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A CRITICAL REVIEW OF THE NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS
by
S8in-I Cheng

Princeton University
Department of Asrospace snd Mechznical Sciences

I. INTRODUCTION

This srticle concems the various practical problems of using high
speed electronic computers to cbtain approximate solutions of various
fluid fiow probless, no.t with the mathematical techniques of solving
the Navier-Stokes equations through difference approximations in gener-
glity. Tha boundary coaditicns sre as important as the partial differ-
ential equations in the mathematical formulation defining a given physi-
cel problem. There are complicated practical problems of discretizing
the differential formulation (of both the differential equations end
the boundary conditions) into sppropriate diffsrence formulation for its
numerical solution. There are quite a few unusual aspects in such at-
tempts.

Fluid dynemicists usually ignore the quostion of conyvergencs in the
asymptotic differential spproximations through perturbation arguments.

They often consider the computational solution of the resulting system

of ordinary differential equations, as routine, even though it may be
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very tedious, and often iil posed especially for the multi-cigen-value
problems. Under difficult circumstances, heurisitc 1ncal treatments
ere often introduced to remedy the situation, or a slightly different
original epproach will be employed. Such 2 hit and miss approach has
been carried over to the direct computational soluticn of the partial
differential equations system of fluid dynamics. They lead to wmuch
pore disappointment and often times with more serious consequences.
While it may not be crucial to apprsciate the mathematical details,
it is important to be aware of the irplicatiocns of scme findamental
mathcmaticel results concerning the differcnce approxinaticns of a
partizl differential oquation. Accordingly, a brief review of these
mathematical aspects will be outlincd prior to the discussicn of the
practical art of numerically integrating the partial differential
equations system of fluid dymamics.

Within the continuum description, the fluid will be considered to

be hoxogoneous and to possess two independent thermodynamic, or state




variables, i.e., the density p and the internal energy e per unit mass.
There is an algebraic equation cf state, relating the thermodynamic
pressure p to its density p ead internal energy e as p = p(p,e). Let

u, be the velocity vector of a fluid clemsnt with i = 1,2 and 3 in a
thres-dimensiongl space X;. W, p, and e are the five dependent variables
and will be considered as functions of X; and t. The Eulerian descrip-
tion of the change of these dependent variables, is the set of five
psrtial differential equations, e:pressing the conservation of mass

momenitum and energy written here in divergence form as:

P, T:; [puj] -0 (1.1)
I(py;)

_.5..1. .2_;. pr,i ! + pGij Tij] =0 (1.2)
ﬂ?} . Fi? [p“j (etu,u;/2) « puj—qj-uirij] =0 (1.3)

When the surface stress T ij is related linearly to the strzin rate as

ou cu du
= ufg—i- ﬁ%) + (x - }'U) 5‘?’ (1.4)

and when the heat transfer vector qj is linearly related to the temper-

ature gradient sas

de i)
qj--k-,a—z;---}rus-x—j— (1.5)

ths system of eyuations(1.1-1.3)will be refsrred to as the Navier-Stokes
equations for a compressivle fluid. The Prandtl nuzSer Pr and the specific
heat ratio y are properties of the fluid and are both of 0(1). The shear
viscosity coefficient p is assumed to be a known algebraic function of

temperaturo (or internal energy). The bulk viscosity coefficient is
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often taken as zero or otherwise absorbed in u. In dirmensionless form
& Reynolds number may be defined in terms of some characteristic length é
l‘o and velocity Uo as Reo = poUOLO/uo vhere subscript o indicates that :
the quantity is to be evaluated at some reference state. For most fluid
dynamics applications, the Reynolds number is very large.
The divergence form of the Navier-Stokes equations (1.1)-(1.3) may 1
be written as
ov ey e -
’d-t.‘ K;F\I. EW) 0 (1-6)

posed as an initial value problem for the vecter unknowa v, having the
five scalar components p, pu,, and e. F is the flux of v, given by the
nonliresr quontities in the squaxe brackats cf Equations (1.1)-(1.3).

then physically meaningful, initisl and boundary data are prescribed, Equa-

ticn (1.6) is expected to give a satisfactory descripticn of the temporal
development of the flow field a2t later times. This expectation is mathe-
matically justifigble. The integration of this cquation's system is needed,
for erample, in weather forecasting and in the determination of the temporal
development of blast waves, hurricanes, or turbulent fluctuations, etc.
(where the gravitstional field and the coriolis forces are included where
necsssary). In most aer:ms.uti.cal applicaticns, the steady state (or the
quasi-steady state) problems are more often of primary interest where the

temporal dependence is neglected. Thus Equation (1.6) becomes

) 1

.5_;‘; F(v, e % ) =0 (1.7

which is to be solved as a boundary value probiem. The boundary con-
ditions must, of course, be independent of time. But it is not clear 5‘_

how such boundary conditions should be specified to provide the required
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steady state solution or, indeed, any solution at all. Physical intuition
often provides meaningful guidance but not all what is neecded.

The stress and the heat conduction terms give rise to the second
and thc highest order partial derivatives with coefficients proportional
to Re-l. This steady state Navier-Stokes Equation (1.7) generally assumes
an elliptical behavior. When Re becomes large, the flow field may be
divided into sub-regions. In the rcgion sufficiently far away from any
solid boundary, the inviscid approximation, obtained by dropping terms
in (1.6) or (1.7) containing Re'l, is a vzlid approximation, known as
the Euler's Equation

%z—o 5%; F(v) = 0 (1.82)
LI |
.5.;; ¥) =0 (1.8)

The tiee dependent invisdd Equation (1.8a) remains hyperbolic end is
posed as an initial value problem as is Equation (1.6). The steady state
Equaticon (1.8%), however, can be purely elliptic (subsonic) or purely
hyperbolic (superscnic) or mixed, (i.e., with both elliptic and hyperbolic
regions, the boundary of which will depend on the solution and are not
known before hand such as in the supercritical transcnic inviscid flow
probles).

In the regions near the solid boundary, or near where there is a
large shear stress or heat conduction, some or all of the stress terms
contained in F(v, %gyx:) have to be kept with the other terms despite
ths largs Re, If this viscous region should extend along a coocrdinate
surface (xl,xz) such that the lateral extent (along xs) of this viscous
layer is small compared with its physical extent along the (xl,xzj sur-

face, then Prandtl's boundary layer theory applies. Only the highest




order partial derivative in this lateral direction (az/axg) will sur-
vive the limit of very large Re. This asymptotic limit at large Re gives
the boundary layer equations which are parabolic. However, not all
viscous layers are sheet like and can b2 treated by Prandti's boundary
layer approximation. For such viscous layers like the near wake and the
interaction region between a shock wave incident on a boundary layer, the
full Navier Stokes Equation (L7) will have to be used and the problem be-
comes elliptic at least in a significant portion of the flcw field of
interest.

The change of the mathematical character of the flow field in differ-
ent regions when the heynolds number is largs is both a blessing and a
ceuse of concern. It is a blessing that enabled th; dev2lopment of fluid
dynamics, historically, in the form of the inviscid or perfect fluid
theoxy and of the bou;dary layer theory. But it is also the fundamental
difficulty in the enalysis of the mixed flow regions, characteristic of
most of interaction flow problems. Now there are significant differences
in the numerical integration of the three types of partial differential
equations. The msthod that has been provad to be successful for one type
need not be so for the other. It is therefore important to recognize the
type of the particl differential equation before formulating a difference
approximation for its numerical integration. Clearly then there are
difficultiecs in the numorical integration of mixed problems. Such diffi-
culties are quits different from those encountered in the asymptotic
enalysis of mixed flow problems. In a few examples, they have been

succassfully resolved with appropriate cautionary measures. But there

is no theorem to guarantee its success in other problems.
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It might be asked that if the elliptic steady state Navier-Stokes

i

Equations (1.7) could bz integrated for a given finite but large Re, why
should the difficulties srising from the asymptotic limit of Re + = con-
cerm us. An obvious answer mey be that the asymptotic form of the partial

differential equations system is much simpler. A more fundamental reason

R

is that, at finite but large Reynolds numbers, the asymptotic behaviors

of the flow in different regions bear strongly on the appropristeness of
the difference formulation aud the numericzl integration cf the Navier-
Stokes equations when the resolution (or the number of mashes per linecar
dimension of the field of computation) is s..vrely limited.

For a flow prcbiex in three space dimensions, an average of 30
meshes per linear dimensicn will give rise to 3 x 104 nodel points; and
will need 1.5 x 105 words of storage spaces for the 5 unknowns at each
poir;t. Such storage spaces should preferably be provided in the core
cf the computer unit for ready access. Such a requirement will stretch
the cors remory capacity of most of the currently zvailsble large com-
puters such as CDC 6500 or IEM 360-91. The solution of the full Navier
Stokes Equatiocn (.7) for a well-posed boundary value problem will need
Rours of computation in such machines. The parallel computers in the
stage of edvanced development like ILLIAC IV and the STAR, can nsither
promise much improvement in this regard. To extend the core memory
capacity, & hierarchy of external storages will be provided. Frequent
reforence to such externsl storazes, however, will greatly increcse the
tims required for data managoment because of the slow input-output devices
connected to the central processing wnit. .'l‘his problem is particularly
aggravated in the aforementioned parallel computers where the promised

large gain in arithematic speed can be obtained only for specific modes




of "parallel" or "vector'" computations in which a huge amount of data
must be properly processed and continuously fed into the arithematic
wmit(s).

The conccpt of paradlel use of an array of mini-computers might
appear to rclieve such a difficulty associated with the specific mode of
high speed arithematic operations. The benefit is likely to be illusory,
however, at least for the present applications. It simply transfers
onto the users the tremendous problem of optimal ccordination of the
operations of the array of mini-computers and the problem of data manage-
ment asong the diversed "intemal" and “extemmal" storage facilities.

The users are ill-equipped with the expertise of the computer scientists
who designed the softwares managing the businesses of the central pvo-
cessing wnit of the lafge computers. The users vwill be left to derive
vhatover speod advantege each individual program may provide. It should
bo remembered that without the ordar(s) of magnituds inciease of the
"ovarall processing speed" of the computer(s), the increase.in the num-
bor of mesh points in a linear dimension for the integration of a prob-
lew cen easily oscalate tho computer processing time from hours to days
aad months. It appears, even projected slightly into the future, that
no more than a couple of hundred mesh points per linear dimension can
possibly be considered in the integration of the system of equations of
fluid dynamics, With such a limitation on the resolution of computational
solutions, the integretion of the full Navier-Stokes equation for the
flow field ovor @ vehicle, for example, (the externzal flow prcblem) seems
futile. The field of computation is much like the test section of a
windtunnel, Without the "full scale" facility, computers, like wind-

tunmnels, should be used at present to study only the components or the

e e ———— e

i




local flow fields. For such purposes, various asymptotic forms of the
Navier Stokes equation's system should be used for different parts of

the flow field. The full Navier-Stokes equation's system will be called
upon only for the study of those flow proLlems that cannot be consistently
treated with the simplified flow equations, including notably those mixed
interaction flow problems. Under the practical limitations of resolution
and of computer time, it is particularly important to delineate the vary-
ing nature of the flow regimes in the different treatments of the Navier-
Stokes equations end to consider the various possibilities of how the
boundary conditicns may be implemented. To quote the 1960 statement of
Forsythe and Wasow: "The numerical solution of partial differential
equations is no easy matter. Almcst every preblem arising out of the
physical sciences requires original thought and modifications of exist-
ing methods”. This statemeat is equally true today, and particularly so

for the type of flow prcblems under consideration here.




I1. FUNDAMENTAL CONCEPTS

Consider now the problem of solving a partial differential equation
subject to a set of initial and boundary data through numerical integration.
A difference formulation is obtained by replacing the differential coeffic-
ients by appropriate difference quotients as an apprcximation to the
differential problem. There will be some "errors" in the spproximate
formulation both in the equation and in the initial and boundary data.

When these "errors" vanish as the mesh sizes At -+ 0 § 4x - 0 in some man-
ner, the difference approximation is said to be "consistent' with the
_differential problem. The solutions of this difference formulation pro-
vide & sequence of approximate solutions, which, in the limit of At,Ax + 0,
is supposed to 'converge" to the solution of the differential problem in
some sense; i.e., the "error'” of the solution, as a measure of the depar-
ture of each member of the sequence of approximate solutions from the solu-
tion of the differeatial problem, tends to '"zero". This convergence is,
however, not guaranteed for a consistent approximate difference formula-

tion. Various aspects will be considered in the following sections.

2.1 WHell-Posed Differential Problem

The differential prcblem should not cnly possess a unique solution,
but also possess '"neighboring solutions'", whether thebpréblem is to be
integrated analytically or numerically. This means that when the initial-
boundary data is slightly perturbed, the differential problem should still
provide a solution, which hopefully, departs from the imperturbed solution
of the problem only slightly. This is primarily a physical requirement

- 10 -
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expcunded by Hadamard if a mathematical problem is to describe a physical
situation appropriately. Mathematically speaking the solution of the
differential problem is said to vary coutinuously with the data; and the
differential problem is said to be "well posed". Among other things, a
given partial differential equation is well posed only when the boundary
conditions are properly specified. For example, the Laplace equation,

in two varisbles x and y,

u 2%y

-5-;1—0 Wllo (2.1)

is well posed when the values of the function u(x,y) is specified on a
closed boundary enclosing the domain of x.y of interest, (Dirichlet Problem).

Now the function
u(x,y) = n"® sin nx cosh ny 2.2)
is an exact solution of the Laplace equation with the initial data

u(x,0) = n~® sin nx

g-‘-;- (x,0) =0

This set of initial data is small everywhere on x with a > 0 and n suffic-

iently large. Now if the Laplace equation is to be sclved when u(x,0) and

-g; (x,0) are specified, then a small perturbation of the initial data can
introducs the perturbaticns of the type (2.2) onto the solutioan of the
problem. This perturbation (2.2) is not small in the immcdiate neighborhood
of y = 0 despite the small error of the initial data ghen n is large and

@ is positive. While the perturbation (2.2) does vanish at y = 0 for any
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value of n including n + =, the value of u(x,y) given by (2.2) at some
small btut finite value of y, becomes infinitely large as n + «, Thus

the Laplace equation is not 'well posed" or '"ill-posed'" when u(x,0) and

-g-;i (x,0) are specified, (Cauchy Prcblem). If we should proceed to inte-
grate this "ill-posed" problem, the perturbed initial data is expected to
contain components like .2, and the numerical solution.will not converge
to the desired solution even if 4x + 0 (i.e., n > ®),

If the gradient of u(x,y) is specified over a closed boundary (Neumann

Problem) or if either the gradient or the value of u(x,y) is specified over

a closed boundary, the problem of solving the Laplace equation is well posed
if some integral conditions are met. Ill-poSed prcblems will result other-
wise, i.e., either vhen the Dirichlet or Neumam conditions are specified
only on an open bowndary, or when the Cauchy condition is used anywhere.
This statement is applicable to elliptical partial differential equations

in general. The parabolic equaticns are well posed under similar conditions
but on)y on an "open" boundary and when integrated in the "positive'" direction.
The hyperbolic problems are well posed only when the Cauchy conditions are
specified on appropriate 'open'" portion of the boundary. It beccmes then
difficult to specify the boundary conditions that will render a2 mixed
differential problem well posed before attempting to formulate a difference
approximation of the problem for numerical integration. From this point of
view, the algebraic complexities of the full Navier-Stokes equations system,
either for the time dependent hyperbolic problem (1.6) or for the stea&y
state elliptical problem (1.7), may well be tolerated to faciﬁitate the

formulation of a well-posed problem.




2.2 Well-Posed Difference Problem

It is not only that the differential problem should be well posed
for a specific or a selected class of initial data, but also that the
difference problem should be well pesed and, for a more general class of
initial data, to provide a convergent numerical solution. This is because
the perturbations implicit in the numerical solution of the approximate
difference formulation need not fall within the class of the initial data

for which the differential problem is well posed. The fumcticn
u(x,t) = exp [ia(x + t)] 2.2

satisfies the first order hyperbolic equatica

gai-u-%(-u=0 (2.4)

with the initial value

u(x,0) - exp(iax).

The corplex notation with i =V-1 is used here for simplicity, to mean

that both the real and the imaginary parts of the expressions should be
valid simultaneously. A wide class of function u(x,0) can be formed by
superposing various trigonometric initial data corresponding to various
choices of the values of the constant a. Each component can possess an
arbitrarily assigned amplitude. By summing up the component solutions of
diffsrent a's, the solution of the prcblem with the generalized initial
data is obtained. Any numbers of thc componcnt solutions can be perturbed
with a correspondingly small perturbation oa the solution. The differential

problem is thus well posed.

i bl 5 b i i

iaaiu
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Suppose now the forward time centered space difference algorithm is 1
used to provide a difference approximation to (2.4) as:
ld @, !
J b N j-1 ',
At 2Ax @.5) l
U? = exp (icx)
" where U’; = U(jAx,nAt).
An exact soiution of the difference problem (2.5) is ]
1
U} = UGAx,nae) = (1 + 4 3% sin aAx)" exp(iox) (2.6)
where n = t/At. In the limit of At ~ 0 § Ax - 0, the difference solution
U';, given as (2.6), converges uniformly to the solution u(x,t), given
as (2.3), for the differential problem (2.4). The same holds
true for all the components and for their sum with a generalized initial
data. MNow when the difference problem (2.5) is computed for any small
At and Ax, the computation is always unstzble (as is well known). It is
:
sppareat that some c:npcnents of the perturbations introduced by the
computation of the difference form (2.5) cannot be represented by the
trigonometric data and grow out of boumds.
The Euler's equation (1.8a) for inviscid gas dynamics is easily
cast into Cauchy-Kowaleski type quasi-linear hyperbolic equations system |
9 9
5 ¢ A 5;’—j- 0, 2.7 '
where A(u) = g—g . If the initial data of u(x,t = 0) = £f(x) and A(u) are ’

analytic, then the solution u(x,t) for all x and t is analytic. The

requirement of the analyticity of the initial data might not appear to




to be very restrictive in view of the Weierstrass approximation theorem.

True that any continuous function within a clesed interval can be approxi-

mated arbitrarily closely by enzlytic functions, including polynomials
and sinusoidal functions. But arbitrarily close approximaticn of the
initial data does not promise the arbitrarily close approximation of
the solution. The two examples (2.1) and (2.5) given above illustrate
this point both for the differential and the difference equationms. i
Equation (1.8a) or (2.7) for_inviscid gas dynamics is a well-posed

problem for a fairly broad class of initial data. Even if it is presumed

that a consistent difference gpproximaticn possesses a solution that con-
vergss wmiformly to the soluticns of the differential problem, stable
computation is not guaranteed. The instability of the computaticn is
attributed to the fact that the perturbations on the initial data intro-
duced by the computational procedure is beyond the class of perturbations
expressible in terms of the piecewise enalytic data, For a difference
problea to be well posed, its solution must be continuous with a much
wider class of perturbations on the initial data. This is the crux of
the concept of computational stability.

Computational stability in general calls for the boundedness of all
the perturbations in the computed solution. Then when the magnitudes of
the perturbations in the initial data are made arbitrarily small in the 1
limit of vanishingly sm2ll mesh sizes, the resulting perturbations in

the computed solution will likewise vanish. The computed neighboring

solutions based on a consistent difference formulation will then converge

to the solution of the differential problem; i.e., stability and consistency
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means convergence. This is the essence of the equivalence theorem of
Lax. The success in obtaining a convergent approximate solution through
the computation based on a given difference formulation therefore lies in:
(i) the ccnsistency of the difference formulation with the
well-posed differential problem,
(ii) the stability of the difference formulation.

Here, the difference focrmulation means collectively all the difference
relations connecting the values of functions at different time levels and
at all the mesh points in the interior of and on the boundary of the

field of computation.

2.3 Computational Stability

Corputational stability is a characteristic of a set of difference

equations, not of a difference algorithm how a differential coefficient in
the differcntial equation is to be replaced by a difference quctient.

It is incorrect to refer to an algorithm as stable or unstable. The same
algorithm when applied to different differential equations can lead to j
different difference equations with entirely different stability character-
istics. Thus, the forward time and centered space difference algorithm
when epplied to the simple wave equation (2.4) leads to an always unstable
difference equation (2.5). When the same algorithm is applied to the

heat diffusion equation, the resulting difference equation is stable if

At .1  some simple examples are given in Tables I and II.
S= Kx—ri 3 mp mp g

Slightly different algorithms, applied to the same differential equa- .

tion may yield differcnce equations with quite different stability be-
havior. For the simple wave equation (2.4), the forward time and the

backward space difference algorithm will yield an always unstable difference
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equations

+1
i

At =€

%,
o =0 (2.8)

The forward time and the forward spatial difference algorithm will pro-

vide the difference equation

ot AN SN
_i_l.t._i-c_J_*im_J_.o 2.9)

that will be stoble if C At/Ax < 1. And, as mentioned previously, the

forward time end centered space differencé algorithm, Equation (2.5), is
always unstable. The choice of difference algorithm for discretization to
obtain a stable difference equation is not trivial.

