accurate

to O(Ax2) is obtained. It is easily verified that the same difference

formulati on will be obtainod with the fo rward time , centered spatial

differenco algori thm applied to the differential equations system (1.1) to

(1.3) written in divergence form. Indeed the first order accurate algorithm

of backward or fcr~ard spatial difference will also yield a conservation

difference formulation, but of first order accuracy, i .e . ,  O(Ax) provi ded

that the differential ec~uation is discretized in divergence form and that

the physical space is divided into uniform spacing.

If the continuity equation should be written in expanded form for

discretization such as: u +p ~~~~~ for the net mass flux in the x-dire ction ,

the centered space di fference algorithm can represent the net x-flux as

L
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AtAy 
[u~(o3.1 - ~~~~ + p~(U~~1 - U. 1)] (5.2a)

or AtAy [u~+1 + U3, 1)(p,~1 — pj _ l ) + 
~~~~~~~ 

+ ~~~~~~~~ -

(S.2b)
The in flux to the cell (j ,k) from the cell (j-l ,k) crossing the boundary

at Ci- ~~~‘ )Ax is respectively:

4~4i. [u~ + p~uj1] (5.3a)

MA)~ [cu3+1 + U .1) p~~1 + + p
h

) u~,1,] (5.3b)

The out flux from the cell (J-l ,k) into the cell (j k) crossing the same

comeon boundary as may be obtained from Equation (S.2a) (5.2b) by putting

j • I-i is respectively

L~ [u, 1Pj + p1_ 1U~ 

-. 

(5.4a)

or AtAy 
[cu 

+ UJ_ 2 )pJ 
+ (p

1 
+ P1_2)Uj ] (5.4b)

The out flux (S.4a) is identical as the in flux (5.3a) and will cancel

each other when the two cells are summed. Thus the difference algorithm

(5,2a) will lead to a conservative difference formulation with the differ-

ential equation not written in divergence form. The out flux (5.4b ) is

different from the in flux (S.~~) . When the two cells are suimiied up, they

do not cancel completely but produce a net mass source along the conmon

boundary , but in the interior of the pair of cells , with the magnitude

proportional to Ax . This is formally negligible in a second order accurate
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algorithm but renders the difference formulation from the al gorithm (5 .2b)

not summab lo and not conservative. Even if such errors are accumulated

randomly over the field of computation with 1/Ax2 meshes , the accumulated

truncation error will be of O(Ax) rather than O(Ax2). If the first order

accurate forward or backward spatial difference algorithm is used , the

net x-flux will be

At 4Y~ [UJ (PJ 
- p

1~ 1) + p
1(U1 

- U1 1 ) ]  (5.Sa)

or At•Ay 
~~~ - ) 

~~~~~ 
- U1)]

Neither of the two will lead to conservative difference fozi~ulation even

at the accuracy of O(Ax) . The above examples demonstrate that both the

center difference algorithm and the divergence form of the differential

equation are conducive to the conservative difference formulation with

uniform mesh size in physical space. The di ffe rence formulation based

on integrated conservation laws even with linear interpolation on the

other han d , leads straightforwardedly to conservative difference form

of second order accuracy. 
-

Consider now the effect of n~~uuiform mash sizes in physical space

with

(Ax)~~1 (Ax)
1 -

~ 
T~J+~ and (Ax) 1 1  ~1_+

using the integrated conservation laws and linear interpolation . The

net flux into the cell at jAx during the time interval At is obtained

in a straigh t fo rward manner, illustrated here only for x-fluxes :

______________ - - ~~-_~~ ~~~~~~~~~~ - A ____________  

- 
— A
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+ 8t~Ay (pU)
1 

+ l+n)~~.. (PU)
j+1]

- AtAy [rii i ~ (p U) 1_ 1 + ~~ (RU ) .]  (5.6)

The first bracket represents the out flux from cell I . The second bracket

represents the in flux to cell j. If , in the first bracket , j is replaced

by j-l , then the out flux from the cell at (&z)
1 1 

becomes identical as

- the in flux into the cell at (Ax)
1 

across their common boundary. They

cancel each other when the two cells are summed. Thus the algorithm (5.6)

in physical space will lead to a conservative diffe ren ce formulation despite

the variable spacing in physical space. The algorithm (5.6) clearly indi-

cates how the centered spatial di f ference algeritha should be modified to

accommodate the vari able physical spacing in order to achieve the conserv-

ative di fference formulation and the secon d order accuracy. This particu-

lar cothination of the weighted average of (pU)
1~1, 

(~U)~ . and (pu).1 is,

however , not obvious from the point of view of discretizing .~~~~~ Cpu) with

the second order accuracy through Taylor series expansions.

- It is common that variable mesh sizes in physical space are accom-

plished through some transfou~ tion of the independent vari ables , x x(F;)

or inversely F; F;(x) . The di fference formulation is then derived from

the transformed differential equation by discrotization over uniform mesh

spacing AF; in the transforir4ed F;-space according to some difference algorithm.

This transformation of the spatial coordinates is often suggested by the

desire of bringing the boundaries into coordinate lines such as F; ~ x/ l+x

so that x corresponds to F; - 1 or tho use of spheri cal , cylindrical

or other convenient body coordinates dictated by the contour of the solid 
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body present in the flow field. The disretization in the transformed

F;-space in an intuitive manner is not likely to produce a conservative

difference formulation. Even with uniform mesh spacing AF;, the cancella-

ticn of in flux and out flux is not assured in the physical space although

it is achieved in the trans formed space . This is because of the presence

of the metric coeffi cients .

Consider the mass continuity relation in the cylindrical polar coor-

dinates (r ,O z ) :

~~~~~~~~+ . L .~~ _. (rpu) + (py) + .
~~
‘_  (pw) = 0 (5.7)

where u, v, and w are the radial , azimuthal and axial velocity conn’onents.

Even if the mesh spacings Ar, A9 , and Az are uni form and the central

space difference algorithm is adopted. There is left the question how

the metric coeffi cient r should be treated in discretizing Equation (5.7)

to obtain a conservative di fference form. Now the integrated conservation

relations in the physical space with curvilinear coordinates stands as

Ar .Az .(r.AO) .A
~

(p)

- At •Az A~
(pur.A8) + At .Az~ArA 0 (pv)

+ At•Ar.(r.AG).A (pw) (5 .8)

where A with subscript r, 0, or z stan ds for the net flux of the quantity

in the parenthesis in some difference form. The left hand side of Equation

(5.8) stands for the not increase of mass in the volume element . If the

flux terms on the right hand side are expressed eithcr in the form (5.1)

for uniform mesh sizes or in the form (5.6) for nonuniform mesh sizes, for
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example, the difference form of the continuity equation will be conserva-

tive or s1lm~2hle. Thus the u~etric coefficient r arising from the volume

element should be treated as r1 while the metric coefficient r arising

from the surface element should be treated di ffe rently for the in flux

i~nd the out flux surfaces depending upon the specifi c difference algorithm.

It appears therefore that the ~~ servative di fference formulation can be

more conveniently obtained by considering the integrated conservation re-

lations in the physical space despite the curvilinear coordinate sy3tem

that may have to be adopted.

The treatment of the conservation ralattons of the vector momentum

is considerably more corçflcatod than that of tho scalar mass because of

the stress ter~s and the inertia terms due to curvature and because of

the neod of considering th.3 appropriate vector conpon’nts . Compitcated

as it may be , the flux tez~s can be clearly identified and conservative

di ffe rence formulations can be obtained. Often it is desirable for achiev-

ing a si~~ler di fference formulation by relaxing the condition of identi-

cal cencellation of the in flux and out flux crossing the same co~~~n cell

boundary. The more loniont requirement may be that the in flux and out

flux crossing the same boundary differ by a sufficient ly higher order

small quantity to prov!de for socie accumulation and possibly supplemented

by their vanishing over a group of say four neighboring cells . This may

be permissible sir.ce the ultimate objective of the conservative differ-

ence formulation is to prevent undue accumulation of truncation errors

over finite volumes to cause serious deterioration of the accuracy of the

coaçutation. -

- - - - -
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With conservative difference formulation, the accumulated truncation

error E1. of a set of calculations can be estimated to the order of magni-

tude at any point within the field of computation . t4oraover , the error

of the computed results at a point can be separated into two parts:

(i) the truncation error E1. and (ii) the boun4ary error at the point

caused by dte errors on the bo,~mdary of th. field of computation although

the difference problem is aeseatielly non-linear.

5.2 Heuristic Error Estimate and Accuracy

For a computed result to be practically useful it is essential to

have some idea of its accuracy. The study of the accuracy question has ,

however , been little explored. This may be due partly to the preoccupa-

tion with stability questions and partly to the difficulty of construct-

ing an upper bound of the error of a computation for the type of initial

bots dary value problems of fluid dyna3ics. It may be possible that those

ee~vcrg,nee proofs i’ihich naturally include the estimate of the error

bounds will be extended from the periodic boundary value problems to more

realistic boundary ci~idittons as applied to the N~wier Stok~~ equations.

In pre~tice such a di fficult and coiiplicated a-priori rigorous error esti-

mate is not necessary . Heuristic, a-posteriori rough error estimates

will often suffice. Indeed , it would be pre ferable to have the estimate

simple and generally applicable although not rigorous and not so precise.

Tho nonlinear Burgers ’ equation is there fore conveniently adopted for

analysis as a one-dimensional model of the Navicr-Stokes equatic,ns~’°b
was shown in Section (3.2), it is a useful model for stability analysis ,

b ia1 qmaai-linesr and with both wave and diffusion characteristics. It

is also ~~ vsnient for the study of accuracy because many exact solutions 

~~~~~~~~~~~~ -_ 
~— — -~~ 
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are known , with whi ch the computational errors can be quantitatively eval-

uated and compared with theoretical estimates .

