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Lectures on

Estuarine Circulations and Mass Distributions

1. Introduction
-

- These lectureg concern’estuaries or , more preci sely, my special recent

interests 1n-the physica l aspect s of estuaries. Donald Pritc hard at The Johns

Hopkins University has studied these systems for twenty-five years and has

attem pted (1967) to formulate a workable definiti on:

‘~An estuary is a semi-enclosed coastal body of water which has a free

connection with the open sea and within which sea wate r is measurably diluted

with fresh water derived from land drainage. ~
- 

I can quarrel with this definitio n In certain respects. Pritchard apparently

wanted a definition which required an estuary to have an “estuar ine circulation ”

characterize d by water outflow in the upper layercomposed of a mixture of fresh

wate r and salt water and an Inflow In the lower layers of saltier sea water’ . The

pr esence of this kind of circulation distingui shes an estuary from other types of

embayments and is a ~seM characterization. However , as Pritchard himself

states, It excludes a body of water such as the Baltic Sea by including the adjective

“coastal” . The Baltic has an estuarine circulation and I think It should be considered

an estuary. A further objection Is to the last four words in the definition which put

an undue Importance on the source of the fresh water. It may be interest ing, for

example , to consider a theoretical model of an estuary in which the direct addition

of rain water may be an important source. Certainl y we should not exclude the

~ the typical estuary density differ ences due to salinity are considerably
greater than those due to temp erature (Pritchard , 1965).

_______________________________________________________________________ .-~-~~~~~~~-—~-.-- ---~~-- — -~~—-.  —
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fresh water addition from the rain falling directly on a body as large as the

Baltic Sea.

Pritchard ’s definition of an estuary requires an appreciable amount of

Incom ing fresh water. However, we will see that Interesting three-layer circu-

lations with resemblances to two-layer estuarine-type clr~ulatlons can occur when

the fresh-water supply is zero or very small, and we will include this case. We

may even go further and include situations in which evaporatIon exceeds precipi-

tation ~nd run-off. In such cases, for example the Mediterranean Sea and Laguna

Madre in Texas (Pritchard, 1965) , Inverse two-layer circulations exist which

also resemble the classic estuarine circulation.

Pritchard goes on to distinguish several types of estuaries based on geo-

logical considerations of the origin of the estuaries, for example drowned river

valleys, which he calls “coastal plain estuaries” and coastal indentures gouged

out by glaciers which he calls “fjords ”. Certainly fjords differ fundamentally from

such coastal plain estuaries as the Chesapeake Bay but the way In which the

estuaries formed Is not directly important for us.

It will clarify our problem If we attempt to classify estuaries in a manner

similar to that of Stommel (1951), based in part on the relative strength of the

turbulence that causes the mixing of waters of different salinity (density) . We

define four types:

Type 1:

The simplest type is one In which the fresh water flows gently out to sea over

a wedge of salt water originating In the sea with no mixing between the two fluids

(Fig. 1. 1). The fresh water Is lighter than the salt water and tends to over-ride,

ultimately spreading out in a thinner and thinner layer as It moves seaward. In

—~~~ — —
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the absence of any mixing the upper layer remains fresh and the mass flux across

any section is equal to the river discharge R. There is a zero salt flux across

every section. Since the interface is statIonary, If the lower fluid may be con-

sidered frictionless and barotropic, it will be at rest. Among other things, this

means that the horizontal pressure gradient in the lower layer will be zero. The

salt wedge may penetrate up the river 50 km or more (Pritchard, 1965).

Of course, frictional effects and mixing are never entirely absent. For

example even in the absence of wind and tide the flow of the river water over the

salt wedge will tend to produce unstable waves at the interface which will break

and cause mixing. This has been studied by Keulegan (1949) in a laboratory flow

of a light flui d over heavier salty fluid. As pictured in Fig. 1.2 , waves formed

and eddies were ejected from the crests causing some of the lower salt water to

be mixed with the upper fluid. In the river this will cause the upper fluid to become

somewhat salty as it flows toward the sea. The salty water comes from below so

that there must be a (small) flow In the lower layer from the sea up the estuary to

replenish the lost salt. In this kind of mixing none of the upper fluid is mixed

into the lower fluid and the lower water remains of the density of water in the

sea. Keulegan found that mixing began when

9 =~vg.1) /11 = 0 .178Pt

where v is the kinematic viscosity, g Is gravity, t~p is the density difference ,

p~ Is the density of fresh water and il ls the velocity of the upper fluid. For

typical values in a river, this corresp onds to velocities of a few centimeters

per second so that instabilities of this kind are very likely. The defInition of a

Type 1 estuary Is restricted to situations in which the (weak) mixing is primarily
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Fig. 1. ~ Breaking waves at interface of a two fluid experiment .
The lower fluid is at rest and the upper fluid is movingF 

at speed U.

• 1

(°) ( b)

Fig. 1. 3 Density profiles in an estua ry . Fig. 1. 3b portrays a sharp halocline.
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due to the wave breaking at the interface. An example of a Type 1 estuary is the

mouth of the Mississippi River.

Type 2 Estuary.

Two other effect s are Important In producing mixing In estuaries. The first

is the tide which produces motions and breaking internal waves In the fluid and

these in turn cause turbulence and mixing. The second is the stress of the wind.

This causes velocities in the water and the resulting vertical shears are a source

for energy of turbulence. The result is increased mixing compared to the Type 1

estuary and a density profile resembling that in Fig. 1. 3a with a fairly continuous

density distribution with height. Here the density increases gradually with depth

although there is frequently an identifiable halocline across which the density

increase with depth is more marked. Examples are the Chesapeake Bay and the

mouth of the James River which empties Into the bay.

We include In Type 2 the fjord-type estuary which Is typically so deep that

the lower layers are relatively inert with little mixing and a density equal to that

of sea water. In this case a relatively sharp halocline often exists as shown

In Fig. 1.3b.

The mixing Is typically much larger In Type 2 than In Type 1. In the

Type 1 the flux of salt water Into the upper layer Is less than or at most of the

order of the river flow . In Type 2 the upward flux of salty water is much larger

so that the total flow of brackish water seaward in the upper layers will be several

times the river flow. In the James River, for example, the total discharge Is

some twenty times the river discharge so that the compensating flow up the

estuary in the lower layers is nineteen times the fresh water discharge.

~~ ~~
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Type 3 Estuary.

If the source of mixing is strong enough the estuary may be sectionally

homogeneous, I. e., thoroughly mixed from top to bottom and side to side. Al-

though the vertical and lateral gradients of salinity vanish, a horizontal, seaward

variation of salinity may exist. In the Idealized case there is no eatuarin e type

circulation in the estuary. The observed longitudinal gradient of salinity requires

a transfer of salt up the estuary and this must be accomplished by turbulent

diffusion.

It is possible that strictly sectionally homogeneous estuaries do not really

exist. For example, the estuary of the Mersey River in England was thought to

be vertically homogeneous until Bowden, Fairkuirn and Hu~~~s (1959) reported a

slight vertical salinity difference. This raises the basic question as to the relative

importance of the advective salt flux ~s set up by the estuarine circulation and the

turbulent longitudinal flux ~i’~’. In these expressions u is velocity and S is salinity.

If u 0, the estuarine circulation Is absent but, because ~ is large compared to 5’,

a very weak circulation can transport a great deal of salt.

Type 4 Estuary.

In this estuary the fresh-water influx from river discharge is neglIgibly

small. If the water in the sea is of homogeneous density , it will fill the estuary

and, since no density variations exist, there will be no gravitational circulations.

The Type 4 estuary can have motions, however, If there is a vertIcal gradient

of density in the outsIde water and If the mixing is greater in the estuary than

in the outside water. Then we will have the situation portrayed in Fig. 1.4.

The constant density surfaces slope as shown and this leads to accelerations

— -—- 
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which produce the three-layer circulation pictured in the figure. This possibility

was first raised by Hachey (1934). A circulation of this kind was inferred from

a study of acid wastes in the water in Baltimore Harbor (Stroup, Pritchard , and

Carpenter, 1961). The Chesapeake Bay outside the harbor has the required density

variat ion with height caused by the presence of lighter water in the upper layers

originating in the Susquehanna River.

This & oncludes the introduction to these lectures. In subsequent sections

we will eonsid~r some aspects of estuaries in detail based on recent research.

2. Salt-Wedge Estuary

Let us consider first an estuary of Type 1. pict~ired in Fig. 1. 1. We will

confine attention to an idealized situation in which we may neglect mixing entirely.

Then the lower layer is at rest and therefore the longitudinal pressure gradient

along the estuary is zero in the salt water. From hydrostatics (and using the

Boussinesq approximation) the pressure in the lower layer is

p/p s = g(H—z) + Ab(H-h-z) (2. 1)

where b is buoyancy, defined by b = g(p-p~)/p~ and th is the buoyancy of the salt

water. The equation of the free surface is z = H, and h is the thickness of the

upper layer. Thus in the lower layer

gH~ = h ~~b (2. 2)

or

g H = h t h + const (2. 3)

We assume Irrotational motion In the upper layer so that the Bernouilli equation is
a

+ + gz = const (2. 4)Pt 2

L. - —
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where u is the longitudinal velocity which will be nearly uniform across a section.

We neglect the other two components of the kinetic energy. They will be very

small if the length scale along the estuary is large compared with the depth and

if the change of width is gradual. Hydrostatics leads to

gH+~~ =const (2. 5)

or 

h , 1 + = E (2. 6)

where E is a constant proportional to the sum of kinetic and potential energies, and

F is the densimetric Froude number. It may be written

(2. 7)

where R is the river discharge and W is the width. Let us non-dimensionalize

• using the depth of the fluid h0 at the tip of the salt wedge and the width Wo of the

estuary at this section. We have
2

2h’ + 
F0 - E ’ (2. 8)

(hW ’)
2

where

ht _ h WI _ W F2 - Ra
-i~o

, — w0 ’ ° ( .

and E ’ is non-dimensional constant proportional to the energy. If energy is con—

served along the flow E’ = 2 + F~. Differentiating (2. 8), we get

-

~~~~~~~

, ~ 1,?/(1_ F2 ) (2 . 10)

This shows that the depth of the upper level decreases with distance downstream

(assuming the width increases downstream) if and only if conditions are super—

critical , i. e., F2 >1. Eq. (2. 6) shows that F2 then increases along the estuary.
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Thus , if we require energy conservation and that h decreases everywhere toward

the mouth , F > 1, i. e. conditions must be supercritical at the top of the salt

wedge and therefore supercrltical everywhere. In fact , it is physically obvious

that h must decrease ultimately as we proceed seaward so that conditions must

ultimately be supercritical In any case. It Is possible, however, that h could

increase near the tip for some distance so that we may consider the possibility

that F~~< 1.

We see from (2. 6) and (2. 10) that h begins to increase and that F2 begins

to decrease. These behaviors continue toward the mouth and h can never

decrease as required ultimately by physical considerations. We conclude

that if energy is conserved along the estuary, conditions must be supercritical

everywhere and h must decrease montonically.

Another p~ssibllity exists however, namely that the flow starts out sub-

critical with h increasing downstream and then changes discontinuously at some

section (with loss of energy in an Internal hydraulic jump) to a smaller h and

supercritical conditions, with h then decreasing with farther distance downstream.

To see if this is possible we must make two investigations. In the first we

calculate the momentum balance in a jump as in Fig. 2. 1. We consider the rate

of change of x-momentum of the fluid contained between Sections A and B at

time t. At time di it is between sections A’ and B’. Its rate of change of

momentum,
F 

~4j~- U~SVhb Pf — U ~ Wh~ Pf (2. 11) -

equals the pressure forces on the fluid , i. e .,

-L



I ~~

=- --- ------ ‘-- - 
~~~~~~~~~~~~~ _~~~~••~~~_~~~~~~~ 

— -
~~

-i=-- - -  — ----• 

-I

I

A A S

~~~~~~~~~~~~~~~

Fig. 2. 1 Internal hydraulic jump in a salt wedge.
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(. r - AW ’ p~g(h~-z)dz — W 1 p~g h~- ~
2(hI -hb)- zJ dz

(~~—h b)~ 1—~~ )Pt

-
- A (2.12)

(h$ -hb)~ l”’
~~/

_w$ Pt~~h:(1+~~~~)Zj dz

Integration yields 0

1!bih~ _ 1 ~i =~~~~~~~~~ -(h ~~~- h )  (2 .13)

Using continuity, u 1h = ub hb we may write this in either of two ways:

F~~ =~~~~-~ 1+~~~~ (2. 14)

(2.15)

Since hb < h , F~~ < 1, F~ > 1 so that a Jump downstream from sub-critical to

supercritical is possible from a momentum viewpoint.

Let us now consider energy. We may choose a representative sub-critical

initial flow F = 0. 25. Then if energy is conserved E’ = 2. 25 in Eq. (2. 8).

FIg. 2. 2 contains this curve plus one corresponding to a lower energy level

E’ 1. 50. We see that there Is a possible Jump to a lower energy from the

subcritical branch as shown by the arrow. We conclude that a subcritical flow

at the tip of the wedge Is possible with h increasing very gradually initially but

there must then be a hydraulic Jump to a smaller h followed by a monotonlc

reduction of h as the upper fluid spreads out over the wedge.
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3. Estuary with a Control Section.

We may use some of the results of Section 2 to discuss an estuary with

a narrows at the seaward end as in FIg. 3. 1. We again consider zero friction

and mixing so that the lower fluid will be inert. In the region of the narrows

the Bernouilli equation Is the same as the dimensional form of (2. 6),

h~b + ~~ = const (3. 1)

Using continuity uhW q1 = const , we may write

2• hth + - q1 const (3. 2)

Differentiating with respect to x, we get

th - -~~~~
- 

- 

- -
~~~~-- ~~~ = 0 (3 3)dx . . h3W~~ h2 W3 dx

At the narrows W is a minimum so that dW/dx = 0. If , in addition, we make the

reasonable assumption that the interface slopes upward at the narrows as the

issuing fresh water spreads over the salt water in the sea , we find that ? = F~~ = 1

at the narrows so that conditions become critical at the mouth and supercritical

beyond this. As we have seen In Section 2, the fresh-water layer will continue

to thin as it moves seaward.

