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Page ix: Insert after 4.3.6: Multilevel Set Partition-

ﬁ 4.3.7: An Example of Class Partition \v/é¢
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Page 75: Insert after Fiqure 4.3.6: Multilevel Set Partition:

¢

Class partition is illustrated in Figure 4.3.7. While set parti-
; tion involves partition of the domain into subseés, class parti-
tion involves partition of the domain variables into classes and
the partition of the range variables into classes. In the ex-
ample, it is assumed that the domain variable has an associated
data strdcture_comprised of two parts, xl and Xye Likewise,
the range variable has an associated data structure with the
same number of classes as the domain's déta structure. (As an
example of such a structure, consider the domain to be the complég
numbers; the range to be polar coordinates. Then, for a given
value of the domain variable (i.e., a given complex number), Xy
would represent its real part and X, its imaginary part.) Con- !
- sequently, the variable is partitioned into two separate classes, b
x; and x,, such that elements associated with x, are the input
elements that one offspring can access and the elements associated
with x, are the input elements that the other offspring can access.
The range structure is partitioned in a similar manner.
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(y1. Yz) = f(xl' xz)

¥y = hixy) ¥y = 9(xy)

Figure 4.3.7: An Example of Class Partition
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% The following characteristics with respect to class partition
g should be observed: '

1

~,
hY

(1) All offspring of the module at f are granted permis-

"~ sion to receive input values taken from a partitioned
variable in the set of the parent MCF domain variables,
such that each"offspring's set of input variables are
non-overlapping and all the offspring input variables
collectively represent only its parent's MCF input

: variables. .

(2) All offspring of the module at £ are granted permis-
sion to produce output values for a partitioned vari-
able in the set of the parent MCF range variables,

| such that each offspring's set of output variables are
non-overlapping and all the offspring's output vari-
ables collectively represent the parent MCF output

g variables. ‘

(3) Each offspring is specified to be invoked such that _
for each change in state of its parent, all offspring f
undergo a state change. !

- e )U"\‘-;ﬂ‘v'.""*_' ’

(4) There is no communication between offspring.
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The automated tools of ISDS/HOS serve to eliminate many possible sources of
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The component tools of ISDS/HOS facilitate the specification of a system, auto-
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system specification directly into an optimized target-machine coded form. The
ISDS/HOS support tools eliminate much of the manual effort required in the de-
velopment of computer-based systems.

The purpose of this report is to present the ISDS/HOS concept so that managers,
systems engineers, and computer scientists can appreciate the various aspects
of the basic principles on which ISDS/HOS is based, the basic tools that
ISDS/HOS will have available, and the basic techniques that ISDS/HOS users can
use.
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1.0 INTRODUCTION

The rapidly increasing cost of software represents a serious

threat to the effectiveness of future systems for the Depart-

ment of Defense. Already software cost is a major component

of overall systems-development cost, and this trend is expected

to accelerate in the near future. As systems grow in complexity,
there is an increasing dependence on sophisticated computer soft-
ware to support them. It is widely recognized that present methods
of software development are not sufficient to produce reliable
software systems at an acceptable cost (RAM75) (WU74) (BOE72)
(GAN76). Reliable software is particularly important for tactical ]
systems required to respond to multiple threats in a real-time
environment. A significant improvement in software-development
technology is required to ensure the success of future large-

-gcale systems. 1In order to satisfy this requirement, the Army
has identified the need for an Integrated Software Deveclopment
System/Higher Order Software (ISDS/HOS) for the development of
reliable, maintainable, versatile computer systems at a signifi-

cantly reduced life-cycle cost.

This document presents ISDS/HOS as a comprehensive approach to

the solution of the software-development problem. The problem

is defined in Chapter 2 by presenting available methodologies
; and techniques for system and software development. A rationale
! of ISDS/HOS is presented in Chapter 3, by means of its histori-
cal development. Chapter 4 then describes the theory of Higher }
Order Software which is the foundation of ISDS/HOS. Chapter 5
describes the use of ISDS/HOS during the life-cycle of computer-
based systems. This includes the step~by-step transformation

——. -

of user requirements into hardware, software, and firmware de-
signs. Chapter 6 describes the automated tools of ISDS/HOS.
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2.0 STATEMENT OF THE PROBLEM : ?

Concern with software costs is evidenced in a DoD memorandum (DDR74)
which presents the trepd in the increasing ratio of software to
hardware costs. The memorandum further references a RAND fore-
cost which predicts a 95% expenditure of the ADP budget on soft-
ware by 1985. Without being concerned over the accuracy of the

S T T e

cost is expected tc continue. A later DoD memorandum (DDR7S5)
states that "There is an urgent need for technical and managerial
innovations which lead to more reliable and cost-effective soft-
ware throughout DoD." The memorandum then places emphasis on the
areas of command and control and weapons-system software.

The increasing ratio of software to hardware costs can be attri-
buted to (1) historical emphasis placed on hardware technology
and its attendant design and development methodologies, and (2)
the lack of similar rigor placed on the software technology and

: its attendant design and development methodologies. Of particu-
lar interest is the fact that the hardware required for a system
was generally designed and, sometimes, developed prior to even
considering the requirnd software. This development process forced
the software not only to perform its required functions, but, also,
to make up any deficiencies in the hardware and/or changes in
requirements. As a result, the software became complex, specific
to the mission, inflexible, costly, and untimely. A review of
previous system development efforts indicates:

e software development costs are much higher than expected,
and almost always exceed initial estimates.

g e o
—_— e~
¢

schedules are undependable, resulting in excessive system-
development cycle time.

R Y

® reliability of the systems developed is unsatisfactory.
computer resource requirements almost always seem to
exceed initial estimates.

’.
-
R

measures of correctness are inadequate.

.
L
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® communication between users is poor due to lack of
visibility.

e the resultant software is often inflexible, which impedes
correction, transferability, and enhancement.

® the resultant system is frequently less useful than
initially desired.

® developers and users are uncertain as to the amount of
testing required; frequently redundant (unnecessary)
tests are conducted which are costly, or tests are omitted
(which eventually, are probably more costly).

e management problems are all too frequent in large systems.
® documentation in large systems becomes unwieldy.
® requirements never seem to get nailed down (made precise

and stabilized).

Figures 2.1 (KOS75) and 2.2 (DER75) summarize the findings of
a joint study on "DoD Weapons Systems Software Acquisition and
Management" performed by MITRE (ASC75) and the Applied Physics
Laboratory at Johns Hopkins University (KOS75). Various combina-

tions of the problems indicated in these figures are plaguing
the DoD in current systems-design and development activities,

The remaining sections of this chapter present various methods
(including approaches and guidelines) used by the DoD and com-~
mercial industries, and methodologies available to the DoD which
may alleviate certain of the problems mentioned above.

8
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Visibility in weapon system acquisition Quality assurance and control
e Inadequate requirements analysis e Lack of management monitoring
e Inadequate interface management of software reliability
e Inadequate documentation e Lack of software reliability
o Lack of transferability quality assurance discipline
e Inaccurate cost/schedule projections ® Lack of quantitative data base
e Low quality
Lack of software acquisition manage-
Language selection ment standards
e Low correlation of machine-oriented e Terminology
language to engineering problem e Directive, instructions, stand-
e Lack of design visibility ards

: e Machine dependence
Lack of acquisition, management, opera-

Language proliferation tions and support guidelines
e Difficult learning process Lack of formal personnel development
e Discourages development of test and and training
support tools
e Reduces management visibility Research and development
e Complicates institutional control
e Cost redundancy e Lack of focus

e Relevancy
! ® Lack of technology base
¢ Redundancy and duplication

S

Figure 2.2: Problem Summary
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2.1 Current DoD Efforts

DoD is cognizant of the problems encountered in developing soft-
ware for weapon systems. The DoD Software Management Steering
Committee in July 1975 issued a Statement of Principles known
as the Capstone Directive (which later evolved into DoD Directive
5000.29). The document seeks to make the role of software ex-
plicit, visible, and controlled in the weapon-system acquisition

process.

The Committee also provided for studies (KOS75) (ASC75) to be

conducted on the state of software acquisition, development, and
management for DoD weapon systems. These studies provide a strong
statement of technical and management problem areas and supply k
recommendations on directions along which solutions may be found.

Nl

. The following quotation is from the MITRE study report:

The major contributing factor to weapon system

software problems is the lack of discipline and
: engineering rigor applied consistently to the
software acquisition activities.

(One of the lessons learned is that DoD must provide a level
of staff support commensurate with the detail and expertise re-
quired to monitor tightly the range of activities related to the

of - et

: software-development process in weapon-system acquisition.)

L Studies (ASC75) (KOS75) have shown that early and adequate plan-
ning is essential to the proper cost-effectiveness of weapon-
system software. Planning is an intangible area which requires
a large amount of money for "concept" rather than product.

There is always pressure, therefore, to compromise this aspect

ERE S S e b T SR R S

of weapon-system development.

11

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900




DoD is aware of the problems in cost, management, and technical

e > et

development of software in general, and software for weapon sys-

tems in particular, as reflected in DoD Directive 5000.29. Due
to its importance, the policy stated in this directive is re-

produced below:

V. Policy

A. General

o o ek g

1

1. Annual expenditures by DoD in the design, development,
acquisition, management, and operational support of
computer resources embedded within, and integral to
weapons, communications, command and control, and
intelligence sensor systems are measured in the bil- ]
lions of dollars. Unreliability, particularly of
software, diminishes DoD mission effectiveness in
many major Defense systems.

2. Computer resources in Defense systems must be managed
as elements or subsystems of major importance during
conceptual, validation, full-scale development, pro- 1
: duction, deployment, and support phases of the life
cycle, with particular emphasis on computer software
and its integration with the surrounding hardware.

B. Requirements Validation and Risk Analysis

1. Validation of computer resource requirements, including
software, risk analyses, planning, preliminary design,
security where applicable (DoD Directive 5200.28,
reference (f)) and interface control and integration
methodology definition will be conducted during the

( Concept Formulation and Program Validation phases of

Defense system development, prior to Defense Systems
Acquisition Review Council (DSARC) II.

< g Tph ) Ge

.

[

! 2. This analysis must assure conformance of planned
computer resources with stated operational require-
ments.

- e gy 4 b - b

3. Risk analysis, preliminary design, hardware/software
integration methodology, external interface control,
security features (DoD Directive 5200.28, reference
(f)), and life cycle system planning shall be in-
cluded in the review.

4. Correctness of software, reliability, integrity,
maintainability, ease of modification, and trans-
ferability will be major considerations in the initial
design.

12
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5. The risk areas, and a plan for their resolution shall
be included in the Decision Coordinating Paper (DoD
Directive 5000.2, Reference (qg)).

6. In addition, computer resource requirements will be
9 continuously coordinated and reconciled with system
operational requirements throughout system development
e after DSARC II.

C. Configuration Management of Computer Resources. Defense
system computer resources, including both computer hard-
ware and computer software will be specified and treated
as configuration items. Baseline implementation guidance
for this action is contained in DoD Instruction 5010.21
(reference (i)).

D. Computer Resource Life Cycle Planning. A computer resource
plan will be developed prior to DSARC II, and will be
maintained throughout the life cycle. The purpose of the
plan is to identify important Defense system computer
resources acquisition and life cycle planning factors,
both direct and indirect; and to establish specific guide-
lines to ensure that these factors are adequately considered
in the acquisition planning process. Examples of factors .
to be addressed are the following, as applicable: ;

1. Responsibilities for integration of computer resources 1
. into the total Defense system and the determination !
‘ of overall system quality and integrity. :

2. Personnel requirements for developing and supporting ;
computer resources. I

3. Computer programs required to support the development,
acquisition, and maintenance of computer equipment
and other computer programs.

: 4. Provisions for the transfer of program management
responsibility after initial system operating cap-
ability has been achieved; provisions for system/
equipment turnover.

i E. Support Software Deliverables. Unique support items re-
quired to cost effectively develop and maintain the de-
livered computer resources over the system's life cycle
will be specified as deliverable, with DoD acquiring
rights to their design and/or use. Examples of such
support items are compilers, environmental simulators,
documentation aids, test case generators and analyzers,
and training aids. The provisions of ASPR, section IX
(reference (j)) shall govern the implementation of the
policy.

L o “.:'WQ“N —rra 0
—m
’
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F. Milestone Definition and Attainment Criteria. Specific
milestones to manage the life cycle development of computer
resources, including computer system and support software*
will be used to ensure the proper sequence of analysis,
design, implementation, integration, test, documentation,
operation, maintenance, and modification. These milestones
will include specific criteria that measure their attain-
ment.

G. Software Language Standardization and Control. DoD approved
High Order Programming Languages (HOLs), (reference (k))
will be used to develop Defense system software, unless
it is demonstrated that nor.e of the approved HOLs are cost
effective or technically practical over the system life
cycle., Each DoD approved HOL will be assigned to a de-
signated control agent who will be responsible for such
activities as validating compliance of compiler implementa-
ations with the standard language specifications, gathering
data as to the use of the language, and for disseminating
information, compilers, and tools. The designated control
agent will also be responsible for assuring language s
stability except for DoD HOL specifications which already '
fall within the purview of DoD Manual 4120.3M (reference
(m)).

i
!
§
|
In addition to the policy stated above, DoD Directive 5000.29

established the DoD Management Steering Committee for Embedded r
Computer Resources (MSC-ESR), and included the charter of the
MSC-ESR in the directive. One of the objectives of the MSC-ESR,
as stated in its charter, is to

Formulate a coordinated DoD Technology Base Program
i for software basic research, exploratory development,
advanced development, and technology demonstrations ad-
- dressing critical software issues that can be recommended
{ to the Director, Defense Research and Engineering.

-t

' The net result of the management policy just stated is to:

'r;ﬂ vty e

® place software on a par with hardware throughout
the acquisition process.

e provide guidelines for DoD management and technical
staff in developing weapons-system acquisition pro-
grams conducive to management and technical review,

® provide qualified DoD staff for management and tech-
nical review.

)

T aatma-ten® vl

~.(f
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e provide software tools (HOL's and support software)
for weapons systems development, thus reducing training,
development, and review staff requirements.

® establish a coordinated software research and develop-
ment program addressing critical software issues.

The environment which will be provided by DoD Directive 5000.29
will greatly facilitate the weapons-system acquisition process.
MITRE, APL, CENTACS (LIE73) (CEN75), and others (GAN76) (R&D76),
however, recognized that technical information, guidelines,
management concepts, and directives alone will not solve the
overall software problem. Flexible and effective software-
development tools, within the context of a coherent, thorough
and rigorous development methodology, have been perceived as

the technology base necessary to surmount the problem.

2.2 Commercially Available Software Development Aids

Computer-based systems found in the military have counterparts
in the commerical marketplace, including:

e Business applications such as accounting and
inventory control.

® Scientific computation for research and develop-
ment.

e Large data-base applications with the requirement
for data-base management and management information-
system software.

® Real-time, stimulus-response applications for command
and control, communications, signal processing, and
process control.

It is important to realize that commercial organizations, in-
cluding computer manufacturers with their associated software
development divisions and software vendors, are able to approach
software and systems development with the advantages of continuity
of personnel over time and identifiable common requirements for

15
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a particular set of users. For these reasons, it is possible
for commercial organizations to develop a certain amount of ap-
plications-software support tools to aid their users in software
and systems development. Table 2.2.1 lists examples of these

software tools.

a HIGHER-ORDER LANGUAGES/COMPILERS
@  ASSEMBLERS AND MACRO-ASSEMBLERS

. LINKAGE EDITORS AND RELOCATABLE
LOADERS

e« LIBRARIES OF COMMON SYSTEM-UTILITY
ROUTINES

s LIBRARIES OF COMMON APPLICATIONS
ROUTINES

® DATA-BASE MANAGEMENT AND MANAGEMENT-
I INFORMATION SYSTEMS

[ INTERACTIVE MAN-MACHINE INTERFACE
SUPPORT

———e

. g~ »,:‘vy.-n -~

TABLE 2.2.1: Commercially Available Software-
Development Support Tools.
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Due to the availability of these software-development support %
tools, many users of commercial computer facilities and organi-

zations have been able to realize cost benefits in their appli- g
cations and systems-development efforts. These users share only i
marginally in the costs of tool development, but obtain the total
benefit of each tool. It is clear that each of the tools (es-
pecially each common routine) used in a development project is
simply one less to0l to be designed, coded, and verified. 3

In the absence of such tools, a decision may be made to develop
such tools first, or to proceed without them. In either case,
project costs will be increased greatly. For systems that will
use minicomputers, software development may be a problem since,
in general, minicomputers do not have as complete a battery of
software-development support tools as large-scale computers.

. In addition, even with a reasonable battery of support tools,
software development on a small-capacity computer is much less
convenient than on a large machine for those applications which
strain the resources of the minicomputer system. Therefore, an
approach to the development of software for minicomputers that is
often used in commercial organizations is to host the effort on
a large-scale computer with the target as the minicomputer.

This approach requires cross-assemblers, cross-linkage editors,
and cross-compflers (if an HOL is to be used). This approach,
while allowing greater flexibility, requires ready access to

i the cross capabilities for the particular host-to-target combina-

! tion.

It should be pointed out that those host-to-target cross cap-
abilities which are not available can be developed as a low-risk
item with a cost of at most a few hundred-thousand dollars. 1In

. m——— -

a minicomputer application, therefore, development of the sup-

B R Y S

port cross-targeting software, if it does not exist, might be

ar

cost-effective from an overall point of view. This would be true
especially if a number of projects would realize benefit from

the cross-targeting software.

17
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The following lesson, learned from the commercial world, should
be applied to the world of weapons-systems software development.
Centralized software-development facilities should have avail-
able software-development and support tools, common routines,
etc.* Such efforts alleviate the need to "reinvent” software,
and, thus, reduce costs. Supporting these facilities should be
an organization whose responsibilities are to acquire, verify,
and maintain software-development and support tools..- This would
assure the visibility of such tools, and would eliminate redun-
dant acquisition, verification, and maintenance efforts. Ex-
amples of such activities currently being implemented or under- 1
way in the DoD are: Navy System Design Laboratory (SDL), the
Air Force SAMSO Aids Project, and the Ballistic Missile Defense

Software Development System.

The DoD management policy as presented in Section 2.1 and the
collection of available and relevant software-development sup-
F. port tools provide a basis for significant visibility and cost
reduction in the area of systems development. The greatest sav-

ings in cost, with an attendant increase in reliability, can be j
realized by incorporating the management policy and support tools
within a framework of a development methodology which encompasses

S

the total weapon-system acquisition process--~from requirements

definition to deployment and maintenance. In the next section,
' several methodologies and support-tool collection efforts which
could apply to various stages of the weapons-system acquisition
process are discussed.

*Many of the commercially available tools and routines may be
directly applicable to DoD problems.

18
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2.3 Current System and Software Development Techniques and
Methodologies

The following methodologies and techniques for software and sys-
tems development are presented in this section:

1. Structured Design

2. System Design Laboratory (SDL)

3. Information System Design and Optimization System (ISDOS)
4, Software Factory

5. Ballistic Missile Defense Software Development System (SDS)
6. Hierarchical and Input-Process-Output (HIPO)

7. Multipurpose User-Oriented Software Technology (MUST)

8. Dominic

‘These methodologies and techniques were selected for review be-

cause they were considered to be either fairly widespread or
representative of approaches being developed. It is understood i
that these approaches may not represent the entire spectrum of
software and system development techniques.

A separate section is devoted to each approach. In each of these

sections, the salient features of the approach, as made avail-
: able or published by the developing organization, are presented.

The last section focuses on shortcomings and a preferred approach
applicable to the complete life-cycle of a military computer-

based system.

l 2.3.1 Structured Design*

. n?v.-sv- 'v-w.n e 8

Structured Design is a methodology for system design currently
in use at Hughes Aircraft Company. The methodology is basically
the methodology developed by L. L. Constantine with modifications
based on Hughes' real-time military experience. It consists of

* This section was supplied by (BEN76)
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a set of guidelines and techniques which aid the engineer in con-
ceptualization, decomposition and structuring of the system de-
sign. Two visual aids are used: structure charts and bubble
charts.

The bubble chart shows the conceptual data flow of the system.

It is composed of bubbles (circles) which represent the data
transforms and connection lines which represent the flow of data.
The bubble chart defines the required order of data transforma-
tion. It does not show control flow or indicate the modular
structure. It is equivalent to a functional data flow with
strict naming conventions.

The structure chart shows how the bubble chart is to be imple-

mented. It shows the hierarchical relationship of the modules,
the major procedural information, the table structure, and con-
trol/data flow. It is composed of boxes joined by connectors,

and text with connectors indicating data and control flow.

The Design Process

The design process is divided into three phases. The first phase -
the First Cut Design - is heavily conceptual. It seeks to
identify the most basic tasks performed by the entire system,
i.e., the "main mission" is delineated. All hardware, data sys-
tem control, and module internals are ignored as the basic data
flow and structure are established. The second phase - The In-
termediate Design - is partially conceptual and partially real
world. The data base, system control, etc., are given some con-
sideration. The system decomposition process proceeds along
prescribed guidelines. Independent sections are identified and
the basic structure of the data base is discovered rather than
assumed a priori. The result of this phase is the basic, or
top-level design. The third phase - the Final Design - is pri-
marily real world. Codeable modules are produced; the data base
is finalized; the design is packaged for hardware; and coding
documentation is produced.

20
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Guidelines

A set of three categories of guidelines and a set of Rules-of-
Thumb which are key to the design process and the creation of

the bubble and structure charts are summarized below. The guide-
lines are many (about 40) and are very detailed.

1) Basic Guidelines - A set of formalized rules and methods.
The basic guidelines deal specifically with the structured

F design methodology, i.e., modular decomposition: inter-
' active use of the charts: and design considerations.

2) Secondary Guidelines - A set of quasi-formalized design
methods. These guidelines attempt to describe the
characteristics necessary in the human problem solving
process and hence deal with concepts related to learning,

understanding, and conceptualization.

3) Supplemental Guidelines - A set of non-formalized rules

: and methods which are derived from the basic and secondary
i guidelines. They identify diverse conclusions such as
data base design, duplicate code, module compression,

error handling, module size, and design changes.

4) Rules of Thumb - A set of eight very informal rules which
are intended to increase the design speed and ease the
! burden on the designer. They cover such areas as nam-

ing, optimizing, and packaging.

Design Implementation

—— -

> - B

It is to be noted that structured design does not impose any im-
plementation technique. That is, top-down, bottom-up, or most any

other technique of implementation can be used.
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2.3.2 System Design Laboratory*

System Design Laboratory (SDL) is a facility to provide desigrers
and developers of embedded naval computer systems a comprehensive
library of tools to design, model, implement and test systems.
SDL utilizes the National Software Works (NSW) interface to access
the tool library.

f Conceptually SDL will offer tools to support hardware, firmware
and software aspects of system design, modeling and development.
The Initial Operating Capability (I0C), scheduled for 1 October

1976, will offer a full complement of software development tools
for the Navy standard minicomputer, AN/UYK-20 and the Intel 8080
micro computer. These tools include high level language compilers {

D i d

and hardware simulator/emulator with interactive debugging aids.
Expert personnel at NELC will provide users of SDL with both inter-
active assistance in specific tool use under NSW and documentation
describing tool operations. User access to SDL is by interactive
terminals using the EDATL TIP and by an Input/Output (I/O) station
for printed listings and magnetic tape transmission.

During FY 1977, two tasks are scheduled for SDL. The first task
will be to assist selected users in validating the IOC facility. 1

This effort will establish operational data to insure SDL's immedi-
L ate effectiveness and to provide requirements for future enhance-
| ments to SDL.

The second task will be to augment the SDL tool library. A key
concept of SDL is extensibility; that particular capability to
quickly and easily incorporate existing tools from other sources
into the SDL tool library. Planned for 1977 addition are tools
in the following areas:

ey et

WA Mg e e e

1. Automatic partitioning of design
2. Automatic verification and validation for CMS-2
3. Multiple processor AN/UYK-20 emulator

* This section was supplied by (HAMP76)
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Under investigation but not confirmed for implementation into

SDL in FY77 are tools for these functions:

1. Problem Statement Language

2. Specification Language (AXES)

3. Modeling

4. Program documentation and maintenance aids

5. High Level Language

2.3.3 Information System Design and Optimization System (ISDOS)*

The ISDOS Project is being conducted by faculty and students in the
Department of Industrial and Operations Engineering at the Univer-
sity of Michigan. The objective of the Project is to study the
process by which Information Processing Systems are being built
and operated. The term "Information Processing System" is used to
mean a collection of hardware, hard software, programs, files and pro-
cedures which have been assembled to accomplish some requirements.
Usually the basic requirements include the ability to produce out-
puts (answers to inquiries, reports, documents, messages, displays,
etc.). Examples of such systems are various business data pro-
cessing applications, information storage and retrieval systems,
etc. The systems may include batch, remote job entry, on-line,

é interactive, real-time, etc., facilities or some qombination.

They may utilize data base management systems and communication

systems. Most large organizations have a number of such Infor-

mation Processing-Systems, frequently sharing hardware and files

and occasionally also software.

The long term objective of the ISDOS Project is to develop method-

?
1
b
t

ologies for automating, as much as possible, the process of build-
ing systems. Shorter term objectives are to improve the present
(primarily manual) systems building process and to prove feasi-~
bility by providing computer-aided methods.

* This section is excerpted from (TEI76).
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One fundamental concept of the Project is that the basic data

needed for building a system, namely the description of the require-
ments, should be recorded, as early in the process as possible, in
machine readable form. Thereafter, the building of the system
(construction of programs and data bases, etc.) is to be accomplished
with the aid of the computer itself using algorithms which would
analyze the requirements and aid in the construction of programs

and data bases using operations research techniques to develop first
feasible and then, eventually optimal solutions in accordance

with stated performance criteria.

Computer-aided systems building will result in a number of bene-
fits. Perhaps the most important is flexibility - a change in a
requirement can more easily be incorporated into the system.
Another major benefit will be will [ﬁié] increase in productivity
of systems analysts, designers and programmers since they will be
concerned with the development and maintenance of the partially-
automated system which will then be able to produce software to
satisfy the user requirements. The computer, in effect, will be
used to amplify the capability of analysts and designers. Even
without full implementation, the formalization of the process can
be used as the basis for education, research, and development.

The ISDOS System

i The basic approach of the ISDOS Project is to focus on the system

l building process as an organizational activity similar to many

other activities in that it depends very heavily on information

flow and data processing. Furthermore, it is a process which is now

' primarily manual--in many organizations the only automated part
being the compilation of source language statements into object
code. The approach being followed in developing the ISDOS system
is therefore very similar to that followed in automating other

i information systems:

- Study and describe the "present system."

iR - Improve the present system wherever possible.
£ | 24
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- Propose a "new system" which makes use of the computer and

operations research methodology whenever technically feasi-
ble and economically workable.

- Divide the proposed system into subsystems and develop a
plan for phased development, testing, and installation of
the subsystems.

In the development of the proposed system the "data base" approach
is being followed. The steps are:

- Identify what information is, or should be, recorded.
- Develop a language for expressing this information.

- Provide a system for storing information in a computerized
data base.

- Provide capability for displaying data with appropriate
rearrangement, etc.

- Provide capability for checking for consistency, complete-
ness, etc.

- Provide capability for analysis and evaluation.
- Provide decision-making aids.

The goal is to eventually replace the current documentation methods,
in which documentation is prepared and analyzed manually, with one

in which the necessary information is available for use by the various
individuals who need access to it.

The initial subsystem is concerned with the phases of system build-
ing in which users requirements are determined, recorded, and an-
alyzed and a "logical" system is designed. This requires the de-
velopment of a language for stating requirements, and software

for storing the requirements in computer manipulatable form for
retrieval and analysis.

The methodology and the software developed in the ISDOS Project
have been designed to overcome the factors which have limited the

use of earlier attempts. A language, Problem Statement Language
(PSL), to describe systems has been developed.
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Problem Statement Language (PSL)

The requirements for a target system should be expressed in an
unambiguous machine processable form. PSL has been designed to

meet this goal by being able to accurately and completely express

all relevant requirements for the logical design of the target system
and by having a precise syntax and semantics. The complete col~
lection of requirements for a target system written in PSL is termed
a Problem Statement, in that it is a "problem” to be solved during
the physical design and implementation phase.

A target system is described by listing its subsystems or com-
ponents, by giving properties, and by stating relationships among
the components. 1In PSL, each component is called an "object."

The relationships may be grouped into eight major groups on the
basis of the "aspect" of the system which they describe. These
eight major aspects are:

System Input/Output Flow
System Structure

Data Structure

Data Derivation

System Jize and Volume
System Dynamics

System Properties
Project Management

In addition to the formal relationships, any information which is
needed to describe an object and which cannot be specified by using
one or more rel: ionships can be specified in a narrative or text
description called a comment entry. These comment entries are not
named (as objects are named) and, therefore, apply to only one
particular named object. A number of different types of comment
entries may be defined depending on the type of object they per-
tain to.
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The Problem Statement Analyzer (PSA)

As information about a particular system is obtained, it is ex-
pressed in PSL and entered into a data base using the Problem
Statement Analyzer. The Analyzer is designed to operate in an
interactive environment using the facilities of the host operating
system. It is intended to be as system independent as possible.
In order to achieve this independence, the software, iﬁcluding

the data base management system is written almost entirely in 1
FORTRAN IV and can be installed on any environment which has a
FORTRAN IV compiler and sufficient memory.

The main subsystems are a Command Language Interface, Data Base
Update Facility, Report Generator Facility and a Library Facility.
The Command Language Interface module interprets commands in the
Command Language from the user and causes the execution of the
appropriate module to handle that command. The command process-
ing modules fall into two categories: data base update modules
and report generation modules. The command processing modules

; interface with the data base management system which is part of the
Library Pacility. The library facilities also perform certain
peripheral functions, such as data base initialization, and dump
and restore.

At any time standard outputs or reports may be produced on request.

While this system is not directly oriented towards project manage-

e -

ment, a few reports, which are useful to project managers, are avail-

able. These reports include, in particular, the number of objects

of each type in the data base together with the number and per-

( centage which have specified properties. Such a data base summary
can be used as a basis for evaluating progress made on the de-

l finition of objects, as well as used in estimating the size of

L N

the system being described.

There are also facilities for analysts to develop their own reports
as they wish and include them in the standard report repertoire.
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The reports can be used during the development activity, after the

requirements are completed, and for maintenance throughout the life
of the system.

During the requirements development activity, while data is being
added to the data base and the data base is being modified, the
analysts can use the various reports for making additions and
changes. They can also produce reports to analyze various aspects
of this system, and produce reports to determine what more in-
formation is needed. These reports can also be used by the Stan-
dards section to verify consistency on data naming conventions

and use of other standards. The project leader can use the report
} to determine the complete extent of documentation to date.

After the requirements have been completed, the final documentation
required by the organization can be produced semi-~automatically,

in a user standard format. Summary reports can also be

produced to enable individuals to understand this system and re-
ports can be produced which serve as specification for the succeed-

ing activities.

During the system implementation and operation, changes will be

suggested. The data base can be used to determine the effect of the

e - .

changes, such as which other objects are involved, etc. The change
| in the evaluation procedure can be monitored by the use of the
data base modification reports.

—oten o

Summary of ISDOS

tewe

-
A———— o —

PSL/PSA is designed to be usable by any organization that develops
information systems. Such an organization is incurring the direct
cost of manual documentation and the hidden cost of correcting the
mistakes in the system that are made as a result of ambiguity, in-
consistencies and omission in the manual system. With PSL/PSA
much of the manual and clerical work can be done by the computer.
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PSL/PSA is designed to complement system development practices and

);- procedures. It can be used regardless of which system development
procedure is followed, which project management system is used or
which documentation standards have been instituted.

2.3.4 software Factory*

[Basic to the overall approach of Software Factory is a methodology
which] emphasizes discipline and repeatability, but has sufficient
generality and flexibility for application in a wide variety of
situations. The methodology is not new or revolutionary. Most

of its concepts have been used in successful software development
projects. [It is intended that the system be applied consistently
and be supported] with tools that will simplify and standardize
application of the methodology. 1It is, then, the specific purpose

of this [section] to describe this set of tools, which comprise
the "Software Factory."

Structure and Components of the Factory

The Software Factory consists of an integrated and extensible
facility of software development tools that supports a recommended
methodology. The Factory is designed to operate on a host machine
and use the facilities of the host operating system. The design

is flexible so that new tools can be added as they become avail-
able, and the system components are written in higher-order lan-
guage to enhance transferability of the system or its components to
other machines. The structure and capabilities of this facility

are, wherever possible, based on available technology to enhance
near-term usefulness.

i e . i

——— . -
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The following basic structural and control components of the system
are either in operation or under development:

* This paper is excerpted from (BRA75).
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The Factory Access and Control Executive (FACE), which per-

forms control and status gathering services for all processors,
supports the factory command language, integrates the processors
with the system development data base, and provides program pro-
duction library services.

The Integrated Management, Project Analysis, and Control

Technique (IMPACT), which utilizes production data base infor-

mation on milestones, tasks, resources, system components, and
their relationships to provide schedule, resource computation,
and status reports at the individual components level or summa=-
rized at any module or task hierarchy level. Since IMPACT is
closely integrated with the development processors, much of the
status information is derived automatically.

The Project Development Data Base, which is established for

each project using the facility and contains all of the schedules,
tasks, specification components, test cases, and their relation-
ships along with the various forms of the evolving software com-
ponents and the complete development status. The data base con-
sists of two parts: a software development data base and a pro-

ject control data base.

The development of program modules from their first functional
definition, through the definition of their interface with other
‘ = modules and system déta, and finally - as developing source- and
object-language programs - is reflected in the software develop-
ment data base. It is an extension of the program production lib-
rary concept.

The system and program descriptions and supporting management data

P S e e 0 e
—

are maintained in the project control data base. Early in the
design phase, the management data is oriented toward the software
system structure and the activities performed to develop the soft-
ware system. This use of a project development data base furthers
the automation of program development, management visibility, con-
figuration control, and documentation.
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FACE and the System Development Data Base, make up the framework
which integrates and porvides the control structure for the various
Factory processors. As new processors are developed, additional
commands can be added to the factory control language and new

sections can be added to the data base.

The initial complement of Software Factory processors includes

the following:

Automatic Documentation Tool (AUTODOC) - a tool to produce

program and system documentation. It obtains a large amount of its
information from sources in the system development data base that
represent the actual state of the software system. The principle
source of data for AUTODOC are the comments inserted into the pro-
gram modules by the programmer. When a program module is defined
during the design phase, it is entered in the system development
data base in the form of specific AUTODOC comments. As the program
module is further defined, the programmer adds source language
statements. AUTODOC starts its operation by scanning a source

! module and extracting the special comments: it also reports on
missing or incomplete comments. These special comments provide
a means for the programmer to transmit information to various
Software Factory development tools in a format that is compiler-
indpendnent and primarily language-independent. The special com-
ments consist of a number of keywords, which indicate to the ap-

'} . propriate tool that information of a specific kind is contained

o in the comments which immediately follow.

Program Analysis and Test Host (PATH) - a program flow analyzer

that analyzes a source program and inserts calls to a recording
program at appropriate locations. The analysis of the program
results in static profile analysis reports, which provide infor-

»;rv-.;<.w'v--y—“ .-
————— . —— —

mation about the structure of the program. During program execu-
tion, the recording program gathers data concerning the performance
of the program for a given test data set: after program execution,
the recorded data is processed and output. Rather than finding only
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errors in a program, the objective of PATH is to quantitatively assess
how thoroughly and rigorously a proaram has been tested and to
support the improvement of the test decsign that will best satisfy

the conditions of program verification.

Test Case Generator (TCG) - an automatic technique for the
design of test data which, when input to the program under test,
will provide the user with a means of fully executing all program

statements successfully. The series of test cases that are gener-
ated will be stored in the system development data base. The TCG
technique of determining the total network of statements in a pro-
gram and of generating an adequate set of test cases has evolved
from analysis of the work being done in the program verification
and validation field.

Top-Down System Developer (TOPS) - a tool which provides a

design verification capability. This involves the development of §

j a modeling tool that provides not only the capability of describ-
ing and verifying a design, but also the facility to describe much
of the control and data interface logic in the actual coding lan-
guage.

This later capability provides early validation of a logic com-
ponent that normally does not get checked until system integration.
A further and most desirable aspect of the tool is a structure
that allows the replacement of modeled system components with real

components as they are implemented, thus allowing each new com-
ponent to be validated in the context of the total system. Hence,

Bt dnf
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this tool provides an automated approach to the "top-down imple-

mentation” technique in which succeeding levels of logic are im-

plemented with calls to skeleton or simulated segments at the next i
fi i lower level being used to close the logic loop. Thus, complete

validation occurs &t each logic level. Top-down implementation

and testing by levels along with the accompanying exercise of actual
interfaces, results in a continuous system integration process through-
out the development cycle.
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All of the tools described are further complemented by the exist-
ing utilities and interactive development capabilities of the IEM :
370/VS2 operating system. i

Summary of the Software Factory

The Software Factory is an integrated set of tools that supports
the concepts of structured programming, top-down program develop-

ment, and program production libraries, and incorporates hierarchi-
cally structured program modules as the basic unit of production.