The Burgers’ equation , in di mensionless form is

3u 1 ~~u 
-

(5.9)

with a steady state solution

u(x) • - a tarn ~aR 0x/2) (5.10)

having u(xzO) a 0 u(x -l/2) 1

and ju (xai~o) — a - l/ta~ t (C
~RC/4)

This steady state solution in the rang. of -1/2 
~~ . 

x j O has been calculated
as the long time limit of the temporal problem via several difference

algorithms . The quasi-linear term u~~ is always treated in the divergence

form ~~ (u2/2) with

¶ (c) - [(u~~1 + u~) 
+ aU~~1 U~j /2(2 ) (5.11)

and 
~~~~~~ 

[(c) - (c.)~.1]
Here “a” is a parameter. The simple centered spatial di fference corres-

ponds to a - 0. The center spatial difference in non-divergence form

results when a - ~~~, in which case,

(U2 )  
lJ~(U .. U~~1) 

(5.12) 

—.- ---—— - - ~~~~~~~~~~~~~~~~~~~~~~~~
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If it is presumed that an approximate steady state solution

U(t,x,~t,Ax) will be reached, which departs only slightly from the gen-

uine solution(5.lO), a linearized differential equation for the error

can be derived and solved. The lineari zaticn permits the separation

of the errors as originated from various sources , i.e., as the sum of

the truncation errors ET and the boundary errors Eb . The di fferen ce

equations derived from (5.11) are all nonlinear but conservative and

permit the separation of the truncation and the boundary errors with

the cumulative truncation errors remain of the order of tho local

truncation error.

The linearized analysis thows that ET at any point in the field

of computation is proportional to (Re~~
)a for the second order accurate

conservative difference formulations derived froa (5.11) . Hors Re is

the Roy~olds nuaber based on the length ~x and the velocity di fference

between the point xiiiO with naximuis velocity gradient and the point xii

r.oarly the asymptoti c velocity . For a quantitative estimate of the E~ ,

14 fl + (1+3a)M E N

tke~)2 ~~~ + — 

2 + a + T 3 (5.13)

where N0 is -the constant defining the steady state criterion

sup[ Llr - u~ ] < N ~~x’

and M2(Reâ~)
2 are the coefficients of the tr uncate d quasi-

linear convectiv, terms and M3(ReAx ) 2 is that of the truncated viscous

ter..as. 
~~~ ~2’ and N3 are expected to be of 0(1) for reasonable di ffer-

ence algorithms and for reasonably smooth solutions . E0, E1, and B3 are

universal functi ons of the genuine solution u(x) that vanish on both 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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boundaries and have their ab3olute magnitudes less than 0.1. Thus the

truncation errors ET are expected to be of the order of (Re
~~
)2/l0 for

the second order accurate schemes . Actual computations with a

end ~x a 1/20 for various scbemes verified the quantitative values of

Fquaticn (5.13) and the dependence of ET ~~~~~ (R e ) 2

For Rc~~ . 0(1) and all the finite values of a a 0(1) tested,the

following estimate of the maximum absolute truncation errors is valid

c 3 x l0~~ ‘~e ) 2 (5 .14)

This simple formula is thei~ fore recozaended as a preliminary estimate

of the bounds of the truncation orrors of scco~d order accurate conserv- - 
-

ative difference formulation. With non-conservative difference formula-

tion, the truncation errors can accumulate and become considerably larger

than the estimate given by Equation (5.14).

The boundary errors in the field due to a fractional error e.g, of the

boundary value is given by the linearized analysis as:

~ ~b
2h (5 .15)

where Bk is a universal function that is unity on the boundary where the

erroneous boundary condition is applied , end decays very slowly toward

the other boundary where it vanishes . The decay is so slow that the error

retains more than half its value until within th~ last tenths of the

field of computation near the other boundary (note that Eh is plotted agsfnst

u(x) in Fig. 2 of Ref . 10) depending upcn the magnitude of the Reynolds num-

ber.

For Neumann boundary conditions , the boundary error is still given by

Equation (S.l~) but L
b 

is evaluated as

- - - - - - -  - _____

-

~ 

- --
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‘

~

‘ -2e~/xRe (5.16)

where is the fractional error of the spatial derivative on the boundary .

tJithin the framework of linearized estimate of errors , the superposition

of (5.15) and (5.16) with proper coefficients will enable an estimate of

the errors caused by a Catachy-type condition. The boundary error at a

given point in the field of computation will be the sum of the decayed

boundary errors from both boundaries .
- 

In- multidimensional flow problems , it is presumed that the results —

of the previous model analysis may apply primarily in the direction along
— 

streamlines or nearly so. This leaves the estimate of the contributions

of the boundary errors , from those portions of the boundary of the field
of computation that are primarily parallel to the local streamline direc-

tions , yet to be accommodated. No help ful. suggestions can be made here

except to render a description as nearly correct as the physical situation

suggests . In fact , the treatment of this portion of the computational

boundary is one of the two outstanding di ffi culties that the author and

his co-workers have experienced in various problems. (The other outstand-

ing difficulty is the treatment of internal shockwaves to be explored in

the next section.)

The decay characteristics described by the universal function Bk
may be used where the one-dimensional model is appropriate. The various

universal functions B0, B1, etc. and Eh in the model results may be

recognized as the “influence functions” describing the error propagation

in the field of computation. They can be empirically established, a

posteriori , by introducing a known error at a specifi c point (on the

boundary for th. specific boundary error and at chosen interior points

____________________ —— __________________ -r~~~~ -~~ — - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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for truncation errors) and then computing the solution under the modulated

condition . The difference of the two sets of solutions then gives the

influence function E in question. Usually, during the development stage —

of a difference formulation for a given physical flow problem, such infor-

matious can be derived from preliminary results and can be used for the

purpos. of a-posteriori error estimate. Of course, a-postcriori determi-

nation of such influence functions are desirable to provide additional

c1tsc~s on the behavior of the computati onal program.

Without referring to any specifi c computational problem, the follow-

ing general observations can be inferred from the model study. They are

applicable only for the conservative difference formulation in which the

truncatje,t errors do not accumulate so that the truncation and the bounda ry

errors can be treated separately and estimated by Equations (5.14) to (5.16) .

(1) The steady state criterion - U~I < O(~x)” is sufficiently

accura te in a second order accurate scheme . - -

(2) The truncation error is expected to be ~ (Re~X)n for conserva-

ti ve difference formulation of nth order formal accuracy and the influen ce 
-

functions B1 2,  etc. are not likely to possess maximum magnitudes much

less t1~an io~~. With Re~~ > 1 in the practical cases, maximum truncation

error is not likely reduced appreciably from that of second order accurate

scheme as may be estimated. from (5.14).

(3) Boundary errors cannot be efficiently reduced by reducing the mesh

sizes . They decay vary slowly and are generally considerab ly large r than

the truncatIon errors in practical cases with Reâ~ 
a 0(1) . The primary

effort required in achieving a reasonably accurate solution of the compli-

cated practical problems lies in the sophistication in the treatment of

the various boundary conditions. The field of computation and the choice

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of coordinates should be properly defined to facilitate a more accurate

implementation of the boundary conditions .

The general observations made above carry an import ant message to

those intereste d in obtaining solutions for the complicated f luid dynam-
ics problei~s with reasonable accuracy to suit practical purp oses . Much

attention shoul d be pai d to the formulation of the problem. At tempts to

improve the accuracy of a numerical solution based on a poor formulation

by extending the computation to satisfy more restrictive steady state

criterion , with more refined mesh and even with the help of t~uch larger

and faster computers can prove to be not only expensive but frustrating.

A similar attempt w&s made for the time dependent flow. It was found

that for flows with slow end monotonic temporal variations, the behavior

of error propagation in the s~ cond order accurate conservative di ffercnce

formul ation is essentially similar to that described above for steady

state problems. For oscillatory flows, conservation in the spatial space

apparently fails to help. Test cal culations for soi~e simple damped osci l-

lation as an exact solution of the Burgers ’ equation indicate the serious
effect of the phase errors of different oscillatory components caused by

the dispersive t runcated terms . It has been suggested end illustrated
that fourth order accurate di fference algorithms will std stentially improve
the accuracy of the computed results beyond quite a few cycles of osci l-
lations. It is, hcwovor , a tremendous task to compute with fourth order
formal accuracy and uniformly for as complicated an equation system as the
Wavier-Stokes P~’~
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5.3 Shock Wave and Artificial Viscos~~~
In all the previous discussions , the question of “non-smooth” or

even “discontinuous” solutions is deferred. In problems of practical

interest , shock waves and contact discontinuities are often the promi~
neat features of the flow problems . The presence of such discontinuities,

or generally regions of very large gradient, causes difficulties in their

computation. 
-

Discontinuous initial and boundary data are often imposed on purely

elliptic or parabolic problems. They may cause oscillations in the

vicinity of the bounda ry, but never very serious . This is because of the

inherent nature of the syste~a to smooth out any discontinuities in time

and in space . The accuracy of the computed results may suffer somewhat

according to the modulus of continuity of the functions involved, but can

often be remedied by using a higher order accurate di fference algorithm.

This inherent tendency to smooth out any discontinuity can also be trouble-

some, for example , in treating flow problems involving an interfacial

discontinuity formed by two di fferen t flui d mediums , especially when the

interface is not stationary; since initially sharp discontinuity dif-

fuses tn the course of the computation if not artificially maintained.

For hyperbolic problems, a discontinuity in the initial boiai.iary

data propagates into the field of computation and causes excessive coinpu-

tational disturbances downstream, particularly in its zone of influen ce .

It also produces upstream influences. For the quasi-l inear gas dynemi c

problems, a shock discontinuity can physically arise from a perfectly

smooth boundary due to the coalesence of the smooth compression waves .