An interesting relation is obtained when the estuary width Is much larger

than the width of the narrows. Then from (3. 2)

a
h0 t h +  q1 

~ 
= DAb (3. 4)

2 W h 0 
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where the subscript “c” denotes conditions at the narrows and D is the depth of

the halocline In the main body of the estuary. Using F,~ = 1 we o&aln the simple

relation

h0 = -~D (3. 5)

This result was first obtained by Binney (1972).

4. Strongly Mixed Estuaries

We have introduced the subject of e-3tuaries by discussing a highly idealized

situation in which there is no mixing (and no friction). Sources of mixing exist in

all real estuaries, however, and we may discuss two causes in addition to the

tendency for breaking waves on the halocline as described above.

(1) Influence of the tides. If the estuary is subject to tides , these will

cause tidal currents to move in and out of the estuary. Aa the current moves

along the bottom and sides a turbulent boundary layer will be created and there

will be a tendency to mix near the boundaries and cause a reduction of the density

gradient in those regions. The density field changes momentarily as represented

by the dashed lines in Fig. 4.1 which portrays a typical pattern with a pronounced

halocline. The new density distribution will tend to cause the flow pattern indicated

by the arrows in Flg.4. 1. The result Is to separate the constant salinity surfaces

in the interior and to create a salt flux and mass flux from below to the region of

the upper layer. Since we are dealing with a steady state over the long run,

processes must exist to restore the original density gradient and, In particular,

to maintain the halocline. The loss of salt In the lower layers Is compensated by

an influx of salt from the sea due to the estuarine circulation that develops.



z

Fig. 4. 1 Effects of mixing along sides and bottom of an estuary.

b0 4

A X I A L  S E C T I O N

Fig. 4. 2 Conditions near the mouth of an eet ary.
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The tides will also cause the development of internal waves. These may

break against the sides of the estuary again creating turbulence there and the

same phenomenon described above and depicted in Fig. 4. 1. Stigebrandt (1976)

has conjectured that internal waves due to the tides propagate over the sill of

the Oslofj ord and break against the sides and the head of the estuary. He has

constructed an experiment that demonstrates this effect .

(2) Wind effecta. When the wind blows over the surface of the water , the

resultant agitation, for example breaking surface waves , will cause turbulence

in the upper levels. To the extent that this penetrates to lower layers , for

example to the halocline , mixing will result. In addition the wind will cause

currents in the water and the resulting shear will be a source of energy for

turbulence, In addition the stress of the wind may cause internal waves in the

deeper layer which may break in the interior or against the bottom and sides.

Obviously a q uantitative representation of mixing processes will be

diffi cult and we will discuss these at some length in Section 5. A great simpli-

fication result s if the mixing is sufficiently strong to produce a thoroughly mixed

estua ry. This was fi rst discussed by Stommel and Farmer (1952, 1953). We

may discuss the problem with reference to Fig. 4.2 which shows conditions in

the vicinity of the mouth of an estuary (on the left ) connecting the estuary to the

open sea (on the right). We have assumed an estuar ine circulation near the mouth

with flui d of mean buoyancy bA flowing out with mass flux q~ over the incoming

fluid with the buyancy b0 of sea water and mass flux q0. In this portioa of the

analysis we do not need to assume uniform buoyancles in the two layers although

we will do this later. The mean depth of the water averaged across the channel

~ 

- 
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is h , the mean width i s .  Other lengths required to specify the geometry of the

estuary and its mouth may be denoted by L1, L3 There is a fresh-water

flux R into the estuary and some kind of mixing. In the present discussion the

precise nature of the mixing processes is not Import ant (as we will see) but to

be definite and simple we will assume the mixing is caused by a rotating propellor

with angular speed ~~. Its geometry and location are specified by lengths a~, a3,.. -

A quantity of importance in the discussion Is the buoyancy difference b0-b~ th.

From dimensional analysis we may write

At , R 
_____c i , . . .) ,  Q~ ~~~~~~~~~~~~~~ 

, ~l =  — 
(4.1)

0 
b0

h 2 W (hb0)

where a number of non-dimensional ratios of lengths of the form L~ /h , L2/ h, . . . ,

a~ / F ~ a2 /l~,... have been omitted. Certainly th/b0 will vary with the quantity ci;

indeed Ab/b0 will decrease as ~2 Increases from the maximum value of one when

the mixing is zero. Ultimately, if the estuary has finite dimensions, a sufficiently

large ci ,  say c~, will cause the estuary to be thoroughly mixed and any further

increase of ç~ will not further decrease Ab and it will assume its minimum value

&~~~. Since a(Ab/b0)/acl when tb = ~~~ we get

(4. 2)

The ratio 1~ of the mean depth of the lower layer to ii is

(4. 3)

When the estuary is just thoroughly mixed and Ab = Abe, any further increase

in the mixing c~ can only affect conditions at the mouth by the tendency to further

increase the tu rbulence in the outfiowing fluid. This effect is difficult to analyse 

~ •- ..- ... -‘-.. 
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and we will neglect It. Subsequently we will assume, In fact, perfect fluid flow

in the vicinity of the mouth so that the turbulence is assumed to be negligible

compared to the mean mc*I ons. Then for Cl > ci,. , ii assumes a fixed value ri,.
such that

fl = f 4(Q~, ...)  (4. 4)

In general we notice that a combination of (4. 1) and (4. 3) permIts us to write

= f5 (Qt , Tb . . . )  (4. 5)‘Jo

for arbitrary mixing.

Let us attempt to find the form of the function in Eq. (4. 5) subject to

several simplifying assumptions. With reference to Fig. 4.2 and Fig. 4. 3 the

Bernoulli equations in the two layers are

gAll = const (4. 6)

+ gAl-I - h1 Ab = coast (4. 7)

where h~ is the distance from the free surface to the interface, and where we

assume Irrotational motion. Let us ju stIfy the neglect of the other two components

of the kinetic energy in (4. 6) and (4. 7). The equation of contiaiity leads to

(4. 8)
,~ W a

where X, ~~~‘ and F~ denote length scales in the longitudinal, transverse and vertical

directions. In each layer v3 and w3 will be negligible compared to u~ If

~s < <1  ~u < <1  (4. 9)

We assume that the channel has these properties.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : _
~~~~~~
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ElIminating MI between Eqs. (4.6) and (4. 7) and introducing the constant

fl uxes q3 and q0, we have

- - h ~ = const (4.10)
2thB [H—h ~, -~ (x) ]~ 2AbB~ h~

where B0 is the width of the channel at the level of the interface, B~ is the average

width in the upper layer and ‘~~ is the average height of the bottom of the channel

above z = 0. Let us now differentiate Eq. (4. 10) with respect to x. We get

~~~(F~ + F ~-1) = -~~~ F~ + ~ ~~°(H-h1-~)F _~~~~~~h~, F1
2 (4.11)

where F0 and F~ are the densimetric Froude numbers defined by

F~ 
g0 

- , F~ = 
g~ (4. 12)

AbB~~[H-h~-~ ]~ th~~~h~
Suppose we have a channel with a minimum of width at a certain section

(i. e. , dB0/dx = 0, d~~/dx = 0, presumably at the same section). If the bottom

is level there (or if the mean depth is also a minimum there) , the left-hand side

of Eq. (4.11) is zero at that section. Since we would expect a strong slope of the

interface as the upper level moves out of the estuary and spreads laterally and

thins vertically in the widening channel, we infer that conditions will be critl3al

at the section, i. e.

F~~+ F ~~= 1 (4.13)

Such a section is referred to as a contro j ection. Experiments by Stommel

and Farmer (1953), Assaf and Hecht (1974) and Assaf, Anat i and Siegenthaler

(1975) have shown t hat critical conditions do tend to occur in a variety of straits

in laboratory models. If the strait is long, friction become important and critical

conditions occur at the ends of the strait (Assaf , Anati and Siegenthaler, 1975). 

,.-. .-- --,-- ,—~~~ ---- -- . —— --- —-..,.~~~ —-~--~~. — ——.~~~.-- , --- -—.—.- --.-—-,-
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Fig. 4. 4 Curve of density difference as a function of
non-dimensional thickness of lower layer.
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At the control section we let W0 and ~~~~~ be the values of B0 and ~~ and TI

be the ratio of the mean thickness of the lower fluid to the mean depth of the water

(H- C) = ii both evaluated at the control section. We also use the equations for

conservation of mass and buoyancy (salt)

q0 + R = q 1  (4. 14)

q0 b0 = q ~b~ (4.15)

where R is the fresh water discharge. The critical condition becomes

2
11 Qr~

l i~~ A1~ 3
_ _ _ _ _ _ _ _  _ _ _ _  - 

~~
‘ 4 1 6+ (1-Tl )~ 

-
~ W -

where

b0i~~~1
2 (4.17)

For a given value of Qt , Eq. (4. 16) represents a curve like that shown in

Fig. 4~4. It is of the form of Eq. (4. 5) yielding th,k 0 as a function of 1~ instead

of the mixing parameter ci. Physically, if we increase ci from a small value,

we expect Ab/b0 to decrease monotonically from the value 1 corresponding to

zero mixing. fl will increase or decrease with increase of C l ,  and we move

on the curve of Fig. 4. 4 toward the minimum point. At a certain value 1,. the

estuary will be thoroughly mixed, Ab will no longer decrease and 3(th/b0)/~KT2 = 0.

We have

a(Ab/b~ - 
a(Ab/b~,) ~~ (4 18)aci a’r~ an

Obviously if a(th/b0)/a’n = 0, correspondIng to the minimum point of the curve

in Fig. 4.4 , a(Ab/b0)/acl = 0 and ~b/’b~ will have the value appropriate to the

thoroughly mixed estuary. The con4ltlon

-. — — — —— -.~----- -.- -.— .--~ ~~~~~~- ~~~~-.----
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a(th/b0) 
—- ( . 1 )

together with Eq. (4. 16) determines the problem of a thoroughly mixed, or in

the terminology of Stomzml and Farmer, an “overmixed” estuary. Notice that

the conservation equations (4. 14), (4. 15) yield

q1~~~~= R (4. 20)

so that a minimum of Ab/b0 corresponds to a maximum of the discharge q1.

The variation of n 2 with ¶
~ depends on the part icular geometry of the

estuary , and although this variation may have some quantitative importance we

will consider instead the idealized channel with vertical sides so that n = 1.

Eq. (4. 19) then yields

1 —
~~~~~~~ = 

(
~~~_ ;~~~5 (4. 21)

In terms of the densimetric Froude numbers we may write

F~ = 11,  F~ =1  - TI~ Q;~ = (4. 22)

One special case involves the condition in which the densities of the two fluids are

nearly equal. Then from (4. 21), fl ~ ~~~, R ‘~~ 0. Experiments by Stommel and

Farmer (1953) and Assaf , Anati and Siegenthaler (1977) confirm the prediction

that the two fluids have equal thicknesses in thoroughly mixed estuaries with small

fresh water influx and I have derived this result theoretically (Long, 1976). A

second special case is one in which TI 0 so that no salt water enters and fresh

water fills the estuary. In this case the solution yields Ab/b0 = 1, F 0 as

also required by physical considerations. In the general ease (4. 22) shows that

Ti <~~ so that the interface is always at or below mid-depth.

________________ — —
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Of interest, particularly in later discussions, is the height AR0 of the

water surface in the estuary above the level of the ocean surface. If we

evaluate the constants in Eqs. (4. 6) and (4. 7) in the estuary and in the ocean

respectively, we get

+ gAH gAH~, (4. 23)

+ gAff —th h2 0 (4. 24)

where we now assume that the widths in the ocean and estuary are very large

compared to the width of the channel. The constant in Eq. (4. 10) is -gAH0/~~
and this equation may then be written

• — 11—11) — (1— T I ) +  B = 0  (4. 25)

where

(4. 26)
r1AV/P~

Using (4. 22) we get

B =~~~~~~~ 1— ~~~~ - f l
1 

(4. 27) ( .
In the overmixed state B ranges between ~ and ~~.