For a slightly more complicated equation, the situation is considerably

more complex. A partial differential equation of higher order may be

written as an equivalent system of lower order partial differential equa-
tions. (Contrary to the situation of higher order ordinary differential
equations, this is not generally true for partial differential equations).
A partial differential equation representing a physical principle may be

written in different but equivalent forms in terms of different subsidiary

variables. When the same difference algorithm is applied to discretize

these equivalent differential forms, the resulting difference equations
are not equivaient and may possess widely different stability behavior in

computation. Consider the simplest case of the second order wave equation

g{-?-- c %;i (2.10)

which is equivalent differentially to a system of two first order wave

PURNENSUSS VP e

equations. We may write the system in terms of different variables as:
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When forward time and centered space difference algorithm is used, the
following difference equations system results
0m-l - "
_J__A_t_J_ - v'j'
(2.12)
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The system (2.12) is always unstable for any choices of At and Ax (easily
verified by v. Neumann Analysis) while the system (2.13) is stable if
C At/Ax < 1. Note also that the similar difference equation (2.5) for the
first order wave equation (2.4) is always unstsble. Thus, it is not a
matter of trivial consequence to rewrite a partial di fferential equaticn
into equivalent but different forms before discretization with the szme
difference algorithm.

The equatiors of fluid dynamics represent the three conservation laws

of mass, momentum and energy. They can be expressed in terms of




T T T i
g

a great number of dependent and independent variables or in terms of
particular combinations of such variables and in different coordinate
systems. The second order equations may be split into first order sys-
tems. (For the moment, the 'questicn of nonlinearity is put aside.) For
all these varied forms of equivalent systems of partial differential equa-
ticns (equivalent in the sense of physics and mathematics) a given differ-
ence algorithm will give correspondingly varied difference forms with
quite different stability and other computational behaviors.

The complete difference formulation of a fluid dynamics problem
will call for the discretization of the boundary condition in addition to
the set of differential equations. The set of difference relations connec-
ting the values of various functions at mesh points neighboring the boun-
dary is generally different from the set cf recursive relations for the
interior points derived from the differential equations., This boundary
set of difference relations may be unstable wvhile the recursive differ-

ence relations for the interior points are stable. Apparently trivial

modifications of the difference formulation in the boundary conditions
thus often lead to substential changes in the stability behavior. *
In view of such a complicated situation and of the frequent experi-

ence cf severe computational instability, it it highly desirable to be

able to analyze the stability behavior of a given difference formulation;
but there is no simple mcans avajlable except the so-calied "energy

analysis", The "energy analysis' attempts to establish a finite bound of
the solution (over the entire net or mesh space) in some suitably-chosen
norm, and the formulation is by definition stasble. When such a bound is
established, the proof of convergence, existence, and uniqueness follows

trivially, For a nontrivial boundary value problem, such a proof is very |




difficult and very tedious cven for a simple equation. Such proofs are

available for the Navier-Stokes equations for an incompressible fluid, but

ki

only for the periodic boundary conditicns, a case which is really not that
much different from a pure initial value problem. With rather complicated
boundary conditions, it is not practical if not impossible, to ascertain
the stability property of a difference formulation of a fluid dynamics

problem via such an approach. At present, it is a practical art to draw

from experiences with similar problems and inferences of modsl analysis
in formulating the recursive difference relations for the interior points.

The formulation of the boundary conditions is approached on an individual

basis and modified where necessary. The entire program is then tested in
actual ccmputer computation for its stability. Considerable work will be
involved before stable computation is achieved. By then quite a few modi-
fications may have been introduced. It is opportune to check if the final
difference formulation is consistent with the differential problem to be
solved both as to the differential equations and the boundary conditions.
It may well be that the physical boundary conditicns that should be
applied are quite different from those consistent with the difference
formulation or that some spurious terms might have been introduced into
the differential equations that fail to vanish in the limit of At,Ax -+ 0.
The v. Neu«wr stability analysis tor the local linearized model will most
likely impose some restrictions on At and Ax for the computation to remain
stable. This restriction should be observed by all the approximate solu-
tions, as successive memoers in the Cauchy sequence, converging toward
the solution of the differential problem. The limit process in the t-x
space is not to be taken in any arbitrary manner. This restriction should

be considered while investigating the consistency of the difference formulation.
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Certain differénce algorithms are often referred to as ''unconditionally
stable", Whaf it means is that when such an algorithm is uszd to discretize
a certain type of differentizl equation for the solution of pure initial
value problems or of periodic boundary value problems, there will not be
restrictive conditions on the choice of At (or of the iterative steps in
the solution of pure boundary vaiue problems) for a given set of Ax, accord-
ing to the v. Neuman stability analysis of the linear equations. When such
an algorithm is used in the nuwerical solution of non-periodic boundary
value problems, even for that particular type of equations, computational
instability will often result especially for cocmplicated boundary condi-
tions and for nom-linear equations. Even if no question of stability
lfise, the apparent advantage of permitting the use of too large time steps
At need not lessen the computing time while inevitably decreases the accur-
acy of the computed solution. Indeed it is advisable under the circum-
stances to verify the consistency conditions for both the equation and the
bowmdary condition.

A case to illustrate the point is the following. The integration of

the simple heat diffusion equation

2
g—‘ti- %;‘;‘- (2.14)

with the formally second order accurate, centered time, centered space

algorithm of DuFort-Frankel:

.1 o) : nel o, ’n-l 2
el B ko R R Wil (Azr't) (2.15)
Zht ax= il " '

is "unconditionally stable'" for any positive values of s = %&; so that

At can be made as large as Ax or larger without leading to computational
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instebility. Most other explicit difference algorithms when applied to 5

| the heat diffusion equation will impose a stability limit like s < 1/2.

The restriction on At is particularly severe at small Ax. Now, in inte-
grating Equaticn (2.15), it is tempting to use as large a At as is practi-
cal, usually comparable to Ax, to save computing time. Indeed, this is
often credited as the "merit" of the Dufort-Frankel scheme. Equation
(2.15) is, however, consistent with the heat diffusion equation only when

%—ti-v 0 as Ax » 0. Ctherwise, it is consistent with the wave equation,

having the wave speed %% .

(At\zazu 2u 2% ‘

YR i) i

With %} = 0(1), the computed solution is expected to display waves compar-

able to the temporal and the spatial variations of the solution, and there-
fore loses much of its value as an approximation' to the solution of the
diffusion problem (2.14). Even with At/Ax? =s < 1/2 for example, the com- A
puted solutions will still display oscillations, albeit at smaller ampli-

tudes. The mean solution (taken over the waves) is reither a meaningful

approximation of the solution to the diffusion problem with Dirichlet

boundary conditions. If a Neuman boundary condition should be imposed,

instability will result. The qualitative statements mentioned here should

not be generalized. The simnle example is given above only to bring home

the point that every individual problem should be carefully examined

according to the fundamental principle. Our current understanding of the

numerical integration of the partial differential equations does not warrant

any simple generalization to be applied to the complicated situations of

fluid dynamics.
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The numerical integration of the Navier-Stokes Equations, as an
outstanding example of complicated partial differential equations system
is expected to encounter quite scricus practical difficulties. Such diffi-
culties fall into three basic categories which may not be all independent:

(i) Computational Stability - All disturbances will remain bounded
in the computation. Otherwise, the value of some quantity will eventually
become so large as to he beyond the capability of any computer and no
results would te obtained. Hence, this is often referred to as computa-

bility.

(ii) Convergence Rate - The solution at sore later time T or at the
asymptotic steady state should be obtained with a reasonable amownt of

computational work, i.e., the number of time or iterative steps in the

solution must not be too large and the computational work for each step
not excessive so that results can be obtained within a reasonable amount
of time ( and hence .cost).

(iii) Accuracy - The solution eventually obtained must in some sense
approximate the physical results in question for it to be useful. The
criterion for its being an adequate approximation is, however, subject
to judgement. The accuracy criterion iﬁposes limitations on the fineness

of the resolution, both temporally and spatially, which in turn sets the

requirement on the convergence rate.

Computational stability is clearly the most pressing problem, since
it is the first one to be encountered in an attempt to get any solution.
Much work has been devoted to this question. As is explained in the pre-
vious chapter, its fundamental nature is essentially understood but there

are quite a few subtle aspects in its implementation even for the simple

- 25 -
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examples. The practical question of achieving a stable computation for

E the complicated system of Navier-Stokes Equations is expected to be

; formidable. The various heuristic approaches that promise to guide the
formulation of a stable difference problem will be reviewed in the follow-
ing chapter. Generally speaking, with some hard work, stzble computation

can usuallly be achieved as may be verified in actual computation. It

is important, however, at this juncture to bear in mind that the convergence

rate and the accuracy of the formulation should not be seriously compromised

in an all-out-effort to achieve stzbility of the computation. The objec-

tive of the computation is to obtain valid approximations to a given

physical problem. In the following review, it is therefore intendesd to
bring out primarily the mathematical assumptions and their physical impli-
cations of various approaches when they are applied to the solution of

different types of practical problems.

3.1 v. Neumann Stability Analysis

A vector unknown function U(t,xj) of dimension p is to be calculated

over mesh spacings 4x;, Ax,, 8x, for successive increments of At from the

initial values of U(t=0,xj) based on a system of linear difference equa-
tions.

The general form of the linear difference relation may be that some
lincar combinations of the values of the function U™l at a group of
neighboring mesh points are given by some cther linear combinaticn of "

gk evaluated at a single i

at various neighboring points. If only the U
mesh point is involved in the difference equations, the unknown values of
Un’l at any given mesh point can be determined without reference to the

advanced values of u™?! at other mesh points. Such difference equations i
1

are explicit. If the advanced values of U™’ at more than one mesh point
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are involved, a set‘of recursive difference relations written for all a
the mesh points would have to be solved simultaneously so that the ad-

vanced values of all the mesh points in the entire field of computation
will be obtairned at thc same time. Such difference equations are implicit. |
Somctimes it is preferred to solve simultaneously for the advanced values
at special groups of mesh points in succession, such as by rows, by
columns, or by diagonals, by blocks or by bands. Such difference equa-
tions are partially implicit and partially explicit by nature. The organi-
zations of the special group may change from one to the next, and such
different groups are often applied in alternatec sequence or in some special
orders. They are then referred to as alternating direction methods. The
specific details of the difference algorithms that may be employed to

represent a differential problem is indeed very numerous. ]

If all the coefficients of the difference equations are constaent, and
if the system of equations are to be solved under periodic boundary con-
ditions (or under the presumption that the boundary is so far away as to
exert no influnece on the solution, i.e., the pure initial value problems),
the solution of the system of equations can be extended periodically

beyond the field of computation with both U" and Uml represented by

Fourier series. The linearity of the difference equations system permits
the treatment of each Fourier component separately. Thus by substituting
U by V(kj) exp {iijj} into the system of difference equations and can-

celling the common factor in each equation, an equaticn

+1 n
ulv" (k;) = HV (kj) (3.1




results. Here i is the complex number to represent the sinusoidal func-
tions with wave numbers kl’ kz, k3 in the X1s Xy Xg directions respec-

tively. V(k,) is the amplitude of the particular wave component under

consideratio:. Each of the Fourier components may be considered either
as a part of the proper solution U or as a small perturbation (or error)
superposed on the solution U. H, and H  are the matrix operators de-

pending on the constant coefficients of the difference equations and of

At and ij. On the assumption that Hl can be inverted, then Equation (3.1)

becomes

v“”(kj) . G(At,ij,kj)Vn(kj) (3.2)

where

G(at,ax,k,) = (ul)'luo

Equation (3.2) tells the evolution of each Fourier component either as a

j)
is called the amplification matrix of the system of difference equations.

part of the solution or as a perturbing error. Accordingly G(At,ij,k

‘The condition that the solution U should be uniformly bounded requires
each and every component to be so bounded. Since the norm of

V*Il < IGI*-|Iv®|] , it is necessary and sufficient that ||G|I' be so bounded
for all wave components and for all n = T/At where T is the time period
for which U is to be calculated with some choice of small but positive At.
Now fG|P> R"(At,AxJ., kj) where R is the spectral radius of G, i.e., the
largest eigenvalue of G. Hence for such initial periodic boundary value
problems, the v. Neumann's condition follows that all the eigenvalues of
the amplification matrix G be < 1+0(At). It is a necessary condition

for computational stability. The eigenvalues of the amplification matrix

are often more conveniently obtained by direct substitution of u'"l = "

bl il 0t
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into the difference equation to obtain the determinant which vanishes

when A takes up the eigenvalues. The v.Neumam condition becomes sufficient
for the stability of the stated problem when the matrix G is normal. Both
this sufficiency aspect and the additional term O(At) are without much
practical significance for the present consideration as will shortly be-
come clear. The important points to recognize from the above are the
physical implications of the various conditions under which the v.Newrann

stability analysis is formulated.

3.2 Local Linearization

The spplication cf the v.Neumann analysis for the stability of the
numerical integration of a system of nonlinear partial differential equa-
tions such as (1.7) calls for quite a few important additional approximations:

(i) The nonlinear difference (or differential) equation is linearized
by considering the solution as the sum of a small perturbation (or variation)
superposed over the local solution of the problem. By substituting the

perturbed solution into the difference equation and keeping only the terms

‘involving first power of the perturbation, the result is the equation of

the first variation with coefficients depending on the solution of the
differential problem, such coefficients will vary with x and t.

(ii) The coefficients, will be assumed to be slowly varying so that
these coefficients can be evaluated by the constant local values at
various mesh points. The system of equations of the first variation then
becomes linear and with constant coefficients for the éirst variation. It
is supposed to apply locally at each mesh point. The coefficients (and
hence the difference relations) vary from mesh point to mesh point.

(iii) The stability behavior of the computation at each mesh point

is independent of its neighbors and can be considered as the stability
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problem very far away from the boundary (it cannot be periodic). Thus
the v.Neumann stability analysis may be applied locally to find the local
stability limit on At.

(iv) The local stebility limit is determined at every mesh point
in the interior with the local computed value U™(x) rather than the genuine
solution u(x,nAt). The most reétrictive of the local stability limits
over all the interior points will then be taken as the stability limit on
At for the integraticn of the difference problem.

Such a local linear stability analysis to be applied to fluid dynanm-
ics problems is ptobably what led v.Neumann to develop the Fourier method
for the constant coefficient linear difference equations. This method is
still the most valuable practical tool. It should be noted that slight
difference in the linearization prccedure can lead to slightly different
linearized equations of the first variation. They will give slightly

different local linearized stability criteria. Consider the following

exampld:
du _ 9? S
5?' X (u) (3-3‘)
-ty (3.3)

vith the initial condition

“o = u(x,t=0) = ?[v(xo-x)]

and the boundary conditions

u(o,t) = V[v(vt+x°)]

u(L,t) = ¥[v(vt-L+x )]




The following is a'solution representing a running wave with constant

wave velocity v

u(x,t) = ‘?[v(vt—x-rxo)]

wheve the function Y is given implicitly as the inverse of

5 4 20 3 2 2 3
7 (u-uo) i 3 uo(u-uo) + 15 u, (u-uo) + 20 % (u-uo)

4
+ 5 u, bt(u-uo) = v(vt-x+x°)

It is shown in Fig. 1 with a relatively sharp front ard approximately a
quartic curve far downstreams. It may be interesting to note that the
Equation (3.3) stands as a heat diffusion equation with variable diffus-

ivity Su“. rather than an equztion describing the steady propagation of

a nondecaying wave.

55,

(3.4)

(3.5)

Let the Equation (3.3) be discretized with forward time and centered

space difference algoritha with the spatial derivative evaluzted in part

6 at the advanced time stcp and the other part (1-8) at the original time

stw.

Gt - o] = 35 e - a-arstnR

J j

vwhere the second order spatial difference opsrator

2 n n
(65021 = ()j

The paramcter 8 can be chosen at convenience.

n n
'2( )j* ()j"l

tion. The following linearized approximation

cus)g“-(us)g - s(u4); Ui

This is a nonlinear

(3.6)

(3.7)

e i aakile
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gives the equation of first variation of (3.6) as
+1 S6At 4.n +1
(Ulj‘ - Ul;) g 'Tx'z- [(U )j"l(u'j"l - u,j"l)
o n n+l_ 4.n < I
-2 W - oY @ - )]
- o [(Us)'j‘ﬂ- 20%)] + (us)'j‘_l] (3.8)
Note that the equation is linear in the unknown (l.l‘j"-l- U';) if the values
of the function U at all the spatial mesh points at the time level n are
knowa. Otherwise, the equation would have retained its nonlinear form.
Alternatively, it is also appropriate to linearize in many other ways.
A particularly simple one is to approximate
rady- oy
= 5(04)11 2.0+l 2,.n
j [0l @l ]
and Esz(us)]'j‘ . s(u‘)‘j‘ (szu)’j‘ (3.9)

Then the equation of the first variation of (3.6) becores

+1 At . 4.n +1 +1 +1
W - s o) [l - G - 2 - T - )

- s g5 (0H] [u'j‘,lé 2 + u'j‘_;] (3.10)

This last equatidn is indeed the same as what would result if the effec-
tive diffusivity :-'m4 in Equation (3.3b) should be treated as a constant
before and during discretization.

With a11 U* 5 U':‘. and U" taken to be constant, the v.Neumann
*1’ ) j-1
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stability analysis for Equation (3.8) will require the following absolute

value to be less than unity for all wave number k.,

1 - (1-8)s
1 + @0s

<1 (3.11)

where ¢ is the complex expressicn

s = ."»(U‘)',l %‘,t?z' [2 - (a+B) cos kAx - i(a-B) sin kAx]

with o= /0"

4
and 8 = (U?,I/U?)

The restriction on the value of ﬁ—z can be computed for all k from

(3.11) for different values of a amd B at every interior mesh point. This
is a very tedious process. The v.Neunann stsbility analysis for Equatica
(3.10) leads to the same relstion (3.11) but with a=B=1. This provides

#n sxplicit limit on 5y that when 6 < 1/2,

swh - B < e (3.12)

and there will be no limit on for if 0 > 1/2. This is the wel1-known
results for the simple heat equation.

To test the usefulness of the local linesr stability criterion,
computations were carried out at 0 = 0.4 and %—}2- = 0.001 with Equation
(3.8). The parameters v and U, were chosen as v%-;i = 0.075 and su: %%- = 0,005,
The last value is much less than 2.50 as is required by Equation (3.12) for
local computational stability. As the computation preceeds, the values
of U increases with t over the entire field of computation. According

to the local stability criterion (3.12), we would expect instability to

appear in the form of rapidly increasing amplitudes of oscili-rions when
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and where the values of (u'j‘ Jy) exceed (s00) /4
(o)

happened as is illustrated in Fig. (1 ). The computed points lie very

~ 4.7, This was what

close to the analytical solution except at the foot of each wave front

where the solution undergoes a rapid change and in the region where
u'j‘/uo > 5 and where the computed solution oscillates, signalling the on-
set of computational instability.

It is remarkaeble that the simple local criterion deduced for the ;

difference Equation (3.10) provides highly satisfactory guidance for the
integration of Equation (3.8) although a and B generally differ fronm
wnity. Where the stability boundary of Equation(3.8) with o § 8 # 1 lies
within the stable regicn of Equation (3.10), the local linear stability
limit need not even be "nscessary" at such interior points. Such regions
are likely to be small, hcwever, if the model equation (3.10) in the
tbove example is appropriately chosen. It is clearly not sufficient

since the v.Neumann stability condition itself is not and since the in-

fluence of the boundary conditions on computational stability is yet to
be investigated. Nevertheless, the local linear stability analysis does E
appear to provide useful guidance in practical applications especially 33

if the influence of the boundary conditions can be separately investigated

and if the linearized rmodel for the difference relations at the interior
points are properly selected. Such fortunate circumstances are, however,

not to be presumed in cowplicated equations systems.

3.3 Application to Navier Stokes Equations |

The Navier-Stokes equations system is quasi-linear due to, (i) the

i e el B

variable convective velocity, (ii) the variable density and energy and

hence the variable diffusivity as illustrated in Equation (3.3). It is
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Fig. 1. Runring-wave solutions of the non-linear equation Ju/dt = 92(u®)/dz%. The

curves saow the exact solution, given by equation (8.25) and the dots show the solution of the

difierence equation (8.27) with 6 = 0.4 and with Af and Ax so chosen that vA¢/Ax = 0.075 2nd
Suy*at/(Ax)? = 0.00S. The numbers on the curves are cycle numbers.
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further complicated 'by the small diffusivity or large Reynolds number and
the presence of many such terms especially in multi-dimensi:mal flow prob-
lems. If the sltmdard-procedure of local linearization is followed, the
resulting linearized equations are very long. The v.Neunann stability
anclysis for such equations will inevitably lead to unwieldy algebraic
expressions so that the explicit limit on At at each mesh point can only
be obtained at much more labor than what is requirad in the situation of
Equation (3.11). It is impractical to consider checking the stability

limit at many mesh points even if infrequently. It appears imperative

‘to look for simple but meaningful model equations such as Equation (3.10)

in the previous example, This is considerably complicated by the change
of the asymptotic behavicr of the Navier-Stokes equations system in differ-
ent regions in the field of computation, enumerated in the previcus chapter.
Near the solid boundaries or wherz the viscous effects are important, the
region is locally parabolic or elliptic. Far away from the solid boun-
daries, the direct viscous effect is negligible and the flow region is pri-
marily hyperbolic. It is unfortunate that a difference algorithm, when
spplicd to practical differential equations of different types, will lead
to difference equations with quite different stability behavior.