Thus, when this flow field is computed wit1~ an algorithm that worked well

•~~~_ ;~~~•_~~~~~~~~~~~~ 
. —

-
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—
~~~

--
~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



r~ w -

~~~~~~~~

-

~~~~~~~~

- 8 5 —

for smooth fields , quite severe oscillations can develop at approximately

where the shock discontinuity would appear. Such oscillations are fairly

large, although not isecessarily leading to the catastrophic divergence of

linear instability . It may be tha t the amplitude of such shock induced

o3Cillatjons are limited by the non-lin ear effects and the phenomenon may

well be called nonlinear-instability, but certainly not in the sense of

violating the require ment of boundedness discussed in Chapters II and III.

Even if bounded, such oscillations are highly damaging to the accuracy of

the results not only in the vicinity of the shock but over most of the flow

field computed. Practical interest, on the other han d, is often centered

in the vicinity of 5uch nho~k discontinuity .

It is natural to treat the shock front or the interfacial contact

discontinuity as an internal boundary and to compute the saooth solutions

On both sides of the discontinuity separ ately. The ju mp conditions across

the discontinuity will coirn ect the two solutions together. This shock

matching or shock fitting procedure is easily carried out in one space

dimens icn for a known discontinuity, i.e., the magnitudes of the j umps

and the speed of propagation of the discontinuous front into a homogene-

ous medium at rest or in uniform motion . If the shock should be propagat~
ing into a non-uniform medium or a homogeneous medium in non-uniform

motion, the shock strength and speed will vary and the Hugoniot relations
across the shock will have to be supplemented by some additi onal matching

condition to be derived from the difference results in- the vi cinity of

the shock front. It is often that oscillaticns appear on one or both

sides of the shock discontinuity , likely as a result of the inaccuracies

in the locat ion of the shock and in the values of the functions in the
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vicinity. The oscillations may be alleviated if the shock location is

fi xed at a mesh point and the mesh divisions are rezoned at every time

or iterative steps . The computational procedure in ter ms of such shock

coordinate rapidly becomes complicated.

In two space dimensions and with a curved shock -of unknown shape and

locat ion, the computational details of such a shock matching procedure

rapidly becomes mare tedious and inaccurate . With fixed mesh points, the

shock front is general ly off the mesh points and it becomes diffi cult and

highly inaccurate to determine the direction normal to the front in the

matching process. The use of curvilii,oar shock coordinate is convenient

and may possess other features for treating invisci d steady state flow

problems with uni form supezsc~tic flow on th~ upstream side of the shock

front ~~2lt is not suitable , however , for a shock wa’e ithedded in a non-

uniform inviscid flow field. It cannot be implemented for viscous and

inviscid flow fields involving more complicated shock con fi gurations ,

such as shock intersections and Mach reflections or transonic shocks that

terminate in the flow field. The tedious shock matching can be implo-

mented in principle even for such complicated confi gurations although the

procedure is too complicated to be manageable and the results so obtained

are uniformly poor.-
(13]

To avoid shock matching, v.Neumann and Ri chtmeyer introduced the

arti~icial viscosity method for computing the shock propagati on in an

inviscid flow field. A quadratic viscous pressure term pa2
~ x2 

~~~
where a is a numerical constant chosen at convenience , is adde d to the

di fferential equation before discretization. The quadratic dependence

on the velocity gradient assure s a rapid decay of the artificial viscous

- -  — — ~~~~~~~~~~~~~~~~~~~~~ —---.. ~ ~~~~~ ~~~~~~~~~~~~~ ~
. .
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term away from the shock front with steep velocity gradient. With a < 1

the typical results of the calculation for one-dimensional shock propa-

gation into a un iform field gives a sharp shock front , spreading ove r

“p2 meshes and the calculated shock speed is within 0.1% of the correct

value . But sizable oscillations develop in the downstream and over an

extended range without appreciable damping (spatial ly end temporally) .

By incr easing a to ~ 2 , the magnitudes of the oscillations are reduced

but the shock front spreads wide r , over 4 or more meshes . A reasonably

smooth downstream solution is obtaine d only when a is so lar~ as to be

and the shock front spreads over many meshes. By then the arti-

ficial viscous term is no longer small in the inviscid region and the

apparently smooth results of computation fai l to be a satisfactory approx-

imate solution for the shock front.

The artificial viscosity ~~thod. is physically sound, simply imple-

mented and easily extended to rultispace dimensions , formal ly by includ-

ing dorivatives in other spatial dimensions . The large spread of the

shock front and the induced oscillations generally become more objection-

sble , however. Many artifices can and have been devised to improve the

appearance of the computed results . The arti fi cial viscous term may be

dropped when the gradient of velocity becomes loss than a pro-assigned

value , or the downstream oscillations may be suppressed or eliminated by

some smoothing process or may be limited to a permissible magnitude about

the me an through some filtering process. Excellent results can generally

be obtained for simple test problems with known shocks . The merit of

such proc edure s in computing shock propagation into non-uniform flow

fields is yet to be demonstrated , particularly with respect to the accu7 4

of the smooth results . 

- —~~-.--~~~~- - - --



- 8 8 -

[14)
The Lax-Wendroff treatment of shock wave utilizes the fact that the

hugoniot relations are simply the conservati on laws integrated over the

discontinuity. Thus , with the invi scid equations wri t ten in divergence

forrs for the physically conserved quantities, shock matching can be

avoided since the difference equations for such conserved quantities are

indeed the approximate form of the hugonict relations. (Note that the

divergence form of the transforme d d3pendont vari ables does not help.)

One dimensional computations show that it leads to a quite sharp shock

front (~28x) and accurate shock speed. But sizable oscillations are

generated at the shock frcn t although rapidly damped to disappear within

8 to 10 meshes from the front. The dissipation is derived from the dissi-

pative term óx3.rfl_r2)~~~ with r u~t/t x which may be visualized as the

artificial viscosity that spreads out the shock front . The quadratic

viscous terms adopted by v.Neumann and Ridi tmeyer does not appear to pro-

vide as much damping of the shock ii~duced oscillations as this li~ea~r vis-

cous term. The peak amplitude of this shock induced oscillation near the

front is often larger although more rapidly damped than those from the

quadratic artificial viscous term. Additional artificial viscous terms

arc often introduced to reduce the amplitude of such oscillations.

The introduction of arti ficial viscous terms into the differential

equation before discretization is funda~~nta1ly not much different from

dropping those higher order terms in the truncated Taylor series in the

discrctization process. Such viscous terms contribute to the stability

of the diffe rence formulation . Thus artificial viscosity is very widely

employed for proble ms without shocks. Such artifi cially introduced

viscous terms are often substantially larger than the Navier-S tokes

- ~_ e_,~
__________________________ ~— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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viscous stress terms evaluated with the physical viscosity coefficient

of the fluid. This is justifiable for the solution of inviscid flow

problems , i.e., the flow prcblems visualized as the asymptotic limit of

negligible viscous stress terms, so long as the contributions of the

arti ficial viscous terms are “negligibly small” compared with the contri-

butions from the inviscid terms and the somewhat spread out shock front

is visualized as a “sharp” discontinuity. Such a situation is clearly

not tolerable for viscous flow prob1e~s because the effect of the fluid

viscosity will be overshadowed by the effect of the pseudo viscosity.

There are many numerical solutions of the Navier-Stokos equations

some with fi rst order accurate algorithms, some with second order accur-

ate algorithms but with large artificial viscous terms , at large Reynolds

nuabers based upon fl uid viscosity of the order of ~o6. These computed
[15)

results are very insensitiv e to the large fluid Reynolds numbers . This

is understandable since the pseudo -viscosity in such calculations are

substantially larger than the real fluid viscosity, and changes in the

flui d Reynolds number will not signi fi cantly alter the effective Reynolds

nuwber of the computational results based on the total viscosity included

in the di fference formulation . If one wishes to evaluate quantitatively

the viscous effects, both the artificial viscous term introduced into the

differential equations system and the pseudo viscous terms implicit in the

difference form should remain substantially less than the fluid viscous

term. Thus for viscous flow problems, artificial viscosity terms of the

type used by v. Neumann and Richtmcyer should satisfy

2~ 2 ~2a x 
~~~~~~~~~~~ 

< < v ~- 
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or dimensionally 
-

a2 Auâx 
U

2 Re~~ << Cs . 17)

With Re~~ generally larger than unity, the constant a must be chosen

appreciably less than unity. This restri cts severely the usefulness of

the idea of using the artificial viscous term either for securing compu-

tational stability or for suppressing the shock induced oscillations in

viscous flow problems .

For second order accurate conservative di fference formulation , the

errors introduced by the pseudo-viscous te~ms are included j r the t rimca-

tion error ET, the absolute upper boun d of which may be estimated as

< 3 x l0~~ (Reó~
) 2 according to the results based on the Burgers’

model equation given in the previous section. Thus Re~~ may be as large

as 1 or even 2 without having the cumulative truncation errors exceeding

a few percent . Note that this Re~~ is defined in terms of the local change

of velocity per s~esh when the Burgers’ model is applied to the “local

flow field”. With the Reynolds number based on the viscous flow dimension

and maximum velocity of O( 103 - l0~) ,  and with possibly of 0(102) mesh

points over the linear dimension, the local values of Re~~ will general ly

be considerably smaller than 10 (since t~u per mesh will be significantly

less than lO~~) except possibly in the region of shock induced osci l lations .

If the shock front is -
~~ isualized as an inter ier boundary and the shock-±n-

ducod oscillation as a form of propagating boundary error , the errors in

the results computed with the second order accurate diffe rence for zlation

will generally be dominated by boundary errors.

- —-- - - - -~~ ~~~~~~~ 
.
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Shock induced oscillations mar the appearance of the computed solu-

tian much more seriously although need not cause larger error than the

less conspicuous sources from the exterior bo~a~dary . The dif ficulty is

compoundsd where a shock wave , either incident or e.erg~ng, intersects

the exterior botmdary . In th. next section , the relation between the

boia*duy treatment and the shock-induced oscillation will be explored.

5.4 Shock-Induced Oscillations

Shock induced oscillations are often considered as imavoidable when

a shock wave is encotmtered in the computaticn with a higher order accur-

ate difference algori thm. Whi le the first order accurate algorithm will

not give rise to such oscillations , the smear of the shock front becomes

excessive and the ciaulative trtsication errors becomes large. Thus when

shock wave is enco~iitered in a computation , it is often held as necessary

to choose between the two evils. The following is an attempt to clari f~’
the origin of the spurious oscillations and to show that a certain class

of esø~id order accurate difference algorithms can , imder some favorable

circtasstances , avoid such spurious shock-induced oscillations.

Consider the solution of a linear steady state problem via th. time

dependent approach. Let the spatial difference operator be split into

two parts, L1(T) nd L2 (T) where T is the shift operator for the spatial

indices , i.e.~ . U~,1, T~~UJ 
U~..11 and T

2U
J 

— T T D
3 U~.21 etc.

Construct the class of two step difference algorithms for the time inter-

val nat to (n.l)at :

- tJ~ a L1(T) U~ • L2 (T) U~

- u~j L1(T)?J~ + L2 (T) U~ (5.18)

— -‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where is a provisional or predicated value of and the second or

final step is a corrector stop . L1(T) + L2 (T) is second order accurate

and consistent with the di ffe rential operator in the steady state .

Let the boundary conditions to be a~pliod to the fi rst or the pro-

visional step be

8(T) — 0 
- 

(5.19)

and let the boundary values of ?.t ,de~ived from these boundary conditions

as are used in the fi rst step, be used in the second step for the computa-

tion of ~ i+l at the corresponding bcunda y points . In this manner it is

maintained that - 0 on all the boundary points and at every

ti me step. The boundary values at each boundary point may change from

step to step and contain errors implicit in the boundary conditions (5.19).

By subtracting the two steps in the di fference equations (5.18) the follow-

ing difference relation is obtained:

(ci _ Ifj ) - Li (T) (?f~ - u~) (5.20)

In the event that a steady state is approached in the sense that

~ç’. U , then Equation (5.~ ) becomes in the steady state limi t

[I . L1(T)](
’
~~ - u)  — 0 (S.21)

Thus - LJ~ is. governed by the linear system of differen ce equations

(5.21) and are sii ject to zero boundary values over the entire boundary .

If there is no eigon solutions to this system of equations , it follows in

the steady state limit that - ~~~~ Then the solution in the steady

— - 

- ~~~~~~~ ~~~~~~~~~~~~~~~
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state limit is the solution of the correct steady state equation

[L 1(r) + L2 (T) ] U~ a 0 (5.22)

N~~ if the boundary values of and are not kept the same in

successive iteration s, will have to be eliminated from Equations (5.18) .