We may contrast this strongly mixed case with the case considered in

Section 3 in which the mixing is zero. Then F~ = 0, F~ = 1 and Eq. (4. 25)

yields B = ~ (1-fl). For future reference we list the two behaviors:

F =0 , ~~ = 1, B = ~~
- (1— fl ) ,  Q~ = (1—Ti )3

(4. 28)

= 1 1 , weak mixing

• ;
~~~~ ~~~

•
-~
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F = TI~ F~ = (1-TI )~ B = ~ (1- I T I )~ 
Q~ = ____

(4. 29)

= = , strong mixing

5. Turbulencc~ and Mixing Processes in Stratified Fluids.

We have decided that turbulent mixing of waters of different density (salinity)

is a fundamental process in the dynamics of estuaries and we now consider some

aspects of turbulence in stably stratified fluids.

Turbulence in a fluid needs an energy source or it will die out. This is

especially true in a stably stratified fluid. Thus, letting primes denote departures

from mean conditions and using the equations of motion, we may form the energy

equation for the turbulent kinetic energy

- 
u~

2+v ?3+w !2 
s 1— 2

If conditions are statistically steady and horizontally homogeneous, we get

~~~[w’(T’+p ’7~~) ]  -~~ii’u 2 -~~~~~~~~~~ - € (5. 2)

where € Is the dissipation function , p is pressure and subscript “z” denotes the

vertical derivative. When the fluid is stably stratified, i. e., If the mean density (or

buoyancy) decreases with height, the turbulence will be accompanied by a

buoyancy flux q = -~ E ’ < 0  so that this, and the viscous dissipation e, act as

sinks of kinetic energy. Energy must come from the first and/or the second term

on the rhs of Eq. (5. 2). The first is the energy-flux-divergence term and Is a
• basic source term In certain laboratory experiments to be discussed in this section.

~~~~ 
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The second is always a source term and arises from a conversion of energy

of the mean shear of the current to turbulent energy. It is believed to be of

fundamental importance in geophysical phenomena.

in a stably stratified estuary in which salinity increases with depth , q

will tend to be negative because rising parcels tend to be more salty and heavy

and falling parcels tend to be less salty and lighter. One must be careful ,

however , because of the possibility of wave motions contributing to w’ and b ’.

Thus , if the fluid is stably stratified , it is capable of internal gravity-wave

motion in which the basically level density surfaces move up and down in waves.

Obviously if the waves do not break, there will be no rupture of these surfaces

and therefore , neglecting the very small molecular conduction, no flux of

buoyancy (or salt) despite sizable values of w’ and b’. The correlation co-

efficient will be zero. If the waves break, there will be intermittent turbulence

superimposed on the wave motion and q will be negative although the correlat ion

coefficient may be much less than one. Negative q means that the kinetic

energy tends to decrease because it requires work to lift heavy parcels up

and bring light parcels down. There is a tendency in doing this to increase

potential energy at the expense of kinetic energy.

To demonstrate this , it is useful to define available potential energy per

unit mass (Long, 1970) by considering it to be the kinetic energy per unit mass

attained by a parcel of buoyancy b = b’+E(z) as It falls from the height z to the

height z0 at which its buoyancy b is equal to the mean buoyancy b(z0) at that

level. We have b’ b(z0)-b(z) = -E. ~ approximately, where ~ = z-z0 and we

• have assumed that ~ Is small compared with the length scale of the vertical

~~~~~~~~~~~~~~~~ •~~-—————— —~~-•— ~~- -—
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variation of mean buoyancy1. Then neglecting disturbance pressure, we may

wr ite

— -b’ -~~~~
- - (5. 3)

because z0 is a Lagrangian quantity, so that dz0/dt = 0. Integrating, we get

w2/2 — b~~
2 /2 = const (5. 4)

Thus available potential energy may be defined as

V~ = — ~~~~ /2 or V’ =b ’~/2 (5. 5)

We may also identify q with potential energy changes. The potential energy

of a particle of volume V0 and density p is pgV0z. Let us now define Incremental

potential energy as pgV0z-p~gV0z so that this potential energy is zero when the

particle has the density P~. If we let V represent the incremental potential

energy per unit mass, then to within the Boussinesq approximation, V = bz.

Since b is nearly conservative, putting b = b’+ E and assuming no mean vertical

velocity, we have

dV/dt =~~~~~~
‘ =- q (5. 6)

is the average rate of Increase of incremental potential energy per unit mass.

We may Identify this with available potential energy by differentiating the second

equation in (5. 5) and again assuming db/dt = 0. We get

dV’/dt = ~~~b’d~~~/dt - 1~dE/dt = ~ w’b’-~~~~ w’ = w’b’ (5. 7)

so that

dV’dt~~~~~ ’ = — q (5. 8)

‘This may not always, or even usually, be the case but our development here
Is only suggestive of the definition in Eq. (5. 5). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Comparing (5. 6) and (5. 8), we see that the average rate of increase of incremental

potential energy and the average rate of increase of available potential energy are

the same.

In application, we can conceive of an energy-containing eddy in the form of

a whirl with horizontal axis of rotation, with velocity a~ and diameter L. It will

lift parcels from their level of origin a distance ~ ~— L so that V’ — ab L , where

~
7b is the rms buoyancy fluct uation. If the turbulence is not decaying, the kinetic

energy must be of this order or larger so that Gb L/ a~ < 1.

A typical phenomenon in a turbulent, stably stratified fluid is the appearance

of thin layers across which density changes abruptly. We have seen that these

exist in nature, for example the interface between the river water and the salt

• water in a salt wedge at the mouth of some rivers. The surprising feature,

however, is that turbulence actually sharpens the interface, or at least serves

to maintain the interface instead of diffusing it as one might expect from the

general diffus ive nature of turbulence. An important example is an experiment

originally by Rouse and Dodu (1955) portrayed in Fig. 5. 1. The vessel is filled

initially with water with a stable linear density profile. The grid is then act ivated

and turbulence is created in the nearby fluid. The result is a growing turbulent

upper layer with a nearly constant mean density separated from the quiescent

fluid below by a thin interfaclal layer of large density gradient. We sometimes

Idealize thi s by considering It a density discontinuity. Actually in this experiment

the layer has a thickness of 1-2 cm. In general, the thickness is proportional to

the depth of the mixed layer with a constant of proportionality of 1/5-1/6. (Moore

and Long, 1971, Wolanaki , 1972, Long, 1973, Crapper and Linden, 1974, Wolanski

and Brush, 1975, Assaf , Anat i and Siegenthaler , 1977) The interface moves away

from the grid at a speed called the entrainment velocity tie .

____________ -——— —— •• • - — • . —, -• ••••-•— •
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A detailed understanding of the turbulence In this experiment has not yet

been achieved but Linden (1973) has performed allied experiments and has

suggested that the large eddies in the upper mixed layer deflect the interface

downward, storing potential energy. When this is released by upward motion,

a portion of the heavier fluid Is ejected into the mixed layer and then carried

away by the turbulent eddies, or as in Keulegan’s experiment (1949) by the mean

current , leaving the interface sharp again.

The experiment of Rouse and Dodu is typical of those without shear and the

only source of energy is the energy-flux-divergence term of Eq. (5. 2). We will

see that similar experiments have been constructed with shear and in these the

shear term of Eq. (5. 2) is an important energy source.

Cromwell (1960) studied an experini~nt similar to that of Rouse and Dodu

to simulate the pycnocline, but the first reliable data were obtained by Turner

(1968) in an experiment in which the lower fluid was agitated and fluid was with-

drawn from the stirred layer at a rate adjusted to keep the interface at the same

distance from the grid. The entrainment velocity is then defined by A; = Q
where Q is the volume withdrawn per unit time and A is the cross-sectional

area of the tank.

There have been a number of recent experiments similar to those of

Rouse and Dodu and of Turner , for example by Brush (1970). Equipment

identical to that of Turner was constructed by Wolanski (1972) (see also Wo’~ nski

and Brush , 1975) , and the one-and two-grid experiments were run with strati-

ficatlon caused by heat, salt , sugar, suspensions of sediments and minute silica

spheres. Additional experiments have been run In Turner ’s apparatus by Linden

t 
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(1973), Crapper (1973) and Crapper and Linden (1974) using heat and salt. Balnes

• (1975) has studied a similar experiment with entrainment caused by a jet Impinging

on an interface.

An important finding in the experiments by Turner (1968) may be expressed

as

u,/~ =C [~
2/(th)]~ (5.9)

where ~ is the frequency of the oscillating grid and C is independent of ~ and th.

A number of lengths ar~ kept constant in the experiment so that the dimensional

quantity C may vary with these. Turner found that for larger values of i~b/~~,

the exponent n = 1 when stratification is caused by temper tture differences and

n = 3/2 when caused by differences in salt content. Later investigations (Wolanski ,

• 1972) have confirmed these results and, very recently, Crapper and Linden (1974) have

shown rather convincingly that the difference in the values of n is due to the influence

of the relatively large molecular conductivity kh in the heating experiments (the

coericient k , is much smaller for salt). It appears that whenever the n = 1 law

describes the entrainment, the thin layer of strong density variation has an i nner

layer or core in which molecular diffusion is important. Indeed, earlier unpublished

experiments by Claes Rooth (Turner , 1973) support this interpretation. Rooth

found a 3/2 dependence in heating experiments when larger turbulent velocities

are generated. Thus it appears well established that the 3/2 dependence is appro-

priate for larger Pê~let numbers, P~ = .Vkb or o-~L/ k. where a~ and L are the

velocity and length units of the turbulence. Crapper and Linden suggest a thresh-

hold value of P~ ~ 200 when ~~ = a~ and 2 = 2’ are characteristic of the turbulence

near the interface. The dependence on Reynolds number, Re, has not been

established because of the rather small ranges of Re In the experinrents, but both

-~~~~ — ~~~~~~~~———•~~ 
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Wolanski (1972), who varied Re by a factor of thre~ and Crapper and Linden (1974)

report very weak dependence, if any~. We may, therefore, write for large Pt~ and

Re, and strong stability,
3

u./~ = C ,c~3/ (th ) 2

where C, is a function of a, D, and the lengths a,, aa..., characteristic of the

grid. It is convenient to introduce a dimensionless quantity K.4 by the definition

C~ = a ~D~~~~(a/D,a/aj ,~~a~..) (5. 10)

and , therefore,
*~~~~~ *

u, /u ,,, = K, Ri ~~~~, Ri = Dth/u~ (5. 11)

where u ,, = ~a. It is likely that K.4 is independent of a/D when this ratio is small.

*

RI is called the overall Richardson number.

The Turner or Rouse and Dodu experiment can be run with an initial two-fluid

system in which both layers have a nearly uniform but different density. The inter-

face again moves away from the grid and the system is basically unsteady because

the density of the upper fluid is increasing and because the interface is moving.

The motion of the interface can be eliminated by introducing fluid of the density of

the lower layer into the lower layer at a rate q0 = Au. The upper surface of the

system can be held stationary by removing an equal volume of the upper brackish

water. There will still be an unsteadiness, however, because the density of the

upper fluid will still Increase. This can be eliminated by adding fresh water to the

upper layer with a flux R and removing brackish water at the rate q,. The following

‘The independence of molecular quantities Is common In turbulence (Tennekes

and Lumley, 1972). In Turner’s original paper (1968), he expressed the belief that
the n = 1 law was the fundamental one and that in some manner the very low diffusivity
of salt caused the 11 3/2 law. He has changed his mind on the basis of the evidence
we present here (Turner, 1973).
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relat ions must be satisfied to insure a stea4y-etate

q0 =Au, (5. 12)

q0+R =q, ( 5. 13)

q~,b0 = q ~b, (5.14)

An analogous experiment was set up by Welander (1974). It consisted of

a large vessel (Fig. 5. 2) with a small semi-enclosed portion. The vessel was

filled with salt water Initially. Fresh water was then introduced into the semi-

enclosed region and the upper portions of this region was stirred with a propellor.

A steady state developed with an interface in the semi-enclosed region at a depth I)

and with all conditions in Eqs. (5. 12)-(5.14) automatically satisfied. The system

resembles an estuary-ocean system; indeed, this was the basic objective of the

experiment. Welander only measured the depth D as a function of R and we will

discuss these observations in Section 6.

When the interface is stationary, as in an estuary or in Turner’s or

Welander ’s experiment, there is a flow of mass through the interface with a

mean vertical velocity u,. We may then consider the buoyancy budget In an

element of the thickness of the interfaclal layer, arbitrary length and width of the

estuary or vessel (Fig. 5.3). Integrating

+ v.vb =0

over the element, assuming steady state and horizontal homogeneity, we get

—(~b)o + (‘~b), — (w’b’)0 + (w’b’), =

Since the element is very thin, we may neglect the variation of the mean vertical

velocity from the lower to the upper surface and set * = u,. Also the lower layer

is non-turbulent so that (w’b’)0 = 0. We get

—U
U • •-•  — — —  -— __— . _- —-• — -  U •~~
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q = — u~~b (5.15)

where q is the buoyancy flux jast above the interface.

Several experiments have been constructed to inti oduce shearing currents

in turbulent density-stratified systems in an effort to simulate atmospheric and

oceanic phenomena. The fi rst of these of direct relevance to our discussion was

that of Kato and Phillips (1969) . The apparatus was a large circular annular

channel filled with salt water with an initial linear density gradient. A constant

stress i- = u~ was applied by rotating a flat screen at the surface (Fig. 5. 4). For
*larger values of Ri , they found

u, /u~ = K,RI*_ 1 (5. 16)

*where RI is of the same form as in Eq. (5.11) and t~b is the buoyancy jump

from the upper mixed layer to the quiescent region below’.

An experiment by Moore and Long (1971) was constructed to permit a

steady state. In a large channel shaped like a race track, fluid was injected

from nearly horizontal jets at bottom (salt water) and top (fresh water) in opposite

directions to obtain a shearing current (Fig. 5. 5). Mean zero vertical velocities

were achieved by withdrawing equal volumes of fluid through numerous holes at

bottom and top. At larger values of the density difference , two homogeneous

layers existed at top and bottom with an interface in the middle. The salt water

in the jets comes from a rc~ -:rvoir and the withdrawn fl uid at the bottom is pumped

back into the reservoir which is kept at a constant level. The jets at the top are

1 More recent experiments have been run in the Kato and Phillips apparatus
using a lower fluid of uniform density (Kantha, 1975) . The results do not yield a
simple power law but rather a faster and faster decrease of U, with Ri *. It is
possible , however, that molecular viscosity becomes more and more important
at the higher values of Ri*.

—  - — ~~~~~~~~~~~~~~~ - U
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of tap water and the slightly salty withdrawn fluid at the top is pumped to waste.

Since the fluid returned from the bottom to the reservoir is somewhat less salty

than that in the lower jets, salt must be added continually to keep the reservoi r

at a fixed density. The added salt is transported vertically by the turbulence.

The salt flux is known, of course, and this can be used directly to compute the

buoyancy flux . The experiment yielded

q =-K 3(~u)3/D (5.17)

over a range of Dtb/(&i)a of 1 - 60, where t~u is the velocity difference between

mean velocities measured near the top and bottom and K3 is a positive constant

of proportionality. If we define the entrainment velocity by -ti ~ = q, Eq. (5.17)

yields the same result as in Kato and Phillips (Eq. 5. 16) if , as seems very likely

from a discussion of the Kato and Phillips experiment by Long (1975 a), ~u/u~ ~

independent of the Richardson number, where u~ is the constant momentum flux

in the tank.