Tables I andII list a few common difference algorithms when applied
to the simple wave equation and to the simple diffusion equation respec-
tively. An algorithm often yields a stable difference equation for the
diffusion equation such as the forward time-centered space algorithm
(Scheme 1 in Tabie II) while it provides an wnstable difference equation
(Scheme 3 in Table I) from the simple wave equation. Friedrichs modifi-
cation, which renders the wave problem stable (Scheme 4 in Table 1), on

the other hand, leads to an unstable diffusion problem (Scheme 2 in

st il o




Table II). The centered time and centercd space algorithm is another
example which is given in these tables. There are many other examples i
like these. Such schemes are therefore not useful for integrating

Navier-Stockes equations.

There are many other schemes which are stable for both types of
equations but At are subject to different restrictions in different re-
gions, Usually c %} <1 for the wave equation and %%é- < some fractional
constant g for the diffusion equation; such as the forward time, backward
space, Scheme 1 and 2 respectively in the two tables. The condition *
c %& <1 is krown as the Courant-Friedrich-Levy (CFL) condition of zons
of deapendance to be satisfied gemerally for diffsrence forms for wave
oquations.[lllt statcs that the zone of dependence of the difference formu-
lation must include the zone of dependence of the differcntial equation.
Khen such a scheme is used in integrating the Navier-Stokes equaticns,
computational stability might be expected if At is locally chosen to be

(2]

the more restrictive of the diffusion linit and of the wave limit:

2
At < Inf) 8% Ax (3.12)
St bl

where c is related to the local wave speed, Vv is the local kinematic vis-
cosity cosfficient, and y is some constant less than wnity. The precise

values of c and Yy may be determined from the v.Neumann stability analysis

of the linearized Navier-Stokes equations after dropping the viscous
terms or the dynamic terms respectively. The most restrictive of these
loczl limits over all the mesh points may thon be taken as the At for the
next time increment. In actual computations, it is often necessary to
reduce this most restrictive limit on At further by introducing an empir-

ical safety factor which may have to be rather small.
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Some safety factor may have to be needed because of the unknown
effect of the boundary conditions. But actual computation often indi-
cates the instability to be initiated from the interior. Thus, it

| appears to be, at least in part, due to the fact that the pure diffusion

eénd/or the pure wave equation are rather poor models for the interior
points of the linearized Navier-Stokes equations. It is true that in
the linearized form the Navier-Stokes equations may be visualized as
the superposition of a wave and a diffusion equation. The stability

limit is, however, not generally the superposed diffusion and the wave

limit, This is because the determination of the eigen-values of a

linear equation is not a lincar problem, which requires the solution for

the roots of a polynomial equation with constant coefficients. A small
perturbation on a coefficient of the characteristic polynomial often leads
to an inproportionately large change in the largest eigenvalue (or the
spectral radius) depending on the specific difference algorithm.

To illustrate the situation, consider the one-dimensional Burgers'

equation with constant ¢ andv.

2
FreRTY = (3.19

S it - Lo anan b

When ¢ and Vv are taken as the local values at a mesh point, it serves as
a linearized model of the Navier-Stokes equation in one space dimension,
vith the essential characteristics of changing type of the partial differ-
ential equation. If Equation (3.13) is discretized with forward time
backward space difference for the convective term and the centered space

difference for the diffusion term, the v.Neumann stability limit is

At < (c/Ax . 2»/Ax’)" (3.14)




which is almost half of the hyperbolic limit Ax/c or the diffusion limit

Ax?/2v if they are approximately equal. Thus the safety factor to be
epplied to the condition (3.12) should be sbout 1/2 or less for the
stzble computation of the interior points alone.

The situation is even more critical for multidimensional flow prob-

lems, Consider the two different models for 2-D problems

Ju du _ du %u  2%u 1
R TR A ¢ Tl w2
du du _ ,,%u , 3%u
and T ’CTX = \)(-ﬁx + Wy -) (3.15)

with the convective term v %$-in the dynamic terms represented by ¢ %5
and zero respectively. The stability limits for the two cases assuming

Ax = Ay are

At _g% (c/bx + 2v/8x2)"1

and At € (c/bx + 4y/ax2)"] (3.16)

respectively. This means that the safety factor to be applied to con-
dition (3.12) should be Vv1/4 and 1/3 for 2D flow problems and even
smaller for the 3D flow problems. Thus, the stability condition (3.12),
based on superposing the wave end the diffusion parts of the Navier-
Stokes is not very useful although it is simple and convenient.

The local stability condition based on the linearized Burgers'
equation was found to be quite satisfactory for the integration not cnly
of the nonlinear Burgers' equation without asafety factor, but of the
full Navier-Stokes equations.when the boundary conditicns are properly

treated!lehe one-dimensional Burgers' model should be applied locally




to the flow along the streamline through a mesh point. This will yield
stability limits of the form of Equation (3.14) and (3.16) in which c
should be interpreted as the local signal speed [q| ¢ [a|. Here q is
the stream velocity. Both the local spezd of sound a and the kinematic
viscosity coefficient v should be evaluated at the local temperature

or energy. Ax should bz evaluated along the streamline in some manner
and nay well be taken as the smaller of (&x , Ay) for 2-D problems for
example. The different details how these lccal quantities may be approx-
imated by those explicitly calculated at each point, will give large
varieties of expressions for evaluating the local stability limit on At
for a given choice of the difference algorithm for discretization. It
is advisable to choose a simple form convenient for the explicit deter-
mination of the limit cn At at each point, although less accurate.

This calculation is to be carried out at many points and at many time
intervals for an estimate of the most restrictive limit (the smallest
valuz of ) on At for the next time interval. It may also be convenient
to check the local linearized stability limit once every few time steps
rather than at everytime step and to adjust the magnitude of At adopted

in the computaticn for the next few steps accordingly.

3.4 Treatment on the Boundary

When the appropriate local linearized stability limit is obeyed,
computational instability at the interior points can usually be avoided
although oscillations of fairly large but bounded amplitudes are often
present in the calculated results. These oscillations originate from
the boundaries, both interior and exterior and do not represent computa-

tional instability in the sense of boundedness of the solution discussed

e » kit bie bk T

Gt




w M -

previously. Such bounded oscillations are often referred to as the
Nonlinear Instability which is basically a different phenomenon more
directly related to the question of accuracy and can doubtfully be
clarified by the heuristic local linear stability treatmen{4liscussed
in the previous section.

Genuine unstable computations can result when certain boundary
treatment is applied to some difference algorithm. ¥For such cases, the
local linearized anzlysis can often tell the impending computational
instability. Consider the integration of the inviscid gas.dynamic equa-

tion (2.7) with the Leap-Frog scheme, (Scheme 5 in Table I)

+1 -1 At |[,n ;
ug . “? = A 1% [Yerr ug_}_] (3.17)

which is second order accurate in both time and space and is always

stable for any values of At/Ax at all the intefior points. To initiate
the integration, both u; and u} should be available at all j = 0,1,2,...J
and boundary conditions must be provided at both boundaries j = 0 and
j = J. Note that both the initial value U; and the boundary data at j = J
are not specified by the initial data of the differential problem of the
propegation of a small wave in an unbounded flow ficld. These data are
extraneous and are brought about by the use of the higher order accurate
difference algorithm in which a first order differential coefficient is
replaced by a second order difference quotient.

The extraneous initial data U; are usually obtained from U; and the

temporal derivatives through Taylor series about t = 0. The higher order

temporal derivatives are obtained from the initial data U2 in the vicinity




of the point based on the differential relatiun and its time derivatives.
It is not obvious how the extraneous boundary data at j = J should be
defined. One of the natural ways is to extrapolate along x assuming
) - ;
that 3% U is small is
g

= (3.18)

This is not a bad physical approximation. Computationally it leads to the

difference relation
+1 -1 At
Ut U = AL B [U:;_I-Uf;_z] (3.19)

for advancing the mesh value at J-1 immediately preceeding the boundary
point J. If the v.Neumann siability analysis is applied locally to this
difference equation with A .1 tekon as a constant, and U taken as a scalar

unknown, this difference relation (3.19) is locally always unstable with

1
1

v.Neumann anelysis leads to the algebraic relation

the amplification factor |A| = | U’.;: /Ug_1|> L This is because the

A-ge Ay 25 [(-cos kAx) + i sin kax] = -2(f, + if) (3.20)

vhere k is the wave nurber under consideration and Zfr and Zfi are the

real and the imaginary parts of the right hand side. Thus
i . 172
A= -(fr + ifi) - [1 + (fr + ifi) ] (3.21)

For somo choice of k, f; will be zero and the absolute value || will
be greater than wmity regardless of the magnitudes of A er; . Actual
computation confirms the instability that IU"JI diverges as n. If A; | %

should be taken as unity and if the initial data satisfiesﬂ'j‘ = (-l)j’n
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forn = 0 and 1 and all j = 0, 1...J-1, the solution of the difference
equation actually can be siiown to continue as

u;‘ = (-0 I EG e
with F(j +n<J)=o0 and
Fn + J) = (-1)" 120 (3.22)

Higher order accurate extrapolation formulas based on zero higher order
derivatives instead of Equation (3.18) will only change fr and fi and
still lead to computational instability in the same manner.

Careful examination of the local stability analysis will suggest
that stable computation will result if the extraneous boundary value

U:; is obtained as:

Byt e e

N =

i.e., U:;_l in the first order extrapolation formula (3.18) is replaced
by the average of its temporal neighbors. Then the difference relation

on the boumdary is

-
LR = - (3.24)

wherau-:— - 1%3- with a > 0.
| )] | < max (U511, 16,0 (3.25)

and the advanced values u‘}ji

v.Neumann analysis is followed, then

remains bounded. Altematively if the
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l-a 1 2a _-ikAx
Anpe ptys ?
1-a 1 20
and A< lig o7t o
1-a ’
Thus '1"T2'E<N<‘ if a<1
a-1
or -1<|x|<a;1- <1 if o>l

and computational stability can be cxpected.

Thus the local linear stability analysis will help to avoid unfortu-

.

nate choices of the unstzble boundary conditions and scmetimes suggest

|
{
E
!:

appropriate choices to secure stable computation. It must be cautioned

that if the particular choice of the boundary condition fails to represent
the physical situation, the computed stable sclutions need not be a good
spproximation to the solution of the physical problem. It is common that

oscillations of finite amplitudes appear to be generated at the various

boundaries in a computed stable solution and that such oscillations appear
to propagate into the interior of the field of computation, (or away from
the shock wave or other interior boundaries). They represent oscillatory
error compor.ents, superposed on the correct solution of the physical prob-
ilem and are likely introduced by the "errors" in the difference treatments
of such boundaries. Indeed there are also nonoscillatory crrors caused

by the difference treatments on the boundary and such errors may actually
be more serious because of its deceptively smooth appearance in the re-
sults of a stable computaticn. Such errors tend to be overlooked especially
in view of the difficulties in securing a stable computation. An important
aspect of studying the accuracy of the computed results is to recognize if

the various boundary conditions are appropriate and to estimate the associ-

ated errors,
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IV. IMPLICIT COMPUTATION AND RATE OF CONVERGENCE !

Implicit difference algorithms generally lead to stable difference

equations when applied to simple wave and eimple diffusion equations as is

indicated in Tabies I and 1I. The local linear stability analysis for

equation (3.3) illustrates further that stability is "improved" when the
fraction 6 of the spatial derivative evaluated at the advanced time level
(and hence implicit) is increased from zero to 1/2; The system becomes
unconditionally steble when 6 > 1/2, The implicit difference algorithms
are traditionally used in the solution of Laplace or Poisscn equations
without eany problem of computational stabiiity. The implicit difference
algorithm then appears to be the most desirable from the point of view
of avoiding computational stability especially for complicated problems
with mixed behavior. It will be demonstrated that the merit of the
implicit schemes is not really that obvious. There are indeed other
difficulties which may be more serious than computational s:ability;

In implicit difference algorithms, the difference relation at a given
mesh point containg the unknown &dvanced values of quantitios.at it neigh-
boring mesh points. It 1is necessary to trcat the system of difference
rslatione at all the interior mesh points simultaneocusly to solve for all
the unknowns at all the intericr mash points. Thus the difference formu-
laticn based can & totally implicit scheme will require the inversion of
matrices of very large dimensions. This irposes severe requirements on
the memory cepacity end on the arithkmetic speed of the computer. This
algo calls for skills in rendering efficient inversion of the sparse but

large matrices and inevitably through some form of iterative procedures.

o Qi =




The rate of convergence or the number of iterations required to solve the
system of equations to & prescribed .ccﬁracy is of great concern. This is
because the computational effort required to complete a "sweep" over the
£ield of computation (i.e. to advance the values of the functions at all
the mesh points for one time step) is generally much larger for the im-
plicit difference formulation than for the explicit difference formulatiom.
It is hcped, however, thet, in the absence of a stebility limit on At with
the implicit difference formulation, the time steps may be taken so many
timeg larger than the time step allowad by the stability limit of the ex-
plicit formulation as to more thzn compensate for the much larger ccmputa-
tional effort per time step for the implicit formulation. In the following
sections this question will be exemined.

4.1, Simple Time Dependent Preblenm.

The advantage of the implicit formulation is best illuatrated in the
solution of the time dependent heat transfer problems in multispace dimen-

sion or in the solution of Laplace equations for the steady state problem.

'-g-%- = VWu ‘ (4.1)
¥Yor such problems, the systam of simultaneous difference equations to be
solved can be conveniently arranged to be

AU = £ (4.2)
vhere U is the vector unknown repregenting the temperature at all tha N
interior mesh points, arranged in some appropriste order. £ is a known
vector of dimension N and A is an N x N tridiagonal matrix often diagonally.

dominant. The solution of the system (4.2) for the unknown vector U is

T e e

PO
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equivalent to the inversion of the matrix A, giving U as U = A £,

Computationally, a highly efficient method can be used to solve the system
(4.2) with approximately 5N operation counts. (Conventionally, each multi-
plication and division counts a3 one operation while addition, substraction
and other data management operations are neglected). This is to be compared

with N counts for the solution of an explicit system. (The evaluatican of

coefficients is ignoxed here on the presumption that the eame smount of
computational work is needed in both the implicit and the explicit cases).
Thus the computational effort to advance the solution for one time step
with the implicit format is sgbout 5 times as much as that with an explicit
format. As is illustrated in Table 2, most steble explicit schemes will
possess the stability liuzit (sasily verified by v. Neumann analysis) of the
type 8 = —!Ag-'¥ (1/2, 1/4); here 1/4 is for two dimensional problems (zee
equation 3??6 with ¢ = o0.). With good spatial resolution, i.e. a small Ax,
the time step for the explicit scheme will be limited to At 6'5%—632 vhich
is indeed very small. Thus, if computations with the implicit formulation
should be carried out with a time etep larger than —-g;-sz or even taken
as At = Ax, considerable saving in the computational effort results in the
determination of the temperature ffeld U at that later time.

The benefit that results is, however, illusory if the determination
of the solution at gome gpecific later time is required to possess a specific
accuracy. Suppose that all the variables are properly non-dimensionalized

and that it 4s required to achieve an accuracy of 10-2, assumed to be solely

dependent on the truncation error (i.e. all the other errors are suppressed

in the formulation and computation). Then 1f the explicit algorithm 1 in
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tableIl is used, vhich is first order accurate in time and second order
accurate in space (i.e. v, - O(At,sz), the field of computation defined
byx=0toland y= 0 to 1 for a tvo dimensional problem from time t =
to 1 ghould be divided into at least 10 equal parts in both the x and the
y direction, i.e. Ax = Ay = 1/10, preferably say with Ax = Ay = 1/20 to
allow sow” margin of safety. The stability limit will require a At (with

tine non-dimensionalized by the square of cheracteristic length divided

by the diffusivity) as srall as —z— sz - 10-3 if Ax = 1/20 or 1/4 x 10-2

1f Ax = 10-1. The relative magnitudes of At and Ax are such that the local

truncation error e = 0(At ,sz) end hopefully the computed results will

remain conesisteat with the accuracy requirement. (In this case, the

accumulation of the local truncation error will remain of the same order)
If now, the scheme (1) in Tablell is modified so that the gpatial

derivative is replacesd by the implicit difference

s( U';:i ~ 2u‘;"'1 + u’j’g )
for both x and y direction with the same local truncation error e - o(at ,sz).
This scheme (Lazsonen) is unconditionally stable, i.e. At can be.tnken
arbitrarily large compared withAx without suffering computational instability.
However, with At much larger then A:z, the local truncation error is of

0(at) > O(sz). Thus with Ax = 1/20 as was in the explicit caee and if

At is taken as Ax/5, which 1s 16 times larger than the stability limit cf

the explicit scheame, the computational effort willl be only v 1/3 of that

with the explicit scheme. The solution so obtained is; however, less

accurate with e = C(At) and At = _%x_ = 10-2, rarginally acceptable to

the required accuracy 10‘2. allowing no room for the accumulation of the

local truncation errors. Formally, this solution from the implicit scheme




A

should be compared with the solution from the explicit scheme with Ax = 10-1

with e, " O(sz) and sz - 10-2. The computational effort of this explicit

scheme is gcthally only 802 of the implicit scheme with the same local
truncation error. Alternatively if the implicit scheme is to produce a

result with accuracy comparable to the explicit solution computed with

Ax = 1/20 and At = 1/4 x( 2—(1)-— )2- The time step At for the implicit

2
zuz%d—-mthat et-O(At-Ax)o

calculation should be taken at mwost as Ax
Then the couputatio#al effort for the explicit format will ggain be 80%
of that of the implicit format of comparable accuracy.

The ecffectiveness of the implici: algorithm is largely nullified by
the first order temporal accurecy of the differcnce scheme in the above
example. It may be that implicit schemes with second order temporal
accuracy will be more effcctive in reducing the overall computational _
effort, but such higher crder schemes will be cumbersome. From this ‘ 4
point of view alone, the implicit schemes would appear to be certainly ad-

vantegeous in the golution of steady state problems via asymptotic temporal

approsch since the temporal accuracy is of little concern But, as will be

discussed in the paxt section, it 1s not certain if the large temporal steps
is conducive to rapid convergence to the steady state. It should be noted
in the above exarple, that the solution of the implicit formulation calls
only for the inversion of a tridiagonal matrix which cen be implemented E
most efficiently in v SN operations. For fluid dynamics problems, the
matrices resulting from an implicit formulation will be far more complex
and the solution of such matrix equations will be far more time consuming.

It appears prudent not to expect significant savings in the computational

effort by the use of implicit difference algorithms without some detailed

investigation.
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4,2 Iterative Solution of Steady State and Asymptotic Temporal Avproach

Most of the fluid flow problems of practical interest are at steady
state or quasi-steady state in which the temporal variations of the flow
variables are negligible. Discretizaticn of such steady state equations
will generally lead to implicit difference relations in terms of the steady
state values of various physical quantities at all the interior points and
the boundary values. Except for the solution of pot;ntial flow problems
of incompressible fluids, the differential equations will be non-linear
and considerably more coxplicated than the Laplace equation. The re-
sulting implicit difference relaticms will give rise to a rather sperse
matrix A, when written in the format of equation (4.2). The sparse matrix
A will not be tridiagoaal or block-tridisgonal, or other spcial forms convenient
for the solution of the system of equations. In fact the nonlinear terms
will first have to be quasi-linearized so that the coefficients in msatrix
A can be evaluated with some ascaumed approximate values. The systeﬁ of
linear equations will then be golved iteratively until the solution from
(4.2) agrees with the aszumed solution under certain convergence criteria.

th iterate

Let superscript n indicate quantities evaluated with the n
of U and use the system of difference relations (4.2) to calculate the

(n+1fh1terace. Then equation (4.2) becomes

S e
vhich is indeed the same as

A2l oY) - ° - AN




Equation (4.3b) can now be considered as obtained from a time dependent
equation in which terms with spatial derivatives are the same as those in
the stesdy state equation (4.2) but with an added temporal term

+1
1lim n e | v
At + o AtA At

AtA(u) 33‘:

with forward temporel difference quotient replecing %%?—.

The iterative solution of a steady state problem based on an implicit
algorithm then is not substantially different from the solutien of a time

dependent problem, albeit the artificial temporal term may not cozrespond

B o L WU P

to the temporal teras in the time deopeudent form of the Navier~Stokes ;
equations. The physical meaning of the individual fictitiocus tenmperal
terms can be easily identified when the matrix operztor A is written in
expanded form. Thus the iterative index n can be identified with the
temporal index n in the tire dependent formulation although the equivalent
time dependent physical problem may contain artificial sources of mass,

momentum and energy. These artificial sources are small but distributed

over the entire field of computaticn,in the interior as wecll as on the
boundary, and vanish in the‘steady state limit.