Thm*,in the limit of the steady state with - U~, this solution will be

determined by the equation

[I .  L~(T)] [L1 T) + L2 W] ~~ - 0 (5.23)

It will contain thà “correct ” ste t~dy state solution (5.22) to the exten t

that the boundary conditions B CT) - 0 represent the correctl y posed

situati on . But it also contains the nontrivial solutions of Equation

(5.21) when - is not identicall y zero , as a result of the slight

differen ce in the bounda ry values of and 
~~~~~~

1
. Such extrane-

ous soluti ons nat urally are possible sources of the sho k-induced ~s~J _

latione and can indeed be identified in the course of computati on ~~
being proportional to the difference between the provisional and the

final solut ions . Fro. the practi cal point of view , it is simpl.r and more

desirable to ms identical boundary values from (5.19) to s~~press all the

spurio us fund~~~ntal solutions arising from Equation (5.21) .

Thor. are amoy two step difference algorithms, but mostly not of the

clasS (5.18) •xcept the thong-Al len scheme and the Brailovskaya’s

sth.ms. For th. lineariz ed Burgers ’ Equation (3.13) , ~~~ difference

for~~ can be cast into: thong-Allen AlgorithJ10’16’

L1(T) 1~2s [(~ ;~
.+  a) T .(

~
. s) T -1]

2 1.25
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Brailovskaya Algorithmh l7 ]

L1(T) r(T - T4)

L2(T) — s(T - 2 + T4) (5.25)

where r - cat/ax and s - vat/ax2 . When (5 .24) is substituted into

Equation (5.23) , the genera l solution of U~ is thtaiaed as

1, 2, 3, 4

where

1 1
2.~+r l+7 P.e&

and [(l+2s) . ±~~(l+~s) 2 
• (r2.52)}h/2]J  (5.26)

I(2s-r)

and 4 are the two proper fundar ntal solutions of the correct steady

state equation [i~m • L2(T)JU, a o~ because in the limit of Re~~ + 0 ,

they approach the two fundamental solutions 1 and exp(Rex) of the steady

state differential equation, 4~
. 

~~~~

- 

~~~~~~
. 4, and are the two extran-

eous funda mental solutions of th. two-step scheme that constitute the

errors or “spurious solutions” arising fi~~ the solution of the equation

a L~(T)]U~ • 0

or of Equation (5.21).,
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With both r and s > 0, and < 1, it is found that

r ~,‘~3 1+2s

r ,~, j l+2s) > A >- 2 s r  < v a s r <

Thus 4 alw ays represents mesh to mesh oscillation while can be either

oscillatory or monotomic. The steady state limit of the di fference

tP’ - can be given as:

- U~ . c~F~~ . c~ç4 ~ 
- 

(5.27)

where c3 and c4 are determined by the difference in the boundary values

of ’
~?t ai d U 1~~~a t J a 0 a n d j _ J c n the boimdar y . When the boundary

values of U’~ and ~~~ are kept the same it every step , then c3 — C
4 

— 0

and no spurious solution will be present in the computed steady state

result. Otherwise, oscillations con be expected in the comput ed steady

state result.

If Bra ilovskaya ’s scheme (5 .25) is substitute d into Equation (5.23) ,

the same proper fundamental solutions and are obtained , but the

pair of extraneous solutions ~3
J and F4 are given somewhat differently

with 
~~~~~~~ 

- [i x (1 + 4r2) ’S’2 J /2 r , and 1 < 0 always . The overall situ-

ation is much the same .

It may be pertinent to repea t her. that the spurious solutions will

be suppressed so long as the same boundary values of and U’~~
1 are used

at every step. Such boundary values can be deter~rined by the approxi mate

boundary conditions B(T) U~ - 0, and may contain errors . In this event ,

they may cause errors in the constants C
1 

and c2 of the steady state

- ~
, _
~~ t~

.-* ~~~~~~~~~~~
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solution

— c1~1~ + c2~2~ (5.28)

There will not be any catastrophe if the boundary values are not exces-

sively in error and if the mesh size of the steady state solution is

not too coarse so that

ROax < 2 
. 

(5.29)

This last restriction Reax c 2 has little to do with suppressing

the spurious fundamental solution, E 3 and It is to keep ~~ from

being oscillatory and failin3 to be a valid approximation to the fundamental

solution exp IRejax i of the differential problem . It is clear from Equation

(5.26) that when Reax > 2, the appropriate form of is

rl + 2
~~ a H

— (-1)’ 
- 2/reaxJ 

-

~~

. . (5.29)

which is oscillatory and rapidly amplifying with increasing j. It fails

to serve as any meaningful approximation to exp I Re~axJ . Thus to obtain

a valid ste ady sta te solution without spurious oscillations based on the

algorithms (5.24) or (5 .25) , not only that identica l bounda ry values

should be used at the provisional and the final steps , but also that the

mesh size must be sufficiently refined so that Reax < 2. Sample calcula-

tions for the steady state solutions of the linearized Burgers’ equation

(3.13) verified the abrupt change of the behavior from a smooth to a

violently oscillato ry limiting soluti on when Reax increases beyond the

critical value of 2. 
- 

~~~~~~ ~~~~
-- • -

~~~~~~~~~~ ~~~~~~
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For linear problems with vari able coefficients , the various funda-

mental solutions of the difference equations cannot be displayed. It

is nevertheless expected that the spurious solutions will be suppressed

if the same operators L1(T) and L2(T) and the same boundary values are

used for the successive iterative steps in every time interval. As to

the proper fundamental solutions of [L1 CT) + L2(T).]UJ 
— 0, it is known

that one of them must be unity because of the consistency requi rement.

The other will become oscillatory for too large a Re6~
. Whether the

critical value of Max will be 2 or how it may vary with x is uncertain.

For nonlinear problems with sufficiently smooth solutions, the cotapleto

suppression of the spuri ous fundamental solutions in the first variation

of the nonlinear di fferenc e operator at each time step, may be expected.

This is because the spurious fundamental solutions contained in the com-

puted results of the nonlinea r equations will have been reduced to higher

orde r small quantities in At by the stra tagem described above. Such

highor order small quantities in At will be of little significance in the

steady state limit . Thus , the outstan ding problem for eliminating shock-

induced oscillations is tc satisfy the requirement of using some suffi-

ciently small mesh size Ax corresponding to the restriction of Re6~ 
< 2

for the linearized Burgers ’ equation . It is anticipate d that , for non-

linear proble ms, there may not be such a sharp val ue of the critical

Rear. The transition from smooth to oscillatory steady state solution

may be gradual over some range of values of ~~~~ This has also been

verif ied with actual computation. It is supposed that the following

heuristic model will give a general idea where this critical range of

Re~~ may be. 

~~~---~~~~~~~~~~~ .~~~~~~~~~ - - ,-- , -. ~~~~~
—. — —

~~~~~~~~~ - ~~~~~~~~
— .
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-
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When a second orde r accur ate conservative diffe ren ce al gorithms of

the class (5.18) is used for the integration of the Navier-Stokes equa-

tions and when the stratagem , just described , is followed in the treatment

of the boundary conditions, the shock wave, if present in the computation ,

is not regarde d as a discontinuity but a “smooth” region with large gra-

dient, spread out by the pseudo-viscosity. This shock t ransition region

usually spreads out over two or more mesh points -to connect the smooth ,

asymptotically uniform flow fields both up and downstream of the shock
~i.region. The transition profile as calculated is not intended to be accu-

rate. Its primary function is to accomplish a smooth connection , and

hopefully, without inducing oscillations propagating into the smooth

flow field in its neighborhood. Thus , transition profile joining a scalar

function u with asymptotic values u~ - ± a in the up and the dovnstreaa

region respectively, might as well be computed approximately based on

the nonlinear Burgers’ equation as a mode l for the local flow field..

This moans th at the local profile might be approximated by the steady solu-

tion, Equation (5.10) with x - 0 and u - 0 located at the point of maximum

slope in the transition pro file that has been actually computed with the

full Navier-Sto kes equations. Thus, the computed aeximue value of ~~~~

properly nondiaensionalized in the transition region will define the

effective Reynolds nuaber of the transition region .

I au\
1~~~J 

• Re/2 (5.30)
S I max computed . 

-

.1
I i

In this manner, the poorly defined thickness of the tr an sition region

‘ is avoided. The parameter a can be taken as unity when the refe rence

velocity is adopted U the change of the velocity (or the particula r

_________________________________ 

I



scalar quantity in dimensionless form) from the point of maximum grad-

ient to the asymptotic value. If the computed transition profile is

approximately symmetri c with resp ect to the infiexion point, this refer-

ence velocity will be half the ju mp across the shock .

Let the asymptoti c values of u across the shock transition region

be U1 and U2 then, assuming U1 > U2,

Ul U2 / ~U \ u1 u2
\E/

• 2~~~~E,1 
a Re

(~~)max - (~~ ) A x  - Re~~ (5 .31)

Now it is pressumed that the critical value of this Re
~~ 

is essentially

the sane as if the computation were done with the sane algorithm but

based on the Burgers’ equation so that oscillati on-t4ce computed results

of the transition region can be effected with Re
~~ 

< 2. When expressed Sn
terms of quantities , directly available in the computati on as an a

posteriori criterion , accordin g to (5.31) , this condition becomes

(5.32)

i.e., “the maximum permissible change of U per mesh (AU) max is one half

the j~~~ 1u1-u2 1 acros s the discontinuity so as to avoi d shock-induce d

large oscillations in the computed results .”