Finally, in a recent experiment by Wu (1973), the source of energy and

shear was a current of air blowing over a vessel containing a two-fluid system

(Fig. 5. 6). Wu also obtained Eq. (5. 16) although his coefficient of proportionality

was much smaller. He conjectured that this was because of the very different shear

produced in a closed container, but Bo Pedersen (private communication) has

suggested that the flow at the interface may have been laminar over much of

the length.
*The different dependence on RI for the two experiments has been the source

of perplexity (Turner , 1973 , Linden, 1973) because the mixing processes appear

to be very similar. Indeed, Linden has stated that t ’~e Kato and Phillips data are  

rn—-- ~ --- --~~~~~~~~~~ - - - -
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also consistent with a -3/2 behavior, although support for the statement seems

lacking. We attempt below to construct a unified understanding of the two results.

Turner (1973) has made the valuable suggestion that the erosion of the inter-

face should depend on the properties of the turbulence near the interface, in

particular on the rms velocity o~ and the integral length scale L’ near the

interface. Thus , he proposed the form

tie /ci~ F(Ri,), Ri, = 2tg)/o~a (5. 18)

where possible dependence on other quantities is suppressed and it is assumed

that P4 and Re are large. In an attempt to determine the dependence on Ri~ iii

his density-Interface experiments, in which o.’~ and 2’ were not measured, Turner

used experimental data by Thompson and Turner (1975) in Turner ’s apparatus

with a homogeneous fluid and one grid. They measured o~ and 2 at many levels

and found that cr was proportional to ~ and that 2 increased linearly with distance

from the grid but was independent of ~~ . Although Thompson and Turner ’s experi-

ment had no density variation, Turner (1973), Thorpe (1973) and Crapper and

Linden (1974) have assumed that the results are directly applicable to the mixing

experiments. Thus, at z = D they use

= C2(a/D, a/a,,a/a3...) (5. 19)

2 ’ /D= C3(a/a,,a/a2 . . . )  (5. 20)

so that Eq. (5. 11) may be written
3

U, /O~ = K4 R1~~ , K4 = K4(a/D, a/a,,a/a2 ...) (5. 21)

Neglecting viscosity, the proportionality of cr , and follows from dimensional

analysis but only when the fluid is homogeneous because the presence of an inter-

face introduces a new quantity Involving time, namely ~b.

—— -S— — ~~~~~~~~ -——-—
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We may also obtain a dependence on Ri, for the shearing experiments. With

shear and horizontal homogeneity the averaged x—equatlon of motion yields

am/az = 8~fl/8t (5. 22)

where U is the mean horizontal velocity at depth z. In the steady-state experiments

of Moore and Long (1971), &T/3z 0 and therefore T is constant with height. Since

-r = -ii~~’, and since the correlation coefficient is very likely to be of order one in

the mixed layers, it follows that u ,,, r~ is proportional to cr, .  The interface

introduces the length D and it seems reasonable that the eddies fill the whole

depth since the density gradient in the mixed layer is weak’. Thus we use 2’ -~ D

and obtain from Eq. (5. 16)

u~/cr~ =K5RI~~ (5.23)

for the Moore and Long experiment. In the experiment of Kato and Phillips, we

may use Eq. (5. 22) to obtain the increment of T over the depth D. It is

UD/T 1u~ (5. 24)

where U is the speed of the screen and where T~ is the time period for a change

of depth of order D so that T~ —D/u,. Therefore, ignoring sidewall effects,

&r/i- = (U/u~)(u./u~)~ .RI ’ (5.25)

*since, as shown by Long (l975a) U/us is independent of Ri . This reveals that

the stress varies very little over the depth, that u~ —, o~, and that Eq. (5. 23)

again holds.

‘if a fluid is homogeneous, the large, energy-containing eddies tend to be as
large as the dimensions of the region (Tennekes and Lumley, 1972). Here the
available potential energy may be as large as the kinctic energy but this should
not change the order of magnitude of th~~~ eddy size. Indeed visual observations
in(Iicatcd that the eddies filled the whole mixed layer in the Moore and Long experiment.

___________ —. 
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Thus, two different entrainment velocities, Eqs. (5. 21) and (5. 23), are
indicated in the two cases even when the characteristics of the eroding eddies

are the same and this is more perplexing than the difference In th: exponent

of Ri . However , a different dependence of i~i,~/u~ or cr ,/~a on RI in experi-

ments without shear may be obtained by a plausible argument which casts doubt

on the applicability of Thompson and Turner ’s experiment, in particular Eq.

(5. 19), to an experiment with a density interface. When there is shear, we

have seen that experiment indicates

q~~a~/D~~u~/D (5.26)

Let us now evaluate q in the mixed layer near the interface. We get q —

where ~b is the rms buoyancy fluctuation near the Interface, and we make the

plausible assumption that the correlation coefficient is of order one. Thus

(5. 27)

Assuming again that the eddies fill the whole layer, kinetic energy and available

potential energy, cr,~D, are of the same order in the mixed layer. Although the

layer has very little density variation, this result may be obtained by considering

first an experiment with very strong turbulence Imposed externally. Then

~ 1a / c~ L’ will be very large. As we decrease the turbulence in successive experi-

ments, this ratio will decrease. If turbulence continues to exist, the ratio has a

lower limit because c7~’2 / T~L’ <1 would im ply that T’ <V ’ and a consequent

cessation of the turbulence. It seems unlikely that the ratio will get large again

as stability increases so that a,,’~/ ~~L should approach a constant. The argument

is equally valid with or without shear. Using Eq. (5. 27) when shear is absent

-U- U -~-— -- -— ——~~
-—— --—
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to eliminate o~ In the relationship q -~ U, th ~~~~ the -3/2 Piw leads to

u,/u~ —. r~ /Du*~~ ~~u~/(Dth) 2 (5.28)

or

RI 
~~~~ 

u* = ~a (5. 29)

instead of Eq. (5. 19). The decrease of rms velocity with Increase of Richardson

number when density variations are present may be caused by the weak density
gradient In the mixed layer. In a layer as a whole, the slight density variation

still has dynamic importance as indicated by the proportionality of kinetic
energy and available potential energy and by the fact that q, varying linearly in

the layer, has a relatively large value near the interface. Such arguments have
been advanced earlier by the author (Long, 1972, 1973).

The energy argument may be amplified. Rouse and Dodu (1955) and others
(Kato and Phillips, 1969, Turner, 1973, Wu, 1973) have suggested that the

Ri
*_ 1 

law implies that the change of potential energy is proportional to the

energy supply by the external source. Thus, as we have seen, the average

rate of increase of potential energy per unit mass is q, so that the rate of in-
crease of potential energy for the system is proportional to qD. In the Kato and

Phillips experiment, for example, the rate of working of the external force

is TU. If these are proportional,

q -~ ¶U/D -- d~/D (5. 30)

as in Eq. (5. 26). The same conclusion cannot be reached for cases without

shear and on this basis it may be argued that the Ri
*_

~ law does not conform

to any simple energy argument. We may show, however, that the last conclusion

Is not correctly drawn. In the shearing experiments, the velocity difference is

U-—__
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proportional to u~ = -(~~~~‘)~ (Long, 1975a) and the two energy-source terms -in

Eq. (5. 2) as well as the dissipation e, are of order a,~ ID or if/V near the
interface. Ifq-.-~u,th is alsoofthjs o~~~ , we obtain u,/o~~ .Ri~

1 as in

Eq. (5. 23). When shear is absent, the single source term is the first term

on the rhs of Eq. (5.2) and is also of order a~ IL’. The Ri ’ law again implies

equality of all sink and source terms. The correct interprctation of experi-

mental results thus seems to be that the turbulence has a character that causes

potential energy to increase at a rate proportional to the rate at which kinetic

energy is supplied to the region of the Interface and not necessarily proportional

to the rate of generation of kinetic energy at the external source.

An additional piece of Information may be added in relation to experiments

without shear. If we assume that the small buoyancy difference th across the

mixed layer is of order of the rms buoyancy fluctuation (Implying an eddy length

scale of the order of the depth of the layer) , Eq. (5. 27) and Eq. (5. 29) lead to

* 
4

(5. 31)

This quantity was measured by Wolanski (1972) and Wolanskl and Brush (1975)

for the salt experiments (FIg. 5. 7). There is good agreement with Eq. (5. 31)
*especially at higher values of RI

When there is shear, a~ in Eq. (5. 27) Is of order u,,, and a~ is of order

th so that ~~D/u~ -~~ 1 and th/th Is proportional to RI*
1
. Notice also that In

the mixed layer the velocity shear is U~ ~~~~~~ as shown by Long (1975a). Thus

the gradient Richardson number RI =B2 ‘(Ii, )3 Is of order one in the mixed layer.

Observations in the lowcr mixed layer in the atmosphero (Businger ot al. 1971)

-U
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indicate that this has a maximum of RI0 
‘

~ 0. 20 and we may speculate that this

Is the magnitude of RI In the mixed layer in the experiment. As we have already

suggested, Ri 1 means that the slight density gradient in the mixed layer has

dynamical significance.

We have suggested that

u,/; = K ~ r~/Dtb (5.32)

is a universal law for entrainment with or without shear, where ; is the rms

velocity at or near the interface. Let us apply this to an experiment without

shear , as in Turner ’s experiment except that the lower quiescent fluid has a

linear density gradient. If we also adopt the findings of Bouvard and Dumas

(1967) and Thompson and Turner (1975) that o~ is proportional to D4, then

since th = N2 D/2, where N2 Is the buoyancy gradient in the lower fluid, we —

find that D ~ t
2

~~~~~ ~. This behavior was proposed by Linden (1975) and his

experiments with this type of fluid system provided close verification of this

time dependence. These experiments, therefore, provide considerable support

for the form proposed in Eq. (5. 32).

6. Mass and Salt Transfers and Halocline Depths in an Estuary.

With the background of Section 5, we wilJ now consider the effects of

finite mixing on the various features of estuarine circulations and distributions.

We have In mind a body of water like the Baltic Sea, although the model has

variable parameters which permit application to almost any estuary whose

mouth has a width small compared to the general horizontal dimensions of the

estuary. A comparison is also possible with laboratory experiments designed

to produce estuarlne circulations.

- - - - - ~~~~~~~ — -
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We wifi not discuss at any laigth the practical importance of studies of

estuarine circulations and mass distributions. The problem of pollution of

waters near the surface obviously demands attention, but another problem of

strong interest for the Baltic and many fjord-type estuaries of Scandinavia is

the stagnation of the deep water (Fonselius, 1962, 1967, 1969; Gade, 1970).

This is associated with the blocking effects of the sill and other obstructions to

deep water motion in conjunction with the stabilizing effects of the typical

densIty increase with depth In an estuary associated with temperature and

salinity variations in the vertical. The water motions are very slow and

therefore even exceedingly weak density increases with depth greatly inhibit

vertical motions. The water stagnation Implies very weak or zero turbulence

in the deep waters and little turbulent mixing with the fluid above. This in turn

cuts off the supply of oxygen from the aerated surface water, and the deep layers

may ultimately become completely exhausted of oxygen. This has been a pro-

gressive development In the deep Baltic over the past 75 years. One station in

the central Baltic shows an oxygen saturation decrease from 30% to near 0%

during this period at a depth of 160 m (Fonselius, 1969). Fonselius has warned

that the Baltic deep water may soon become devoid of life.

The complexities of real estuaries have been emphasized by many authors ,

e. g. Pritchard (1956), Fonsellus (1969) , Gade (1970) and Welander (1974). The

Baltic, for example, is connected to its source of salt water, the Kattegat, by the

Danish Belts and the Oresund. This in Itself Is a great complication compared to

our model which is portrayed in part in Fig. 6.1. The model has a single

connection to the ocean. When we compare the model and the Baltic we consider

- --U- ________
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only the Store Belt which, In fact , Is mainly responsible for the fluxes Into and ~
- —

out of the Baltic. We take the minimum width W = 15 km for the Belt and a mean
depth at this section S = 18 m. In the model, the estuary waters and the flow at

the mouth are divided into two layers by a thin halocline. This Is not a bad

approximation for the Baltic which has a permanent halocline of thickness 10 m

at a depth D ~60 m, although there certainly are vertical and horizontal gradients

of salinity above and below the haloclIne1. For example, the salinity of the in-

flowing water In the Store Belt is about 17. 50/
00 compared to 11°/~ in the Baltic sea

deep water although the model ignores this and assumes no mixing as the ocean water

pours into the basin. The salinity of the upper layer in the Baltic is about 7°/~~.

The model assumes that the inflowing water is all ocean water; by way of com-

parison , some of the outfiowing Baltic water mixes with the Skagerak water and

recirculates back into the Baltic.

The water balance of the Baltic region involves a close equality of precipi-

tation and evaporation so that the fresh water influx R is equal to the river runoff

which we take to be R = 1.49 x 1010 cm3/sec. The outflowing water has a flux q~
which is about twice the magnitude of R (Brogmus, 1952).

Estuarine circulations are usually very small, of order of centimeters per I -

second or less, and this suggests a considerable importance of friction. This

has been confirmed by many Investigations (e. g. PrItchard, 1956) and is treated

in Section 7. At a narrow mouth, however, speeds increase very considerably ,

inertial, pressure and gravity forces become comparable (Long, 197~~) and

‘ NotIce that the ratio of the thickness of the halocline to its depth is 1/6
in accordance with laboratory evidence referred to on page 22.

H 
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friction becomes relatively much less important. In the present Section we confine

attention to flows near the mouth and we neglect friction entirely In this region.

