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Lectures on ’

Estuarine Circulations and Mass Distributions /

s \ 2 4 i
; ! 1. Introduction \“ i

These lectures concern’estuaries or, more precisely, my special recent

interests inthe physical aspects of estuaries. Donald Pritchard at The Johns

Hopkins University has studied these systems for twenty-five years and has

RBG. eosGabads ot s i

attempted (1967) to formulate a workable definition:

¥An estuary is a semi-enclosed coastal body of water which has a free
connection with the open sea and within which sea water is measurably diluted

with fresh water derived from land drainage. ¥

3 'I can quarrel with this definition in certain respects. Pritchard apparently
wanted a definition which required an estuary to have an "estuarine circulation"
characterized by water outflow in the upper layercomposed of a mixture of fresh
water and salt water and an inflow in the lower layers of saltier sea water' . The
presence of this kind of circulatioﬁ distinguishes an estuary from other types of
embayments and is a useful characterization. However, as Prit;chard himself
states, it excludes a body of water such as the Baltic Sea by including the adjective
""coastal". The Baltic has an estuarine circulation and I think it should be considered
an estuary. A further objection is to the last four words in the definition which put

an undue importance on the source of the fresh water. It may be interesting, for
example, to consider a theoretical model of an estuary in which the direct addition

of rain water may be an important source. Certainly we should not exclude the

In the typical estuary density differences due to salinity are considerably
greater than those due to temperature (Pritchard, 1965).




fresh water addition from the rain falling directly on a body as large as the
Baltic Sea.

Pritchard's definition of an estuary requires an appreciable amount of
incoming fresh water. However, we will see that interesting three-layer circu-
lations with resemblances to two-layer estuarine-type circulations can occur when
the fresh-water supply is zero or very small, and we will include this case. We
may even go further and include situations in which evaporation exceeds precipi-
tation and run-off. In such cases, for example the Mediterranean Sea and Laguna
Madre in Texas (Pritchard, 1965), inverse two-layer circulations exist which
also resemble the classic estuarine circulation.

Pritchard goes on to distinguish several types of estuaries based on geo-
logical considerations of the origin of the estuaries, for example drowned river
valleys, which he calls "coastal plain estuaries" and coastal indentures gouged
out by glaciers which he calls "fjords'. Certainly fjords differ fundamentally from
such coastal plain estuaries as the Chesapeake Bay but the way in which the
estuaries formed is not directly important for us.

It will clarify our problem if we attempt to classify estuaries in a manner
similar to that of Stommel (1951), based in part on the relative strength of the
turbulence that causes the mixing of waters of different salinity (density). We
define four types:

Type 1:

The simplest type is one in which the fresh water flows gently out to sea over
a wedge of salt water originating in the sea with no mixing between the two fluids
(Fig.1.1). The fresh water is lighter than the salt water and tends to over-ride,

ultimately spreading out in a thinner and thinner layer as it moves seaward. In
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Fig. 1.1 Mouth of a river emptying into the ocean.




the absence of any mixing the upper layer remains fresh and the mass flux across
any section is equal to the river discharge R. There is a zero salt flux across
every section. Since the interface is stationary, if the lower fluid may be con-
sidered frictionless and barotropic, it will be at rest. Among other things, this
means that the horizontal pressure gradient in the lower layer will be zero. The
salt wedge may penetrate up the river 50 km or more (Pritchard, 1965).

Of course, frictional effects and mixing are never entirely absent. For
example even in the absence of wind and tide the flow of the river water over the
salt wedge will tend to produce unstable waves at the interface which will break
and cause mixing. This has been studied by Keulegan (1949) in a laboratory flow

v of a light fluid over heavier salty fluid. As pictured in Fig.1.2, waves formed

and eddies were ejected from the crests causing some of the lower salt water to

be mixed with the upper fluid. In the river this will cause the upper fluid to become
somewhat salty as it flows toward the sea. The salty water comes from below so
that there must be a (small) flow in the lower layer from the sea up the estuary to
replenish the lost salt. In this kind of mixing none of the upper fluid is mixed

into the lower fluid and the lower water remains of the density of water in the

sea. Keulegan found that mixing began when

& 8p % e
e-\vgp‘) /1 =0,178

where v is the kinematic viscosity, g is gravity, Ap is the density difference,
. p, is the density of fresh water and 1u is the velocity of the upper fluid. For

typical values in a river, this corresponds to velocities of a few centimeters
per second so that instabilities of this kind are very likely. The definition of a i

Type 1 estuary is restricted to situations in which the (weak) mixing is primarily




Fig. 1.z Breaking waves at interface of a two fluid experiment.
The lower fluid is at rest and the upper fluid is moving
at speed U.

) (b)

(a

Fig. 1.3 Density profiles in an estuary. Fig. 1.3b portrays a sharp halocline.




due to the wave breaking at the interface. An example of a Type 1 estuary is the
mouth of the Mississippi River.

Type 2 Estuary.

Two other effects are important in producing mixing in estuaries. The first
is the tide which produces motions and breaking internal waves in the fluid and
these in turn cause turbulence and mixing. The second is the stress of the wind.
This causes velocities in the water and the resulting vertical shears are a source
for energy of turbulence. The result is increased mixing compared to the Type 1
estuary and a density profile resembling that in Fig. 1.3a with a fairly continuous
density distribution with height. Here the density increases gradually with depth
although there is frequently an identifiable halocline across which the density
increase with depth is more marked. Examples are the Chesapeake Bay and the
mouth of the James River which empties into the bay.

We include in Type 2 the fjord-type estuary which is typically so deep that
the lower layers are relatively inert with little mixing and a density equal to that
of sea water. In this case a relatively sharp halocline often exists as shown
in Fig. 1.3b.

The mixing is typically much larger in Type 2 than in Type 1. In the
Type 1 the flux of salt water into the upper layer is less than or at most of the
order of the river flow. In Type 2 the upward flux of salty water is much larger
so that the total flow of brackish water seaward in the upper layers will be several
times the river flow. In the James River, for example, the total discharge is
some twenty times the river discharge so that the compensating flow up the
estuary in the lower layers is nineteen times the fresh water discharge.
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Type 3 Estuary.

If the source of mixing is strong enough the estuary may be sectionally
homogeneous, i.e., thoroughly mixed from top to bottom and side to side. Al-
though the vertical and lateral gradients of salinity vanish, a horizontal, seaward
variation of salinity may exist. In the idealized case there is no estuarine type
circulation in the estuary. The observed longitudinal gradient of salinity requires
a transfer of salt up the estuary and this must be accomplished by turbulent
diffusion.

It is possible that strictly sectionally homogeneous estuaries do not really
exist. For example, the estuary of the Mersey River in England was thought to
be vertically homogeneous until Bowden, Fairbairn and Hughes (1959) reported a
slight vertical salinity difference. This raises the basic question as to the relative
importance of the advective salt flux &S set up by the estuarine circulation and the
turbulent longitudinal flux u'S'. In these expressions u is velocity and S is salinity.
If u = 0, the estuarine circulation is absent but, because S is large compared to S',

a very weak circulation can transport a great deal of salt.

Type 4 Estuary.

In this estuary the fresh-water influx from river discharge is negligibly
small. If the water in the sea is of homogeneous density, it will fill the estuary
and, since no density variations exist, there will be no gravitational circulations.
The Type 4 estuary can have motions, however, if there is a vertical gradient
of density in the outside water and if the mixing is greater in the estuary than
in the outside water. Then we will have the situation portrayed in Fig. 1.4.

The constant density surfaces slope as shown and this leads to accelerations
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which produce the three-layer circulation pictured in the figure. This possibility
was first raised by Hachey (1934). A circulation of this kind was inferred from
a study of acid wastes in the water in Baltimore Harbor (Stroup, Pritchard, and
Carpenter, 1961). The Chesapeake Bay outside the harbor has the required density
variation with height caused by the presence of lighter water in the upper layers
originating in the Susquehanna River.

This concludes the introduction to these lectures. In subsequent sections

we will consid=r some aspects of estuaries in detail based on recent research.

2. Salt-Wedge Estuary

Let us consider first an estuary of Type 1 pictured in Fig. 1.1. We will
confine attention to an idealized situation in which we may neglect mixing entirely.
Then the lower layer is at rest and therefore the longitudinal pressure gradient
along the estuary is zero in the salt water. From hydrostatics (and using the

Boussinesq approximation) the pressure in the lower layer is
p/ps = g(H~z) + b(H-h-z) {2.1)
where b is buoyancy, defined by b = g(p-p¢)/p, and &b is the buoyancy of the salt
water. The equation of the free surface is z = H, and h is the thickness of the
upper layer. Thus in the lower layer
gH, =h, M 2.2)
or

gH = hdb + const (2. 3)

We assume irrotational motion in the upper layer so that the Bernouilli equation is

2

P, Yy gz =const @2.4)
Pe 2




where u is the longitudinal velocity which will be nearly uniform across a section.
We neglect the other two components of the kinetic energy. They will be very
small if the length scale along the estuary is large compared with the depth and

if the change of width is gradual. Hydrostatics leads to

2

gH + % = const 2. 5)

or
B
hi+35 ) =E (2. 6)
where E is a constant proportional to the sum of kinetic and potential energies, and

F is the densimetric Froude number. It may be written

e
B Wh B @.7
where R is the river discharge and W is the width. Let us non-dimensionalize
using the depth of the fluid h, at the tip of the salt wedge and the width Wy of the

estuary at this section. We have

2
2h'+ —o— - g 2.8)
(h'w")
where
h w 2 R®
h' =1 W'='— ’ Fo= (2.9)
o A WA Kb

and E' is non-dimensional constant proportional to the energy. If energy is con-

served along the flow E' = 2 + F5. Differentiating (2. 8), we get

1 hl
St = wof /0-F) (2.10)
This shows that the depth of the upper level decreases with distance downstream
(assuming the width increases downstream) if and only if conditions are super-

critical, i.e., F° >1. Eq. (2.6) shows that F° then increases along the estuary.




Thus, if we require energy conservation and that h decreases everywhere toward
the mouth, F: > 1, i.e. conditions must be supercritical at the top of the salt

; wedge and therefore supercritical everywhere. In fact, it is physically obvious
that h must decrease ultimately as we proceed seaward so that conditions must
ultimately be supercritical in any case. It is possible, however, that h could
increase near the tip for some distance so that we may consider the possibility
that F5 <1.

We see from (2. 6) and (2. 10) that h begins to increase and that F* begins
to decrease. These behaviors continue toward the mouth and h can never
decrease as required ultimately by physical considerations. We conclude
that if energy is conserved along the estuary, conditions must be supercritical
everywhere and h must decrease montonically.

Another pussibility exists however, namely that the flow starts out sub-
critical with h increasing downstream and then changes discontinuously at some
section (with loss of energy in an internal hydraulic jump) to a smaller h and
supercritical conditions, with h then decreasing with farther distance downstream.
To see if this is possible we must make two investigations. In the first we
calculate the momentum balance in a jump as in Fig. 2.1. We consider the rate
of change of x-momentum of the fluid contained between Sections A and B at
time t. At time dt it is between sections A' and B'. Its rate of change of
momentum,

equals the pressure forces on the fluid, i.e., .
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Fig. 2.1 Internal hydraulic jump in a salt wedge.
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(‘h‘ rhn p! (b. hb)
W=o Pe8(h,-2)dz - W Peg, hn'%'e(ha'hb)'zj dz

.

s
(b -hy)(1-2B)

, (2.12)
{2 i=h
hadiier 7
= 1+ 28y,
W] p,g[h, (1+ = )z_sz
Integration yields
2
Wwhy _u'h, _ 8p 42,3 2.13
e ek S 2 L) (2.13)
Using continuity, u,h, =u,hy we may write this in either of two ways:
=2 -Llh b, |
Fossm 1t 2.14)
0 TR N (2.15)
» 2%,/ \1*h,/ -

Since h, < h,, Fs < 1, F, >1 so that a jump downstream from sub-critical to

supercritical is possible from a momentum viewpoint. 3
Let us now consider energy. We may choose a representative sub-critical
initial flow F> = 0.25. Then if energy is conserved E'=2.25 in Eq. (2. 8). w!
Fig. 2.2 contains this curve plus one corresponding to a lower energy level 4
E' =1.50. We see that there is a possible jump to a lower energy from the
subcritical branch as shown by the arrow. We conclude that a subcritical flow
at the tip of the wedge is possible with h increasing very gradually initially but
there must then be a hydraulic jump to a smaller h followed by a monotonic

reduction of h as the upper fluid spreads out over the wedge.
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3. Estuary with a Control Section.

