
:/

:"'

Dsva:oprnent Technical Report

Q~329-F

~NTEGRATS:D SOFTWARE DEVELOPMEN-T SYSTEM/

H1G~ R ORDER SOFTWARE CONCEPTUAL DESCRIPTION

Pdmo Con!ractor:

{Version 1}

M. Hamilton
S. Zeldin

Subcontractor:

i: _ ,·~:; U\i1LES ST.6JlK DRAPER
U\:::ICR!\TORY, INC.

HIGHER ORDER SOFTWARE, INC.
843 Massachusetts 1\venue

Cambridge, MA 02139 ~:;::-. Technclogy Square
C~mbr:d::Je, M1-\ 02139

NOVEMBER 1976

Finni Report for Period November 1975- November 1976

DiSTRIBUTION STATEMENT

i\pproved for public rul(.ftso;
distribution unlimitec.

: ~; :.~' i !) l\H/i AN D. F 0 H T M n N M 0 U T H, NEW JERSEY 0 7 i' 0 3

' "•, '~ .• ' ' ' .. ' ·"; ,..., ..;;~......,. ·.,.'r-:-<:·•·, .. ""<

NOTICES

Copyr~ght ~ 1976 by

HIGHER ORDER SoFTWARE} INc.
All rights reserved.

No p?rt of this report may be reproduced in any
form, except by the U.S. Government, without
1tJri tt:en permission from Higher Order Software,
Inc. Reproduction and sale by the National
Technical Information Service is specifically
p0rmitted.

DISCLAIMERS

The findings in this report are not to be
construed as an official Department CJf
U:H~ Army position, unless so designated
by ot.her authorizej docnments.

The rit:ction of trade names and n~mes
of manufacturers i~ this report is not to
be construed as officiaJ. Govm::nment
i~uorscment or approval of commercial
produces or services rP.ferenced herein.

DISPOSITION

Dc:stroy this report when it is no longer
needed. Do not return it -to the originator.

••• •":• •• ··- ·q, ~··.,~ •'.,

•:r·,-ro···,· ~ ·:-·'~ v .. ·:····"'"'"; .;;'. ;' '
.-·~

INTEGRATED SOFTWARE DEVELOPMENT SYSTEM/

HIGHER ORDER SOFTWARE CONCEPTUAL DESCRIPTION

(Version 1)

M. Hamilton and S. Zeldin

ERRATA SHEET

Modifications to the above report are as follows:.

Page ix: Insert after 4.3.6: Multilevel Set Partition.

4.3.7: An Example of Class Partition

Page 75: Insert after Figure 4.3.6: Multilevel Set Partition:

Class partition is illustrated in Figure 4.3.7. While set parti-

tion involves partition of the domain into subsets, class parti-
tion involves partition of the domain variables into classes and

the partition of the range variables into classes. In the ex-

ample, it is assumed that the domain variable has an associated

data structure comprised of two parts, x1 and x2. Likewise,

the range variable has an associated data structure with the

same number of classes as the domain's data structure. (As an

example of such a structure, consider the domain to be the complex

numbers; the range to be polar coordinates. Then, for a given

value of the domain variable (i.e., a given complex number), x

would represent its real part and x its imaginary part.) Con-

sequently, the variable is partitioned into two separate classes,

x and x2, such that elements associated with x are the input

elements that one offspring can access and the elements associated

with x are the input elements that the other offspring can access.

The range structure is partitioned in a similar manner.

:R ORDER SOFTWARE INC 843 MASSACIKISETTS AVENUE CAMBRIDGE KA 02139 •17.Af,1_~lnn

I!

(Yll Y2) f(xl, x 2)

y = hlX2) = g(x2)

Figure 4.3.7: An Example of Class Partition

The following characteristics with respect to class partition

should be observed:

(1) All offspring of the module at f are.granted permis-

sion to receive input values taken from a partitioned
variable in the set of the parent MCF'domain variables,

such that each offspring's set of input variables are

non-overlapping and all the offspring input variables
collectively represent only its parent's MCF input
variables.

(2) All offspring of the module at f are granted permis-
sion to produce output values for a partitioned vari-

able in the set of the parent MCF range variables,

* \ such that each offspring's set-of output variables are
non'overlapping and all the offspring's output vari-

ables collectively represent the parent MCF output
variables.

(3) Each offspring is specified to be invoked such that

for each change in state of its parent, all offspring

t4 undergo a state change.