As we discussed in Section , we adopt the mixing law, Eq. (5. 32)

2

=K (6.1)

where we estimate K~ ~~

‘ 0.093 from experiments (Long, 1975b) and ; is the rms

horizontal turbulent velocity near the interface. It is instructive to compute the

entrainment velocity for two choices of the quantities in Eq. (6. 1). In the Baltic ,

for example, if we use the salinity difference of 4°/no , we get ~b ~ 3.2 cm/sec2

The turbulent intensity is very uncertain and Ue is sensitive to its value, but if

we use an estimate; = 1.4 cm/sec suggested by a discussion below, and

• D = 60 m, we get ue = 1. 1 cm/day. This suggests very slow adjustments to

changes in fresh water supply and turbulent intensities. In estuaries in which tidal

effects are large ; may be much larger. If we use ; 10 cm/sec, D 15 m,

10 cm/sec2 , more appropriate , say, to estuaries in British Columbia

(Pi •kard & Rodgers , 1959), we obtain u~ = 5 rn/day and adjustments to changes

will be very rapid.

The entrainment velocity in the estuary may be written ; = q0/A (FIg. 6. 1), or A

is the area of the halocline in the estuary. Using Eqs. (4. 14) and (4. 15), we have

(1-~b/b0)R 6 2q0-  ( . )

Then Eq. (6. 1) becomes

1 ~ D - 
D (6. 3)

~~ \ b 1 D M ’

where Q~ is given in Eq. (4. 17) with ~~ and W0 W and
I..

M =  U011 ‘V (6.4)
AK~o~

- —~~
-— --.--
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We may now relate this to the discussion in Section 4. The results in

Eq. (4. 28) apply to the case of zero mixing, i. e., M = ~~. The results in

Eq. (4. 29) imply; — or M = 0. Onvlously then, B = 0/5~~~ ,equal to

B = ~~(1_ fl ),M=co (6.5)

B = -~(1- ~-~),M = 0 (6. 6)

in the two extreme cases,wllI be some function of 11 and M for finite mixing.

I don’t see any way to find this relationship rigorously but a simple form which

satisf ies the two extremes is

_ 3 r 1i[4+3M’f(in]~~B — 2  1- ( .
3[1+M’f(T~]

where s is a constant and f(Tl) is arbitrary. There are additional requirements

which must be satisfied. Thus as; — 0, M -. ~~, it follows from Eq. (3. 5) that

(6.8)
h

Eqs. (4. 13) and (4. 25) lead to

F~~=3 — 3 T~-2B (6.9)

80 that (6. 7) and (6. 9) lead to

2

_ _ _ _ _ _  
lii (6.10)

i?~~tbW 1+M’f(m)

Using
3

q0 = Dtb (6. 11)

— ~~~~~~~~~
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Eq. (6. 10) becomes

A2 K~
2 oç~ = ~ 1 + ~ -~~~~~‘ ~ -f (~1 )j (6.12)

D
2

1~~~ ‘1~~( ~~~~~~ AK~ o~ “

As a~ 
-. 0 all other quantities remain finite and we see that s = 2, ~b — b0. Using

(6. 8), we obtain

f(~~) = 
9 .fl~ (~~~7~)

2 (6.13)

We get

= — ~~~~16+27M2
(1.h 1  )

2
T~~~~ (6.14)

3[4+9~~(1—fl)~1~]

A combination of (4.16), (6. 2), the definition of F~, (6. 9) anI (4.17) leads to

(1-~ )
3 [4+ 9M2 

(
~~~~~~~~~~ 2 ~~~ 4

4
~~~~~

]

Q~~= 
‘
~~~~

‘ (6.15)

/ Al,. ’2 A ’f l4
- (6 16)

~ b0, ( 1—fl )
3 [4÷ 9M~(1-~’) 2 n~—4~n]

D~ 
Is given by

f \ k j,Jo

Equations (6. 14)- (6. 17) determine all unknowns, given the frest water flux

ratio Q~ and the mixing number M.

The form of the solution is rather complicated but a simple example of a

solution of Eqs. (6. 14)-(6. 17) is an estuary with an infinitely deep sill, i.e.,

— ~~ . The solution then depends on a single non-dimensional number - 
-

D3l,. ’~M’ = “~~ (6. 18)
AK~ 1~~~T~
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Fig. 6. 2 Interface and halocline depths and salinity differences
for an infinitely deep estuary. D.~ and h~ are defined
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Using the definitions

D~ 
Db?
~~~~ , hl = 

h~ b~ W ~
It 5 R~ (6.19)

where h1 is the depth of upper layer at the constriction. We get

D’ — — ________ l , t .~......._ I —~ — _________

~~~~~‘ 1)~ 
— 

~~~~~~~~~~~~~~~~~~~~~~
0 U~ 3M’h~~‘-‘0

Results are shown in Fig. (6.2). The depth of the interface at the mouth h1

and the halocline depth D increase monotonically as M’ decreases (mixing in-

creases). D is about twice as large as h1 for larger M ’ over most of the range

of M’. The salinity of the outfiowing fluid increases monotonically as the mixing

increases and the fresh-water flux decreases. The flux of the outflowing fluid

changes very slowly with M’ over most of the range, q1 /R = (~b/b0)~ increasing

from 1. 0 to 1. 5 as M’decreases from infinity to M’ ‘~~ 1. Below M’ 1, q ~ /R

increases more rapidly but only begins to exceed 2. 0 when M’ drops below M’ = 0. 1.

When the sill depth is finite, Eqs. (6. 14)-(6. 17) reveal a common behavior for

all values of M, namely that the halocline is very deep for both small and large

values of the fresh-water flux It, with a minimum at a value of ~~ determined

by M. The quantity Q~ decreases with M; for example Qf~ = 0.244 at small M,

0. 08 at M = 100 and Q~ = 0.03 at M = 1,000. The behavior of D~ as a
function of Q~ is shown in Fig. (6.3) and (6. 4) for smaller and larger values of

M, respectively. When M exceeds 100 or so there is little change in the behavior

over most of the range of Q~ except near Q~ ~~. There the halocline depth continues

to decrea se strongly as M gets st ill larger.

Fig. (6. 5) shows an experiment by Welander (1974) similar to the model of

this paper. Data are lacking to permit a careful comparison,but M = 8 seems a

good choice. Constants were chosen to force agreement near the minimum point.

___________________________________ -— — - -~~~ ~
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Fig. 6. 4 Halocline depths as function of fresh-water
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The agreement is quite good except for small values of R where entrainment

velocities are very small and the experiments may not have been in a steady

state. An additional factor Is the decrease of; near the interface as D in-

creases and the interface gets further and further away from the source of

energy (stirrers). This effect is not included in the theory and would tend

to reduce D. The tendency for a minimum depth of the halocline has been

observed by Tully (1949) in Alberni Inlet as we see in Fig. (6. 6). The theo-

retical curve corresponds to M = 0.

The quantity ~ varies with Q~ and M as seen in Fig. (6. 7). It is interesting

to note that BAS .x ~H0/ff ~ varies very little with M. Indeed, one would anticipate

that this quantity would vary more sensitively with Q~.

The influx of ocean water is negligible for M > 100 or so. As mixing

increases, Qo, defined by

- _ _Qo —

b~ h 
2W

increases. Q0 r ises with increase of Q~, reaches a naximum and then dc-

creases. Examples are shown in Fig. (6. 8). The curves for M <3 or so do

not differ very much from the curve shown for M = 0. 10. This typical behavior

of Qo appears in other theories of estuaries, for example Kullenberg (1955).

The salinity of the outfiowing fluid increases as the fresh water influx

decreases. This was also pointed out by Kullenberg. Fig. (6. 9) shows the

curves for two values of M. Decreases in mixing intensities accompany de-

creases In salinity, as expected.

An estimation of M for various applications is important but M is
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extremely sensitive to; and ; is difficult to estimate. We may m~ke the

following computations for the Baltic Sea: Fonsellus (1969) gives the ratio

q1 /R ~ 2. We may compute Q~ from Eq. (4. 10) with the constant equal to

-gAH0/~b using the data of Fonsellus of It = 1.49 x 10’°cm3/sec and widt h

W = 15 km, depth h = 18 m for the Store Belt. The appropriate value of b0

corresponds to a salinity in the lower layer of 17. 5%~, 
or b0 = 14cm/sec3.

This leads to Q~ = 0. 0348. Finally D/1~ for the Baltic is 60/18 or 3. 33. If

we use the last two figures, we obtain close agreement for a value of M - 12.

The computations yield Q~ = 0.0346 and 0/h 3.45. The value of q~ /R, how-

ever , is 3. 29 which is considerably too large. The value of M = 12 permits us

to compute a0 using A 3. 1 X 101 
~cm2 . We obtain a,, = 1.4 cm/sec which is ,

perhaps , reasonable.

One may speculate regarding the changes in the Baltic over the past 75

years as described by Fonselius. The sta’ ility of the Baltic has apparently

increased, because, although the salinity of the upper and lower layers have

both increased, the salinity of the lower layer has increased somewhat more.

This stability increase may be related to the reduction of oxygen in the deep

Baltic. R has decreased about 15% over this period and Fonselius ascribes the

increase of salinity in the Baltic as a whole to this decrease of It. A further

change has been a decrease in the depth of the halocline from 80 m to 60 m over

the period. According to present theory, for the value of M = 12 and the other

conditions of the Baltic, a decrease of R with all other factors held constant

should have resulted in an Increase of D. However , as we have seen, D is most

sensitive to;. Since precipitation and runoff have decreased , this implies a 

UU~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—- - - - -—-U-- --U-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



~~~~~~
—-—

~~~~~~
-

——~~~~~~~~~ 

- - - -—----- - --U

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 0.! 0.3 0.1 04 0.5 04 0.7 OS 00 1.0
0~

Fig. 6. 7 Variations of B with Q~ and M.
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decrease of storm iness over the Baltic as asserted, in fact, by Fonselius, and
a decrease of a0. This could have been overriding and serves to explain the de-

crease of D. Notice that only long period changes in a,, are involved because we

have decided that the response of the halocline depth to changes ic very slow.

7. Circulations and Density Distributions in a
Deep, Str~~g~y Stratified, Two-Layer Estuary.

In Section 6 we considered an estuary of a rather general type except that

the connection to the open sea has such a character that (1) the flow in this portion

of the estuary (mouth) is perfect fluid flow and (2) conditions become critical at

one section of the mouth. Our investigation derived an expression for the depth

of the halocline in the estuary proper but other than this nothing was foun d out

about the circulations and salt distributions in the estuary except near the mouth.

We now investigate (Long, 1975b) conditions throughout an estuary without the two

assumptions mentioned above. For simplicity we assume that the estuary is

infinitely deep everywhere. As it develops, this means that the halocline depth

is small compared to the depth of the estuary. This is not a bad assumption in

many cases, for example in fjords in British Columbia and Alaska , but the model

does not include the situation in some Scandanavian fjords in which there is a sill

whose depth is of the order of the depth of the halocline.

The model (Fig. 7. 1) has a well-mixed upper layer and a deep, non-turbulent

uniform lower layer of the density of sea water. The width of the estuary is W(x)

and the sides are vertical. The free surface is given by z H and the Interface by

z = D0 (x).’ The upper layer has a mean depth D(x). The variation of H along the

estuary provides an important component of the pressure gradient force but m ere-

_________
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ments in H are of the order of 10 centimeters over tens of kilometers and so may

be neglected elsewhere in the argument and H taken to be a constant. The vertical

variation of the buoyancy is confined to a thin, interfacial zone whose thickness is

neglected, but the mean buoyancy varies continuously with x in the upper layer as the

water flowing out to sea becomes more and more brackish. In general, a symbol

such as b denotes an ensemble average or average over a long time, and ~ denotes

an average of b over the vertical cross-section in the upper fluid.

The buoyancy difference between the two layers is tib and varies along the

channel because the buoyancy of the upper layer varies. The rms turbulent

velocity in the upper layer is a,, and we assume that a,, is uniform in the layer.

To be definite we take ; to be the rms horizontal velocity component along the

x-axis. The non-dimensional quantity RI2 Dib/o~ has the form of a Richardson

number. If we take as typical values, D = i0~ cm, th = 25 cm sec 2 , U,, 10 cm sec~~,

we get B.!2 = 250. We have taken a rather high value for a,, so that Ri2 will usually

be greater than this. It is reasonable then to assume that the estuary is strongly

stratified in the sense that Ri2 >> 1.

Conservation of mass for a region of the upper layer of length ~x, width W,

and thickness D yields

A(WDU) =j ’,J’v~da (7.1)

where i~ is the mean velocity over the cross-section of the upp er layer, da is an

element of area of the interface, and the integral is over the interfacial boundary

of the region. The normal velocity into the layer, v0 ,  is zero when there is no

mIxing. We have al ready assumed, however, that turbulence exists in the upper

layer, and we may ident i~r v5 with the entrainment velocity SO that with use of

Eq. (5. 32), Eq. (7. 1) becomes

-U -- —-U -U-- -—~~~~~~~~~~~~~ --U - - — --U~~~~~~~ -——— -- —-. -- _— -~~~~~~ - — , ~~- - .--U—
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7 2D~b ( . )

The pressure in the lower layer is

= g(H-z) + E(H-D0) + b0(D0—z) (7.3)

if we assume, as indicated above, that the lower fluid has a depth large compared

to that of the upper flu id, horizontal accelerations will be negligible and the longi-

tudinal pressure gradient is zero in this layer (Gade, 1974). Then

g~~~~ - ~~~~- ~~~

Let us now integrate the horizontal equation of motion,

~~ + v.uv= -
1
gH~ + (H-z)~~~j _ -~~”~ 

8 (jjT~~) a (j~ç~t) (7. 5) 1 
-

over a region of the upper fluid of length Ax, width W and thickness D. We get

~~~~fffv . vudV = -Dth + D2 - Tj—S ~~ (H-z)dz (7.6)

where the pressure in the upper layer Is given by p = p~g(H-z)+ pf b(H-z) and

where ‘r1 is very nearly equal to the average stress at the interface. We assume’

= KU~ where K Is the drag coefficient. A term Involving the horizontal rate of

change of r3 has been omitted in Eq. (7. 6) because the turbulence is assumed to

1This is a standard assumption for example in flow in pipes. The stress is
basically equal to ~~~~~~

‘
~~~~
‘ and in typical shearing flows a5/ü and ï,,/ü are small and

vary very slowly with Rçrnolds number and so are taken to be constants. The stress
then is proportional to U with a small coefficient of proportionality. In the present
case It is likely that a,,/ff and ;/u are of order one so that K is of order one. We
assume this later.

~~~~~~~~~~~~~~~~~~~~~~~~~ 
r r ~ 
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be uniform in the upper layer. If uj is the average horizontal velocity at the

bottom of the upper layer, the integral on the Lhs of Eq. (7. 6) may be written

~~~~~!!uudzdy - usu l (7.7)

The ratio of u, U 1 to the term T 1 ir~ Eq. (7. 6) Is of order Ue D/K5, or less, where

K5 is the eddy viscosity in the upper fluid near the interface. We estimate

K5 as La,, where L is the eddy size. If we use observations of flow in pipes, we

may estimate £ ~ D/3 (Hinze, 1959). Using
3

1O D t ~b

the ratio is approximately 0. 3 a~/Dti, which we have assumed to be small.