FACE and IMPACT record the hierarchical and interdependent struc-
tures of software system and programming tasks which are then used
to evaluate project and program changes and to assist the system
implementer in building the system and ensuring the completeness
and accuracy of his designs and tests. IMPACT is intended to
serve as an initial planning tool and as an integrated subsystem
that supports software configuration management from the inception
of a project through the post-delivery maintenance of a system.
FACE and the system development data base are intended to provide ?

a controlled environment for systems development and serve as a
framework for a standardized approach to program implementation and
verification.

The top-down phased description of performance specifications and
system components and their relationships as required by IMPACT
along with the consistent use of the various Factory processors
provides discipline and uniformity to the development process,
leading in turn to a high degree of repeatability with its con-
sequent continuous improvement in proficiency.

The monitoring and control aspects of FACE and its linkage via

the development data base with IMPACT provide objective development
status visibility. TOPS and IMPACT provide earlier and more visible
assessments of design completeness, and PATH provides a more
quantitative assessment of testing completeness.
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Since IMPACT supports a development data base in which each require-
ment is related to the system components by which it is implemented,
the impact of requirement changes on the system architecture can
be more completely and easily determined.

TOPS is a design support tool which provides more automation and
better verification of the design process and also smooths the
transition between the design and coding phases. PATH and TCG

are verification tools which support the generation and performance
assessment of program test cases. -

While not specifically attacked by any currently-implemented
Factory component, software reusability is enhanced by the care-
ful system component structuring, the specific relationship with
performance requirements, and the improved documentation inherent
in software developed in the Factory.

The basic elements of the Software Factory (FACE, IMPACT, develop-
ment data bases) are now operational and are undergoing some proto-
type use. It would be premature to assess the benefits which

have accrued, but it does seem clear that a significant degree of
discipline, organization, and visibility has been added to the de-

velopment process.

It is intended that the Software Factory will be augmented by

the continued development of more sophisticated tools and tech-
niques such as application-oriented process design languages, re-
usability technology, correctness verifiers, and cross compilers,
and will therefore evolve into a truly automated software develop-

ment facility.
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2.3.5 Ballistic Missile Defense (BMD) Software Development
System (SDS)*

The large amount of money and research successfully spent in the
SAFEGUARD and System Technology programs provided evidence that the
ability to produce large complex real-time BMD systems was not keep~
ing pace with the increasing complexity and capacity demanded of
advanced defense concepts. In recognition of this problem, the
Ballistic Missile Defense Research community initiated a software
research program in the early 1970's to address the issues which had
arisen in BMD software development. It became apparent early in
this program that any attack upon a problem of this complexity

must be of broad scope and yet provide a degree of formalism not
currently available nor required for less stressing developments.
This resulted in the Software Development System (SDS), which

is a software development approach that forces early error detec-

tion, allows rapid assessment of design decisions, insures the
capability to respond rapidly to change, and insures visibility
and control of the development process. The program has concen-
trated upon developing a set of defined and measurable procedures
supported by special purpose languages and advanced tools. This
methodology has been developed, implemented, and is cur.ently under-
going evaluation. It consists of a defined approach to Require-
ments Engineering, Software Design, Coding and Testing, and Veri-
fication and Validation. Component parts of the methodology have
been used with favorable results. The integrated effect of the
overall approach is currently under investigation through a series
of proof-of-principle exveriments.

The Development Cycle

@e will discuss the phases of the software development cycle
which provide a framework within which the research activities
have been pursued} The initial activity, Data Processing System

* This section is excerpted from (DAV76)
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Engineering, is concerned with the development and transformation
of a set of system requirements into functional and performance

requirements upon the data processing subsystem which will insure
proper system performance. Included are the activities of sys-
tem design, subsystem definition, interface specification, per-
formance allocation to the data processing subsystem, and identi-
fication of normal and contingency system operating rules.
f This activity would proceed until the data processing subsystem
has been identified by its functional and performance require-
ments and interface definitions. The resulting requirements ‘
(Data Processing Subsystem Performance Requiremenés - DPSPR) i
are communicated to the data processing subsystem developers
for further decomposition, design, implementation and testing.

URUBTIR Ry . .

Based upon the DPSPR, detailed subsystem requirements are developed
for the data processing subsystem in a phase known as Requirements

Engineering. In the Requirements Engineering phase the detailed
: subsystem computational requirements are developed in a
| Software Requirements Engineering (SRE) activity which forms the
basis for data processing hardware requirements. The Software

Requirements Engineering activity is a process of iterative ad-
dition of design detail with the emphasis upon avoiding unnecessary
5 constraints upon the following process design phase. This activity

2

. may include the demonstration of the feasibility of requirements

-~ e

' ; through the development of non-real-time simulation. It should
be noted that the term requirements used in this activity is the
statement of requirements upon processing to meet system objectives,
i e.g., the timing accuracy and computation requirements for the
tracking of a potential target, as opposed to the formal definition
of detailed requirements for software modules. Design decisions

%
i
1
}
t

required in developing computational and functional requirements
are those affecting the functional and logical flow of requirements,
e.g.,.a decision to specify synchronous or asynchronous tracking.
The requirements are also developed with a minimum number of de-
cisions affecting processor configuration, core size, etc., with
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the resulting Process Performance Requirements (PPR) minimizing
any optimization for a particular hardware configuration. [Since

a highly sensitive real-time system is involved} the response

time for various computational processes are very critical.

The PPR contains performance requirements for each computational
path within the process including interface definitions, suggested
candidate algorithms, etc., required to meet system performance.

The hardware requirement aspects of Reguirements Engineering are

concerned with the development of data processing hardware require-
ments which will insure the selected configuration will satisfy and
meet system computational requirements of the system. Decisions to
be made in this phase include specifications of the various hardware

characteristics, such as size, number of processors, performance,
etc.

The PPR functional and performance requirements are then analyzed
together with the characteristics of the hardware system. This
mapping of requirements with the hardware characteristics form the
| first step of Process Design Engineering. This results in a top
level software design and a definition of operating system require-
ments. From this structure the design proceeds in a structured
manner with implementation and testing of each level of definition.

At each step of the SDS methodology, a comprehensive testing pro-

[

‘cedure, Hierarchical Verification and Validation is used to validate

| and verify the functional and/or performance characteristics of the

b
o
D
3

software phase. Total system requirements and the specifications
derived from them are used as the absolute reference to verify the
design and implementation correctness at each level.

Software Requirements Engineering Methodology (SREM)

The approach to the development of SREM concentrated heavily upon
definition of its requirements in the early develooment and has pro-
ceeded as a sequential set of proposed approaches backed by empirical
verification. The resulting SREM consists of a combination of
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languages, tools and proceduies which will reduce or eliminate
known error sources. As an example, the generation of testable
requirements in SREM is addressed in a positive fashion through
the development of a structure for statement of requirements which
allows the identification of (1) test points in the regquirements,
(2) identifies the data to be collected at these points, and (3)
an executable description of the tests to which the data will

be subjected. The requirements statement thus contains a clear
description of the tests to which the software will be subjected.
Computer aided Simulation Generation Techniques are also an inte-
gral part of the methodology and provide the capability to vali-
date, statically and dynamically, the requirements description.
Another example of a positive approach for error reduction are the
techniques used to reduce errors, delays and frustrations involved
in documentation. This was addressed by developing a set of auto-
mated documentation tools based upon the ability to flexibly access

information stored in a requirements data base.

Positive approaches in SREM to insure traceability of require-

i ments are contained in features of the Requirements Statemer.t
Language, RSL, which have elements TRACES FROM, TRACE TO to
insure upward and downward traceability of requirements. In ad-
dition, the language element DECISION allows requirements affected
by a design decision to be later traced to that decision. Flexible
data extraction of requirements information stored in a relational
data base provides a rapid and reliable means to insure location of
all affected requirements. Accurate modification of requirements
is insured through the ability to rapidly enter data, interactively
or batch, tools which will check for consistency with existing

{ descriptions, and static and dynamic verification through simu-

; ' lation.

Requirements Statement Language (RSL)

Requirements have been stated in a wide variety of languages ranging
from English text, equations, logical expressions or to machine pro-

ﬁé cessable forms such as PSL. Large projects tend to have a predomin-

o ance of English text with its associated ambiguities and misinter-

‘%% pretations. While some work and progress has been made in the area
{ 38
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of machine recognition and analysis of English this is for the most

: part manually resolved through review meetings, interface control

é boards, etc., in a lengthy and costly manner. To avoid ambiguity

and promote precision and communication of BMD requirements, the

Requirements Statement Language (RSL) was developed. RSL supports

, the statement and documentation of requirements, and along with the

5 Requirements Engineering and Validation System provides a flexible

: means for statement, verification and documentation of require-

i ments. As was previously mentioned the desire is to provide for

v naturalness of expression, unambiguous communication and machine
processing. The language requires a minimum of punctuation and when

, passed through a poéf processor produces a product very difficult

E to distinguish from English expect for the repetitive nature of the

E statements.

Support Software

The BMD systems which are being described are so large that it is
' virtually impossible for humans to ensure that all parts of a

requirements specification are complete, consistent, and correct.

The rigor and thoroughness of the computer is a great asset in

checking requirements specifications. A computer-aided system must
enforce some measure of discipline on the creativity of the engineer
so that the development process always moves in the direction of
reduced ambiguity and increased consistency. For example, the

, computer can perform static checking of the requirements to illumin-

ate inconsistencies such as conflicting names, improper sequences

of processing steps, and conflicting uses of items of information
which must be present in the system. With a flow-orientation such

as the one that we have developed, the computer can even check the
dynamic consistency of the system through the use of a simulation.

The set of support tools isreferred to as the Requirements Engineering
and Validation System (REVS).
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Process Design Engineering

The BMD approach to the design coding and testing of software is
encompassed in the Process Design Methodology, PDM. This approach
consists of a set of process design procedures and techniques
supported by software development tools accessed through a single
language PDL. PDM consists of the following major components:

e A structuring technology to allow an unambiguous and traceable
transformation from computer-independent computational
requirements (the PPR) to a top-level process design
effectively.

e Design, implementation, and testing techniques supported
by PDL.

® A Process Design System, consisting of support tools for
automating such functions as requirements traceability,
configuration management, library management, simulation
control, data collection and analysis, and documentation.

@ A set of models and techniques to accurately estimate pro-
ject costs and schedule. These approaches provide in-
formation to assist management in the effective control
of BMD scftware development.

Initial structuring techniques identify a set of tasks and hardware/
software trade-offs that must be performed to identify a top level
software structure. The Process Design System, throug. the cap-
abilities of PDL2 and its support software, provide the tools to
make the trade-offs and support evolution to the final code.

These trade-~offs not only include the tasking structure but also
impact the operating system design.
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The design of the software proceeds in an evolutionary manner as
each task is further partitioned into a set of computational al-
gorithms that are executed via a prescribed sequencing logic.

This approach proceeds in a somewhat top-down manner, seeking to
initially describe the sequencing logic and final process and t
adding detail through increasingly detailed algorithmic models.
The process is thus represented as a mixture of modules at each
stage of the development where some modules are detailed code and ;
some are merely skeletons of the tasks to be performed. The Pro- 5
cess Design System keeps track of these modules as they evolve through i
the development steps into final code, executes the process with '

an environment simulator at any stage of development, and analyzes

the performance of the process. Since the entire process is re-~
presented at any development stage, each module is tested in its
complete environment. The interface problems usually associated
with software integration are identified early in the design where
they can be more easily resolved.

This approach is designed to force resolution of control, structure,
' and interface problems early in the design cycle prior to the major

coding efforts. The integration of more detailed algorithms in a

logical "forward inteqration" sequence, in which the highest level

of the system is detailed first, and subsequent processing steps
are detailed in the order of processing. 1In this way, analytic

data provided by the initial processing steps is available as an
i input to subsequent analytic algorithms. Iteration of this im-
! plementation, test, and evaluation cycle results in the complete

real-time process.

Throughout the development cycle, the evolving process is tested

‘ against the performance criteria stated in the Process Performarice
Requirements to ensure that the real-time software will satisfy

the system requirements,

B e g Y

i
4;5 - The PDS capabilities are provided through ...[a set nf]integrated
Y software tools.

H
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Verification and Validation .

The testing of large interactive, real-time systems such as BMD
provides a set of problems which strongly parallel those of the
development of the tactical code. A testing philosophy which pro-
vides the maximum assurance of early error detection is essential
to provide a highly reliable software product. Significant investi-
gations into testing via non-real-time interactive and externally

i resident simulation of all non-data processing components called
a System, Environment and Threat Simulator (SETS) discusses an
approach to providing a significant decrease in the testing and cost
of BMD system testing as well as providing the ability to better
define the "performance space" of the software under test and
determine a measure of its robustness over wide ranges of input.

This is being approached by investigating automated techniques

for the interactive generation of test cases, performance evalua-

pey an

tion techniques to allow the assessment of the BMD software response
to that threat, and algorithms to intelligently perturb the input
space.

Preliminary Research results based upon experience with SETS has

shown the interactive construction and modification of test cases
does provide significant reduction in the time to develop test

variants. Performance measure characterization to all assessment

O

of the software response to the threat still suffer from the ability
to relate data processor subsystem functions to higher level

system functions. This activity will result in a feasibility de-
monstration of achieved capabilities early in 1977.

o s Sae

it 4

2.3.6 Hierarchy plus Input-Process-Output (HIPO)*

e

Some IBM personnel believed that programming systems documentation
emphasizing function could contribute to the efficiency of the
program maintenance effort by speeding the location in the code

Ol 2 et LR .
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*This section is excerpted from (IBM).
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of a function to be modified. They developed the HIPO technique
of documenting function to meet this objective. Today HIPO is

being used by some groups throughout the development cycle as a
design aid and documentation technique.

Hierarchy plus Input-Process-Output (HIPO) addresses the require-
ments of the people who rely on documentation for many different
purposes. A manager or user, for example, may want to obtain an
overview of the system. An application programmer needs the docu-
mentation to determine program functions for coding purposes.
Someone involved in a maintenance activity requires documentation
that quickly identifies functions in which changes have to be made.
HIPO meets these needs because of its graphical representation

of function, its organized nesting of increasing detail, and the
depiction of input and output data items at each level.

A HIPO package consists of a set of diagrams that graphically
describe function from the general to the detail level. 1Initially,
each major function is identified and then subdivided into lower-
level functions; the summation of the lower-level functions equates
to the higher-level functions. Programs are then developed starting
with the functions described in the topmost level of diagrams.

HIPO diagrams can be used from the start of the project through
implementation and are useful for program maintenance by easing

the identification of the code to be changed.

The major objectives of HIPO as a design and documentation technique
are to:

® Provide a structure by which the functions of a system can be
understood. The diagrams are organized in a hierarchy structure
(see Fig.[2.3.6.]), much like an organization chart, where each dia-
gram at any level is a subset of the level above it. Complex
systems or programs can thereby be broken into manageable pieces.
For example consider a project of mapping the United States.
If the project team developed page after page of prose describ-
ing the states and highways, and each city's streets and all the
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connections, it would be difficult to verify or use this text

even if one had the time. Even if all highways in the states
and all streets of all cities were shown graphically on one dia-
gram, it would be impossible to work with all the information

at one level of detail. Therefore, a hierarchical scheme of
maps, some showing states with highways, others showing cities
with streets, best allows a person to view the total network as

required.

@ State the functions to be accomplished by the program rather than
specify the program statements to be used to perform the functions.
A section in the diagrams called "Extended Description" provides
additional information about the functions to reduce reliance on
other documentation and to provide guidance to programmers.

® Provide a visual description of input tc be used and output
produced by each function for each level of diagram (see Fig-
ure 2.3.6.1b). Typically, the most important objective in a pro-
gramming system is-to prbduce output that is technically correct

- and“ﬁéé%; users' requirements. HIPO allows this transformation

of input data to output data to be visible.

Kinds of Diagrams in a HIPO Package

l. Visual table of contents - This diagram contains the names

and identification numbers of all the overview and detail HIPO
diagrams in the package and shows the structure of the diagram pack-
age and relationship of the functions in a hierarchical fashion as
depicted in Fig.[?.3.6.l£. It also contains a legend indicating how
symbols in the package are to be used. . With the visual table of
contents, the reader can locate a particular level of information

or a specific diagram without thumbing through the entire package.

2. Overview diagrams - High-level HIPO diagrams, called overview
diagrams, describe the major functions and reference the detail
diagrams needed to expand the functions to sufficient detail.
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The overview diagrams provide, in general terms, the inputs, pro-
cesses, and outputs. The process section contains a series of
numbered steps that describe the function being performed. The
input section contains those data items us?d by the process steps.
Arrows connect the input data items to the process steps. The’
output section contains those data items that are created or modi-
fied by the process steps. Arrows connect the process steps to the
output data items. An extended description area can amplify the
process steps and input and output data items. The extended des-
cription also refers to lower-level HIPO diagrams, non-HIPO docu-
mentation, and code. Figure [2.3.6.1b]is an example of an overview
diagram.

3. Detail diagrams - Lower-level HIPO diagrams contain the funda-
mental elements of the package. They describe the specific functions,

show specific input and output items, and refer to other detail
diagrams. The detail diagrams contain an extended description

section that amplifies the process steps and references the code
associated with the process steps. They also reference other
HIPO diagrams as well an non-HIPO documentation such as flowcharts
or decision tables of particularly complicated logic, record lay-
outs, and so forth. The number of levels of detail diagrams is
determined by the number of functional subassemblies, the com-

plexity of the material, and the amount of information to be docu- E
mented. Figure ?.3.6.1@ is a sample detail diagram with an ex-

tended description section.

R~ B

How HIPO Fits with Other Improved Programming Technologies

HIPO assumes that a system (a collection of related programs)
will be organized into a hierarchical structure of functions.
The scope of the topmost function encompasses all subfunctions.

o g T e 0

Those subfunctions that require further clarification are treated

as major functions consisting of additional subfunctions. This
process continues for as many levels as required until all functions
are defined.
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Figure 2.3.6.1: The HIPO Technique ¥
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The hierarchical structure of HIPO is well suited to a functional
design made by starting at the top and subdividing into increas-
ingly lower levels of detail. 1In top-down development, the functions
are implemented in the same sequence as this structure. The top
module contains the highest level of control logic and decisions

for each program within the system, and either passes control to
lower-level modules or identifies lower-level modules for inline
inclusion. The parts of each program are continually being inte-
grated. .

If structured programming is used in the implementation, the func-
tions are considered as single entities. The code is written in
segments, each with a single entry and single exit. These seg-
ments can be created from HIPO diagrams drawn with only one entry
and one exit. Some recommended practices to use in writing struc-
tured code are to limit a segment of code to one page (approxi-
mately 50 lines), and to indent subfunctions or substructures.
These practices enhance readability and allow easy understanding.

Combining top-down development and structured programming results
in a program of extreme modularity both in function and logical
structure. HIPO diagrams are a logical extension of the functions
identified in top-down development and provide the necessary docu-
mentation from the start of a project through implementation.

Another concept that is being used with top-down development and a
structured programming is the chief programmer team organization.

Team operations represent a change in approach from a loosely

structured group of programmers to highly structured team of pro- q

gramming specialists. The nucleus of a team operation consists of
a chief programmer, a backup programmer, and a librarian; other

members are included as required. The chief programmer designs the
major functions of a system and codes the topmost levels of modules.

He is assisted in these tasks by the backup programmer. The lib-
rarian is responsible for entering all information into the develop-
ment support library, the principal objective of which is to provide
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constantly up~to-date and visible descriptions of the programs,

test data, and exact status of the system under development.

The HIPO documentation should be included in this library and may
be maintained by the librarian. When other team members are added
to develop and program low-level modules, they can work indepen-~
dently down various paths of the hierarchy with separate HIPO dia-
1 grams.

[P SRR St VO

2.3.7 Multipurpose User-Oriented Software Technology (MUST)*

BRana

Problems that result from the fundamental interactions between
program, computer, and programmers, and the traumatic and costly
effects when changes are made between them are resolved through
Multipurpose User-Oriented Software Technology (MUST). MUST pro-
vides a more effective user interface so that the programmer-user,
the system designer, and the engineer responsible for the flight

TP BT

P control system can interact with the flight computer. The user-

oriented system contains the software that the user needs to ef-

? fectively interface his problem to his machine.

3 First, the user is provided with a requirement definition/analysis
tool which permits him to express his system design requirements
in a precise problem statement language and then analyze the soft-

b ol

Tf ware requirements to meet those system specifications. He then

has a compiler-writing system (CWS) which permits the effective
utilization of HOL programming procedures. The designe. has less
need for a special programmer if he can understand both problem and
machine. A programmer can use the HOL to produce code that is

{ more problem-oriented, more easily understood by the system designer,
| more easily documented, coded more rapidly, and more easily main-
tained or transferred. The programmer-user is aided by a modular
library which has many well documented typical flight control ele-
ments available in standard HOL software so that changes can easily

gy #

AN e N e ot o

A . Al

be accomplished.

Srews o

*This section is based on information in (STR76).
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The CWS allows code to be generated for both target and host machine.

A
A ek

On the host machine the programmer-user can check his algorithm by
deriving solutions and by using verification and validation tools
to thoroughly check the performance of his program. For example,

he could determine program flow, whether all variables were initialized
before use or that none were out of range if all parts of the code

were used, and which partsof code were most extensively used if 1
further optimization is required. MUST, therefore, would provide

the programmer many tools for checking and debugging his software.

The CWS can, using the exact same HOL program, develop code for the
target machine. Hence after debugging, the actual load tape for

the machine in relocatable binary format modules could be obtained.
Linking a program with other available machine language programs
could then be accomplished. If necessary, the programmer-user

can write critical procedures in the machine language. Besides
running on the actual machine, an interpretive computer simulator
(ICS) system in MUST can be used. Here the host-computer generates

( the bit pattern in the registers, and arithmetic units and the actual
values in the memory locations resulting from the execution of
each machine instruction. Hence, the programmer-user can solve
any remaining problem by direct execution of code as well as
determine the precise machine instruction time cycles used.

¢ SPECIFIC MUST DEVELOPMENTS

The broad objectives of the program will be accomplished by de-
veloping and demonstrating technology advances in the flight soft-
ware development process by specific technical goals and targets
enumerated below:

—— o~ —

‘ ~rv‘-§v~v'w--— .

Support Tool Development

Software support tools are used to relieve the programmer-user of
many of the tedious and repetitive tasks associated with software
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translation and checking. They also provide him with clear insight
into the program flow and execution.

Compiler Writing System - (CWS)

Target: To develop a user-oriented, compiler-writing system
covering a variety of source languages and target computers where
utilization requires detailed knowledge of the desired language

and the target computer system idiosyncrasies rather than of sophis-
ticated compiler writing principles. To demonstrate the order of
cost savings, lead-time reduction, and inherent reliability achieved
through compiler-writing techniques as applied to a wide range of
flight computers and research flight project requirements.

Assembly Language Generations

Target: Develép or modify an existing generalized (universal)
assembly language program for inclusion into the MUST system as

: a complement to the CWS and for those conditions where assembly
language programming is needed.

Static Code Test Tools

Specific Targets: The development of MUST compatible proof-of-
§ ; correctness and code anomaly analysis tools will be pursued.
l In addition, a MUST compatible sneak analysis tool will be developed.

Dynamic Code Test Tools

Specific Targets: Develop the capacity to automatically aid in

— | m -

the generation of test cases including assessment of test coverage

e Ay v

and range variables; to model the flight computer using a flexible
ICS to find errors, trace program execution, and determine soft-
ware performance. The dynamic test tool will include the exten-

. sions of dynamic test tools such as RXVP to allow MUST compati-
&) bility.

t ;

{"a‘i; 50
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Modular Adaptable Software Library

Target: Define and develop a modular software library and user
interface for both aircraft and spacecraft applications. Develop
techniques for the checkout and testing of library software on a
modular basis to reduce implementation costs for large flight com-
puter programs.

Requirements Definition Analysis

Tafget: Part of the MUST system will be a tool to aid in the j
unambiguous, precise, and complete statement of the software re- :
quirements. The tool will allow the user to detect inconsistency
between the inputs and outputs of the various elements of the soft-
ware being designed.

Integrated Flight Software Development System

Target: Investigate and implement software support tools with
) multilanguage capability. Define and develop an interactive inter-

face involving user-oriented software specification design and
test utilities under MUST.

Languages for Distributed Compiler and Microprocessor Systems

Target: Define the impact of microprocessors and distributed

R A

computing systems on the flight software development problem.
Determine the features necessary to effectively describe the
computer executive processing structure and its software imple-
: mentation and integrate these features into MUST.

;
i
!
i
1
}
t
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2.3.3 Domonic*

The purpose of the system is to help document, monitor, and con-
trol software development projects. It is written , in COBOL which
makes the system machine independent. It can operate in either

a batch or interactive mode which makes it easily adaptable to

a user’'s style of development. It can monitor all phases of soft-
ware development projects. Data can be gathered by the monitor
which is useful in categorizing errors, predicting programmer
productivity, and validating software reliability m&dels.

Furthermore, the system will be applied to monitor development
projects and to gather programmer productivity data and program
error data. The productivity data will be used to develop an ac-
curate programmer productivity model. This model will be useful
for accurately estimating project cost and completion times.

Program error data will be useful in validating existing software
reliability models and for developing new models.

Technical Objective

It is expected that a system of digital programs for the IBM 360,
UNIVAC, and CDC computers will be produced. This system will be
capable to document, measure, improve and predict the quality

and reliability of other digital programs. Furthermore, the system
will be capable to evaluate software projects which have been
developed without using this system. Major modules from the sys-
tem would be configured to create the project evaluation systemn.
! The system would be able to: 1) predict software reliability

5 using software acceptance reliability model aids, 2) drive soft-
: ware packages that automatically test software, 3) analyze pro-

. .: gram structure to determine if structured programming techniques

' were used, 4) check program and appropriate documentation to de-
e termine if local programming practices have been followed, 5) check

b

<4 ., —

ke * This section is excerpted from information suppli&d by "(DAM76) .
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2.3.9 Summary

The previous sections have presented various approaches to solving
some of the problems of systems development discussed early in
this chapter. These approaches range in stage of development

from those which are now undergoing conceptual definition to those
currently in use.

Most of the approaches currently available intentionally concen-
trate on a subset of the spectrum of problem areas confronting
systems developers. Of the currently developed apprcoaches dis-
cussed in this section, the BMD Software Development System is the
most comprehensive with respect to its applicability across the

ey

; ' development spectrum. The BMD approach, however, utilizes differ-
; ent methodologies in the different phases of development which
results in the requirement to "shift gears" as the development
progresses through the various phases. Consequently, interfaces
between phases may present problems.

All of the approaches presented require manual intervention in the
various development phases (e.g. by the designer, implementer,
manager, etc.). Such manual efforts are primary sources of errors
in systems development; this is supported by the large effort

(and expense) that has been required to verify these manual pro-
LI cesses in the. various approaches.

In order for reliable, cost-effective systems to be developed
in an efficient, straightforward manner, the systems development

approach must have:

1. A methodology which can be applied consistently throughout
all phases of the development process.

2. A methodology which has a formal basis which will allow
elimination of a major portion of the verification re-
guired to prove that the system developed meets its
intent.

TR TR

*
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3. Automated tools which enabhle the system development to
proceed automatically with a minimum of manual inter-
vention, from the requirements to the deployed software.

The approaches presented in the previous sections of this chapter
are, without question, improvements over earlier systems develop-
ment approaches. They do not contain, however, the required
methodology or support tools for an integrated approach in sys-

tems development.
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3.0 RATIONALE FOR ISDS/HOS

3.1 Background

Higher Order Software (HOS) evolved from attempts to bring en-
gineering rigor and discipline to the various phases of computer
system development (HAM73a). The natural evolution of these
separate efforts on the distinct phases of system development
has resulted in a formal methodology that is applicable to the
entire system design and development process (HAM73b). In the
following paragraphs, the background and early evolution of

HOS is outlined.

The Apollo study was of great value for determining the direction
for future software efforts (HAM73c) (HAM71). For example, the
fact that 44% of all of the anomalies in the software were found
by "eyeballing" was a clear indication that static verification
was important. Also, the fact that seventy-three percent of the
anomalies studied occurred at software-to-software interfaces
encouraged concentration on interface correctness. Another reali-
zation resulting from this software analysis was that flexible
software systems are a key to managing software developments.

A case in point is the Apollo on-board asynchronous systems soft-
ware. If the Apollo Guidance Computer (AGC) systems software

had not been asynchronous, the development process would have
been much more expensive, much longer, and at least one of the
Apollo flights would have been a disaster (HAM72). (During the
aforementioned APOLLO flight, the system was required to recon-
figure its job queue to avoid overload.)

The difficulties encountered during integration at the Assembly
Control Supervisor (ACS) focal point in the Apollo development

led to the requirement to formally define software modules (HAM76&). ‘
Programmers were required to deliver finished modules to the ACS q
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who was charged with ensuring that each module:

a. performed its specified function
b. interfaced correctly with other modules
c. did not impact other modules in an unreasonable way.

; It was observed that modules which were defined with standard
: interfaces produced fewer problems for the ACS than modules de-

fined in non-standard terms. Further, from the management view-
point, the ACS concept was found to be beneficial in that it es-
tablished a focal point through which all official software was
filtered, thereby providing increased management visibility and

software integrity.

Over the last several years, a design approach has evolved wherein

large problems are divided into smaller problems, each of which
is defined as a new problem (DAH72), (JAC76), (MIL71), (MYE74),
(ROS76), (SNO72), (STE74), (WIR72), (YOU75). The division pro-
cess continues until the problems are small enough to solve.
Hopefully, the aggregation of the solutions to the small problems
solves the original problem. In order for this to work, it was

found to be necessary to decompose the problem so that the indi-

vidual solutions fit together properly.

é During the APOLLO software development, anomalies were analyzed
: and characterized to determine rules which would have prevented
such classes of anomalies. Checklists for all of the disciplines

of the software development process (design, implementation, veri-

ficiation, documentation, and management) were refined (HAM73b).
The refined manual checklists proved to be identical for each

———— -

discipline. Checklist items were then categorized, and it was
determined that many of the manual processes could be automated.

19 M St A ¢
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3.2 Concept of the HOS Formalized Approach

The key features of the Higher Order Software Methodology were
derived as specific solutions to the problem areas discussed in
Section 3.1. To address the problem of interface errors, six
axioms were developed, the adherence to which will assure inter-
face correctness without requiring program execution. These six
axioms, which became the base of the formalized system, explicitly
define hierarchical software control. These axioms distingquish
HOS from other software methodologies.

In order to assure software reconfigurability in real-time, an

asynchronous approach was adopted in which processes do not have
to fit into timed intervals. Through the use of the HOS methodol-
ogy, such processes can be dynamically reordered since the systems

software can schedule processes based on priorities (clocks or
other events).

' The observation that modules should be formally defined in order
to provide more efficient module integration lead to the HOS ap-
proach to modularity. As a result, the definition of an HOS
module includes in a fcrmal way its functions and control aspects.

The Assembly Control Supervisor concept has shown the importance
of a management structure in developing reliable software. Con-

e

sequently, the HOS concept also places constraints on a manage-
ment structure by requiring its adherence to the HOS axioms.

Through this approach, the following management benefits accrue:
(1) the methodology is applicable to systems over the total range
of sizes and complexities; (2) there is reduced dependence on

individual people; (3) clear traceability of project progress

PR T TSR
——e

is possible; (4) the impact of a manager's decision on other man-

agers is clearly defined; and (5) the management structure helps

to determine the relationship between groups and organizations.
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In the area of problem decomposition, HOS formalizes the process
of dividing problems to ensure that the interfaces between parts

b A1

k of the solution are correct. The decomposition is based on the
six HOS axioms which results in a tree structure solution to the
problem where the nodes of the tree represent hierarchical levels
of specification.

Through the formalized approach to software development offered

by HOS, a set of techniques and automated tools applied in an o
integrated manner to the various software phases and disciplines, ‘
has been defined. Such tools will enforce a rigorous software i@
engineering approach, the consequences of which will be reduced '
software costs and much greater software reliability.

The rationale delineated above is further supported by the MITRE
and APL studies referenced in Chapter 2. Specifically, the MITRE
] study identified the "lack of discipline and engineering rigor

applied to the weapons systems software acquisition activities”
as the major contributing factor to the problem of controlling

increasing costs and improving the quality of software in weapon
systems. The APL study agreed that "the lack of systems engineering
methodology to computer systems design is at the root of a number

of critical problems in the development of major weapons systems."
HOS forms the basis of the Army's Integrated Software Development
System (ISDS/HOS) which is shown in this report to be a formal

! systems engineering methodoloéy with supporting software tools

for developing reliable tactical real-time software.
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4.0 FOUNDATIONS OF ISDS/HOS

4.1 Preliminaries

4.1.1 Trees and Functions

Using the ISDS/HOS approach, software systems can be developed
with the aid of simple mathematical concepts and a set of
software engineering axioms. In this section, the required
mathematical concepts are described. 1In the following section,
these concepts will become the means (language) by which ISDS/
HOS is described.

The two mathematical concepts required in order to
describe ISDS/HOS are the tree and the function. The tree
is a structure comprised of a finite number of nodes which
are connected by branches as shown in Fiqure 4.1.1.1.

Figure 4.1.1.1
An Example of a Tree Structure

A branch may be interpreted as entering a node (from
above the node) or leaving a node (from below). The unique
node at the top of the tree that has no branches entering
it is called the root of the tree. A node that has no branches
leaving it is called a leaf of the tree. It should be noted {
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that all nodes other than the root have exactly one entering
branch.

A root is considered to be at level 0 of the tree (see
Figure 4.1.1.2). As one starts at the root and traverses a
path to a leaf, each successive node defines the next level

root

- level O

+ level 1
leaf

« level 2
leaf leaf leaf

+ level 3
leaf leaf

Figure 4.1.1.2
Tree Levels

of the tree. If a branch leaves node A (Figure 4.1.1.3) and
., enters node B, then node A is the parent of node B, and node B

5 is an offspring of node A. (In Figure 4.1.1.3 node C is also
; an offspring of node A.)

. “W"';'WQ"""’" .

Figure 4.1.1.3
Parent-Offspring Relationship
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A nodal family is a particular parent node and all of its

offspring (see Figure 4.1.1.4).

PARENT NODE

A NODAL
FAMILY

A SUBTREE

Z

OFFSPRING
NODES

Figure 4.1.1.4 i
Tree Substructures ;

, If there exists a sequence of nodes Nyr Norecesr Ny, such that 3
3 for every i, n; is an offspring of n,, then each N4y is a f
i descendant of n,. A particular parent node of the tree together
i with all of its descendants and connecting branches is the

[ subtree defined by the given parent.

If ¢ and B are set elements (frcim either the same or
{ different sets), then (a,B) denotes ~he ordered pair consist-
l ing of o and B in that order. (Thus, the ordered pair (B,a) is

not the same as (a,R) except for the case where o and B are
the same elements.)
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If two sets, X and Y, are given, and x and y represent
arbitrary elements of X and Y, respectively (i.e., x and y are
variables), then any set of ordered pairs of the form (x,y)
is a relation between X and Y. For example, if X = {1,2,3,4,5,6}
and Y = {m,s8,e,w}, then one possible relation between X and Y
is R = {(4,m), (3,s), (4,w)}.

The set of left elements of the relation is called the
domain, and the set of right elements, the range. In the above
example, the domain is {3,4}, and the range is {m,s,w}.

A relation is a function when each element of the domain
has only one corresponding range element. If f is a relation
between X and Y, and £ is also a function, then we say that
"f is a function from X into Y" (usually written y = f(x)).

An example of a function is

f = {(llm)' (215)0 (4Im)l (6,6)}

as illustrated in Figure 4.1.1.5.

In the sections that follow, the variable that represents
the domain elements is referred to as the input variable, and
the variable that represents the range elements is referred
to as the output variable. Individual domain and range elements
may be called inputs and outputs, respectively.
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Figure 4.1.1.5
Illustration of a Function from X into Y 4

4.1.2 Modules and Nodal Families

i In ISDS/HOS, the decomposition process for a system results
! in a tree structure. At the start of the decomposition process,
the entire system is represented by the root of the tree which,

R

f hopefully, represents the regquirements for the system. This ;
description, however, has many implicit (hidden) requirements.

In order to explicitly arrive at the complete description of the
requirements of the system, the root is decomposed by replacing
it by a nodal family, which represents the decomposition of the
root. This decomposition process, that of replacing a function
by its nodal family, can be continued until the entire system has

|
;
}
:
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been explicitly specified to whatever detail is required or

desired. It may turn out that during the decomposition process,
a requirement is shown to be erroneous or missing. 1In such a
case, an iteration of the system description is required.