We may use some of the results of Section 2 to discuss an estuary with
a narrows at the seaward end as in Fig. 3.1. We again consider zero friction
and mixing so that the lower fluid will be inert. Inthe region of the narrows
the Bernouilli equation is the same as the dimensional form of (2. 6),

2
hab + g = const (3.1)

Using continuity uhW =q, = const, we may write
2
htb + —L— = const (3.2)
2n°W*

Differentiating with respect to x, we get

aw

— =0 (3.3)
dx

gle

R R,
1 haﬁ_i hawa

At the narrows W is a minimum so that dW/dx = 0. If, in addition, we make the
reasonable assumption that the interface slopes upward at the narrows as the
issuing fresh water spreads over the salt water in the sea, we find that F° = Ff, =7
at the narrows so that conditions become critical at the mouth and supercritical
beyond this. As we have seen in Section 2, the fresh-water layer will continue
to thin as it moves seaward.

An interesting relation is obtained when the estuary width is much larger
than the width of the narrows. Then from (3. 2)

3
h.tb + —%_zwaha = DAb (3.4
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PLAN VIEW

Fig. 3.1 Estuary with a constriction or narrows.




where the subscript ''c¢'" denotes conditions at the narrows and D is the depth of
the halocline in the main body of the estuary. Using F2 =1 we obtain the simple
relation

h, = ¥D 3.5
This result was first obtained by Binney (1972).

4. Strongly Mixed Estuaries

We have introduced the subject of estuaries by discussing a highly idealized
situation in which there is no mixing (and no friction). Sources of mixing exist in
all real estuaries, however, and we may discuss two causes in addition to the
tendency for breaking waves on the halocline as described above.

(1) Influence of the tides. If the estuary is subject to tides, these will
cause tidal currents to move in and out of the estuary. Aa the current moves
along the bottom and sides a turbulent boundary layer will be created and there
will be a tendency to mix near the boundaries and cause a reduction of the density
gradient in those regions. The density field changes momentarily as represented
by the dashed lines in Fig. 4.1 which portrays a typical pattern with a pronounced
halocline. The new density distribution will tend to cause the flow pattern indicated
by the arrows in Fig.4.1. The result is to separate the constant salinity surfaces
in the interior and to create a salt flux and mass flux from below to the region of
the upper layer. Since we are dealing with a steady state over the long run,
processes must exist to restore the original density gradient and, in particular,
to maintain the halocline. The loss of salt in the lower layers is compensated by

an influx of salt from the sea due to the estuarine circulation that develops.




Fig. 4.1 Effects of mixing along sides and bottom of an estuary.

2=H+AH(x)

AXIAL SECTION

Fig. 4.2 Conditions near the mouth of an estéary.
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The tides will also cause the development of internal waves. These may
break against the sides of the estuary again creating turbulence there and the
same phenomenon described above and depicted in Fig. 4.1,  Stigebrandt (1976)
has conjectured that internal waves due to the tides propagate over the sill of
the Oslofjord and break against the sides and the head of the estuary. He has
constructed an experiment that demonstrates this effect.

(2) Wind effects. When the wind blows over the surface of the water, the
resultant agitation, for example breaking surface waves, will cause turbulence
in the upper levels. To the extent that this penetrates to lower layers, for
example to the halocline, mixing will result. In addition the wind will cause
currents in the water and the resulting shear will be a source of energy for
turbulence. In addition the stress of the wind may cause internal waves in the
deeper layer which may break in the interior or against the bottom and sides.

Obviously a quantitative representation of mixing processes will be
difficult and we will discuss these at some length in Section 5. A great simpli-
fication results if the mixing is sufficiently strong to produce a thoroughly mixed
estuary. This was first discussed by Stommel and Farmer (1952, 1953). We
may discuss the problem with reference to Fig. 4.2 which shows conditions in
the vicinity of the mouth of an estuary (on the left) connecting the estuary to the
open sea (on the right). We have assumed an estuarine circulation near the mouth
with fluid of mean buoyancy b, flowing out with mass flux q, over the incoming
fluid with the buyancy b, of sea water and mass flux qo. In this portion of the
analysis we do not need to assume uniform buoyancies in the two layers although

we will do this later. The mean depth of the water averaged across the channel
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is h, the mean width is W. Other lengths required to specify the geometry of the

estuary and its moath may be denoted by L,, L,,... . There is a fresh-water

flux R into the estuary and some kind of mixing. In the present discussion the

precise nature of the mixing processes is not important (as we will see) but to

be definite and simple we will assume the mixing is caused by a rotating propellor

with angular speed w. Its geometry and location are specified by lengths a,,ag,... .
A quantity of importance in the discussion is the buoyancy difference bo-b, = 4b.

From dimensional analysis we may write

Ab R wa;
T =h5@Qe O ...)y Q =—3— , 0 =— 4.1)
s R @bk

where a number of non-dimensional ratios of lengths of the form L, /h, Lz/h, ...,
a,/h az/h,... have been omitted. Certainly &b/b, will vary with the quantity (;
indeed Ab/b, will decrease as () increases from the maximum value of one when
the mixing is zero. Ultimately, if the estuary has finite dimensions, a sufficiently
large 0, say Q,, will cause the estuary to be thoroughly mixed and any further
increase of () will not further decrease b and it will assume its minimum value

th,. Since 3(Ab/by)/3Q when Mb = Ab,, we get

B - 1,@c0e) @.2)

The ratio 7 of the mean depth of the lower layer to h is
‘n=f3(Q,.Q,-oa) (4.3)

When the estuary is just thoroughly mixed and Ab = Ab,, any further increase
in the mixing () can only affect conditions at the mouth by the tendency to further
increase the turbulence in the outflowing fluid. This effect is difficult to analyse
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and we will neglect it. Subsequently we will assume, in fact, perfect fluid flow
in the vicinity of the mouth so that the turbulence is assumed to be negligible
compared to the mean motions. Then for Q> Q, , N assumes a fixed value 1,

such that

T =£.(Q¢s...) (4. 4)

In general we notice that a combination of (4.1) and (4. 3) permits us to write

b =fs@es o) (4.5)
for arbitrary mixing.
Let us attempt to find the form of the function in Eq. (4. 5) subject to
several simplifying assumptions. With reference to Fig. 4.2 and Fig. 4.3 the

Bernoulli equations in the two iayers are

2
%H gAH = const (4. 6)
2
‘lg—+ gAH - h, Ab = const 4.7

where h, is the distance from the free surface to the interface, and where we

assume irrotational motion. Let us justify the neglect of the other two components

of the kinetic energy in (4. 6) and (4. 7). The equation of continuity leads to

h
w

~ (4. 8)

L
A

B 1g

where 1, W and h denote length scales in the longitudinal, transverse and vertical

directions. In each layer v° and w* will be negligible compared to u® if

— 2
‘-:f<<1 -E. «<1 4.9)

We assume that the channel has these properties.




Eliminating AH between Eqs. (4.6) and (4. 7) and introducing the constant
fluxes q, and q5, we have
2 2

—d— . . - h; =const (4.10)
200BS [H-hy - (0 )°  20bB7h

where B, is the width of the channel at the level of the interface, ﬁ; is the average
width in the upper layer and C is the average height of the bottom of the channel

above z = 0. Let us now differentiate Eq. (4.10) with respect to x. We get

D@+ Fy=-%ps L gy ppe-L By p2 g
ax ax B, ax B, dx

where F, and F,; are the densimetric Froude numbers defined by
F§=——q':———- . F§=——_‘f—— 4.12)
AbBS [H-hy-T 8B hY
Suppose we have a channel with a minimum of width at a certain section
(i.e., dBy/dx = 0, dB /dx =0, presumably at the same section). If the bottom
is level there (or if the mean depth is also a minimum there), the left-hand side
of Eq. (4.11) is zero at that section. Since we would expect a strong slope of the
interface as the upper level moves out of the estuary and spreads laterally and
thins vertically in the widening channel, we infer that conditions will be critical
at the section, i.e.

Fo + F2 =1 (4.13)

Such a section is referred to as a contro! section. Experiments by Stommel
and Farmer (1953), Assaf and Hecht (1974) and Assaf, Anati and Siegenthaler :
(1975) have shown that critical conditions do tend to occur in a variety of straits

in laboratory models. If the strait is long, friction become important and critical

conditions occur at the ends of the strait (Assaf, Anati and Siegenthaler, 1975).




Iz=H+AH(x)

ez = En)

CROSS SECTION

Fig. 4.3 Cross section in the constriction of an estuary.

Fig. 4.4 Cuxrve of density difference as a function of
non-dimensional thickness of lower layer.
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At the control section we let Wy and Wl be the values of B, and T31 and T
be the ratio of the mean thickness of the lower fluid to the mean depth of the water
(H- E) =h both evaluated at the control section. We also use the equations for
conservation of mass and buoyancy (salt)

Qg + R=q (4.14)

qobo =qy b, (4.15)

where R is the fresh water discharge. The critical condition becomes

/ N) 2

n Q 1-
0’

where

(4.17)

For a given value of Q,, Eq. (4.16) represents a curve like that shown in
Fig. 4.4. 1t is of the form of Eq. (4. 5) yielding &b/b, as a function of 17 instead
of the mixing parameter Q. Physically, if we increase O from a small value,
we expect &b/b, to decrease monotonically from the value 1 corresponding to
zero mixing. T will increase or decrease with increase of 0, and we move
on the curve of Fig. 4.4 toward the minimum point. At a certain value Q, the
estuary will be thoroughly mixed, &b will no longer decrease and 3(4b/bo)/9Q = 0.

We have

d(tb/by _ B(lb/bg) 37
aQ omn N

(4.18)
Obviously if 9(&b/by)/9M = 0, corresponding to the minimum point of the curve
in Fig. 4.4, 9(Ab/by)/90 = 0 and 4&b/b, will have the value appropriate to the

thoroughly mixed estuary. The condition

ol i

N




-17-

A/ _ (4.19)

an z
together with Eq. (4.16) determines the problem of a thoroughly mixed, or in
the terminology of Stommel and Farmer, aa ""overmixed" estuary. Notice that

the conservation equations (4.14), (4.15) yield

q, g&;‘ = (4. 20)
so that a minimum of Ab/b, corresponds to a maximum of the discharge q, .
The variation of n® with 7 depends on the particular geometry of the
estuary, and although this variation may have some quantitative importance we
will consider instead the idealized channel with vertical sides so that n® = 1.

Eq. (4.19) then yields
£ ok @4.21)

In terms of the densimetiric Froude numbers we may write

3
F=n, F=1-1, 6 = (2. 22)

One special case involves the condition in which the densities of the two fluids are
nearly equal. Then from (4.21), "= %, R=0. Experiments by Stommel and
Farmer (1953) and Assaf, Anati and Siegenthaler (1977) confirm the prediction

that the two fluids have equal thicknesses in thoroughly mixed estuaries with small

fresh water influx and I have derived this result theoretically (Long, 1976). A :

second special case is one in which 7 =- 0 so that no salt water enters and fresh

water fills the estuary. In this case the solution yields Ab/by =1, FS =0as
also required by physical considerations. Inthe general case (4.22) shows that

N<% sothat the interface is always at or below mid-depth.
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Of interest, particularly in later discussions, is the height AHp of the
water surface in the estuary above the level of the ocean surface. If we
evaluate the constants in Eqs. (4. 6) and (4. 7) in the estuary and in the ocean
respectively, we get

2

&21_1 + gAH = gAH, (4.23)
2
EZO + glH ~bh, =0 (4.24)

where we now assume that the widths in the ocean and estuary are very large
compared to the width of the channel. The constant in Eq. (4.10) is -gaH,/%b

and this equation may then be written

1~_‘§_n ; 5;_(1-11) -@-M)+B=0 (4.25)
where
gty (4. 26)
hae/pe
Using (4. 22) we get
B=31-8M, (4.27)

In the overmixed state 8 ranges between % and 3.
We may contrast this strongly mixed case with the case considered in
Section 3 in which the mixing is zero. Then F5 =0, F? =1 and Eq. (4.25)

yields 8 = 3 (1-M). For future reference we list the two behaviors:

2

Fs =0, K =1,8=3@1-1), Q°=@a-1n)°
(4.28)

4, &
R 1, bo 1, weak mixing
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_om3
FS =M, B =@-1), 8=3a-$M), QF = G5

(4.29)

q, _{1-1 !a Ab _(1-2 E
R~ (1-2M) " b, %1_-11—1}3' » S T

5. Turbulence and Mixing Processes in Stratified Fluids.

We have decided that turbulent mixing of waters of different density (salinity)
is a fundamental process in the dynamics of estuaries and we now consider some
aspects of turbulence in stably stratified fluids.