Thus the second term in Eq. (7. 7) may be neglected.

Let us now write

J’J’ ~iudzdy = yiiüDW (7. 8)

The quantity ‘~ depends on the velocity distribution in the layer. If the velocity

is uniform, ‘y = 1. (*her physically reasonable assumptions yield values greater

than 1 but less than 2 or so. Our analysis does not yield a precise value for y,

but we find that ‘y’ occurs in combination with other equally uncertain constants

of the problem so that it seems pointless to attempt to refine this portion of

the argument.

Eq. (7. 6) becomes

(7. 9)

where we have assumed that y is constant. We have two addit ional equations

involving the flux of mass and buoyancy across an entire section:

. ~-~~~—~~~~~~~~~ - -~~~~~~~~ -
-U-

~

-

~ 

- ~~~ - -—--U -— -- -- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~U U t U~~~~~ U~ 
-



- -  -- — _-U-UU-

-47-

Ub D W + q ~b0 = 0  (7.10)

q0 + WW = qf W~ (7. 11)

where cj0 is the mass flux over the cross—section in the lower layer,

R = qf W~ is the fresh water influx and Wh is the width at the head of the

estuary. We have neglected horizontal diffusion of buoyancy’ in Eq. (7. 10).

Let us now non-dimensionalize using the following quantities:

r~ n = -~~~~~ — .2~2g - P2~‘_
~ TI? ‘ ~ O ur ~ - 

— 
‘ fl —

q f v v ~~ ~~~~~~~ qf qf

= ~~~~~~~~~~ , m ~~~~~~
- , X = (7. 13)

0 ~~~ Wb

Equations (7. 2), (7. 9), (7. 10) and (7. 11) become

— 1 1 
. 

-
-

(7.14)

~~~~~= ~~~~~~~~~~~~ (7 15)d~ ‘y’flô

1 d ‘~~~~~~~
‘ 

— 1 do K~~Q~ 1 7 16X d~~ lix ’ - 2m d~ y A ~1 mli d~ 
( . )

We may also write Eqs. (7. 14)-(7. 16) as

Q = 
~~~~~

, Q0 1 — (7. 17)

-~-~~~~ ~~~~~~~~~~~~~~~~ (7 18)XQd f l  y dl~
K ~~~~~~~~~~~~~~~~ (7 19)dli\ 1VL ; - mK~ A

d 
li dli 2m Q dfl m Q

‘The neglected quantity Is of order iP~~D. The ratio of this to UbD is
u’b’/iib ~...crb /b since, as we discuss later, a,, — ii. If the horizontal eddy dimension
Is of the order of the width, 

~ b is of the order of the longitudinal mean buoyancy
variation over a distance W. This is small compared to b if the estuary is long
compared to the width.

~
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7. 2 The Solut ion for an Estuary of Uniform Width.

Let us consider the solution of (7.19) when X =1 , i. e., when the estuary

has a uniform width. If we use a new dependent variable ~ = Tf3 /Q3, and a new
independent variable, £nTl , we obtain

--3 3mK. 6m,
Ti’ = d L n ll

1+— ~— ~~+‘. mK~ J Zm

The integral of this is

I-

~~~~~~~~~ 
~~~~~~~~ 

~.+  k. + 
- - ~-~ n~i+ —!~~~~+ f~~

= Ln1~+ coust
mIç i mK~ Zm

Using new constants,

S = 1 + K (7. 20)
1+— 1+—mK~ mK~

the solution is
I

11 = ~~ + conat (7.21)
(1 +C~Ci~~

Imposing the boundary condition that ‘fl = l1-~, at the head of the estuary where

Q = 1, Eq. (7. 21) becomes

8 8+1

- -~~~~ i+C3 1L3 ~ 
7 2T~ ~~~l~~

) ~1+ C’3~ ~
, ( . 2)

The quantity ~ may be found by integrating Eq. (7. 18). We get

~ 

=
~~~~~~~~

- f  ~~dQ (7.23)

where we choose Q~ to be the flux at an arbitrary section at which ~ = 0.

- - U -_ _ _ _ _  
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We may simplify the problem considerably by the new definitions

C’ = C3 C~ ~fl’ = CQ~TI , Q’ =Q~Q, ~‘ =~~~~CQ~~ (7.24)

where we denote by Q, the value of Q’ at the head of the estuary. We then obtain

,fl ‘ = - 
‘
-
+

-
‘~~~~ 

C, = -
~~~~ (7. 25)

= r 
~ ,dQ’, Q~ = — -1+1 (7.26)

(1+~~ l~ )~~

where Q~ = ~~~~ Notice that 1 < s  < 2  tending to s = 1 as a,, decreases to zero
and to s = 2 when a,, is very large or , on the other hand, as friction becomes more

or less important, respectively.

We may solve Eqs. (7. 25) for Q’.We get

Q’ = (7.27)
(i+C’)~~

DifferentiatingEq. (7.27), we obtain

2 —1 ‘

~~ ~~ 2 -C’ jC’ 
(7. 28)

(1+~ ’)

so that Q’ hasanwximum , Q~, when

— s—i
~~~~~ 2

The corresponding maximum value of Q is Q0. Notice, also, that
1.

C’3 dQ’ =d~’ (7.30)

so that ~~‘ and Q’ increase or decrease together. This simply means that the flux

in the upper level increases seaward, as is obvious for physical considerations.

-

-- - —— - — ~~---—~ ~~~~~
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Since ~ Is a maximum when Q is a maximum, the flux ~~ Lincrea8e to the maximum

as we move seaward but if this happens the estuary of constant width must then end.

It is enlightening to compute the Froude number F at ~~
‘. A convenient

definit ion is

~
‘ Dth (7. 31)

This yields

F2 = ‘y - ~ -~ = ~~
- (7. 32)

Using (7. 24) and (7. 29), we get F~ = 1, so that the maximum flux Q0 corresponds

to a point of critical flow with supercritical flow for C’ < C  and subcritical flow

for C’ > C~ . We may compare this to a theory by Stommel (1951) which led to the

differential equation in Eq. (7. 19) with A = 1 and with the frictional term missing. He
obtained

~j3~~ 1-F 2
Q dli 2i~~t~ 

(7.33)

Stommel’3 theory was incomplete and he could not solve for fluxes and interface

depths as functions of distance along the estuary.

From Eq. (7. 25) we get

‘—3
An , ~~T i  r’~~~~~~~~~~ ~~~~~~~~ j7 34dC’ 

— ‘.
(1+ C’)~~~

Let us now consider the general properties of the solution. If we increase C’
from ~~‘ = (s -1) 12 (correspondIng to subcritical flow), s-C’ is positive at first

and 11’ increases. It reaches a maximum at C’ = s and then decreases as 
~~
‘ gets

larger. Since Q’ is decreasing, Eq. (7. 30) shows that ~~‘ is decreasing so that

we are moving toward the head of the estuary. On the other hand, if we decrease

(‘ fromç~ (corresponding to supercritical flow), we f ind that ‘ri ’ decreases mono-

- ~~~~

-- - -U-- U - - - ----s - -~~~~~~ ---- -- ~~~~~- -- 
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tonically. Again ~~
‘ decreases so that we are again moving toward the head of the

estuary. Thus, two distinct solutions are possible, but the second corresponds to

high velocities in excess of a meter per second or more at the head of the estuary

and elsewhere and seems unlikely to occur. It also involves a decrease of velocity

and increase of elevation of the free surface toward the mouth and both are contrary

to observations (Gade, 1970). Consequently, we adopt the solution, C’ > C~~, 
for

subcritical flow.

The remaining problem concerns conditions at the mouth of the estuary.

Let us assume that the estuary has a uniform width from the mouth to the head

but at the mouth the width suddenly increases rapidly. The arguments leading

to Eqs. (7. 14)-(7. 16) permit a variable width. Accordingly, let us derive two

equat ions from Eqs. (7. 15) and (7. 16) yielding the rate of change of 11 and of

F~ mQ3 h f 3  ~ along the chann el. We get

dli 1 ~~~ mX 1 K? 
? ~~

2 dX
C1

~~
T i-?~ ~~~~~~~ 2mK,,A 1~~ x ~~~~~~ 

(7. 35)

dF2 3F2 fç mx~~~~ i K? ?(F
2

+2 )  dA
= 

~y’l1(1—F3) L I? + + mK~ A - A( 1—F2) ~~ (7. 36)

Let us now Investigate all possibilities, shown In FIg. 7.2, for the location of

the mouth of the estuary.

(a) The estuary ends at or before the section of maximum depth of the

upper layer (point I or 3).

In this case 1 -? > 0 and the quantity in curly brackets in Eq. (7. 35) is

positive to the left of I or J so that ‘Ti is increasing with ~. Eq. (7. 36) reveals

that? Is increasing but is considerably less than one. Just past point I or J,

where A is st ill close to one but dX/d~ Is very large, the last term In curly brackets —

in Eq. (7. 35) will quickly dominate and ‘Ti will increase even more rapidly. At

- -
~~ ~~

- -
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the same time, the last negatIve term in Eq. (7. 36) wIll dominate and ? will

start decreasing. If we now regard as physically necessary that ‘Ti should de-

crease past the mouth as the mass of brackish water spreads in all directions ,

this case is impossible.

(b) The estuary ends after the section of maximum depth of the upper

layer but not close to the section at which? = 1.

In this case, ‘Ti is decreasing just to the left of point K and F2 is somewhat

smaller than one and increasing. Just past K, however, the last term in curly

brackets in Eq. (7. 35) quickly dominates and ‘fl will reach a minimum and then

Increase. Also, the last negative term in Eq. (7. 36) begins to dominate and

? begins to decrease. Again it is not possible for ‘fl to decrease past the mouth

and this case is also impossible.

(c) The estuary ends just before the section at which F2 = 1.

In this case, -n is decreasing to the left of point L and? is very close I -

to one. Then, if dTt/d~~ remains finite, the quantity In curly brackets in Eq.

(7. 35) falls to zero at a section just past point L, ? passes through the critical

value and 1 -? becomes negative. After this, the last term In curly brackets

in Eq. (7. 35) dominates and ‘Ti continues to decrease. Eq. (7. 36) shows that ?

also continues to increase. This behavior is entirely reasonable and we,

therefore, accept the point L as the end of the estuary. ft is convenient to take

this section as the origin of our coordinate system so that ~ = ~~‘ = 0 there and

in Eqs. (7. 23)-(7. 26) Q~ and Q~ may be replaced by Q0 and Q~ .

7. 3 DiscussIon.

We see from the theory that ‘fl’ g(~’, s) or, from Eq. (7. 24), C’rQh = g(~ ’, a). 
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Also Q’ = f(!’, a). We obtain then Q~ = f(~~ , a), Q~ = f(0 , s), and

g(~,], s) — f(0, s)
— f(~~, 5) ‘ ~ — f(~j ,, s)

where ~ is the value of ~~‘ at the head of the estuary where ~xI = L. Compu-

tations for s = 2 and s 1. 0036 are shown In Figs. 7. 3 and 7. 4. They reveal

that the maximum flux and the depth of the Interface at the head increase mono-

tonically with the length of the estuary. Other physical interpretations are

obscured by the complicated scaling of the non-dimensional variables and we

must assign values to the various constants to obtain useful interpretations of

the theory.

We may refer to two extreme cases with respect to fresh-water influx ,

namely the inner Oslofjord (Gade, 1970) and the Knight Inlet (Pickard and Rodgers,

1959), for which we use qf 60 cm2 /sec and 2. 3 i0~ cm2 /sec respectively.

It Is Important, of course, to estimate m in Eqs. (7. 14), but this quantIty is

extremely sensitive to the value of;. In either case, however, and In most

estuaries, It seems likely that m Is considerably less’ than one. The quantity

K~ has been estimated as K~ ~~

‘ 0.1. The constant K is uncertain but, as we have

indicated, we will use K = 1. The estimates we have made so far mean that a

is close to but a little larger than i. The computations from the theory reveal

little change in Q~ as s -1. At mK.a CL;/q~ y = 3, for example, Q~ Increases

by about 10% as s decreases from the rather large value of i. 2 to a = i. 0036.

According to FIg. 7.3, we may write, approximately, - 
-

‘In Knight Inlet, for exampl~, we may take y = 1.3 , = 5 cm/seo,
= 25 cm/seca, q~ = 2.3 i03 cm /sec. Then m = 2.810 . I~ the very dIf ~erent

Oalofjord , we ma~ take ~ = 1.3 , a~ = 1 cm/sec, b0 = 5 cm/sec’ , q~ = 60 cm /sec.
Then m =4 .3 10~~.

_ _____ — ~~~~~~~~~~~~~~~~~~~~~~~~~ U- -~~ U
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Q. “ 1 + 0. 9 ml~i
q
cLau (7. 37)

Our estimates lead to C 0.37 and, with y = 1.3 , Eq. (7. 37) may be written

Q~~’ 1+ 0 . O33 b~~~ (7.38)
oq t

In the Oalofjord, with L ~~

‘ 2. 5 i08 cm, b0 = 5 cm/sec2 and Q0 ~ 3.2 (Gade, 1970), we

estimate; ~~

‘ 0. 83 cm/sec. In the Knight Inlet, Q~ is quite uncertain, but the data

suggests a value of perhaps 4. Using L ‘
~~

‘ 1. 1 10” cm, b0 ~~

‘ 25 cm/aec2, we

obtain a~ = 5. 7 cm/sec.

Computations for various values of s near 1 reveal little variation of Cli h

with s for all but very short estuaries. A rough. relationship is

C’flh ‘~ 1 + 0.25 
mK,, CLo~ (7. 39)

or, approximately,

Dh ~ 2.7 ~~ + 0. 025 L (7.40) 1 —

Computations in Fig. 7.3 and 7. 4 yield CT~ = 1. 7 and 1. 9, respectIvely, for the

Oslofjord and the Knight Inlet. We get approximately Dh = 3. 3m for the Oslofjord

and 21 m for the Knight Inlet. The first is a considerable underestimate for the

Oslofjord but the second Is close to observations In the Knight Inlet. The corn-

parisons suggest that the model of this paper may contain the basic physical

mechanisms of the Knight Inlet but probably differs fundamentally from the Oslo-

fjord. This is not surprising. The former has a geometry similar to the model

whereas the latter Is very different. For example, the Oslofjord has a shallow sill

depth which forms a considerable barrier for the influx of salt water, whereas the

sill depths of the Knight Inlet are well below the halocline. There is, moreover,

_________ ——U-— -~~~~~~ -— ~~~~ _U- U
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the observed basic difference in the horizontal density variation. This is similar

to the model in the Knight Inlet but Is virtually absent in the Oslofjord, so that the

basic driving mechanism of the present model is absent in the latter. As we dis-

cuss In Section 8, the Oslofjord appears to be Influenced primarily by the density

distribution in the waters outside of the fjord.

Notice that if we consider Dh as a function of q~, Eq. (7. 40) shows that the

halocline depth Is a minimum for a certain value of qf and large for both small

and large values of the fresh-water discharge. This is the same as the behavior

discussed in Section 6.

An interesting feature of the theory Is the slope of the free surface. As

we have noted, the surface slopes downward toward the mouth in subcritical

flow and Eq. (7.4) yields for the total drop All,

AH ~~~~~~~~~~~ A~’~ (7.41)

For the Knight Inlet , for example, ~j ’ ~‘ ~ 2, and we get M! = 55 cm. This seems

rather large but values of 10-15 cm in shorter Norwegian fjords have been found

by Gade (personal communication). Notice that the commonly used argument t hat

the free surface must slope downward tow’ rd the mouth (Gade, 1974) implicitly

assumes subcritical flow. We have not discussed the supercritlcal case in which

the free surface slopes upward toward tbt sea, but It is possible that some

estuaries have this character.

The calculated drop of surface level for the Knight Inlet represents a

potential energy far in excess of the observed or theoretical kinetic energies

and we conclude that friction domInate~ 
‘
~~~~~ flow. This is probably true of most