The parent node of the nodal family controls its offspring.
When referring to this control relationship, the parent node
will be called a module, and its offspring will be called
functions. The offspring of the nodal family are the functions
required to perform the module's corresponding function (MCF)

(i.e., the function that the nodal family replaces).

The resulting tree represents the system where the leaves
represent, in an abstract machine sense, the machine "instruc-
tions" that are to be actually performed; the intermediate
nodes represent control with respect to the performance of
these leaves. It can be shown that the ISDS/HOS axioms
provide rules for the way that a nodal family can be constructed.
These methods for constructing a nodal family will be presented
after the axioms are introduced.

4.2 The Axioms

Axiom 1 is concerned with invocation which is the act the module
carries out in order to set up the initiation of the execution
of its function. The axiom limits this right of invocation so
that the module, as a parent in a nodal family, can only invoke
its offspring. Thus, the module (1) cannot invoke itself, (2)
cannot invoke its parent, (3) cannot invoke any of its descendants
other than its offspring, (4) cannot invoke another offspring
of its own parent, and (5) cannot invoke another parent's off-
spring.
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Axiom 2 is concerned with the function associated with the module.
For any given element in the domain of the module's function, the
module is responsible for producing the correct corresponding
range element. In other words, the job of the module is to per-
form a function. While the module can get "help" from its off-
spring in the performance of this function, it cannot delegate
this responsibility. For a given input, only the module can
ensure the "delivery" of the corresponding output. A module
looses control (cannot ensure correct outputs) when any of its
offspring (1) stop before completion, (2) go into endless loops
or, (3) do not return required information back to the module.

Axiom 3 is concerned with where the required range element (as
produced by an offspring) is delivered as dictated by its module.
Clearly, it is undesirable for every function in the system to
obtain or alter values of every variable in the system. The
ability to obtain or alter the values or variables is called
access rights. According to Axiom 3, the module can assign to

, its offspring the right to alter the values of the output vari-
ables of the module's corresponding function (i.e. the output
access rights to these variables). (The module's corresponding

function, similarly, will have first secured access rights from
its parent.) As a consequence of Axiom 3, each range variable
X (output variable) of the MCF must appear as a range variable of the E

function of at least one of the module's offspring.

Axiom 4 is concerned with the way that the module controls access
i to its domain elements (input access rights); specifically, the
: module can grant its offspring the right to access its domain
_; elements for reference purposes only. The module does not have
1
i

the ability to alter its domain elements. As a consequence of
Axiom 4, each domain variable (input variable) of an MCF must ap-
pear as a domain variable of the function of at least one of its
offspring.

7 69

x
4 t : : HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139« (617) 661-8900
o




”-«wwxw'a-.,mu LEEEEN

——

As a consequence of Axioms 3 and 4, a variable cannot represent both
domain and range elements.

Axiom 5 requires that the module must ensure the rejection of
inputs received that are not in the domain of the MCF. A function
remains undefined for elements that are outside of its domain.

A module, however, in performing its corresponding function, is
responsible for determining if such an element has been recieved,
and, if so, it must ensure its rejection. In a sense, the im-
proper input element is not in the domain of the module's intended
corresponding function but is in the domain of the MCF.

Axiom 6 is concerned with ordering. It requires the module to

control the order (which includes priority based on time, events,
importance, computational needs, etc.) of invocation of its off-
spring and their descendants.

Table 4.2.1 summarizes the axioms of ISDS/HOS.
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Table 4.2.1
Axioms of ISDS/HOS

DEFINITION: Invocation provides for the ability to perform a function.

AXIOM 1: A given module controls the invocation of the set
of functions on its immediate, and only its immediate,
lower level.

DEFINITION: Repsonsibility provides for the ability of a module to
produce correct output values.

AXIOM 2: A given module controls the responsibility for
elements of only its own output space.

DEFINITION: An output access right provides for the ability to locate a
variable, and once located, the ability to place a value in the
located variable. |
AXIOM 3: A given module controls the output access rights to

each set of variables whose values define the

elements of the output space for each immediate
and only each immediate, lower level function.

: DEFINITION: A&n input access right provides for the ability to locate
a variable, and once located, the ability to reference the

value of that variable.

AXIOM 4: A given module controls the input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate,
lower level function.

PR

DEFINITION: Rejection provides for the ability to recognize the ‘
improper input element in that if a given input element is not
acceptable, null output is produced.

AXIOM 5: A given module controls the rejection of invalid
elements of its own, and only its own, input set.

——e e -~

g e o

DEFINITION: Ordering provides for the ability to establish a relation
in a set of functions so that any two function elements are comparable

in that one of said elements precedes the other said element.

AXIOM 6: A given module controls the ordering of each
tree for the immediate, and only the immediate, -
lower level.
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4.3 Functional Decomposition

While a function can be decomposed in many ways, the HOS axioms

provide rules for the construction of nodal families (i.e. the

decomposition of a function). From the axioms, three primitive

control structures are derived which are used for functional de-

composition (HAM76b). These control structures arc composition,

set partition, and class partition.

Composif{ion is illustrated in Figure 4.3.1. In order to perform

fl(x), the function f2 must first be applied to x which results

in output z. 2z then becomes an input to f3 which produces the

desired range element of the overall function fl'

y = f3(z) z = f2(x)

Figure 4.3.1: An Example of Composition

It is important to observe the following characteristics of com-

position (characteristics are explained with respect to the ex-~

ample in Figure 4.3.1):

(1)

(2)

(3)

One and only one offspring (specifically f, in this
example) receives access rights to the input data, x,
from module fl'

One and only one offspring (specifically f3 in this ex-
ample) has access rights to deliver the output data,
y, for module fl'

All other input and output data that will be produced

by offspring controlled by fl will reside in local vari-
ables (specifically z in this example). Local variable,
z, provides communication between the offspring, f2 and
£
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(4) Every offspring is specified to be invoked once and

only once in each process of performing the parent
MCF.

USTEI VP RPN

(5) Every local variable must exist both as an input vari-

s e s

able for one and only one function and as an output !
variable for one and only one different function on the
same level.

! Additional examples of composition are given in Figures 4.3.2
F and Figure 4.3.3.

y = fo(x)

y = £5(h) h = f,(q) g = £ (x) . |

Figure 4.3.2: Composition with Three Functions
- on One Level

y = f,(h) h = fi(q)

Figure 4.3.3: Multilevel Composition

T

v
Y LR SN T TR TN
———  ——
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Set partition, which involves partitioning of the domain, is

illustrated in Figure 4.3.4. 1In this example, the set which com-
prises the domain is partitioned* into two subsets. For set
partition, only one of the offspring will be invoked for each
performance of the MCF at fl (the determination being based on the
value of x received) and that offspring will produce the required
range element for its parent module when it is performing.

K
y=f3(x ) y=f2(x
{x|x > 0} {x|x < 0}

Figure 4.3.4: An Example of Set Partition

The following characteristics with respect to set partition should

be observed:

(1) Each offspring of the module at fl is granted permis-

sion to produce output values of y.

(2) Aall offspring of the module at fl are granted permis-

sion to receive input values from the variable x.

(3) Only one offspring is specified to be invoked per input
value received for each process of performing its MCF
i.e., only one offspring has a state change for a given
state change of the parent module.

(4) The values represented by the input variables of an
offspring's function comprise a proper subset of the

domain of the function of the parent module.

(5) There is no communication between offspring.

* pPartitioning implies the subdivision of the original set into
non-overlapping (i.e. mutually exclusive) subsets.
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Alternative approaches to the set partition illustrated in Figure
4,3.4 are presented in Figures 4.3.5 and 4.3.6.

<
it

fl(x)

(]

y = f4(x )

£.,(x ) y = £,(x
{x|x > 0} 3 ‘ 2

)
{x|x = 0} {x|[x < 0}

Figure 4.3.5: Set Partition with Three Functions on One Level

Ficure 4.3.6: Multilevel Set Partition

4 Illustration of the Axioms

explain the concept of control, we now illustrate the axioms
ISDS/HOS individually. Each individual axiom shows properties
control.

thece 1llustrations, the reader should associate the titles

COLONEL, MAJOR, etc., with a module and its corresponding

function. For example:

PROTOTYPE = MAJOR (CONTRACT)
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is analogous to
y = f£(x).

People may be "allocated" to actually perform each function.

We can even allocate the same person to more than one function.

For the purposes of the axiom illustrations, separate the allo-
cation concept from the function concept., i.e., LT.CCLONEL is

a function, not a person.
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Axiom 1

SPECIFICATION =

(Pmotoryee, prososar)

P1
e

G NZ

SPECTFICATIONS
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Axiom 1 is illustrated with the aid of Figure 4.4.1.
is LT.COLONEL and the input (domain) and output (range) variables ;
are REQUIREMENT and SPECIFICATION, respectively,

(conthacT | RFP)

9e
&
L

LT.COLONEL (REQUIREMENT)

The function ?

i.e.,

aanii 5

REQUIRENEYTS

N
v

CoNTRACTOR

Figqure 4.4.1
ax1oM (@ 1nvocation Rights
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In Figure 4.4.1 (PROTOTYPE, PROPOSAL) is a data structure* of
SPECIFICATION; (CONTRACT, RFP) is a data structure of REQUIRE-
MENT. LT.COLONEL ensures the completion of his function by get-

ting the MAJOR and CONTRACTOR to work together to do the LT.COLONEL'’s

job. Together, the MAJOR and CONTRACTOR use the input of the
LT.COLONEL's function and produce the output for the LT.COLONEL.
An instance of this effort is indicated by its ordered pair
((TYPE2, P2), (C2,Rl)) pointed to by the arrow.

If the MAJOR and CONTRACTOR are the only functions that belong

to a control level controlled by LT.COLONEL, then both MAJOR and
CONTRACTOR contribute to completing the LT.COLONEL ftunction.

The act by LT.COLONEL of getting MAJOR and CONTRACTOR to contri-
bute is called invocation. Axiom 1 relates each invocation to
the total function of LT.COLONEL. This is illustrated in Figure
4.4.1 by the arrow pointing to the collection of functions within
the dotted line. Specifically, LT.COLONEL controls only the in-
vocation of MAJOR and CONTRACTOR and the invocation of MAJOR and
CONTRACTOR is controlled only by the LT.COLONEL.

* The notion of a data structure, often referred to as an imple-
mentation of a variable, is helpful in understanding a complex
set of values of a variable. PROTOTYPE and PROPOSAL are vari-
ables in their own right since a value of PROTOTYPE and a value
of PROPOSAL are both necessary to complete a value of SPECIFI-
CATION (e.g., a value of PROTOTYPE is TYPE2; a value of PROPOSAL
is P2; the corresponding value of SPECIFICATION is (TYPE2, P2)).
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Axiom 2

Axiom 2 is illustrated with the aid of Figure 4.4.2. The axiom
requires LT.COLONEL to be responsible for relating each input
value (domain element) to the correct output value (range element)
(e.g. for input (Cl, Rl), LT.COLONEL ensures the assignment of
output (TYPEl, Pl)). Axiom 2 requires that, for a particular
input value, there be one, and only one particular output value.
LT.COLONEL must take full responsibility for the final product.

He cannot delegate this responsibility to any of his subordinates

or to any other module. (LT.COLONEL, however, must delegate the
work. See Axiom l.) By itself, Axiom 2 does not address the

concept of control with respect to lower levels. 1In Figure 4.4.2,
LT.COLONEL is pulling the strings; this demonstrates only LT.COLONEL's
responsibility as total caretaker of the function.

Figure 4.4.2
AXIOM @ Responsibility Rights
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Axiom 3

To illustrate Axiom 3 (Figure 4.4.3), we refer to LT.COLONEL's
corresponding function in terms of the data structure representa-
tion:

(PROTOTYPE, PROPOSAL) = LT.COLONEL (CONTRACT, RFP)

According to Axiom 3, LT.COLONEL* grants (1) to CONTRACTOR the
access rights to PROPOSAL (i.e., CONTRACTOR has the-right to
deliver the proposal to its assigned location), and (2) to MAJOR,
the access rights to PROTOTYPE (i.e., MAJOR has the right to
deliver PROTOTYPE to its intended location). Since the MAJOR has
output access to PROTOTYPE, he must deliver (in a given perfor-
mance) the same value of PROTOTYPE as that of LT.COLONEL's cor-
responding function.

PROTOTYPE B PADPOSAL

LT COLoNEL

AL oot

PROTOTYPE CONTAALTOR
MaTOR

Figure 4.4.3
AXIOM (:) Output Access Rights

* fThe LT. COLONEL's corresponding function will have first
secured output access rights to PROTOTYPE and PROPOSAL in a
similar fashion. 80
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Axiom 4

According to Axiom 4, (Figure 4.4.4), LT.COLONEL grants (l) to
CONTRACTOR the access rights to RFP (i.e., CONTRACTOR has the
right to reference RFP from its assigned location) and, (2) to
MAJOR, the access rights to CONTRACT (i.e. MAJOR has the right
to reference CONTRACT from its assigned location). Since MAJOR
has input access rights to CONTRACT, he must reference (in a given
performance) the same value of CONTRACT as that of LT.COLONEL's
corresponding function.

( Conveact 9

RFP

LT (oLonEL

L) L

CONTRACT

n b
REP

CONTRALTOR

Figure 4.4.4
AXIOM @ Input Access Rights
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Axiom 5

Axiom 5 is illustrated in Figure 4.4.5. Here, we use the same
function, REQUIREMENT = LT.COLONEL (SPECIFICATION), as shown in
Figures 4.4.1, 4.4.2, 4.4.3, and 4.4. 4.

TR R e

Axiom 5 deals with the rejection of invalid input values. Tech-
niques used to determine if input values are valid are controlled
by the module itself. This means that if LT.COLONEL knows he can
accept only (Cl, R1l), (Cl, R2), (C2, R2) or (C2, Rl), then he must
reject anything else (see Figure 4.4.5). He must carry out this

"rejection without requesting any aid from his offspring, i.e.,
rejection control is limited to the module itself.

<
1

€282 \\,6\?' \
C1,R2)
(e, PO @
,l ﬁk‘[‘)/ PJ) LT, (_OLONE L

Figure 4.4.5
AXIOM <§) Rejection Rights

v ~M-1‘w'ﬁ-w pe

82

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139« (617) 661-8900




Axiom 6

Axiom 6 relates ordering of immediate subordinate offspring and
their dependents with respect to the module. In Figure 4.4.6,
we illustrate Axiom 6 in terms of the data structure representa-
tion of the LT.COLONEL's corresponding function.

In this example, not only are the LT.COLONEL's inputs related
to his outputs; but the inputs are functionally related to each
other, and the outputs are functionally related to each other.

The ENGINEER and BUSINESS.OFFICE functions in Figure 4.4.6 are
external to the system and only provide an explanation of where

the inputs to the LT.COLONEL's system comes from.

The inputs are functionally related to each other by means of
the BUSINESS.OFFICE function:

CONTRACT

RFP BUSINESS.OFFICE (RFP)

The engineer function chooses which prototype is needed for the

major:

PROTOTYPE = ENGINEER (PROPOSAL)
PROPOSAL k

The input and output values of the variables, RFP and PROPOSAL,

of the CONTRACTOR function are used as input values for the
BUSINESS.OFFICE and ENGINEER functions. The ENGINEER and BUSINESS.
OFFICE furctions produce values which become variables for the
MAJOR function.

The LT.COLONEL must control his immediate subordinates so that !
each subordinate knows when he can start to work and the conditions |
under which he must complete his job. When the RFP is available '
from the LT.COLONEL, the CONTRACTOR can immediately start working
in order to produce the proposal. If the CONTRACT has already
been prepared by the BUSINESS.OFFICE when the LT.COLONEL starts
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his task, the MAJOR can also begin work immediately. On the
other hand, if the BUSINESS.OFFICE has a work overload, the MAJOR
will have to wait longer for the BUSINESS.OFFICE to complete

the CONTRACT.

Once the CONTRACT is in, the MAJOR can begin work. The LT.COLONEL
insures that the CONTRACTOR must produce the PROPOSAL before the
MAJOR can finish his job. For every PROPOSAL the CONTRACTOR
creates, the ENGINEER uses that PROPOSAL to choose the prototype.
The LT.COLONEL controls the CONTRACTOR to complete his job before
the MAJOR can complete the task of building a prototype.

conteact

PROTOTYPE

)

Binsy

NawEER oFFICE

3 PAOTOTYPE

)

ba ” a call
I st

PROTOSAL oF

i [1.°0 118 P

Figure 4.4.6
axioM (6) ordering Rights

e LAY WA @ e #10 4
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4.5 Examples

4.5.1 The BRIGGEN System

Hierarchical systems exist in many forms. Many management struc-
tures such as a military management structure, a business organi-
zation, or a government are structured hierarchically. The key

to understanding the structure of any hierarchy is in determining
what objects belong to the hierarchy and what relationships exist

between the objects of the hierarchy.

To explain and illustrate the axioms of ISDS/HOS, we have created
a fictional system called the BRIGGEN system. For the BRIGGEN
system, we describe the objects which are variables, values,
functions, and trees; the relationship of the hierarchy is con-
trol.

We have chosen to make the military chain of command a management
structure analogous to an ISDS/HOS hierarchy. For the BRIGGEN
system, the system function is to direct a research project in
systems engineering to be completed one year from the start of
the fiscal year. The system is decomposed into functions, each
labeled to correspond to the person responsible for that function
(Figure 4.5.1).

The management hierarchy shown in Figure 4.5.1 is referred to

as a tree. Each member of the hierarchy {(e.g., BRIGGEN, COL1l,

CAPT2) has a particular position of responsibility. Each member
{ of the hierarchy controls the use of his immediate subordinates.
} For example, BRIGGEN controls the use of COLl, COL2, and COL3;
COLl controls the use of ILTCOL1l and LTCOL2, etc. The properties
of control are determined by the axioms of ISDS/HOS. When we refer
to COL1l giving orders to LTCOLl and LTCOL2, COLl is referred to
as a "controller" or as a "module”. When COLl receives orders

L e R i

from BRIGGEN he is referred to as a function. A module is a super-

visor; a function is a subordinate.
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BRIGGEN
COL1 COoL2 COL3
/\ /\
/ \ /7 \
/ \ /I \\
/ \ , \

LTCOL1 LTCOL2
7\

7\
/
) \ //////[\\\\\\

MAJ1 MAJ2 MAJ3

N

CAPT1 CAPT2
Figure 4.5.1

BRIGGEN Invocation* Tree

Figure 4.5.2 is a more detailed version of Figure 4.5.1. Figure
4.5.2 is referred to as a control map because the inputs and the

outputs of the functions are provided. 1In Figure 4.5.2, inter-
faces of the functions are shown by illustrating the access rights
to the variables of the functions as well as the invocation tree
of the BRIGGEN management structure.

BRIGGEN has access to MEMOl, MEMO2, and MEMO3. BRIGGEN can read
these memos or allow any of his subordinates to read these memos,
but he cannot rewrite the memos or alter them in any way. Each
memo can be delivered to BRIGGEN at different times or at the
same time. If one memo arrives, BRIGGEN can allow the memo to be
sent to the responsible subordinate before the other memos arrive.
Likewise, if one subordinate can get his job done based on the
contents of one memo, the subordinate can deliver his product to
BRIGGEN as long as BRIGGEN has not imposed restrictions (e.q.,
timing delays) on that subordinate.

g

* An invocation tree is a representative control map which

includes only function names.
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In this project, the Brigadier General, BRIGGEN, has been asked
by his superior to complete two presentations and a prototype
based on the contents of three memos. BRIGGEN must complete the
project one year from the start of the fiscal year.

BRIGGEN requirements include the time constraint imposed on the

research project. This time constraint will be discussed in the
section entitled The Initiation of Command in BRIGGEN. The struc-

ture of BRIGGEN (Figure 4.5.2) illustrates the three HOS primi-
tive control structures: class partition, composition, and set
partition (HAM76b).

CONTROL STRUCTURES OF BRIGGEN

BRIGGEN has ordered his three colonels to perform three indepen-
dent functions, COLl1l, COL2, and COL3. BRIGGEN is using a class
partition to control his subordinates. Each colonel can
perform his job independent of the other two coloncls. COL1l
uses the information in MEMOl to produce PRESENTATION 1; COL2
uses the information in MEMO2 to produce PRRESENTATION 2; COL3
uses the information in MEMO3 to produce the PROTOTYPE. Each
colonel can begin his job immediately if the BRIGGEN has all the
memos available at the start of the project. If any of the
three memos is delayed, the colonel responsible for the delayed
memo must wait until he has the information required to begin
work. BRIGGEN is responsible for informing his subordinates
when to complete the job. This aspect of BRIGGEN's function

is not depicted in Figure 4.5,2, but will be discussed later
with respect to the Initiation of Command in BRIGGEN.

In Figure 4.5.2, we do not show how COL2 and COL3 do their jobs.

Figure 4.5.2 only shows the relationship of COL2 and COL3 with
respect to BRIGGEN.
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Figure 4.5.2 does, however, indicate how COL1 performs his job.
In this case, COL1l is controlling his immediate subordinates,
LTCOL1l and LTCOL2, by means of a composition control structure.
COLl1 would like his subordinates to communicate with each other.
LTCOL1l depends on LTCOL2 to get his job done. LTCOL2 receives
MEMOl from COL1 and produces an imtermediate REPORT for LTCOLl's
use. COLl1l does not care to see the REPORT; he is interested in
receiving only PRESENTATION1l. The same control structures can
be used for many different functions in the BRIGGEN system.

For example, MAJ2 uses the same management scheme (i.e., composi-
tion control structure) as COL1l to produce the REPORT for LTCOL2.

Often, the contents of the input of a module are used to determine

which subordinate should do the entire job. The management scheme

used to perform a job in this manner is the set partition control
structure. LTCOL2 is controlling his immediate subordinates,
MAJ1, MAJ2, and MAJ3 by such a control structure. For example,
the contents of MEMOl could determine which Major must be avail-
able to do the job. Each Major has access to MEMOl, but each
Major has access to the contents of MEMOl only when the contents
falls into his own sphere of responsibility. 1In Figure 4.5.2,
MAJ1l is a hardware expert; MAJ2 is a software expert; and MAJ3

is a firmware expert. Jointly, all thfee Majors must account

for all the information that could appear in MEMOl. When

LTCOL2 finds out what kind of information is in MEMOl, he assigns
either MAJ1, MAJ2, or MAJ3 to write the REPORT.

RATIONALE FOR THE MANAGEMENT STRUCTURE

To comply with Axiom 1, the colonels must use the information
supplied by the Brigadier General; the Major must report it to

a particular Lt. Colonel. Conversely, the Brigadier General

can only ask his colonels to do his job and a colonel can request
his own Majors to do his job. If a Major tried to tell any
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Colonel how to do his job; attempted to give orders to another
Major; or attempted to interfere with a Captain's command to

his subordinates, Axiom 1 would be violated. 1If LTCOL2 were
responsible for performance analysis, in addition to hardware,
software, and firmware designs, he might not ever get his job
done by one of his subordinates. If this were the case, LTCOL2
might request at least one more Major in order to comply with
Axiom 1. Suppose MAJ2 assigned a third task to CAPT3 to redo the
software design. 1In this case, since MAJ2 would be doing extra
work (and possible redundant work), he would be violating Axiom 1.

Everyone in the BRIGGEN system must be a responsible person via
Axiom 2. That is, there must be an output from every function
in the system. Axiom 2 could be violated if, for example,

a Major got sick, or a Colonel retired before his job was done,
or a Lt. Colonel did not knrow how to do his job.

In the BRIGGEN system each controller designates the data access
to his immediate subordinates and eonversely his functions acquire
the right to access information from their controller. Note,

for example, that the input access rights of MEMOl, MEMO2, and
MEMO3 can be traced down the control map (Axiom 4) and

similarly that the outputs can be traced up the control map

(Axiom 3).

In BRIGGEN, it is possible for more than one subordinate to have
the potential to access the same input variable, as in the case
of the LTCOL2 and his immediate subordinates. Here, LTCOL2 con-
trols the access rights to the variable, MEMOl, by making sure
that if one subordinate can access a particular value, no other
subordinate can locate the same value. If LTCOL2 allowed MAJ2
to analyze the hardware design, LTCOL2 would get an incorrect
report. This mistake would illustrate a violation of Axiom 4.
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A controller can set up a communication path between his immediate
subordinates (c.f. COL1l in Figure 4.5.2). That is, a subordinate,
such as LTCOLl, can access an input value other than COLl's input
value if the subordinate's input value has been derived from
COLl's input value. The access rights to the variable used to
communicate the derived value are controlled by COL1l in that such
a variable is never used to locate COLl's output; and such a
variable can be used to cummunicate between only two of his imme-
diate subordinates.

Axioms 3 and 4 prevent conflicts in the use of data resources.
Suppose that LTCOl had PRESENTATION1 typed on the same paper
as the report had been typed on. As parts of PRESENTATION1
are prepared, relevant sections of the REPORT .or PRESENTATION1
; ‘would be hard to decipher correctly. Axiom 4 distinguishes
e REPORT as input to LTCOLl only. The value in REPORT cannot be
3 changed after LTCOL2 produces his output. Axiom 3 requires
; PRESENTATION1 to be different from REPORT in that it is only
produced by LTCOLl. Although such an example appears extreme
in a management scheme such as BRIGGEN (we assume a plentiful
supply of paper), this example has characteristics typical
] of a software system resource allocation problem.

If BRIGGEN were to be modified as in the following exanples,
pr Axioms 3 and 4 would be violated.

i 1) Suppose COL3 were to read MEMO4 as well as

i { MEMO3. BRIGGEN has no control over the access

i of MEMO4. 1In this case, BRIGGEN would not

T know the implications of MEMO4 to BRIGGEN's

L] job. If COL3 uses MEMO4 to do his job, COL3

} could devise many different prototypes for
BRIGGEN depending on the contents of MEMO4,
as well as the contents of MEMO3 (i.e, BRIGGEN
could get more than one prototype for the same
value of his input). BRIGGEN could not control
the contents of the prototype. Most likely,

Do irrelevant detail or artificial constraints

F... would be introduced by COL3 which would

1.4 jeopardize the quality of the reseach project.
S o1
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2) Suppose COLl were to be able to read MEMO2
instead of MEMOl. Here, BRIGGEN would not be
controlling access to MEMOl. Since no one would
be able to use MEMOl, the research project would
essentially ignore that information. Real
constraints to the project would be neglected
which might cause BRIGGEN to oversimplify the
significance of the research. In such a situation,
BRIGGEN might also cause unnecessary arguments
between COL1 and COL2 because, both being con-
scientious, they would both want to begin using
MEMO2 at once. If BRIGGEN were to keep his
subordinates happy, he would have copies made of

. MEMO2 so that both COL1 and COL2 could use the

i ‘ contents of MEMO2 whenever they wished.

F{

e b smaetea ot
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3) Suppose MAJ2 were to present his product as a
BRIEFING instead of a REPORT. Since LTCOL2
would be counting on MAJ2 to produce the
REPORT if MEMOl contained a software design,
3 LTCOL2 could not perform his job if MAJ2 were
1 able to decide to produce a BRIEFING instead of
a REPORT.

e b al

4) If LTCOL1 and LTCOL2 worked together to pro-
duce the REPORT, how would PRESENTATION1
be produced? One of COLl's subordinates must
prepare his presentation in order for COLl
to do his job.

5) Suppose BRIGGEN were to have input access rights to
RESULTS in addition to MEMOl, MEMO2, and MEMO3.
If the functions of COLl, LTCOL2 and MAJ2 were
not modified to be able to access RESULTS, = |
then CAPT2 would have to do the job of obtaining
RESULTS over again. Not only might CAPT2 be
doing an unnecessary job, but since he has access
to less information than BRIGGEN, he might not |
get the same RESULTS that BRIGGEN started with;
and there would be no means to check the validity

of RESULTS.
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6) Suppose BRIGGEN had been asked by his superior
to produce REPORT in addition to PRESENTATION1,
PRESENTATION2 and PROTOTYPE. If COLl were
unaware of this modification to the project,
he would keep the REPORT in his files and not make
a copy of the REPORT for BRIGGEN. If BRIGGEN
asked COL2 for a copy of REPORT, COL2 would be
at a loss as to how to respond to such a request
because COL2 never communicates with COLl. :

It is not alwa&s possible for a subordinate in the BRIGGEN system
to produce a good result. In this system, a subordinate is res-
ponsible for recognizing the validity of his input and for taking
action if he does not receive the proper information (Axiom 5).
Suppose MEMCl were to contain a set of 'humanware' values.

LTCOL2 would have to recognize that he cannot do his job with
such information. The' LTCOL2 takes action and sends a REPORT

. informing LTCOL1 that he cannot supply LTCOLl1l with a comprehen-

sive REPORT. LTCOLl1l is responsiblé for sending a message to COLl
that PRESENTATION]1 will not get done. Likewise, COLl sends a
message to BRIGGEN indicating that PRESENTATIONl1 cannot be com-
pleted properly, making for a very unhappy Brigadier General.

A more sophisticated system would provide recovery from

this problem. COLl1l might be modified to accept 'performance
analysis' values and call on another subordinate, such as
LTCOL3, to prepare PRESENTATIONl under such conditions. 1In
an even more sophisticated system, there might be deadlines to
adhere to which could result in many more alternate ways to
recover from such a situation. In the BRIGGEN system, LTCOL1l

coul& not be permitted to check the contents of MEMOl for
validity, because LTCOLl would be meddling in LTCOLs's do-

main.
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In every system there must be order. Each manager must know
the conditions under which he can expect each result produced
by the system functions. Some orderings of output are more
apparent than others in the above examples. For example,

it is clear that LTCOL2 must deliver his report to LTCOLl
before LTCOL1 can prepare his presentation. Other cases are
not so apparent. For example, two presentations are to be made
to the Brigadier General. 1If they both occurred on the same
date at the same time the Brigadier General could not attend both
presentations. But then again, if COLl and COL2 began speaking
at once, the Brigadier General would be quite confused. When

a presentation and a prototype occur simultaneously, it is not
always obvious as to why they should occur in any given order.
However, it might make more impact if one occurred before the
other. Also, there may be limited resources available to the
Brigadier General. 1If, for example, the functions of COLl1l and
COL3 were performed by one person, that particular person must
know the priority of each function assigned to him so th " .e
knows how to use his time properly. If there were no way to
determine the ordering of functions in the system, or if they

were ordered improperly, the manager in charge would be violat-
ing Axiom 6. If BRIGGEN had less authority than COL3, BRIGGEN
could not tell COL3 when to produce the PROTOTYPE. If BRIGGEN

had less authority than CAPT1, then CAPT1l could tell the Brigadier
General when to do his job. Such inconsistencies in the chain

of command would only occur if Axiom 6 were to be violated.

THE INITIATION OF COMMAND IN BRIGGEN

Thus far, we have discussed the BRIGGEN system with respect to
several hierarchical levels of control, but we have not discussed
that system with respect to the time constraint imposed on the
research project. Let us consider the time requirements of the
BRIGGEN system (Figure 4.2.3).
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OUTPUTTIME_C, TIME C = MAJGEN (INPUT TIME S TIME_S)
OUTPUTTIME_C ="BRIGGEN (INPUTTIME_S) *
TIME_C = CLOCK(TIME_S )
[Such that [Such that
TIME C is TIME S is |
09/30/81] 10/01/80] |

Figure 4.5.3: BRIGGEN Time Requirements

The Major General, MAJGEN, has requested that BRIGGEN start the
research project at the beginning of the fiscal year. MAJGEN
has ordered that BRIGGEN complete the project in one year. In ]
'Figure 4.5.2, BRIGGEN was represented as:

(PRESENTATION1, PRESENTATION2, PROTOTYPE) = BRIGGEN (MEMOl1, MEMO2, MEMO3)

To illustrate the manner in which BRIGGEN is constrained by time,
it is simpler to discuss BRIGGEN with respect tc representative
variables instead of data structures. An alternate representation
of BRIGGEN is:

OUTPUT = BRIGGEN (INPUT)

where output represents PRESENTATION1l, PRESENTATIONZ2, PROTOTYPE,
and input represents MEMOl, MEMO2, and MEMO3. Both INPUT and
OUTPUT are functionally related to time.

2

BRIGGEN's INPUT is related to the start time of the project,
TIME S:

INPUT = MAILMAN (TIME S)
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Here, the MAILMAN delivers BRIGGEN's INPUT (i.e., MEMO1, MEMO2,
and MEMO3) at time, TIME S. To distinguish this type of input/
output relationship from others, we use a subscript attached to
the output variable. Thus we rewrite the above equation as

INPUT = MAILMAN (TIME_S)

TIME S

In Figure 4.,5,3 the MAILMAN function is not shown, but implied
via the use of the subscript. BRIGGEN has been told that on :
the day the project is to start, he will receive the information !
he needs by mail. According to Figqure 4.5.3, BRIGGEN will

start his job when TIME_S has the value October 1, 1980. Although
BRIGGEN could recieve the three memos at different times if the
MAJGEN wished, in this case, BRIGGEN has been restricted to
receive all three memos on October 1, 1980.

BRIGGEN OUTPUT is related to the completion time of the project,
TIME C:

OUTPUTTIME_C = MESSENGER (TIME C)

When the project is completed, the MESSENGER delivers the
OUTPUT for BRIGGEN.

The CLOCK function is used by the Major General to initiate
BRIGGEN and control BRIGGEN's completion time. We call a
function such as CLOCK an effector function with respect to
BRIGGEN. The BRIGGEN function is referred to as an affector
function (because BRIGGEN's input/output relationship, although
independent of CLOCK with respect tc the values of INPUT and
OUTPUT, is dependent on CLOCK in order to "run") with respect

to CLOCK.
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RESOURCE ALLOCATION

We have shown in system BRIGGEN how to set up the functions
that need to be completed and how these functions are
initiated. To actually do the job, resources such as time and
space must be assigned for each function. Time, in the case of
a management structure is usually addressed in terms of man
hours. In the case of computers, time is allocated in terms

of CPU. In a management structure, we need enough offices,
desks, etc. for space. 1In the case of computers, we need
enough computer memory.

Suppose COL3 does not receive MEMO3 until February 1, 1981.
Then COL3 would have eight months to complete his

job. 1In addition, suppose COL3 had originally intended LTCOL3
and LTCOL4 to do COL3's job. LTCOL3 needed ten months to

do the work required of Section 1 and Section 2 of MEMO3

and LTCOL4 needed seven months to do the work required of
Section 3 of MEMO3. In order for COL3 to adjust to his new
requirement, LTCOL3 would either be over-worked or else he could

not complete his job on time. One solution would be that

COL3 ask for more manpower and ask LTCOL3 to, concentrate on
Section 1 while a new person, LTCOLS concentrated on Section 2.
For this solution, we have restructured by adding additional i

i manpower.

IO
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In the implementation of an ISDS/HOS system, it is possible
to share common resources.

For example, suppose MEMOl were stored in a file cabinet while
CAPT2was using that information. From observing the system
structure we can determine that once CAPT2produced the RESULTS,
MEMO1l would no longer be needed and, therefore, does not

have to be saved in the active file cabinet. We can now make
room for REPORT to be stored in the same place in the file
cabinet that had once been reserved for MEMOl.

In an ISDS/HOS software system we can make use of the system
structure properties in a similar manner when we allocate memory

resources.

Using the BRIGGEN structure we can also allocate time resources
efficiently by investigating system properties. For example,
COLl, COL2, and COL3 could all work at the same time if three
different people were associated with the three functions, COLI,
COL2, and COL3 respectively. Suppose on the other hand, BRIGGEN
had only two people to allocate to his functions. 1In addition,
suppose function COL1l needed six months to do his job; function
COL2 needed five months to his job; and function COL3 needed
eleven months to do his job. Since the research project must

be completed within one year, BRIGGEN could assign one person

to functions COL1 and COL2 and the other person to function COL3.
In this way, BRIGGEN could fulfill his requirements.

In a software system, ISDS/HOS tools determine the best way to

use time resources in a similar way.

In the implementation of an ISDS/HOS system, it is also possible
to share common operators. For example, in the BRIGGEN system,
both LTCOL1 and LTCOL2 could use the same typewriter to type
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the report or the presentation. We could determine this
because the structure shows that the report must be completed
before the preparation of the presentation is begun.

CHAIN OF COMMAND

Although an ISDS/HOS system requires each controller to "go through
a chain of command"” to carry out his necessary functions, it is
not necessary for the General to actually talk to a Colonel and

a Colonel to talk to a Lt. Colonel, etc. in order for a Captain

to obtain his orders. 1If the General wanted Captains to receive

a memo, the Captains could receive the memo, or copies of the memo
directly, as long as access rights had been established for the
Captains throughout the entire chain of command. If the General
wanted to send an order via the loud speaker to everyone involved
in the research project, he could do so by effectively setting

up inputs to everyone in the project where each person's unique
input is a unique function of the same originating loud speaker
input. In this way, the BRIGGEN system could be compared to a
system of several processors receiving information that is in

a practical sense received simultaneously.