In the numerical sclution of the Navier-Stokes equations in multi-
space dimensions, there will be a few thousand mesh points and 4 or 5
wnknown quantities at each a2sh point. The dimension N of the vector

U is ccumonly 0(104) or larger. To solveeguatisn (4.3a) for the succeesive

approximations to the solution of the nonlinear equation (4.2) st each 4

tima or iterative step by the standard Gaussian elimination process,

requiring Vv % N3

imperative to develcp highly efficient iterative methods. Thus in equations

operations per step, is out of the question. It is
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P

| (4.3), the matrix operator A" is split into two parts with ) operating on

Un+1_and (A"-B") operating on U". Thus

‘ 2"+ (AP-B®) P - P (4.40)

or
BP0t - u) = £° - AP0 (4.4b)

where B" may be some ccnveniently invertible matrix so that Un+1 can be
conveniently solved. This uu+1 will replace U” in the next iteration until
finally Un+¥= i according to some steady state criterion. In this manner,
the iterative solution of the quasi-linearized equation (4.3) has incor-
porated tha iterations thst were called for by the quasi-linearizstion of
the nonlinear equaticn,

" If B 1s chosen as the identity matrix I, equation (4.4b) becomes
identical with the differecace eguation obtained from the explicit echeme,
using the forward time difference algorithm and the spatial difference H
elgorithn of the implicit equaticn (4.3a). Thus, like the solution of
time dependent equations with explicit schemes, the iterative solution a
of equazion (4.4Db) ﬁith B = I corresponds to tracing the physical
development of the time dependent flow field from an initial state toward
the gsteady state. The local accumulations of mass, momentum and energy
in the cell around each mesh point are precisely how they would be

expressed in the explicit schepe for the time dependent flows.

The metrix B may be chosen to be diagonal with its diagonal elements

N and b1 =0 for 1 ¢ J. §

11" % 3
Such an iterative process is known as Jacobi iteration. Since bii - ay,

equal to the diagonal elements of A, 1.e. b

o p o TR e e 13

‘ere not identically unity, the temporal terms may be larger (or smaller)
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than the accumulation term in the physical, time dependent flow. The
excess (or deficiency) of that particular quantity U may be attributed to
the presence of a source (or sink) of that quantity at the mesh point under
consideration. These artificial sources (sinks) will tend to zero when
the asyaptotic steady state is approached.

If the matrix B is chosen to be tha main tridiagonal elementsof A, i.e.
b

for [1-3] < 1 and b, = 0 for |1-3] > 1; then the artificial

e 3
temporel terms will contain spatial derivatives. They represent the
doublets and quadruples of the source~gink pairs around the mesh point.

The situation is quite complicated algztraicially and ghyeically, but it

is very natural physically how a steady state may be reached via such

time dependent states provided that all these sources and doublets etc.
properly vanish in the steady state limit. In practice the choice of B is
dictated by the desire to reduce the computational effort in obtaining

the steady solution, irrespective of its physicel correspondence to some
temporal flow field. The purpore here is to show that the asymptotic
temporal approech and the iterative solution of the implicit formuletion

to obtein steady state results are fundamentally similar. The iterative
method does take much larger computational effort per iteretion or per time
step. But it permits the use of a much wider variety of temporal arti-
fices to produce & very repid convergence to the steady state, possibly
with less overall computational effort. It is possible, of course, that
for gome choices of B, there may not be any steady state solutions or

there may be steady state solutions different from what is desired as

the corresponding physical situation may suggest.

el RhR SR L Gl L bl e Lo
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4.3 Iterative Methods

One of the most popular choices of D is the lower triangular matrix

part of A i.e. b, =0 {if k> jJ and b k if k < j. This is the

ik - Sl
Gsusgs-Seidel iteration or succeesive relaxation procedure. The (n+1)th

iterate is given as

3-1 N

o+l 1 n . atl N
. i . ( f; "k %y . T E-j-u %% v ) Chadn)
33

from which the successive scalar compcnents of Un+1 can be explicitly
calculated in the order of increasing j in which the latest available mesh

values are used throughout. This semi-explicit solution of Un+1 can be

given in matrix form aa:

e M7 (- AP (4.5b)

Bere (£7-A"U") is the residue and (Bn)-l is the inveree of the matrix B".

If the vector calculated from equations (4.5) is taken as a provisicnal
soluticn and if the new iterate Un+1 is evaluated as scme weighted zverage
of U® end this provisional value with weights (1-8) and B respectively,
then,

S -1
e 1-8) U0+ BITP + (BY) (£ - A%TD)) (4.6a)

which is the saxe as

el | Y s(n“)"1 (£2-A"0") g (4.6b)

or ="+ &"/8) (")
The B is often called the accelerstion or relaxation parameter, Equation (4.6b)

suggests that B may be interpreted alternatively as a multiplier of the
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residue in equation (4.5) or of the operator B” of the artificial temporal
sources in equation (4.4b). The purpose is to effect a faster convergence
of the iterative sequence by choosing an appropriate value of 8. This
process is referred tc as successive over (or under) relaxation when 8 > 1
(or 8 < 1). For the integration of Laplace equation in a rectangular
domain, the optimal relaxation parameter B* for the fastest convergence
can be evaluated from the mesh spacing and is usually around 1.8 - 1.5.
For more complicated situations, the choice will have to be empirical

and the optimal choice reed not even be an over-relaxation. Unfortunate
choices of B could lead to diverging sequences, even for Laplace

equation (i.e. beyond 2> 8 > 0).

Each Gauss-Seidel iterative step requizes ll2 operations. This is to

be compared with the counts of N3/3 for Gauss elimination solution for the
quasi-linear steady state. The iterative solution would be advantageous

if it converges within N/3 iterations since the nonlinear iterations

for the solution of equation (4.3) would them be azvoided. Now with

Ne 0(103). it 1s hoped that by proper choice of the relaxation parameter

B, much fewer iterations than N/3 may be needed to reach a steady state.

In principle, if the steady state is defined by ||U*1- v®||/||v® || < 107®,
the number of iterative steps required to converge can be estimated by

m/R where R is the rate of convergence with R M logm( —‘1,—) and p is the
geometric mean of the spectral radii of the matrices (Bn)-1 A" at successive
iterative steps n. Such an estimate of R is not possible in practice be-

cause of the complexities of the matrix A and its dependence on the

solution Un.
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N For the integration of scme form of hydrodynamic equations, it is not
uicozmon that hundreds of such iterations were needed. This is partly due
to the nonlinesrity of the equations system and partly due to non-optimal
choices of the relazaticn pzranmeter. It is also often that such iterations
fail to converge despite wide fange of choices of the acceleration parameter,
Now, if the physical state of the flow is steady or quasi-steady, the asym-
ptotic temporal approach of using the correct time-dependent equations

(B=I) may be expected to converge on purely intuitive grounds, providad ]
that the difference system is stable and ccusistent with the time-dependent
Navier-Stokes equations. Put when the implicit iterative mzthod is used,
ito couvergence to the steady state cannot be presumed on physical grcunds.
The artificial sources of mass, mozentum end ensrgy are introduced purely

algebraically. The particular temporal variations of these sources need

not provide any stesdy state, although without such external artificiesl
sources, natuvre has demonstrated that a stcady state will evantuall; se
reacted. It might cven be legitimate to question if the stealy state
so reached should be the game as the one reached under zero external sources
since the time integrals of the artificial sources may have altered
eppreciably the integrals of motion of the system. It is regrettable that ,5
no useful answer can be derived physically.

Mathemetically speeking, the matrix B in equation (4.4b) can be quite

arbitrary end chosen in a great many different ways and even be chcsea
differently for different steps. Convergence to steady state is assured

provided that

- -1 -1 e | -1 -1
el o B e T e SRR B B W e
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md 322 e tREH T 2L Ll e -0 (4.7b)
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They can be secured if the spectral radii of all ") and (") IAP are
less than unity. If the form of B chosen sliould be the same for all

iterations, (4.7b) is not really much different from the local linearized

stability criterion of v. Neumann with the amplification matrix G re-
placing B-IA. (See Chapter III, Sectican 3.1 end 3.2). The egsential
difference lies then in the freedem of choices of the form of the matrices
B“, at different iterative steps n. It is not clear if tlhe condition
(4.7a) would imply the physical requirement of the conservation of the
in{egrals of motion. It is also not practical to find the spectral

radii or bounds of the eigen valueg of these complicated matrices. There
{8 no counterpart of the local, linear stability smalysis to provide come
idea of the rate of convergence of a complicated problem. There is only
the practical solution of trying it out on the computer.

In practice, the possible choices of the form of B is severely limited
by its baing eesily invertible to fecilitate the computation. It is diffi-
cult to find one that may show significant improvement over the optimal
overrelsxation process if the inferences from the study of the solution
of Laplace equation 18 any guide. Further substantial reduction of operation
counts per iteration step 1s derived from cyclic processes built upon the
Gauss-Scidel iterative procedure. If the field of computation constitutes
p columns of q elements in each row with p q - N, the matrix B may be
chosen block-lower-triangular so that each of the q blocks consists only
the p (or q) elements in each column (row). Then Prtl gagi2 | o

can be assigned as the lower triangular matrix in successive blocks with




B

zero elements everywhere else, This is the line Gauss-Seidel process oper-
ating on successive columns, (or rows). Such a line process can be
accelerated by employing some proper acceleration parameter.

The line processes along columns and rows (disgonals or other con-

venient directions) may be employed in succession such as the sequence of
-q+l

operators (Bn-q-p-f'l. . BHeE® e« « B%) znd 1its cyclic repetition. A
set of acceleration parameters may be emplcyed with the cyclic columa-row
sequence. This is known as the zlternating direction methods or the

method of Peaceman and Rachford[ggo first dezonstrated the powar of such
cyclic iterative methods for the solution cf Laplace equations. Such line
methods derive the benefit of lezs computational work from the basic fact
that the operation counts of Gauss-Scidel process is proportionsl to the
"square" of the vector length of the unknown. Thus the operational counts

1/2

of a complete cycle is, with p = q= N for example,

ke (6.8)

pral + q-p? = (pradpq v 2N
compared with the Nz for the point Gauss-Seidel process. This means a

decreagse of the operation counts per sweep by the factor2/VN , significant

to the order of magnitude with N = 0(103). The extension of such cyclic

/3 |

process to prcblems in three space dimensione with Wl is obvious.

4/3

The total operaticnal cowmts per cycle is v 3N snd the factor of |

operational counts reduction will be 3/N2/3. The preference of alternating

direction iteration (ADI) cr any euch cyclic line iteration process over
the poiat Gauss-Seidel relaxation process is clear. The succees of reducing
the overall computational effort in the golution of steady flow problems

with such schemes requires, in addition, the appropriate choice of the




B

acceleration parameters suiteble for the type of problems with the class of
pregcribed boundary data. This is where the uncertainty resides.
For the solution of Laplace equaticns, the optimal acceleration para-

meters and the maximum rates of convergence of these processes can be

explicitly determined. The ADI process is certainly the most efficient.

The same is likely to be true for the integration of p_urely elliptical
equations especially those with the Laplacien oyerét:or as the leading terms.
For mora coxplicated equations, inciuding the equations of hydrodynamice,
much depends oa the ability of selecting the sppropriate acceleration
perazeters for the problem at hand aud on how the boundary conditions are
imgplcmented. For hyperbolic problems with diccontinuous solutions 2s interior

bocndaries, success vwith the implicit mathods is yet to be demonetrated.

4.4 PFractiongl Time end other Alternating Direction Methods

An alternating direction iterative method has been developed extensively
5 e
in the Soviet Union by Yanenko, Marchuk, etc.[, Lnown as the time splitting
or fractional time step methecds. The key idea is to split the operator

as a sunm of implicit difference oparators, each of which will lead to an

easily invertible tridiagonal matrix. The successive split operations in
a complete cycle serves as a "weak" approximation of the original operator.
They prefer unconditional coxputational stcbility and formal seccnd order

accuracy of the Crenk-Nicholson algorithm. This was 1llustrated in Equa-

tion (3.6) vhen 6 takes the value 1 Second order accuracy is needed ‘;

"2- .
eince a first order accurate scheme can hardly mcet the accuracy requirement
of practical problems with the currently available computing wachine.

Its cevelopment and its relative merits pertinent to the gas dynamic
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applications are presented below.

Consider first the equation

_%!L.pm.o (4.9)

where L is a linear spatial differential operator explicitly independent

of time t. Discretized with the Crank-iiicholson algorithm which is

eecond order accurate in both timz and gpace,

i+l 0 ntl, .n
;Q_A_E'_¢._+L(9._;2*_L).o (4.10)

Let I be the identity operator, we have

a+tne™Mea-%ne

or ¥
e g+ BT -y Ptacy

e |

3 = A |

For the simple heat diffusion equation Lx N =g ;;7-, the matrix (I.+: 3 Lx) i
is tridiagenal and the spectrsl radius of the matrix C is obtained as *

Q1S ¥ P il e

p(C) SV with ¢ = 4 sin“( 7 I ) i

when 0 < x = jAx < (J+l)Ax
\

Nl < 33— <. . .0 < @™ [1e°]

which establishes the boundedness and unconditional stability. Iandeed

Thus

with At/Ax taken as constant, the computational error is bounded
llell < Ile, || +0ax’). When the C.F.L. condition At/Ax <_1 for the
wave equations is satisfied, this scheme was expected to work for both the

diffusion and the wave equations, and was hoped to work for the Navier-Stokes
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type equations at least for the 1-D case, (which is not necessarily true
as is shown in section 3.2 for other difference algorithms).

Consider now the heat diffusion problem in three space dimensions

2 2 2

LX) 3 3 )
- G( + + ) ¢ = 0,
¥ ax? ayz 3:2

At

-1
Now L = Lx + I‘y + Lz or L. + L2 + L3' Vhile the operations (I + =5 Lx)

1

can be easily inverted, the combined matrix [I + —2—‘— (Lx + Ly + Lz)]

is no longer tridiagonal, and although highly sparse, cannot be simply
inverted. So the equation is to be integrated in three successive steps

for the time interval tn -8 < °f

S i and is formally designated as the

fractional tine steps tn+1/3' tn+2/3 and tn+3/3 =t 4 For each step

at t the Crank Nicholson algorithm,

n+ a/3

=1
- [ At . -1 , At a+in=
(1 + 3 LQ) (1 3 LG) ¢ 3

o~/

is used, thus:

3
n+l At -1 At n
¢ - :‘:‘1 (1I+ 5 La) (1 T Lu ) ¢

2, }3: g (LL, -LL) ]+0(At3)}¢“
a-l Wl GB 8“ " °

2
& {I-Att.-:-%-—-[l.

and s =+ 8- - L 1) ¢ 0ach) ¢°
if La LBis commutable.,

Thus the split difference scheme will be sacond order eccurate if the
eplit operators are commutable. Otherwise, it is only first orxder accurate.

When such commutativity of split operators for differeat dimensions (x,y & z)

is not true, the split scheme of only first order accuracy cin give second




v

order accurate results in two cycles if the cycle is repeated in the opposite

direction. For the two consecuvtive cycles, i.e.
w2 ke . i At n
¢ = I (I+=—F/—L) " (1--—L )¢

6 « S "a
a=1
and
1l
o - moae Lo ta- 2 ) &
u.

the two non-commuZative teras would cancel and the gecond order accuracy
is resumed for non-commutative operztors Lu"' This statement will be
true even if Lc'a involve differential operators with varying coefficients
or even depend on ¢ for ga3 dynamic quasi-linear equations so loxg &3
such coefficients are smooth and properly treated.

For unconditional stability, it i3 required thet the cperator L
and all the split operators I.l,l..2 & L3 are seni-positive definite, that is,
the inner product of (L$,¢) > O for any arbitrary function and defined
This condition 1s crucial in

Take tae nora of ¢n+1

over the eatire field of computation.
securing unconditicnal computational stability.
and define the norms of an operator as the natural norm deduced from any

vector norm then

(@ +—2t ™t a-2-1) ¢, (1+At vra - )
ol (2 2 2
6™ |%= 2o -l 117
0%
Bafina
ety
b e 251y gop)2
#1112 L) §
1™ T )z"llz o™ 112 = a2 107112
VRO T - s
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Here
N -2 g% - 2ue®, a-Lun e
- 11e%112 - ae [LEO™,E + -A%Z-HME“) Ty
Ha+%&u 2= ta+Hue, a+%n ™

2 .
= [1E"12 + aelLe™, "1 + & L] |2.

Tais A2 correppornds to the equzre cf the spectral radiua p(C) for the simple
1-D heat diffusion problem with the Crzak-Nicholscn algorithm. Since both
||E||2 end IIL(€)||2 are positive and At > O,the smplification factor

Az will bBe > or < than unity depending on whether (L (§), £) > oxr <0

Toe successive application of the split operator at each ctep leads
to

He™H12 = 4,3, 2 o2
The conditions for Alz.hzz & A32 to be less than or equal to unity are
équivalent to the semi-positive definitions of the g£plit operators Ll’

Lz & L3, i.e. (yu¢,¢) >0 fer ¢ = 1,2,3. It is true then that unconditicual
stability results if all operators La of L are semi-pogitive definite,

i.e. (L,9,4) > 0. This sexi-positive definiteness is a sufficient condition
for stability for the entire cycle but not a necessary cne.

Now if this restricticn of semi-positive definiteness is to be sssured
this will practically limit its applicaebility to the simple diffusion
equation or the Laplace equation in rectangular domain and for tha Dirichelet
problems. It is only a matter of intuition that the method sghould ba
applicable to a wider class of circumstances than those for which proofs

could be given., The situation is really no better off than vhat was en-

comntered for the explicit schemes on the question of stability. Thers




ic indeed not even a necessary critericn of computational stability of
this split method comparable to the voa Neunmann stability criterion for
explicit schenmes.

In the theoretical treatmeat of the gas dynamic problems, (Marchuk,
Yamenko, etc.) the semi-pocitive definite condition is satisfied by imposing
the special "periodic" boundary conditions to tha problem; in which case

it 4s clear that

(1$,4) = 0

go that Az -Alz = Azz -'A32- 1, 1i.e. the rowm is preserved, {i.e.

He™1 = 11®ll= . . . = 11e°1]

This appears to be an excellent feature for initial velue preblems. But
it algo implies that whatever error in the initial data (if it 1is a guess)
will pot decrease in the mean square norm, for example. The splitting
scheme should not be used to obtain steady state soclutions with theupe;iodic
beundary conditicn because the results will never be better than the
initisl guess within the integral norm.

Por treating practical problexs the physical significance of this
stebility requirement of (14,4) > O need be more carefully exunined.

Post-multiply with ¢ the equation

9
Jer =0

and eum (or integrate) ovar the entire field of computation to give

2 1loll+ @e,8) = 0

i.e.

2116112 = - @,
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? If L is semi-positive definite, i.e. (L$,4) > 0, then a_i'” ||¢l|2 = 9,

This of course implies the boundedness of the solution ¢ at all times and

a decreasing sequence of || ¢ ||2 Now the gas dynazic equations in primary
rlkysical veriables are such conservation laws for mass, momentum, and
energy.l$ is the net luxes of these conserved quantities ocut of unit
physical volume. If ¢ and hence L are periodic over the parallelopiped

in the physical space to secure (L$,$) = 0, then the outflux and the

iaflux across the boundary of ccmputaticn exactly balances. Thus with a
¢ identif;ed as mass, momentum and ezergy, this condition exclucdes tha 5?
loss of mass, momentum, and energy throughout the entire field of com-

putation. This means that the computed résults should not be expected

to show body f;rces acting con some imrersed body or heat transfer to

and from the body. If there should be ary in the cemputed results with

periodic boundary conditions, whatever lift, drag and heat trancfer as

may be pregent in the computed results originate from some computational
artifices and are physically mcaningless.
If now the flow field is ccmputed with periodic (asymmetric) boundary

2

conditions in the transverse plane, then A22 = A3 = 1, A deficit of 5

the out-flux L snd a positive ¢ will render (L1¢,¢)_5 0 and hence Alz >1

vhen there 1s a body drag (or energy sink to the body). Bence.Az = A12 >1
ard the computation will be "unstable". To sscure ccmputational stability %
under the circumstances, it 1s necessary to modify the boundary conditions q
in the trangverse plane so that Azz &1\32 are sufficiently smaller than unity
to render A 12 A22A32 < 1. Guidance is badly needed here for handling

these boundary conditioms properly to secure computational stability with
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the split schemes. And even if computational stability is achieved by
some means, there is little idea hcw the results of such important quantities
as body drag, 1ift, and heet transfer, as calculated, will ccmpare with the
physical situation.

The fractional time step method outlined above was not meant to be
applied to the steady state problems because each of the iterative eclutions,

¢n+1/3.‘ n+2/3 s 0n+1

, satisfy different equaticns, none of them approximates
tha steady state equations. Even if the exact steady state solution of a

given problem is substituted and used as the initial data,vthe fractional

time step method will generate solutions for differeat fracticnal steps

which will not quite settle down to some sort of a steady state limit.

This situation can be remedied by retaining those terms, dropped in the

fractional step method, to be evaluated with the previcus or otherwise

known iterete, for example,

-1
n + /3 At -1 At ., _ A L

o
vhich would indeed be the geme as the alternating direction iterative

solution of the implicit formulation of the steady state problem vith
A

Bw (I+ —6=t— La) end A= —%E Le —g—g— I L, 8iven as equation (4.42)

o
7
This method is then similer to the Douglas and Gunn'g gxtension of

Peaceman-Raechford's Alternating Direction methods for the solution of steﬁdy
gtate problems. With the additional terms, it is not poasible to con-
jecture what the gtability behavior of the difference formalatior and

the ccnvergence rate will be. Some exparience of the research gtgup

at Langley Research Center, NASA (the author is grateful for this private
communication) indicates that the overall ccmputational effort of uaﬂﬁg

such echemes for the numerical integration of the Navier-Stokes Eiuations




for some mixed supersonic-subsonic flow fields is much larger than that
experienced by the author on similzr problems with explicit fermulation.