Turbulence in a fluid needs an energy source or it will die out. This is
especially true in a stably stratified fluid. Thus, letting primes denote departures
from mean conditions and using the equations of motion, we may form the energy

equation for the turbulent kinetic energy

S e e ) ;
T = u_ﬂz_+“'_ (5.1)

It conditions are statistically steady and horizontally homogeneous, we get

5t (@) = - s [WTHp7/p)] - W, - W' - ¢ (5.2)
where ¢ is the dissipation function, p is pressure and subscript '"'z'" denotes the !
vertical derivative, When the fluid is stably stratified, i.e., if the mean density (or ’
buoyancy) decreases with height, the turbulence will be accompanied by a |
buoyancy flux q = -w'b' <0 so that this, and the viscous dissipation ¢, act as
sinks of kinetic energy. Energy must come from the first and/or the second term
on the rhs of Eq. (5.2). The first is the energy-flux-divergence term and is a

basic source term in certain laboratory experiments to be discussed in this section.
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The second is always a source term and arises from a conversion of energy

of the mean shear of the current to turbulent energy. It is believed to be of
fundamental importance in geophysical phenomena.

In a stably stratified estuary in which salinity increases with depth, g

will tend to be negative because rising parcels tend to be more salty and heavy
and falling parcels tend to be less salty and lighter. One must be careful,
however, because of the possibility of wave motions contributing to w' and b'.
Thus, if the fluid is stably stratified, it is capable of internal gravity-wave
motion in which the basically level density surfaces move up and down in waves.
Obviously if the waves do not break, there will be no rupture of these surfaces
and therefore, neglecting the very small molecular conduction, no flux of
buoyancy (or salt) despite sizable values of w' and b'. The correlation co-
efficient will be zero. If the waves break, there will be intermittent turbulence
superimposed on the wave motion and q will be negative although the correlation
coefficient may be much less than one. Negative q means that the kinetic
energy tends to decrease because it requires work to lift heavy parcels up

and bring light parcels down. There is a tendency in doing this to increase
potential energy at the expense of kinetic energy.

To demonstrate this, it is useful to define available potential energy per

unit mass (Long, 1970) by considering it to be the kinetic energy per unit mass
attained by a parcel of buoyancy b =b'+b(z) as it falls from the height z to the
height z, at which its buoyancy b is equal to the mean buoyancy b(z,) at that

level. We have b' = b(zo)-b(z) = -b,£ approximately, where € = z-z, and we

have assumed that £ is small compared with the length scale of the vertical
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variation of mean buoyancy1 . Then neglecting disturbance pressure, we may
write

%: S =-b' =be (5. 3)
because z, is a Lagrangian quantity, so that dzo/dt = 0. Integrating, we get

w'/2 - b,e°/2 = const (5. 4)
Thus available potential energy may be defined as

V' =-b,£%/2 or V' =b'e/2 (5. 5)

We may also identify q with potential energy changes. The potential energy
of a particle of volume V, and density p is pgV,z. Let us now define incremental
potential energy as pgV,z-p;gVoz so that this potential energy is zero when the
particle has the density p,. If we let V represent the incremental potential
energy per unit mass, then to within the Boussinesq approximation, V = bz.

Since b is nearly conservative, puttingb =b'+ b and assuming no mean vertical
velocity, we have

dv/dt =wd' = -q (5. 6)
is the average rate of increase of incremental potential energy per unit mass.
We may identify this with available potential energy by differentiating the second

equation in (5. 5) and again assuming db/dt = 0. We get

dv'/dt = zb'de/dt - 3€db/dt = 3 w'b'-3£b,w' = w'b' (5.7
so that
dVidt =w'b' = -q (5.8)

! This may not always, or even usually, be the case but our development here
is only suggestive of the definition in Eq. (5. 5).

PO e
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Comparing (5. 6) and (5. 8), we see that the average rate of increase of incremental
potential energy and the average rate of increase of available potential energy are
the same.

In application, we can conceive of an energy-containing eddy in the form of
a whirl with horizontal axis of rotation, with velocity o, and diameter £ It will
lift parcels from their level of origin a distance £ ~ £ so that V' ~ 0, £, where
0, is the rms buoyancy fluctuation. If the turbulence is not decaying, the kinetic
energy must be of this order or larger so that o, £/05 < 1.

A typical phenomenon in a turbulent, stably stratified fluid is the appearance
of thin layers across which density changes abruptly. We have seen that these
exist in nature, for example the interface between the river water and the salt
water in a salt wedge at the mouth of some rivers. The surprising feature,
however, is that turbulence actually sharpens the interface, or at least serves
to maintain the interface instead of diffusing it as one might expect from the
general diffusive nature of turbulence. An important example is an experiment
originaliy by Rouse and Dodu (1955) portrayed in Fig. 5.1. The vessel is filled
initially with water with a stable linear density profile. The grid is then activated
and turbulence is created in the nearby fluid. The result is a growing turbulent
upper layer with a nearly constant mean density separated from the quiescent
fluid below by a thin interfacial layer of large density gradient. We sometimes
idealize this by considering it a density discontinuity. Actually in this experiment
the layer has a thickness of 1-2 cm. In general, the thickness is proportional to
the depth of the mixed layer with a constant of proportionality of 1/5-1/6. (Moore
and Long, 1971, Wolanski, 1972, Long, 1973, Crapper and Linden, 1974, Wolanski
and Brush, 1975, Assaf, Anati and Siegenthaler, 1977) The interface moves away

from the grid at a speed called the entrainment velocity u, .
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A detailed understanding of the turbulence in this experiment has not yet
been achieved but Linden (1973) has performed allied experiments and has
suggested that the large eddies in the upper mixed layer deflect the interface
downward, storing potential energy. When this is released by upward motion,

a portion of the heavier fluid is ejected into the mixed layer and then carried
away by the turbulent eddies, or as in Keulegan's experiment (1949) by the mean
current, leaving the interface sharp again.

The experiment of Rouse and Dodu is typical of those without shear and the
only source of energy is the energy-flux-divergence term of Eq. (5.2). We will
see that similar experiments have been constructed with shear and in these the
shear term of Eq. (5.2) is an important energy source.

Cromwell (1960) studied an experimant similar to that of Rouse and Dodu
to simulate the pycnocline, but the first reliable data were obtained by Turner
(1968) in an experiment in which the lower fluid was agitated and fluid was with-
drawn from the stirred layer at a rate adjusted to keep the interface at the same
distance from the grid. The entrainment velocity is then defined by Au, = Q
where Q is the volume withdrawn per unit time and A is the cross-sectional
area of the tank.

There have been a number of recent experiments similar to those of
Rouse and Dodu and of Turner, for example by Brush (1970). Equipment
identical to that of Turner was constructed by Wolanski (1972) (see also Wo'« nski
and Brush, 1975), and the one-and two-grid experiments were run with strati-
fication caused by heat, salt, sugar, suspensions of sediments and minute silica

spheres. Additional experiments have been run in Turner's apparatus by Linden
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(1973), Crapper (1973) and Crapper and Linden (1974) using heat and salt. Baines
(1975) has studied a similar experiment with entrainment caused by a jet impinging
on an interface.

An important finding in the experiments by Turner (1968) may be expressed
as

u, /w = Cl* /() 1" (5. 9)

where w is the frequency of the oscillating grid and C is independent of w and b.
A number of lengths aré kept constant in the experiment so that the dimensional
quantity C may vary with these. Turner found that for larger values of tb/w®,
the exponent n = 1 when stratification is caused by temperature differences and
n = 3/2 when caused by differences in salt content. Later investigations (Wolanski,
1972) have confirmed these results and, very recently, Crapper and Linden (1974) have
shown rather convincingly that the difference in the values of n is due to the influence
of the relatively large molecular conductivity k, in the heating experiments (the

coef’icient k, is much smaller for salt). It appears that whenever the n =1 law

describes the entrainment, the thin layer of strong density variation has an inner
layer or core in which molecular diffusion is important. Indeed, earlier unpublished
experiments by Claes Rooth (Turner, 1973) support this interpretation. Rooth

found a 3/2 dependence in heating experiments when larger turbulent velocities

are generated. Thus it appears well established that the 3/2 dependence is appro-

priate for larger Peclet numbers, Pé = ¢, #/ky or o,4/k, where o, and £ are the

velocity and length units of the turbulence. Crapper and Linden suggest a thresh-
hold value of Pé =200 when o, = 0! and £ = £' are characteristic of the turbulence
near the interface. The dependence on Reynolds number, Re, has not been ]

established because of the rather small ranges of Re in the experinrents, but both

st it i i s i
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wolanski (1972), who varied Re by a factor of three, and Crapper and Linden (1974)
report very weak dependence, if auy'1 . We may, therefore, write for large Pé and
Re, and strong stability,

u, /w = Cyu’ /(Ab)%
where C, is a function of a, D, and the lengths a,, ag..., characteristic of the

grid. It is convenient to introduce a dimensionless quantity K; by the definition

2
C, =a*D K, (a/D,a/a,,a/a;..) (5.10)

and, therefore,

2
e

u, /u, = K,,Ri* . Ri - Dab/u® (5.11)

where u, =wa. It is likely that K; is independent of a/D when this ratio is small.

Ri" is called the overall Richardson number. g
The Turner or Rouse and Dodu experiment can be run with an initial two-fluid

system in which both layers have a nearly uniform but different density. The inter-

face again moves away from the grid and the system is basically unsteady because

the density of the upper fluid is increasing and because the interface is moving.
The motion of the interface can be eliminated by introducing fluid of the density of
the lower layer into the lower layer at a rate qo = Au,. The upper surface of the
system can be held stationary by removing an equal volume of the upper brackish
water. There will still be an unsteadiness, however, because the density of the
upper fluid will still increase. This can be eliminated by adding fresh water to the

upper layer with a flux R and removing brackish water at the rate q,. The following

——

1The independence of molecular quantities is common in turbulence (Tennekes
and Lumley, 1972). In Turner's original paper (1968), he expressed the belief that
the n =1 law was the fundamental one and that in some manner the very low diffusivity
of salt caused the n = 3/2 law. He has changed his mind on the basis of the evidence
we present here (Turner, 1973).
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relations must be satisfied to insure a steady-state

& = An, (5.12)
qO+R =q, (5. 13)
Qobo =qi by (5.14)

An analogous experiment was set up by Welander (1974). It consisted of
a large vessel (Fig. 5.2) with a small semi-enclosed portion. The vessel was
filled with salt water initially. Fresh water was then introduced into the semi-
enclosed region and the upper portions of this region was stirred with a propellor.
A steady state developed with an interface in the semi-enclosed region at a depth D
and with all conditions in Eqs. (5.12)-(5.14) automatically satisfied. The system
resembles an estuary-ocean system; indeed, this was the basic objective of the
experiment. Welander only measured the depth D as a function of R and we will
discuss these observations in Section 6.

When the interface is stationary, as in an estuary or in Turner's or
Welander's experiment, there is a flow of mass through the interface with a
mean vertical velocity u,. We may then consider the buoyancy budget in an
element of the thickness of the interfacial layer, arbitrary length and width of the
estuary or vessel (Fig. 5.3). Integrating

r o =
E ﬁ"‘ Vo‘!b =0

over the element, assuming steady state and horizontal homogeneity, we get

-(@b)o + (Wb), - Wb')o + (W), =0

Since the element is very thin, we may neglect the variation of the mean vertical

velocity from the lower to the upper surface and set w =u,. Also the lower layer

is non-turbulent so that (w'b')y = 0. We get




Fig. 5.3 Element of the interface.
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q = -u, b (5.15)

where q is the buoyancy flux just above the interface.

Several experiments have been constructed to introduce shearing currents
in turbulent density-stratified systems in an effort to simulate atmospheric and
oceanic phenomena. The first of these of direct relevance to our discussion was
that of Kato and Phillips (1969). The apparatus was a large circular annular
channel filled with salt water with an initial linear density gradient. A constant
stress T = u‘i was applied by rotating a flat screen at the surface (Fig. 5.4). For

larger values of Ri*, they found
i
u./u* = K.R] (5. 16)

where Ri* is of the same form as in Eq. (5.11) and Ab is the buoyancy jump
from the upper mixed layer to the quiescent region below".

An experiment by Moore and Long (1971) was constructed to permit a
steady state. In a large channel shaped like a race track, fluid was injected
from nearly horizontal jets at bottom (salt water) and top (fresh water) in opposite
directions to obtain a shearing current (Fig. 5.5). Mean zero vertical velocities
were achieved by withdrawing equal volumes of fluid through numerous holes at
bottom and top. At larger values of the density difference, two homogeneous
layers existed at top and bottom with an interface in the middle. The salt water
in the jets comes from a reservoir and the withdrawn fluid at the bottom is pumped

back into the reservoir which is kept at a constant level. The jets at the top are

! More recent experiments have been run in the Kato and Phillips apparatus
using a lower fluid of uniform density (Kantha, 1975). The results do not yield a
simple power law but rather a faster and faster decrease of u, with Ri*. It is
possible, however, that molecular viscosity becomes more and more important
at the higher values of Ri*.
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of tap water and the slightly salty withdrawn fluid at the top is pumped to waste.