In an ISDS/HOS system, it is absolutely clear just who the boss is,
ﬂ and the communication lines in a system are clearly defined. 1In
; system BRIGGEN, each subordinate always has the same boss. Thus,
| subordinates have no need to question where the orders come from

since they always come from the same place. Every person in the

s -

o

{ system always communicates via his own communication channels.
Not only must the communication path be appropriate, but the

messages transmitted on these channels must be germane.

1 g g e e

BRIGGEN SOFTWARE SYSTEM

BRIGGEN has been presented as an ISDS/HOS military management
system. If we were to model the functions of this system on a
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computer, the BRIGGEN funcﬁions in the software system would be
the same functions as those in Figure 4.2.1. The software system
that represented BRIGGEN would have the same characteristics as
the BRIGGEN management system.

4.5.2 The Line Justifier (GRI76)

The Line Justifier system is to insert blanks between words of
a line so that the last character of the last word appears in
the last column of the line. 1In addition, the following con- i
straints are imposed: (1) the number of blanks between different ‘
pairs of words on a line may differ by no more than one and (2)
for odd (even) lines more blanks are inserted toward the right
(left) of the line.

Assume the above paragraph (taken from GR176) stated the initial
i requirements of a problem. After manually examining sentences
of a random chosen paragraph, these requirements were found to
be incomplete. Therefore, the following additions to the require-
ments were made: (1) the first word always remains where it
started, (2) only one blank separated words on the original un-
justified line* and (3) the punctuation marks ,,.,?,!,:;,:,” are
part of the word on its left while‘ is part of the word on its
right. 1In addition, it was ascertained that what was provided
to the line justifier was (1) the column numbers where the words
begin, (2) the total number of columns and (3) the length of the
| last word on the line.

GRS Tl

B T RS

*For the purpose of this discussion, this requirement was added
to simplify the problem.
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In what follows, the line-justifier will be explained by walking
through the process of building its tree.

The first step is to represent the system as the root of the tree
in which the domain and range is specified (Figure 4.5.2.1).

In addition, a supporting narrative is developed (i.e. the key
of Figure 1.5.2.1).

AN = LINE_JUSTIFIER (L,S, CN)

Key

L = length of the last word

S = total number of columns on the line

N = number of words on the line

Cy = an N-tuple of variables whose values represent the
column numbers where the words begin on the unjustified
line

Ay = an N-tuple of variables whose values represent
column numbers where the words begin on the justified
line

Figure 4.5.2.1: The Initial Assumption of Line
Justifier together with its Supporting
Narrative

The next step is to use one of the primitive control structures
to decompose the system (Figure 4.5.2.2).
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AN = LINE_JUSTIFIER(L,S,CN)

k ND OF LINE
c', T . = NK_ = !
N’ “{T|Te1} °{a|a-s+1}) gkﬁggszOR (L,S,Cy) Ay = FL T
—_——— ]
KEY

T = Total number of blanks at the end of the line

"o_
Cn copy of Cy

FIGURE 4.5.2.2: Line Justifier Decomposed Using the
Composition Primitive Control Structure

The above decomposition was determined by the realization

that a local variable T (the total number of blanks

occuring after the last word) was needed in order to determine
the type of processing required (eq. if T = 0, then the problem
is solved and hence no further processing is required). The
function END_ OF_LINE_BLANK_CALCULATOR produces the value for

the local variable, T, which is then communicated to the function

F This function, Fl' completes the requirements for its

1°
MCF.

We continue to apply the primitive control structures and

decompose F, as shown in Figure 4.5.2.3.

1




AN = Fl(C{]'T Ia)

L} 1 2
A, = UNCHANGE (Cy, T{i-lTe{O,a}}'a) A, = Fy (Cy T{'rl're{r-l'r}}'“’

FIGURE 4.5.2.3: F1 Decomposed Using the Set

Partition Primitive Control
Structure

Set partition on variable T was used to decompose Fl (i.e., 1T

1TLJZT = T) so that the
module F,, which has the responsibility to insure that its cor-
responding function is carried out, can decide whether the original
line was already in the required format (in which case it would have
invoked function, UNCHANGE) or that additional processing is

required (in which case it would have invoked function FZ).

2
and °T are non-overlapping subsets of T;

Another set partition must take place to account for the possible
condition that only one word happens to occur on the line given.
This specification illuminated an inconsistency in the original
requirements. If the line contains only one word, then the F
last character of the last word cannot possibly appear in the
last column of the line if at the same time the first word always
remains where it started. (Except in the unlikely case where

the length of the word equals the total length of the line.) If
only one word does occur in the line, then a design choice must
be made between these conflicting requirements. In this case

jt was decided that the line should be returned unchanged accord-
ing to the decomposition of F2 in Figure 4.5.2.4. )
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Nin|N=1}

2

= UNCHANGE (C ,
g {N|Ng1}

/
T,a) AN = F3(CN T,a)

Figure 4.5.2.4:
Set Partition Decomposition of F2 to Return Lines
Containing Only One Word

F3 is now decomposed (Figure 4.5.2.5) by the realization that

two local variables would be needed for determining AN. These
variables are (1) b, the number of blanks to be inserted between
each word and (2) r, the number of word pairs requiring one addi-
tional blank between them after the inserting of the b blanks.
These local variables were needed in order to fulfill the require-
ment that the number of blanks between different pairs of words

on a line may differ by no more than one. Note that F. is de-

3
composed by using the composition primitive control structure.
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2
= F,(C} ) T,Q)
T )
€ ,b, 1) = REQIRED __ (C.’T,) A = P bor)
BLANK_INSERT (8|wp1}

b = number of blanks to be inserted between each word

r = number of word-pairs requiring one additional blank between
them after the insertion of b blanks

C; = copy of G&

FIGURE 4.5.2.5: Decomposition Using the
Composition Primitive
Control Structure

At this point, an attempt was made to insert the required blanks

i between the words in order to meet the requirements. However,

? the requirement that for odd (even) lines, more blanks had to be
inserted toward the right (left), of the line, could not be de-
termined with the previously defined input. An additional input,
P, was required. P represents the parity of the line indicating
whether it is even or odd. It was then necessary to iterate the
design process by adding the variable P to line-justifier's do-

.- -,-q,-.%.;-..m- e

main variables (Figure 4.5.2.6).
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F4 using P depending whether the lines parity is odd or even as

i

Now we explicitly demonstrate that last requirement by decomposing ;]
p i

E

shown in Figure 4.5.2.7. :

At this point, it was felt thdt the requirements for the line- ;
justifier were completely and explicitly stated. Therefore, the i
decomposition process for stating the line-justifier's functional }

requirements was stopped. The complete tree in the form of an
invocation map is shown in Figure 5.4.2.8.

Using the system control map as a guide to design, the HOS code
was produced as seen in Figure 4.5.2.9.

P A

P

|
i
§
)
!
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LINE_JUSTIFIER

B:D_OF_LINE g
[BLANK_CALCULATOR 1
UNCHANGE F,
UNCHANGE Fy
REQUIRED_ Fy

BLANK_INSERTION

-

* INSERTER_FOR
ODD__LINE

\

INSERTER_FOR
EVEN_LINE

Figure 4.5.2.8: Invocation Map for Line Justifier
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LINE_JUSTIFIER: PROCEDURE(C,L,S) ASSIGN(C);
DECLARE A,C ARRAY(*);
DECLARE B,L,N,S,T INTEGER;
N = SIZE(C);

T = S-(C(N)+L-1); /* no. of blanks left at end of line */

IF T = (S+1) | T=p | N=1 /* line was empty or words were justi-
fied or only one word was on line
(which may be all blank) */

THEN RETURN C;

ELSE
DO;
B = T/(N-1);
R = REMAINDER(T/N-1);
DO I=2 TO N; /* insert b blank between each word */
A(1) = C(I)+(1-1) B;
END;
IF LINE = ODD
THEN
' DO;
‘ DO I =1 TO R;
A(N-R+1) = C(N-R+1)+I;
END;
RETURN A;
END;
ELSE /* line is even */
; DO;
T DO I=1 TO R;
: A(I+1) = C(I+1)+I;
! : END;
A DO I = R+2 TO N;
f'i? A(I) = C(T)+R;
i END;
A RETURN A;
END; e
END; 4
ALL_DONE: CLOSE; .

Figure 4.5.2.9: HOL Code for Line-Justifier System
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5.0 THE USE OF ISDS/HOS DURING THE LIFE-CYCLE OF COMPUTER-BASED
MILITARY SYSTEMS

Despite the high level of sophistication of contemporary systems
analysis, the field suffers from a serious defect. The system-
specification process is itself a system, but, ironically, it is
generally carried out in an unsystematic fashion.

Much of what systems designers could leirn from each other is often
lost in the shuffle; new systems must commonly be started from
scratch. There has been no way to guarantee the efficiency of a

system ahead of time. There have been problems of interface cor-
rectness, especially in complex systems designed by a large group
of individuals, and there can be subsystems included which are
superfluous. Overspecification of a software system can detract
from its transferability from one machine to another. The failure
to separate specification clearly from implementation thus can
unintentionally rule out the most efficient implementation of a
given system.

1
Let us say that a system specification is functionally adequate, ‘
if it does what its designer wanted it to do, that is, if it does ]
carry out the function it was supposed to. There is little doubt !

that most systems in use today are functionally adequate, in this ]
sense. Otherwise, they would not be in use at all. Let us also {
say that a system specification is fully adequate, if it does what

it is supposed to do in the most effective and efficient possible
way. As noted in the last paragraph, though functionally adequate,

most software systems in use today most likely are not fully ade-
quate. For all the reasons noted and others, although the jobs
software systems are intended to do get done, they get done with
a lot of waste of time, money and manpower.

The purpose of developing a standardized system-specification
methodology is to eliminate this waste. Given some generally
applicable principles governing the specification of systems,
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we can reduce the problem of guaranteéing full adequacy to that
of guaranteeing functional adequacy. With the correct set of
principles on possible (allowed) system specifications, we can :
guarantee ahead of time that any system defined in accordance l
i

with those principles that does what it is supposed to do auto-
matically does so in the most effective and efficient possible
way. P

We can get a clearer idea of what a systems methodology would be
by considering explicitly what it is not. A priori one might

interpret the term "methodology" in either of two possible ways.
The most ambitious form of methodology one might hope to develop
would be a discovery procedure* (CHO57) for system specifications. 1

A discovery procedure would be a mechanical (algorithmic) pro-
cedure or set of procedures that would automatically produce, from

a given set of requirements and specifications, a system that would
produce those specifications from those requirements. Ideally,

if we could manage to develop such a discovery procedure, we could
eliminate systems analysts and designers altogether. The discovery
procedure would automatically provide the appropriate system for
any desired purpose. At our present level of knowledge, however,
and probably in principle, such a notion of methodology is un-

g realizable. The most we can hope for at this time is a theory of
constraints on system specifications. Such a theory would severely

TR

limit the kinds of system specifications an analyst could design.
If the system specification is functionally adequate, and if the
designer has adhered strictly to the constraints provided by the
( theory, then the theory would guarantee that it is fullv adequate
] as well.

Developing such a theory of constraints would place systems analy-

PRI L L

sis on a par with the already developed natural sciences. When
a physicist or chemist performs an experiment and observes a new

* Tt is worth noting that the tremendous growth and development

of linguistics that began in the late 1950's was a direct re-
o sult of tre explicit rejection of the discovery-procedure notion
.:Q of methodology in favor of that of a theory of constraints.
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phenomenon, for example, s/he tries to construct a theory that
explains it. There is no discovery procedure that automatically
produces a theory from the observations. The human scientist must
use his/her ingenuity to construct the theory, just as the human
systems analyst must use ingenuity in designing a system. What

the scientist does have available, however, is a theory of con-
straints on possible theories that limits the options available.
Any theory the scientist proposes must guarantee conservation of
mass-energy and of momentum, for example, and must be consistent
with the laws of thermodynamics. These principles serve as axioms,
so to speak, which any acceptable scientific theory must satisfy. |
What we need in systems analysis, analogously, is a set of axioms

(principles) which any fully adequate system specification must
2 satisfy.

We are using the term "methodology," then, in exactly the sense
in which it is used in the natural sciences. Which specific
. principles we will have to recognize as the axioms of our method- k

ology is, as in any beginning science, an empirical question.

In order to automate the process of developing systems, we need

a methodology for defining systems which are understood by auto-
mated tools, i.e., ISDS/HOS. The methodology of ISDS/HOS is used
throughout all phases of a given system development. With the
methodology of ISDS/HOS, we apply the same axioms and therefore
the same decomposition techniques of ISDS/HOS throughout an inte-

grated system development to define:
{ the target system - the system whose functions define the mission
| (i.e., the application which is the focal point of the develop-
ment process); ;
real-time support systems - the support systems (such as an oper- f

B R

ating system (0S) or interpreter) which are resident in the tar- ?
get machine when the target system is deployed;

: non-real-time support systems - the support systems (such as a com-
"ﬁ{ piler or a static analyzer) which are not resident in the target i
" machine when the target system is deployed. These systems might l

115
HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900




be able to be run on the same machine as the target system in
non-real time or exist in a host computer. These support sys-
tems are used only to develop target applications; .

the personnel management system - the system which reflects the
management structure of the personnel who direct all of the de-
velopment efforts of the target system and all the development
efforts of the systems involved in supporting the target systems;

the environment system - the system which represents the environ-
ment within which the target system resides;

the development process -~ thig is a system whose functions define
the process for each phase of development from the conceptual
phase to the final deljvery and maintenance of the target system;

the building process = \the system which defines the functions
of building libraries of'the target system and target support
systems modules, and building assemblies of subsystems to form
an official assembly of 'Frozen' modules;

source systems - the systems which produce the requirements for
the target system;

the disciplines of development - the subsystems of the development
process which define the process steps within each phase of de-
velopment; these disciplines are design, implementation, verifi-
cation, management and documentation.

combinations of the above systems - various systems and subsystems
can be combined to form new systems, (e.g., an environment sys-
tem can be combined with a target system to form a simulated sys-
tem of a target system in its real environment);

the definition of the development process - this is a system which

{ defines the methodology of putting together systems (e.g., the
l’ definition of ISDS/HOS).

R R e e T

With the methodology of ISDS/HOS, we use the same tools and tech-
niques to define and describe functions and interfaces of a sys-
tem throughout all phases of a system development.

With the methodology of ISDS/HOS, we use the same tools and tech-
niques to implement and describe the execution flow of a system
throughout all phases of a svstem development.
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With the methodology of ISDS/HOS, we use the same tools and tech- *
niques to verify and describe the verification processes for a
system throughout all phases of a system development.

With the methodology of ISDS/HOS, we use the same tools and tech-
niques to manage and describe the management processes for a sys-
3 tem throughout all phases of a system development.

Before we discuss the development properties of ISDS/HOS, we will
first discuss the problems involved in developing a system. In
what follows, we will discuss what we mean by a system and by the '
environment within which a system resides; we will also discuss *
the types of requirements that are involved in developing a sys-
tem. These requirements include those which are related to the
& system being developed (i.e., the target system). We will dis-

cuss a model which shows representative development phases a sys-
tem goes through. We will discuss the type of automated tools and

i techniques we believe are feasible, given the framework of ISDS/
HOS. |

- 5.1 Systems Preliminaries

i e et e i

2 System A (Figure 5.1.1) will be used to illustrate what we mean
. by a system. Let us consider System A as a function. When A is
; a function, we can consider the levels of A by decomposing it.

& In Figure 5.1.1, System A has been decomposed into two levels. i{
- | Functions A, and A2 are on the first lower level of A and func-
% i tions B, and B, are on the second lower level of A.
/ ; '
A{ /"2\
: By B,
Q(t

Fiqure 5.1.1: System A
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The representative control map in the form of an invocation tree
(Figure 5.1.1) shows the functions which will complete the speci-
fication for the execution requirements of A. The functions A

1
and A2 are on the next most immediate lower level of A. When A

is considered as data (i.e., a description of A) we refer to A as
a layer instead of a function. When considered as déta, the first
immediate lower level of A (i.e., Al and Az) is the data structure

of A; similarly, B1 and 32 are the data structure of AZ'

There are may trade-offs that must be considered in developing

the layers of a system. They involve not only how many layers,
but whether or not these layers are created statically or dynami- W
cally. We call those layers which are created statically (without

execution of the target system) development layers. We call
those layers that are created dynamically (during execution of
the target system) execution layers.

Let us consider the problem of representing A in a form that is
’ closer to a machine that will someday execute System A. In this ?
case, we might need another outside system whose function is to
convert A into a machine readable form. The name of this system
is TRANSLATE (Figure 5.1.2). TRANSLATE is an example of a support
system which may reside outside the realm of the target system.

; CODE, = TRANSLATE (A)

CODEA = COMPILER (HOLA) HOLA = COLLECT (A)

- l*ﬂ:,,M"!b‘*d e

Figure 5.1.2: System TRANSLATE

Here, TRANSLATE chooses System A modules from a library in a higher
order language form called HOLA by means of function, COLLECT.
TRANSLATE then produces machine code for the System A target

118
!

HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 661-8900




machine by means of function, COMPILER. This translation process
is a static translation process. In this example, system HOLA
will never physically reside in the target machine when the tar-
get system is deployed; it is CODEA that will reside in the actual
target machine. HOLA will reside in the target system library
within the host system library; COMPILER and COLLECT will reside
in the host system library or in the host machine system itself.

A new layer, CODEA, has been created by TRANSLATE. CODEA is a
lower development layer of System A than HOLA (Fig. 5.1.3). That
is, CODEA is closer to executable form for the target machine than
HOLA .

In this example, we are treating System A as a target system and
system TRANSLATE as a support system of System A. However, when
TRANSLATE is the system being developed, it becomes the target
system.

Some system support tools will reside in the target machine with
the target system and dynamically produce "temporary" lower "de-

velopment" layers of the target system as a result of a requirement

from the target system itself. An example of such a function is
an OS system or an interpreter which resides in the same machine
with the target system application. These functions represent
lower execution layers with respect to layer HOLA. During execu-
tion, the request to execute the target system in a lower-layer
state is relayed to the 0S (Figure 5.1.4). The 0OS then creates
the equivalent of a lower layer replacement (Figure 5.1.5) which
temporarily resides in the computer until execution for that per-
formance pass is completed. When this happens, the lower develop-
ment layer disappears and the target system is once again resident
in the target machine without its lower layer.
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FIGURE 5.1.3: An example of a support system
function COMPILER which creates

a new layer for System A.

120

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139« (617) 661-8900




P

g =S v
—— -

R
- < O i A e D

%
!
t

(a) HOL = 0S (A)

Qa
»
HOL, = TRANSLATE (HOL,) HOL, = COLLECT (A)
Q
(b) y = EXECUTE (HOL, )
Q
A
y = APPLICATION (X ) X . = READ (HOL. )
QA QA A

%

Figure 5.1.4: The 0OS system translates (a) and
returns execution control back
to System, A (b).
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It is important that a target system specification is consistent
and complete. In order to define a system for completeness, it

is helpful to know the requirements which include the characteris-
tics of the various systems which influence  the target system.
Examples of these requirements are shown in Table 5.1.1. In order
to define a system for consistency, it is helpful to know the

many requirements to consider in defining the target system it-
self. Examples of these requirements are shown in Table 5.1.2.
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TABLE S5.1.1

Requirements affecting the development of a target system

P

Customer

Mission

User

Tool

Methodology

Development

Host Facility

Completed
Requirements

This includes the financial resources that
are allocated and schedules that must be met
for completing a system.

What is the job that is to be done and what
is the environment within which the system is
to be deployed? These requirements include
nominal and off-nominal conditions.

What features are expected to be previded to
the user of the system and how does the user
interface with the system? (For example,
does the customer expect faster turnaround
time on an interactive system than the con-
tractor expects?)

What tools are needed to develop the system
throughout all phases of development? What
tools are not needed, but would make the de-
velopment of the system more cost effective?
What are the requirements of these tools?
What tools are already available and have
been specified as off-the-shelf resources?
How do these available tools affect the de-
sign of a system?

How does the methodology affect the system
and its development?

What should the phases of development be?
How many phases of development should there
be? The more development layers there are
in a system the more phases of development
there might be to define and the more phases
there are to define requirements for.

What are the requirements forced on the
system by an existing host environment and
its tools? What are the necessary require-
ments for the host facility to assist in
the development of a system?

What modules are around that could

be used to build a system? For example,
if a subsystem is already completed, this
might save development costs.
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Support Systems

Design

Standards

Redundancy

Testing

Statistic
Gatheriny

Overall

Each system that is developed has associated
support systems. Examples of such systems
might be an OS system to become part of the
target machine, the environment system for a
simulator, a data management system for keep-
ing track of all the information about a sys-
tem and its development, and a personnel sys-
tem which manages a system. What are the re-
quirements for those systems that are non-
existant or those which require change? If
these systems are not able to be changed,
what requirements do they impose on the sys-
tem being developed?

What design requirements are enforced on a
system design? For example, is it determined
ahead of time that the system could be multi-
processed, or parallel processed; that certain
resources must be shared; or that error detec-
tion and recovery is required?

Certain standards force requirements on a
system development. These include control
structures and data types used to define the
system; rules for decomposition; which tools
to use for which process; approval forms for
the request of a requirements change, anomaly
reports; format for data-base descriptions of
the content (type of information and level of
detail) of requirements; development plans;
official milestones; official meetings; official
building process rules; approved hierarchy
check points; numbered and titled memo series
(for inside and outside of the project) for
disseminating orders and information; reports;
test plans.

These requirements might include the mean time
between failure required of the target system,
error detection and recovery, and back-up sys-
tems.

These include requirements for different levels
and different types of official testing for a
given module.

These include the information that is gathered
on all the development processes for a system.
For example, information is gathered on
anomalies, categories of anomalies, where
anomalies are found, how anomalies are found,
correction to anomalies, turn-around time for
verification runs, CPU time, core size, costs,
etc.

The ideal for all requirements is to be
reliable, cost effective, and flexible both
for development and during real-time.
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TABLE 5.1.2

Requirements of the Target System

All systems have several categories of requirements as a stand-alone system.
For example, consider System A (Section 5.I). Each development layer of
System A inherit a set of requirements from the previous development layer.

Functional In order to complete the specification of
the execution of A, functions A and A, are
required. In order to complete the specification !
of the developmental layers of A, function ;
TRANSLATE is required. In order to complete i
the specification of the execution layers of A,
function OS is required.

Data Certain data types and data structures are
required to complete the specification of the §
exectuion of A, If, for example, A operates on |
a matrix, one data requirement for A is a matrix.

Performance Peformance requirements give limitations to input
and output data. For example, the performance
S ) requirements of A might include a minimum and
maximum range for the input values of x.

Documentation Each layer of A has its own set of documentation
requirements. The top development layer might

have more comments for management than lower layers.

A lower development layer contains more machine
dependent information than a higher development

layer. A layer described in AXES has AXES document-

‘ ation requirements. A lower layer described in a

' HOL has its own documentation requirements. All
layers of A should have a standard definition as

to content of documentation. That is, -some design
docurentation (like the name of a function) is a

{ necessity for the system to run. Others may be neces-
( sary . to: convey useful information for testing purposes.

IChia O

) Resource Allocation Each development layer of A is a resource allocation
requirement for the next development layer of A (or

on the next "machine"). The functions which trans-

late one development layer of a system to another

development layer (e.g., TRANSLATE in System A)

provide resource allocation. Thus, a translation

from the layer, A, in AXES to the layer A, in a

HOL, could determine (from A in AXES) necessary

and efficient resources.
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5.2 1ISDS/HOS Disciplines for Use in Developing a System

In a system which is solving the problem of developing another
system (i.e., where DEVELOP is the function), we view require-
ments (R) and specifications (S) in the development system as
input and output data respectively, as in (1):

S = DEVELOP (R) (1)

In a development system, requirements are those items which are

desired or needed; and specifications are the results which

realize these requirements.

Every node of a system could be viewed as a development function.
The subfunctions of a development function are phases. Thus,

when a phase is viewed as a development function, its subfunctions
are viewed as phases.

The function, DEVELOP, is decomposed in Figure 5.2.1. 1In
decomposing a function, the designer makes use of the three
ISDS/HOS primitive control structures discussed in section 4.0.
In Figure 5.2.1 a phase of development is a subsystem of the
DEVELOP system.

DEVELOP
DEVELOP1 DEVELOP2 DEVELOP3
(Phase 1) (Phase 2) (Phase 3)

Fiqure 5.2.1
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Each node in the development system is data used by the develop-~ :
ment discipline "machines" to realize the development function.

These disciplines are design, implementation, verification,

management, and documentation.

Later in this section, we will discuss, individually, the applica-
tion of the design, implementation, verification, management and
documentation disciplines.

In order to produce a specification, first a design process
whereby one "conceives" and plans takes place. The implementa-

tion process realizes the plans which were conceived in the ¢
design process. A design process produces a set of requirements.

The implementation process of that set of reguirements produces
a specification. That same implementation process is considered
a design process with respect to the process that views that i
specification as a requirement.

The verification process verifies that the specifications fulfilled

the requirements.

The management process directs the other discipline processes

and ensures that all of these processes are carried out in a

: cost-effective manner and that the results of these processes

‘ are reliable. The manage function* either approves or disapproves
its inputs which are outputs from one of the other disciplines.

! 2

R 2 i iR TS e e .
S A ot

* This function is provided for by an Assembly Control Supervisor L
(ACS). There is an ACS associated with each function in iﬁ

yoear .

the development process, e.g. the AGS who corresponds to the
manage discipline is a higher level ACS than the ACS for i
each discipline under his direction.
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The documentation process records all of the outputs of the

design, implementation, verification and management processes.
If the process of design is manual, the documentation process

is manual. If the process of implementation is manual, the
documentation process is manual. If the process of verification
is manual, the documentation process is manual; and, if the
process of management 1is manual, the documentation process

is manual.

In the case of a manual process, standard formats should be
provided as to type and content needed to describe the outputs
of that process. If, however, the design, implementation, veri-
fication or management process is automatic, the respective
documentation for each process should only be produced auto-
matically, since the output of each process is its documentation.

In Figure 5.2.2a, one step of the development process, where
the input is requirements, R, and the output is specifications, S, ,
as shown with their respective subsystems. For one step, the !

Design_Implementation disciplines, (Figure 5.2.2b), the Verifica-
tion discipline, (Figure 5.2.2c), and the Management discipline
(Figure 5.2.2d) are shown with their respective subsystems.

In Figure 5.2.2, the documentation system (DOCUMENT) is included
as subsystems of each discipline.

Note that verification discipline (Figure 5.2.2c) shows that
verification is a reverse process to the design_implementation
discipline, because in this process we are comparing the results
to determine if the specifications meet the desired requirements
instead of developing the specifications from the requirements.
The design_implementation process not only produces preliminary
specifications, but also produces test specifications for the
verification process (Figure 5.2.2b). At the end of each process
step, for all disciplines, documentation is produced to record
the results. {
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; To develop a given system, there are several successive and

\ recurgsive steps of functions which provide a set of specifica-
! tions from a set of requirements.

For example Figure 5.2.3%, one step of a typical management process
is shown with an ISDS/HOS control map to illustrate the functions
of a manager (which includes the design, implementation

and verification disciplines). 1In this example, the manager
determines if the requirements, R, are sufficient for his
project. The documentation associated with each discipline

in this step of development effects the output of each function
in this example. In the manage process, the manager determines
if all the proper forms have been filled out and if all the
right testing procedures have taken place for a particular
entry candidate. The manager checks the content of the forms
and the requirements submitted., If the manager determines,

along with experts in the areas relevant to this type of

change, that the change is correct and its testing results

are sufficient, the requirement or requirement change is
approved by the signing of an official form. The new specifica-
tion is then relayed by the manager as a new requirement for

§ ; rejects them and starts a new step of the same development
| phase. This process continues until he is happy. ]

E the next phase. If the requirements are not sufficient, he 1

¢ * In the examples that follow we refer informally to names
f of functions and their inputs and outputs. Thus, for example,
} when we refer more than once to DESIGN as a design process,

it is not necessarily the identical function unless we
specifically single out an equivalence.

}
H
i
1
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For every development step of a given phase eq., (1) can be
expanded to the following type of development function:

R DEVELOP

e ™ e e,
Document{Results)= MANAGE (Verify(Implement (Design(R)))) (2)

All of the outputs of the MANAGE function and each nested function
of MANAGE are the documentation of the development disciplines.

Figure 5.2.2 and Figure 5.2.3 are examples of system development
disciplines which occur in any step of any phase of any system

development. Thus, we have presented a template which illustrates {
the disciplines for application to the ISDS/HOS system develop-

ment process.

’

In these examples, we have not yet singled out the particular
tools that perform these functions. In some cases they are manual
and in some cases they are automatic. The tools and their use
is determined by availability or knowledge of availability at
the start of a project development; the phase of development

the project is in; and the decisions of project management.
These template examples show only the type of functions that are
needed to perform a development step and clarifies through
standardization the patterns common to various concrete systems.
In section 5.2, however, we do recommend toqls for a system
developed according to ISDS/HOS.

!
(

-
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5.3 ISDS/HOS Development Phases for a System

Within ISDS/HOS there are only two development layers; i.e.,
the specification layer and the product which is the executable
program. Because, however, not all the ISDS/HOS tools have been
automated, other development layers would be required in the
interim. We will discuss, here, a development process which
includes transitional development layers that are developed
manually. That is, we will assume that development layers go
through translation processes which result in a description in
a specification language, a resource allocation map, an HOL
language and/or an assembly language and a target machine
language. The target system OS could be either incorporated

as part of the first execution layer of specification, a lower
execution layer of specification or a lower development layer
of the translation process (e.g., HOL layer). Thus, we will
attempt to show alternative ways of developing a system with

‘ respect to its own OS.

In describing the development phases for a particular system
we have chosen to relate ISDS/HOS to those phases which
, correspond to large DoD systems development (KOS75). For the purpose

of flexibility (in case a project chooses a different breakdown

E i of phase development) we will describe "templates” for various

|
:
]
o
2

\ processes, tools or management techniques that could be used
during each phase. 1In this way, substitutions can be made

(e.g., if a project is too far along in development to replace ¥
or change already established methods; or if incremental
introduction of a new methodology could be established where
necessary for improvement of cost or reliability).
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Our development model consists of four phases: (1) the Concept
Formulation Phase (CF); (2) the Program Validation Phase (PV);
(3) the Full-Scale Development Phase (FSD); and, (4) the
Production and Deployment Phase (PD) (Figure 5.3.1).*

CONCEPT -—— PROGRAM — FULL™SCALE g PRODUCTION
FORMULATIOM VALIDATION DEVELOPMENT AND DEPLOYMENT

3 Figure 5.3.1: Four Major Phases of a
: System Development

Each phase receives requirements and produces specifications.
These specifications are relayed to the next phase which in
turn become the requirements to the new phase. In Figure 5.3.2,
Phasey receives Ry as requirements and produces the specifica-
tions, RN+1’ RN+l is relayed to PhaseN+1 as requirements.

RN+1 = PHASEN(RN)

N

RN+1 = RELAY (SN) SN = DEVELOP_STEP (RN)

Figure 5.3.2: Delivery of Requirements
for Next Phase

L et L L ST L T

* The reader should be aware of the fact that these phases
are sometimes associated with DoD funding divisions.
This report is not intended to make such an association.
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Throughout the development process of a system there are certain
items which should always be made available to the various
developers of the system. The same methodology and standards
should be adhered to throughout. Common support systems,
resources, tools, and modules should be made available if needed.
In addition, certain new information is necessary to pass on

from phase to phase. Sometimes quick turnaround information

must be relayed as quickly as possible to relevant parties
involved. Thus, the development management process should contin-

uously facilitate all other development processes. In order

not to overcomplicate the description of the individual target-
system development process steps, we have chosen not to describe
this process in all of the illustrated examples of the phases,

but rather, we ask that the reader be cognizant of the fact that

such a process is ongoing throughout a given system development.
‘ ”’gf We will assume that all of the requirements passed on to a new
S ) phase from a previous phase include all of the items which later
phases will need. For example, when a given phase turns over
its specifications with all relevant information, libraries,

b A

etc. to the next phase as requirements, PhaseN deciphers what
is needed to fulfill its own requirements for the target system
development and maintains access to relevant information and

1 resources (Figure 5.3.3).

———— -~
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Each phase turns over many requirements to the next phase. 1In
addition there is always a new step of a phase which produces

new sets of requirements for the next phase. Thus, it is possible
for development activity to be doing on in all phases simultan-
eously. When partial specifications are completed by one phase,
the next phase can begin to work on these partial specifications
as partial requirements. Thus, one module could become frozen

and delivered in the final phase before another one was ever
formulated. Each requirement should be visualized as

RN+1 = DEVELOPMENTN (RN) (3)

where eq. (3) can be replaced by

(rl,r2,1'3,...)N+1 = DEVELOPMENT (rl,rz,r3,...)N (4)

(nl,nz,n3,...)N

A change in requirements to a system always results in new develop-
ment steps (iterations). A change to one phase always forces

an iteration of its phase and the phase immediately following it.
Thus, if a change were made in the concept formulation phase,

the CF phase would be directly affected (eq. (5)) and the

program validation phase would be directly affected (eq. (6)).
Likewise, the PV change would cause a change to the FSD phase

(eg. (7)) which would cause a change to the PD phase (eq. (8)).

CFgrpp (NEWR) = CHANGE (R,,CF(R)) (5)

PVorpp (NEWR) = CHANGE (CF(R,),PV(R,)) (6)

FSDgrep (NEWR) = CHANGE (PV(R,),FSD(R;)) (7)

PDorep (NEWR) = CHANGE (FSD(R5),PD(R,)) (8)
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Many times a necessary change (due to an error or an adjustment
needed to produce a specification) in requirements in one phase
affects the requirements of an earlier phase. In this case

the manager of each phase decides to change his own phase if it
is determined that it does not affect the requirements of a :
previous phase; but he sends the change back to only the previous %
phase if the change falls in the category of a higher-level
requirement. Therefore, it is possible that such a requirement
change is sent back through all the preceding phases until it
reaches the conceptual phase. 1In egs. (9), (10), and (11) we
show the possible requirements changes made to an earlier phase
as a result of information found in a later phase.

(NEWR) = CRROR (p0 (1)) (9)

CEgprp CHANGE
| _ ERROR
: PVgppp (NEWR) = SoiOR  (FSD(R)) (10)
_ ERROR
FSDgppp (NEWR) = 710t (PD(R)) (11)

Although only the previous phase receives official notice of a
requirement error, the managers of each phase receive all error

{ reports and notification of all requirements changes for each
phase.

In Figure 5.3.4 and Figure 5.3.5 top level interfaces between
} development phases are shown with respect to the design, implemen-
tation and verification disciplines which take place in each

e e W @1 e 0t e v A

phase.
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5.3.1 Concept Formulation Phase

The first phase of our system development model is the concept
formulation phase. In this phase, customer requests, mission
requirements and top-level target system requirements are
formulated. Requirements forced upon project management by
support systems, developed target system modules or support !
tools which are determined by the customer as m&ndatory are ;
formulated. In addition, support tools, support systems already
developed, candidate target system library modules, or support
tools which are determined by the customer and project manager
to be available are considered as trade-offs and either incor-~
porated or not incorporated into the formulations.

Once all of these requirements are well formulated, the designers J
use this information to design a preliminary control map for the
; target system. ’

The designer first jots down what he believes the functions
to be in any order envisioned using whatever notation (English j
or otherwise) so desired. An attempt is then made to organize
these functions hierarchically as a partial representative
control map (an invocation map showing only function names may
be sufficient at this time). After one or more preliminary
design iterations, the partial map is complete enough to use

i peabnai

as a guide for gathering more information. At this time the
designer may have several questions he needs answered in order
to make a complete control map. A complefé contrcl map will
define and describe the functions and interfaces of the target

vt e 0 e
——

system. The designer then writes down his questions for himself
and/or others to perform interviews with the customer, various
contractors and engineers involved in the project in order to
determine more detailed contents of the requirements. A standard
mechanism should be provided for recording the answers to these i
questions (that others or he, himself, have provided) in a data }
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base. This clerical process should be aided by standard forms
or it could be automated.

After several iterations of data gathering and adding refine-
ments to the control map, enough information is available for
the target system designer to define additional standards.

These standards can be formalized as specifications to define

control structures or data types. These formal standards can
be used to describe the formal specification of the system.

The formal specification of a system is described using the
AXES specification language syntax and using the formal stand-
ards (AXES-defined data types and AXES-~defined control structures).