While no generalization is implicd, the fundamental reascns expounded
in this &nd tiie previous sectiona and some practical e;:x?er:l.ence may
serve on appropriate caution against being over optimistic to the ad-
ventage cf such implicit methods.

The fractional step method was developed primarily for time dependent
flow prcblems. The split operator Lx’ for example, can be split further cs
Lx = Lxc + I‘xv where Lu is the convective part end va the viscous part
respectively of Lx’ In this manner, each romentum equation is split into
6 parts. Each of the 6 parts gives rise to either a wave operator or a
diffusion operator. The question of rendering a stable computation for each
step is much simplified although the split scheme is not unconditionally
stable under realistic boundary conditions. Tbére will be some incqna_is-‘-
tencies in the formvlation that can bé remedied by including some higher
order terme. The process raplidly becomes more complex especially when high-
er order temporal accuracy is deeind§8’9] All the complexities must be
weighed in the light of other difficulties in treating time dependent compu-
tztions for 3-D flows. Such developments in dynémic meteorology and ccean-
ography can be important in aétospace applications in the near future if

not of much immediate concamm.




V. ACCURACY AND CONSERVATIVE FORMULATION

The physical conservation laws of mass, momentum and energy ere
established over arbitrary macroscopic volumes of a homogeneous fluid.
By reducing the volume to a macroscopically small "point", but a micro-
scopically large demain to justify the continuum model, the Navier-Stokes
partial differential equations were derived as a convenient mathematical
relation governing smooth point fimctions in the flow field. Now, in the
interest of determining some flcw fields, the Navier-Stokes cquetions are
discretized into a system of difference equations for finite elements cf
spatial domains to facilitate the numerical integration of the partial
differential equations system. Such differerce equaticns may as well be
obtained directly from the censideration of the fundamental physical laws
-for such finite, discrete, spatial domains with the help of interi)oiagim
formulas. It is, however, more common that discretization is effected by
replacing a differential ccefficient with difference quotients according
to some truncated Tayior series to some order of accuracy. The errors
essociated with the interpolation formula or the truncated Taylor series
axe called truncation exrors, some of which are given as e, in Tables 1
end 11, The mathematical requirement of consistency means only that the
truncation error will vanish as At, Ax + 0. |

The conservation laws for each finite spatial el;meﬁt are preperly
spproximated to some formal order of accuracy, according to the trunca-

tion error, by the difference equations deduced in either manner mentioned

above. When the difference forms of such conservation laws are summed
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and examined over a large but arbitrary collection of such finite spatial
elements, however, the conservation laws may be seriously violated. This
is because the higher order small errors will accumulate to much large
crrors when suamed over a very large number of the sma2ll discrete elements
which add up to the finite domain of computation, Now for an appropriate
description of a physical problem to the accuracy, sey 0(Ax?), it is pri-
marily and essentially over arbitrary finite volumes, not only over the
differential elements, that such conservaticn laws should be accurate to
0(Ax?). If the truncation errors of the conservation laws in finite space
is to be of O{Ax?), it must not accumulate when neighboring mesh cells are
sumied up. If the truncation errors are alioved to accuaulate, the dif-

ference formulation should be higher order accurate so that the accumula-

tion of such higher order small truncstion errors over arbitrary mesh
combinaticns throughout the fiecld of computation will not exceed 0(Ax?),
for example. The difference form of Navier-Stokes equaticns, eccurate
uniformly to better than 0(Ax2?), is extremely cumbersome to construct and
execute, With limited spatial resolution currently available, it is imper-
ative to prevent or limit the accumulation of truncation errors.

It is highly commendable to verify a posteriori, to what extent the

computed results conszrve the mass, momentum and energy over the entire
field of computation. But this is not an alternative to the requirement
of no accumulation of the truncation errors. The truacation errors are
generally in the form of dipoles or quadruple rather than simple sources

cr sinks. They distort the local flow field much more than they cause

R N IR TR

epparent deviations in the overall mass, momentum and energy balances.
The consequence of such dipoles and the like is indeed familiar to aero-

dynamicists. A circular cylinder in a wniforam incompressible flow is

<
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represented by a doﬁlet. A thin airfoil or a thin wing in a subsonic

or a supersonic flow is represcrnted by some distribution of sources and
sinks or dipole pairs within the framework of some linearized theory,

known as the method of singularities. If a scries of tiny little varnes

or thin sheets are not to be tolerated in the test section of a windtunnel,
such distributed dipoles arising from the truncation errors of every compu-
tational cell must be suppressed if not completely eliminated. Such sup-
pressicn cen be achieved with some attention paid to the formulation of

the difference problen.

§.1 Conservative Difference Formulation

The comservation reletions are written in divergence form as Equations
(1.1) to (1.3) for the density p, the momentum Dui, and energy density
per wit volume. They are the scalar components of the vector function
V in Equation (1.6), etc. These five quantities will be considered as
the "Primary Dependent Variables" in terms of which the physical laws are
" stated and the practical results desired. They provide the integrals of
motion when proper initial end boundary data are provided aver a specific
but arbitrary volume, Wheon neighboring volumes are summed, the contribu-
tions on their common boundary cancel identically so that the integrated
conservation laws retain their identical form. This is the crucial pro-
perty that enables the integral theorems of Stokes and Green to cast the
conservation principles into field descriptions in temms of different
verigbles (Fig. 2). An adequate approximation of tho conservation laws
in difference form should preferably retain this property at least to
the order of accuracy required. Such a summable property is implicit in

the mathematical abstraction of continuity and differentiability of the
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functions in question. Thus, the differential formulations in terms of
different dependent and independent variebles are all equivalent although
the forms of the partial differential equations may be much different.
This is not the case for the difference approximations of the conserva-
tion laws that may be formally "derived" from the varieties of forms of
equivalent partial differential equations. This is because the differ-
ence furctions over the mesh points or cells are discrete or at least not
differentiable beyond a certain order. The summable difference formula-
tion, in the sense that when cells in the field of computation are summed,
the fluxes in the physical space (xj) of the primary dependent variables
cancel identically slong tgeir comnon boundary will be called "Conservative
Difference Fomulation'['.a’l'ﬂ{e computational space need not be the physical
space. The dspendent variables computed need not be the primary ones.
While the computation can be done in this manner, it is still the fluxes
in the physical space and of the primary variables that are required to
be summable for the conservative difference formulatiom.

For illustrative purposes, consider tle discretization of the conti-
nuity relation from the intcgrated cor{serzaticn law expressed in thg pri-
mary varisbles p, pu, and pv in the two dimensional physical space (x,y)
divided into wniform rectangular cells Ax Jly. pj X is the average density
of the fluid in the cell jAx, kAy. The net increase of mass in the cell
during At is (p?:; - p?.k)Ax-Ay. The mass fluxes of pU and pV should be
evaiuatad on the boundary while oU and pV are known only" as the average
momentum of the fluid in the cells. ‘thus the boundary. fluxcs are evaluated
through linear interpolation (but of second order accuracy) as the arithe-
matic average of the mean momentum in neighboring cells. If increasing

j and k are positive directions, the conservaticn of mass is stated as:




«'F1l =

Wh - o) oy + 22 [wl, e o0 ] - [o0], + @], )|

+ e-t# 3[(9‘,)?,1&*1* (pV)'J}’?] s [fpv)‘;.k + (oV)'j‘,k_l]‘ =0

{5.1)
Fer the neighbcring cell (j-1)Ax-kdy, the differcnce form of mass conti-

nuity relation can be obtained from (5.1) by replacing j by j-1. The
two cells have a common boundary at (j-%_—)Ax-kAy.. The cut flux from the
cell j-1,k crossing this common bomdaryis;-[(pU)rj"k + (pU)?-l’k], which
is identically the same as the in flux to the cell (j,k). When the two
mass continuity equations (5.1) for ths cells (j,k) and (j-1,k) are added,
the flux terms across the common boundary cancel out. The resulting
difference equation is identical with the one that will be obtained when
the conservation law is applied directly to the combined cells and is
accurate to 0(Ax?). The addition of other neighboring cells behave in the
same manner. Similar results will be cbtained for the momentum and the
enexrgy rclations. Thus a conservative difference formulation accurate
to 0(Ax?) is obtained. It is easily verified that the same differcnce
forzulation will be obtained with the forward time, centered spatial
differenco algorithm applied. to the differential equaticns system (1.1) to
(1.3) written in divergence form. Indeed the first order accurate algorithm
of backward or ferverd spatial difference will also yield a conservation
difference formuletion, but cf first order accuracy, i.e., 0(Ax) provided
that the differential equatioﬁ is discretized in .divergence fora and that
the physical space is divided into wmiform spacing. ;

If the continuity equation should be written in expanded form for
discretization such as: u %% +p %—:{- for the net mass flux in the x-direction,

the centered space difference algorithm can reprcsent the net x-flux as ;
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(5.2b)

The in flux to the cell (j,k) from the cell (j-1,k) crossing the boundary

at (j- %—)Ax is respectively:

AtA
1_1. E;jpj_l + ijj-]] (5.3a)
Atd

or ._41 [("ju * Ui ) Pyt (05 * 05D Uy 1_J (5.3b)

The out flux from the cell (j-1,k) into the cell (j,k) crossing the szme
common boundary as may be obtained from Equation (5.2a)(5.2b) by putting

j * j-1 is respoctively
AtA
=t [;"j-lpj + pj-lu)] (5.4a)

AtA
or Tl [(Uj + Uj-z?pj + (pj + pj_z)uj] (5.4b)

The out flux (5.4a) is identical as the in flux (5.3a) and will cancel
each other when the two cells are summed. Thus the difference algorithm
(5.2a) will lead to a conservative difference formulation with the differ-
ential equation not written in divergence form. The out flux (5.4b) is
different from the in flux (5.3b). When the two cells are summed up, they
do not cancel completely but produce a net mass source along the common
boundary, but in fhe interior of the pair of cells, with the magnitude

proportional to Ax . This is formally negligible in a second order accurate

i
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algorithm but renders the difference formulaticn from the algorithm (5.2b)
not summable and not conservative. Even if such errors are accumulated
randomly over the field of computation with 1/Ax? meshes, the accumulated
truncation error will be of O(Ax) rather than 0(Ax?). If the first order
accurate forward or backward spatial difference algorithm is used, the

net x-flux will be

or A%f—y- Uj (pj‘}1 - oj)_f pj wj+1 - Uj)] (5.5b)

Neither of the two will lead to conservative difference formulation even

at the accuracy of 0(Ax). The above examples demonstrate that both the

center difference algorithm and the divergence form of the differential
equation are conducive to the conservative difference formulation with
uniform mesh size in physical space. The difference formulation based
on integrated conservation laws even with linear interpolation on the
other hand, leads straightforwardedly to conservative difference form
of second order accuracy.

Consider now the effect of nomumiform mesh sizes in physical space
with

@24, (8x)

Wy iy TET:‘,I'“j-%

using the integrated conservation laws and lirear interpolation. The
net flux into the cell at jAx during the time interval At is obtained

in a straightforward manner, illustrated here only for x-fluxes:




- e
0.3 1
s Atedy | LE (pU). ¢ ——0 (o),
R e RS T P S 12
[n
- 1
- Atay Igﬁt_‘z (PU);_p + T, (pu)j] (5.6)
-

The first bracket represents the out flux from cell j. The second bracket

represents the in flux to cell j. If, in the first bracket, j is replaced

j-1
the in flux into the cell at (Ax) 5 across their common boundary. They

by j-1, then the out flux from the cell at (4x) becomes identical as
cancel each other when the two cells are summed. Thus the algorithm (5.6)
in physicel space will lead to a conservative difference formulation despite
the variable spacing in physical space. The algorithm (5.6) clearly indi-
cates how the centered spatial &ifference algorithm should be modified to
accommodate the variable physical spacing in order to achieve the conserv-
ative difference formulation and the second order accuracy. This particu-
lar combination of the weighted average of (pU)ju. (pU)j. and (pU)j'_1 is,
however, not obvious from the point of view of discretizing —53; (pu) with

the second order accuracy through Taylor series expansions.

It is common that variable mesh sizes in physical space are accom-
plished through some transformetiom of the independent variables, x = x(£)
or inversely £ = §(x). The difference formulation is then derived from
the transformed differential equation by discretization over uniform mesh
spacing AE in the transformed £-space according to some difference algorithm,
This transformation of the spatial coordinates is often suggested by the
desire of bringing the boundaries into coordinate lines such as & v x/l+x
so that x.- « corresponds to £ = 1 or the use of spherical, cylindrical

or other convenient body coordinates dictated by the contour of the solid




body pre;f»ent in the flow field. The disretization in the transformed
E-space in an intuitive manner is not likely to produce a conservative
difference formulation. Even with uniform mesh spacing Af, the cancella-
ticn of in flux and out flux is not assured in the physical space although
it is achieved in the transformed space. This is because of the presence
of the metric coefficients.

Consider the mass continuity relation in the cylindrical polar coor-

dinates (r,0,2):

ol e ldon+L =0 (s

where u, v, and w are the radial, azimuthal and axial velocity comncnents.
Even if the mesh spacings Ar, A8, and Az are wniform and the central
space difference algorithm is adopted. There is left the question how

the metric coefficient r should be treated in discretizing Equation (5.7)

to obtain a conservative difference form. Now the integrated conservation

relaticns in the physical space with curvilinear coordinates stands as
Ar-Az- (rjAe) -At (p)
= At-bz Ar(pur-Ae) + At-Az‘AtAe(pv)

+ At-Ar- (rjAe) -Az(pw) s

where A with subscript r, 0, or z stands for the net flux of the quantity

(5.8) stands for the net increase of mass in the volume element. If the
flux terms on the right hand side are expressed eithcr in the form (5.1)

for uniform mesh sizes or in the form (5.6) for nonuniform mesh sizes, for

ﬁ} > ~ y " P - —
"'
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.7)

.8)

in the parenthesis in some difference form. The left hand side of Equation
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example, the differe-nce form cf the continuity equation will be conserva-
tive or summable. Thus the metric coefficient r arising from the volume
element should be treated as rj while the metric coefficient r arising
from the surface element should be treated differently for the in flux

and the out flux surfaces depending upon the specific difference algorithm.

It appears therefores that the comservative difference formulstiea can be
nore conveniently obtained by considering the integrated conservation re-
lations in the physical space despite the curvilinear coordirate system
that may have to be adopted.

The treatwent of the ccnservation ra2laticns of the vector momentum
is considersbly mure complicated than that cf the scalar mass because of
the stress terws and the inertia terms dus to curvature and because of
the necd of considering the eppropriate vector components. Complicated
as it may be, the flux terzs can be clearly identified and censervative
difference formulations can be cbtained. Often it is desirable for achiev-
ing a simpler difference formulation by relaxing the condition of identi-
cnl cencellation of the in flux and out flux crossing the same common cell
bowndery. The more lenicnt reguirement ray be that the in flux and out
flux crossing the same boundary differ by a sufficiently higher order
spsll quantity to provide for some accumulation and possibly supplemented
by their vanishing over a group of say four neighboring cells. This may
be pemissiSIe since the ultimate objective of the conservative differ-
ence formulation is to prevent undue accumulation of truncation errers

over finite volumes to cause serious dsterioration of the accuracy of the

cemputation.




M» . pe— B e T rumr SR

I

With conservative difference formulation, the accumulated truncaticn

error E, of a set of calculations can be estimated to the order of magni-

tude at any point within the field of computation. Morzover, the error
of the computed results at a point can be separated into two parts:
(i) the truncation error E.‘. and (ii) the boundary error at the point |

caused by the errors on the boundary of the field of computation although ﬁ

the difference problem is e2semtially nom-linear.

5.2 Heuristic Error Estimate and Accuracy

For a computed result to be practically useful it is esszntial to
have some idea of its accuracy. The study of the accuracy question has,
however, been little explored. This may be due partly to the preoccupa-
ticn with stsbility questions and partly to the difficulty of construct- !
‘ing an upper bouwnd of the error of a computation for the type of initial
boundery value pioblems of fluid dynamics. It may be possible that those
comvergence procfs vhich naturally include the estimate of the err.or
bounds will be oxtendsd from the periodic boundary value problems to more
realistic boundary cmaditions @s applied to the Navier Stckes equations.
In prectice such a difficult and complicated a-priori rigorous error esti-

mate is not necessary. Heuristic, a-posteriori rough error estimates

will often suffice. Indeed, it would be preferable to have the estimate |
simple and generally spplicable although not rigorous and not so precise.
The nonlinezr Burgars' equation is therefore conveniently adopted for
snalysis as a one-dimensional model of the Navier-Stokes equations!mls

wvas shown in Section (3.2), it is a useful modzl for stability analysis,

ek ol e o

being quasi-linear and with both wave and diffusion characteristics. It |

is also convenient for the study of accuracy becausc many exact solutions
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are known, with which the computational errors can be quantitatively eval-
uated and compared with theoretical estimates.
The Burgers' equation, in dimensionless form is
du du _ 1 2%u ‘
R il v ) 5%

with a steady state solution

u(x) = - a tam (a.Rex/2) (c.10)
having u(x<0) = 0 u(x=-1/2) = 1
and |u(x=tx)| = a = 1/tarh (cR,/4)

This steady state solution in the range of -1/2 < x < 0 has been calculated
&s the long time limit of the temporal problem via several differcnce
algorithms. The quasi-linear term u-g% is always treated in the divergence

forn % (u2/2) with

v?
(‘5‘)5,% g [(“;zm s ”;) * Al Uj]/2(2+a) (5.11)

s A(%i)j“Kli %i)j»%'(%i)j-é]

Here "a" is a parameter. The simple centered spatial difference corres-
poads to a = 0. The center spatial difference in non-divergence form

results when a = «, in which case,

2 U, (U, -« Uy 3}
A(y7)5 - il J*;AXJ'I (5.12)




If it is presumed that an approximate steady state solution

U(t,x,At,Ax) will be reached, which departs only slightly from the gen-

uine solution(5.10), a linearized differential equation for the error
can be derived and solved. The linearizaticn permits the separation
of the errors as originated from various sources, i.e., as the sum of

the truncation errors ET and the boundary errors F‘b The difference

equations derived from (5.11) are zll nonlinear but conservative and
permit the separation of the truncation and the boundary errcors with
the cusulative truncation errors E, remain of the order of tho local
truncation error.

The linearized enalysis chows that ET at any point in the field
of computotion is proportional to (ReAx)’ for the second order accurate

conservative difference formulations derivad frem (5.11). Here R°Ax is

the Reynolds nuzber based cn the length Ax and the velocity difference
between the point x=0 with maximm velocity gradient and the point x=l

roarly the asymptotic velocity. For a quantitative estimate of the E..r,

E'l' ME. + (1+33)M,E M
11 272 3
T—T R‘A s " MoEo + T + -.‘,--E3 (5.13)

where Mo is the constant defining the steady state criterion |

sjh“p[ u'j"1 . u’j‘] <M Ax?

2 2
Hl(RaAz) and Mz(ReAx) are the coefficients of the truncated quasi-

linear convective terms end M:,‘(R‘z:Ax)z is that of the truncated viscous

i ate it &

teras, Ml’ Mz, and Ms are expocted to be of 0(1l) for reasonable differ-

ence algorithms and for reasonably smooth solutions. Eo, El’ and Es are

umiversal functions of the genuine solution u(x) that vanish on both

i o s i




boundaries and have their absolute magnitudes less than 0.1. Thus the

truncation errors ET are expected to be of the order of (ReAx)‘llo for

the second order accurate schemes. Actual computations with M, = 0(ax)*
and Ax = 1/20 for various schemes verified the quantitative values of
Fquaticn (5.13) cad the dependence of Ej on (Re, )*.

For Re, = 0(1) and all the finite values of a = 0(1) testcd, the

following estimate of the maximum gbsolute truncation errors is valid

Ep < 3 x 1072 {ReAx)’ (5.14)

This simple formula is thernfore recommended as 2 preliminary estimate
of the bounds of the truncation errors of sccend order accurate conserv-

ative difference formulation. With non-conscrvative difference formula-

tion, the truncation erxrors can accumulate and become considerably larger
than the estimate given by Equation (5.14).
The boundary errors in tho field due to a fractional error g of the

boundary value is given by the linearized analysis as:

where Eh is a universal function that is unity on the boundary where the ?
erroneous boundary condition is applied, and decays very slowly toward
the other boundary where it vanishes. The decay is so slow that the error
vetains more than half its valus watil within the last tenths of the
field of computation near the other boundary (note that Eh is plotted against
u(x) in Fig. 2 of R2f, 10) depending upcn the magnitude of the Reynolds num-
ber.
For Neumann boundary conditions, the boundary error is still given by

Equation (5.15) but €, is evaluated as

b




o

& - -2¢, /aRe (5.16)

where e", is the fractional error of the spatial derivative on the boundary.
Within the framework of linearized estimate of errors, the superposition
of (5.15) and (5.16) with proper coefficients will enable an estimate of
the errors caused by a Cauchy-type condition. The boundary error at a
given point in the field of computation will be the sum of the decayed
boundary errors from both boundaries.