Since the fluid returned from the bottom to the reservoir is somewhat less salty

than that in the lower jets, salt must be added continually to keep the reservoir
at a fixed density. The added salt is transported vertically by the turbulence.
The salt flux is known, of course, and this can be used directly to compute the

buoyancy flux. The experiment yielded
q = Ka(w)®/D (5.17)

over a range of Db/ (Au)a of 1 - 60, where M is the velocity difference between
mean velocities measured near the top and bottom and K, is a positive constant
of proportionality. If we define the entrainment velocity by u, b =q, Eq. (5.17)
yields the same result as in Kato and Phillips (Eq. 5.16) if, as seems very likely
from a discussion of the Kato and Phillips experiment by Long (1975a), Au/u, is
independent of the Richardson number, where uj is the constant momentum flux
in the tank.

Finally, in a recent experiment by Wu (1973), the source of energy and
shear was a current of air blowing over a vessel containing a two-fluid system
(Fig. 5.6). Wu also obtained Eq. (5.16) although his coefficient of proportionality
was much smaller. He conjectured that this was because of the very different shear
produced in a closed container, but Bo Peder'sen (private communication) has
suggested that the flow at the interface may have been laminar over much of
the length.

The different dependence on R.i* for the two experiments has been the source
of perplexity (Turner, 1973, Linden, 1973) because the mixing processes appcar

to be very similar. Indeed, Linden has stated that tne Kato and Phillips data are
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also consistent with a -3/2 behavior, although support for the statement seems
lacking. We attempt below to construct a unified understanding of the two results.
Turner (1973) has made the valuable suggestion that the erosion of the inter-
face should depend on the properties of the turbulence near the interface, in
particular on the rms velocity o} and the integral length scale £' near the

interface. Thus, he proposed the form
u, /0! = F(Ri,), Ri, = £'b/o} (5.18)
where possible dependence on other quantities is suppressed and it is assumed

that P€ and Re are large. In an attempt to determine the dependence on Ri; in

his density-interface experiments, in which o, and {' were not measured, Turner

used experimental data by Thompson and Turner (1975) in Turner's apparatus

with a homogeneous fluid and one grid. They measured o, and £ at many levels

and found that o, was proportional to w and that £ increased linearly with distance
from the grid but was independent of w. Although Thompson and Turner's experi-
ment had no density variation, Turner (1973), Thorpe (1973) and Crapper and
Linden (1974) have assumed that the results are directly applicable to the mixing
experiments. Thus, at z = D they use
ol/wa = C5(a/D, a/a;,alaz..) (5.19)
£'/D = Cy(a/a,,a/az...) (5. 20)

so that Eq. (5.11) may be written

_3
u, /0% = K4Ri; 2, K, =K,(a/D,a/a,,a/az...) (5.21)
Neglecting viscosity, the proportionality of o} and w follows from dimensional

analysis but only when the fluid is homogeneous because the presence of an inter-

face introduces a new quantity involving time, namely &b.
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We may also obtain a dependence on Ri, for the shearing experiments. With

shear and horizontal homogeneity the averaged x-equation of motion yields

a1/0z = du/at (5. 22)
where U is the mean horizontal velocity at depth z. In the steady-state experiments
of Moore and Long (1971), 87/8z = 0 and therefore T is constant with height. Since
T = -u'w', and since the correlation coefficient is very likely to be of order one in
the mixed layers, it follows that u, - -r% is proportional to g!. The interface
intrcduces the length D and it seems reasonable that the eddies fill the whole 1
depth since the density gradient in the mixed layer is weak'. Thus we use £' ~D
and obtain from Eq. (5.16)

u, /o), = KsRi;™* (5. 23)
for the Moore and Long experiment. In {he experiment of Kato and Phillips, we
may use Eq. (5.22) to obtain the increment of T over the depth D. It is

At/T ~UD/T (5. 24)

where U is the speed of the screen and where T, is the time period for a change
of depth of order D so that T, ~D/u,. Therefore, ignoring sidewall effects,

oA |

a7/t = (U/u,) (v, /u,) ~ Ri (5. 25)

*
since, as shown by Long (1975a) U/u, is independent of Ri . This reveals that

the stress varies very little over the depth, that u, ~ o}, and that Eq. (5.23)

again holds.

i 3
If a fluid is homogeneous, the large, energy-containing eddies tend to be as ; i
large as the dimensions of the region (Tennekes and Lumley, 1972). Here the i
available potential energy may be as large as the kinetic energy but this should !
not change the order of magnitude of th: eddy size. Indeed visual observations
indicated that the eddies filled the whole mixed layer in the Moore and Long expcriment.

——




Thus, two different entrainment velocities, Eqs. (5.21) and (5.23), are
indicated in the two cases even when the characteristics of the eroding eddies
are the same and this is more perplexing than the difference in the exponent
of Ri*. However, a different dependence of o, /u, or g!/wa on Ri* in experi-
ments without shear may be obtained by a plausible argument which casts doubt
on the applicability of Thompson and Turner's experiment, in particular Eq.
(5.19), to an experiment with a density interface. When there is shear, we

have seen that experiment indicates

q~0/D~ud3/D (5.26)
Let us now evaluate q in the mixed layer near the interface. We get q ~ 0lo}
where oy is the rms buoyancy fluctuation near the interface, and we make the

plausible assumption that the correlation coefficient is of order one. Thus
02 /oD ~1 (5. 27)

Assuming again that the eddies fill the whole layer, kinetic energy and available
potential energy, oyD, are of the same order in the mixed layer. Although the
layer has very little density variation, this result may be obtained by considering
first an experiment with very strong turbulence imposed externally. Then

ou'a/ op4' will be very large. As we decrease the turbulence in successive experi-
ments, this ratio will decrease. If turbulence continues to exist, the ratio has a
lower limit because 6, /0}4' <1 would imply that T' < V' and a consequent
cessation of the turbulence. It seems unlikely that the ratio will get large again
as stability increases so that o.,'a/agz should approach a constant. The argument

is equally valid with or without shear. Using Eq. (5.27) when shear is absent
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to eliminate o} in the relationship q ~u, & ~ olo} , the -3/2 aw leads to !
3
u,/u, ~ 02 /Du,tb ~ul/(DMb)? (5.28)
or
*_ 1
oJ/u,~Ri "%, u, = wa (5. 29)

instead of Eq. (5.19). The decrease of rms velocity with increase of Richardson | i

number when density variations are present may be caused by the weak density

| 4
gradient in the mixed layer. In a layer as a whole, the slight density variation l 1
still has dynamic importance as indicated by the proportionality of kinetic %1 V
energy and available potential energy and by the fact that q, varying linearly in ;
the layer, has a relati:Vely large value near the interface. Such arguments have
been advanced earlier by the author (Long, 1972, 1973).

The energy argument may be amplified. Rouse and Dodu (1955) and others

(Kato and Phillips, 1969, Turner, 1973, Wu, 1973) have suggested that the
Ri™! law implies that the change of potential energy is proportional to the
energy supply by the external source. Thus, as we have seen, the average
rate of increase of potential energy per unit mass is q, so that the rate of in-
crease of potential energy for the system is proportional to qD. In the Kato and
Phillips experiment, for example, the rate of working of the external force
is TU. If these are proportional,

q ~ TU/D ~f,/D (5.30)

as in Eq. (5.26). The same conclusion cannot be reached for cases without

ko
shear and on this basis it may be argued that the Ri 3 law does not conform
to any simple energy argument. We may show, however, that the last conclusion

is not correctly drawn. In the shearing experiments, the velocity difference is
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proportional to u, = -(\_v'—u')*lt (Long, 1975a) and the two energy-source terms in
Eq. (5.2) as well as the dissipation ¢, are of order 0!° /D or 0?/4' near the
interface. If q ~u, &b is also of this order, we obtain u, /0! ~ RiJ* as in
Eq. (5.23). When shear is absent, the single source term is the first term
on the rhs of Eq. (5.2) and is also of order 0!°/4'. The Ri* law again implies
equality of all sink and source terms. The correct interpretation of experi-
mental results thus seems to be that the turbulence has a character that causes
potential energy to increase at a rate proportional to the rate at which kinetic
energy is supplied to the region of the interface and not necessarily proportional
to the rate of generation of kinetic energy at the external source.

An additional piece of information may be added in relation to experiments
without shear. If we assume that the small buoyancy difference & across the
mixed layer is of order of the rms buoyancy fluctuation (implying an eddy length

scale of the order of the depth of the layer), Eq. (5.27) and Eq. (5.29) lead to

B/b~ri"F (5.31)

This quantity was measured by Wolanski (1972) and Wolanski and Brush (1975)
for the salt experiments (Fig. 5.7). There is good agreement with Eq. (5. 31)
especially at higher values of Ri*.

When there is shear, o} in Eq. (5.27) is of order u, and o} is of order
b so that D/uj, ~1 and 8/4b is proportional to Ri ~!. Notice also that in
the mixed layer the velocity shear is G, ~u,/D, as shown by Long (1975a). Thus
the gradient Richardson number Ri =b,/(8,)° is of order one in the mixed layer.

Observations in the lower mixed layer in the atmosphere (Businger et al. 1971)
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indicate that this has a maximum of Ri, = 0. 20 and we may speculate that this
is the magnitude of Ri in the mixed layer in the experiment. As we have already
suggested, Ri ~1 means that the slight density gradient in the mixed layer has
dynamical significance.
We have suggested that

u, /0, =K,02/Dtb (5. 32)
is a universal law for entrainment with or without shear, where o, is the rms
velocity at or near the interface. Let us apply this to an experiment without
shear, as in Turner's experiment except that the lower quiescent fluid has a
linear density gradient. If we also adopt the findings of Bouvard and Dumas
(1967) and Thompson and Turner (1975) that o, is proportional to D-%, then
since fb = N°D/2, where N° is the buoyancy gradient in the lower fluid, we
find that D « t° / *®  This behavior was proposed by Linden (1975) and his
experiments with this type of fluid system provided close verification of this
time dependence. These experiments, therefore, provide considerable support

for the form proposed in Eq. (5. 32).

6. Mass and Salt Transfers and Halocline Depths in an Estuary.

With the background of Section 5, we will nNOW consider the effects of

finite mixing on the various features of estuarine circulations and distributions.
We have in mind a body of water like the Baltic Sea, although the model has

variable parameters which permit application to almost any estuary whose

mouth has a width small compared to the general horizontal dimensions of the
estuary. A comparison is also possible with laboratory experiments designed

to produce estuarine circulations.
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We will not discuss at any length the practical importance of studies of
estuarine circulations and mass distributions. The problem of pollution of F
waters near the surface obviously demands attention, but another problem of
strong interest for the Baltic and many fjord-type estuaries of Scandinavia is
the stagnation of the deep water (Fonselius, 1962, 1967, 1969; Gade, 1970).
This is associated with the blocking effects of the sill and other obstructions to

deep water motion in conjunction with the stabilizing effects of the typical

density increase with depth in an estuary associated with temperature and
salinity variations in the vertical. The water motions are very slow and
therefore even exceedingly weak density increases with depth greatly inhibit
vertical motions. The water stagnation implies very weak or zero turbulence

in the deep waters and little turbulent mixing with the fluid above. This in turn

cuts off the supply of oxygen from the aerated surface water, and the deep layers
may ultimately become completely exhausted of oxygen. This has been a pro-
gressive development in the deep Baltic over the past 75 years. One station in
the central Baltic shows an oxygen saturation decrease from 30% to near 0%
during this period at a depth of 160 m (Fonselius, 1969). Fonselius has warned
that the Baltic deep water may soon become devoid of life.

The complexities of real estuaries have been emphasized by many authors,
e.g. Pritchard (1956), Fonselius (1969), Gade (1970) and Welander (1974). The ]
Baltic, for example, is connected to its source of salt water, the Kattegat, by the
Danish Belts and the Oresund. This in itself is a great complication compared to
our model which is portrayed in part in Fig. 6.1 . The model has a single

connection to the ocean. When we compare the model and the Baltic we consider
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only the Store Belt which, in fact, is mainly responsible for the fluxes into and

out of the Baltic. We take the minimum width W =15 km for the Belt and a mean
depth at this section h =18 m. In the model, the estuary waters and the flow at

the mouth are divided into two layers by a thin halocline. This is not a bad
approximation for the Baltic which has a permanent halocline of thickness 10 m

at a depth D =60 m, although there certainly are vertical and horizontal gradients

of salinity above and below the halocline’. For example, the salinity of the in-
flowing water in the Store Belt is about 17.5°/0, compared to 11°/,, in the Baltic sea
deep water although the model ignores this and assumes no mixing as the ocean water
pours into the basin. The salinity of the upper layer in the Baltic is about 7°/,.