The formal specification is automatically checked for interface
! correctness by a tool called the analyzer. Otherwise, a manual

check of the specification is made for interface correctness.
In addition, a manual check is made to see if the problem was
defined as originally intended. The end result of the analysis
could be either a small change or a restructuring of part of
the system. This iterative process continues until the specifi-
? i cation is a valid one in that it has complete and reliable inter-
$ ! faces. It is important to note here that it is possible for
a specification to be a valid one and not do the job that the
designer intended it to do.

The advantage of having the ISDS/HOS methodology to specify a
valid specification is that the process of finding out why

a specification does not produce the desired results is now
limited to the question, "Did I specify the functions I really
intended to specify?".
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In Figure 5.3.1.1, an example of the concept formulation phase
decomposition is shown. Table 5.3.1.1 shows the tools and
techniques that correspond to the subsystems of the concept
formulation system. Figure 5.3.1.2 is a more detailed decompo-
sition of the concept forumulation phase which demonstrates

the iterative nature of the concept formulation process. Figure
5.3.1.3 demonstrates the interfaces within the SPECIFY system of
the COMPLETE_SPECIFY system of Figure 5.3.1.2. Table 5.3.1.2
shows the tools and techniques that correspond to the subsystems
of the SPECIFY system illustrated in Figure 5.3.1.3.

The outpuf of the concept formulation phase is a set of speci-
fications for the target system represented in AXES syntax,

new standards defined with AXES, and a control map which shows
graphically the decomposition of the functions of the system.

In addition, the specifications for this phase include the
original formulated requirements for the methodology and develop-
ment processes as well as those requirements provided for support
systems and support tools. All of these specifications are
relayed to the next phase as requirements for the PV phase.

R, = CF_STEP_(CONCEPTS)

/I\

R = FORMULATE (CONCEPTS) R2 COMPLETE _ APPROVAL_(R2

_ )
PROTO ~ SPECIFY(R) R2 = bROCESS

PROTO

R, = F, (CONCEPTS,) R, =F (CONCEPTS,) R, = F, (CONCEPTS,) R =F (CONCEPTS )

2 2 3 4 4

Figure 5.3.1.1: One Step of Concept Formula-
tion Phase
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MRSAMSSEa R L L

TOOLS & TECHNIQUES

PROCESS

ISDS/HOS
Concepts

; ISDS/HOS
Concepts

ISDS/HOS
Concepts

Manual and Data
Management
System

ISDS/HOS
Management
Concepts

(See SPECIFY
Figure
5.3.1.3)

APPROVAL
PROCESS

SPECIFY

Define standards for management
structure, phases, building procedures
and disciplines for system development..
Determine requirements for customer.

Determine mandatory available candidates
for support tools, target module, and
support systems available now for use

in this and later phases.

Determine mission requirements for
conceptual inputs. Specify standards
for describing target system functions.
Specify system functions and determine
those which are already defined.

Determine preliminary resource alloca-
tion needs from system resources that
are mandatory and/or available for
later allocation (e.g., sensors, host
and target computers, resident
software) .

The CF manager approves CF specifica-
tions as a deliverable for CF process.

The formulation of the target system
requirements.

Table 5.3.1.1: Concept Formulation Phase

PSR ST "W"" P —

Tools and Techniques
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TOOLS & TECHNIQUES PROCESS
1ISDS/HOS Decomposition JoT - jot down notes about functions and
Concepts function names that are in target system,

organize and reorganize the notes until
they are existent in a hierarchical form
\ to work with (i.e., attempt to formulate
a representative control map).

ISDS/HOS Decomposition PLAN 1 - complete as much as possible a commented
Concepts; control map with questions which reflect
access rights, ordering, invocation speci-
fication properties of target system

functions. 2
ISDS/HOS Decomposition INTERVIEW - use the control map, comments and questions !
Concepts; Data Management to interview system, support system
System; Standard Forms engineers and customer to fill in the
recorded manually missing parts of the control map. Enter
or automatically incor- your own original information and infor-
porated with problem mation acquired from questions on
statements format into standard forms into the requirements
data base; Text Editor. data base.
: AXES Abstract Control PRODUCE __ - (1) define and design new abstract control
! Structures, Abstract SYSTEM structures or data types or standard methods
Data Types, Data Manage- of expressing requirements in the specifi~
ment System Text Editor cation using AXES created statements?*;

(2) transcribe data base information about
control map to AXES statements; (3) write
a complete narrative for information
purposes; and (4) initiate top-level test
specifications for program validation
performance constraint testing.

Analyzer (manual or TRANSLATE - analyze AXES statements, standards for
with analyzer) Text SIM interface consistency (proper decomposition)
Editor Formatter format AXES listing, standard listing and

English narrative listing. A control map
is produced which notates and describes
w interface errors if not correct or which
shows functions and interfaces if correct.
Manual check to see if problem is defined ¢
as originally intended. )

- e g v

* Some preliminary standards are already chosen.

. Manual,
} : Data Management, Approval APPROVE - go through ACS approval channel for
P Forms, Sign-Off Proce- acceptance for a frozen specification
E dures, Text Editor module.

o ‘ Table 5.3.1.2: Concept Formulation Phase
ég Specification Process Tools

and Techniques

151
HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900




5.3.2 Program Validation Phase

The Program Validation (PV) phase concentrates on the detailed
analysis of the functions defined in the Conceptual Formulation
phase. At this time system performance constraints are considered
in the design process of completing a more detailed specification.
Timing and accuracy analysis is performed. Restrictions imposed
by known environments of the target machine are studied. Trade-
offs for reliability are performed. Included are considerations
of fault tolerance, error detection and recovery, customer needs
and security requirements. These studies are performed either

! manually or automatically by simulation performance testing.

% _ The design discipline in this phase is very similar to the design

' discipline in the CF phase. That is, after several iterations
a revised control map is formulated along with a revised data
base reflecting all the changes and additions made to the target !

' system.

Throughout this process, the simulator requirements may also
need to be updated to reflect the changes to the target system
requirements. After the revised control map has been verified,
the top layer resource allocations that have not been associated
with target subsystems are determined, i.e., determinations

are made as to which functions will be executed in a hardware,

g

-

software or firmware "machine".

! If prior resource allocations have not been determined, the
complete control map now exists in the form of one development
layer described and verified in AXES statements. Without the
resource allocation (Figure 5.3.2.1, System AXESS illustrated
with only its function names) there is flexibility with which
to build the development layers, since this same system could
now be used with various alternative resource allocations.

§
i
5
f
j
t
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iy

Figure 5.3.2.1: Target System AXESS

Top level resource allocations are manually assigned to AXESS.
This process is a similar process to choosing top level managers
or top level functions of a system. System AXESS

is an example of a system where specifications HARDWARE/SOFTWARE

S
include the top layer resource allocation decisions (Figure 5.3.2.2).

‘ Here, the target system AXESS has been assigned to reside in a

‘ computer-based system. AXESC has been assigned to reside in a
sensor system. AXESA has been assigned to reside in a target
computer, etc. Later, AXESA1 might be assigned (manually or auto-
matically) to software of the computer system; AXESA2 might be
assigned to firmware of the computer system.

;8;‘-ﬁ-\gv;"-mm-' .
—— o
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Figure 5.3.2.2: An Example of Top Layer
Resource Allocation for Target
System AXESS

Once the top layer resource allocation choices have been made,
support systems to the target system and support tools for

the various subsystems can be determined. Some of these support
systems and support tools may be selected from an existing
library of support systems and support tools. Thus, an existing
0S system might be chosen as a support system which will reside
with the target system in the target machine when it is deployed.
An existing HOL or existing compiler might be chosen as off-the-
shelf tools which will not reside in the target machine when it
is deployed.

Once the tools have been selected, those that do not exist

or only partially exist should have the development of their

own systems completed. The priorities and milestones for these

systems development should, of course, take into consideration

the milestones of the development of the target system. Each of

the support system developments should proceed with a development

process similar to the one used for the target system described

here, since these support systems are target systems with respect
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to their own development processes. The processes that can
take place within the Program alidation Phase are illustrated
in Figure 5.3.2.3. Table 5.3.2.1 is included as a description

of the functions of Figure 5.3.2.3. !

© g

o
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B L IR S

TOOLS & TECHNIQUES

PROCESSES

‘Manual, Data Management

System

Manual

Digital simulator,
Hybrid simulator, Text
Editor, Performance
Monitor

AXES, Analyzer, Data
Management System,
Narrative Updater

Manual or Data Manage-
ment System Collector

Manual, Data Manage-
ment

Manual, Collector

ISDS/HOS Concepts

Data Management,
Approval Forms, Sign-
off Procedures,

Text Editor

DESIGN PERFORMANCE_CONSTRAINTS -~ perform
analysis of timing, accuracy, environment
restrictions, error handling, fault toler-
ance, security and customer needs. Design
test plan for trade~off studies and
analysis

EYEBALL DESK CHECK -~ static and manual
analysis and verification.

SIMULATE - dynamic analysis and verifi-
cation

SPECIFY - redesign control map incorporat-
ing performance constraints narrative, etc.
this is a new step of the CF phase, func-
tion SPECIFY (Figure 5.3.1.3),

IDENTIFY - select control map informa-
tion needed to describe target system.

RA MACHINE - perform top layer resource
allocation.

COLLECT - collect available support
systems needed to develop target system.

BUILD - begin building support systems
needed to build target systems.

APPROVAL - ACS supervisor approves PV
Phase requirements.

_;—b

Table 5.3.2.1l: Program Validation Phase
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5.3.3 Full Scale Development Phase i

The purpose of the Full Scale Development (FSD) phase is to
translate all of the requirements for the target system into _
a form which is able to be interpreted for execution on a target v ¥
machine. Ideally, these requirements exist in a control map
form, are described in AXES, have been analyzed by the analyzer
for correctness of interfaces; and have been analyzed by a means
such as simulation to verify that certain performance criteria
have been incorporated into the system definition.

The development process of the FSD phase is shown in Figure 5.3.3.1.
During the FSD phase, iterative steps take place if there is a
change to be made in the requirements. If the change only affects
the FSD itself (i.e., an error was made in the FSD phase), the

ACS of the FSD phase decides to fix his own intermediate require-
ments (CHANGE_THIS_PHASE ONLY). If the change is necessary due

to a problem resulting from a previous phase, the ACS of the FSD
phase officially notifies the ACS of the PV phase (PROGRAM
VALIDATION) .

A step of the FSD phase is shown in Figure 5.3.3.2a. This

step includes two major resource allocation efforts, RESOURCE_

ALLOCATE and RAT;. Table 5.3.3.1 is included to describe the

| functions of Figure 5.3.3.2. RESOURCE_ALLOCATE illustrates
the proress of selecting target "machines". (If the target

i machine is not selected, an iterative resource allocation process

takes place.) Several trade-off studies for timing and memory

: considerations are made. A candidate target machine is then
selected and the process of optimally allocating the system to
that machine takes place. The function, RATI, provides resource
allocation within selected machines. After the target machine

R e SRt STEV
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B NSRRI

TOOLS & TECHNIQUES

PROCESSES

manual, simulator,
structuring executive

SELECT - Select those requirements
which go in software, hardware and
humanware machines. These require-
ments all exist in AXES form. The
0S modules for the target machines
are included in these requirements.

RAT,
manual analysis (if RAT is
manual)

RAT_ALLOCATE - perform a resource
allocation process which is independ-
ent of the target machine that the

simulator target system will execute on.
Verify these results:
COLLECTOR COLLECT - Collect the requirements

in architectural form.

manual writer or automatic
translator (either a post-
processor for an analyzer or
pre-processor for an existing
HOL), automatic structured
design diagrammer.

TRANSLATE - Translate the require-
ments to an intermediate form(s)
such as an HOL, assembly language,
macros, etc. produce an execution
map ( structured diagram).

COMPILER, ASSEMBLER, simu-
lator, manual analysis if
translate process is manual

COMPILE - Compile intermediate
language to code for target machine,
host machine, verify the results.

Table 5.3.3.1:

Tools and Techniques Applied
Within One Step of the FSD Phase




is selected, RAT, is concerned with optimally allocating the
target system to fit the resources of that machine.

y
] In Figure 5.3.3.2, RAT, is decomposed for the incremental ; *
ISDS/HOS development model whereby resource allocation is not <

] completely automated.

The system and its subsystems are then translated into a form
which is ready to be executed on the target machine. Until

the target machine is built, the target machine can be simulated
in a host computer with the simulated environment of the target
system. In this way the target system can simulated in order

to verify that performance requirements are met by the system.

F, We envision for ISDS/HOS that the FSD phase will become more

, straightforward than it is today; since it should be possible
i to automatically translate a functional requirement (described
in AXES and analyzed by the analyzer) direct to its target
machine coded form. This translation process would be performed
by the RAT. (Some of the resource allocations are made statically
and some are saved for dynamic allocation). We would perform
the major steps as indicated in Fiqure 5.3.3.3 for each target

e -

system,
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{7 FS0 PHase
STATIC STATIC STATIC
[“T|SCHEDULER ANALYZER RAT F
'
J y |
1SDS/HOS
, PROBLEM AXES [f] MACKINE
———— DYNAMIC DYNAMIC DYNAMIC
r = L- SCHEDULER ANALYZER RAT
I 'SUPPORT {
: SYSTENS = t

Figure 5.3.3.3: Major Translation Steps of an

Process

Integrated System Development

Until the tools which will automate the FSD phase are available,

we must consider alternatives for the FSD phase.

There are many

ways in which a system in AXES could be translated to a target
machine. The various translation processes and alternate combina-

tions of these processes are sometimes performed manually and

sometimes performed automatically.

processes are static.

Some of these translation

Assembler - translates assembly code (and sometimes
interpreter code) to machine code.

Analyzer - translates from a language form to a

control map form.

Writer - translates from one language to another
language (e.g., convert from AXES state-

ments to HOL statements).

Compiler - translate from a language to a lower
level code that is closer to the "machine

layer".
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Collector - collect from a library several subsystems
to form a systen.

RAT - translate unlimited resource allocations
P to limited resources for target machine.

R e e

-
-
& 2 el

Some of these translation processes are dynamic:

, Interpreter - interprets in real time higher layer

f code and temporarily creates lower layer
: code for a given execution pass of each
- higher level code statement.

- i

Dynamic - translates a target system in real time

Analyzer to a temporary control map.

Dynamic RAT - allocates resources to a process in real
time.

Dynamic - interprets in real time requests of the

Scheduler target system to be executed and tempor-

arily creates a lower layer for the target
system until a given process is executed.

Dynamic - collects and gives priorities to subsystems
Collector in real time.

Various combinations of static and dynamic translation processes

can be collected for a particular target system development.
’ Suppose we deploy a target system, A, with a resident 0S. Both
i ASystem“A\§nd system OS requirements have been received by the
| FSD phase in the ferm of AXES statements, R. The ACS of the
‘ FSD phase decided that theQEEﬁﬁtrementg_fpr both system A and
l system OS should be translated to an HOL for “implementation.

In this case the translation process to the target machine might

( proceed as follows: (see Figure 5.3.3.4).

-y e S0 S IR
Aryagr

<o

l R
(CODE,g, CODE,) = COMPILER (WRITER(COLLECT (AL,0Sg))) (12)

L. 4._ v “.\"."__ P

Here, the translation process which occurs in the target machine
would be represented by

Y = 0S(Aa(x)) (13)

164
HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900




Other alternatives for the set of translation processes for
the FSD phase of System A are:

R
(CODEOS, CODEA) = TRANSLATE (AR,OSR)
R
e i
(CODEOS, CODEA) = COMPILER (HOL) HOL = WRITER (Ra Ro= COLLECT (AR,OSR)

Figure 5.3.3.4: Translation Process for System A

R

. ———

CODE = ASSEMBLER (WRITER (COLLECT (AR,OSR,TNTERPRETERR))) (14)

where, in the machine y = 0S (INTERPRETER(A(x)));

CODE = ASSEMBLER (WRITER(COLLECT(R))) (15)

where, in the machine, y = A(x);

CODE = COMPILER (WRITER(RAT(COLLECT(AR)) (16)

where, in the machine, y = A(x).
When we have the ISDS/HOS tools automated, the recommended

translation method for the FSD phase would be to proceed as
follows:
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R

~‘
CODEA = RAT (A, OS, MOS) (17)

where, in the machine,

y = MACHINE (MOs(OS(A(x))) (18)

is the functional specification for executing System A where

0S (represents the machine independent operating system functions),
MOS (represents the machine dependent operating system

fuﬁctions) and machine are execution layers of CODEA;

MOS is an execution layer of OS; etc.

The recommended development and execution layers of a system
are illustrated in Figure 5.3.3.5. The function described in
Figure 5.3.3.5 is

™ = FRAT (L) (19)

where

CODEy A cHINE (MOS(0OS(A(x)))) =
(20)

Frar (AXESy» cyINE (MOS(0S (A(x)))))

Fpar is the functional specification for translating target
machine systems to an executable form; e.g., CODEA is a
development layer of AXESA; CODEOS is a development layer of
AXESOS, etc.
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With this recommended method, the requirements (stated in
AXES) for the target system, the independent of the machine

0S support system, and the dependent on the machine 0S support
system can all be translated directly to the target machine
code. Changes to each of these systems can be made without
affecting each other. The target system can be transferred

to another machine system, the independent of the machine 0OS
support system can be transferred to another machine system;
and the dependent on the machine OS can be changed separately
to reflect changing machine requirements.

5.3.4 Production and Deployment Phase

During this phase, efforts are concentrated on preparing manuals
and instructions for the use of the target system that has been
developed. User requirements were initially stated before

the CF phase and formulated in the CF phase. The user manual
should reflect these functional requirements but it should

also contain additional information which describes the developed

and working system.

The target system is now operational. Often, many changes are
requested as a result of operating the target system in its
real environment. These changes are due to improvements desired
by the user of errors found in the use of the system. All
errors should be treated as if they were a change to the FSD
phase requirements and are reported to the ACS of the FSD phase.
All new user requests are treated as new requirements and are
reported to the ACS of the CF phase, the ACS of the PV phase and
the ACS of the FSD phase. All three managers must officially
approve the introduction of a change.
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Once all the changes have been incorporated, the manufacturing
of the target system is completed and the target system is

deployed into the field as a delivered product. Figure 5.3.4.1
shows an example of processes that might take place in the i
Production and Deployment phase.

5.4 Tools Used During the Phases of System Development

Table 5.4.1 summarizes all the tools used during all phases of
system development. These tools will be further described in
Chapter 6.

we
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CONCEPT PROGRAM FULL-SCALE | PRODUCTION AND j
___TOOLS FORMULATION | VALIDATION | DEVELOPMENT | DEPLOYMENT 5
, COMPONENT TOOLS ;
) AXES * * * * ‘
ANALYZER * * * * )
STRUCTURING EXECUTIVE * *
STATIC RESOURCE ALLOCA- R .
TION TOOL
SUPPORT TOOLS .
DATA-BASE STRUCTURE * * * *
RESOURCE MONITORING * * * * ‘
INTER-REVISION UPDATER * * * * |
COLLECTOR * * * *
TEXT EDITOR * * * * “
TEXT FORMATTER * *e * * |
; SIMULATOR * * > '
‘ EMULATOR * * *
PERFORMANCE MONITOR ‘ * * *
E
INCREMENTAL TOOLS
3 ASSEMBLY LANGUAGE * *
P MACRO-PROCESSOR/ASSEMBLER * *
' ; HIGHER ORDER LANGUAGE * *
s COMPILERS * *
; ( STRUCTURED DESIGN . .
S DIAGRAMMER
'% INTERACTIVE DEBUGGER * *
'3 INTERPRETER * *
'Y
1

Table 5.4.1: Tools Used During the Phases of a
System Development

oerpores
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5.5 System Building Process

The ISDS/HOS building process is an orderly technique for
"freezing" system modules. Table 5.5.1 demonstrates a system
building matrix used by management personnel to track the
development of a system. Each subsystem can be tracked by

the elements of the. system building matrix. In Table 5.5.1

each building layer of system functions are tracked separately
as an integrated system building layer. With respect to a given
system, a building layer is another system that uses the given

system as input data if the two systems were to be executed in a
building process. The functions of the development layers are
indicated between columns. Each row indicates the translation
process from system conception through actual machine implemeuntation. Each
element of the row is data such that each column element of
a row is the output data of a translation function for which

; the input data is the most immediate previous column
(e.g., P_HOL is output of the Guide-to-Design function; P_AXES
is the input to Guide-to-Design function).

The Guide-to-Design can complement different HOLs. For
example, P_HOLM could be written in DoDl¥. P_H,OL.S can be -
written in a test input language (TIL). S is the integrated
system of mission and environment subsystems and therefore an
HOL program for S is the simulation test system for the target

subsystem. The verification functions of the translation tools

are indicated within each translation step. The design tools
are incorporated in the name of the row element for each

~‘u‘.—~v—c—-—.\~'«..,...., .- ) ‘.',

translation process.

*DoD Higher Order Language Working Group, "TINMAN," version of .
"Requirements for Higher Order Computer Programming Languages,

March 1976.
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Where indicated, the personnel management in the form of the
assembly control supervisor (ACS) for each translation process

is required. The ACS is required whenever the design is a

manual process. Each column of the matrix of Table 5.5.1 !
indicates one development layer which contains all the S
building layers. Each row is arranged so that each successive
row is a function whose input is the system indicated as the
most immediate higher row. For example, system S uses data

X as input (i.e., (S(X)); the management information system,
M, uses system S as input (i.e., M(S(X))).

This building matrix assumes that the tools used to build the '
system have themselves been developed and 'frozen' before the
translation process that uses them has begun. Each translation
is a replacement of the previous translation (e.g9., the
program in the higher order language (HOL) replaces the AXES !
specification). Each translation is dependent on the ]
previous development layer. Thus, the AXES specification must
be 'frozen' before the HOL program is begun, and so on.

Each row in the matrix can be developed and huilt separately
and in parallel since the interfaces among the layers have

been specified.

The manager of a building layer such as system S would have a }
building matrix showing the subsystem building layers that are

monitored by the manager of S. Eventually, there is a

manager in charge of a building laver that is divided so that

the subsystems are either independant of each other or their
communjcation is that of one system using the output data of

another system. At this point, this manager would use a level

building matrix which would use the levels of that one layer

as the columns of the matrix. The row elements of the matrix

using the levels as columns would remain as the development
layers of the level subsystems (Fiqure 5.5.1).
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5.5.1 ACS Demonstrated by System Layer Function S

The building process with respect to personnel management and 31
translation process interfaces is shown in Figure 5.5.1.1 ;
for system S. The project manager, the assembly control h:
supervisor (ACS),monitors the task of developing standards to be !
used as the guide to design:

ACS_HOLg ACS_AXESg
s st e,
(£5(P_HOLg)= ACS ( f 1 (P_AXESg)) (20)

The guide to design standards aid in the manual process of using
the AXES specification to obtain the HOL resource allocation.

The ACS__AXESs is in charge of producing an AXES specification

for system S. This manager manages the official assembly
of the specification, P_AXESg., The ACS_AXESg monitors the work

of managers ACS_AXES 6 and ACS_AXES Manager ACS_AXESg

s2°
is in charge of producing P_AXESSI, a lowerelevel AXES

1

specification with respect to P_AXESS. Likewise, manager

ACS_AXESg, is in charge of producing P_AXES Modules P_AXESg

s2° 1

and P_AXESg, must be officially approved by ACS_AXES . before

S
being allowed into the official assembly. 1In a similar manner,

ACS_AXESg, monitors the activities of the personnel on his

next most immediate lower level corresponding to P_AXESg)
specifications. This management assignment process can be nested
as deeply as desired.
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Figure 5.5.1.2 illustrates the ACS concept of managing the module
building process. The modules can then be placed into a library to
be collected at any time for the present development system or for
other systems that need similar capabilities (Figure 5.5.1.3).

The specification analyzer is used by each ACS to verify

the interfaces of the functions the ACS is responsible for
specifying. Each of these functions can then be developed in
parallel. When one of these functions is completely specified
(stand alone mode), that function can be verified by the analyzer
with the other functions on its own level. The incomplete
functions or 'pseudo' modules, can be used with the completed
function to verify the interfaces at this time ("with" mode).
When the ACS receives all the completed functions that correspond
to the level of specification being monitored, the analyzer is
used again for verification of the level. 1In addition, a

simulator may be used for performance testing. When this verifi-
cation process is complete, the level of specification is accepted
into the official building assembly for this functional phase

of development.

Since levels of P_AXES; can be developed in parallel, it is
possible for a completed specification level to begin the next
step in the translation process before the entire P_AXESg
element is complete. ACS_HOLg monitors the building activity
of the personnel assigned to build the HOL program using the
same management techniques described for ACS-AXESS. To verify
modules at this translation process we use a compiler. It is
possible then, for sections of the HOL program to be built in
parallel with sections of the specification process. A library
of specification modules is developed in parallel with the
development of the library of HOL program modules.
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Whenever a modification to an element of a library is made,

that change is reflected throughout the translation process by
tracking the interfaces via management system,M.

If the translation process from P_HOL  to P_ASSg to P_MACHg

S
is automated by a compiler, there is no need for assembly control
supervisor personnel to monitor these activities. 1In this

case, ACS HOL. is in charge of the activities from HOL code to

s

machine code. If an automatic tool such as the resource
allocator is available, the role of ACS_HOL !

could also disappear.

Each row of the system building matrix is built in a similar
manner as shown for system S. Another example might show the
building process for a system in which the translation process
to assembly language is a manual process. Here, ACS manage-

; ment would be required to assure that the HOL, implemented in
assembly language macros corresponds to the HOL specification :
In this case, the guide to design function would again aid the
verification, this time from HOL program to the assembly language
code.

B

5.5.2 The Management Building Laver (M)

Table 5.5.1 assumes the use of an automated managément system, M,
[ to aid in the building process. System M uses S(X) as ]

:

2 '

'i ! input in order to collect statistical information about the

E elements of S, to relate the development status of the j

o elements of S; and to modify the elements of S. :
e
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In the official building process for the enti re system, M,

it is recommended that some implementations of M be 'frozen' first
so that M can collect data for the other systems being developed.
The M system itself is a collection of library modules. The
interfaces of system M with respect to system S is shown in

Figure 5.5.2.1. System function M uses data S(X) (in any

form, e.g., P_AXESs, P_HOLg) and produces a data base. The

personnel manacement (ACS) use M to record statistical information
each time a change is made to the functions the ACS is monitoring.
System M will provide standard ways for recording

the information that must be incorporated manually (e.g., pro-
gram change request (PCR) numbers, reason for new revision)

and can automatically collect information that in past develop-
ment efforts either have never been recorded or have been

recorded manually (i.e., where error was found, what tool

found the error, average execution time for a module, etc.).

System M is also used to build libraries of system functions
and to correlate this information with the corresponding

function. For example, M can 1) collect P_AXESSI with

P_AXES,, and P_AXESy, with P_AXES,, to form P_AXES

X S with

P_AXESy, or collect P_HOLg, with P_HOL.,, and P_HOLg, with

P_HOL,, to form P_HOLg with P_HOL,; 2) associate the documenta-

tion for an element in Table 5.5.1 with its corresponding function
revision by revision (e.g., a control map for P_AXESg; a design

diagram for P_HOLS; a report form for ACS_AXESS.
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Layer M has its own personnel management layers (Figure 5.5.2.1)
and its own translation project management process (Table 5.5.1).
The subsystems of layer M interface with the subsystems of

S in a similar manner. ACS, (Figure 5.5.2.1) monitors the

task of building the M layer function whereas ACSDB monitors
1] the task of building the data base:
ACS DB ACS S
— -
(£,(M(S)) = ACS, (£, (S(x)))
LR ML (21)
Data
Base

5.5.3 Subsystems of System S

j System S can be divided into two main functions: the environment
and the mission functions. Table 5.5.3.1 shows thée building matrix
for the subsystems of S.

Table 5.5.3.1 is arranged in a manner similar to Table 5.5.1.
the application subsystem, S, uses data X as input; the

Here,
Al
, uses system S

b environment subsystem, S as input. Just as

E A

system S can be built independently from and im parallel
with system M, subsystem Sp can be built independently
from and in parallel with subsystem SE' The same translation

J TR T
——— o~

tools are used to build SA and SE that were used to build
system S and system M. Again, the translation data is
S dependent on the previous translation data. The more of this
'i -; process that can be automated, the more reliable the transla-
F B tion process will become.
.# |
e

V.
B wd g
s, W Ll
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We assume in Table 5.5.3.1 that only the AXES and HOL translation
steps are managed by assembly control supervisors, since these
are manual steps for this building matrix. Management system M
can operate on SA and sE to collect modules during development
and to create system libraries for Sa and Sg-

5.5.4 The Environment Layer Subsystem

Table 5.5.4.1 shows the building matrix for the environment sub-
system (SE) of S. Table 5.5.4.1 is arranged in a manner similar
to Table 5.5.1 and Table 5.5.3.1. Here, the environment E function
(in the form of models or hardware) uses data XE; the operating
system function (OS_E) uses system E as its input data. Each
system layer function can, again, be built independently.

This process is similar to the process for the integrated system
shown in Table 5.5.1 and to the sub-integrated system of Table
5.5.3.1. To build each system layer function, we use the same
tools for the translation steps that were used to build the
integrated system of Table 5.5.1 and Table 5.5.3.1.

The translation building process for environment, E, modules
might be more varied. Some E modules might translate directly
from the AXES specification to the hardware; others might be
modelled in software and also built in hardware in parallel

with the modelling effort; others might only be modelled in
software. 1In Figure 5.5.4.1, a sample system E has five functions
on its most immediate lower level in the AXES specification:

the universe function, a human operator function, a radar system
function, the engine function and the computer function.

To build system E, all five E functions are specified in AXES and
monitored by the ACSE personnel.
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Once verified and placed in the specification library, the

1 interfaces are determined. These specifications are to be

used for an actual mission system, a hybrid computer simulation
of the mission and a host digital computer simulation system.
The radar is translated directly to hardware and tested on the
hybrid machine system before transfering the hardware to the

mission software. Here the radar hardware is a 'frozen module'
collected in the mission system, i.e., the mission system uses ]
the radar as though it were a library function in that once built
for the hybrid, the same radar can be used for the mission.

In parallel with this effort, a model of the radar system is
translated to a higher order language and then to the host
machine. This modelling effort in the HOL for use on the host

machine is done in order to run system S as an integrated system
for performance testing the SA system functions.

The operator function is performed by a person to guide the

hybrid simulations for performance testing. The same
specifications of the operator are used during the mission.
The operator function is modelled in an HOL and translated
to the host machine. The HOL for thé)operator function can
' be a test input language.

{ The engine function is built directly from the AXES specifica-
tions. Both the universe and engine functions are modelled

for the host and hybrid machines. Since SE uses SA as input,

SE has the characteristics of the application system so
that the computer specification can be developed independent
of the application system itself. Once the computer is
specified, it can be built directly and also modelled on the

host machine. The hybrid system could use the computer hard-

© G R @ 1 e -8 g
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ware as one of its subsystems. During the HOL translation
process, the AXES specifications for universe and engine are
collected as a unit (AXES function specifications can be re-
grouped) and compiled. Thus, the universe and engine unit can
be translated to both the assembly language of the hybrid and the
assembly language of the host without any additional work on

the part of the people translating AXES specifications to

HOL allocations. The ACS of the HOL translation process assures
that both the hybrid version of the universe and engine

unit and the host version of that unit are produced.

The hybrid and host machines are used only for performance
verification. 1If an error occurs during a hybrid simulation
by either the operator or radar functions, the error can be
traced directly to the AXES specifications (Figure 5.5.4.1).
If the error occurs in the universe/engine unit, the HOL
program is checked first. If no error is found, the program
unit in question is traced back to the AXES specification
for that unit (Figure 5.5.4.1).

System SE for the mission is regrouped and collected so that
the interface with the real world (i.e., the real universe)
is separated from the remainder of system Sg functions.

The environment system SE is often referred to as a tool with
respect to the application systenm, SA' When referred to as

a tool, SE is called a simulator.
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5.5.5 The Application System Layer S

The application system Sa is built as seen in Table 5.5.5.1,

Table 5.5.5.1, arranged in ‘a similar manner as the other building
matrices, shows A using XA as input data and OSA using a

as input data. Sp is built and managed in a manner similar

to that described for each of the other building processes
Once all the subsystems of SA are built and verified, SA

as a unit can be placed in the mission system without concern
as to its interface consistency with other system S modules.

In Figure 5.5.5.1, function f1 shows a possible management
scheme for SA functions which is not one-to-one . Here
ACS_}\XESA monitors several tasks to be built in the AXES

specification,.

; As soon as the AXES specification is built, some functio -
of SA could be built directly in the hardware (Figure %.5.5.1).

For example, we could build a square root function, a matrix
data type or even a navigation function directly in the
hardware. The resource allocator tool would be very beneficial
here, in order to determine the number and type of processors
@ : that would best suit the application. If the AXES specification
' | is translated to an HOL, we can use a compiler to build object
code for various host machines. This might be necessary if

.-

more than one organization of people are involved in building
the application system or if one organization of people is

;o

P

g ‘ responsible for the application system but another organization
g ‘ of people is responsible for the integrated system, S.

i
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5.5.6 The Building Levels of Support Tools Functions

The system of support tools used for the translation process
can be built and managed in a manner similar to building any
other system. Table 5.5.6.1 illustrates the building matrix

associated with this building process.

The analyzer uses a specification in AXES, P_AXES, as input. The
resource allocator uses the analyzer system output as input.

The compiler uses output from the resource allocator as input.
These tools use a 'bootstrap' process to get started. For
example, the analyzer is written in AXES and then the P_AXESAN

is analyzed by the analyzer itself.

5.5.7 'Frozen' Modules

When we divide a system into layers, it becomes apparent

which tools, system functions, and system data must be built

F f and the order in which these modules must be built.

: Figure 5.5.7.1 illustrates the ISDS/HOS building process.

AXES and the analyzer must be built and 'frozen' before any
other system. Once AXES and the analyzer are 'frozen', system
M can be specified in AXES; and HOL, compiler, assembler,

and machine can be specified and built in parallel. Once the
; ' compiler, assembler and machine are 'frozen'; system M modules,
' specified in AXES, can be built. The development of
system S needs the management system to keep track of its
building process. Thus, M should be 'frozen' pefore S is
built. System S now has all the support tools necessary
for its development. The ISDS/HOS support system can be
used over and over again to build any application system other
than S.

.-

L i SR Y SRR R
—— e —

4 Ww | aad
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6.0 TOOLS FOR ISDS/HOS

The previous chapter described the use of ISDS/HOS
throughout the life-cycle of computer-based military systems.
This chapter presents the automated tools used in the disciplines
of design, implementation, documentation, verification, and
management of computer-based systems. This chapter is divided
into three sections as follows: The first section, Component
Tools of ISDS/HOS, describes the associated tools which would
enable one to proceed automatically from initial requirements
to the target-machine coded form. The second section, Support
Tools, describes tools which provide support to project manage-
ment, interactive development and engineering analysis. The last
section, Incremental Tools for Current lise of ISDS/HOS, describes
guidelines and conceptual-design modifications to currently
available technology, thus providing an incremental approach
toward meeting the objectives and concepts of ISDS/HOS. Within
each of these sections the conceptual descriptions and the use

of the tools as well as their availability will be presented.

6.1 Component Tools of ISDS/HOS

6.1.1 Specification Language (AXES)*

The specification of systems in general and of software systems
in particular, has always been a difficult task. This problem

increases as systems become more complex. Systems that include

* BExcerpted from HAM76b. The specification language AXES is
currently being designed and developed at Higher Order
Software, Inc. sponsored by the Naval Electronics Laboratory
Center.
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software as a major component are especially difficult to

specify. This is largely due to the fact that software systems

are becoming increasingly more complex as a result of advanced

hardware technology. The result is that large software systems

are often error prone and are always very expensive to develop.
Unfortunately, the errors are usually found too late, and the

cost of developing systems can far exceed the original estimates.

Such system-development processes are usually fragmented. We

concern ourselves, therefore, with the beginning of a given
system-development process: the specification and its relation- ;
ship to the total system-development process. ‘

Table 6.1.1.1 lists characteristics of proper specifica-
tions. 1In addition to these characteristics, the specification
language should be flexible enough to provide managers of a
given application the means to provide standards that satisfy <

their individual needs. Yet even with this flexibility, the
specification languages should also be able to provide the
&l : means to communicate any given application system to managers ]

or users of other systems.

A proper specification should be:

free of errors

flexible to change

traceable with respect to a given change
. transferable from one machine toc another

adaptive to different and changing implementations
easy to define

easy to use

ecasy to understand

used asg either a direct or an indirect means for
implementation

used to maintain proper interfaces throughout a given
{ system develnpment (thus providing for automatic, 1
static verification of interfaces)

" in sufficient and varying degrees of detail so as to
satisfy the needs of the

® manager

-~
® ® 9 0 &6 0 & ¢ o

i s T NI A
[ ]

® user
e systems designer

® able to provide the means of predicting potential
problems that would occur in a given implementation

Table 6.1.1.1
Characteristics of Proper Specifications
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A successful specification must be designed independent of
implicit assumptions; it must be designed independent of its
implementation tools; it must be designed independent of system
implementation-design concepts; it must convey intent unambi-
guously; and it must provide mechanisms to describe the properties
of systems in as abstract a manner as desired.