In multidimensional flow problems, it is presumed that the results
of the previous model analysis may apply primarily in the direction along
Streamlines or nearly so. This leaves the estimate of the contributions
of the boundary errors, from those portions of the boundary of the field
of computation that are primarily parallel to the local streamline direc-
tions, yet to be accommcdated. No helpful suggestions can be made here
except to render a description as nearly correct as the physical situation
suggests. In fact, the treatment of this portion of the computational
boundary is cne of the two outstanding difficulties that the author and
his co-workszs have experienced in various problems. (The other outstand-
ing difficulty is the treatment of internal shockwaves to be explored in
the next section.)

The decay characteristics described by the universal function Bh
ray be used where the one-dimensional model is appropriate. The various
wmivarsal functions Eo' El’ etc. and Eh in the model results may be
recognized as the "influence functions" describing the.er}or propagation
in the field of computation. They can be empirically established, a
posteriori, by introducing a known error at a specific point (on the

boundary for the specific boundary error and at chosen interior points
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for truncation erroz-'s) and then computing the solution under the modulated
condition. The difference of the two sets of solutions then gives the
influence function E in question. Usually, during the development stage
of a difference formulatica for a given physiczl flow problem, such infor-
mations can be derived from preliminary results and can be used for the
purpose of a-posteriori error estimate. Of course, a-posteriori determi-
nation of such influence functions are desirable to provide additional
checks on the behavior of the computational program.

Without referring to any specific computational problem, the follow-
ing general observationﬁ can be inferred from the modsl study. They are
epplicable only for the conservative difference formulation in which the
trumcation errors do not accumulate so that the truncation and the boundary
erross can be treated separately and estimated by Equations (5.14) to (5.16).

(1) The steady state criterion IUS."1 - U';l < 0(Ax)"* is sufficiently
accurate in a second order accurate scheme.

{2) The truncation error b‘l‘ is expected to be “(Re for conserva-

n
AX)
tive difference formulation of nth order formal accuracy and the influence
functions El 2» €tc. ave not likely to possess maximum magnitudes much

’
less than 10'1. With ReAx > 1 in the practical cases, maximum truncation

error is not likely reduced appreciably from that of second order accurate

scheme as may be estimated from (5.14).
(3) Boundary errors cannot be efficiently reduced by reducing the mesh

sizes. They decey vary slowly and are generally considerably lerger than

the truncation errors in practical cases with R’Ax = 0(1). The primary
effort required in achieving a reasonably accurate solution of the compli-
cated practical problems lies in the sophistication in the treatment of

the various boundary conditions. The field of computation and the choice
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of coordinates should be properly defined to facilitate a more accurate
‘ implementation of the boundary conditioms.

The general observations made above carry an important message to
those interested in obtaining solutions for the complicated fluid dynam-
ics problems with reasonsble accuracy to suit practical purposes. Much
attention should be paid to the formulation of the problem. Attempts to
improve the accurccy of a numerical solution based on a poor formulation
by extending the computation to satisfy more restrictive steady state
criterion, with more refined mesh and even with the help of much larger
and f2ster computers can prove to be not cnly expensive but frustrating.

A similar attempt was made for the time dependent flow. It was found

that for flows with slow end monotonic temporal variations, the behavior
of error propagation in the sscond crder accurate conservative differcnce
formulation is essentially similar to that described sbove for steady
state problems. For oscillatory flows, conservation in the spatial space
sppazeatly fails to holp. Test calculations for some simple damped oscil-
lation as an exact solution of the Burgers' equation indicate the sorious
effect of the phasc errors of different oscillatory components caused by
the dispersive truncated terms. It has been suggested and illustrated

that fourth order accurate difference algorithms will substantially improve

the accuracy of the computed results beyond quite a few cycles of oscil-
lations. It is, hcwever, a tremendous task to compute with fourth order
formal accuracy and wmiformly for ss compliceted an equation system as the

Navier-Stokes .[B »9,11 ]

S aeias aint iiial
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5.3 Shock Wave and Artificial Viscosity

In all the previous discussions, the question of '"non-smooth" or
even "discontinuous' solutions is deferred. In problems of practical
interest, shock waves and contact discontinuities are often the promi-
nent features of the flow problems., The presence of such discontinuities,
or generally regions of very large gradient, causes difficulties in their
computation.

Discontinuous initial and boundary data are often imposed on purely
elliptic or parabolic problems. They may cause oscillations in the
vicinity of the boundary, but never very serious. This is because of the
inherent nature of the system to smooth out any discontinuities in time
and in space. The accuracy of the computed results may suffer somewhat
according to the modulus of continuity of the functions involved, but can
often be remedied by using a higher order accurate difference algorithm.
This inherent tendency to smooth out any discontinuity can also be trouble-
some, for example, in treating flow problems involving an interfacial
discontinuity formed by two different fluid mediums, especially when the
interface is not stationary; since initially sharp discontinuity dif-
fuses }n the course of the computation if not artificially maintained.

For hyperbolic problems, a discontinuity in the initial boundary
data propagetes into the field of computation and causes excessive compu-
tational disturbances downstream, particularly in its zone of influence.
It also produces upstream influences. For the quasi-line’r gas dynemic
problems, a shock discontinuity can physically arise from a perfectly
smooth boundary due to the coalesence of the smooth compression waves.

Thus, when this flow field is computed with an algorithm that worked well




for smooth fields, quite severe oscillations can develop at approximately
where the shock discontinuity would appear. Such oscillaticns are fairly
large, although not necessarily leading to the catastrophic divergence of
linear instability, It may be that the amplitude of such shock induced
oscillations are limited by the non-linear effects and the phenomenon may
well be called nocnlinear-instability, but certainly not in the sense of
violating the requirement of boundsdness discussed in Chapters II and III.
Even if bounded, such oscillations are highly damaging to the accuracy of
the results not only in the vicinity of the shock but over most of the flow
field computed. Practical interest, on the other hand, is often centerced
in tho vicinity of such shock discontinuity.

It is natural to trcat the shock front or the interfacial contact
discontinuity 2s an internal boundary and to compute the smooth soluticns
on both sides of the discentinuity separctely. The jump conditions across
the discontinuity will connect the two scluticns together. This shock
matching or shock fittinz procedure is easily carried out in one space
dimension for a known discontinuity, i.e., the magnitudes of the jumps
and the speed of propagation of the discontinuwous front into a homogene-
ous madium at rest or in wmiform motion. If the shock should be propagat-
ing into a non-uniform medium or a homogeneous medium in non-uniform
eotion, the sheck strength and speed will vary and the Hugoniot relations
across the shock will have to be supplemented by some additional metching
condition to be derived from the difference results in the vicinity of
the shock front. It is often that oscillaticns appear on one or both
sides of the shock discontinuity, likely as a result of the inaccuracies

in the location of the shock and in the values of the functions in the
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vicinity. The oscillations may be alleviated if the shock location is
fixed at a mesh point and the mesh divisions are rezoned at every iime
or iterative steps. The computational procedure in terms of such shock
coordinate rapidly becomes complicated.

In two space dimensions and with a curved shock of unknown shape and
location, the ;:omputational details of such a shock matching procedure
rapidly becomes more tedious 2ad inaccurate. With fixed mesh points, the
shock front is generally off the mesh points and it becomes difficult and
highly inaccurate to determine the direction normal to the front in the
matching process. The use of curvilinear shock coordinate is convenient
and may possess other festures for treating imviscid steady state flow
problems with uniform supersonic flow on the upstream side of the shock
fmtl.lzlt is not suitable, however, for a shock wave imbedded in a non-
umifora inviscid flow field. It cannot be implemented for viscous and

inviscid flow fields invclving more complicated shock configurations,

such #s shock intersections and Mach reflections or transonic shocks that
terminate in the flow field. The tedious shock matching can be imple- }

mented in principle even Zor such complicated configurations although the

procedure is too complicsted to be managesble and the results so obtained

are umiformly poor.
[13) !
To avoid shock matching, v.Neumann and Richtmeyer introduced the

artificial viscosity method for computing the shock propagation in an

inviscid flow field. A quadratic viscous prossure term pa’szl-g-;- g-:?’ .

where a is a numerical constant chosen at convenience, is added to the

differential equation befors discretization. The quadratic dependence

on the velocity gradient assures a rapid decay of the artificial viscous
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term away from the shock front with steep velocity gradient. With a <1

the typical results of the calculation for one-dimensional shock propa-
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gation into a uniform field gives a sharp shock front, spreading over
"2 moshes and the calculated shock speed is within 0.1% of the correct
value. But sizable oscillations develop in the downstream and over an
extended range without appreciable damping (spatially and temporally).
By increasing a to 2 2, the magnitudes of the oscillations are reduced
but the shock front spreads wider, over 4 or more meshes, A reascnably
smooth downstreem solution is obtzined only when a is so larg as to be ?
O(Ax'l) and the shock fromt spreads over many meshes. By then the arti- i

ficial viscous term is no longer small in the inviscid region and the

apparently smooth results of computation fzil to bs a satisfactory approx-
imate solution for the shock front.

The artificial viscesity method is physically sound simply imple-
mented and easily extended to multispace dimensions, formally by includ-
ing dorivatives in other spatial diwensions. The large spread of the
shock front and the induced oscillations generally become more objection-
sble, however. Many artifices can and have been devised to improve the
appearance of the computed results. The artificial viscous term may be
dropped when ti:e gradient of velocity becomes lcss than a pre-assigned
valus, or the doumstream oscillations may be suppressed or eliminated by

some smoothing process or may be limited to a permissible magnitude about

the mean through some filtering process. Excellent results can generally
be obtained for simple test problems with known shocks. The merit of

such procodures in computing shock propagation into non-uniform flow

fields is yet to be demonstrated, particularly with respect to the accur .y

of the smooth results.
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The Lax-Wendroff treatment of shock wave utilizes the fact that the

hugoniot relations are simply the conservation laws integrated over the
discontinuity. Thus, with the inviscid equations written in divergence
forn for the physically conserved quantities, shock matching can be
avcided since the difference equations for such con.served quantities are
indeed the approximate form of the hugoniot relations. (Note that the
divergence form of the transformed dependent variables docs not help.)

One dimsnsional computations show that it leads to a quite sharp shock
front (v24x) and accurate shock speed. But sizable oscillations ave
generated at the shock front although rapidly damped to disappesr within
8 to 1C meshes from the frent. The dissipation is derived from the dissi-
pative term Ax’-r(l-r‘)g-;'(-};'- with r = uAt/Ax which may be visualized as the
artificial viscosity that spreads out the shock front. The quadratic
viscous terms adopted by v.Moumann and Richtmeyer does not appear to pro-
vide as much damping of the shock induced oscillations as this linear vis-
cous term., The peak amplitude of this shock induced escillation near the
front is often larger although more rapidly damped then those from the
quadratic artificial viscous term, Additional artificial viscous terms
ero often introduced to reduce the amplitude of such oscillations.

The introduction of artificial viscous terms into the differential
equation before discretization is fundamentally not much different from
dropping those higher order terms in the truncated Taylor series in the
discretization process. Such viscous terms contribute to the stability
of the difference formulation. Thus artificial viscosity is very videly
employed for problems without shocks. Such artificially introduced

viscous terms are often substantially larger than the Navier-Stokes

———
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viscous stress terms evaluated with the physical viscosity coefficient %
of the fluid. This is justifiable for the solution of inviscid flow

problems, i.e., the flow prcblems visualized as the asymptotic limit of

negligible viscous stress terms, sc long as the contributions of the
artificial viscous terms are "negligibly small" compared with the contri-
butions from the inviscid terms and the somewhat spread out cshock front
is visualized as a "charp'" discontinuity. Such a situation is clearly
not tolerable for viscous flow procblems because the cffect of the fluid
viscosity will be overshadowed by the effect of the pseudo viscosity.
There are many numerical solutions of the Navier-Stokes cquations,

some with first order accurate algorithms, some with second order accur-

ate algorithms but with largs artificial viscous terms, at large Reynolds
numbers based uéon fluid viscosity of the order of 106. These computed
results are very insensitive to the large fluid Reynolds nmbers!ls%'his
is understandable since the pseudo-viscosity in such calculations are
substartially larger than the real fluid viscosity, and changes in the

fluid Reynolds number will not significently alter the effective Reynolds

number of the computational results based on the total viscosity included

in the difference formulation. If one wishes to evaluate qusntitstively
the viscous effects, both the artificial viscous term introduced into the
differential equations system and the pseudo viscous terms implicit in the
difference form should remain substantially less than the fluid viscous
term, Thus for viscous flow pzoblems, artificial viscosity terms of the

type used by v Neumann and Richtmeyer should satisfy

2742 ou 2 320
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or dimensionally

2 AuAx 2
a e = QO ReAx << l (5.17)

With R°Ax generally larger than unity, the constant a must be chosen
eppreciably less than wnity. This restricts severely the usefulness of
the idea of using the artificial viscous term either for securing compu-
tational stability or for suppressing the shock induced oscillaticns in
viscous flow problems.

For second order accurate conservative difference formulation, the
errors introduced by the pseudc-viscous terms are included in the trumca-
tion error Ep, the sbsolute upper bound of which may be estimated as
Er <3 x 10'2 (ReAx)2 according to the results based on the Burgers'
model equation given in the previous scction. Thus ReAx may be as largs
es 1 or even 2 without having the cumulative truncation errors exceeding
a few percent. Note that this ReAx is defined in terms of the local. change
cf velocity per mesh when the Burgers' model is applied to the '"local
flow field". With the Reynolds number based on the viscous flow dimension

o 104), and with possibly of 0(102) mesh

and maximum velocity of 0(0
points over the linear dimension, the local values of ReAx will genexally
be considerably smaller than 10 (since Au per mesh will be significantly
less than 10'1) except possibly in the region of shock induced oscillations.
If ths shock front is “isualized as an interior boundary and the shock-in-

. duced cséillation as a form of propagating boundary error, the errors in

the results computed with the second order accurate differonce formulation

will generally be dcminated by boundary errors.
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Shock induced oscillations mar the appearance of the computed solu-
tion much more seriously although need not cause larger error than the

less conspicuous sources from the exterior boundary. The difficulty is

compound=d where a shock wave, either incicent or emerging, intersects
the exterior boundary. In the next section, the relation betwcen the

boundary treatment and the shock-induced cscillation will be explored.

5.4 Shock-Induced Oscillations

Shock induced oscillations are often considered as unavoidable when
a shock wave is encoumntered in the computation with a higher crder accur-
ate difference algorithm. While the first. order accurate algorithm will
not give rise to such oscillations, the smear of the shock front becomes
excessive and the cumulative truncation errors becomes large. Thus when
shock wave is encountered in a computation, it is often held as necessary
to choose between the two evils. The following is an attempt to clarify
the origin of the spurious oscillations and to show that a oertairi c.lus
of second arder accurate difference algorithms can, under some favorable

circumstances, avoid such spurious shock-induced oscillations.

B T T B o 7 YT TS A R ST .

Consider the solution of & linear steady state problem via the time
dependent spproach. Let the spatial difference operator be split into
. two parts, Ll('l') and Lz('r) where T is the shift operator for the spatial
-1 & -
indices, i.e., TUj = Uj, ), T U, = Uj_y, and TP = TTUS = Uy, ete.
Construct the class of two step difference algorithms for the time inter-

val nAt to (n+l1)At:

?i'j‘ 3 u'j‘ ¢ Ll(r)u’j‘ + LZ(T)U';

+]1
u'j' 4 u'j‘ . x.lmb'; N Lz(T)U'j‘ (5.18)
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where v; is a provisional or predicated value of U’j"l and the second or
final step '13 a corrector step. Ll('l‘) + Lz('r) 1.'; second order accurate
and consistent with the differential operator in the steady state.

Let the boundary conditicns to be appliod to the first or the pro-

visional step be

B(T) 'b‘j‘ =0 , : (5.19)

and let the boundary valuves of 'l‘fj‘,derived from these boundary conditicns

as are used in the first step be used in the second step for the computa-
tica of ll'j"l at the corresponding beundary points. In this manner it is
maintained ghat U'j"1 - le = 0 on all the boundary points and at every

tins step. The boundary values at each boundary point may change from

step to step and contain errors implicit in the boundary conditions (5.19),
By subtracting the two steps in the difference equations (5.18) the follow-
ing difference ;'elation is obtained: -

(u‘j"1 = 'b‘;) = 1,(D) (?fj‘ . u‘j‘) (5.20)

In the event that a steady state is approached in the sense that

U'j"l- U';, then Equation (5.20) becomes in the steady state limit

[x»z.lcr)]("ﬁ;‘-ug)-o ' (5.21)

Thus ?.f; - U;' is governed by the linear system of difference equations
(5.21) and are subject to zero boundary values over the entire boundary.
If there is no eigen solutions to this system of equaticns, it follows in

the steady state limit that U'; - vj‘ = U’;ﬂ. Then the solution in the steady
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state limit is the solution of the correct steady state equation
[LI(T) . Lz('!')] u’)‘ =0 (5.22)

Now if the boundary values of 'l‘f; and u‘j‘” are not kept the same in

successive iterations, ¥ will have to be eliminated from Equations (5.18).

j

Then, in the limit of the steady state with U'j"1 = U';. this solution will be

determined by the equation

[1 . LI(T)] [Llc'r) + Lz(’l')] u;' =0 (5.23)

It will contain the "correct" stezdy state solution (5.22) to the extent

that the boundary conditions B(T)U'; = 0 represent the correctly posed
situation. But it also contains the nontrivial solutions of Equation
(5.21) when ’l:f; - U'; is not identically zero, as a result of the slight
difference in the boundary values of v; and U';’l. Such extrane-
ous solutions naturally are possible sources of the sho..':k-i.ndmed oscil-
lations ond can indsed be identified in the course of computation as
being proportional to the difference between the provisional and the
final solutions. From the practical point of view, it is simpler and more
desirable to use idsntical boundary values from (5.19) to suppress all the
spurious fundamental solutions arising from Equation (5.21).

There are many two stap difference algorithms, but mostly nct of the
class (5.18) except the Cheng-Allen scheme and the Builbvskaya's
schems. For the linearized Burgers' Equation (3.13), ‘the differsnce

fores can be cast into: Cheng-Allen Algorithu[m’“]

l.l(‘l') = 1-*173_ (- ;—0 s) T 0(;0 S)T'l]

L,() = 3 (5.24)
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[17]

Brailovskaya Algoritha

L =t -ThH

L(T) = (T - 2 + k) (5.25)

where r = cAt/Ax and s = VAt/Ax?, When (5.24) is substituted into

Equation (5.23), the general solution of Uj is obtained as

vy =Tq g’ K=1,2,34

where
El =1 .
E = %i’r - 1*7 p"Ax
2 S - 1
l-!- hAx
sad Sa 4" E(loa)_t (1+25)% + (r*s?) 1/1] (5.26)
3,4 { } /(23-:)

ci and C% are the two proper fundazental solutions of the correct Qteady

ax > 0
they spproach the two fundamental solutions 1 and exp(Rex) of the stesdy

2
state differential equation, og%- l%?g'x'?' Ej. and Ei are the two extran-

state equation [L,(T) ¢ Lz(‘l'):]uj = 0, because in the limit of Re

eous fundamental solutions cf the two-step scheme that constitute the

errors or "spurious solutions" arising from the solution of the equation 3

F o vy, -0 ’

‘o of Bquation s.21). 1




¥ith both r and s > 0, and -l%;%}l-< 1, it is found that

r+2s
% -wn 59

54""%"-2%)':°”’:3°

Thus Ei always represents mesh to mesh oscillation while Ez can be either

oscillatory or monotomic. The steady state limit of the difference
IJ’"l - 'l‘f’ can be given as:

'U-U-c

$0 353j LA ! ' (5.27)

where cy and c4 are determined by the difference in the boundary values
of?ln and U'"1 at j = 0 and j = J on the boundary. When the boundary

~
values of U" and l.l“’l are kept the same at every step, then c =0

5" N
and no spurious solution will be present in the computed steady state

result. Otherwise, oscillations can be expected in the computed steady

state result.

If Brailovskaya's scheme (5.25) is substituted into Equation (5.23),
the same proper fundamental solutions Elj and Ezj are obtained, but the
pair of extraneous solutions Esj and r‘,‘j are given somewhat differently
with §5 = [12 Q1 + 4r)2 1 /2x, and €, < 0 alvays. The overall situ- ]
ation is much the same.