The model assumes that the inflowing water is all ocean water; by way of com-
parison, some of the outflowing Baltic water mixes with the Skagerak water and
recirculates back into the Baltic.

The water balance of the Baltic region involves a close equality of precipi-
tation and evaporation so that the fresh water influx R is equal to the river runoff
which we take to be R =1.49 x 10'° cm®/sec. The outflowing water has a flux q,
which is about twice the magnitude of R (Brogmus, 1952).

Estuarine circulations are usually very small, of order of centimeters per
second or less, and this suggests a considerable importance of friction. This
has been confirmed by many investigations (e. g. Pritchard, 1956) and is treated
in Section 7. At a narrow mouth, however, speeds increase very considerably,

inertial, pressure and gravity forces become comparable (Long, 1975b) and

! Notice that the ratio of the thickness of the halocline to its depth is 1/6
in accordance with laboratory evidence referred to on page 22.

e
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friction becomes relatively much less important. In the present Section we confine
attention to flows near the mouth and we neglect friction entirely in this region.
As we discussed in Section £, we adopt the mixing law, Eq. (5. 32)

2

%: =K, S (6.1)
where we estimate K, = 0.093 from experiments (Long, 1975b) and 0, is the rms
horizontal turbulent velocity near the interface. It is instructive to compute the
entrainment velocity for two choices of the quantities in Eq. (6.1). In the Baltic,
for example, if we use the salinity difference of 4%/4,, we get & = 3.2 cm/sec®
The turbulent intensity is very uncertain and u, is sensitive to its value, but if
we use an estimate 0, = 1.4 cm/sec suggested by a discussion below, and
D =60 m, we get u, =1.1 cm/day. This suggests very slow adjustments to
changes in fresh water supply and turbulent intensities. In estuaries in which tidal

effects are large 0, may be much larger. If we use o, =10 cm/sec, D =15 m,

th =10 em/sec® , more appropriate, say, to estuaries in British Columbia
(Pizkard & Rodgers, 1959), we obtain u, = 5 m/day and adjustments to changes
will be very rapid.

The entrainment velocity in the estuary may be written u, =qo/A (Fig. 6.1), or A

is the area of the halocline in the estuary. Using Eqs. (4.14) and (4.15), we have
1-8b/bg)R \
= 6.2 E
do /b, (6.2) 4
Then Eq. (6.1) becomes ‘
& g B (6.3) | |
Q1 b,/ DM’ By » T
where Q, is given in Eq. (4.17) with W and W, = W and 3 i
F B
2T TG
M = by h* W (6. 4)
AK, 0}
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We may now relate this to the discussion in Section 4. The results in

Eq. (4.28) apply to the case of zero mixing, i.e., M =®, The results in

Eq. (4.29) imply 0, ~or M = 0. Obviously then, § = AHO/-E{%E\\,equal to
s

B=21-1) , M=o (6. 5)

B =2(1-%M),M =0 (6. 6)

in the two extreme cases,will be some function of 1 and M for finite mixing.
I don't see any way to find this relationship rigorously but a simple form which
satisfies the two extremes is

ry - M4+3Mif(m)] ° 6.7
3[1+M*£(1) ]

B:

wjw

where s is a constant and f(T) is arbitrary. There are additional requirements

which must be satisfied. Thus as 0, =0, M — =, it follows from Eq. (3. 5) that

D ~3qa-m) (6.8)
h
Eqs. (4.13) and (4. 25) lead to
Fo =3 -37-28 (6.9)
so that (6. 7) and (6. 9) lead to
B o okl (6.10)

BT SoW 1+ M*f(M)

Using

_AK o)
do = D&J (6-11)
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Eq. (6.10) becomes

njw

2,3 6 - "% TR ~=1
Ll I b l
AL oql1s (RBW ) (6-12)
DE ()W - AK, J,
As 0y = 0 all other quantities remain finite and we see that s =2, &b = b,. Using

(6. 8), we obtain
(M) = %w‘a—ma 6.13)

We get

g =3 - Jl16+27Ma-1)°1]
3[4+9M°(1-1)° 1 ]

(6.14)

A combination of (4.16), (6.2), the definition of FZ, (6. 9) and (4.17) leads to

’ 3
. B (-1 [4+9MP - n%an]

Qe = (6.15)
[4+9M°(1-1)°7)
&
/. b2 4n*
e R (6.16)
Vobo T g0y (44 9MP - E-an)
D, is given by
1
D, = ———t— (6.17)
T QM1

Sl ¥,
Equations (6.14)-(6.17) determine all unknowns, given the frest water flux
ratio Q, and the mixing number M.

The form of the solution is rather complicated but a simple example of a
solution of Eqs. (6.14)-(6.17) is an estuary with an infinitely deep sill, i.e.,

h == . The solution then depends on a single non-dimensional number

_ &S
AK, &3 W3

M' (6.18)
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Fig. 6.2 Interface and halocline depths and' salinii':y differences
for an infinitely deep estuary. Dx and h, are defined
in Eq. (6.19). 2S is the same as th/b,.

Fig. 6.1 Estuary with a sill and/or contraction
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Using the definitions

3 2 1 2
g =3
pLa-DRo W g Bbo WO
R® R® (6. 19)

where h; is the depth of upper layer at the constriction. We get

1 Ab 4b 2
D! = - » Hy—=1, 1-7) =—=p (6.20)
3 M'(l-b—-E;) 3% bo”  amhiE

Reéults are shown in Fig. (6.2). The depth of the interface at the mouth h,
and the halocline depth D increase monotonically as M' decreases (mixing in-
creases). D is about twice as large as h, for larger M' over most of the range
of M'. The salinity of the outflowing fluid increases monotonically as the mixing
increases and the fresh-water flux decreases. The flux of the outflowing fluid
changes very slowly with M' over most of the range, q, /R = (&b/by)~* increasing
from 1.0 to 1. 5 as M'decreases from infinity to M' =1. Below M' =1, q,/R
increases more rapidly but only begins to exceed 2. 0 when M' drops below M' = 0. 1.
When the sill depth is finite, Eqs. (6.14)-(6.17) reveal a common behavior for
all values of M, namely that the halocline is very deep for both small and large
values of the fresh-water flux R, with a minimum at a value of Q,, determined
by M. The quantity Q,, decreases with M; for example Q,, = 0.244 at small M,
Q¢p =0.08 at M =100 and Q;, =0.03 at M =1,000. The behavior of D, as a
function of Q, is shown in Fig. (6.3) and (6.4) for smaller and larger values of
M, respectively. When M exceeds 100 or so there is little change in the behavior
over most of the range of Q, except near Q,,. There the halocline depth continues
to decrease strongly as M gets still larger.
Fig. (6. 5) shows an experiment by Welander (1974) similar to the model of
this paper. Data are lacking to permit a careful comparison,but M = 8 seems a

good choice. Constants were chosen to force agreement near the minimum point.
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Fig. 6.3 Halocline depth as function of fresh-water
influx for smaller values of M.
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Fig. 6.4 Halocline depths as function of fresh-water
influx for larger values of M.
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The agreement is quite good except for small values of R where entrainment
velocities are very small and the experiments may not have been in a steady
state. An additional factor is the decrease of 0, near the interface as D in-
creases and the interface gets further and further away from the source of
energy (stirrers). This effect is not included in the theory and would tend
to reduce D. The tendency for a minimum depth of the halocline has been
observed by Tully (1949) in Alberni Inlet as we see in Fig. (6.6). The theo-
retical curve corresponds to M = 0.

The quantity 8 varies with Q, and M as seen in Fig. (6.7). It is interesting
to note that BAS < AH,/h varies very little with M. Indeed, one would anticipate
that this quantity would vary more sensitively with Q..

The influx of ocean water is negligible for M > 100 or so. As mixing
increases, Qo, defined by

s beh W

increases. Qg rises with increase of Q;, reaches a nmaximum and then de-
creases. Examples are shown in Fig. (h.8). The curves for M <3 or so do
not differ very much from the curve shown for M = 0.10. This typical behavior
of Qo appears in other theories of estuaries, for example Kullenberg (1955).

The salinity of the outflowing fluid increases as the fresh water influx
decreases. This was also pointed out by Kullenberg. Fig. (6.9) shows the
curves for two values of M. Decreases in mixing intensities accompany de-
creases in salinity, as expected.

An estimation of M for various applications is important but M is
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Fig. 6.5 Halocline depths in Welander's experiment.
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Fig. 6.6 Observations of halocline depths in Alberni Inlet.
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extremely sensitive to o, and o, is difficult to estimate. We may m:ke the
following computations for the Baltic Sea: Fonselius (1969) gives the ratio

q, /R 2. We may compute Q, from Eq. (4.10) with the constant equal to

-gAH, /b using the data of Fonselius of R = 1.49 x 10" °em® /sec and width

W =15 km, depth h = 18 m for the Store Belt. The appropriate value of by
corresponds to a salinity in the lower layer of 17. 5% Or by = 14cm/sec®.
This leads to Q, = 0.0348. Finally D/ for the Baltic is 60/18 or 3.33. If
we use the last two figures, we obtain close agreement for a value of M = 12.
The computations yield Q,; = 0.0346 and D/h = 3.45. The value of q, /R, how-
ever, is 3.29 which is considerably too large. The value of M =12 permits us
to compute 0, using A = 3.1 x 10 S¢cm®. We obtain 0, =1.4 cm/sec which is,
perhaps, reasonable.

One may speculate regarding the changes in the Baltic over the past 75
years as described by Fonselius. The stahility of the Baltic has apparently
increased, because, although the salinity of the upper and lower layers have
both increased, the salinity of the lower layer has increased somewhat more.
This stability increase may be related to the reduction of oxygen in the deep
Baltic. R has decreased about 15% over this period and Fonselius ascribes the
increase of salinity in the Baltic as a whole to this decrease of R. A further
change has been a decrease in the depth of the halocline from 80 m to 60 m over
the period. According to present theory, for the value of M =12 and the other
conditions of the Baltic, a decrease of R with all other factors held constant
should have resulted in an increase of D. However, as we have seen, D is most

sensitive to 0,. Since precipitation and runoff have decrcased, this implies a




o

Fig. 6.7 Variations of 8 with Q, and M.
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decrease of storminess over the Baltic as asserted, in fact, by Fonselius, and
a aecrease of 0,. This could have been overriding and serves to explain the de-
crease of D. Notice that only long period changes in 0, are involved because we

have decided that the response of the halocline depth to changes is very slow.

7. Circulations and Density Distributions in a

Deep, Strongly Stratified, Two-Layer Estuary.

In Section 6 we considered an estuary of a rather general type except that
the connection to the open sea has such a character that (1) the flow in this portion
of the estuary (mouth) is perfect fluid flow and (2) conditions become critical at
one section of the mouth. Our investigation derived an expression for the depth
of the halocline in the estuary proper but other than this nothing was found out
about the circulations and salt distributions in the estuary except near the mouth.
We now investigate (Long, 1975b) conditions throughout an estuary without the two
assumptions mentioned above. For simplicity we assume that the estuary is
infinitely deep everywhere. As it develops, this means that the halocline depth
is small compared to the depth of the estuary. This is not a bad assumption in
many cases, for example in fjords in British Columbia and Alaska, but the model
does not include the situation in some Scandanavian fjords in which there is a sill
whose depth is of the order of the depth of the halocline.

The model (Fig. 7.1) has a well-mixed upper layer and a deep, non-turbulent
uniform lower layer of the density of sea water. The width of the estuary is W(x)
and the sides are vertical. The free surface is given by z = H and the interface by
z = Dg(x).” The upper layer has a mean depth D(x). The variation of H along the

estuary provides an important component of the pressure gradient force but incre-




‘Aaen3so jo (9poN 1°L ‘Sig ;

°q
(x)%=z fac
~
©) (g 0 Y
PR RS D DD




-44-

ments in H are of the order of 10 centimeters over tens of kilometers and so may

be neglected elsewhere in the argument and H taken to be a constant. The vertical
variation of the buoyancy is confined to a thin, interfacial zone whose thickness is
neglected, but the mean buoyancy varies continuously with x in the upper layer as the
water flowing out to sea becomes more and more brackish. In general, a symbol
such as b denotes an ensemble average or average over a long time, and b denotes
an average of b over the vertical cross-section in the upper fluid.