A successful specification language should 1) convey to
the manager the intent of the specification in ‘a natural manner;
2) provide to the user mechanisms which are easy to use and
easy to understand; and 3) provide flexibility to the designer
to define any building blocks and be able to show the designer
all properties of a given system.

The specification language AXES is intended to provide
the mechanisms to define computable systems. These systems
include those which are real-time, multi-programmed, or multi-
processed. Each system can incorporate built~in error detect-
ion and recovery. Towards this end, we are basing the founda-
tion of AXES on a formal methodology which defines a valid
specification to be one which is based on completeness of
control. The foundations of AXES are based on the methodology
_ of ISDS/HOS. This means that AXES, the building blocks of AXES,
| and systems defined by AXES will be consistent with the proper-
ties of ISDS/HOS. 1

| AXES will provide a reliable means by which to define a
successful specification. Reliability is to be obtained from

‘ the properties of systems defined by ISDS/HOS. These properties

{ are embedded in the specification techniques for defining
abstract control structures. Each abstract control structure
uses abstract data types to complete a given system specifica-

S X N st el I

tion.

With AXES, the abstract control structures can be defined
in such a way to conform to the formalism required for reliabi-
lity and to convey intent of the designer to managers and users
of a given system application.
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It is envisioned that those involved in a system-specifica-
tion process will have available an option to provide, selectively
(and automatically), any layer* of specification. Specifications
can be defined in an English-like manner for the manager. Speci-
fications can be defined in terms of representative control
structures for the user. Specifications can be defined in terms
of their formal definition for the designer.

It is envisioned that the syntax of AXES will become a
'frozen' module, because it is intended that all systems use
the same syntax. AXES will be used to design representative
abstract control structures and abstract data types as an aid
to the user. A system designer can use AXES to design new
abstract data types and new abstract control structures. A

manager can use AXES to define system standards.

AXES provides for commonality between systems for they will
f all use the same formal syntax. Many will use the same standard
building blocks. Of most importance, all building blocks and
specifications will follow the same axioms. Although users
of specific applications will have flexibility to choose differ-

ent building blocks, these building blocks, when "compiled",
will be brought to a common meeting ground with all other users
} of AXES. Again, the adherence to AXES principles is maintained
throughout all layers of abstraction.

The basic philosophy of the abstract-building block concept
is to treat both the mechanisms of defining a specification
and the modules of a specification as if they were 'instructions'

That is, no abstract control structure has any knowledge of a

— . -

B W g e

* Refer to Chapter 5 for definition of "layer".

-mb-—;j.<7-—“m
: st S0
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higher-level abstract control structure using it. Thus, we

do not distinguish, in this sense, between an abstract control
structure and a module in that they are both systems. 1In fact,
when abstract control structures are defined with specific
data types, they are interchangeable with the modules of a
system. Ultimately, it is envisioned that systems can be
implemented directly from the system specification. Here, the
primitive control structures become the instructions of the
"machine” itself.

AXES provides the means to define a layered specification
in that a "function-first approach" can be used from layer to
layer of implementation. Thus, a flexibility exists for choos-
ing mechanisms and allocating resources for a given application.
With this approach, a given specification can be transferred
to other implementations and their respective machines.

Criteria for AXES Language Statements

Language statements will provide the mechanisms to define
a system specification, an abstract data type specification,
and an abstract control structure specification. The semantics
will include type-checking mechanisms for data types, data
structures and control structures.

A system specification is described in AXES by using

1. a set of primitive data types (supplied and implemented
in the language); e.g., integers, real, boolean, and
string.

2. a set of primitive control structures (alsc supplied and
implemented in the language):
composition
class partition
set partition
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3. abstract control structures (the specifications are
supplied by the user or by a representative set of
"built-in" specifications supplied by the language
designers).

4, abstract data types (the specifications are supplied
in a manner similar to the abstract control structures).

5. syntax to describe the relationship between the data
types, control structures and names of subsystems that
comprise a given system.

Lauguage statements will be available to effect the system
specification. In order to describe a system specification, the

following types of language statements will be included:

® function name identifiers
® data type identifiers

e function equations ~ implemented data types will have
a standard set of operations. Use of abstract data
type equations will be limited to the equality
operator.

® class construction - used to establish access
variables, domain and range for each module.

function partitions
function blocks
parametric replacement statements

analyzer directives

comments

Language statement will be available to effect an abstract data

type specification. Such a specification consists of three

parts:

1., data type name

2. operations on that data type:

the domain and range for each operation on the
data type can be specified.

3. the set of axioms that define the algebraic specifica-
tion for a given data type. Each axiom is represented
by a system in which:

a) the I/0 relationship for the system can be
determined without a control structure (i.e.
by function equations on the data-type), and
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b) the bottom nodes for each system are the
operations on the data-type.

Language statements will be available to effect an abstract
control structure specification. Such a specification consists

of four parts:

l. name and category*

2. semantics

a) the set of relations among systems. This includes
relationships with other abstract control struc-
tures and identification of data types and data
structures.

b) a control map. This shows the relationships
of a system with respect to a given layer.

3. syntax. This considers an English-like equivalent
that can be used interchangeably with other control
structures.

"Built-In" Subsystems, Abstract Data Types, and Abstract
Control Structures

The language syntax will provide only the mechanisms to
build systems. It will not include actual system specifica-
tions. 1In order for a systems engineer to be able to use the
language effectively, specific "built-in" subsystems, abstract
data types and abstract control structures should be provided.
The high-level system designer has all the flexibility necessary
to create new definitions. The engineer has all the flexibi-
lity to use the built-in "subroutines" to establish more complex
specifications based on representative system definitions.

* Category depends on type of abstract control structure (HAM76b).
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For example, "built-in" subsystems might include functions
such as Eine, cosine, square root, etc.; "built-in" abstract
data—typgs might include stack, matrix, etc.; "built-in"
abstfﬂét control structures might include schedule, copy, etc.

"Built-in" subsystems should include abstract control
structures so that an option will exist for each module to
define:

(1) specifications for error detection and recovery
for each function.

(2) predicted time and predicted memory usage. (Such
information is applicable when it is necessary to
predict a system's behavior from the point of view
of resource allocation.)

The efficiency and therefore Ehg cost of any given
system development is directly relateé\to both reliability
and clarity. With AXES, the necessary reliability, the
necessary means of communication, and the proper definition
of standards can be established for a compléte system-develop-

]
ment process. /

It is envisioned that the cost of a given system develop-

ment will decrease significantly with the use of AXES.
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1 6.1.2 Design Analyzer

The main function of an analyzer is to guarantee that a given
ISDS/HOS system is consistent with the axioms. Automatic inter-
face analysis is provided on a static basis (without execution)
by the Design Analyzer.

Real-time software systems cannot be exhaustively tested.
The intent of the Design Analyzer is to verify exhaustively and
statically a given system defined according to the rules of
.ISDS/HOS. Interface errors in multiprogramming or multiprocessor i
: systems are caused by data or timing conflicts. Given the j
; ISDS/HOS control system, it is possible not only to design a
‘ system with a known and small finite number of logical inter-
faces to verify, but to prevent both data and timing conflicts.
Thus with the Design Analyzer, the more expensive methods of
simulation and/or dynamic verification can be limited to unit

‘ performance testing.

The Design Analyzer checks the consistency of a specifica-
tion written in AXES language statements. Figure 6.1.2.1
illustrates the top levels of specification for the analyzer.
The Design Analyzer produces a control map as a visual aid in
determining valid functional relationships. The Design Analyzer
if ; also aids in the design process by means of heuristic algorithms
to check the data-type specification and proof-of-correctness
algorithms to check the contents of a specification. A manner
in which these design verification aids are employed in the
Design Analyzer is outlined in what follows.

—— .

!
}
)
{
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Control Map = Analyzer(AXES statements)
N—

C, = Interface C, = Heuristics_to check_ C; = Proof of
Consistency(Al) data_pypes(Az) Cofrectness_Aids(As)

Figure 6.1.2.1

Top Level Decomposition of Analyzer Tool

Interface Consistency

Analysis of a system specification for interface consistency
requires a syntactic verification that each function decomposi-
tion complies with the axioms. Decompositions that are purely
composition, class partition, or set partition can be analyzed

i directly, according to the considerations outlined for the primi-
{ tive control structures in Table 5.2.1. These considerations

also apply to functional decompositions that have more than two

offspring functions but are still of a single type (for example,

see Figures 4.3.2 and 4.3.5). Decompositions which combine two
or more of the primitive types must first be reconfigured into

. "»i'*wm.'n-'¢—- B T

homogeneous control structures. This can be done automatically
by the Design Analyzer through a trace on the input data. 1If a
structure is encountered in the static analysis that cannot be
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formed from the primitives, then it is not a legal HOS functional
decomposition and will be declared to be in error. All functions
which are found to be consistent with the axioms and rules of

the structure types would then be guaranteed to interface
correctly with the remainder of the system.

Proof-of-Correctness Aids ‘ 1

In program-correctness terminology, a correct program is
one for which, given that a specified initial assertion is true
preceding a program execution, then its related terminal assert-
ion will be true at program completion. If this definition is
translated to ISDS/HOS concepts, a correct specification would

be one in which, for each possible input which satisfies an

assertion defining the domain of a function, the unique output
specified by the function mapping will satisfy a respective
. assertion defined on the range of the function and the particular
! input.

To be specific, consider the function,

y = F(x)

1 where the variables x and y have been defined as elements of

‘ particular data types. For example, a function F, which has
input and output assertions, R and P, respectively, could then
be

= F(x

Yiy|p(y)} {x|R(x,y)} (1)

— .

b g s e o PO

Thus, for (1), for all x such that R(x,y) is true, the mapping
y=F(x) will produce a value of y such that P(y) is also true.
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It should be apparent that R(x,y) has explicitly defined the
domain of F and P(y) has explicitly defined the range of F.

A specific example of such a function description is the square
root (SQRT) function.

Y{y|y>0} ~ SQRT(x{x|x=y2}) (2)

St

,i Here, the relation x=y2 limits the domain of x to bositive
numbers, as well as describing function SQRT, and the statement
y>0 limits the range of y to be positive numbers.

Before an examination is made of the implications of
correctness assertions on the decomposition of a function, it
is appropriate to examine this particular definition of specifi-

cation "correctness". Assuming that a particular system speci-
fication satisfies the preceding criteria of correctness, it
still remains to be determined whether the system function
actually does the job that is required of it. Obviously, a
function which correctly specifies the mapping for assertions

of a square-root operation will be of absolutely no value if the
operation that is actually desired is the determination of the
cosine. Thus it remains the ultimate task of the system designer
i to assert (i.e., prove) that the correctness assertions defined

:; for the system do actually specify the function called for.

| It may be apparent from the correctness assertions them-

selves that a desirable system must satisfy the specified

criteria. If not, then some lower level in the system will be
tractable by human understanding and, hopefully, justification
of the correctness criteria could be pieced together from that

———— —— -

point upward. It is obvious, then, that the determination of

Ll e R

is a critical part of the system specification and should be

oo geoas

|
E4 A proper correctness criteria (i.e., the requirements of the system)
i
|
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accomplished as soon as possible in the specification process. 1
However, it may take many iterations through attempted specifi- L
cations to identify all the deficiencies in the proposed system !
correctness requirements. !

|

These higher concepts of specification correctness
notwithstanding, consider now the implications of functional
decomposition on the correctness conditions of a parent function.
Because a system control-map specification can always be auto-
matically reconfigured into modules which are primitive control
structures, correctness results established for the primitive
control structures themselves will generalize to any abstract
control structure. The COMPOSITION primitive with correctness
assertions could be as shown in Figure 6.1.2.2. This example
uses the same form as (1).

(y{ylPo(y)}) = Fox{leo(x,y})

(y{ylPl(y)}) = Fl(z{z|R1(y,z)}) (z{z|P2(z)}) = FZ(x{lez(x,z)})

Figure 6.1.2.2: Assertions for Composition
Primitive
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The considerations of the input/output assertions in the composi-

tion primitive are as follows:

1. obviously, because x is input to both FO and F2,
then Ro(x,y)ERz(x,z),

2. because the output of F, is defined to be the identical '
value input to Fl’ in tﬁe value of z, then Pz(z)ERI(y,z),

3. Dbecause the output of F; is identical to the output of
Fg, this being the particular value of y, then y must
satisfy both Pp and P;. However, the value y of Pj(y)
must also satisfy Rj(y,~). ‘Whus for Py to be true,
both P; and P2 must also be true for the same values of
X, Y, and z. Thus, Pg(y)=P3(y) AND Py (z).

Therefore, the functional decomposition of F0 into Fl and F2
implies that the output condition P, of Fo is also decomposed

into the output conditions Pl of Fl and P2 of F2.

Similarly, other functions decomposed by other control
structures can be described by input/output assertions. The
input and output assertions would be supplied by the system
designer to aid in system specification as well as substantiate
the final product. It may be possible for the Design Analyzer
to verify proper decompositions of assertions automatically,
according to the characteristics of the primitive control
structures. This verification process can be applied at all
stages of system decomposition to help the designer define
i consistent and complete input and output requirements.

Data-Type Analysis

The definition of data objects and their operations is an
integral part of a system specification. The data-type specifi-
cation techniques outlined in Section 6.1.1 for ISDS/HOS are
adapted from the algebraic approach of Guttag (GUT75). Using ?
this axiomatic approach, it is possible to define abstract

B S LT
———— - - .
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data types and the primitive operations performed on them without
prescribing a manner of implementation. For a data type defined
in this manner to be useful, (1) the data type characterized by
the axioms must actually be the desired data objects, (2) the
axioms must be consistent with one another, and (3) the axioms
must comprise a complete set in that they are sufficient to
define the meanings of the primitive operations.:

The problem of guaranteeing that axioms are consistent is L
much simpler for the system designer than that of insuring that
every necessary characteristic of the desired data object has
been included. This fact is reflected in the formal theory of
algebraic data-type specification. It has been shown that it
is impossible, in general, to verify a set of axioms mechanically.
The completeness and consistency of a data-type specification
can be mechanically guaranteed, however, if the designer system-

atically limits the complexity of the axiom definitions and

requires that the operations be both primitive recursive and total..
These limitations appear not to eliminate any axiomatizations F
that might be useful in specifying computational systems. The

complexity of the axioms may also have to be limited to allow
human comprehension of the overall data-type specification. This
may be necessary to guarantee that the defined data object is
really the desired one.

This systematic procedure can be implemented as automatic

design-aid heuristics. These can interactively assist the system
designer in generating a set of algebraic data-type axioms that
are suitable to mechanical verification of consistency and
completeness. As outlined, an abstract data-type specification
process would begin with the syntactic definition of the

g s o

A

primitive-operation interfaces (see Section 6.1.1). The system
designer will derive this information from what he knows about
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the desired operations, their domains, and their ranges. Given
this, the design-aid tool can query the designer for more
specific definition where required, or reject inconsistent speci-
fications, until a complete and consistent set of axioms is
defined for the operations. Once the data types have thus been

et e el e e hmanan . oa s

specified, the Des.qn Analyzer can then verify the axiomatic
consistency of each instance of a primitive operation in a

system control map.
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6.1.3 Static Resource Allocation Tool (RAT)

The Resource Allocation Tool will automatically generate
machine executable code for a target machine from a system-
specification control map. The RAT will provide a vital link

in automating the process of software production by eliminating
the expense and error of manual allocation of computer resources
and computer-program implementation. This tool will generate

a software configuration from a control map and optimize this
configuration to the particular implementation requirements.

To perform these functions, the Resource Allocation Tool
must first reconfigure a system-specification control map into
a standard architectural form still independent of hardware consi-~
derations. The architectural form presents the system specifica-
tions in a communicable format, suitable for use by designers
in the selection of hardware. An architectural form is a
reduction of the control map into as few leve}s as possible.

From the architectural form, the RAT can analytically
determine both the time-optimal and memory-optimal software
configurations. The time-optimal configuration will be found
under the assumption that an unconstrained number of multiple
processing units, as well as unlimited memory space is avail-
able. To determine the memory-optimal configuration, it must
be assumed that unlimited execution time is available and that
a single processing unit is executing. The time-optimal confi-
guration will make apparent the time-critical execution paths
in which data dependencies require sequential execution. The
memory-optimal configuration will illuminate the dynamic
memory-allocation possibilities for both data and instructions.
The time-optimal and memory-optimal configurations will provide
bounds on the possible time/memory performance trade-offs
that must be made in the determination of an overall optimal
configuration for a particular hardware implementation.
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The next step in resource allocation is to generate an
optimal software-module configuration according to specified
] implementation constraints. The RAT will accept time and
memory constraints and system input-data information and apply

analytical optimization techniques and functional-simulation
optimizing techniques to arrive at an optimal configuration.
The RAT then generates machine code for a particular machine.
It will receive the specific machine parameters as'input and
produce optimal machine executable code as output, entirely
bypassing the traditional HOL step of system development. The
inputs and outputs of the RAT are given in Table 6.1.3.1.

Resource Allocation With Primitive Control Structures

System specifications can be expressed as a control map

containing only primitive control structures. Insight into }
the resource allocation for abstract control structures can
' be gained by examining the resource allocation for primitive
} control structures. All of the concepts discussed below also
apply to more complex data types and control structures.

£l

COMPOSITION

Figure 6.1.3.1 illustrates the primitive control structure

of composition. Obviously, sequential execution is implied;
function f2 must be performed before fl' because fl requires

% ( the value of z as input. 2z itself might consist of more than
3 one variable. Consider z = (u,v). In this case, if f2 were
1 to generate the value of v before that of u, fl could begin
h executing those of its internal functions which require only
hi the value of v as input. When u is subsequently defined by

f2, the remainder of fl could begin executing.
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y = £(x)

Yy = fl(z) z = fz(x)

LA

Figure 6.1.3.1
The Primitive Control Structure: Composition

There are additional allocation implications of the compo-
# sition primitive structure. These are as follows:

1. z exemplifies the generation of data that is local to
a module. Storage space for z does not need to
be allocated until f£f2 has generated its value. When
f; has completed its references to z, the storage
for z may be released.

4 2. If x has no other references outstanding in modules L

above f in the control tree, then the storage for
x may be released as soon as f; completes its
references to x.

3. The storage for y need not be allocated until its
P value is generated by f,.

! 4. Because fj; is not needed after z is defined, the
storage for its instructions may be released when z

© is defined. ‘
}
v 5. Similarly, the storage for f;'s instructions need not
'§ | be allocated until z is defined.
4
l l 6. Because the data dependency of f; and fj imply.a
& sequential execution, f] and f5 might best be
performed within a single processor to minimize the
overhead of transfers. However, if it can be assumed
that f; will be able to begin execution before all
: of f; is completed, it might be advantageous to exe-
. cute these functions on different processors.
fug
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Table 6.1.3.1
Input and Output of the Resource Allocation Tool

INPUT
A. System~specification control map.
B. Target~machine configuration parameters.
C. System-operation input-data distribution
statistics (or estimates).
OUTPUT
A. Standard Architectural form of control map.

B. Optimal software configuration for general
hardware confiquration as specified by:

(1) maximum number of usable processing units.
(2) maximum available storage space.

: (3) upper bound on permissable execution-time
statistics

C. Optimal machine-executable code for target
machine as specified by:

(1) mapping of standard abstract-machine
instruction set into target-machine
instruction set.

{2) memory-storage address-space size- and
1 access-constraints.

(3) number of data banks.
(4) number of data-access ports for each processor

(5) number of registers available.

———— e -

(6) amount of cache memory available to each
processor.,

2 .
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Set Partition

Figure 6.1.3.2 illustrates the primitive control structure
of set partition. Set partition provides the means for a
decision process; only one of the functions fl or f2 is
performed for any given invocation of the module. Consequently,
the decision to execute fo or f1 cannot be made until the value

of x has been determined.
y = £(x)

Y = £o(X(x|x>10)) y = fl(x{x|x§10})

Figure 6.1.3.2
The Primitive Control Structure: Set Partition

Because neither the output of fo or f1 can be produced
before the value of x is determined, it might be desirable
to postpone loading instructions for fo or fl until that time.
However, it is also possible that the time overhead of loading
fo or fl dynamically may be more "expensive" than loading
{ both fo and fl into storage before the value of x is determined.

S
it
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Class Partition

Figure 6.1.3.3 illustrates the primitive control structure
of class partition. Functions fl and f2 are strictly independ-
ent and may be executed on different processors provided the

extra overhead is justified.

(YIIYZ) = f (xllxz)

Y, = £5(x;) vy = £, (x)

Figure 6.1.3.3
The Primitive Control Structure: Class Partition

i Standard Architectural Form

The architectural form of a control map provides a
standard means to communicate a specification and provides
insights into general hardware requirements. It is a reduction

of the control map into as few levels as possible, with the
set partition being the only control structure that would not

1
i
'
:
£
¥
}
‘)

be condensed into its controller. Figures 6.1.3.4 and 6.1.3.5
illustrate the condensing of primitive control structures.
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y = fo(x)

condenses to

y = £_(x)

y = fl(u) u = f4(w) w = fs(v) v = f2(x)

Figure 6.1.3.4
Condensing of the Composition Primitive

The architectural form provides a maximal grouping of
data-dependent execution paths. These are the critical paths
of execution in which the output of one operation is needed
as input to another, this being simply an occurrence of the
composition primitive. When a control map is condensed into
the architectural form, these paths are carried out as long as
possible within a single module. Module invocation in a
set partition control structure is the only interruption
in the data-dependent paths, because execution flow in a set
partition depends on the values of the test data and cannot
be determined statically.
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Optimization Techniques

It is possible to apply both analytical and heuristic
optimizing techniques in the RAT. These would be predominantly
based on the critical paths of data-dependent execution. In
an HOS specification, these paths can be traced explicitly,
down to the primitive machine-operation level.

While it is impossible to determine the flow of execution
in a system statically, it is possible to generate statistics
on the average execution flow through functional simulation
of module invocation. From a priori distribution statistics
on the system input data (measured or estimated), it is possible
for the RAT to determine invocation statistics for each module

in the system by means of a top-down analysis of the data
.distributions at each level. With the invocation-distribution
statistics and execution-time estimates for each module in the
system, the RAT could use analytical or simulation techniques
to estimate system-execution times and resource utilization.

The statistics for the unconstrained time-optimal and
memory-optimal configurations will provide bounds within

which the RAT can optimize the trade-offs of configurations
. evaluated by functional simulation.

Code Generation

Once the architectura! form of the control map has been

produced and the data-dependent paths have been optimized for
a given implementation, the RAT would generate the required

——— e

target-machine code.

.. U A 5 \-v‘...v', et o

The bottom level of the architectural form of the control
map contains the primitive machine operations. These primitive
operations would be placed in the sequence dictated by the
architectural form. Utilizing the dynamic memory allocation
and time-critical paths indicated by the optimization techniques,
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optimal target-machine code will be produced for a given imple- ?
mentation.

Resource Allocation Example

Figure 6.1.3.6 is an example of possible alternative
ki ISDS/HOS resource allocations for the following expression.

{(a+b) * (c-4)
(e-f)* (g+h)

Figure 6.1.3.6(a) depicts the evaluation of the expression

through sequential programming. Using this method, memory
cannot be allocated dynamically because it is impossible to
determine at what point in the execution the storage for a

: datum may be reallocated. As a consequence, memory for all
the data must be allocated before execution.

Figures 6.1.3.6(b), (c), and (d) show three possible
alternatives ISDS/HOS resource allocations for the same
expression. In each of these alternatives, memory may be
allocated dynamically. As prescribed by the axioms of ISDS/HOS,
a datum is assigned a value only once and referenced only once.

j Single reference implies that a new name is used for each
reference to a datum. This may be implemented with a single
name or address for the variable and a counting mechanism to
determine when the storage for that datum may be reallocated.

In either case, the number of references to a datum and how y

——— e~ -
L

P L (YT

they are made is known statically from the specification.

Figure 6.1.3.6(b) shows the time-optimal resource alloca-

H , .
'f : tion of the expression. 1Its evaluation requires only three o

‘_ ¥ execution steps compared to the seven steps of sequential
:gﬁ; programming. While the time-optimal decomposition requires
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< f{atb)*(c-d)

(e-£)* (g+h)
SEQUENTIAL
PROGRAMMING Possible Alternative ISDS/HOS Resource Allocations
TIME MEMORY TRADE OFF
ALLOCATE 10 MEMORY TIME OPTIMAL MEMORY OPTIMAL CONSTRAINED  pRrocESSORS
x]r [ R J: blc[alelt h
(fxlrfalefea]<Te[s["]
1 2 3 456 7 8 91011 : i
STEP 1: Rl = a+b STEP 1 MEMORY STEP 1 MEMORY STEP 1 MEMORY ‘
. = Qo= = = g+ |
STEP 2: R2 c-d tl ath tl a+b 9 tl = a+b l
STEP 3: R, = R*R, ty = c=d 12 c,d.e.f,9,h t, = c-d 10 i
o a: R = eof ty = ef STEP 2 MEMORY e.f,9,h !
STE! H 2 = e t, = g+h i
4
t, = c-d
STEP 5: R, = R/R, 2 g
* tl,e,f,g.h
STEP 6: R, = g+h
STEP 3 MEMORY STEP 2 MEMORY
STEP 7: X = R/R, -
c o= £ * t, = e~
tg =ttt 2 3
e,f,g,h t4 = g+h 8 }
t, .t ‘
STEP 4 MEMORY 1’2
STEP 2 MEMORY "
ty=e 6
= *
ts = &'ty 6 ts.9,h
t, = t. *t STEP 3 MEMORY 1
6 3 4 STEP 5 MEMORY
= *
. t, = g+h tg = 'ty 6 ,
5 t, = t.*t
3 34 ¥
taite 1
STEP 6 MEMORY
*
te = £3't, a
ts
STEP 3 MEMORY STEP 7 MEMORY STEP 4 MEMORY
(] * = ts/t r 3J I"=ts/‘a l 3J x = tg/te l 3J 1
AVERAGE MEMORY USE AVERAGE MEMORY USE AVERAGE MEMORY USE AVERAGE MEMORY USE
PER STEP: 11 PER STEP: 7 PER STEP: 6 PER STEP: 6.75
EXECUTION TIME: 7 STEPS EXECUTION TIME: 3 STEPS EXECUTION TIME: 7 STEPS EXECUTION TIME: 4 STEPS ﬁ
{a) (b) (c) (@)
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a larger initial memory consumption (twelve memory locations)
because four processors are executing simultaneously, the average
memory use is lower than that of sequential programming (seven
locations compared to ten locations) due to dynamic memory
allocation. In a large system this would mean that the storage J
not used in the latter stages of execution could be allocated ‘
to some other process, providing an overall improvement in
memory utilization.

Figure 6.1.3.6(c) illustrates the memory-optimal resource

allocation of the expression. Minimum memory consumption
requires simplex processing, because each processor requires
storage space for its results. Therefore, the time required
in the evaluation of the expression is seven execution steps,
the same as required by sequential programming. However,

due to dynamic memory allocation, the average memory used by
the memory-optimal resource allocation is six locations,

;: compared to the sequential programming which requires eleven
locations.

T

Figure 6.1.3.6(d) is an ISDS/HOS resource allocation illus-

trating a possible trade-off between time and memory constraints.
In this case, only two processors are used, compared to the

i; four required for time optimality. The average memory use

p and execution time can be seen to be between the bounds of the
time-optimal and memory-optimal configurations. 1In a large
system this would be indicative of relaxing execution-time
coqstraints to save the expense of using more processing units
and more storage space while still providing a significant 1

improvement in execution time over the memory-optimal configura-
tion. q

B Y S
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Resource Allocation Summary

The results derived from the simple example examined in
this section generalize to large systems with even more signi-
ficant implications. The possible configurations of complex
systems are far more numerous and could not be evaluated manually.
ISDS/HOS techniques, via the Resource Allocation Tool, enable
automatic determination of the optimal configuration for a
specified implementation. The key to the automation of the
process is that every cause or effect within a system appears
explicitly in an ISDS/HOS system specification.

When a computation is defihed by sequential programming,
for example, the availability of each operand is assumed by
the processor when it executes an instruction and this must
be guaranteed by the programmer. The fact that instructions
must be arranged in the proper order so that execution may
proceed correctly is a principle reason that programming skill
is needed and is a source of programming error. In an ISDS/HOS
resource allocation, the readiness of an operation for execu-
tion depends solely on the availability of its input operands.
This is a condition that can be determined dynamically or
specified statically in many possible configurations in response
to other constraints. As a result, much greater flexibility
and better performance can be obtained without implementation

errors.
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6.1.4 Structuring Executive

Systems operating in real time are subject to unpredictable
external events which cannot be analyzed during static develop-

ment. Processes also must be dynamically scheduled in response
to real-time events.

It is the responsibility of the Structuring Executive to
perform these functions in real time. This requirés that the
tool be target system resident. 1In effect, the Structuring
Executive subsumes the functions of an operating system as well
as performing resource analysis and target system reconfigura-
tion.

The need for dynamic reconfiguration of the system-control
map in response to external events can be illustrated by a
simple example. Consider a system in which a single communica-
tions channel is shared by multiple users as depicted in

. Figure 6.1.4.1(a). This could represent a hardware multiplex
;‘ | data bus, a single-frequency radio communication system, or
even a group of people talking around a table. Because the

system has only one communication channel, only a single user

can broadcast at any given instant. There may be one or more
X listeners, depending on the nature of the system, so some
mechanism of control must exist to route the transmission to
the proper listeners. This situation is illustrated in Figure
6.1.4.1(b) where the user B is broadcasting to one or more of

e eeer 2

the other users. However, when B has completed its transmission,
( and another user is to broadcast, then the system must be

reconfigured. The case where D is given the transmission rights
, is shown in Figure 6.1.4.1(c). To control the reconfiguration,

e e g @ e 8

a reconfiguration system would be established so that the
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system of Figure 6.1.4.1(b) and the system of Figure 6.1.4.1{(c)
would be input to the reconfiguration system as data. Because

of the simplicity of this example, it is possible to analyze
all the possible system configurations manually and to insure
statically all interface and data integrity. However, the same
requirements for dynamic reconfiguration in complex systems
would eliminate the possibility of manually anélyzing all

confiqurations statically. Thus, there is a requirement for H
some means to reconfigure the system-control map in response to
unexpected external events and to insure that all data accesses

and module interfaces are consistent with the axioms of ISDS/HOS.

L J

00 et
lw

(b) (c)

Figure 6.1.4.1
Dynamic System Reconfiguration
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Functions of the Structuring Executive

The Structuring Executive will have the responsibility'of
providing real-time control of the target system operation.
It must implement, in real time, multiprogramming and/or multi-
processing constructs. The functional requirement of the
Structuring Executive is to handle aspects of system operation
such as man/machine interface, hardware/software interface,
error detection and recovery, real-time reconfiguration,
dynamic resource allocation, analysis for timing and memory
limitations, and an axiom analysis of the system in real time.
Specifically, the Structuring Executive will: 1) control the
ordering of those modules which can vary in real time dependent
on operator selection; 2) assign priorities to processes based
on the relative priority relationships, according to Axiom 6,
for each control level; 3) prevent violations of the HOS axioms
so that no two processes can conflict with each other; and
4) allocate the resources of the target system to maximize
its utilization within safe operating limitations and prevent

~ failure due to system overload.

The man/machine interface aspects of the Structuring
Executive allow for a human to interact with a given system
at any level. If sequences selected are not compatible, the
Structuring Executive would detect an axiomatic error and
and automatically recover the system. The human can then select
any reconfiguration of modules in real time without concern
for introducing errors. For example, an avionics pilot would
not need to memorize the order of a complicated crew selection

list, since the software would provide automatic error detection
and recovery.
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The Structuring Executive consists of three components:
the Dynamic Analyzer, the Dynamic Resource Allocation Tool, and
the Dynamic Scheduler. These three processes interact in real
time to realize the requirements for the Structuring Executive.

Dynamic Analyzer

The Dynamic Analyzer can provide a reconfiguration in real

time by reordering of priorities based on the particular human
or hardware inputs to the system. In the restructuring process,
the Structuring Executive always maintains the relative timing
relationships for all functions on a given level (and thus for
the complete system) based on the fixed relative ordering defined
for that level. Analysis can be conducted at the required
module interfaces since the capability exists to provide timing,
memory, domain and range limit requirements for selected

modules in advance. For example, if the throughput of a process
is larger than a given limit within a specific length of time,
the Structuring Executive could terminate the process with the
option to postpone its restart until favorable conditions

exist or to selectively restart the process to include only its
higher-priority functions.

Dynamic Resource Allocation Tool

Using a priori timing and memory limits specified for a
model, the Dynamic RAT monitors the state of the system
resources and allocates appropriate resources in real-time.
This information is used by the Dynamic Scheduler to change
the state of process queues. Essentially, the Dynamic

RAT with respect to the static RAT is analogous to the
interpreter with respect to the compiler.
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Dynamic Scheduler

The Dynamic Scheduler enters a process into the process queues
where its position in the queue depends on the current state of f
the system resources and the relative priorities of the tasks. J
The Scheduler within the Structuring Executive must implement
the allocation decisions made by either a static or a dynamic
Resource Allocation Tool. .

Summary of the Structuring Executive

Conceptually, the Structuring Executive replaces the operating
system with a resource-optimization tool for a multiprogrammed,
multiprocessing environment which monitors, analyzes, and
manages the target system in real time for maximum resource
utilization and system reliability. To perform this function,
the Structuring Executive must obviously be resident within the
target system and as such, it will be an overhead process.
While the purpose of the tool is to insure that the least
possible waste of resources occurs, a trade off must be made, @
depending on the size and nature of the target system, between
the relatige services provided by the Structuring Executive 1
and the overhead it requires. Due to the diminishing cost and
weight of hardware and the relaxation of time-critical opera-
tion through use of multiple processing units, the overhead
consumed by the Structuring Executive may become trivial compared
to the operational enhancement and reliability it provides to

{
i a multiprocessing system. However, the prime concern of any

3

i

¥

§ system design is its performance, and particularly in simplex

) systems, processing-time consumption may be very performance

t critical. Thus, it will be possible to include in the Structuring
Executive only those functions and only that degree of optimiza-
tion power which the system designers determine to be performance

justified,
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6.2 Support Tools

The Support Tools available in ISDS/HOS will aid the
disciplines of Management, Documentation, and Design. Some
of the tools related to each of these areas are currently
available or have been used in one form or another on various
projects. The Management and Design tools when developed and
used in accordance with the ISDS/HOS concepts provide more
automated and useable tools.

6.2.1 Management Support Tools

Many of the current management reporting systems require massive

amounts of information to be produced and entered into the

data base manually. This effort hinders the utility of the

system in that costs become prohibitive and the timeliness of

the information impaired. It is, therefore, essential that the
' Management Support Tools be automatic where feasible in their

data collection efforts and facilitate data entry where manual

intervention is required.,

Within the overall framework of the characteristics listed
above, four Management Support Tools have been identified.

These tools are (1) Data~Base Structure, (2) Resource Monitor-

; ing, (3) Collector, and (4) Inter-Revision Updater. These
tools are conceived as automated aids to all levels of manage-
ment throughout the system-development process.

{ Each of the tools listed above is conceptually described

in subsequent sections.

6.2.1.1 Data-Base Structure Concepts

Inherent in effective management is timely access to pertinent
information. 1In small development projects information can
readily be obtained through informal methods. However, on

ﬁf large complex development activities, automated means of
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storing, relating and retrieving information is required. The
field of Data-Base Management Systems has provided numerous
ways os storing, relating, and retrieving information effi-
ciently.

The ISDS/HOS concepts utilize tree structures to illustrate
the interactions of related components. However, any given
node in the tree structure may be related to a number of differ-
ent information sources (e.g. requirements, resources, software
modules, hardware modules, statistics, etc.). The concept of
network-oriented data structures is available to handle these
multi-dimensional relations.

In ISDS/HOS three data bases will be of primary concern:
requirements (as represented by an HOS functional decomposi-
tion), resource utilization, and component development.

Until a fairly comprehensive ISDS/HOS functional decompo-
sition is available through the use of the ISDS/HOS specifica-
tion language AXES, the ISDS/HOS Collector and Inter-Revision
Updater are utilized to maintain and structure the require-
ments and their resulting specifications. Upon completion of
the functional decomposition via AXES, the resulting control
will be automatically used to structure the primary data base.
All requirements and/or specifications for a given node in the
decomposition will be placed in this data base.