fjord -type estuaries. We also deduce the dominate effect of friction from the

___ ____ U
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fact that s tends to be very close to 1. As we see in Eq. (7. 20j this corresponds

to large values of the drag coefficient K. Indeed, the ratio of inert ial forces to

pressure or frictional forces is proportional to s-i.

7. 3 Estuary of Arbitrary Width - Integration Procedure.

We may outline the procedure for finding the solution for an estuary of

arbitrary shape. We first notice that Eqs. (7. 35) and (7. 36) are invariant for

transformat ions li Q,li*, ~ = o4~
K
. Using A = f(~~), we may write

= 
2K.1m ?~ F~)_ ~~f?+li*F2 

~~~ (7 .42)d V d~

= 
3~~ m F~f2 (F2 +L)+ 3F4Kf F2(F4

+ Z)li*~~ (7. 43)

Let us investigate the solution in the region just past the mouth (F *
= 0) where, by

assumption, the width of the estuary increases linearly. At ~ ‘~‘ = a, the flow

becomes critical. Then if a” = ~~~~‘- a and 
~i is the value of A at ~ 0,

= p~* + b,~~+ . . . ,  F2 = 1+a,C *+..., f = Xi+c,a+c,C* (7.44)

SubstitutIng (7 . 44) into (7. 42) and (7. 43) and equating coefficients of 
~ 

* we obtain

to zero order two identical equations. This may be used to solve for X.+ C, a:

6c1K,, mi~
X~+c,a = ~‘ V V (7.45)

3K~ rn/V

The other two equations obtained from equating coefficients of r* may be written

A,b~÷B, ’fl~’ = E, (7.46)

A2b,+B 2 11 = E 2 (7.47)

U— ~~~
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where

2A& = a ,(X ,+c,a)+ c,, B, = c ,a,, A2 = — 3 c,, B2 = a , (X~+c1a)—4c ,a~ (7.48)

E~ =+~
L~..!~~~c,(A.+c,a) + a, (X~+c,a)

2 + ~[a,(X.+c~a)+c, (7.49)

E2 = - a, (X~+ c~ a)
2+ 3c, (~~+ ~~ a)~ - 2a, (X1+ c, a)+ c, (7. 50) 

- 

-

Thus

b, = (E~B2 —E 2 B,)/ ~A,B2— A 2B,) (7. 51)

= (A,E2—A 2 E,)/(A,B2—A 2B,) (7. 52)

The integration may then proceed as follows. We specify X~ and c, and the

constants K~, m , y. We also specify a,. This permits calculation of b, and T~

from (7. 51) and (7. 52), and A1+c,a fr om ~7.45) . We may then compute T1* and F2

from (7. 44) for say = 0, and p ” = _& *. We may then use the finite difference U

forms of (7. 42) and (7.43) to compute F2 and 1~1~ at subsequent grid points until

A = 1. This corresponds to the head of the estuary , where F4 = FI, , Q = 1,

= ~~ Then we have - -

= 
m (7.53)

F~~~

and we have a solution for an estuary of width,

A = f -~~) (7.54)

8. Three-Layer Circulations in Estuaries and Harbors.

A number of writers beginning, apparently, with Hachey (1934) have remarked

that if a density variation with depth exists in the water outside of an embayment

and if there is a source of mixing In the embayment from tides and wind, there will
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fact that s tends to be very close to 1. As we see in Eq. (7. 20) this corresponds

to large values of the drag coefficient K. Indeed, the ratio of inertial forces to

pressure or frictional forces is proportional to s-i.

7. 3 EStUary of Arbitrary Width - Integration Procedure.

We may outline the procedure for finding the solution for an estuary of

arbitrary shape. We first notice that Eqs. (7. 35) and (7. 36) are invariant for

* * *transformations ‘fl = ~ 1’ , ~ = . Using A f(~ ), we may wr ite

f(1 - F2 ) d1~* 2K.~ m 
? (*-F

2 
)- ~fF2+ fl*F2 

~~~ (7 . 42)
‘1 V d~

fl*(l ?)fd1F2 
= 

3~~ m ?f 2 (F2 +L-)+ 3F’Kf _F 2(F2+ 2) 11*~~ * (7. 43)

Let us investigate the solution In the region just past the mouth (F*= 0) where, by

- assumption, the width of the estuary increases linearly. At ~~ = a, the flow

becomes critical. Then if i~~ = ~~~- a and ~ is the value of A at F ”~ 0,

~~~* T1 ’ + b,~~+ . . . ,  ? =1+a,C *+..., f = A .+c,a+c,C* (7.44)

Substituting (7.44) into (7. 42) and (7. 43) and equating coefficients of c * we obtain

to zero order two identical equations. This may be used to solve for A,+ c, a:

K
÷

K~÷
6c1K~m11~

A~+c,a = V V (7.45)
3K~m/y

The other two equations obtained from equating coefficients of ç~ may be written

E, (7.46)

A2b,+B 2 T~ = E2 (7.47)

L - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~ — -  - 
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be a tendency for a density distribution as shown in Fig. 8. 1 and a resulting

three-layer circulation from the density-pressure effect even in the absence

of a fresh-water Influx. Stroup, Pritchard and Carpenter (1961) have calculated

that this type of circulation is dominant as a flushing mechanism for Baltimore

Harbor in the Chesapeake Bay. Here the less salty water in the upper layer

outside of the harb’~r originates from the fresh water discharge of the

Susquehanna River at the head of the Chesapeake Bay. It has also been

suggested that the outside density distribution is important for the circulations

in the O~lofj orcI in Norway (Gade , 1970) and in the Gullmarfj ord on the west

coast of Sweden (Rydberg, 1975). Rydberg observed inflow in the layer below

the halocline at the sill and inferred from considerations of conservation of

salt that there must be an influx of lower salinity water somewhere in the upper

level. Conservation of mass requIres an efflux of water at some intermediate

level. The lower salinity water outside of the Oslofjord and the Gullmarfjord

originates as the brackish water flowing out of the Danish sounds from the

Baltic Sea. The three-layer type of circulatIon has also been discussed by

Hansen and Rattray (1972).

A simple laboratory model of a three-layer circulation was constructed

by Hachey (1934). It is shown schematically in Fig. 8. 2. A long channel con-

tains, initially, two layers of water of different density. At one end of the channel

a cylinder at the interface is rotated as shown to provide a source of mixing.

The resulting pressure-density distribution produces the three-layer circulation

in the figure.

The simplest model of the basic phenomenon of this section is one in which

‘ I  
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there is an ocean, infinite laterally, composed of two layers with buoyancy
difference th~ and with an upper layer of depth ii. These are the conditions

k outside of an embayment of arbitrary geometry specified by lengths L~ , L2 
The fresh water influx is zero. There is some source of mixing in the estuary.
The nature of the mixing is not important for the ultimate argument, I think , but
for simplicity let us consider a mechanism similar to the one we use in the

experiment discussed at the end of this section, namely a rotating propellor

located at depth h of angular speed ~ and geometry specified by the lengths

a, , a2 This mixing will result in an effl ux in the vicinity of the depth h o~
magnitude q~. Dimensional analysis yields

q1 
~~~~~~~~~~~~~~~~~ 

&.~ 6 !i ~ 2
~~~~~ 1 — ~_, , ,_ , .— , . . . , .— , 1_ -
h~~~’bb ~~~ 

‘~~~~~-‘O 11 11 ii H /
I
’ ~~

Now let ~ increase from a low value. q, increases with c~ . At some value of ~
the estuary becomes thoroughly mixed and any further increase in ~ will have no

effect on the density of the fluid in the estuary and, therefore, no effect on q,.
For higher ~~, we have 8q, /~~~ = C.  Therefore , Eq. (8. 1) becomes independent

of~ , i.e.,

g1 
~~ 

J~1 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ (8.2)
l~~~!A1~~~~~ 

h h h h
£ ~L~J0f

This tells us nothing about the variation of q, with any of the lengths of the problem

but does indicate that the eftiux is directly proportional to the square-root of the

density difference between the two fluids when the estuary is thoroughly mixed. We

may extend this to the more realistic case of an outside linear density gradient and
find that q, is proportional to the square root of the density gradient.
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Let us make a detailed investigation of the three-layer circulation (Long,

1977). The model is shown schematically in Fig. 8.3. The estuary-harbor is

on the left of the figure. We assume that the width of the channel B, located

between the estuary-harbor and the outside water , is independent of z. The

bottom of the channel and of the two bodies of water has an equation z = ~ (x)

with z 0 chosen at a depth H below the level of the outside body of water. The

equation of the free surface is z = H + Mi where All is small and only important

with respect to the pressure distribution. Outside of the estuary-harbor there

is a two-layer system with an upper layer of thickness h. The upper layer has

a salinity S0 and the lower layer has a salinity S2. The water in the estuary is
thoroughly mixed and has a salinity S~. The corresponding densities are p0.

p1 and p2. Later we confine attention to a model with a uniform depth H every-

where and a zero fresh-water influx. Here the fresh-water influx R is finite

and if the depth is variable we require that it be a minimum at the section of

minimum width W. The fluxes of water of salinity S0, 5, and S2 are q0, q,

and q2, respectively. The lower interface has an equation z z2 and the upper

interface an equation z = z~ so that the thicknesses of the three layers are

(z 2-~) ,  (z,-z 2) and (H-z,), respectively, if we neglect the small quantity Mi

except as it influences the pressure distribution. At the constriction the

thicknesses of the layers are ~2 H, (1-~~-T12) H, and 1~,H, respectively.

Using the hydrostatic approximation, the three Bernoulli equations are

p0g(H+ AH) + 
~ 

p~gH (8. 3)
2B2 (H-z,)

-; (p, -p0)gz, + p0 g(H+ All) + Pi~h = constant (8. 4)
ZB (z, —z 2)

___---I
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(p2 — p,)gz2 + (p~ —p 0 )gz, + p0g(li+ MI) + — ~~~~~~~~~ =

2B~(z2—~~
(8. 5)

(P2 - p0)g(H-h) + p0 gH

With the Boussinesq approximation, these become

gAH + ~~~ - 0  (8.6)
ZB (H—z,)

(i~ 0 -Ab,)z , + gAH + 
2 

= constant (8. 7)
ZB (z,—z 2)2

z2 Ab, ÷ (Ab0 -Ab,)z , + gAH + 2 = ~ 0(H-h) (8. ~ZB (Z 2 —1 ~ )

where we have used the definitions