The buoyancy difference between the two layers is &b and varies along the
channel because the buoyancy of the upper layer varies. The rms turbulent
velocity in the upper layer is 0, and we assume that o, is uniform in the layer.

To be definite we take g, to be the rms horizontal velocity component along the

x-axis. The non-dimensional quantity Ri, = DAb/oﬁ has the form of a Richardson
number. If we take as typical values, D = 16° cm, &b =25cm sec'z, g, =10 cm sec” ',
we get Ri, = 250. We have taken a rather high value for o, so that Riy will usually

be greater than this. It is reasonable then to assume that the estuary is strongly
stratified in the sense that Ri, >> 1.

Conservation of mass for a region of the upper layer of length Ax, width W,

and thickness D yields

AWDR) = [[v,da (7.1)
where i is the mean velocity over the cross-section of the upper layer, da is an
element of area of the interface, and the integral is over the interfacial boundary
of the region. The normal velocity into the layer, v,, is zero when there is no
mixing. We have already assumed, however, that turbulence exists in the upper
layer, and we may identify v, with the entrainment velocity so that with use of

Eq. (5.32), Eq. (7.1) becomes
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2 won) = SW (1.2) : ,i
q
The pressure in the lower layer is
% = g(H-2) + B(HDo) + bo(Do-2) (7.3)
t

If we assume, as indicated above, that the lower fluid has a depth large compared
to that of the upper fluid, horizontal accelerations will be negligible and the longi- ‘

tudinal pressure gradient is zero in this layer (Gade, 1974). Then

e -DE (7.49)

Let us now integrate the horizontal equation of motion,

%{u + v.uv = - gH, +(H—z)%—] _%(xu ¥ - gy_(u V). gz(u'w') (7.5)

over a region of the upper fluid of length Ax, width W and thickness D. We get

- B o
-—-wl&f 9. yudV = -Da&b %!; + D° g% -1 %;l (H-z)dz (7. 6)
Do

where the pressure in the upper layer is given by p = p g(H-2z)+ p,b(H-z) and
where T, is very nearly equal to the average stress at the interface. We assume’

Ty = Ku® where K is the drag coefficient. A term involving the horizontal rate of

change of 1, has been omitted in Eq. (7. 6) because the turbulence is assumed to

*This is a standard assumption for example in flow in pipes. The stress is
basically equal to <@'w" and in typical shearing flows 0, /t and 0, /i are small and
vary very slowly with Rgnolds number and so are taken to be constants. The stress
then is proportional to G~ with a small coefficient of proportionality. In the present
case it is likely that o, /AT and g, /@ are of order one so that K is of order one. We
assume this later.
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be uniform in the upper layer. If u, is the average horizontal velocity at the

bottom of the upper layer, the integral on the Zhs of Eq. (7.6) may be written

%V?g(— fuudzdy - UgUy (7.7

The ratio of u,u, to the term 1, in. Eq. (7. 6) is of order u, D/K,, or less, where
K, is the eddy viscosity in the upper fluid near the interface. We estimate

K, as %0, where £ is the eddy size. If we use observations of flow in pipes, we
may estimate £= D/3 (Hinze, 1959). Using

~ 1 o5

Ys = 70 Dab
the ratio is approximately 0.3 Uf /DM which we have assumed to be small.
Thus the second term in Eq. (7. 7) may be neglected.

Let us now write

ﬂ' inudzdy = YauDW (7. 8)
The quantity v depends on the velocity distribution in the layer. If the velocity
is uniform, vy =1. Other physically reasonable assumptions yield values greater
than 1 but less than 2 or so. Our analysis does not yield a precise value for v,
but we find that v occurs in combination with other equally uncertain constants
of the problem so that it seems pointless to attempt to refine this portion of
the argument.

Eq. (7.6) becomes

d _DPd dD_ <2
Y & @WD) = > 3 - Db oo - K (7.9)

where we have assumed that v is constant. We have two additional equations

involving the flux of mass and buoyancy across an entire section:
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@b DW + q,by =0 (7.

do + DW =q,Wh (7.

where g, is the mass flux over the cross-section in the lower layer,
R =q,W, is the fresh water influx and W, is the width at the head of the
estuary. We have neglected horizontal diffusion of buoyancy® in Eq. (7.10).

Let us now non-dimensionalize using the following quantities:

10)

11)

_ bW - Y . X0 _ Do, -
TqeW, Qo qeWy ’ ¢ —‘T“ . M qr s
by -b o> w
= vegi=t) =i L =W
& b m bod, ’ A W, (7.13)
Equations (7.2), (7.9), (7.10) and (7.11) become
Qo=1-%.Q=% (7.14)
Q_ Km)
- (7.15)
Larg .. o Lingdl
N S e dg y)?Qﬁ? m"° G (14
We may also write Egs. (7.14)-(7.16) as
Q=%,Qo=1—% (7.17)
N d9 _Km dg
AQ dn Y i (7.18)
d/@ ___K _Qdg, A T de_17]
AN T TmEE Mdnt Zm Q@ dn mQ i

! The neglected quantity is of order u'b'D. The ratio of this to GbD is

u'b'/ib ~ o,/b since, as we discuss later, 0, ~T. If the horizontal eddy dimension

is of the order of the width, o, is of the order of the longitudinal mean buoyancy
variation over a distance W. This is small compared to b if the estuary is long

compared to the width.
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7.2 The Solution for an Estuary of Uniform Width.
Let us consider the solution of (7.19) when \ =1, i.e., when the estuary
has a uniform width. If we use a new dependent variable ¢ = T°/Q®, and a new

independent variable, 4nT, we obtain

B oal s e
Tt o - dc
3 3?1(1 6m / —dnn
Tas mK, /6t m
The integral of this is
g.+ o
3~ 3mK, / 5 E e K e
o B !nLl+ K +_£__‘ 3211\1+——-mKn+2m/.-Zn'ﬂ+ const
mkK, / mK, 2m
Using new constants,
s=1+—— ,c3=—l/2—';{‘ (1. 20)
14— 14 ——
m&\ m&&

the solution is

T
M= —5 o + const (7.21)

@+ °

Imposing the boundary condition that T = T, at the head of the estuary where

Q =1, Eq. (7.21) becomes

s FES Y
i W AseR- 3
T ‘\'T%/ I+cc / (F-22)
The quantity £ may be found by integrating Eq. (7.18). We get
Q
£ =“Y"mx,. [ % dvy (7.23)
Qx

where we choose Q, to be the flux at an arbitrary section at which £ = 0.
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We may simplify the problem considerably by the new definitions

¢=CC T =0QiN, Q' =Q;Q, € = Bhcqye (7.24)

where we denote by Q] the value of Q' at the head of the estuary. We then obtain

C"% 3 ‘
el L B (1.25) |
Q' Sl Hl
=l Re@, q= S—Dg, (7.26)
QL +Cn)y s

where Q) = Q.Q,. Notice that 1 < s <2 tendingtos =1 as o, decreases to zero
and to s = 2 when 0, is very large or, on the other hand, as friction becomes more
or less important, respectively.

We may solve Egs. (7.25) for Q'. We get

5=1

e
Q' = —‘C"—-n-r— (7.27)
5 o T
Differentiating Eq. (7.27), we obtain
2. s-1 %
' a\"5 "C .C' s
de'_ 3\z ¢/
A . (7.28)
so that Q' has a maximum, Q}, when
- Y
b = =3 (7. 29)
The corresponding maximum value of Q is Q.. Notice, also, that
i
¢'°dQ' =de' (7. 30)

so that £' and Q' increase or decrease together. This simply means that the flux

in the upper level increases seaward, as is obvious for physical considerations.
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Since £ is a maximum when Q is a maximum, the flux may increase to the maximum
as we move seaward but if this happens the estuary of constant width must then end.

It is enlightening to compute the Froude number F at ('. A convenient

definition is

3 @
F = 5r (7. 31)
This yields
3
F° = yS—Ab = % (7. 32)

Using (7.24) and (7.29), we get Fz =1, so that the maximum flux Q. corresponds
to a point of critical flow with supercritical flow for ¢' < ¢! and subcritical flow
for {' > (. . We may compare this to a theory by Stommel (1951) which led to the

differential equation in Eq. (7.19) with A =1 and with the frictional term missing. He
obtained

dQ _ _1-F°?
QT “ 2P B

Stommel's theory was incomplete and he could not solve for fluxes and interface
depths as functions of distance along the estuary.

From Eq. (7.25) we get

8=-3
an _ i¢'° (s-¢Y (7.34)
d_‘ s+4 :

Let us now consider the general properties of the solution. If we increase ('
from ¢ = (s-1)/2 (corresponding to subcritical flow), s-' is positive at first
and 7' increases. It reaches a maximum at (' = s and then decreases as (' gets
larger. Since Q' is decreasing, Eq. (7.30) shows that €' is decreasing so that

we are moving toward the head of the estuary. On the other hand, if we decrease

¢' from(! (corresponding to supercritical flow), we find that 7' decreases mono-

NIRRT ——




tonically. Again €' decreases so that we are again moving toward the head of the
estuary. Thus, two distinct solutions are possible, but the second corresponds to
high velocities in excess of a meter per second or more at the head of the estuary
and elsewhere and seems unlikely to occur. It also involves a decrease of velocity
and increase of elevation of the free surface toward the mouth and both are contrary
to observations (Gade, 1970). Consequently, we adopt the solution, C' > C., for
subcritical flow.

The remaining problem concerns conditions at the mouth of the estuary.
Let us assume that the estuary has a uniform width from the mouth to the head
but at the mouth the width suddenly increases rapidly. The arguments leading
to Eqs. (7.14)-(7.16) permit a variable width. Accordingly, let us derive two
equations from Eqs. (7.15) and (7. 16) yielding the rate of change of T and of

F° = mQ® /T # along the channel. We get

dan_ _1__ 2K m) KF° Fod) .

e 1-1?2 <y \4 FmEx ¥/t H_ X dE (7. 35)
dFa by :‘]F2 m)\ KFZ Fa(Fa.‘.;) d)\

dg ~ (- Fa+ s mK X .~ A1-F) dF (7. 36)

Let us now investigate all possibilities, shown in Fig. 7.2, for the location of
the mouth of the estuary.

(a) The estuary ends at or before the section of maximum depth of the
upper layer (point I or J).

In this case 1 ~ F~ >0 and the quantity in curly brackets in Eq. (7.35) is
positive to the left of I or J so that 7 is increasing with €. Eq. (7. 36) reveals
that F° is increasing but is considerably less than one. Just past point I or J,
where 1 is still close to one but d\/d€ is very large, the last term in curly brackets

in Eq. (7.35) will quickly dominate and T will increase even more rapidly. At
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the same time, the last negative term in Eq. (7.36) will dominate and F* will
start decreasing. If we now regard as physically necessary that 7 should de- : ' 4
crease past the mouth as the mass of brackish water spreads in all directions,
this case is impossible.
(b) The estuary ends after the section of maximum depth of the upper
layer but not close to the section at which F* = 1.

In this case, T is decreasing just to the left of point K and F° is somewhat

smaller than one and increasing. Just past K, however, the last term in curly
brackets in Eq. (7.35) quickly dominates and T will reach a minimum and then
increase. Also, the last negative term in Eq. (7.36) begins to dominate and
F° begins to decrease. Again it is not possible for T to decrease past the mouth
and this case is also impossible.

(c) The estuary ends just before the section at which F° =1.

In this case, T is decreasing to the left of point L and F~ is very close
to one. Then, if d1/d€ remains finite, the quantity in curly brackets in Eq.
(7. 35) falls to zero at a section just past point L, F passes through the critical
value and 1 - F° becomes negative. After this, the last term in curly brackets

in Eq. (7.35) dominates and 7 continues to decrease. Eq. (7.36) shows that F*

also continues to increase. This behavior is entirely reasonable and we,

therefore, accept the point L as the end of the estuary. It is convenient to take

this section as the origin of our coordinate system so that £ = €' = 0 there and

in Eqs. (7.23)-(7.26) Q, and Q| may be replaced by Q, and Q; .

7.3 Discussion.

We see from the theory that 7' = g(€',s) or, from Eq. (7.24), CTQ} = g(€', s).




2 Behavior of interface near mouth.
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Also Q' =f(€',s). We obtain then Q} = (€)', s), Q! = £(0, s), and

-8!5;’.32 5 fjo,s)
Ch =%ehe * % el e

where €] is the value of €' at the head of the estuary where [xl = L. Compu-
tations for s =2 and s =1.0036 are shown in Figs. 7.3 and 7.4. They reveal
that the maximum flux and the depth of the interface at the head increase mono-
tonically with the length of the estuary. Other physical interpretations are
obscured by the complicated scaling of the non-dimensional variables and we
must assign values to the various constants to obtain useful interpretations of
the theory.