This statement implies that we cannot expect to obtain an oscilla-

tion-fre e shock front that contains less than two meshes from the compu-

tational solution following the. present stra tagem. Moreover , within the

linearized fra mework , the criterion (5.32) should be equally applicab’e

- ---.-~~~
-

~~
- 

~~~~~~~ --.---S~~~--- ~~~~~~~~~~~ ~~~~~~~~~~~ --..~~~-~~--.~~-,-“- - - - 
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to any physical scalar variable , sustaining a “ j t ~~~~” acros s some large

gradient region not necessarily a discontinuous front, although the Re~~
was defined in terms of flow velocity and viscosity. It is independent

of viscosity explicitly.

The criterion (5.32) stands , however, only as an a posteriori cri-

terio n for achieving an oscillation-free shock solution. This is because

~~ becomes known only after the completion of the compu-

tati ons ; by then, there is no need of the criterion to find out if the

computed solution is oscil~aticm-free I Such an a posteriori criterion

can, however , be of some help in practice, since (AU) max can be estimated

long before the computed solutions reaches a satisfa ctory “steady state ” .
Oscillations will be present in the “transient states” of the computation

whether or not the steady state limit will contain shock-induced oscilla-

tions. If tho criterion should be satisfied at some transient stage , we

may expect an oscillation-free steady state solution with further tempora l
steps . Othe rwise , smaller mesh sizes may be needed.

It is more convenient if this criterion can be put into some a priori

form, less precise as it must be. Note that the magnitude 1U 1-U2 1 depends

on the shea str ength , the shock orientation relative to the coordinate

axes (in a multi-dimensional problem) and the coor dinate direction under

consideration . If it is possible to estimate this magnitude J U 1-U2~ , then

“ - IRe~~ a 1U 1-U2 I AX/2V < 2 
-

may be used directly as an a priori limit . This Reynolds iumber Re~~ mus t

not be confused with the Re~~, _ based on the uni form supers oni c flow

velocity U,, far upstreaá of the flow field, i.e., P.eó~~,, - U,,O x/v . In
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te rms of this Re~~~,,, the criterion becomes

Uj x U,, 4
— < ç i-u2iu1

which can be useful apriori if there is some idea as to the shock strength

and the ratio U_ /U 1 of the reference velocity U,, far upstream to

the velocity U1 into which the shock wave is propagating. For complicated

flow problems , however, such quantities are usually among the unknowns .

Thus , the limit on Re~~~,, given by (5.33) will have to be based on some
S

rough estimate or on the “transient states” of the computed solution.

The previous heuristic development is equally applicable to any

fl ow regi on containing large gradients other than the shock front. In

particular , oscillations ori ginating from boundaries of . the field of

computation can be likewise alleviated. It is to be emphasized, however,

that if the oscillato ry extraneous fun damental solutions like 4 and
were not suppressed by the stratagem described above , these extraneous

oscillatory solutions will propagate into the neighboring smooth flow fields

even if the mash size is much reduced below what is required by (5.33), at

least one of them will be amplifying assay from the boundaries of the trmts - —

iticn region while propagating into the neighboring smooth regions on

either side . On the other han d, if much too coarse a mesh size is used in

the comput ation , large amplitude oscillati ons will resu lt since one of the

proper fundamental solutions of the di fference equation- fails to be a valid

approximation to that of the di fferential problem despite. the fact that the

stratagem described above is followed. To produce an oscillation-free com-

putational solution of a flow problem involving shock waves, it is recom.

mended not only that some form of the two step algori thm (5.18) be used

with identical boundary values applied to both iterative steps during a

~~~~~~~~~~~~~~ 4-
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time interval , but also that the mesh size ~x is kept sufficiently smal l

compared with the condition (5.33). This recommendation is based on the

results of analysis of a simple model linear equation for the numerical

solution of the much more complicated cnd nonlinear gas dynamic equations .

It is reco~~ended in the same spirit that the local , linear stability

analysis of v.Neumann will help in achieving computational stability.

The practi cal merit of this recommendation is yet to be examined in

greater detai l by the computational co~ aunity .

The previous deve1opme~it has guided the author quite successfully

in his earlier attempts of integrations of the Navier-Stokea equations

for some complicated flow problems , such as the near wake flow behind a

fl at base with a sharp corner in a supersonic f1o%~1tl d the hypersonic
- - [181

flow over the sharp leading edge of a highly cooled flat plate . The

flow situations encountered in these examples are jus t too complicated

to provide any meaningful quantitative tests of the validi ty of this

criterion and the accuracy of the computed results . In the following

a simple case will be described which may serve to s%çport and to illus- 
-

trate the usefulness of the stratagem and the simple criterion despite

the heuristic content of its application to the actual integration of the

Navier-Stokos equations.

The ~~eng-Allen two step algorithm as a nether of the class (5.18)

is used to integrate the complete Navier -Stokes equations for the propa-

gation of a plan ar shock wave into a uniform supersonic flow at Mach No.

2 with the shock front inclined at an angle B - 41.84
0 to the uniform in-

(191 -

fl ow. The gas density p1, velocity u1,energy a1, and pressure p1 are taken

to be unity in dimensionless form. The theoretical values of these vari-

ables downstream of the shock, according to the Hugoniot relations agree

-~ - - -  ~ - --- -—-~~~ - .— -~~-~~ -- -- -~——~~~~~~~----~
.-—- -.--~ ----- —~~-.—--—~ .—-.i __

~~~~
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with the value s computed at Re~, , . 10 to. better than 0.1%. The criti-

cal Reynolds nuther per mesh is 
~~~~~~~ 

)~ - 4/(1-0.837) - 24.5. No

oscillations are found. The shock front is sharp and straight. It is

verifie d that the a posteriori criteria (5.32) are satisfied for the

density p the x-velocity component u, the y-velocity component v, the

ener~ ’ a and the pressure p acros s the shock .

Mien the onaputatio n is repea ted at Re~5 ,  - SO exceeding the criti-

cal value ~~~~~~~ - 24.5 for the same flow configuration , st~ stantial

oscillations are present i diately downstream of the shock . The a

posteriori criteria (5.32) for all the physical variables are found vio-

lat.d. The peak amplitude of the oscillation is about 10% but audi oscil-

lations are essentially damped out a few meshes downstream of the shock.
The downstrea m asymptotic values are reached well within the field of

computation. The downstream asymptotic values obtained from the computa-

tion at Re6~ ,., - SO are correct to within 0.3% of the Hugoniot values .

Th. smooth incident shock computed at Re~31~~~. 10 was then allowed

to be reflected from an inviscid wall. For the reflecte d shock , the crit-

ical Reynolds nt~~er (Re
~x _ )c - 4/(0.837 - 0.646) — 21, which exceeds

the ~~~~~ - 10 used in the computation . A smoc ‘~~
, straight reflected

shock La obtained. All the computed downstrealL iptotic values agree

with the theoretical values to bette. than 0.1% and there are no oscilla-

tions.

Computations at inter mediate values of Re~~ indic~t. that cecilia-

tic,is begin to appear with ReAm exceeding 10 to 15, increase most rapidly
around th. critical value of 20 - 3D , and keep incre asing slowly with
larg er 1.Az• This gradual rather than an th r~ ,t chan ge of behavi or with

L ~~~~~~~~~~~~~ ~~~~~~~~~ —~~ —--—-— -- —
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I

Re~~ is probably wh at should be expected in a nonlinear system. It is
encouraging that the simple criterion obtained from an elementary linear
analysis of a simple model may prove to be useful in complicated flow
problems to be encountered in practi ce .

I

A- - j ----— - —.i___ - 
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VI. CU!U2’FT STATUS AND FUTURE PROSPECT

The various problems associated with the numerical integration of

Navier-Stokes equations have been reviewed in the previous chapters as

to the mathematical origin of the problems and of the basis of various

techniqu es in dealing with them . This approach was chosen in prefer-

ence to a review !n the form of a glossary of various solutions in the

literature so as to provide a frame of reference how such solutions

may be studied and how each speci fic problem should be approached.

In the days of the mechanical desk calculators or the card pro-

gramoed calculators (CPC) , the numerical inte gration of the hydrodynamic

equations was attempted. The primary concern then was the limitation

of the computational speed offere d by these machines . While the question

of coanutational stability was known to math ematici anj,l’.tt is not of

anach concern to the practitioners. The da~-m of the high speed electronic

computers in the mid-l940 ’s chan ged all that . The ability to compute fast

showed how often an apparently straightforward computation will lead to

unbounded meaningless results . This problem is the fi rst and the most

pressing one presented by the high speed computers . If the stability ques-

tion of the computation is not successfully resolved, no results of any

kind could be obtained. Since the mid 1940’s, this stability question has

been studied very extensively, both mathematically and empirically. As

was described in Chapter III, much has been learned and unders tood since

— los-
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then . It is still true that when complicated sets of partial differen-

tial equations such as those of gas dynamics are to be integrated, compu-

tational stability remains a formidable problem. As in the older days,

so much work is still needed to render a stable computation that one

often hesitates to ask any further questions about any reasonably looking

computed solution . But for those interested in computational methods for

some practical urp , computational stability ii not synonymous with

the major problem of the computational solution of a partial di fferential

equation system. It is only a fi rst step in achieving a solution of value

in practice .

With the help of suitable model studies and appropriate choices of

differen ce algori thms , computational stability can generally be obtained

and tested in actual machine computation . Now is the time to be concerned

with obtaining not only some qualitatively correct solut ions but also

quantitatively correct answers with some estimate of the error bounds of

the computed solution. In applications, the pri mary purpose of a computed

solution is to seek some reasonably accurate quantitative estimate of the

flow field. The accuracy requirements for diffe rent applications may be

quite di fferent. Whether a solution is suffi ciently accurate for a spe-

cific application can only be j udged under some overall view . But such a

judgement can be made only when the compute d solution is accompanied by

an error boun d if not a strict error estimate . The error bounds of a

compute d solution is no less important than the error bare of a set of

experimental data if such computed or experi mental sets of data are to

be practically useful . With thi s in view , the preliminary developments

on computational accuracy - given in Chapters IV and V are very important

____________________________________________________________ — - —.-— - -  -j- -—-- - — —~ - .‘- -- - - -  — - -— --j -- —~4
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in practice. Most of the solutions available in pt~lished literature

cannot be examined with regard to the question of accuracy because they

were probably obtained primarily to demonstrate qua litatively what can
be doen ra ther than to solve speci fi c proble ms in application . A few

examples will  be described below with some comeent.