~~~, g (P~~ Pi) 
, ~~ ~~~Po (8. 9)p2 p2

Let -us now differentiate Eqs. (8. 6)-(8. 8) with respect to x, evaluating at the

section of mini mum depth and width where aB/ax = 0, ac/ ax 0, B = W, H-z, TbH , 
—

z1—z2 (1— Tb — Tb )H , z2 — C = 11211. We get

.
~~j

(gAH) + = 0 (8. 10)

-
~~~~(gAH) + (th0 -th ,)  - 

~~~~ (1-~~~~-1~~~)~~ 

- = 0 (8.11)

(gAll) + Ab~~ 
. 2  + (Ab0 -th,) - ______ = 0 (8.12)

- -
-~~~.

-
~~~- - -

___________________  -~~~~~~~~~~
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We may assume (Long, 1976) that the interfaces and free surface do not have a

zero slope at the constriction so that the determinant of Eqs. (8. 10)-(8. 12) Is

zero. We obtain the critical condition

r 2 - r  2 - - 2

A b t h  th g2 q,- 

~ i--l10-l12)~R~~ ~ W~~~~H~~ W~(1-1~ --112)~ H~
(8. 13)

~~ 
~
- 2 2

_______ _______ 
g, —

L 
~~~~~~~~~~ W2 (1-T) 0 -T)2)~ ll~

The equations for conservation of volume and salt are

R + q0 + q2 = q, (8. 14)

q0S0 + q2S2 =q,S1 (8.15)

If we use a linear relationship between density and salinity, we obtain

q0 = - ~~-‘ — (8.16)

q2 ~li(5;l) — 
R(r— 1) (8. 17)

where s = b~/th,, r = th0/~2 and where b2 is the buoyancy of water of salinity S2•

With the following definitions,

2 q~ a 
_ _ _ _- 

1
2143

’ 

w21?~b0’ 
- 

H

2 2
- _ _ _  2 R

Eqs. (8. 16) and (8. 17) become

Q = — , 
~~~ 

= 
Q1 (s—i) 

— 
Qf( r—1) (8.18)5 r s r

—.--~- ~-.--.—— — —U- —~~ l ~~~~~ ~~~~~~~~~~~~~ 
—U

_ _ _ _ _ _  --U-U-U-— ~~~~~~~~~~~~
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Eq. (8. 13) and a combination of Eqs. (8. 6) and (8~ 8) leads to

~(s-1) - 
Q~s - 1- [Q,(s-1)-Qf4 (r-1)]

2 
- !1~ -1)Q~

(1—11~ —11~ )~ ~ 1~~s ~

(8.19)

(Qi— ~ Qt) 2 
- [Q1(s_ 1)_Qt~~(r_ 1) ]2 

Q2 s- 1 - — - — -  - 1 
~~~~~~~~~~Tt~s T~2 s (1—11~ —11~ )~

- 

~~~~~~~~~~~~~~~~
Q

~~~
)
2~~~ [Qt (S-1)-Qf ~ (r~ 1J ]

2 
s(1-~) 0 (8. 20)

2 f l 0 s 
~~fl2 5

Eqs. (8. 19) and (8. 20) may be put in the following convenient forms:

- 
f,(Q, , -rt3, fl2, s; ~~~~~~ =2i ~ rf~ s+ 2 s(s_ 1)(i_ , ,)_ 1~ [Q, — !Q~ ]2

(8. 21)

• + ~k~[Q, (s— l)—Q~~ f r —i) ] 2 — 2s~ 7~~71~ (i—~) = 0

f2 (Q, , ~~~ m 2~ s; r , ~ Q~) = ~~~~~~~~~~~~~~~~~~~~~~~~~~ (s-1)-Qf ~ (r-1)~ }~~ s

— -(s-1)Q~~~~11~~s~ - ~~~~~~~~~~~~~~~~~~~~~~ + Q~(Q,- ~~Q~)2s21l~ (8. 22)

+ (Q,
- 

~ Q~)2 1Q~s-’)-Q, ~ (r-1) ~~2 (1 11o 1)~ )~ = 0

Let us now consider r, ~ and Q~~ 
fixed in the functions in Eqs. (8.21) and

(8.22), i.e., we write

f,(Q, , 1) 0 , T ~3, s) = 0  (8. 23)

f2 (Q, , 1k, i~3,s) =0 (8.24)

— ~~~~~~~~~~~~~~~~~~~~ -- - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~ - - - —s ~~~— - -
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Solvin g Eq. (8. 23) for s, we get

s = m(Q~,Th , 115) (8. 25)

Substituting (8. 25) into (8. 24) we get

(8.26)

Thus

Q~ XCfl o, 11a), S = A(’T10, fl 2 )  (8.27)

We assume that the non-dimensional flux Q, increases as the mixing increases.

When the estuary-harbor is thoroughly mixed, any further increase in the m ixing

will not change Q~~~
. As in earlier arguments, we assume that this occurs when

Q1 is a maximum, now with respect to the variation of two quantities 1~ and fl2
in the equation , Q, = x (11~,, Tb). Thus we require for an overmixed estuary

8710 J~~ 
=0 (8. 28)

where to make matters perfectly clear, we use subscripts to indicate the variables

held fixed in the partial differentiation. To find Eqs. (8.28) in a useful form, let

us differentiate (8. 23) and (8. 24)

_

~~~~ 
) 

~~~~~~ 
- 

- + ~~ = 0 8 29
0 ~~ 

,_
~ ~~ .n .0 - q~II ~~~ II~~~ S 113 

~~~~~~~ ~~~~ S 4~) ,  1lo~ 1 2

~~~~
‘ 

\
_ + ) -

- = 0 8 30
2 S r .  -r~ ~ n 2 InIIo~ I S,  S i~~~, 11 i)~ 

S ‘~a. ’ ‘0~~ ‘ I S  ‘ 90

+ .~~~~
,

\ 

+ Mi

~~~~~~~~ 
a’ri~ L~2 

8i~.1Q~ I~~5 as 
~~~~~~~~~~~ ~%I ~ 0 (8.31)

Ma - 

+ ) 0 8 32
‘ 

~~O~~lI 2~~~ 
2” TIO Q,, 1~0, s ‘Q,, T~l 0, 113 21.

~

- - - -

~~~

-*-a a ~~ - -- --U-- - - - - - -U- -- U-.



________________ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~U 

~~~~~~~~~ -

-65-

Using (8. 28) and eliminating 8A/a’fl0 and aA/afl2 , we obtain

(8 33)a’n0 as OIfl o ôs

(8 34)
~112 ôs 0fl 3 8s

where we now suppress the subscripts. Eqs. (8. 33) and (8. 34) together with Eqs.

(8. 21) and (8. 22) are four equations In four unknowns, Q,, fl , ,  11~ , s(r , B, Q~ U
g iven) and the problem is determinate. The quantities in Eqs. (8. 33) and (8. 34)

are

= 4T1o T~ s+411o~~~s(s4)(1—1io) 211~11~~s(s— 1)+ Zi lo [Q, (s—1)— Q~ !(r_ 1) 12
(8. 35)

4s2 f l T ~2 (1 B)

= 61 ~~s+41 fl2 s(s-1)( 1—fl0)-2m5(Q, !Q ) 2 
4

~~~2 m0 n2(1—B ) (8. 36)

= 211~ 11~ + 21~~~ 1~~(s-1)(i—T~0)+ 2T 1~ TI~ s(1- flo )+2 T~ [Q, (s-1)--Q~ ~(r-l) ]~Q~ - ~~~L (r-1)]

(8. 37)
+ ~~~~~~~~ Q~ ]T~ -4s11~~fl~ (i-B)

= 3(s 1)a-~ 0 m 5)2 
~~~~~~~~~~~~~~~~~ 

(s— 1)— Q~ ~<r-1) ? —3(s—1)Q~11~ ~~~~

+ 311
~

s (s— i)( 1—T~0 —m 2)3-’Q,~s 1T1~ s—[ Q~ (s— 1)—Q~ ~(r— 1) ] ~~j  +3(Q, _~~Qf)
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(8. 38)

3(1 11~ ~~~1)2)  (Qi — ~ Qr) 2 1Q~ (s— 1)—Qf ~ (r—1) j2

- I

2 
~~~~~~~~~~~~~~~~~
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~3(S_ 1)(1_11o _112) 2 11~ s fl~ s— [~~ (s—l )— Q~ ~(r—1) ]2 +3fl~~fl~ s5 [(s—1)(1—110-T13)3—Q~s]

~~~~~~~~~~~~~~~ 3(Q, - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~Q~~~)

2 (8. 39)

_3 (~~~~~~4 f l )
2 (Q, —

~~~ Q~~)
2 [Q

~~ 
(s— 1)-Q~ ~ (r-1) 12÷ 3Q~s2 11~ (Q, — ~

= (i~ T!o -11a)3 —Q,2 
L 
1~~S—[Q1 (S—i)—Qf ~~(r_1)]

2 s—(4s3—3s2)Q~~~~1~

+ T~ (s—i) ( 1— f l 0 — 112)
3 

—Q
~~~ 
s - 11~s—[Q, (s—l)—Q~ ~ (r—1) ]

2

+ 1~~S 
- 
(s-i)(1-1)o -112)~ -Q~s 1l~ -2[Q, (s-l)-Q~ ~ (r-1) ][Q

~~~
-Q

~~ 
~~~~~~~~~~~

(8. 40)

+2 
~~~~~~~(Q,

- 
~~~~~Q l~ s(1-fl 0 —~fl2 )3- 113~(1-1lo -11~ )3 (Q~— ~ Qt) 2

-2 ~~(Q1 - ! Qf) [Q1(s-1)-Qf ! (r-1)]3 (i— T~0 —~fl2 )~ -2Q~(Q,- ~ Q~) ~~

+ Z[Q1 (s—1)-Q~ ~(r—1)][Q~ — ~~-(r-i) ][Q, - ~ Q~~ 
]2 (1— 11o -1ls)3+2Q~ S1~~ (Q~, — 

~~ Qt)
2

The solution of the general problem involves the solution of the four complicated

simultan~ous algebraic equations and we will limit attention to the special case in

the next section. We note, however, that for a zero fresh-water influx, the solution

- has the simple form Q~ = f(B) so that the discharge q, is proportional to the square

root of the density difference between the two outside fluids as we found out from

dimensional analysis.

Let us now consider the special case in which the whole system has a uniform

depth H, the fresh-water flux Is zero, and the two fluids outside of the harbor have

equal thicknesses. Then B ~ and from symmetry s = 2 and 1fla = fl0 . Eq. (8. 21)

becomes an ident~jty and Eq. (8. 22) becomes 

- ~~~U U - — U -
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4’fl~(i-2 Tl0)3 - 16Q~ 11cr - 4’~~ f l (1 2Th)3+ 8Qt 11~ +Q~(1-Zflo )3 0 (8.41)

The condition for overmixing is 8(~ /3~fl0 =0. Differentiating Eq. (8. 41) we get

_127I~(1_211o)
2 + 12Q,2fl0

3 (1—2~o)
2—3Q~(1—2T~)

2+i2Tf~,(i—2fl0)3

(8. 42)

-48Q12 110~~+ 1ZQ, ~~-6Q~~~~~~ (1-21~~~~~ = 0

The two equations (8. 41) and (8. 42) determIne the problem and the relevant solu-

tion is

In - -i. 1~a _ j  8‘10 ~~~‘ ~~~ 64

In dimensional terms, the outgoing fluid has a thickness of 11/2 and a flux
1

HW(HthO) 2
q~~— 8 ( .44)

A laboratory model was constructed to study a three-layer circulation. A

long channel of width W0 was used as shown in cross-section and in plan view

in Fig. 8.4. The opening between the harbor and the outside region has a uniform

width W. The outflowlng fluid has a vertical thickness all far downstream. Atten-

tion was confined to the case of fluids of equal depth so that B = ?~.

Let us first consider the steady-state theory for an infinitely long channel.

A portion of the problem Is identical to that considered above and we are led to

equations Identical to Eqs. (8. 41) and (8. 42) . The solution Is again 1k ~~ ,

= 1/64. To obtain an equation for a, we use the Bernoulli equations for the

• outfiowing fluid and for either the upper or lower fluid. These are

gAH + q0 
= 

2g (8. 45)
• 2W~Th~H2 W~H2 (i-a)2

a a
(1-Ti~)H + gAll + 

4q0 
= H(1+a) + 

- 
(8. 46)

2W2 (1-2T10)2 H2 2W~a2 H2

_ U-U- - -—  U _U— 
;:, -

;
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Eliminating gAll between these two equations, we get

- - + ___ - + ___- =0 (8. 47)

Using ~ = 1/4, Q~ 1/64 and imposing the condition a 0, W/W0 -~~~ 0, we obtain

1

a = ~[1—( 1 — ~~ ) 2 ] (8. 48)
0

A graph of this relationship is shown in Fig. 8. 5.

The experiment was conducted by putting a two-layer system of equal depths

in the channel and then using several egg-beaters to mix the fluid in the harbor. The

fluid in the harbor was thoroughly mixed in a few seconds and the middle layer began

to move down the channel in a surge. Evidently a quasi-steady state resulted in the

- vicinity of the mouth of the harbor before the surge was able to reaóh the other end

of the channel and reflect. The middle layer was unfortunately still quite turbulent

near the mouth and for some distance along the channel, but to the extent that

observation of its thickness was possible, it was close to H/2 at the mouth in

accordance with the theory and as evidenced by the photograph of Fig. 8. 6. The

thickness ratio a was considerably larger than Eq. (8. 48) indicates, probably

because of the presence of a “drowned” hydraulic jump downstream.
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Fig. 8.6 Flow from laboratory model of an estuary.
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