It may be pertinent to repeat here that the spurious solutions will

be suppressed so long as the same boundary values of P and U™! are used
at every step. Such boundary values can be determined by the approximate

boundary conditions B(’l’)u';l = 0, snd may contain errors. In this event,

they may cause errors in the constants < and <, of the steady state
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solution

]

U = 5 + czszj (5.28)

There will not be any catastrophe if the boundary values are not exces-
sively in error and if the mesh size of the steady state solution is

not too coarse so that

R.Ax <2 (5.29)

This last restriction Re,, < 2 has little to do with suppressing
the spurious fundamental solution, €3j and E4j. It is to keep Ezj from
being oscillatory and failing to be a valid approximation to the fundamental
solution exp |RejAx| of the differential problem. It is clear from Equation
(5.26) that when Re, > 2, the appropriate form of £2j is

3 i 1+ 2/R0Ax i
gz = (-1) -i—-:_——z-]-;e-z; S (5.29)

which is oscillatory and rapidly amplifying with increasing j. It fails
to serve as any meaningful approximaticn to exp |RejAx|. Thus to obtsin
a valid steady state solution without spurious oscillations based on the
algorithms (5.24) or (5.25), not omly that identical boundary values
should be used at the provisional end the final steps, but also that the
mosh size must be sufficiently refined so that Re,, < 2. Sample calcula-
tions for the steady state solutions of the linearized Burgers' equation
(3.13) verified the abrupt change of the behavior from a smooth to a
violently oscillatory limiting solution when Re,  increases beyond the

critical value of 2.
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For linear probiens with variable coefficients, the various funda-
mental solutions of the difference equations cannot be displayed. It
is nevertheless expected that the spurious solutions will be suppressed
if the same operators L,(T) and L,(T) and the sane boundary values are
used for the successive iterative steps in every time interval. As to
the proper fundamental solutions of [Ll (T) + LZ(T)JUj = 0, it is known
that one of them must be unity because of the consistency requirement.
The other will become oscillatory for too large a ReAx. Whether the
critical value of Re, . will be 2 or how it may vary with x is uncertain.
For nonlinear problems with sufficiently smonth solutions, the complete
suppression of the spurious fundamental solutiocns in the first variation
of the nonlinear difference operator at each time step, may be expected.
This is because the spurious fundamental solutions contained in the com-
puted results of the nonlinear equations will have been reduced to higher
order small quantities in At by the stratagem described above. Such:
highor order small quantities in At will be of little significance in the
steady state limit. Thus, the outstanding problem for eliminating shock-
induced oscillations is tc satisfy the requirement of using some suffi-
ciently small mesh size Ax corresponding to the restriction of Re, <2
for the linearized Burgers' equation. It is anticipated thet, for non-
linear problems, there mey not be such a sharp value of the critical
Reu. The transition from smooth to oscillatory steady state solution
may be gradual over some range of valuss of Re, - This has also been
verified with actual computation. It is supposed that the following
heuristic model will give a general idea where this critical range of

ReAx may be.

g
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When a second ofder accurate conservative difference algorithms of
the class (5.18) is used for the integration of the Navier-Stokes equa-
tions and when the stratagem, just described, is followed in the treatment
of the boundary conditions, the shock wave, if present in the computation,
is not regarded as a discontinuity but a "smooth" region with large gra-
dient, spread out by the pseudo-viscosity. This shock transition region
usually spreads out over two or more mesh points to connect the smooth,
asymptotically wniform flow fields both up and downstream of the shock
region. The transition profile as calculated is not intended to be accu-
rate. Its primary fmcﬁm is to accomplish a smooth comnection, and
hopefully, without inducing oscillations propagating into the smooth
flow field in its neighborhood. Thus, transition profile joining a scalar
function u with asymptotic values u_ = % a in the up and the downstreem
region respectively, might as well be computed approximztely based on
the nonlinear Burgers' equation as a model for the local flow field..

This means that the local profile might be approximated by the steady solu-
tion, Equation (5.10) with x = 0 and u = 0 located at the point of maximum
sldpo in the transition profile that has been actuslly computed with the
full Navier-Stokes equations. Thus, the computed maximum value of -g-:-:-
properly nondimensionalized in the transition region will define the

effective Reynolds number of the tramsition region.

(g‘%) = Re/2 e (5.30)
max computed .

In this manner, the poorly defined thickness of the transition region

is avoided. The parameter a can be taken as unity when the reference

velocity is adopted as the change of the velocity (or the particular




oy

scalar quantity in ciinensionless form) from the point of maximum grad-
ient to the asymptotic value. If the computed transition profile is
spproximately symmetric with respect to the inflexion point, this refer-
ence velocity will be half the jump across the shock.

Let the asymptotic values of u across the shock transition region

be U, and U2 then, assuming Ul >u,,

2
(au) . u-t au \ S5
L2 . 2\ ¥

3y U1.Uz
(AU)m = (-5—‘--)‘!ax AX = —-z-— ReAX (5.31)

1

Now it is pressumed that the criticel value of this R‘Ax is essentially
the sams as if the computation were done with the same algoritham but
based on the Burgers' equation so that oscillation-t.ce computed results
of the transition region can be effected with Rey o« € 2. When expressed in
temms of quantities, directly available in the computation as an a

posteriori criterion, according to (5.31), this condition becomes

%‘:ﬁ <3 (s.52)
i.e., "the maximm permissible change of U per mesh (Au)m is one half
the jump |U,-U,| across the discontinuity so as to avoid shock-induced
large oscillations in ths computed results."”
This statement implies that we cannot expect to obtain sn oscilla-
t_ion-fm shock front that contains less than two meshes from the compu-

tational solution following the present stratagem. Moreover, within the

linearized framework, the criterion (5.32) should be equally applicable




to any physical scalar variable, sustaining a "jump" across some large
gradient region not necessarily a discontinuous front, although the Re Ax
was defined in terms of flow velocity and viscosity. It is independent
of viscosity explicitly.

| The criterion (5.32) stands, however, only as an a posteriori cri-
terion for achieving an oscillation-fres shock solution. This is because
_(,A.U)ux . (giu-)mxAx becomes known cnly after the'éoq;letion of the compu- :
tations; by then, there is no need of the criterion to find out if the
computed solution is oscillation-free! Such an a posteriori criterion
can, however, be of soie.help in practice, since (Au)max can be estimated
long before the computed sclutions reaches a satisfactory "steady state".
Oscillations will be present in the 'transient states" _of the computation
whether or not the steady state limit will contain shock-induced oscilla-
tions. If the criterion should be satisfied at some transient stage, we
may expect an oscillation-free steady state solution with further temporal
steps. Otherwise, smaller mesh sizes may be neéded.

It is more convenient if this criterion can be put into some a priori
form, less precise as it must be. Note that the magnitude |uy-U,| depends
on the shoek strength, the shock orientation relative to the coordinate
axes (in a multi-dimensional problem) and the coordinate direction under
consideration. If it is possible to estimate this magnitude lul-uzl, then

4"
Re, = |U)-U,|ax/2v < 2

.."

may be used directly as an a priori limit. This Reynolds number R°Ax nust
not be confused with the Re, ., based on the wni form supersonic flow
K

velocity U_ far upstream of the flow field, i.e., RAAX’. = U Ax/v. In
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terns of this Re, , the criterion becores
’
UAx U, 4
Roax,e = 5 < U U7, Y

which can be useful epricri if there is some idea as to the shock strength
UZ/Ul and the ratio U, /U, of the reference velocity U  far upstream to
the velocity U1 into which the shock wave is propggating. For complicated
flow problems, however, such quantities are usually among the umknowns.
Thus, the limit on R°Ax,~ siven ty (5.33) will have to be based on some
rough estimate or on the "transient states of the computed solution.

The previous heuristic development is equally applicable to any
flow region coataining large gradients other than the shock front. In
particular, oscillations originating from boundaries of the field of
computation can be likewise alleviated. It is to be emphasized, however,
that if the oscillatory extraneous fundamental solutions like E% and 53
were not suppressed by the stratagem described above, these extraneous
pscillatory solutions will propagate into the neighboring smooth flow fields
even if the mesh size is much reduced below what is required by (5.33), at
least one of them will be amplifying avay from the boundaries of the trans-
iticn region while propagating into the neighboring smooth regions on
either side. On the other hand, if much too coarse a mesh size is used in
the computation, large amplitude oscillations will result since one of the
proper fundamental solutions of the difference equation fails to be a valid
approximation to that of the differential problem despite the fact that the
stratagei described above is followed. To produce an oscillation-free com-
putational solution of a flow problem involving shock waves, it is recom~
mended not only that some form of the two step algorithm (5.18) be used

with identical boundary values applied to both iterative steps during a
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time interval, but nnlso that the mesh size Ax is kept sufficiently small
compared with the condition (5.33). This recommendation is based on the
results of enalysis of a simple model linear equation for the numerical
solution of the much more complicated and nonlinear gas dynamic equaticnms.
It is rocommended in the same spirit that the local, linear stability
analysis of v.Neumann will help in achieving computational stability.

The practical merit of this recommendation is yet to be examined in
greater detail by the computational community.

The previous development has guided the author quite successfully
in his earlier attempts of integrations of the Navier-Stokes equations
for sore complicated flow problems, such as the near wake flow behind a
flat base with a sharp corner in a supersonic flmpgxld the hypersonic
flow over the sharp leading edge of a highly cooled fléf: plategls‘}‘he
flow situations encountered in these examples are just too complicated
to provide any meaningful quantitative tests of the validity of this
criterion and the accuracy of the computed results. In the following
.a simple cass will be doscribed vwhich may serve to support and to illus-
trate the usefulness of the stratagem and the simple criterion despite
the heuristic content of its applidtim to the actual integraticn of the
Navier-Stokes equatioms.

The Cheng-Allen two step algorithm as a member of the class (5.18)
is used to integrate the coxplete Navier-Stokes equations for the propa-
gation of a planar shock wave into a wniform superscnic flow at Mach No.
2 with the shock front inclined at &n angle B = 41,84° to" the uniform in-
flow!lg;he gas density Py velocity u),eneryy e, and prossﬁre p, are taken
to be wnity in dimensionless form. The theoretical values of these vari-

ables downstream of the shock, according to the Hugoniot relations agree
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with the values computed at Re = 10 to better than 0.1%. The criti-

Ax,»

cal Reynolds number per mesh is (R‘eAx,w )c

oscillations are found. The shock front is sharp and straight. It is

= ‘,(1'0.837) = 24.5. No

verified that the a posteriori criteria (5.32) are satisfied for the
density p the x-velocity component u, the y-velocity component v, the
energy e and the pressure p across the shock.

When the computation is repeated at R.AX,U = 50 exceeding the criti-
cal value (Ro“._)c = 24.5 for the same flow configuration, substantial
oscillations are present immediately downstream of the shock. The a
posteriori criteria (5.32) for all the physical variables are found vio-
lated. The peak amplitude of the oscillation is sbout 10% but such oscil-
lations are essentially damped out & few meshes downstream of the shock.
The downstream asymptotic values are reached well within the field of
computation. The downstream asymptotic values obtained from the computa-
tion at Ran.“
The smooth incident shock computed at R‘Ax,ﬂ = 10 was then allowed

= 50 are correct to within 0.3% of the Hugoniot values.

to be reflected from an inviscid wall. For the reflected shock, the crit-
ical Reynolds nusber (Re,, ) = 4/(0.857 - 0.646) = 21, which exceeds
the R"Ax,w = 10 used in the computation. A smoc'“, straight reflected
shock is obtained. All the computed downstrean ptotic values agree
with the theoretical values to bette. than 0.1% and there ar» no oscilla-
tions.

Computations at intermediate values of Re, . indlc,_at.q. that oscilla-
tions begin to appear with R'Ax exceeding 10 to 1S, incniso,noot rapidly
sroumnd the critical value of 20 - 30, and keep increasing slowly with

larger llo“.' This gradual rather than an abrupt change of behavior with




R‘Ax is probably what should be expected in a nonlinearA system., It is

encouraging that the simple criterion obtained from an elementary linear
enalysis of a simple model may prove to be useful in corplicated flow

problens to be encountered in practice.




VI. CURRENT STATUS AND FUTURE PROSPECT

The various problems associated with the numerical integration of
Navier-Stokes equations have been reviewed in the previous chapters as
to thc mathematical origin c:f the problems and of the basis of various
techniques in dealing with them. This approach was chosen in prefer-
ence to a review in the form of a glossary of various solutions in the
literature so as to provide a frame of reference how such solutions
may be studied and how each specific problem should be approached.

In the days of the mechanical desk cﬁlculators or the card pro-
gramped calculators (CPC), the numerical integration of the hydrodynamic
equations was attempted. The primary concern then was the limitation
of the computaticnal speed offered by these mechines. While the question
of computational stability was known to nathematicims[,l]it is not of
much concern to the practitioners. The dswn of the high speed electronic
computers in the mid-1940's changed all that. The ability to compute fast
showed how often an apparently strajghtforward computation will lead to
unbounded meaningless results. This problem is the first and the most
pressing one presented by the high speed computers. If the stability ques-
tion of the computation is not successfully resolved, nmo results of any
kind could be obtained. Since the mid 1940's, this stability question has
been studied very extensively, both mathematically and empirically. As

was described in Chapter III, much has been learned and understood since
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then. It is still true that when complicated sets of partial differen-

tial equations such as those of gas dynamics are to be integrated, compu-
tational stability remains a formidable problem. As in the older days,
so much work is still needed to render a stable computation that one
often hesitates to ask any further questions about any reasonably looking
computed solution. But for those interested in computational methods for
some practical purposes, computational stability is'not synonymous with
the major problem of the computational solution of a partial differential
equation system. It is only a first step in achieving a sclution of value
in practice.

With the help of suitable model studies and appropriate choices of

difference algorithms, computational stability can generally be obtained

and tested in actual machine computation. Now is the tine to be concerned
with obtaining not only some qualitatively correct solutions but also
quantitatively correct answers with some estimate of the error bounds of |
the computed solution. In applications, th? primary purpose of a conbuted ’
solution is to seek some reasonably accurate quantitative estimate of the
flow field. The accuracy requirements for different applications may be i
quite different. Whether a solution is sufficiently accurate for a spe-
cific application can only be judged under some overall view. But such a
judgement can be made only when the computed solution is accompanied by
an error bound if not a strict error estimate. The error bounds of a
computed solution is no less important than the error bars of a set of
experimental data if such computed or experimental sets of data are to

be practically useful. With this in view, the preliminary developments

on computational accuracy given in Chapters IV and V are very important
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in practice. Most of the solutions available in published literature
cannot be examined with regard to the question of accuracy because they
were probably obtained primarily to demonstrate qualitatively what can
be doen rather than to solve specific problems in application. A few

examples will be described below with some comment.

6.1 Hydrodynamics

The flow of an incompressible viscous fluid in two space dimension
probably represents the simplest form of the Navier-Stokes equations.
It is most often treated in the stream-function-vorticity form. The

mass continuity equation in two space dimension (x,y)

g-;log-y‘l-o | 6.1)

can be satisfied by a scalar stream function ¥ defined with

A and v---g-z-:- (6.2)

while the vorticity compcnent w normal to the Xx-y surface is

; %y 9?2
vy =2 571’- - - w(x,y) (6.3)

The curl of the momentum equation reduces to the vorticity transport
equation

ow , oY dw Y 3w
F{’W&--H.W Ivvzm (6.‘)

The divergence of the momentum equation gives the Vip in terms of V and
w. Thus the static pressure in the flow field can be solved independently

after the stream function ¥ and vorticity w have been determined. Thus
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the solution for a hydrodynamic problem will be posed as the solution for
two elliptic problems for ¥ and w simultaneously represented by Equations
(6.3) and (6.4) subject to Dirichelet and/or Neumann boundary conditons
on a closed boundary for ¥ and w. The physical boundary condition depends
cn the problem,

A simplest case is the decay of a vortex in a closed rectangular box

in which case u = v = 0 on the boundary which may be taken as x = 0, y = 0,
x=1, y=1, respectively. This set of phys.ical boundary conditions has
to be translated into boundary conditions of ¥ and w. By definition ¥ = 0
may be assigned on the boundary. This serves to determine Y(x,y) completely
from (6.3) when w(x,y) is given over the field. The remaining physical

boundary conditions are

g-;i-uuo on x=0 or x=1

-g;;.v.o on y=0 or y=1 (6.5)

The practical question arises how (6.5) may be expressed as the boundary
conditions of w in the solution of Equation (6.4). In practice, this
question is by-passed by solving Equation (6.3) first for the advanced
values of ¥(x,y) and the boundary values of w arc estimated either from
the initial data or the results of the most recently available advanced
values of ¥ near the boundary. This can be done either with or without
the conditions (65) taken into consideration. In principle the boundary
conditions (6.5) should at least be checked a posteriori. :.‘ihere is
clearly an error Tg o0 the boundary values of w of the order of At, Ax,
and/or Ay depending on the formal order of accuracy how this boundary con-
dition is handled. .
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Now if Equation (6.4) is integrated over the volume (i.e., x = 0 to
landy =0 to 1) and over the time period t = 0 to t of the integration,

the total decay of the vorticity is

Sl = 0) - w1
v
t
= dt/J Vw dv
of «f |
" _
- dtf Fw) - én (6.6)
o af @

i.e., proportional to the total outflux of the gradient of vorticity on
the boundary. (The three dimensional analeg is obvious). Thus the non-
random cunulative error on the total decay of the vorticity in the box
will be of the order of NJ-tB where N is the number of ti?ne steps inte-
grated and J is the number of spatial meshes in a linear dimension. The
¥+ won the boundary is assumed to be of the same orJer as the error in
the boundary vorticity T8 itself. The use of the integral formula implies
that the accumulation of the truncation errors over all the interior points
have been neglected in the differcnce formulation. Even so, the total
dacay of the vorticity at later times depend very importantly on how
accurately the boundary vorticity was formulated in the computation and
on whether and how the errors associated with such a formulaticn will accum-
ulate in spsce (a2long the boundary ) and in time. The question is more
than the local trwncation error of the difference formulation of the vor-
ticity boundary condition since the correct physical bo,ur@ary conditicn
Equation (6.5), which ropresents some integrated conditi“on on the vortc-
ity field rather than the local values of the vorticity was igrored.

The use of the stream function-vorticity as the dependent varisbles

is the fundamental reason of the difficulty in implementing the boundary

.
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condition. It also c.tmos considerable complicatioms in rendering a
conservative formulation to prevent the accumulatiom of the truncation
errors over the interior points. If the physical variables u and v are
used as the dependent variable in the differcnce formulation, the diffi-
culty with the boundary cc. dition would.be eliminated for the above ex-
ample and the conservation of the difference formulation can be readily
implemented. The advantage of the vorticity-stream funétion formulation
in reducing the number of partial differential equations may be more than
compensated by the difficulty it brings for this problem.

For hydrodynamic problems with inflow and outflow boundary in the
field of computation, the boundary treatment in the difference formula-
tion faces a difficulty of different nature. This is because the physi-

cal boundary conditions are prescribed very far up and downstream of the

field of computation. The vorticity-stream function formulation does not
aggravate the situation much further and is therefore often preferred for
the numerical integration of the hydrodynamic equations. The Poisson type
equations can be efficiently solved in different ways. There are many

such solutions in the literature. Most of such results can not be analyzed
for an error estimate primarily because of the non-conservative form of

the difforence formulation that permits the accumulation of the local trun-
cation errors. Experimental data are generally not available to provide

a quantitative estimate of the error of the computed results. All such
computations serve to demonstrate the feasibility of computing some ''reason-
able" spproximate solutions but are of little quantititive value, A numer-
ical study of the steady flow of a uniform stream over a sphere was there-

fore undertaken by Rimon and Cheng.
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The flow field of a uniform stream over a sphere is conveniently
described by using the spherical polar coordinates. To extend the outer
boundary of the field of computation to as far downstream as possible to
facilitate the implementaticn of the boundery conditions, z = In r is
used in place of the physical radius r. Three different sets of numeri-
cal integration have been made by different authors at common Reynolds
numbers of 40 and 100. There is also a set of experimental data by Taneda[n]
of some characteristic quantities of the recirculatory wake flow field
-at these and other Reynolds ‘numbers. Such measured values of wake length,
locations of the separation point and the vorticity centers provide com-
parisons of the detailed flow field in the most seasitive region, in addi-
tion to the overall drag coefficient acting on the sphere.