6.1 Hydrodynamics -

The flow of an incompressible viscous flui d in two space dimension
probably represents the simplest form of the Navier-Stokes equations.
It is most often treated in the stre am- function-vorticity form. The
mass continuity equa tion in two specs dimension (x ,y)

3u 3v
~~~~

+ w • 0 - (6.1)

can be satisfied by a scalar stre am function ‘V defin ed with

a’V arand ~~~~~~~ (6.2)

while the vorti city componen t w normal to the x-y surface is

Va, + - w(x ,y) (6 . 3)

The curl of the momentum equation re duces to the vortici ty transport

equation

3w 3’V 3w 3’V 3w 2• W w (6.4)

The divergence of the moment isa equation gives the V2p in terms of ‘V and
w. Thus the static pressure in the flow field can be solved independently
after the stream function ‘V and vort icity w have been dete rmined. Thus

~~~~~~
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the solution for a hydrodynaezic problem will be p~~ed as the solution for

two elliptic problems for ‘V and CA) simultaneous ly represented by Equations

(6. 3) and (6.4) subject to Dir ichelet and /or Neumann boundary conditons

on a closed boundary for ‘V and w. The physical boundary condition depends

on the problem.

A simplest case is the decay of a vorte x in a closed rectangular box

in which case u - v - 0 on the boundary whi ch may be taken as x • 0, y - 0 ,

x 1, y - 1, respectively. This set of physical boundary conditions has

to be translated into boundary conditions o f ’ V  and w. By definition V 0

may be assi gned on the bàundary . This servcs to determine Y(x ,y) complete ly

from (6.3) when w(x y) is given over the field. The remaining physical

boundary conditions are

on x - 0  or x - l

on y - 0  or y — l  (6.5 )

The practica l question arise s how (6 .5) may be expressed as the boundary

conditions of w in the solution of Equation (6.4). In practice , this

question is by-passed by solving Equation (6.3 ) first for the advan ced

values of Y(x y) and the bounda ry value s of w are estimated either from

th. initial data or the results of the most re cent ly ava ilable advanced

values of ‘V near the bounda ry. This can be done either with or without

the conditions (6.5 ) taken into consideration . In princi ple the bounda ry

conditions (6.5) should at least be checked a pos teriorl . There is

clearly an error on the boundary values of w of the order of At Ax ,

and/or Ay depending on the formal order of accuracy how this boundary con-

dition is handled. -
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Now if Equation (6.4) is integrated over the volume. (i.e., x • 0 to

1 and y - 0 to 1) and over the time period t - 0 to t of the integration ,

the total decay of the vorticit y is

f t ~0(t : 0) - w(t ) )c~

- vf dtJ V2w ~~

• vfdtf~~.A )) (6.6)

i.e., proportional to the tc ta l outfiux of the gradient of vorti city on

the boundary . (The three dimensional analog is obvious) . Thus the non-

random cumulative error on the total decay of the vorticity. in the box

will be of the order of NJr B where N is the nuther of time steps inte-

:rated and J is the rnnth er of spatial meshes in a linear dimension. The

w on the bo~ idary is assumed to be of the same orde r as the error in

the boundary vor ti city r3 itself. The use of the integral formula implies

that the accumulation of the truncation errors over all the interior points

have been neglected in the difference formulati on . Even so, the total

decay of the vorticity at later time s depend very importantly on how

accurately the bounda ry vorticity was formulated in the computation and

cm whether and how the errors associated with such * formulation will accum-

ulate in space (along the boundary ) and in time . The question is more

than the local truncation error of the di fference formulation of the vor-

ticity boundary condition since the correct physical boundary conditicn

Equation - (6.5) • which represents some integra ted condition on the vortc-

ity field rathe r than the local values of the vorticity was ignore d.

The use of th. stream fwtction-vorticity as the dependent varisbies

is th. fundamental reason of the difficulty in implementing the boundary
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condition. I t also causes consider able complications in rendering a

conservative formulation to prevent the accumulati on of the truncation

errors over the interior points . If the physica l variables u and v are

used as the dependent variable in the di fference formulation , the di ffi-

culty with the boundary cc. iition would be eliminate d for the above ex-

ample and the conservation of the di ffe rence formulation can be readily

implemented. The advantage of the vort icity-stre am function formu lation

in reducing the nuaber of partial differential equations may be more than

compens ated by the di f fi culty it brings for this proble m.

For hydrodyna mic problems with inflow and outflow boundary in the

field of computation , the boundary treatment in the di fference formula-

tion faces a diffi culty of different nature . This is because the physi-

cal boundary conditions are prescribed very far up and downstream of the

field of computation . The vor t icity-str eam functi on formulation does not

aggravate the situation much further and is there fore often preferred for

the numeri cal integration of the hydrodynamic equations . The Poisson type

equations can be efficiently solved in diffe ren t ways . There are many

such solutions in the literature. Most of such results can not be analyze d

for en error estimate primarily because of the non-conse rvative form of

the difference formulation that permits the accumulation of the local trun-

cation errors . Experimental data are generally not available to provide

a quantitative estimate of the error of the computed results . All such

computations serve to demonstrate the feasibility of coiçuting some “reason-

able” approximate solutions but are of little quantitative value . A numer-

ical study of the steady flow of a uniform stream o’vvr a sphere was there-

fore unde rt aken by Rimon and Oteng.

— — -S—- —
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The flow field of a uni form stream over a sphere is convenient ly