We may refer to two extreme cases with respect to fresh-water influx,
namely the inner Oslofjord (Gade, 1970) and the Knight Inlet (Pickard and Rodgers,
1959), for which we use q, = 60 cm®/sec and 2.3 10° ¢m® /sec respectively.

It is important, of course, to estimate m in Eqs. (7.14), but this quantity is
extremely sensitive to the value of o,. In either case, however, and in most
estuaries, it seems likely that m is considerably less’ than one. The quantity
K, has been estimated as K, =0.1. The constant K is uncertain but, as we have
indicated, we will use K =1. The estimates we have made so far mean that s

is close to but a little larger than 1. The computations from the theory reveal
little change in Q. as s 1. At mK,CL0,/q.y =3, for example, Q. increases
by about 10% as s decreases from the rather large value of 1.2 to s = 1. 0036.

According to Fig. 7.3, we may write, approximately,

In Knight Inlet, for examplg, we may take y =1.3, g, =5 cm/sec,
by =25 cm/sec”, q, =2.3 10° cm®/sec. Thenm =2.810"°, In the very different

Oslofjord, we may take y =1.3, 0, =1 cm/sec, by =5 cm/sec™, q, = 60 cm"®/sec.
Thenm =4.3 107",




l % o8 a2 1 =S, e
4 6

5
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m& CLo,
Yq,

Fig. 7.3 Relationships between the mass flux in the upper layer
and the estuary length

N 1 1L 2 L L 1 —L
0 : 2 4 5 6 7 9 10
mK CLo,
Yqe

'Fig. 7.4 Relationships between the halocline depth at the heac
of the estuary and the estuary length.
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Q. T 1+ 0,9 2KCLo, (7.37)
Yd:
Our estimates lead to C = 0.37 and, with y =1.3, Eq. (7.37) may be written

~ Lo?
¢ = 1+0.03 7.
ol 179

In the Oslofjord, with L= 2.510° cm, by =5 cm/sec’ and Q, = 3.2 (Gade, 1970), we
estimate 0, = 0.83 cm/sec. In the Knight Inlet, Q. is quite uncertain, but the data
suggests a value of perhaps 4. Using L 1.1 107 cm, by ¥ 25 cm/sec>, we
obtain 0, = 5.7 cm/sec.

Computations for various values of s near 1 reveal little variation of C1),

with s for all but very short estuaries. A rough. relationship is

cn, T1 + 0,25 2 Clo, (7. 39)
Yqr¢
or, approximately,
3
D, ¥2.79f 4 0,025 L 2 7.40
- ou boqf ( )

Computations in Fig. 7.3 and 7.4 yield CT, =1.7 and 1. 9, respectively, for the
Oslofjord and the Knight Inlet. We get approximately D, = 3.3m for the Oslofjord
and 21 m for the Knight Inlet. The first is a considerable underestimate for the
Oslofjord but the second is close to observations in the Knight Inlet. The com-
parisons suggest that the model of this paper may contain the basic physical
mechanisms of the Knight Inlet but probably differs fundamentally from the Oslo-
fjord. This is not surprising. The former has a geometry similar to the model
whereas the latter is very different. For example, the Oslofjord has a shallow sill

depth which forms a considerable barrier for the influx of salt water, whereas the

sill depths of the Knight Inlet are well below the halocline. There is, moreover,




the observed basic difference in the horizontal density variation. This is similar
to the model in the Knight Inlet but is virtually absent in the Oslofjord, so that the
basic driving mechanism of the present model is absent in the latter. As we dis-
cuss in Section 8, the Oslofjord appears to be influenced primarily by the density

distribution in the waters outside of the fjord.

Notice that if we consider D, as a function of q,, Eq. (7.40) shows that the
halocline depth is a minimum for a certain value of q, and large for both small
and large values of the fresh-water discharge. This is the same as the behavior
discussed in Section 6.

An interesting feature of the theory is the slope of the free surface. As
we have noted, the surface slopes downward toward the mouth in subcritical

flow and Eq. (7.4) yields for the total drop AH,
MH = %‘l—)Q—AC'% (7. 41)
u

For the Knight Inlet, for example, AC'%? 2, and we get Al = 55 cm. This seems
rather large but values of 10-15 cm in shorter Norwegian fjords have been found
by Gade (personal communication). Notice that the commonly used argument that
the free surface must slope downward tow .rd the mouth (Gade, 1974) implicitly

assumes subcritical flow. We have not d:scussed the supercritical case in which

the free surface slopes upward toward the sea, but it is possible that some
estuaries have this character.

The calculated drop of surface level for the Knight Inlet represents a s
potential energy far in excess of the observed or theoretical kinetic energies |

and we conclude that friction dominates “< ilow. This is probably true of most : { é
13
fjord-type estuaries. We also deduce the dominate effect of friction from the }
|
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fact that s tends to be very close to 1. As we see in Eq. (7.20) this corresponds
to large values of the drag coefficient K. Indeed, the ratio of inertial forces to

pressure or frictional forces is proportional to s-1.

7.3 Estuary of Arbitrary Width - Integration Procedure.
We may outline the procedure for finding the solution for anestuary of
arbitrary shape. We first notice that Eqs. (7.35) and (7. 36) are invariant for

* * F3
transformations M =oM , £ =of . Using \ = f(E ), we may write

*
f1-F )y = —Zif{ﬂ‘—fa(%-ﬁ)- I—Y(fFa+ T"F g%,, (1. 42)
4 -
™a-Fo)f %;Ff =—3-’§n£ FPE(F+i)+ 3_%-& ~-FYF4%2)7" g{—* (7.43)

Let us investigate the solution in the region just past the mouth (F*= 0) where, by
assumption, the width of the estuary increases linearly. At g* = a, the flow

becomes critical. Then if ¢* = £*- a and ), is the value of A at £* =0,

™=n*+b ..., FF =14a,C*..., f =\ +catc,Ct (7. 44)

Substituting (7. 44) into (7. 42) and (7. 43) and equating coefficients of * we obtain i
to zero order two identical equations. This may be used to solve for A\, +c, a:
R T
-K + J K. &E._m_m.
\gtca = (7. 45)
3K, m/y
The other two equations obtained from equating coefficients of r* may be written

A;b,+B, T = E, (7.46)

Aabl"‘Ban: = EB (7'47) 1
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where

Ay =a,(\+cia)te,, By =cay, Ap =-3¢;, By =a (\tcya)-4c,a, (7.48)

- ' -
E, =+ 28030 0prc) + a Oute@)® + Sa(taate, (149
B, =- 351 g2, 040430 (4 a) - 3T 20, (G tcarke, | (7.50)
Thus
b, = (EyB2-E;B;)/(A,Bz-A;B;) (7.51)
¥ = (ALE;-A3E;)/(AB,-A;B,) (7. 52)

The integration may then proceed as follows. We specify A, and ¢, and the
constants K,, m, y. We also specify a,. This permits calculation of b, and 7%

from (7. 51) and (7.52), and A,+c,a from [7.45). We may then compute 1* and F~

NV P———

from (7.44) for say £* = 0, and £* = -A**, We may then use the finite difference
forms of (7.42) and (7.43) to compute F° and 1* at subsequent grid points until
A =1. This corresponds to the head of the estuary, where F° = Fi. Q =1,

T = Mo. Then we have

o = L (7. 53)
N

and we have a solution for an estuary of width,

Y= fs} (7. 54)

8. Three-Layer Circulations in Estuaries and Harbors.

A number of writers beginning, apparently, with Hachey (1934) have remarked

that if a density variation with depth exists in the water outside of an embayment

and if there is a source of mixing in the embayment from tides and wind, there will
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fact that s tends to be very close to 1. As we see in Eq. (7.20) this corresponds
to large values of the drag coefficient K. Indeed, the ratio of inertial forces to

pressure or frictional forces is proportional to s-1.

7.3 Estuary of Arbitrary Width - Integration Procedure.
J We may outline the procedure for finding the solution for an estuary of
arbitrary shape. We first notice that Eqs. (7.35) and (7. 36) are invariant for

* * *
transformations N=oM, £ =o€ . Using \ = f(E ), we may write

%
(1-Frger = 2ol f o) Sey o %E* (1.42)

4 .
T™*(1-F°)f %;F: :ﬂin_'& FPE (FP+ 1)+ g—;{-& -Fa(Fd+2)n*-:—§-* (7.43)

Let us investigate the solution in the region just past the mouth (F*=0) where, by
assumption, the width of the estuary increases linearly. At g* = a, the flow

becomes critical. Then if g* = g*- a and ), is the value of A at F* =0,

T =X+ by oooy F° =143, C%..., =\ +ciatc,ct (7. 44)

Substituting (7. 44) into (7. 42) and (7. 43) and equating coefficients of { * we obtain
to zero order two identical equations. This may be used to solve for A\ +c, a:

g, 6 m7*
Aptca = —t—X Y (7. 45)

The other two equations obtained from equating coefficients of ¢* may be written
A;b,+B, T} = E, (7. 46)

Azb +BoT = E, (7.47)

i, i

e
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be a tendency for a density distribution as shown in Fig. 8.1 and a resulting
three-layer circulation from the density-pressure effect even in the absence

of a fresh-water influx. Stroup, Pritckard and Carpenter (1961) have calculated
that this type of circulation is dominant as a flushing mechanism for Baltimore
Harbor in the Chesapeake Bay. Here the less salty water in the upper layer
outside of the harbnr originates from the fresh water discharge of the
Susquehanna River at the head of the Chesapeake Bay. I has also been
suggested that the outside density distribution is important for the circulations
in the Oslofjord in Norway (Gade, 1970) and in the Gullmarfjord on the west
coast of Sweden (Rydberg, 1975). Rydberg observed inflow in the layer below
the halocline at the sill and inferred from considerations of conservation of
salt that there must be an influx of lower salinity water semewhere in the upper
level. Conservation of mass requires an efflux of water at some intermediate
level. The lower salinity water outside of the Oslofjord and the Gullmarfjord
originates as the brackish water flowing out of the Danish sounds from the
Baltic Sea. The three-layer type of circulation has also been discussed by
Hansen and Rattray (1972).

A simple laboratory model of a three-layer circulation was constructed
by Hachey (1934). It is shown schematically in Fig. 8.2. A long channel con-
tains, initially, two layers of water of different density. At one end of the channel
a cylinder at the interface is rotated as shown to provide a source of mixing.
The resulting pressure-density distribution produces the three-layer circulation
in the figure.

The simplest model of the basic phenomenon of this section is one in which
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there is an ocean, infinite laterally, composed of two layers with buoyancy
difference Ab, and with an upper layer of depth h. These are the conditions
outside of an embayment of arbitrary geometry specified by lengths L, ,L_,... .
The fresh water influx is zero. There is some source of mixing in the estuary.
The nature of the mixing is not important for the ultimate argument, I think, but
for simplicity let us consider a mechanism similar to the one we use in the
experiment discussed at the end of this section, namely a rotating propellor
located at depth h of angular speed » and geometry specified by the lengths
,83,... . This mixing will result in an efflux in the vicinity of the depth h of
magnitude q,. Dimensional analysis yields

/ 2
_?Ll =f h’_ 'Y I-_‘J.) Ea’ooo 9

=i
(e

o (8.1)

Now let w increase from a low value. q; increases withw. At some value of w
the estuary becomes thoroughly mixed and any further increase in w will have no
effect on the density of the fluid in the estuary and, therefore, no effect on q; .
For higher w, we have 8q,/& = . Therefore, Eq. (8.1) becomes independent

ofw, i.e.,

el (8.2)

90eey ’

& 2
3 SRR
h3(sb,)

=

2 L0}
h

=

This tells us nothing about the variation of q, with any of the lengths of the problem
but does indicate that the efflux is directly proportional to the square-root of the

density difference between the two fluids when the estuary is thoroughly mixed. We
may extend this to the more realistic case of an outside linear density gradient and

find that q, is proportional to the square root of the density gradient.
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Let us make a detailed investigation of the three-layer circulation (Long,
1977). The model is shown schematically in Fig. 8.3. The estuary-harbor is
on the left of the figure. We assume that the width of the channel B, located
between the estuary-harbor and the outside water, is independent of z. The
bottom of the channel and of the two bodies of water has an equation z = { (x)
with z = 0 chosen at a depth H below the level of the outside body of water. The
equation of the free surface is z = H+ AH where AH is small and only important
with respect to the pressure distribution. Outside of the estuary-harbor there
is a two-layer system with an upper layer of thickness h. The upper layer has

a salinity S, and the lower layer has a salinity S;. The water in the estuary is

thoroughly mixed and has a salinity S,. The corresponding densities are p,,

p, and p,. Later we confine attention to a model with a uniform depth H every-
where and a zero fresh-water influx. Here the fresh-water influx R is finite
and if the depth is variable we require that it be a minimum at the section of
minimum width W. The fluxes of water of salinity Sp, S, and S; are qo, q,

and q,, respectively. The lower interface has an equation z = z; and the upper
interface an equation z = 7, so that the thicknesses of the three layers are
(z2-0)» (z,-z2) and (H-z,), respectively, if we neglect the small quantity AH
except as it influences the pressure distribution. At the constriction the
thicknesses of the layers are T, H; (1-Tpo-Tk)H, and T, H, respectively.