Jenso&zgxlxd Hamielec, et al szllged similar difference. relaxation pro-
cedures and used the same downstream boundary conditions approximating
uniform out flow. Both casss were carefully executed and examined numer-
ically, very carefully, and made sure that the steady state results they
oi:tained are essentially independent of further reduction of mesh spacing
from mesh sizes 46 = 6° and z = 1/20. Théy obtained the same drag coef-
ficlerit C; in agreement with what is expected frou the experimentally
well-established stendard drag curve. However, the details of the two
solutions were much different. For example, the vorticity on the wake
side of sphere surface differ by a factor of 2 to 3 for the case with
Ren = 40. The streamline patterns in the recirculatory:,u'ake are visibly
different although qualitatively similar. It is suppo;v.ed A'that such
differences in the results largely demonstrate the cumulative effects of

the truncation errors due to the non-conservative nature of the difference




slgorithms equivalent to their relaxation procedures. Jenson's results
depart considerably further from Taneda's wake data than the results of
Hamielec, at al. at ReD = 40, Hamielec, et al. also/calculated the case
Rep = 100. They found it necessary to refine the mesh to 40 = 3° and
Az = 1/40 to secure a reasonable steady state and to introduce some fine
adjustments in order to reproduce the experimental value of the drag
coefficient CD at Re. = 100. |

Rimon and Cheng i!xcceeded in developing a conservative difference
form that is still reasonably simple despite the contracted curvilinear
coordinates and stream furiction vorticity formulation. The same mesh
size A@ = 6° and Az = 1/20,as was used by the previous authors, was used.
The conservative nature of the difference formulation permit an estimate
of the upper bound of the cumulated truncation error by Equation (5.14).
The R’Ax shouid be replaced by ReAz for this calculation in temms of
49 and Az. The magnitudes of R“'Az for the two cases with ReD = 40 and
100 can be estimated from the computed solution based upon the velocity
gradient in the region near the isolated rear stagnation point in the
wake (the reference velocity of this mesh Reynolds aumber is based on
the velocity difference across the large gradient region). They are less
than % end 1 respectively. Accordingly, the absolute upper bound of the
cumulated truncation errors are 3 x 1072 x ReAzz ~ 1 snd 3% respectively.
The extrapolatidn condition at the éownstream boundary gives rise to the
largest contribution to the boundary error, Both g{- =0 and w = 0 on the
out flow boundary may comait a fractional error as much as 100%. (It is
not expected to error in sign). The absolute upper bound of the
boundary errors may then be estimated with Equation (5.16)‘ where cb' = 1

aad Re is based on the maximum flow velocity in the wake iegion and the

T
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length from the rear stagnation point to the out flow boundary in the
z-0 plane of computation. This is more than two unit lengths. The ef-
fective Reynolds numbers are then 80 and 200 respectively. Accordingly,
the bounds of the boundary errors are estimated as Zs"’/ke of 2.5% and 1%
respectively. By adding the estimates of the absolute upper bounds of
the truncation errors and the boundary errors for each case, the overall
estimate of the absolute error bounds are about 3.5% and 4% for the
cases RsD = 40 and 100 respectively. This is a quite satisfactory engin-
eering accuracy. Thus, it :{s expected and verified that the computed
results of Rimon and Chené will agree with Taneda's wake data much better
than the results of Jenson znd Hamielec, et al. The computed vorticity
field in the near wake region of Rimon and Cheng and that from Hamielec,

et al. differ by a factor of 2 or more in the case with Re, = 100 while

D
they differ much less for the case Re, = 40, This again demonstrates

D
the significance of the accumulation of the local truncation errors.

The computational effort of the solution of this problem following
the formulation of Rimon and Chengwas not excessive at the time and is
rather small in terms of the present day computing machines. 61 x 31 =
1891 mesh points were used. Steady state solution was obtained in about
an hour computation per case in the IBM 7094, with the potential flow
as the initial data. In terms of CDC 6600 machine time, it would take
less than 10 minutes. The computational time can be appreciably reduced
if a more reasonable approximation than the inviscid flow field should be
used as the initial data. It is therefore believed that with conscientious f*
effort in constructing the difference formulation, useful quantitative

results can be obtained from the numerical solution of the Navier-Stokes

equations.
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The extension of such calculations to steady flows in three dimensional

space and to higher flow Reynolds numbers will need not only substantially

e s

more computer time but also some analysis to gain understanding of certain
intricacies in the 3-D problems especially concerning the computations in
°

the vicinity of "separation lines'". With the greatly increased capability

of the high speed computers in the foreseeable future, it is reasonable to

expect good quantitative results for these steady 3-D problems of practical
interest.

The time dependent hydx"odynanic problems in three space dimensions may
be considerably more diffi:cult and demanding. This is especially true if
the hydrodynamic turbulence is the subject of investigation. The high fre-
quency components of the tui‘bulent fluctuations could doubtfully be treated
with a reasonable accuracy despite the giant stride in the capability of
the computing machines foresecn in the future. It appears that some phe-
nomenological theory, at least for the high frequency components, will be
needed vhile the low frequency components may be satisfactorily handled
by computational methods. This statement is meant to apply whether it is

to be integrated in the physical space with the physical variables or it

is to be treated in the Fourier space for the Fourier ccmponents of the

physical variables. Much work is needed in any me.[24.25.26]

6.2  Supersonic Gas Dynamics

The gas dynamic equations system is basically the same as the hydro-
z dmamic equationc .xcept for the variati- is of gas clezl'sf'it-.).l and the dif- | #
fusivities and for the addition of the equation of emergy balance (1.3).
The outstanding .feature of the supersonic flow field is the presence of

shock waves either generat;.ed from within or incident on the flow field
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from without. Most o-f the practical prcblems that call for the numerical
treatment of the Navier Stokes equations involve the generation of shock
wave from the interaction between the inviscid and the viscous streams.
The computation of a shock wave with unknown strength and location presents
considerable difficulties as was discussed in the previous chapter. The
shock-induced oscillations in its neighboring flow field is detrvimental

to the appearance of the computational solution. Such solutions were

often prosented after some artificial averaging or filtering procedure and

can, therefore, be of qualitative values only. Those solutions relatively
free from this criticism indeed cwe their success in avoiding the serious
ccnsequences of a shock standing in an important part of the flow field.
By carefully selecting the field of computation for the problems to be
investigated, they minimized the conséquences of shock-induced oscilla-
tions.

Allen and O\englﬂ'eated the near wake flow inbedded in a supersonic
stream turning over a sharp shoulder with a "recompression shock' generated
t:rol the turning of the supersonic stream caused by the closing of the
recirculatory wake. In the stoady state solution of this problem, the
small oscillations caused by the recompression shock distorts appreciebly
the computed results only in the far downstream portionof the rejoined
wake flow field mear the downstream boundary. Although the oscillations
of the flow properties in the flow field is equivalent to those induced
by an oscilletion of the shock front of only 1/4Ax, it_:xénains es one of

the two largest sources of computational errors. It is co;njectured that

the likely sogrce of the small oscillation is the extraneous inaccurate

difference treatment where the shock emerges from the downstream boundary




of the field of computations, The conservative difference form of

the class (5.18) was used and the critericn (5.33) is satisfied although
without a substantial margin. Unfortunately, comparable experimental
data are not available and the extension of this calculation to the range
of practical Reynclds numbers of 103 - 104 and for the somewhat more com-
plicated geometrical configuration was beyond the means (cost of computa-
tions) availzble.

Ross and meng[izldied the question that if the number of mesh points
is limited to 2100 with '"optimal'" ratio of Ax/Ay and with some non-essen-
tial but simplifying modifications of the boundary treatment, what the range
of the Reynolds numbers and Mach numbers will be when the computational
solutions with the previous formulation will possess an absolute upper,
bound of the error of no more than 10%. The computation.al effort was
limited to 10-15 minutes of computing time on the IBM 360-91 equivalent
roughly to 20-30 minutes on the CDC €600 or 4 to 10 hours on the IBM 7044,
originally used by Allen. Wnen other restrictions purely of fluid mechan-
i;:al nsturs are superposed, it was established that the range of validity
of the computational formulation can be extended to M T 4 and Reynolds num-

bers of v 1-2 x 103

based on half width of the base. To extend this compu-
tation to the practical range of interest would require substantial re-

- finement in the mesh size with corresponding increase of thc computational
effort. The storage rcquirement on the computer does not seem restrictive.
It was the computer time and cost that was prohibitive. It may be that the
sbsolute upper bound of 10% is too restrictive since the m;ximum fractional
error in the solution is likely to be substantially less than the absolﬁto
upper bound. A substantial decrease of the estimate of the computational

effort will follow a modest reduction of the accuracy requircment if the
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mothod of error estimate described in Chapter V should be granted in the
sbsence of any direct comparison with reliable and comparable experimental
data.

28 :
Carteg' dlooses to integrate the Navier-Stokes equation for a steady

supersonic visccus flow over a compression ramp or comner with an imbedded
separated region. The compression waves will eventially coslesce into a
shock wave. Carter kept the upper boundary of the field of computation
sufficiently close to the viscous region so that the waves generated from
the viscous layer may be tréated as iscntropic waves without serious error
and utilized the simple wave extrapolation condition on the upper tcundary.
This stratagem, as was used in the treatment of the mear wake problem,
serves to eliminate the major part of the undesirable wave reflection from
the upper boundary. By restricting the fiecld of conputa.tion to such a
narrow strip and using a highly refined mesh with Brailovskaya's difference
algorithm, a member of the class of (5.18), the results compare favorably
with exporimental data in the comparable Reynolds and Mach number ranges.
‘li'.e diffcrence formulation is probably not quite conservative due to the 3
use of the "curved" body coordinates. But the curvature is sufficiently
sxsll or otherwise localized so that the accumulation of the truncation
errors msy not be excessive. While an estimate of the error bo.unds has
not yet been made, the evidence seems to indicate that this calculation

may have coms very close to generating directly some useful practical re-

sults. Admittedly, the computational effort in this cgléulation seened
to be excessive from the academic point of view, (two or ;ore hours of CDC
6600 per case), it does not appear prohibitive from the view of engineer-
ing developmeng{. Moreover, ilxem is substantial room for improvements

if sn error estimate can be made., The 4th generation computers that will
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shortly be operatiana.l further promise a substantial increase in speed of
computations and in storage capability. This may render the computational
effori to be of less concern in solving such practical problems. |

2n academic program has been devoted to developing techniques to face
the difficulty of computing shock waves in a complicated flow field. The
results reported in Section 5.4 demonstrated some progress in this direc-
tion. There are still tremendous difficulties shead and, as yet, not re- - j
solved whon the shock wave interacts with other incident waves and when --
the criterion of (5.33) becomes much too restrictive. Nevertheless, even
in the present unsatist'a-ct‘ory state, the computationzl results can be

useful in fluid dynamics rescarch to supplement experimental and other

efforts. They will also encounter difficulties, but of sore different
nature. The following treatment of the hypersonic ludhﬁ edge problem
may illustrate the situation.

Over the leading edge of an infinitely thin flat plate, placed in a
h?'porsaxic or supersonic stream at zero incidencé. a shock wave will
develop due to the viscous effects in the vicinity of the plate. In this
region, the hypersonic strong interacticn theory, based on the boundary

layer type arguments, failed to provide even a qualitatively adequate

description of the flow field. It is in doubt to what extent the flow
situation will have to be described by the kinetic theory rather tham by
the continuum theory when appropriately modified for the slip effects.
The flcw field was thus computed by Chen and Cheng. A_;;iﬂ\er strong
oblique shock wave dsvelops rapidly from the leading odge: and produces,
in the downstream gas, a high pressure and teq:eraturé, both proporticnal
to M2sin?0 where 0 is the local inclination of ihe shock front with the

inconing uniform stream. It is very clear then that any small oscillations

-




in the shock front will produce, in the downstream, corresponding oscilla-

tions of very significant magnitudes with the upstream flow Mach number
of v 20. It is, therefore, very critical to have the shc;dt oscillations
esseatially eliminated from the computation. The conservative two stop
algorithm of Cheng and Allen was sgain used with a 40 x 30 mesh in the
physical space x-y with y = 0 describing the plate surface. The leading
edge shock emerges from the downstream out flow foundary just below the
top comer. No oscillation of the shock wave is noted except in the
immediate vicinity of the piate leading edge point. The oscillation is
fairly large but dies oﬁt.rapidly withi.n sbout 5 meshes downstream along
the plate and 2-3 meshes normal to the plate. Various slip conditions
were used in the computation. A minor localized oscillation developed
somewhere downstream about 2-4 Ay for no obvious re'asons‘ and is far away
from the shock. It is conjectured to have originated from some inapprop-
riate treatment of the boundary conditions on the plate. This localized
o_scillation imposes no significant error on the solution. The downstream
out flow boundary is again treated by the second order accurate extrapola-
tion but along the shock direction where the shock emerges, along the
plate cn the plate surface and along directions linearly interpolatedlin
between. Despite the suppression of the oscillations of the emerging
shock, the slow decay of this boundary error stands as the largest single
contributor to the solution in the interior. The sbsolute upper bound
is <7% according to Equation (5.16) as evaluated with _;hé-smooth corputed
solution a posteriori. Tho truncation error as evalmted“uith Equation

(5.14) and the solution in the non-oscillatory region away from the leading

edge point is less than 78, With both the round-off error and the error
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dus to the steady state criterion both less than 1%, it is estimated that
the absolute upper bound of the error in the computed solution, away from
the immodiate vicinity of the leading edge and the out flow boundary, is
168. The scatter of experimental data is more tham 50%.

Comperison of the computed results with a collection of experimental
data, not precisely corresponding but encompassing the case computed, shows
substantial agreement with the data considered to be most relisble in the
different regions snd for different quantities. This comparison is cer-
tainly not the best and the ‘most definitive, but is probably the best avail- I3
able and possibly the best one may hcpe to have in the not too distant

future. This is in view of the difficulty in reproducing the experimental

environments and of the cost involved in such experiments. This study
leads to a few physically meaningful conclusions which was not possible
otherwise. They are
(1) A continuum formulation with appropriate slip condition
is physically plausible and can indeed be useful for prediction
" purposes probably more reliable than experiments.
(2) The surface conditions based on totally diffused reflec-

tion snd zero recovery of mean kinetic energy is the only correct

one that can provide the low surface pressure in the range of
the available experimental data.

(3) The computational method with a reasonsble accuracy can
be useful in fluid dynamics research and can help _tﬁ_- resolve diffi-
cult fundamental problems. It is not simply a tool i“'or carxying

out repetitive routine numerical work in engineering development.
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There are 1-por£mt omissions, in the _above review, of many interes-
ting and significant results in the development of computational methods
relevant to asrospace applications. They ars omitted here to facilitate
the presentation of the major theme and hopefully with as little digres-
sion as possible. While computational stability remains a problem, it
can genmerally be overcome with some hard work. It should not be permitted
to draw attention away fiom the need of reasonably accurate computed
results. Stable snd smooth computational results are encouraging but can
be very dsceiving. From thé aspplication peint of view, the question of
accuracy is crucial. Accordingly, the sppreach dascri‘bed above to securo
“accurata" formulation is of findamental importance, crude as it is. How
such crude criteria may be uscd and incorporated are desmonstrated in this
chapter. Much development in this direction is needed. . Sore fundamontal
aspects should be understood and practical methods developed to deal with
the various situations. Such problems will not fade eway because of the
dramatic sdvance in corputer capabilities. Indeed, there are serious
l;roblcls thet will be encountered in the efficient use of the fourth gen-
eration computers if any mesningful spscd advantages are to be reaped.
Therefore, a few words on the prospects of the coming fourth generation

corputer vwill serve to bring to conclusion the present review.




6.3 Future Prospects with the Fourth Generation Computers

It has been a constant allusion that faster and bigger computers
will provide the solution to many difficulties associated with the numer-
ical integration of partial dift‘erenfial equations. Such larger and
faster ccmputers are needed but they do not provide the brutal force to
resolve all the computational difficulties without conscientious efforts.
Certain aspects of the problems must be understood as to their fimda-
mentals before being satisfactorily dealt with, such as thg questiors of
stebility and accuracy. Moreover, the development of the computer hard-
ware has rzached the poini through miniaturization tha order of magnitude
improvement in the specd of informaticn processing camnot be expected as
was in the past. The fourth generation computers promise to bring about
large improvement in speed through '"Parallelism'" which is very much de-
pendent on the sophistication of the software and on the nature of speci-
fic problems to be solved. They bring complicated problems to the users
as well as to the manufacturer of the machines.

"Parallelism" is effected primarily in two diffzrent ways. Burrough
Company's ILLIAC IV speeds up the arithematic process by using 64 arithe-
matic units, receiving the same instruction from a cormon command module
to process simultaneously 64 sets of raw data. Thus arithematic results
can be "effectively'" obtained 64 times faster. This is often referred
to as a "single Instruction Multiple Processor" machine (SIMP). Control
Data Corporation's STAR (the STring ARay processor) employs the asserdbly
line or "pipe.lino" technique in which a string of data is "continuously"
fed into the "pipe line" to be processed by a standing instructiocn. In
this manner, the arithemstic unit does not become idle when the instruc-

tions are being fetched, decoded, and installed in place to direct the

~
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computation and when the newly computed data is being sent out of the

arithematic unit or when the raw data is being brought into the arithe-

matic uvnit. This is often referred to as the pipe-line machire. Both
the ILLIAC IV and the STAR machinss possess the virtual memory capacity,
i.e., the mechine will manage automatically the data stored in external

wemory units for extending the storage capacity of the machine. Texas

Instrument Corporation's ASC machine (Advanced Science Computer) incor-
porates both the multi-processor and the pipe-line concept but possesses
no virtual memory capabilit)". All these machines are about to be (or
already) delivered by the ‘various manufacturers and are to become oper-
ational shortly.

ILLIAC IV is most efficient when the 64 arithematic processors can
be fully utilized. Any vacant processors are simply idling, doing no
useful work, when the operation is performed on less than 64 sets of
data. Thus the demonstration of the speed of ILLIAC IV vs currently
svailable cozputers is often in terms of the inversicn of a 64 x 64
matrix. STAR is most efficient whon a large number of raw data (the
long string of data) is to be processed through the same operation so
that the "filling time" of the pipe becomes negligible end the machine
will provide a 64 time incrcase of the effective speed since each word
in the STAR contains 64 bits of binary information. The ASC machine po-

ssesses intermediate behavior. Each manufacturer has developed powerful
and intricate softwares to implement and enhance the advantages of the
hardvare. But all of them are subject to the inherent limitations of

being a SIMP or a pipe-line machine.
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For any one of t.hese machines, a huge amount of data must be stored,
arranged, and retrieved from storage facilities. They must be done effic-
iently, commensurate with the processing spced of th; machine. . Assume
that such can be done for the data in core merxory, directly accessible to
the central processing unit (CPU), it cannot be dome for the data stored
in external memories. The speed of a search operation and of a data trans- i

mission through the interface to the CPU is orders of magnitude slower than

r

the arithematic speed of the machine. If the CPU asks for data in the ex-
ternal storages too ftequenély. the CPU would be doing little useful com-
putation but transmitting'the data in and out of the external memory units
wder its virtual memory operation. If the user should prefer to deprive :
the machine of its virtual memory capability, then the user-programmer

must assume the responsibility of managing the data across the interface. ]

There is an alternative solution of this problem by expanding the core

memory of the CPU of the computer to match its processing speed. This is
wmfortunately a very expensive proposition. There are also other problems
of data management in the CPU, probably not so serious as the one just
mentioned. They are more intimately related to the specific characteris-
tics (hardware and software) of each computer. These ere the problems
which the user cannot help very much in its eventual solution. On the

other hand, these mechines present problems to the users, the solutions

of which the manufacturer of the machines cannot help.

Currently available computers are serial machines that process and
advance the data at one point after another, Simultameous solutioﬁ of
unknowns at many points, as is required by.implicAit algorithms is handled
through special procedures equivalent to matrix inversion. Ifa program

designed for the serial machine should be run on the parallel computers,
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no speed advantage will result. (Indeed there will be some loss.) The j
64 parallel processors of ILLIAC IV will only have one processor doing g
vseful work. The STring-ARray processor of STAR wul/ operate in its s
scalar mode (versus the "vector mode" for string afray processing).

There is not, and will not be, a software that will translate an existing

serial program into a reasonabiy efficient "parallel program" for a
specific parallel machine. Such a trenslation is not a.natter. of trans-
lating cne language into another. It is a matter of changing the logic
of solving a problem. It asks essentially for a new fomulatiqx for a
specific problem to exploit tho spead cdvantage offered by a specific
machine. The user is asked to start anew, for each problem and for a
specific computer and to pay considerable attention not only to the formu-
lation of a problem for solution but also to the storage of the data in
the external memory to match the demand of the data according to the formu-
lation of the problem.

In writing such a program for use with a specific parallel computer,
it is not a simple matter to take advantage of a successful serial program
used with the current serial machines. It may indeed be doubtful, if

there may be any advantage under special circumstances. Without further

elgboration, it may be noted, even for simple problems, that:

1. An efficient ssrial algorithm need not lead to an effici-
ient parallel algoritham while sn inefficient serial algorithm
mey lead to an efficient parallel algorithm. '

2. A serial algorithm that is spparently serial and was 3
constructed for use with a serisl computer ﬁy possess a great :
deal of i\idden parallelism which may be exploited to suit the g
perticular mode of operation of a specific parallel computer.
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3. Parallel program may behave quite differently in the

di fference solution of a partial differential equation than

the corresponding serial program. The behavior .refers to the

stebility of the computation, the rate of-convergence to the

desired solution, and the accuracy of the solution.

The last one is particularly important. It asks the user to g:in
as much &3 possible the understanding of the various fu;dnantal problens
of diffcronce methods such as stsbility and accuracy. With a better
understanding, it may be hopeful that the years of todious and painful
learning process throush trial end error in developing the difference
techniques of the serial machines may not be repcated or at least may be
greatly reduced.

For many important practical problems the solution of the Navier-
Stokes equations in three spatial dimensions will be required. Even for
the steady state solution of such problems, the computation for a reascn-
ably accurste solution will need the spfed and storage capacity promised
by these parallel computers. The complicated boundary conditions do not
lend thenselves to efficient parallel treatments and interfere with the
efficient organization for the parallel computations of the fluid flow
problems. This is in addition to the fundamental difficulties noted
sbove, It is much desired that what has been leamned from the serial
rachines may benefit the development of computational programs that will
reap the promised speed edvantage of the parallel computer. For this
purpose, it is especially important to gain some fundssemtal understanding
of such complicated computational difficulties special to fluid dynamics.




Such understanding cannot be expected from computer scientists who have
thoir full share of difficulties associated with the operation of the
parallel computers in general. Those wishing to solve the complicated
flow problems with the Navier-Stckes equations must learn how to resolve
such difficulties for themselves. The task ahead is formidable. The

potential reward is also immense.
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