described by using the spherical polar coordinates . To extend the outer

boundary of the field of computation to as far downstream as possible to

facilitate the implementation of the boundary conditions, z - ln r is

used in place of the physical radius r. Three different sets of numeri-

cal inte gration have been made by di fferent authors at common Reynolds

nt~~ers of 40 and 100. There is also a set of experimental data by Taneda 12
~~

of some charact eristic quantities of the recirculatory wake flow field

- at these end other Reynolds ‘nuthers . Such measured values of wake length ,

locations of the separati n point and the vorticity centers provi de com-

parisons of the detailed flow field in the most sensitive region, in addi-

tion to the overall drag coefficient acting on the sphere.
[20] [21] -

Jenson and Hamielec , et al. used similar di fference relaxation pro-

cedures and used the same downstream boundary conditions approximating

uniform out flow . Both cases were care fully executed and examined numer-

ically, very carefully, and w.~de sure that the steady state resu lts they

obtained are essentially independent of further reduc tion of mesh spacing 
—

from mesh sizes C~8 • 6 and z — 1/20 . They obtained the same drag coef-

fioieift CD in agreement with what is expected from the experi mentally

well-established standard drag curve . However , the details of the two

solutions were much different. For example, the vortici ty cm the wake

.id. of sphere surface differ by a factor of 2 to 3 for the case with

- 40. The stre amline pat terns in the recirculatory, wake are visibly

different although qualitativel y similar. It is supposed that such

differences in the rósults largely demonstrate the cumulative effects of

the truncation erro rs due to the non-conservative nature of the di fference

~~~~~“
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algori thms equi valent to their relaxation pro cedures . Jenson ’ s results

depart considerably further from Taneda ’s wake data than the results of

Ha mielec, at al at Re0 s 40. Hamielec , et al. also calculated the case

ReD - 100. They foun d it necessa ry to re fine the mesh to t~O • 3 and

- 1/40 to secure a reasonable stead y state and to introduce some fine

adjustments in order to reproduce the experimental value of the drag

coefficient CD at Re - 100 .

[p2 ]
Riacn and Cheng succeeded in developin g a conservative differen ce

form that is still reasonably simple despite the contracted curvilinear

coordinates and stre am function vorticity formulation . The same ~nesh

size AO • 6’ and ~z - 1/20 , as was used by the previo me authors was used.

The conservative nature of the di fference formulation permit an estimate

of the upper bound of the cumulated truncation error by Equation (5.14) .

The Reó~ 
should be replaced by Reó~ for this calculation in terms of

~8 and t~z. The magnitudes of Re~1 for the two cases with Re0 - 40 and

100 can be estimate d from the computed solution based upon the velocity

gradient in the region near the isolated rear stagnation point in the

wake (the reference velocity of this mesh Reynolds iu~~ er is based on

the velocity di fference across the lar ge gradient region). They are less

than end 1 resp ectively. Accordingly, the absolute upper bound of the

cumulated truncation errors are 3 x l0~ X ReAz ~~ I end 3% respectively.

The ext rapolation condition at the downstream boundary gives rise to the

lar g.st contribution to the boundary error. Both - 0 and w - 0 on the
out flow boundary may commit a fra ctional error as much as 100% . (It is

not expected to erro r in sign) . The absolute upper bound of the

boundary errors may then be estimated with Equation (5.16) where a 1

end Re is based on thó maximi~a flow velocity in the wak• region and the
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length from the rear stagnation point to the out flow boundary in the

z-O plane of computation . This is more than two unit lengths . The ef-

fective Reynolds nuabers are then 80 and 200 respectively. Accordingly,

the bounds of the boundary errors are estimated as 2e ,/Re of 2 .5% and 1%

respect ively . By adding the estimates of the absolute upper bounds of

the truncation errors and the boundary errors for each case , the overal l

estimate of the absolut e erro r bounds are about 3.5% and 4% for the

cases RS0 a 40 and 100 respectively. This is a quite satisfacto ry engin-

eering accuracy . Thus, it is expected and veri fied th at the computed

results of Rimon and Cheng will agree with Taned& s wake data much better

than the results of Jenso n and Ha nielec , et al. The computed vortici ty

field in the near wake region of Ri mon and Cheng and that from Ha~nielec ,

et al. differ by a factor of 2 or more in the case with Re0 = 100 while

they di ffer much less for the case Re0 - 40. This again demons trates

the significance of the accumulation of the local truncation errors .

The computational effort of the solution of this problem following

the formulati on of Rimon and Cheng w~ not excessive t the time and is

rather small in terms of the present day computing machines. 61 x 31 -

1891 mesh points were used. Steady state solution was obtained in about

an hour computation per case in the IBM 7094 , wi th the potential flow

as the initial data. In term of CX 6600 machine time , it would take

less than 10 minutes . The computational time can be appreciably reduced

if a more reasonable approximation than the inviscid flow field should be

used as the initial data. It is therefo re believe d that with conscientio us

effort in constructing the di fference formulation , useful quantitative

results can be obt ained from the numerical solution of the Navier-S tokos

equati ons.  
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The extension of such calculations to steady flows in three dimensional

space and to hitter flow Reynolds nuabers will need not only substantiall y

more computer tias but also some analysis to gain unders tanding of certain

intri cacies in the 3-0 problems especia lly concerning the computation s in

the vicinity of “separation lines”. With the greatly increased capability

of the hi~~ speed computers in the foreseeable future , it is reasonable to

expect good quantitative results for these ste ady 3-I) problems of practical

interest.

The time dependent hydrodyn ami c problems in three space di mensions may

be considerably more diffi cult and deiaanding. This is especially true if

the hydrodyn ami c t urbulence is the subjec t of investigation . The hi gh fre-

quency components of the turbulent fluctuations could doubtfully be treated

with a reasonable accuracy desp ite the giant stride in the capability of

the computing machines fQreseen in the future. It appears that some phe-

nomenological theory , at least for the high frequency components • will be

needed while the low frequency components may be satisfactori ly handled

by computational methods . This state ment is meant to apply whether it is

to be integrated in the physica l space with the physical variables or it

is to be treated in the Fourier space for the Fourier components of the

physical variables . Much work is needed in any case!:24 ,25 ,26]

6.2 Supersonic Gas Dyn amics

The gas dyn amic equations system is basically the same as the hydro-

dynamic equatior b~cept for the var iati~ ~s of gas density and the dif-

fusivities and for the addition of the equation of energy balan ce (1.3) .

The outstanding feature of the supersonic flow field is the presence of

shock w aves either generated from within or incident on the f low field

— ~~~~~~~~~~~~~~~~~~~ — 
— —  p —~~~~~~~~~~ ~~~~~~~
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from wi thout . Most of the practical prcb lems that call for the numerical

treatment of the Navier Stokes equation s invo lve the g!nerati on of shock

wave from the interaction between the inviscid and the viscous stre ams .

The computation of a shock wave with unknown strength and location presents

considerable difficulties as was discussed in the p evious chapter. The

shock-induce d oscillations in its neighboring flow field is detria ~cnta1

to the appearance of the computational solution . Such solutions were

often presented after some artificial averaging or fi ltering procedure and

can , there fore , be of qualitative value s only. Those solutions relatively

free from this criticism indeed cwe their success in avoiding the serious

ccnsequences of a shock stan ding in an import an t part of the flow field.

By care fully selecting the field of computRtion for the proble ms to be

investigated , they minimized the consequences of shock-induced oscilla-

tions.
[16]

Allen and Cheng tre ated the near wak e flow inbedde d in a supersonic

stre am turning over a sharp shoulde r with a “recompression shock” generated

from the turning of the supersonic stream caused by the closing of the

recirculatory wake . In the steady state solution of this problem, the

small oscillations caused by the recompression shock distorts appreciably

the computed results only in the far downstream portionof the rejoined

wake flow field near the downstream boundary . Althoug h the oscillations

of the flow properties in the flow field is equivalent to those induced

by an oscillation of the shock front of only l/4~x, it ~emains as one of

the two largest sources of comput ational errors . It is conjectured that

the likely sorce of the small oscillation is the extraneous inaccurate

difference treatment where the shock eme rge s from the downstream boundary

0
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of the field of computations , The conservative dif ference form of

the class (5.18) was used and the criterion (5 .33) is satisfied although

without a substantial margin . Un fortunately , comparable experimental 
-

data are not available and the extension of this calculation to the range

of practical Reynolds nuabers of ~~ - ~~ and for the somewhat more com-

pli cated geometri cal confi guration was beyond the means (cost of computa-

tions) avai lab le.
(27]

Ross and Oieng studied the question that if the number of mesh points

is limited to 2100 with “optimal” ratio of ~x/Ay and with some non-essen-

tial but simplifying r~odi~ications of the bounda ry tre atment , what the range

of the Reynolds numbers and Mach numbers will be when the computational

solutions with the previous formulation will possess an absolute uppers

bound of the error of no more than 10% . The computational effort was

limi ted to 10-15 minutes of computing time on the IBM 360-91 equivalent

roughly to 20-30 minutes on the CX 6600 or 4 to 10 hours on the IBM 7044 ,

originally used by Allen . When other restrictions purely of fluid mechan-

ical nature are superposed , it was established that the range of validity

of the computational formulation can be extended to M 4 and Reynolds num-

bers of ‘~. 1-2 x l0~ based on half width of the base. To extend this compu-

tation to the practical range of interest would requiro substantial re-

-finement in the mesh size with correspon ding increase of the computational

effort . The storage requi rement on the computer does not seem rest rictive .

It was the computer time and cost that was prohibitive. ., It may be that the

absolute upper bound of 10% is too restrictive since the maximum fractional

error in the solution is likely to be substantial ly less than the absolute

upper bound. A sub stantial decrease of the estimate of the computational

-

~ effort will follow a modest reduction of the accuracy requi rement if the

-

~ 

—.-
~~~~~~ —~~-



- 117 -

method of error estimate described in Otapter V should be granted in the

absen ce of any direct comparison with reliable and comparable experimental

dat a.
• (28 1Carter cJtooses to integrate the Navier-Stokes equation for a steady

supersonic viscous flow over a compression ramp or corner with an imbedded

separated region. The compression waves will eventially coalesce into a

shock wave . Car ter kept the upper boundary of the field of computation

suffi ciently close to the viscous region so that the waves generated from

the viscous layer may be treated as isentrop ic waves without serious error

and utilized the simple wave extrapolation condition on the upper boundary.

This stratagem, as was used in the treatment of the near wake problem,

serves to eliminate the major part of the undesirable wave reflection from

the upper boundary. By restricting the field of computation to such a

narr ow strip and using a highly refined mesh with Brailovskaya’s difference

algorithm, a member of the class of (5.18) , the results compare favorably

with experimental dat a in the compar ab le Reynolds and Mach number ranges .

The difference formulation is probably not quite conservative due to the

use of the “curved” body coordinates . But the curvature is suffi ciently

small or otherwise localized so that the accumulation of the truncation

errors may not be excessive . While an estimate of the error bounds has

not yet been made , the evidence seems to indicate that this calculation

may have come very close to generating dire ctly some usóful pract ical re-

suits . Admittedly , the computational effort in this caJ ~culat ion seemed

to be excessive from the acad emic point of view , (two or more hours of CX

6600 per case) , it does not appear prohibitive frol the view of engineer-

ing deve1opaen~. Moreover, there is substantial room for improvements

if in error estimate can be made . The 4th generation computers that will
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shortly be operational further promise a substantial increase in speed of

computations and in storage c~pabi1ity. This may render the computational

effort to be of less concern in solving such practical problems .

#~n academic program has been devoted to developing te chniques to face

the diffi culty of computing shock waves in a complicated flow field. The

results reported in Section 5.4 demonstrated some progress in this direc-

tion. There are still tremendous dIfficulties ahead and, as yet , not ye-

solved when the shock wave interac ts with other incident waves and when

the criterion of (5 .33) bec~mes much too restrictive. Nevertheless , even

in the present unsatisfactory state , the computational results can be

usoful in fluid dynamics research to suppisment .~~sri msntal and other

efforts . They will also encounter diffi culties , but of some different

nature. The following treatment of the hypersonic leading edge problem

may illustrate the situation .

Over the leadin g edge of an infinitel y thin flat plate, placed in a

hypersonic or supersonic stream at zero incidence, a shock wave will

develop due to the viscous effects in the vicinity of the plate . In this

region, the hypersonic strong interaction theory, based on th. boundary

layer type arguments , failed to provide even a qualitatively adequate

description of the flow field. It is in doubt to what extent the flow

situation will have to be described by the k inetic theory rathe r than by

the continuum theory when approp riate ly modified for the slip effects.

The flow field was thus computed by O~en and Cheng. A-ra ther str ong

oblique shock wave develops rapidly from the leading edge, and produces ,

In th. downstream gas, a high pressure and temperature, both proportional

to M3sin 2 O where 8 is the local inclination of the shock front with the

inconing uniform stream. It is very clear then that any small oscillations

- J~~~~ l~~~_e•~~~~’• _ --. — - —Th —• 
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in the shock front will produce, in the downstrea~ corresponding oscilla-

tions of very significant magnitudes with the upstream flow Mach n~~~er

of ‘ 20. It is , there fore , very critical to have the shock oscillations

essentially eliminated from the computation . The conservati ve two stop

algorithm of theng and Allen was agai n used with a 40 x 30 mesh in the

physical space x-y with y - 0 describing the plate surface . Th. leading

edge shock emerges from the downstream out flow fotm dary just below the

top corner. No oscillation of the shock w ave is noted except in the

imeediate vicinity of the piate leading edge point. The oscillation is

fairly large but dies out rapidly within about 5 meshes downstream along

the plate and 2-3 meshes normal to the plate . Variome slip conditions

were imed in the computation . A minor localized oscillation developed

somewhere downstream about 2-4 ay for no obvious reasons and is far away

from the shock . It is conjecture d to have origi nated from some inapprop-

riate treatment of the bounda ry conditions on the plate . This localized

oscillation imposes no signifi cant error on the solution . The downstream

out flow boundary is again tre ated by the second order accurate extrapola-

tion but along the shock direction where the shock emerges, along the

plate on the plate surface and along directions linearly interpolated in

between. Despite the suppression of the oscillations of the emerging

shock, the slow decay of this boundary error stands as the largest single r
contributor to the solution in the interior. The absolute upper bound

is <7% according to Equati on (5 .16) as evaluated with the . smooth computed

solution a posteriori . Tho truncation error as evalua ted with Equation

(5.14) and the solution in the non-oscilla tory region away fr om the leading

edge point is less than 7%. With both the roun d-off error and the error
) 

.
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due to the stead y state criterion both less than 1% , it is estimated that

th. absolute upper bound of the error in the compute d solution, away from

the i~~~diate vicini ty of the leading edge and the out flow boundary , is

16%. The scatter of experimental data is more than 50%.