Using the hydrostatic approximation, the three Bernoulli equations are

2
Pog(EH+ AH) + —fo— - o gH (8.3)
2B (H-z,)
2
(P -P0)8Z1 + Pog(H# AH) + ——Bd— - constant (8. 4)
2B (2, -25)
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2
(P2-p)) 822 + (Py-p0)8Zy + Pog(Ht+ AH) + —-faqa——- = :
<
ZB (ZE-Q 3
(8. 5) '
’ (p2-pJ)&(H-h) + pogH
With the Boussinesq approximation, these become
|
e i
gAH + ——é—ga——— =0 (8. 6)
2B° (H-2,)°
2
(tbo-4by )z, + ghAH + —-;—q‘-——-a— = constant (8.7)
2B° (2, -23)
2
zoMb, + (Abg-Ay )z, + gAH + -—2—92--5 = bb, (H-h) (8. 8)
2B (z2-C)
where we have used the definitions
b, =g(.22p_—2.9l),mo :g_Egz_'_EQ (8.9)

Let us now differentiate Eqs. (8.6)-(8.8) with respect to x, evaluating at the
section of minimum depth and width where 9B/0x =0, 8(/0x =0, B =W, H-z; = ToH,

Zy~Z5 = (1-Th-Tp)H, zo-C = T;H. We get

) Q@ oz
ao(84H) + =2 =0 (8.10)
e wreE &
9 oz q L B
5=(g6H) + (Mbo-th,) 53> - -2 1 =0 (8.11)
ox X W (1-ToMo)® B o ox /
8 9z, 82, a5 B3y ;
5 (S4H) + fby 522+ (Mbo-tby) 52 e = =0 (8.12)
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We may assume (Long, 1976) that the interfaces and free surface do not have a
zero slope at the constriction so that the determinant of Eqs. (8.10)-(8.12) is

zero. We obtain the critical condition

" 2 -r 2 - 2
| (tbo-t,) - % - —2— |- (tbo-thy) *
e Mo L e T T o e
(8.13)
2 2 2
S 1> S rAb e £ 9,

: ; B
W E W2 E vv“(l—nc,—ng)auaJ
The equations for conservation of volume and salt are
R+qo+qz =q (8.14)

QoSo + q25; =q; S, (8.15)

If we use a linear relationship between density and salinity, we obtain

% =§* * % (8.16)
s ss-1 7 Rrgr-I) 8.17)

where s = Aby/ M, , r = &by /b, and where by is the buoyancy of water of salinity S,.
With the following definitions,
2 2
Qf PENERG. ~dae] 3 Qg =—9 _  pg-
W2 Ha Abo wal'la N)O

Eqgs. (8.16) and (8.17) become

Q=% -2, q =%ED D) (8.18)




Eq. (8.13) and a combination of Eqs. (8. 6) and (8. 8) leads to

oy - —2e 1 [QEDQEEDT _ se-1ef

. A-No-1)° * n2s T ene-ny®
(8.19) ;
8 2 S 2 4
Q-9 : Y i e T s .
L7 T M%s 1-No-"M2)°

Q-7 Q)° [Q6-1)-Q -1
—_t
2M%s 2138

Tt (s-1)(1-Tp) -~ ~-s(l-B) =0  (8.20)

Eqs. (8.19) and (8.20) may be put in the following convenient forms:

BQ s Tos Tar 8 T8, Q) =275 Tast 275 Tos(s-1)A-T>)-Te[Q- £ @, T°
(8.21)
+ M5 [Qus-1)-Qc p (e-1) F° - 28° 13 03(1-8) = 0

f2(Q 1 Mos M2 85 7,8 Qe) = {(8-1)(1-No-M2)*- @ {M3s-[Q (5-1)-Q¢Z(r-1) T }n3s

~E-DQINS 126" - Q-5 W A-Mo-10)>13s + @ @i- £Qn)*s*n%  (8.22) |

+ @~ 3907 [Qfs-1-Q, £ (-1 F 1-10-12)° =0

Let us now consider r, B and Q. fixed in the functions in Eqs. (8.21) and

(8.22), i.e., we write

£, (QysMosMNays) =0 (8.23) ;

' f2(Qas Mos Mass) =0 (8. 24)




-64-
Solving Eq. (8.23) for s, we get
s =m(Qy, Tos Na) (8.25)
Substituting (8. 25) into (8. 24) we get
fa [Ql s Nos N2, M(Q; » Mg nﬂ)] =P(Q,, No»Te) =0 (8. 26)
Thus
Q =x(MosMa)s 8 = Ao, M) (8.27)

We assume that the non-dimensional flux Q, increases as the mixing increases.
When the estuary-harbor is thoroughly mixed, any further increase in the mixing
will not change Q,. As in earlier arguments, we assume that this occurs when
Q, is a2 maximum, now with respect to the variation of two quantities T, and 15

in the equation, Q, =x (Mo, Ts). Thus we require for an overmixed estuary

9

X
279

5.l =9 (8. 28)

Mo

1P
where to make matters perfectly clear, we use subscripts to indicate the variables
held fixed in the partial differentiation. To find Eqs. (8.28) in a useful form, let

us differentiate (8.23) and (8. 24)

S D
l’ﬂo.ﬂa.s 2, 'n. le’nass Qu'no, T‘a 'o'ﬂz
%/ -g%/ +%%\ +-g-f84) -giT\‘) -0 (8.30)
1 MosMNass ~ 2" Mo 2°Qus Moy s Qs Mos N2 2 Mo
nf a«x N af \ \\.
) o) toM). 58 a
no-“gss = T\; Ql."nﬂos Q]_’T‘o’na aTb/'na=o (8-31)
o, o, ) o) e
9l + ) + = =0 (8. 32)
0 '“o"na’sa‘na)ﬂo am'vano’s - "Qus Moy Ma 8“’}“0
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Using (8.28) and eliminating 8\/81, and dA/87,, we obtain

o, ofy _ of, ofy g
: - 5, o8 ®.39)

3s

of, of, _ Ofy of.
B0 SR - MR L T
M, 08 ~ oM, 88 (8.34)

where we now suppress the subscripts. Eqgs. (8.33) and (8. 34) together with Egs.

(8. 21) and (8. 22) are four equations in four unknowns, Q,, Mo, MNa, s(r,B, Q¢

given) and the problem is determinate. The quantities in Eqs. (8.33) and (8. 34)

are

g%o = 475 s+ 4Mo N3 8(s-1) (1-N0)-2M5N 28(8-1)+2M0 Q1 (5-1)-Q: 3(r-1) T

(8. 35)
-45°1oM2(1-B)

53 = 6123844 Nas(s-1)A-M0)-2Ma(@ - 3Q0)° 45" 3 N2 1-8)  (&.36)

o,

2 = 2N N3+ 278 13 (5-1) (1-No)+ 213 M58 (1- o)+ 2713 (@4 (5-1)-Qe 2(r-1) )(Qs - £ (r-1) ]

(8. 37)
+ 2, -2 Q, 11a-4s13 13 (1-9)

%fhao = -3(8-1)(1"“0‘713)2 ngS‘LT‘azs'[Ql (s-1)-Q, %(r—l)f) _3(8_1)Q?«n§.ngss

+3138 (5-1)(1-No-12)>+Qs \N38-[Q (6-1)-Q¢ Fr-1) T +3(Q,-3Q0)° A-No-1,) B8
(8. 38)
“3(1-To-N2) Q- 2 Q¢)°[Q (4)-Q, 3 (r-1) °
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ER

= -3(s-1)(1-No-"2)" 135 M35-[Q (5-1)-Q pr-1T° +313136° [(5-1)1-M0-12)°-Q7s]

-3N375 (-1)QE 8%+ 3(Qu - 7Q0)° (1-No-Ta)” M38-3M38(1-No-M2)*(@ -2Q,)° (8.39)

2 3,2

-3(1-M0-Ma)* (-} Q07 [Q (8-1)-Q T -1 '+ 3Q{s"13(@, - £ Q0)°

gf; = (-Mo-M2-Q° | n3s-[@ (5-1)-Q, = (r-1) T 13s-(45°-38%)Q7 1S 13

+13 (8-1)(1-No-12°-Q7's - M3s-[Q, (8-1)-Q, 7 (-1 F°

+ M3 (5-1)(1-Mo-M2)°-Qfs  13-2[Qu (5-1)-Q; £ (-1 ][@ -Q, L—”{l 1,
(8. 40)

+22(Q; - £Q)M35(-10-12)°~ M3A-To-M2)° (& - 2 @y
2@, - £Q)[Q (6-1)-Q; & (r-1) P (-10-12)* 268 (@ - £ @r) Dt 1%

+ 20Q (6-1)-Q, 2r-1) i@ - ir-1)I(Qu - £ Qe P a-no-M2°+265 513 (@4 - 2 @)
The solution of the general problem involves the solution of the four complicated
simultan:=ous algebraic equations and we will limit attention to the special case in
the next section. We note, however, that for a zero fresh-water influx, the solution

.has the simple form Q, = f(8) so that the discharge q, is proportional to the square
root of the density difference between the two outgide fluids as we found out from
dimensional analysis.

Let us now consider the special case in which the whole system has a uniform
depth H, the fresh-water flux is zero, and the two fluids outside of the harbor have
equal thicknesses. Then B =% and from symmetry s =2 and N> = M. Eq. (8.21)

becomes an identity and Eq. (8.22) becomes

t

gt et




AN5(1-2M0)° - 16Q3 N$ - 49 NSA-2N9°+8QENS+QE(1-2T0)® =0  (8.41)
The condition for overmixing is 8GE/am, =0. Differentiating Eq. (8.41) we get
1215 (1-2M0)° + 12Q715 (1-210)°-3Q¢ (1-21p)%+127E,(1-21,)°
(8. 42)
-48Q°1o° + 12Q15-6Q313(1-210° = 0
The two equations (8.41) and (8. 42) determine the problem and the relevant solu-
tion is
T =%, @ 2& (8. 43)

In dimensional terms, the outgoing fluid has a thickness of H/2 and a flux

1
2
g - DA (8. 44)

A laboratory model was constructed to study a three-layer circulation. A
long channel of width W, was used as shown in cross-section and in plan view

in Fig. 8.4. The opening between the harbor and the outside region has a uniform

width W. The outflowing fluid has a vertical thickness aH far downstream. Atten-

tion was confined to the case of fluids of equal depth so that g = }.

Let us first consider the steady-state theory for an infinitely long channel.
A portion of the problem is identical to that considered above and we are led to
equations identical to Eqs. (8.41) and (8.42). The solution is again T, = %,
Qf =1/64. To obtain an equation for a, we use the Bernoulli equations for the

outflowing fluid and for either the upper or lower fluid. These are

2 2
GAll § . = B (8. 45)
2W*néH® WiH?(1-a)°

2 ]
%0 (1-To)H + gAH + 4o = %‘1 H(l+a) + —é%—- (8.46)
nga" H°

2W2 (1-210)° K
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Eliminating gAH between these two equations, we get

1_To F WP
-3 +ﬁl—z— \x;a Q%g‘l-z(lq“'-—z—-%awzo:o (8. 47)

2(1-a) -27)

Using T, =1/4, Q° =1/64 and imposing the condition a = 0, W/W, = 0, we obtain

a = 3[1- 1-- ) ] (8. 48)

A graph of this relationship is shown in Fig. 8.5.

The experiment was conducted by putting a two-layer system of equal depths
in the channel and then using several egg-beaters to mix the fluid in the harbor. The
fluid in the harbor was thoroughly mixed in a few seconds and the middle layer began
to move down the channel in a surge. Evidently a quasi-steady state resulted in the
vicinity of the mouth of the harbor before the surge was able to reach the other end
of the channel and reflect. The middle layer was unfortunately still quite turbulent
near the mouth and for some distance along the channel, but to the extent that
observation of its thickness was possible, it was close to H/2 at the mouth in
accordance with the theory and as evidenced by the photograph of Fig. 8. 6. The
thickness ratio a was considerably larger than Eq. (8.48) indicates, probably

because of the presence of a '"drowned" hydraulic jump downstream.
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Fig. 8.6 Flow from laboratory model of an estuary.
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