The data base as generated from the decomposition will
be related to the data bases for Resource Monitoring and Inter-
Revision Updating as illustrated in Figure 6.2.1.1.1. The
Data-Base Structure as illustrated presents an overview of the
various data bases which comprise the core of the Project

Management Support. There are several separate data bases

"which compose the foundation of the Project Management Support

Tools. The relationships which can be drawn between these
data bases give the flexibility and power required for effective
management and efficient development.
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In Figure 6.2.1.1.1, the Resource Utilization Data is
structured by the Resource Monitoring tool which is described
in this section. The Component Development Data Base is
structured by the Inter-Revision Updater and the Collector,
both described in this section.

Much of the data relations, illustrated in Figure 6.2.1.1.1,
will be accomplished automatically. As a result, data collected
in the various data bases can be correlated by the Resource
Monitor to provide comprehensive project reporting. Where
manual entry is required, interactive data entry will be
utilized.

The structure and relations built into the Project System
Data Base provide an integrated data base available to all
levels of management in the development process. The ease of
use of the system will facilitate timely reporting and access
to the desired information.
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PROJECT 1
SYSTEM DATA BASE

COMPONENT RESOURCE REQUIREMENTS
DEVELOPMENT UTILIZATION DATA BASE
DATA BASE DATA BASE

STATISTICS STATUS ACTUAL BUDGETED

TESTING SOURCE

INTEGRATION UNIT DOCUMENTATION PROGRAM

Figure 6.2.1.1.1 ﬂ
Structure of ISDS/HOS Project System Data Base ﬁ
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6.2.1.2 Resource Monitor

Effective management can only be accomplished through timely
access to such information as projected and actual resource
requirements. Among the more important types of information
required are: (1) budget vs. costs incurred, (2) schedule
dates and status, (3) manpower allocation and requirements,
and (4) other resource utilization. Given timély and accurate
data in the areas listed above., management can analyze problem
areas* more realistically and take corrective action from an

overall systems-development viewpoint. i

Many data-management systems exist which can readily handle
the information presented above. The processes of collecting
and reporting such information, however, impair the utility of

these systems.

Certain of the major problems associated with these

processes are listed below:
e Data Availability:

® Difficult to make estimates of resource require- ]
ments

® Data Entry:

Manual Process of data collection
Manual Process of data entry

Iterations of data entry required due to
non-interactive edit checks

* In some cases, the information listed would be sufficient
to detect problem areas. However, in general, problem areas
are presented through other means, e.g. meetings, memoranda,
etc. In these cases the information listed above could be
used to determine possible alternatives for corrective
action.
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® Data Reporting:

® Untimely because of data-entry problems
® Voluminous reports

® Special reports require additional time with
data becoming even more historic

The first problem area listed above, data availability,
requires additional comment. In many of the studies conducted
on software development (notably SAFEGUARD, MITRE, JHU/APL
studies), the following problem was repeatedly stated: Managers
find it extremely difficult to make estimates of manpower,
budget, time and other resource requirements. Most estimates
made of these requirements were based on "similar" development
activities of the past. This problem area can be greatly
facilitated through the use of ISDS/HOS and modern data-manage-
ment concepts, as will be shown subsequently.

The other problem areas listed previously can also be
alleviated through modern data-entry and data-management

concepts, as will also be shown below.

To illustrate the above statements, a simplified ISDS/HOS
functional decomposition map is shown in Figure 6.2.1.2.1.
(The functional decomposition map can be created through the use
of the ISDS/HOS specification language AXES.)

Resources (e.g. manpower, time, facilities, dollars, etc.)
can be assigned to the nodes of the decomposition. For
example, assume system S is estimated by top level management
to cost five million dollars, and the break-down between
sub-systems S; and 82 is to be one and four million dollars,
respectively. Further resource assignment occurs at each
level during which lower~level and more direct technical
experience is brought to bear on generating the estimates. As
the funds are allocated down the tree structure, it may become
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Figure 6.2.1.2.1
Simplified ISDS/HOS Functional Decomposition Map
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apparent that a higher level of reallocation is required. 1In
any case, once the funds have been allocated to the bottom
level, one can automatically trace back up the tree to determine
higher-level estimates. Iterations of this process will result
in using sound technical and management skills in generating

the final estimates.

Other resources can be similarly assigned and would probably
be done simultaneously. Once all resources have been assigned,
it would be possible to check their consistency at any level
in the system.

To facilitate the above process, a data base would be
created with the structure illustrated in Figure 6.2.1.2.1.
Entering data would be performed interactively on a display
terminal (e.g. CRT or storage tube) with a light pen or cursor.
The user would simply place the light pen or cursor at the
"node" of interest on the tree structure displayed on the
screen. A data-entry program would query the user for the
resource estimates and any supporting text. Inter-active
edits would be performed automatically, and the data would be
stored for the appropriate node. This method of graphical
prompting and interactive data entry, edit and storage would
greatly facilitate the data-collection process.

Data-reporting software would be similarly oriented:
A graphical display would prompt the user to the specific
area of the tree structure (system decomposition) of interest.
Resource estimates could be obtained for a single node and
could be traced up or down the tree. Output could be graphical,
in the form of Figure 6.2.1.2.1 with the resource estimates
indicated at the nodal (function) points, or tabular.

During the project-development process, one would enter
incurred resource utilization (funds, manpower, computer time,
schedule status, etc.) identical to the method described above.
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Inter-active edits would be performed and the data entered into
the data base automatically.

The output would be available interactively or as an inter-
active request for graphical or tabular hardcopy. The format
of Figure 6.2.1.2.1 could be used to indicate reporting period
or project-to-data resource utilization. Time-line graphical
presentation of budgeted and actual resource utilization could
be presented by individual resource by node (function) at any
level.

Changes to any resource allocation (e.g. funds, schedule,
manpower, etc.) would be entered as indicated above with any
supporting text and would be automatically retrieved and reported

for any related queries.

|
The Resource Monitor would be used to correlate statistics i{
: |
collected by the Inter-Revision Updater with resource data to i

provide detailed management reporting. i

The emphasis for the Resource Monitor has been to
facilitate management access to resource estimates or utiliza-
tion in a very timely manner and to any level of detail required.
The Resource Monitoring Tool is built on an ISDS/HOS structure
utilizing state-of-the-art data-entry, data-management and
data-presentation concepts.

6.2.1.3 Inter-Revision Updater

As component software modules are completed to the satisfaction
of the software-development personnel, they are turned over*
to the appropriate Assembly Control Supervisor along with

1
‘s
!

»>

4

2
td
3
3
&

test-data input and execution command language. At this time, ‘

these component software modules become "frozen". These modules

w——

* The act of "turning over"” could be simply placing a read-only
lock on the source-code, data-input, and execution-command
language files. 241
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are then ready for unit testing, integration, and system-
interface testing.

Any subsequent changes to the software modules will be
made by accessing the prior version of the source-code (or
test data-input or execution-command language) file and
entering changes. The file (for source code, test-data input
or execution command language) for a given version will be
maintained separate from prior versions, such that for a given
version only those changes to the immediately preceeding
version are saved. When a version becomes frozen, the file
containing the changes to the preceeding version becomes i
frozen. Figure 6.2.1.3.1 illustrates the original source code
with sample commands creating two subsequent revision files.

The Inter-Revision Updater will automatically supply
revision numbers and append them to the module names. The
Inter-Revision Updater will maintain the original source-code,
test-data input and execution-command language files and all
revision files. A reference to a software module will automa-
tically assume the latest changes unless an earlier version
was specifically requested. The use of an Inter-Revision
! Updater facilitates concurrent use of software modules by
| separate organization (e.g. testing, integration, development),

and assuring each that the current version is used.

"Table 6.2.1.3.1 lists the files maintained by the Inter-
Revision Updater. All these files would be handled as described

——— - —

above.

e - I )

242

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900




PRI

SO e Ny e e ¢

Original Revision Revision
Source No. 1 No. 2
Code Changes Changes
FoT insert ~TTTT7TT
e e e e e e e e e e e e e e e e e .
replace i
e o e e e o

— e e e e
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Resulting Assembly Control Supervisor Files

Figure 6.2.1.3.1 \
Inter-Revision Updater Example
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Table 6.2.1.3.1
Files Maintained by Inter-Revision Updater

source code

test-data input The original file and each ,
execution command language revision will be maintained j
documentation as separate entities.

object code

This file will be updated
statistics throughout development and
testing

Once a module has been frozen, the ACS would compile or
assemble the module and store the resulting object module in
an object-module library. This library along with the execu-
tion command language and test-data input for a given version
will be used by the ISDS/HOS Collector.

The statistics files would be automatically created and
updated by the Inter-Revision Updater. The statistics which
would be collected automatically would include those listed
in Table 6.2.1.3.2. Thcse statistics could be queried by
managers to determine status of the various component software
modules, and to get a better "feel" for the utilization of

resources.

The Inter-Revision Updater will provide the development
personnel and the Assembly Control Supervisor with a coordinated
software development controller in the interim ISDS/HOS environ-
ment. In this capacity the Inter-Revision Updater will auto-
matically indicate which of the files (see Table 6.2.1.3.1)
pertaining to a given software module have been revised. The
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ACS can then verify that the unchanged files are compatible
with the changed files (e.g. keep the documentation or test-

data input files up~to-date with the source-code file). 1In
addition, the Inter-Revision Updater can keep track of which
tools (e.g. Structured Design Diagrammer) have been used

in conjunction with the development of a software module.
Software-module documentation could be produced using the files
maintained by the Inter-Revision Updater.

Table 6.2.1.3.2

Statistics Automatically Collected by the
Inter-Revision Updater

Number accesses
Number lines source code

Number lines source code
by revision

Compilation attempts
Error-diagnostic summary

Interactive connect time
used

Computer time used
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6.2.1.4 Collector

When a large number of software modules are developed incremen-
tally as components for a system, the job of assimilating these
modules becomes prohibitive and error-prone. 1In ISDS/HOS this
job would be done automatically by the Collector.

The Collector would operate from a control map. For

' purposes of illustration, refer to Figure 6.2.1.2.1. Assume
that system §,; is to be executed. The user would enter a
command to the Collector to collect and execute system Sl'
The Collector would trace down the tree from §, to the bottom- §
level nodes collecting as it goes the object~-module (compiled i
g or assembled versions of the source code), the execution-command 2
: language, and any required test-data input files. (The Collector

would utilize the Inter-Revision Updater in performing this

task.)

If the user wanted to modify any test-data input in the
test-data input files, simple commands would be issued to over-
ride the desired data items in the appropriate file. (The
Collector would utilize the Inter-Revision Updater to perform
this task.) These overrides would be temporarily stored for the
given run and documented automatically on any resulting output.

? : Similarly, if the user desired versions of modules other
o than the latest, the appropriate revision number for the speci-
fied module would be entered. The Collector would retrieve that
{ version and its associated execution command statements and test-
! data input. Prior to establishing the run, the Collector
' would verify that the interface would match for the specified
l version. Error diagnostics would be interactively produced
and listed on any resulting output.

)
t
4
b
§
?
t
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Furthermore, if the user desired to create a new systen,
the Collector could be used to automatically assemble the 4
components of the desired system. For example, assume subsystem 1
S; is a simulation with system 511 being the environment and
system $51 being the target system. The user has constructed
a subsystem S3 which is an error-analysis system. The user 1
could automatically construct the new system S0 shown in i
Figure 6.2.1.4.1 by entering commands which: 1) establish the
node SO; and 2) link nodes Sl and S3 with SO'

‘-\ new system

11 21

Figure 6.2.1.4.1

User Creation of New System via the ISDS/HOS Collector

The Collector would check subsystem interfaces and indicate
any inconsistencies. This is accomplished in the following
manner: All subsystems (or software modules) would contain
as a special instruction a description of its interfaces with
external modules (e.g. number of data items and data type for
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each parameter).* The Inter-Revision Updater would store these
special instructions as part of the Execution Command Language
files when the module became frozen. The Collector would check
these interface instructions automatically when assembling a
system or creating a new system.

The Collector would assemble any error diagnostics and
computer statistics and update the statistics file maintained
by the Inter-Revision Updater for the system being collected.

The ISDS/HOS Collector is a tool available to an Assembly
Control Supervisor or Testing Team for assembling a system
configuration interactively. Interface analysis would be
accomplished interactively thus eliminating lost time, effort
and funds for assembling incompatible subsystems.

The statistics collected by the Collector provide an
immediate view of configurations tested and the success or
; failure of the tests conducted. The Collector used in conjunct-
' ion with the Inter-Revision Updater will save valuable time in
the development, integration, and testing disciplines of the
systems-development process.

6.2.2 Documentation Support Tools

P The data bases or files that pass from phase to phase in the

' development process will contain information in various formats.
Files will contain requirements, specifications, personnel and

| resource information, documentation, and for the immediate

B R R
——

* The Compiler could be used to automatically create these
instructions when a reference to an external software
module occurred.
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! future, source code. The documentation support tools described
in this section will enable the users of ISDS/HOS to build and
maintain these data bases conveniently and efficiently. The
current use of such tools (text editors and formatters) are for
program and documentation development. In ISDS/HOS they will
be used to input the files of requirements, AXES Specifications,

] and resource information. These tools will also be the vehicle
for interacting with the Management Support tools described
in the previous section. The use of these interactive documen-
tation support tools is straightforward; the user accesses the ,
host system via an interactive terminal to build a file, to j
verify its contents, and then stores the file in the file manage- ?

{ ment system. He can later call for that file and update or j
revise it to reflect new information. When desired, he calls
the file from the file management system and requests printed

output in a selected format.

6.2.2.1 Text Editors

A powerful interactive text editor is an essential tool for
program, data, and documentation development. In addition to
providing powerful techniques for program, data, and documenta-
T tion preparation, the editor must have a relatively simple

' syntax that is easy to learn and must provide the novice with

some prompting to help him avoid classic beginner errors. :

Desirable editing capabilities:

addressing - The editor should provide the ability to
address by absolute line number, relative
line number, and by context. The editor
should allow compound addressing (combining
any of the other three techniques) and
addressing of a series of lines.

B T AL
———— e —— -

inputting - The editor should provide the ability to
enter text from the terminal or from the
file system into any position of the buffer.
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editing - In addition to the ability to print, delete,

; locate, or change a line, the editor should

1 provide the ability for a global substitution
of one character string for another.

interacting - The editor should allow the user to pass
. commands to the command environment external
3 to the editor.

This list of desirable characteristics is not necessarily

complete; nor is it meant to eliminate existing editors from

consideration.

6.2.2.2 Text Formatter

The text formatter will allow the user to type out text files
in manuscript form. This facility greatly enhances the user's

documentation ability. A user will prepare a file of text
lines and control lines as input to the formatter to be output

on a device and in a format as he prescribes. By using the
X editor and formatter, the user can extract documentation from
his program for inclusion in a user's guide to be printed in

manuscript form.

Formatters of this type are often used by the clerical

staff of a project as well as by the engineers. The formatter
must be a powerful tool, yet be simple to use and easy to

; learn.

6.2.3 Cesign Support Tools

The Design Support Tools to be available in the ISDS/HOS

environment are simulators, performance monitors, and emulators.

As described in subsequent sections, each of these tools is
designed and developed in concert with the ISDS/HOS concepts.
These tools provide a comprehensive set of tools to be used

—— e
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in studying systems under development.
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6.2.3.1 Simulator

"A simulation of a system...is the operation of

a model or simulator which is a representation of
the system...The model is amenable to manipula-
tions which would be impossible, too expensive

or impractical to perform on the entity it portrays.
The operation of the model can be studied and, from
it, properties concerning the behavior of the actual
system or its subsystem can be inferred." (SHU60)

In a systems~development process, simulators provide engineers
and designers with a tool to study the system under development
and its interactions with external influences. Within the
context of ISDS/HOS, simulators are computable systems; they
can, therefore, be designed and developed in accordance with
the axioms of ISDS/HOS.

Figure 6.2.3.1.1 illustrates a top-level ISDS/HOS
decomposition of a simulation into two major functions: the

system under study and its simulator.
Simulation

Target System Simulator

RN

Simulator OS Environment

Figure 6.2.3.1.1
Top-Level ISDS/HOS Decomposition of a Simulator

npvv.-s‘vu'-n-m- .
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Simulators are generally used throughout a systems
development process: from a feasibility demonstration of the
system to be developed eerly in the process to a full scale
simulator which is carried throughout the development process
and is continually refined with more detailed models. The
ISDS/HOS concepts of software development lend themselves
readily to the process of simulator development. For each
new project, specific environment modules are developed in

order to interface in simulations with a specific target system.

Several characteristics of an ISDS/HOS simulator are
required. These characteristics, listed in Table 6.2.3.1.1,
provide users of the simulator added capability to study the
system being developed, the environment being simulated, and
the interaction of the system with the enviroment.

6.2.3.2 Performance Monitors

During design, develcpment and operation, systems are monitored
for resource utilization and anomalous behavior by Performance
Monitors. The function of Performance Monitors is to compare

a priofi performance statistics with performance statistics
collected in real-time (via simulation or operation) to detect
anomalous behavior. Examples of these statistics would be:

e excessive calls to specified routines or executions
of specified instructions

® number of interrupts outside of the normal bounds
for a given time period.

® accessing protected areas of memory

® inconsistent clock increments
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During the design and development phases, the a priori
statistics would be estimates provided by engineers and designers.
These statistics would be compared with similar statistics
collected by the Performance Monitor during simulation or emu-
lation execution. If an ancmalous condition was observed, the
Performance Monitor would stop the simulation or emulation and
produce diagnostic information (such as warning or error
messages) and debug aids (such as memory dumps or parameter
listings). Depending on the severity of the error, the Perform-
ance Monitor could restart or terminate the simulation or emula-
tion.

The use of a Performance Monitor in the design and develop-
ment phases provides a more accurate method of developing
resource-utilization statistics. This would be accomplished
via hardware attached to the host (or target) machine or software
monitors, which would increment counters for various instruction
classes as the related instructions were executed. The use of
these counters would give a fairly realistic estimate of proces-
sing time required. Similarly I/0 requests, I/0 transfer times
and idle time could be obtained.

Refined statistics derived from simulations or emulations
would be used as guidelines for the real-time Performance
Monitor which will be a sub-function of the Dynamic Resource
Allocation Tool in the Structuring Executive. The operation of
the real--time Performance Monitor would be the same as described
above, except in the case of anomalous conditions. If an
anomalous condition arose, the Performance Monitor would signal
the Structuring Executive to initiate system recovery
procedures.
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6.2.3.3 Emulators {

"An emulator may be defined as hardware, microprograms,
and software added to one computer system to enable
it to execute programs written for another system." (MAL75).

Once the requirements for a computer system have been defined,
they can be represented in the ISDS/HOS specification language
AXES. AXES would then produce a functional decomposition of
these requirements, in which the bottom level of nodal families
represents primitive operations (specifications for the machine 1
instruction set) and primitive data types (data types of the
machine). Using this process, one can define the specifica-
tions of a target machine, including the required instruction :
set and data types.

In order to study the target machine and do performance
analysis, it is necessary to simulate the target machine.
In some cases, the instruction set of the host machine may
not be adequate to perform the instruction set of the target
machine. In almost all cases simulation of the target
machine would be an inefficient process. As a result, an
emulator of the target machine would be developed for the host

machine.

An emulator consists of a mixture of software and firmware
which would "simulate" (emulate) the target machine on the
host machine.

In developing an emulator, the designers and engineers
must specify the mapping of the target-machine instructions
onto the host-machine instructions. This mapping constitutes
the requirements for the microcode. In ISDS/HOS these require-
ments would be formulated in AXES. This formulation would ?

result in a functional decomposition, the bottom level of which
would be the primitive operations (machine instructions) and
the data types of the host machine. This decomposition would
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be analyzed (by the Analyzer) for interface consistency and then
passed through the Static Resource Allocation Tool to obtain

an optimal configuration of the decomposition tree. The result
of this process would be the optimal specification (target- j
to-host mapping) for the emulator. Figure 6.2.3.3.1 illustrates N
the procedure described above.

The Static Resource Allocation Tool would output the k
sequence of host-machine primitive operations (instructions)
required for a target-machine primitive operation (instruction).*

The required execution time (on the host machine) for 3
each target-machine instruction as represented by a sequence
of host-machine instructions could be obtained. By using an

assumed instruction mix (i.e. frequency of occurrence for

each target-machine instruction) and the execution time for 4
' a host-simulated target-machine instruction, one could deter-
mine which target-machine instructions would be more efficient

to implement in microcode. The remaining target-machine instruc-
tions could be simulated on the host machine.

The result of the process described in this section
would be the development of an optimally efficient emulator
‘ with reliability inhibited only by the manual process of
mapping target-machine operations onto host-machine operations.

Once developed, the emulator would operate similarly to
( an interpreter. For further insight into this aspect, refer

j to Section 6.3.7.

g @1 e 0

* In some cases, it may not be possible to map a target-machine
instruction onto host-machine instructions, e.g. in the case
of certain input-output device instructions. The output of
the Static Resource Allocation Tool would be the specifica-
tion for the hardware/firmware to emulate these instructions.
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6.3 Incremental Tools for Current Use of ISDS/HOS

4 The tools presented in this section provide for an incre-
mental approach toward adhering to the I1SDS/HOS concepts.
These tools are generally available; however, conceptual
descriptions are provided which place requirements on these

1 tools in order to make them consistent with ISDS/HOS concepts.
Therefore, modifications of the available versions may have

to be performed in order to enhance their reliable operation.

Reliability in the use of these tools cannot be guaranteed

4 due to their non-automated use; however, an approach toward
gaining reliability can be attained by following the guidelines
: presented for the use of the various tools. The tools, as

l described, will provide an evolutionary trend toward the

objective of ISDS/HOS.

: 6.3.1 Assembly Language

Although the ISDS/HOS interim environment centers around the
3 use of an HOL for program development, it is conceivable that
a particular customer could require the programming to be done

in an assembly-type language. Historically, requirements to
program in an assembly language have been made to improve

AT e S

efficiency in terms of space and time of the executing code.
: This efficiency arqument is far less impressive when one
considers the rapid decrease of hardware cost and size, in

{ relation to the continuing increase of programme: cost. The
: reliability argument is that it is much simpler to verify HOL
1 code than assembly language. ISDS/HOS discourages the use
of assembly languagés; they are covered here because the
possibility of their use has not been eliminated.

RS et st ) 4 202 TR I

Since assembly languages generally correspond one-to-one
with the machine code and have full access to the instruction
repertoire of the machine, it is difficult tc Aeccribe charac-
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teristics of an assembly language. Such a description would,
if pertaining to the instruction capability or performance,

apply also to the machine.

Static verification appears to be infeasible considering

*he large variety of "tricks”" assembly-language programmers
have employed. There are no known techniques to trace
variable usage statically, to determine the destination of
transfers statically, or to restrict the usage of variables
across interfaces for straight-line assembly code. Therefore,
the decision to use an assembly language should be made in

‘ light of the explicit trade-offs between reliability and code

‘ efficiency.

To be used in.the interim ISDS/HOS environment, assembly
language must have the ability to create and reference macros.
The basic idea of macros is text substitution or insertion:

. an identifier in the source program is replaced by a string
of characters from some other character string. These macros
can be created in advance and stored by name. Other assembly
language programs can then include these macros by simple
reference to the name. These macros can be used to insure

: interface consistency within the resource-allocation process

made by the user.

Admittedly, this takes away from the assembly programmer's
tricks, and, therefore, the program manager should consider
, this fact if he requires that assembly language be used.

The use of macros for module interfaces is the only way

Y

) to adhere even remotely to the concepts of ISDS/HOS when an

|
[
,r,
.f

assembly language is used for implementation.
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6.3.2 Macro Processors/Assemblers

"An assembler is a program which translates a source
program written in assembly language into the machine
language of a computer." (GR171)

A macro processor may be implemented to either substitute

assembly~-language code or machine code for a specified character
string. An assembler, as used in the interim ISDS/HOS environ-

ment, would differ from a traditional assembler by including
features to improve the reliability of code. Reliability

enhancements to existing assembler techniques include:

® checks that control transfers are not made
into data

® automatic symbolic labeling for control points
("branch to" points), if not provided by
programmer, with appropriate flag on output
listing

The macro processor is most commonly used as an extension to
the basic assembler. A macro in its simplest form is a one-
line abbreviation for a group of instructions. The macro
processor scans over the text searching for macro definitions
and macro references, and then attempts to resolve these
statements., If statements cannot be resolved (e.g. assembly-
language '‘statements), the input string is added to the output
string without change; if the statement can be resolved, the
input string is replaced by the specified output string.
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In order to make macro processing more flexible and to
relieve the programmer of redundant coding, macros may be
referenced with or without arguments. As an example, a given

|
1
!

computer environment may have a standard set of instructions

to perform a certain task, such as pass data between subroutines. 1
In order to avoid coding the same instructions repeatedly, the
CALL macro would map into the sequence of assembly-language
statements needed to pass arguments between subroutines.

The macro processor, as used in the interim ISDS/HOS
environment, will differ from existing macro processors in the
macro-definition phase. Macros will be built on macros by
program-design engineers and be made available to programmers.
Primitive macros such as "+" and "=" will be used in more
sophisticated macros. Programmers will not be permitted to
define their own macros. Design engineers will define macros

in accordance with ISDS/HOS axioms.

Programmers who use macros in place of in-line code will
benefit, first, by ease of programming and, second, by confi-
dence in the reliability of the code supplied by the macro

processor.

6.3.3 Higher Order Language (HOL)

The implementation language, as used in the interim ISDS/HOS
environment, will be based on the HOL recommended by the DoD
High Order Language Working Group (HOLWG) chartered in
January 1975. Without attempting to critique thoroughly the
"TINMAN" version of "Requirements for High Order Computer
Programmer Languages", March '76, we can say that the eventual
HOL must be examined for compliance with ISDS/HOS concepts and
axioms. Certain structures of the language may have to be
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eliminated and others added, but the present state of the
working group's efforts indicate that the final product will
be acceptable for the Implementation Language. Some of the
particular language features to be considered in examining an
HOL for ISDS/HOS use are covered here.

A HOL program shall consist of a set of procedures. Each
procedure shall have an input list and an output list that
specifies all of the arguments of the procedure. A procedure
shall have no access to an object unless the object appears
in the input or output argument list of the procedure or
unless the object is a local variable of the procedure.

A very important consequence of this clear separation
of inputs from outputs is that an HOL procedure cannot produce
side-effects. This means that it is not possible to write
an HOL procedure whose execution can produce a state change in
any object that does not appear in the procedure’s output
list.

A HOL procedure cannot produce partial outputs. This
means an invocation of a procedure produces no state change
in any of its outputs until it produces all of its outputs.
The following example illustrates a way in which this might

be accomplished

- (a,b,c) = f£(x+y, x):
procedure f(p,q) returns (integer, real, real);

.

return (25,7.2,p-q);
end f£f;

The top line of the example is a call on the procedure f which

returns three values.
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The inability of a procedure to produce partial outputs
allows recovery from procedure failure. Failure of any
component of a statement will cause failure of its containing
procedure. Failure of a procedure means that none of its
outputs have been produced. Consequently, failure of any X
operation within a procedure leaves the caller of that proce-
dure in the same state that it was in prior to the call. The
definition of a procedure call will allow the caller to detect
and respond to failure of the called procedure, without any
of the elaborate facilities of PL/l1 or more complicated facili-
ties (GOO75).

A very important consequence of the separation of inputs
from outputs and the inability for a procedure to produce

partial outputs is that input arguments do not have to be copied.
An input array argument can be passed by address without fear

: that some element of the array will be changed by the procedure
to which it is passed during evaluation of that procedure.

The HOL shall contain facilities for the creation and
control of real-time processes. These facilities shall be

sufficient for control of real-time processes using one or

more processors. As in the ILIAD language, deadlocks will be ﬁ

¢ ; impossible because all global objects will be associated with
o a boolean valued semiphor called a lock, and because a process
will be unhable to access a global object unless it has first :

; locked the object. Furthermore, all global objects that are %
! accessed by an operation must be locked prior to the start

IRERIRE SR PN VP ST
——
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of the operation.

In addition to the basic locking constraint, the HOL shall
contain facilities for: starting a new process, stopping a
process, delaying a process, changing the relative priority
of a process, and testing the locked/unlocked status of a
set of global objects.

The control structures of an HOL shall be limited to the ;
D' control structures of Marcotty and Ledgard (LED75) (While,
Until, For, Case).

Input/output facilities of the HOL shall be suitable for
use with a wide variety of devices and/or file structures,

including devices found in typical tactical applications.

An HOL procedure can be declared to be an overlay proce-
dure. When an overlay procedure is called, it will be loaded
into main storage, where it will remain until it is displaced
by another overlay procedure. This facility provides an
efficient and easy-to-use form of demand paging of procedures.
Overlay procedures will be defined in an implementation-
independent manner that ensures that program logic will not be
affected by the transfer of a program to another host system.

The HOL shall facilitate separate or combined compilation

i of multiple procedures.

The HOL will facilitate the compilation of optimized
object code due in large part to the separation of inputs
{ from outputs and due to the elimination of side effects.

o e g e s e
——
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Type checking will be total and will be performed at
compile time as well as during the linking of separately

compiled procedures. User-defined types will be allowed in a
manner similar to that of ALGOL-68 and PASCAL.

Type checking of user-defined types will not require
combined compilation of all procedures that use a given type.
However, the compiler will use a type-definition library to
ensure that a given tyne is always encoded in the same manner.

An HOL object procedure will always be re-entrant. On
the ISDS/HOS host, they may also be shared so that multiple
users will be able to execute the same object procedure simul-

taneously.

It is anticipated that the implementation language will
differ to some degree from the HOL recommended by the HOLWG.
To accommodate those differences, the programs developed in
the ISDS/HOS interim environment will require some amount of

preprocessing to be acceptable to the HOL compiler.

6.3.4 Compilers

It is likely that existing compilers will be used in the initial
ISCS/HOS environment. The HOL section discussed features

that will require preprocessing before compilation when they

are included in the HOL. A further step toward reliability

is to develop a compiler for the prime HOL of the interim
ISDS/HOS environment. By developing this compiler using
incremental ISDS/HOS techniques, the translation process will

B A

be more reliable than an existing compiler with preprocessing.
The "TINMAN' version of "DoD Requirements for High Order
Computer Programming Languages” discusses some desirable
features of compilers specifically in relation to reliability
and portability.
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Reliability

Reliability is of primary concern for compilers in the
interim ISDS/HOS environment, both in the production of object
code and in detection of errors. Many current HOL compilers
are known to produce object-code errors; that is, certain
combinations of HOL statements when compiled into object code
do not carry out the intended logic.

The "TINMAN" documentation, referenced above, specifies
that error diagnostics and error conditions should be covered
in a description of the language. This is a desirable feature,
and any additions to the HOL should be accompanied by appropriate
error information. In addition to the language-specified
syntactic and semantic errors, the compiler should examine the
3 interfaces for consistency. Although the HOL will not permit

blanket enforcement of the axioms, there are some interfaces,

: specifically procedure calls, that can be checked for access

' rights of variables. Interface errors will be detected and
classified according to severity, and an error diagnostic
will be emitted in the output listing.

Portability

The compiler design will separate the machine-dependent

functions of code generation from the machine-~independent

functions. This will allow compiler portability to other

.

computers by isolating the compiler modules dependent on that

tom

{
] computer.

g e
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6.3.5 Structured Design Diagrammer

Documentation has historically been regarded as a chore by
programmers and, as a result, is frequently de-emphasized

in the interest of producing code. The documentation produced
is often out of date, erroneous, of poor quality, or organized
in widely varying formats. Accurate documentation is often
produced only as a final step in the programming process and
is thus unavailable throughout the development cycle. This
lack of, or delay in, documentation leads to communication
problems in coordinating the efforts of individual programmers

within a group.

The Structured Design Diagrammer, as an integral tool of

interim ISDS/HOS, will provide automatic documentation of
computer programs illustrating program flow, data intersections,
and embedded comments.

Automatic documentation provides a mechanism for
maintaining positive control over rapidly evolving programs.
Documentation is produced immediately by the Structured
Design Diagrammer for every revision of each program module.

_ The documentation is uniform in format and accurately reflects
g : the organization of the code. Best of all, the production
of the documentation requires minimal effort on the part of

the programmer.

In addition to automating an historically manual and
tedious task, the Structured Design Diagrammer outputs a
flow-chart superior in format to conventional flowcharts.

—— e —

[ X “CN '.-vQ-v s 8

For example, Figure 6.3.5.1 (MUL72) is a conventional flow

diagram. Figure 6.3.5.2 (HAM73) is basically the same design

W

aqvam- e

but with structured notation replacing conventional flowchart
symbols. A lot of time and effort is necessary to understand
all the algorithm paths in Figure 6.3.5.1. An interruption

<,
A
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Figure 6.3.5.1

A Structured Program Using Standard Symbols
To Show Flow of Program Execution
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Same Structured Program Using
Structured Flowchart Conventions
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forces the reader to start from the beginning. Consider

Figure 6.3.5.2. Notice that after each logical step has been
completed, control returns to the main flow of the algorithm.
The nested decision levels are clearly distinguished, and it \
is easier to see the state of the system at each node. é

The Structured Design Diagrammer functions as a design
aid to the programmer and a control aid to the manager. The
linear sequence of program instructions provides assistance
to the programmer in obtaining:

a) an optimal path to minimize the number of logic
test cases, and

b) equivalence comparisons between the proposed design
of algorithms.

The preparation of structured design diagrams has immediate
advantages to the user of a programming language: nested
decision levels can be clearly represented; main algorithm
flow is more visible; assumptions with respect to data can be
separated from the actual data provisions.

The Structured Design Diagrammer requires the source- a
program input to be organized in the structured form. Viola-

tions of this structure are detected and flagged. This tool )
may be used both to train programmers in the application of l

structured-programming concepts and to enforce the use of

these concepts.

{ The uniform standards and conventions of the diagrams

. reduce the effect of major differences in design approach
of different engineers, groups or organizations working on
a common program. From a management point of view, the

.- -v;eﬁ.-lq'qM.n-*w e .

automatic documentation produced by the Structured Design
Diagrammer represents a valuable mechanism for ensuring
communication between groups and for coordinating the program-
ming effort.

271

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139« (617) 661-8900




e

‘;-:‘fiﬂ"‘“MQ‘v-—dw‘ Ciet-

Structured Notation

The basic unit of a structured design diagram is the
"block". The "block" is a module which has a single entrance
and a single exit.

The algorithm flow of the program depends on the decision
structure, where the object of that decision can be thought
of as a submodule to the decision statement. The statements
used to make decisions are the basic structured statements
shown in Figqure 6.3.5.3.

Inherent in this representation is the knowledge that any
decision statement performs the required submodule resulting
in the main program flow. This is not available with conven-
tional flowcharting techniques.

In addition, the structured design diagram notation
presents a more adequate representation of a CALL in that it
recognizes that the main purpose of any CALL is to manipulate
data flow. Associated with each CALL, therefore, is the data
module which presents the intersection of the data used by the
calling program and the called program (Figure 6.3.5.3).

The definition of the data module assumes that the overall
program structure has been completed and defined elsewhere.
For structured design diagram notation, only the location
(e.g., COMPOOL, local, etc.) and organization (e.g., matrix,
array, etc.) must be specified for each data element of the
data module. The program documentation in this form illustrates
the data flow and control flow to the reader.
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STRUCTURED DESIGN DIAGRAMS

to enclose a logical statement

to cncluse a mathematical section

—

to imply if p then q and return in line

qQ while p thea q then return in line

for p do g where p = a to b then
return in line

Jdo oo cithmie section q; then return
in line vherei=pand p=1A2A3...An

! i the CALL and its accompanying Data

CALLLLB J._ﬁ;\ NN Module

Figure 6.3.5.3
Design Diagram Notation
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? 6.3.6 Interactive Debugger

An interactive debugging aid is another essential feature of
the interim ISDS/HOS time-sharing environment. The debugger
§ should be symbol-oriented rather than machine-oriented to

allow references to variables by name. The debugger should

allow the user to:

k e suspend execution of his program (break).

® look at data or code.
e modify data or code.
® perform transfers.

e call procedures.

® trace the stack being used.

: ® look at procedure arguments.

; e control and coordinate breaks.

L‘ e continue execution after a break.
e print machine registers.

Performing transfers and modifying code via the debugger is
for debugging only and does not constitute a reliability

issue for program development.

6.3.7 Interpreter

Certain missions, due to strategic requirements, place tight
restrictions on the size, weight and power of embedded computer
systems. As a result, additional requirements are placed on

the software system.

By limiting the size of the target computers, common
routines (such as trigonometric functions, exponential
functions, matrix operations, etc.) might be precluded from

274

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE » CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900




HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139+ (617) 661-8900

being placed more than once as in-line code. Instead these
functions would be placed in a common subroutine library.

For less tightly constrained systems, these subroutines would
normally be linked into the main modules and accessed via CALL
sequences. For more tightly constrained systems where suffi~
cient space cannot be allocated for the CALL sequences, the
common subroutines could be accessed via an interpreter.