Comparison of the computed results with a collection of experi mental

data , not pre cisely corresponding but encompassing the case computed, shows

subst an tia l agree ment with the data considered to be most reliable in the

different regions and for different quantities . This comparison is cer-

tainly not the best and the ’most definitive, but is probab ly the best avai l-

able and possibly the best one may hope to have in the not too distant

future. This is in view of the di ffi culty in reproducing the experimental

envi ron ments and of the cost involve d in such experi ments. Th13 study

leads to a few physically meaningful conclusions which was not possible

othe rwise. They are

(1) A continuum formulation with appropriate slip condition

is physically plaus ible and can indeed be useful for prediction

purposes probably more reliable than experimen ts .

(2) The surface conditions based on totally diffused reflec-

tion and zero recovery of mean kinetic energ y is the only correct

one that can provide the low surface pressure in the range of

the available experimental data.

(3) The computational method with a reasonable accurac y can

be useful in fluid dynamics research and can help to. resolve diffi-

cult fundamental problems. It is not simply a tool for carrying

out repetitive routine numeri cal work in engineering development.

_ _-—  
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There are important omissions, in the above review , of many interes-

ting and significant results in the development of computational methods

relevant to aerospace applications. They are omitted here to facilitate

the presentation of the major theme end hopefully with as little digres-

sion as possible. While computational stability remains a problem, it

can generally be overcome with some hard work . It shoul d not bs ~eraitted

to dra w at tention away from the need of reasonably accur ate compute d

results. Stable end smooth computational results are encouraging but can

be very deceiving. From thó application point of view, the qu~sticn of

accur acy is crucial. Accordingly, the apprcach dercribed above to secure

“accurat3” formulation is of ftrtda~ rntnl importance, crude as it is K~~
such crude criteria may be used and incorporated are desmonstrated in th is

chapter. Much development in this di rection is needed. Some fundamental

aspects should be mderstoo~1 a~d practical methods developed to deal with

the various situat ions . Such problems will not fade away because of the

dramatic advance in computer capabilities. Indeed, there are serious

problems that will be encountered in the effi cient use of the fourth gen-

eration computers if any mean ingful speed advantages are to be reaped.

Therefore, a few words on the prospects of the coming fourth generation

computer will serve to brin3 to conclusion the pres ent review.

~~~i~~~~~~~~_~ ______ I:: _
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6.3 Future Prospects with th~ Fourth Generation Computers

It has been a constant allusion that faster and bigger computers

will provide the solution to many di fficulties associated with the numer-

ical integration of partial di fferential equations . Such larger and

faster computers are neede d but they do not provide the brutal force to

resolve all the computational difficulties without conscientious efforts .

Certain aspects of the problems must be understood as to their f~s~ds-

rentals before being satisfactorily dealt with , such as the questions of

stability and accur acy. Mo~eover , the development of the computer hard-

ware has reached the point through miniaturization the order of magnitude

improveme nt in the speed of information processing cannot be expected as

was in the past. The fourth generation computers promise to bri ng about

large improvement in speed through “Paral1elism~’ which is very much do-

pendant on the sophis tication of the software and on the nature of speci-

fi c problems to be solved. They bring complicated problems to the users

as well as to the r~anufact urer of the machines .

“Parallelism ” is effecte d pr imarily in two di fferent ways . Burrough

Company ’s I LLIAC IV speeds up the arithematic process by using 64 ar ithe-

matic units, receiving the sa~~ instruction from a ccaT~on coimsand module

to process simultaneously 64 sets of raw data. Thus ari the matic results

can be “effectively” obtained 64 times faster. This is often referred

to as a “single Instructio n Multiple Processor” machine (SIMP) . Contro l

Data Corporation’s STAR (the STring AMy processor) employs the assethly

line or “pipe lino” technique in which a string of data is “continuously”

fed into the “pipe line ” to be processed by a standing instruction . In

this manner, the arithematic unit does not become idle when the instr uc-

-
- 

ticns are being fetched , decoded , and insta lled in place to direct the
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I
computation and when the newly computed data is being sent out of the

arithe matic unit or when the raw data is being brought into the arithe- 
- 

-

antic unit . This is often referred to as the pipe-line machine . Both

the ILLIAC IV and the STAR machines possess the virtual memory capacity,

i.e., the machine will manage auto matically th. data stored in external

memory units for extending the storage capac ity of the machine . Texas

Instr~aent Corporation ’s ASC machine (Advanced Science Computer) incor-

porates both the multi-processor and the pipe-line concept but possesses

no virtual memory capabilit3~. All these machines are about to be (or

already) delivere d by the various manufacturers and are to become oper-

ational shortly.

ILL,IAC IV is mos t effi cient when the 64 arithomatic processors can

be fully utilized. Any vacant processors are simply idling, doing no

useful work , when the operation is performed on less than 64 sets of

data. Thus the demonstration of the speed of ILLIAC IV vs currently

ivailable computers is often in te rms of the inversion of a 64 x 64

matrix. STAR is rest efficient whoa a large ni~~ er of raw data (the

long string of data) is to be processed through the seas operation so

that the “filling tine” of the pipe becomes negligib le end the machine

will provide a 64 time increase of the effective speed since each word

in the STAR contains 64 bits of bina ry information . The ASC machine Po-

ssesses inter medi ate behavior. Each manufacturer has developed powerful

and intricate softw ares to implement and enhance the advantages of the

hardware. But all of them are sièject to the inherent limitations of

being a SIMP or a pipe-line machine . 

. - - - -— —
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For any one of these machines , a huge amount of data must be stored,

arr anged , and retrieved from storage facilities . They rus t be done effi c-

iently , comaensurate with the processing speed of th. machine .. Assume

that such can be done for the data in core memory, directly accessible to

the central processing unit (CPU) , it cannot be done for the data stored

in external memories . The speed of a search operation and of a data tr ans-

mission through the interface to the CPU is orders of magnitude slower than

the ar ithematic speed of the machine. If the CPU asks for data in the ex-

ternal stora ges too frequen~1y, the CPU would be doing little useful com-

putation but transmitting the data in and out of the external memory units

under its virtual memory opera tion . If the user should pre fer to deprive

the machine of its virtual memory capability , then the user-programmer

must assume the responsibility of managing the data acros s the interface.

There is an alternative solution of this problem by expanding the core

memory of the CPU of the computer to match its processing speed. This is

unfortunately a very expensive proposition . There are also other problems

of dat a mana gement in the CPU , probably not so serious as the one Just

mentioned. They ar e more intimately related to the specifi c characteris-

tics (hardware and software) of each computer. These are th . problems —

which the user cannot help very much in its eventual solution . On the

othe r hand , these machines pres ent problems to the users , the solutions

of which the manufacturer of the machines cannot help.

Currentl y avai lable computers are serial machines that process and

advance the data at one point after another. Simult aneous solution of

unknowns at many points , as is required by implicit algor ithms is handled

through special pro cedures equi valent to matri x inve rs ion . If a program

designed for the serial machine should be run on the parallel computer s, 

—~~~~~~~- - - - - - .~~~-~~~~~~ - -~~~~~-~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~
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no speed advantage will result. (Indeed there will be some loss.) The

64 parallel processors of ILL IAC IV will only h ave one processor doing

useful work . The STring-ARray processor of STAR will operate in its

scalar mode (vers us the “vector mode” for strin g array processing) .

There is not , and will not be , a software that will translate an existing

serial progra m into a re asonably effi cient “parallel progr am” for a

specifi c parallel machine. Such a tr anslation is not a matter of trans-

lating one language into another. It is a matter of changing the logic

of solving a problem. It asks essentially for a new formulation for a

specifi c problem to exp]bi t the speed r4vantage offered by a specifi c

machine. The user is asked to start anew , for each problem and for a

specifi c computer and to pay considerable attenti on not only to the formu-

lation of a problem for solution but also to the stor age of the data in

the external memory to match the deman d of the data according to the formu-

lation of the problem. -

In writing such a program for use with a specifi c parallel computer ,

it is not a simple matter to take advantage of a successful serial program

used with the current serial machines . It may indeed be doubtful , if

there may be any advantage under special circumstances. Without further

elaboration , it ray be noted, even for simple prob lema, that:

1. An effi cient serial algorithm need not lead to an effici-

ient parallel algorith, while an ine ffi cient serial algori th m

may lead to an efficient parallel algorith m.

2. A serial algorithm that is apparently serial and was

constructed for use with a serial computer ray possess a great

deal of hidden parallelism which may be exploited to sui t the

parti cular mode of operati on of a sp.cifi c paral lel computer.

-~~~~~ -~- -—~~~~-~ —-~~ --  --~~~~ -~~~ - -~~ - -~~--~-~~-,
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3. Parallel program may beh ave quite di fferently in the

di fference solution of a parti al di ffe rential equation than

the corresponding serial program . The behavior refers to the

stability of the computation, the rate of convergence to the

desired solution , and the accuracy of the solution .

The last one is parti cularly import ant. It asks the user to gain

as much as possible the understanding of the vario us fundamental problems

of difference methods such u stab ility and accuracy. With a better

understanding, it may be ko~efu1 that the years of tedious and painful

lear ning process throu~)t trial and error in davelopin.g the difference

techniqucs of the serial madtines may not be repeated or at leas t ray be

greatly reduced.

For many important practical problems the solution of the Navier-

Stokes equations in three spatial dimensions will be required. Even for

the steady state solution of such problems , the computation for a reas on-

ab ly accurate solution will need the speed and storage capacity prothsed

by these parallel computers . The complicate d boundary conditions do not

lend the Rselves to effi cient parallel treat ments and interfere with the

efficient organizati on for the parallel computations of the fluid flow

prab lems. This is in addition to th. fundamental diffi culties noted

abov.. It is audi desired that what has been learned from the serial

machines may benefit the develop nt of computational programs that will

reap the pro mised speed advantage of the parallel computer. For this

purpose, it is especially important to gain some fund amental understanding

of such complicate d computational di ffi culties speci al to flui d dynamics.

~~~~~~~~~~~~~~~~
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Such understc2iding cannot be expected from computer scienti3ts who have

their full share of difficulties associated with the operation of the

parallel computers in general. Those wishing to solve the complicated

flow proble ms with the Navior-Stokes equations must learn how to resolve

such difficulties for the mselves. The task ahead is formi dable . The

potential reward is also i e n se.

I- -- 
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Background matei ials in Mathematics and Physics in Oiapters I - 4

dre contained in the above general texts and others ; and they are not

re feren ced specifically. The pre sent review is to put forth and to
- 

- illust rate , with simple exczplos, some physical perspective of these

mathematical results. The following are the specific references rele-

vant to these physical discussions in the order they appear in the manu-

script .
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