A specialuin-line instruction invokes the interpreter.
The interpreter then processes the next instruction in
sequence to determine the next common routine to be processed
and the location of any input data. Control is then passed
to the desired common routine until completion, when the
interpreter again takes over. The next instruction in the ;

executing module is examined in a like manner until an in-line

instruction indicates that control is to be returned to the

executing module.

Through the use of an interpreter, the inclusion of
common logic in in-line code (wherever that code is used) is
eliminated at the expense of a slower execution speed, due to
the system overhead incurred because of the interpreter.

The interpreter, as used in the interim ISDS/HOS environ-
ment, will be designed in accordance with the ISDS/HOS concepts
and in particular, with the axioms of HOS. The unique feature
of the interpreter is that it will ensure, in real time, inter-
face correctness and reliability between the executing module ‘
and the common subroutines. 91

The use of common subroutines via an interpreter is a
natural by-product of the HOS software-specification and design
process. 1In particular, in an HOS functional decomposition
or control map, any given node in the hierarchical tree structure
is not concerned with who invoked it but only with completing
its function. Upon completion of the given function, control
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returns to the controlling node. 1In this sense, the inter-
preter is controlled by the executing function with the required
data for the interpreter being the instruction stream of the
executing module. The common subroutines are controlled by

the interpreter.

In ISDS/HOS the common subroutines could be considered
as primitive operations similar, for example, to an add
instruction. If the primitive operations were hardware, they
could be executed outside of the scope of the software. The
use of these primitive operations could result in a significant
savings in execution time over an interpreter, but at the
expense of added cost to the hardware.
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7.0 CONCLUSION

The Integrated Software Development System/Higher Order Software
has been presented as a formalized approach to the design and
development of reliable cost-effective computer-based systems.
Higher Order Software (HOS) is the formal systems theory that
has provided the foundation of ISDS/HOS. The methodology of
ISDS/HOS can be used to explicitly describe all systems includ-
ing hardware, firmware, software, and humanware, as well as the
dynamic environment within which these systems may reside. A
system specification was defined to be an abstract hierarchical
decomposition depicting the functional characteristics of a sys-
tem. A "function" has been described as a specific transforma-

tion from a particular input set to its related output set. A

function, its input set, and its output set comprise a system
module which is hierarchically decomposed into component sub-
modules according to a formal set of axioms. Functional decom-
. positions that comply with the axioms of ISDS/HOS are guaranteed
to have consistent modular interfaces as well as explicitly de-
fined functional control, where control is a formally specified
affect of one module to another. Such an axiomatic theory is
unique to the ISDS/HOS methodology.

ISDS/HOS as described is comprised of the HOS theory, a complete
range of software development tools, and a system of standards

for developing computer-based systems. The principles of ISDS/
HOS are applied to all phases of system development throughout 3

all disciplines including design, implementation, documentation,

and management. The key features of ISDS/HOS that were outiined

include the standard management procedures, static verification,

. b‘v}vu‘w'w —~rear . 0

flexibility in systems, and automated tools.

e et

An important management procedure developed for ISDS/HOS is the
Assembly Control Supervisor (ACS) concept. This method estab-
lishes a focal point through which all official modules are fil-
tered, thereby providing increased management visibility and sys-

tems integrity. 279
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Static verification assures that an ISDS/HOS specification is con-
sistent with the axioms. This can be done automatically, without

execution of the system, through use of the Design Analyzer Tool,

which statically checks the software interfaces.

Flexible systems are necessary to allow smooth adaptability to
specification or requirement changes throughout the system de-
velopment. With the development of ISDS/HOS, a complete trace

of all repercussions resulting from a component modification with-
in the system is immediately available, automatically. Thus,
system modification can be implemented with a minimum of effort

and the elimination of all possible side effects is guaranteed.

It has been an integral concept of the ISDS/HOS methodology that
the tools and techniques are used to define and describe all as-
pects of the system throughout all phases of development. Thus,
common tools are used to define and describe the functions and
interfaces, the execution flow, the verification processes, and
the management processes of a system, providing a unified struc-
ture within which development can proceed in a standardized,
tractable manner.

The objective of ISDS/HOS has been to provide a mechanism to tie
together the entire system development process, incorporating
engineering standards developed from formal foundations in order
to eliminate many of the tradational sources of design and im-

plementation errors.
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APPENDIX I: DEFINITIONS AND PROPERTIES OF CONTROL

We consider a system to be a hierarchy in which the elements

of the hierarchical system are the mathematical functions and
the defining relation of that hierarchy is that of control.

The elementary properties that we attribute to the notion of
control are stated as the axioms of Higher Order Software (HOS)
The rationale for these axioms are based on experience and
analysis of interface relationships associated with the develop-

ment of large-scale, multiprogrammed systems.

The following symbols*:

5 for every o, controls

A, 1logical 'and' ¢, does not control

V, 1logical 'or' 3, interrupts

€, element of 3, does not interrupt

&, not an element of d, there exist;

|, such that 1, a unique

C, subset of =, logical 'equals'

U, union of 3, 1logical 'does not equal’
¢, empty set a»b, 1logical 'if a then b'

iff, if and only if

variables: e.g., x, y, x, ¥y, A, B; function names: e.g., A
is a function name of y=A(x) where y and x are access variables,;
and brackets: e.g., { } are used in the discussion below. In

addition, the following notation is also used:

*
For any symbol in which the negative is not specifically stated
a vertical line "|" or oblique line "/" is drawn through the

symgoi to indicate the opposite or negative meaning of that
symbol.

AT-1
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X - A variable represents any element
of a class of objects. In partic-
ular, we distinguish those variables
whose values define the input space
or output space of a function to be
access variables. The same access
variable can be used to represent
more than one class of objects if :
each representation refers to a {
subclass of the same class.

el i

T S o

’ {a,b} class of two elements; i.e.,
{x|x=a V x=b}

(a,b) the ordered pair, i.e., the class
{{a}, {a,bl}; alternately, the
class {{a,®}, {b,{¢}}}.

X access variable x representing
(x[P(x)} class of objects which satisfy
P(x)

any variables referenced in P(x)
: other than x are considered con-
i stant with respect to P(x), e.g.,
{x|x<z}

(xl,xz...xA) an ordered A-tuple element. The

A-tuple (xj,Xx3...xp) is an ordered
A-tuple in that it implies x,, as
the first element, x; as the second
element, x, as the last element.

: Alternatively, for example, an

' ordered 4-tuple implies if (a,b,c,d)=

| (e,f,g,h) then, a=e, b=f, c=g, d=h.

v

PRSP

MR, )\
-

] ! {(xl,xz...xA)I

o

; f (X1,Xp.-.X3) €Q)} set of ordered A-tuple elements
j |

i;,‘; (xl’XZ"‘xA)[S] ;gdﬁigeged A-tuple referring to
i

an access variable referring to

b'e
(S1 module S

Al-2
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X={x1,x2...xA}

alternatively,

set X of A ordered Access variables,
i.e., X={x|x=x;V x=x, V...x=xA}

X,
JG513= 1,2...A1)
(xl,xz...xA)

XF G hierarchical element identification
’ (see page AI-Q where the hierarchical
element is a set of ordered access variables.

{X }=X
F,6" "Fip|p=1,2...N}C ;
E alternatively, i
' Xy ~}={X Xo peee } set of hierarchical elements at a '
g F,G 1,6>72,6 XNJ; given level of control (see page
AI-6)

(x ,
1fxlfpl(xl)}

X, e
{lePz(xz)}

X an ordered A-tuple element of

A{XAIPA(xA)} access variables where:

{x,|P,(x,)} is the class that
1'""1'™M1 )
Xy represents; and,

R e e T

‘ {lePz(xZ)}r is the class that
X, represents; and, i

gt

{xA|PA(xA)} is the class that
X, represents.

AP AR 1 ¢ e - 0
D L — e,

AI-3
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The following definitions are provided as an aid to under-
standing the aspects of control. 4

We define an A-dimensional input space by the values of the
A variables (xl,xz...xA). And we define a B-dimensional out-
put space by the values of the B variables, (yl,yz...yB). An
element of the output set, p€P, is a particular point for

(y15¥5---Yg)-

A function, F: Q+P or P=F(Q), is a mapping from the input set,
Q, to the output set, P. Each element of the input set is
expressed as a unique element of the output set. That is, the j
domain of the function is Q and the range of the function is

P such that F={(q,p) |¥q€Q d' p, peP}. p=F(q) has the same
meaning as (q,p) € F whereas P=F(Q) has the same meaning as F.

Ritisatciisinhda

When we refer to an element in the hierarchy other than the
topmost, or root, element, the function, F, is defined with
reference to the particular access variables associated with

' that element.

We define a controller, the module, to be a collection of
mathematical functions whose interface properties uniquely dis-

tinguish each element of the collection. If, for example, A

and B are modules; then, A o B is read "A control the invocation
of B." We say B is a function of A. The symbol for control is
also used when describing a module with respect to other

aspects of the relationship between the module and the hierar-
chical elements it controls. For example, if A is a module and

X is a set of input variables of B, then A o X is read "A controls
the access rights for the set of input variables, X, of B.

The module exists at the node just immediately higher on the
tree (or hierarchy) relative to the functions it controls.
Each node (any point at which two or more branches intersect)
of the tree represents a unique point of execution of a function.
Each node and all of its dependents represent the unique tree
structure, T.
Al-4
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With respect to control relationships, the elements of the

lowest level of any tree are referred to only as functions. j
The highest node of the entire tree structure is referred to '
only as a module. The module controls functions by invocation,
by assignment of access rights to the input and output sets,
and by the determination of the ordering of the functions. The
control system implements the functional decomposition of the
controller function. The functions at the lowest nodes of a

given system specification can be further decomposed if these

functions are nonprimitive functions.

When the choice of subfunctions is limited so that at least
one subfunction implies the same total set of ordered pairs
as that of the controller, we do not decompose that function.
For example, in Figure AI-1, C cannot be decomposed.

(y )=C(y)

'Y
1{)’1IY1=)’} Z{YZIYZ=Y}

(y1,Y,=f(y%,vY) y! > Y =C(y)
e e Ly Iy ey 21y, 1yh=y)

y=£0y}) y=£(y%)

FIGURE AI-1

In the above case, function C is primitive. Therefore, C
controls the empty set with respect to function, input variables,
output variables and dependent trees.

AT-5
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DEFINITION: The formal control system (Figure AI-2)
i8 one in which each module, S, has a unique

identification

n;m; defines a particular level of control in

which 1 18 the nested level of the module.

i=1 implies the level directly below the top

node (or root of the tree). At each level,

there is a set, N.

i» of N node positions such

: that Ni={1’2"'N} and n;€ Ni' n, 18 the node

position (from the left) relative to its most

immediate higher node, mg. my is the recursive

3 relationship Mi=ng _q,M 4 defined for i>2. If
i=2; m;=n; 4.
; n;,m;={0}, {0}. "

If i=1; ni,mi=ni,{¢}. If i=0;

o s

ot

R i)

* - I3
Henceforth, n;,m;, will be represented as n;m;, but

1

should be interpreted as n,,m,.

AIl-6
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axiom 1: The module, Snimi’

lower level, {Fn

i+17171

Thus, the module, Sn

’

il

It also follows that the

v -uw-‘.;gv'u. - ¢

b Poras -
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DEFINITION: Invocation provides for the ability to perform a
funetion. We perform a function when a particular element
of the input set produces the corresponding element of the ﬂ
output set. A function within the hierarchy is valid if it

contributes in some way to the performance of the controller's
function. If A and B are modules, we say

A invokes B iff (q,p) o1*(q/P) (3]

valid functions on its immediate, and only its immediate, o]

n.m.} *

functions on its own level.

invocation of its own function.

controls the invocation of the set of

That is:

o F JA(nm. =n. _nm) =S ¢ F |
i1M™ 1] i+17 nm, njmJ

cannot control the invocation of

module, Sn m.? cannot control the

ii

kil ittt i nite
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DEFINITION:

Responsibility -

axiom &:

output space, of

Fn m
i

1

qra)

The module,

(Qnimi

~V-j‘V-nimi as

)

is

m.’
0

If A is a module, A is responsible for

elements of the output set if for every

given element of the input set

> Praj

Sn.nn.’ controls the responsibility for elements of the
il
only Pn m.? such that the mapping

il
P . t is:
n.m. That 1is
11
P JA((h.m, mam) —~S P )
“snimio n,m, ((nJmJ =y nimi" njm, 1

Thus, there must not exist any member of the input space

for which no member of the output space is assigned. For,

if this were not the case, we would have an invalid function.

AI-9
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DEFINITION: An access right provides for the ability to locate

axiom 3: The module, S
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an element of a given sgset of variables, and once located,
the ability to reference or replace a value of said element.
If VisVy.. .V, are values associated with access variable w,

te€., w{wlwes{vl,vz...vn}} and V represents a class of two

elements such that Ve is established as the "chosen" element
of the n elements of w

V = {vc,{vc,{vl,vz...vn-vc}}}

Then, i1f A and B are modules, A and B have access rights to

variable W iff

w[A] > v _A w[B] > Vv

Cc o

n.m.’ controls the access rights to each
i'i

set of variables, {Yn n.m }, whose values define the

i+17i7i

elements of the output space for each immediate, and only

each immediate, lower level function.

¥ j¥n €N, ars , [ S oY YVA((hm. = n.. _nm.) =S oY )]
i+1 i+l nym, nimi Ny i i+ n;m, njmj

NOTE: If any two modules, Sn m and Sn _— require the
i7i i 1
same function formulation, the same set of computer resid-

ing instructions can be used for the functions as long as

the access rights of the variables are controlled via

axiom 3.

AT-10




axiom 4: The module, Sn m.? controls the access rights to each
ivi

set of variables, {Xn , whose values define the

i+1nimi}

elements of the input space for each immediate, and only

each immediate, lower level function.

e tatin > st b AT e et

JV‘j%"iHENi*l B Sym l(‘Sn.m.c’ Xn, n.m-' A((n]mj * ni*l"imi) ’Sn.m. A4 Xn.mA
i i i+l [ i)

Thus, the module, Sn m.? cannot alter the members of its
i'i
own input set, i.e., the access to the elements of the

ey

input set of Sn.mi cannot be controlled by Snimi. }

DEFINITION:

Rejection - If A and B are modules, A rejects invalid input
elements of A Lff

Uay =9 > Pay ~95 o

axiom §: The module, Sn m.? controls the rejection of invalid elements of its
ivi
own, and only its own, input set, Q . That is:

nimi

YA((n.m. w nm.) - S ¢ )
i™; i i™i Jyora My Q"fnj]

AT-11
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DEFINITION: Ordering provides for the ability to establish a

relation in a set of funetions so that any two function

e e—

elements are comparable in that one of said elements pre- \
cedes the other said element. If any two elements in {F} '

are comparable with respect to relation, R, this implies
(F,F) €€ R ¥ F c F

(F;,F;) € R A (F,»F;) € R > F, =F,

(FI’FZ) € R A (FZ’FS) € R =~ (Fl'FS) € R

{Fl’FZ'F3} is well-ordered.

axiom 6: The module, Sn m. > controls the ordering of each tree,

il
{Tn n.m }, for the immediate, and only on the immediate,
i+17174

lower level.

; F S m. . .m.) —=S }
l_., ¥ ¥n,,eN,, A s"imi' [(Gnimio T i*lnimi) A((nJmJ: n,, nmy) nm ¢ T 1

1 .
1 1]

1

' Thus, the module, S , controls the ordering of the

NN

n.m,
iti
functions, the input set and the output set, for each node

{
, f 1T .
' of ni+1“imi}

. f&ﬂMw'—.—;— ou-

AT-12
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APPENDIX I1
DERIVATION OF THE PRIMITIVE CONTROL STRUCTURES

!
3
4
!
i
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APPENDIX TII: DERIVATION OF THE PRIMITIVE CONTROL STRUCTURES

Proper decomposition implies that each subfunction is necessary
and that the set of subfunctions is sufficient so that the
controller function is established in an unambiguous manner j

g (cf. Appendix I).

When a node of a control map (c.f. Appendix I) is to be decom-
posed into subfunctions, we consider the input data type X, 3

the output data type Y, the input set Q, the output set P, the
data structure for X, {xl,xz...xA}, and the data structure for
Y, {yl,yz...yB}.

- Consider a particular input set, Q, and the corresponding set
of input variables, X. We can represent the input set, Q, as
a set of ordered A-tuples :

{(xl,xz...xA)|(x1,x2...xA)E()} (1)

Alternatively, we can represent the ordered A-tuple itself as

a hierarchy of ordered pairs
(X1’XZGDOXA) = {{XI}’{XI,(Xz-ooxA)}} (2)
Using an alternate formulation for ordered pairs such as
{{xl,w},{(xz...xA),{¢}}} (3)

leads to an abbreviated form for an ordered set of variables
{xl,xz...xA} where x; is first, X, second, X, is last.

In a similar manner, we can represent a particular output set,

P, and its corresponding set of output variables, Y. As a data
type, we refer to the set of input variables as X. As a data

All-1
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structure, we refer to the set of variables {xl,xz...xA} as a
data structure. When we refer to the data type, X, we partition
elements of Q for decomposition. When we refer to the data

structure, X, we partition elements of X for decomposition.

The derivation of primitive control structures is based on

a) decomposition as a complete formulation of a function; and,

b) preliminary properties of control structures including single
assignment and single reference. The proof is then based on
showing the validity of a decomposition level with respect to

its controller. Those control structures that are derived from
combinations of X and Y represented by (1) or (3), and shown

to be consistent with the HOS axioms, are defined as the primitive
control structures.

Decomposition as a Complete Formulation of a Function

We establish the necessity of investigating X and Y of one
control node represented by (1) or (3) at the subfunction

level.

Suppose the data type X is not represented at the next most
immediate lower level of decomposition as X, as Q distributed
among the subfunctions or as a data structure for X distributed
among the subfunctions. Examples of such a possibility are

seen in Figure AII-1.

3 Y=f0(xlsx2) b: y=f3(x1sx2)

y=£f,(8) g=f,(xy) y=f,(g)  g=fg(x3)

FIGURE AII-1

AII-2
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From the definition of invocation and the property of control
of invocation (axiom 1, Appendix I), a value of the input set
of a controller must influence or contribute to the values of
the input set of its subfunctions. In addition, a module must
control access rights to the variables of a subfunction (from
axiom 3 and axiom 4). This implies that if a variable is used
by a controller and by a subfunction, the same value is used by
both the controller and its subfunctions. 1In Figure AII-la,

we violate axiom 1 in that for various X, values, y always has
the same constant value for a particular value of Xq - This
means that if the mapping were different for f, of Figure AIIl-la
due to different values of X5, the correct mapping could not

be expressed without X, appearing in a subfunction. In Figure
AIT-1b, we violate axiom 4 because there is no way to establish
the access rights to fg from controller f3.

Likewise, a similar deduction can be established for output
variables and values, for there must be a mechanism to access
i an element of the output set. Thus, to conform to the axioms
of HOS, we must achieve decomposition as a complete formulation
of a function. To do this, we must investigate representations
of X and Y of a controller as somehow being maintained at the
subfunction level by data types, data structures, and sets of

values.

b PR s T o

Update Functions

K A

( It is helpful to establish the proof that a given variable cannot
f . be both referenced and assigned by the same function before
establishing the proof of the primitive HOS control structure.

i.
1
{
t

Lemma 1 and Lemma 2 are used to show the proof of Theorem 3,4.1
which establishes the no update property of an HOS system.

AIT-3
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Lemma 1:

level m., then x cannot be a variable of a tuple of the

If x is a variable of a tuple of the input set at

output set at level n.m..

a)

b)

By the definition of decomposition as a complete
formulation of a function, a variable of the input
set of a controller must be accessed as an input
variable of a subfunction.

Consider fo,fl,f2 as seen in Figure AII-2. The

module, Sy, corresponding to function fO does not
control access to x because access to x via fl is

not unique (i.e., there are two ways for f1 to get
x). This is in direct violation of axiom 3 and

axiom 4.

y=1f,(x)

y=f4( )" £,(x)  x=f,(W)  x=fy(x)

FIGURE AII-2

If fO gave f1 access to get x from the output set
of fz, we get an invalid function for fo. This is
in violation of axiom 1. For no matter what

element of x is input to fO, that input is ignored.

I1f we do not use fz, fz is extraneous and must be

removed via Theorem 1.2

Thus, we have shown that if x is referenced by a
given controller, then x cannot be referenced and

assigned by different subfunctions of that controller.

X . .
The brackets do not imply the empty set; the notation is used only
for convenience of illustration.

ATI-4
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c) Consider fO’fS’f4 as seen in Figure AII-2. If
f3
ways for f3 to get x.

assigns x, S0 ¢ x because, again, there are two

If f0 gave access to f3 to use an element of its
output set to obtain its own input element, we get
an invalid function for fo. For again, the original
input element for f0 is ignored.

'
If f0 provides access to f3 for x, x would have to
be an input variable to another function such as
f4 or be extraneous.

If x is used by f,, then there are two ways for £,
to get x and again, S ¢ x.

Thus, we have shown that if x is referenced by a
given controller, then x cannot be referenced and
assigned by the same subfunction.

Conclusion: Since we have established that a variable
of the input set of a controller must be referenced
by one of its subfunctions (via a) and that input
variables cannot be referenced and assigned by
different subfunctions (via b) and that input vari-
ables cannot be referenced and assigned by the same
subfunction (via c¢), then we establish that x
cannot be assigned by a subfunction if it is refer-
enced by its controller.

Lemma 2: If y is a variable of a tuple of the output set at

level m, then y cannot be a variable of a tuple of the
input set at level n.m,. Proof is similar to above.

AII-S
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Theorem 3,4.1 (revisitéd from (HAM73b) ): A variable of

f the output set of a function cannot be a variable of a
tuple of the input set of that same function.

Consider Figure AII-3. Here, £ is a local variable in

y=f,(x)

*
y=f1(£) £=f5( ) £=f2(£) f3(£) f4(x)

FIGURE AII-3

that it does not appear in the input or output of the
controller fO' If £ is used as input to two functions

: (c.f. fl and fS) or as output of two functions (c.f. fs
and fz) or as an update function (c.f. fz) used in combina-
tion with f1 or f3, the ordering of the subfunctions is
not unique and the module corresponding to fO does not

control the ordering of its subfunctions., This is in
direct violation of axiom 6. Using this consideration,
Lemma 1, Lemma 2, the proof of Theorem 3,4.1 can be shown.

Mutually Dependent Functions

Mutually dependent functions are those functions in which the
output set of one function is the input set of the second
function, and the output set of the second function is the input
set of the first function®* We use the results of the following
theorem as an aid in establishing the proof of primitive control
structures.

*
See footnote page AII-4

&%
Mutually dependent functions can be specified via the single
assignment approach using recursive operations and different
variables (c.f., discussion on single assignment which follows).

AII-6
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Theorem: If two variables are local to a given control level
then, mutually dependent functions cannot be specified
at the same level using the same two variables.

Such a situation is represented in Figure AII-4. Here,

FIGURE AIi-4

the order of f; with respect to f, is not unique. This

is in violation of axiom 6. The module corresponding to
function fo does not control the ordering of the dependent
trees corresponding to functions f1 and fz.

Single Assignment Property

The no update property of a control structure, the constraints
imposed on mutually dependent functions, and the restriction
to single-valued functions (c.f. Appendix I) imply that a
variable is assigned only once per function performance. This
property, single assignment, will also be used to derive the

primitive control structures.

Single Reference Property

Single reference implies that an input variable of a controller
node is accessed as an input variable of a subfunction only
once per function performance. This restriction is based on
the controlled ordering imposed on a set of subfunctions via
axiom 6. Although ordering with respect to invocation can often

ATI-7
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be ascertained from the data flow relationships, it is not
always apparent that ordering with respect to access time or
storage access or execution can be specified without the single
reference approach. Such ordering relationships must be defined
by a controller node. For example, consider Figure AII-S5.
Suppose f1 completed the calculation of h and fz is initiated. !

Y=f0(x1,xz)

y=f,(k,x;,h)  k=f5(gix))  j=f,(h,x;)  (h,g)=f, (x])

FIGURE ATI-5: Implications of No Single Reference Property

When g is calculated, can f3 interrupt f, if these functions
are performed in a restricted implementation such as multi-
programming? The answer is not apparent from data flow con-

siderations. Since an arbitrary decision is required to approach
the ordering relationship, the specification of fo is incorrect.
Suppose, on the other hand, that f3 and f2 have been completed.
Is the ordering with respect to storage access defined totally?

Again, without a single reference property as seen in Figure AII-5,
we need an arbitrary decision as to saving space for variables

| h and g (we do not know if h and g will be used in future calcula-
tions). Suppose, for another example, the inputs to f3 are

{ destroyed by some outer system problem. How can we determine

how far to backtrack? Again, the single reference property would

supply the proper information to each function in order to totally

specify the backtrack ordering.

PR T

In order to specify total- or well-ordered relations among sub-
functions, we must impose the single reference property on the

input variable of a given set of subfunctions.

ATT-8
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PRIMITIVE CONTROL STRUCTURES FOR HOS

In the following proof, we can assume, from the previous dis-
cussion, that an HOS control structure has at least the follow-
ing properties:
a) no update functions using the same variables j
b) no mutually dependent functions
c) single assignment property
d) single reference property
e) the elements of the input set of the controller,
and the elements of the output set of the
controller are to be maintained in some form by
its subfunctions
f) at least two subfunctions are necessary to
decompose a function

The proof that a primitive control structure is valid for an
HOS system rests partially on the definition of a primitive
control structure. Such a definition is derived from the

concept of a construct class.

A construct class represents a function decomposition, the

subfunctions of which can only be regrouped recursively.

Figure AII-6 illustrates two possible regroupings of the same
function. Note that the regrouped subfunctions .do not change

in any way. The most primitive level of a construct class
decomposition is a primitive control structure. It is always
possible to regroup the nonprimitive level as a nested hierarchy
of primitive control structures.

FIGURE AII-6: Recursive Regrouping of C

ATI-9
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X =X
AlalaeNn. '™ 1
it {

Q = Q ;
Aajaen;™ ™ 1
= Y : 1

Y
BgiBen, ™ M

P =P ; and, A $# B
PBiBeN ™ M

[n this case, Xm appears directly in one subfunction at
i i
level 1, relative to node ms o, and Ym appears directly in ;
i
another subfunction at level i, relative to node m.,. By
eliminating the combinations assumed invalid from the control
structure properties listed above, we are left with the

following considerations.

Consider Figure AII-7. If Case 1 is valid, we must assume that:
1) x is input to one and only one subfunction; and, 2) a local
variable is always output of one and only one subfunction and
input to one and only one other subfunction.

y=f0(x)

y=f,(z)  z=f(x)

FIGURE AII-7: Composition as a Primitive
Control Structure f

Figure AII-7 is considered to be the primitive control structure,
composition. The canonical form of this primitive control
structure has two subfunctions as seen in Figure AII-7. Access
to x and y are provided unambiguously in compliance with axiom 3
and axiom 4. In addition, the ordering of the subfunctions is
unique in compliance with axiom 6. Each element of the con-
troller's function is maintained by the subfunctions in
compliance with axiom 1, axiom 2, and axiom 5.
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Case 2: A

)~(X =X )

(X X
A{AlAeNi}’mi mi C{CICCNi}’mi m;

Q =Q. );
Clelceny ™ M
(Y Y )0y Y ) ?
- = pre :
PBiBen;3 ™ ™ Cqelcenp™ M
(P =P ); and i
“cleeng ™ ™ ’
A% B |
1
()’1,)’2,)’3)=f0(xl,}(2) (yls)'z)afo(xlﬁxz)
(yq,¥3)=£1(x;) yo=f,(xq) y1=£,(xq) yo=1t;5(x;)
FIGURE AI1-8 FIGURE AII-9: Class Partition
as a Primitve Control
Structure.

Consider Figures AII-8 § 9: In each case, by performing both
subfunctions once, we obtain an element for (xl,xz) and (yl,yz).
But, consider Figure AII-8. The order of the ordered pairs is not
unique in that the order for (xl,xz) conflicts with the order

for (yl,yz,y3). Example: Suppose f1 and fz had to contend

for the same resources. Ultimately, there is no way to uniquely
determine the ordering of these functions. However, if we restrict
such a structure as in Figure AII-9, in which a one-to-one corres-
pondence exists between the ordered (xl,xz) and the ordered (yl,yz),
then the "first" subfunction can always be ascertained from the
order associated with the input and output variables of the controller.

Thus, Case 2 is a valid primitive control structure under the restric-
tion that if f1 is first, Xq is first and Y4 is first such that
yl-fl(xl) and if f2 is second, x, is second and Y2 is second such that
y2=f2(x2). Such an ordering is established by the controller and maintained
by the subfunctions (Figure AII-9).

AII-11
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xA m
{A|A€N,}'™; i

Q
Aalaen; )™ i

Y = Y 5
“reNn ™ M

P = p ; and, A ¢ B
Bipen ™ 0™

Case 4:

X = X ;
Aalaen, o™ i

Q
Aajaen ™ my

Y =Y 3
Bipen™ M

N

P P ; and, A $ B

PBBeN M M

y=£4() y=£o(0

/N

y=£(x(x|x>8}) y=£(X{x|x<101) y=£1 (X x|x>109) y=f2(x{x|x<10}) y=f3(X{x|x<10))

FIGURE AII-10

In Case 7 and Case 8, variable x does not appear directly in
the subfunction. Due to the function definition for a control
node, there is no general mechanism to restrict PB ,mi#Pm_.

{B|BEN,} i
AII-12
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Thus, we refer to all of Ym. in each subfunction and can then
i
consider Case 7 and Case 8 together.

Consider Figure AII-10: 1In Figure AII-10a, we see that if x

is not partitioned, there is no way to provide a unique ordering
of the subfunctions in those cases where the element of the

input set appears in both subfunctions. In addition, the parti-
tion is restricted so that the input variables of the subfunction
cannot represent the same set of elements (c.f., Figure AII-10b).
Again, a unique ordering of subfunctions is not possible under
conditions such as presented in Figure AII-10b.

It follows that Case 7 and Case 8 are valid primitive control
structures under the restriction that Q is divided into a parti-
tion, C, of Q such that Q=Cj, cjc:C, and Q= %’ci and for two
sets cjr‘ci=¢.

x X €c X b € (C-c
A,mi A,mi B,mi B,mi

FIGURE AII-11
Set Partition Primitive Control Structure (C = Q and A # B where
AEN; and BeNi)
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The canonical form of the primitive control structure has two

sub-functions to restrict fo from controlling itself. Access

to a particular element of the input set is unambiguous. Sta-
tically, the ordering of subfunctions is equal. Dynamically,

the ordering is uniquely determined by that subfunction which

has the element of Q chosen at a higher level.

Case 5: i
X = X M s
Aalaen, 1™ M ()

H
Q = Q ’ 51
AMalaen ™ ™ 2
?
Y =Y ; §
Bigipen.t’™ M 5
1 ‘
P C
Biipen 1™ # Pp *i and, A 1B
B y=£o(x) Pt y=£y(x) _
y =f(z/)>( ) 4"\ -, (%) |
{yly<a} "1 AR Yiyly>at™ 1 Viyly<a} "2
FIGURE ATI-12

(a) Consider Figure AII-12  To account for all of Y elements,

we need at least two subfunctions that assign Yn ; elements.
ivi

*
where Py ymy ? Pm means Py CP_ A Pa $ P
{B|BEN,} i {B[BEN;} i {B|BEN;}

®
* In general, this can be any relation, R(y).

AR
See footnote page All-4.
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(b) Consider Figure AII-12bto respond to the requirement of
Case (a): 1If f1 has x as the input variable, we have
violated the single assignment property (here such a
violation results in a multivalued function). If f1
has the output variable of fz as input, we violate the
no update property (likewise, a vilation of this nature
also would result in a multivalued function). Case 5 is j
invalid for HOS, and thus,cannot be considered a primitive

control structure.

Case 6:

X
A{AIAGNi}’mi i

& R re——y T e -

Q Q
Aajaen; ™ i

(Y = Ym )+

Y ) (Y
Bgipen,y'™ © Mi° " Crcjcen;y ™ i

(P
Ciclcany™ i

* N Ot D S gt -

A+B

~

(y1,y3)=f,(x)

y=£;(x) yo=f,(x)

SRR aa Lk skt o 'L A bindaaaedill S ited
L —— . —— - .

FIGURE AII-13

Consider Figure AII-13: The case remaining (after eliminating
those control structures that violate the general properties
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of control structures) as seen in Figure AII-13, C(Case 6 proves
to be invalid by the violation of the single reference pro-
perty. (Here, the violation implies an implicit data lock for

x in order for f_ and f2 to attempt to access x concurrently.)
Case 6 is invalid for HOS, and thus, cannot be considered a
primitive control structure.

Case 7:

Y =y
Bipen™ ™
p =P 4
BiiseN, M M
(X 7 X )s(x X )
> = >
Atalaen. '™ mj Ciclcen.y ™j M
1 1
Q = Q.  ); and,
“ielcen, ™ ™
A $ B

y=£fy(xy5%,)

y=f1(x1) Y=f2(X2)
FIGURE AII-14

(a) Consider Figure AII-14: 1In this case, to get one element
for (xl,xz), both subfunctions must be performed. 1If one
subfunction assigns all y elements, then the other sub-
function is either extraneous or invalid. Case 7 is invalid
for HOS, and thus, cannot be considered a primitive control

structure.
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Y =Y ;
Blpen, )™ M

P
BlBen™ ™

(X

X_ )+ (X =X )
Aajaeny™ ™

Cicleen ™ M

Q .
Ciclcen, 1™ i

A+ B

Y=f0(x1,X2)

y{ylysa}=f1(x) y{ylyza}=f2(x2)

FIGURE AII-15

As seen for Figure AII-15, Case 8 is similar to Case 7 in that
we always obtain an extraneous or invalid function. Case 8 is

invalid for HOS and, thus, cannot be considered a primitive
control structure.
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Case 9:

X = X 5
A{AlAENi}’mi my

put element for any element of x. Case 9 is invalid for HOS,
and thus, cannot be considered a primitive control structure

-
Q Q. :
Aataen, ™ = M
i 3
(Y § Y )->(Y =Y )
' Pipeny™ - ™ Crelcen ™ ™
(P =P ) ; and, !
, “lcleen ™ M :
]
i
;[ A4B
(Y1,¥)=fy(x)
— /////\\\\i?\ |
17E e ixaP Y2 2 (X (x xz2a P |
s FIGURE AII-16 :
b -
i !
A
g I Consider Figure AII-16: Here, we cannot get a complete out- {

To summarize thus far, the primitive control structures in
Table AII-1 have been established.
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The following combinations of primitive control structures
can be used as abstract control structures for building a
system specification. Note that we could not show set

partition and class partition on one level (Figure AII-17)

because to do so implied the need for local variables. ‘
Since local variables imply composition, there is no way to !
obtain set partition and class partition on one level without
1 composition. In each of the cases shown, the combinations

i can be regrouped into the original three primitive control 2
{ structures. ' ]
k.

(y1,¥2)=f(x) !
;l" 1
A ]
. y1=f(X{x|x<a}) Y27 £ (X x| x>a})

FIGURE AII-17: An Invalid Combination of Set i
Partition and Class Partition
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Examples of Valid Abstract Control Structures Derived from Composition

and Sct Partition Primitives.

V= f()(x)

/'/

y=102) z=F3(x

:zrl(x{x|x<a})

//\\

y=r5(x{xlxsa})

y=f:(g)

FIGURE AII-18
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g=f3(X(yx|x<a))

Y=f0(x)
/\
{xlxza}) y=f,(2) z=f,(x)
:sz(x{xlX<a}) %=r3(x{X|xza}) !
y=r0(‘() |
——

y=0,(0  z=0(x)

N

y=f2(z{zlz<a}) y:fS(:{:]:;u})

_
y=f6(X(x|x>a})

y=f1(h) h=f4(x{x|x>a})
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yi=f1(zp)  yp=f(25)  zp=is(x))  z2p=Ey(xp) y1=f5(xq) vy=fe (X))

Examples of Valid Abstract Control Structures Derived from Composition

and Class Partition Primitives

(¥12y2) £ (x1,%)) (¥1s¥2)=Ep(xq,%7)
9
()’1s)’2)=f1(21122) 1= 2(x1) 22=f3(xz) (Yl ’}'2)=f1(21 ,22) (Zl ,22)'f4(x1,x2)
f (x 2y= fs (x,
b: .
(YI’YZ)zfo(X) (yl’yz) =f (X)

l

Y1=f2(21) )’2=f3(22) [21,22)=f1()() (yl:yZ)‘f4(le 2) A

=E2(2)) yy=f1(z,)

(yl’YZ)=f0(xlsx2) (YI;YZ)=f0(X1’x2)

/\_’ N
A NVAN

yi=E1(2)  2=f3(xg) yp=f(zy) 2p=6,(x,)

FIGURE AII-19
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