(4) There is no communication between offspring.

2

R ORDER SOFTWARE INC 843 ktSSACIIUSFTTS AVFNUE • CANRfitrm MA 02139 • 617-661-89on

SECUPITY CLASSIFICATION4 OF THIS PAGE (lWhmn Data Ent~rO40

*ECM T(- 329-Fj

Integrated Software" Devloment System Fina ep Period
Higher Order Software Conceptual Description Nov T5- Nov 764
(ISDS/HOS)o .PROMN RG EOTNME

ISHihe OISrdBTIO STATEwaNT (ehnca Repor #e t 3

.;Zldi -- -32

9. ISPEOMENTARRGANIZOTS EADA)DS1.POGA LMN. RJCTS

Prim KE OD Contu onto ota aid I n c oaa n trc ARE &dnf WOR UNIcT NUMBERS

The Cnterae Stware Deeomn ytmHigher Order Software. IInc/.Si
a Dunifed saoaysm engineering usetdlgatsAu inlds. a20 bai set2 ofprincipl
and aeholg Stan are oftosambrdgtechiqe for deeopn2omue-bsdsytm

hi _ _ _ _ _ _ _ _

SECRIT CLASSIFICATIO OFIC THIS PANE (ADDRESSea

0-T N1 g UM 0< E_

r GCUMITY CLASSIFICATION OF THIS PAGE(faatm Dale Efated)

The automated tools of ISDS/HOS serve to eliminate many possible sources of

human error in the transition of system development from concept to deployment

The component tools of ISDS/HOS facilitate the specification of a system, auto-

mate interface analysis of the specification, and automate translation of the

system specification directly into an optimized target-machine coded form. The

ISDS/HOS support tools eliminate much of the manual effort required in the de-

velopment of computer-based systems.

The purpose of this report is to present the ISDS/HOS concept so that managers,

systems engineers, and computer scientists can appreciate the various aspects

of the basic principles on which ISDS/HOS is based, the basic tools that

ISDS/HOS will have available, and the basic techniques that ISDS/HOS users can

use.

r

1Ku

- " L'1A n "

LIA
SECUNITY CLASSIFICATION OF THIS PACE(tefln Dala nteed)

ACKNOWLEDGEMENTS

This report was prepared under Contract No. DAAB07-76-C-0329

sponsored by the Department of the Army, Headquarters United

States Army Electronics Command, Fort Monmouth, New Jersey and

subcontracted to Higher Order Software, Inc. by The Charles

Stark Draper Laboratory, Inc.

We would like to extend a special acknowledgement to Marty Wolfe

and Ed Lieblein of CENTACS, ECOM/Ft. Monmouth, New Jersey for

both providing major sections to Chapter 4 as well as providing

a very constructive and critical review of the entire report.

With respect to the staff of Higher Order Software, Inc., we

would like to thank, in particular, Chris Davis and Bill Heath

for their technical contributions in Chapter 6; Chris Davis for

his technical contributions in Chapter 2; and Bill Heath for

Chapter 7. In addition, we would like to thank Roy Coppinger

for his help in preparing written material for Chapters 1, 3,

and 6; Cosmo Battinelli for his help in preparing written

material for Chapters 2 and 6; and Steve Cushing for his comments

which were very helpful in the preparation of this report.

We would also like to thank G. Bender of Hughes Aircraft Corp.

for Section 2.3.1; N. Hampton and G. Myers of Naval Electronics

Laboratory Center for Section 2.3.2; D. Teichroew and E. HersheyI
III, of the University of Michigan, for Section 2.3.2; T. Straeter

of NASA/Langley Research Center for Section 2.3.7; and E. Damon

of NASA/Goddard Spacecraft Center for Section 2.3.8.

In addition, we would also like to thank D. DeVorkin of The

Charles Stark Draper Laboratory for contributing material in

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Sections 2.0, 2.1, and 2.2 and also R. Freiburghous of Trans-

lation Systems, Inc. for contributing the major portions of

Section 6.3.3.

The authors would like to express appreciation to Gail Lopes,

Andrea Davis, Virginia Wier, and Adele Volta for the preparation

of this report; to Lauren Hamilton for the artwork of Chapter 4;

and to Geoffrey Gold and Gail Lopes for the artwork of Chapter 5.

Our preliminary work was performed at The Charles Stark Draper

Laboratory prior to the incorporation of Higher Order Software,

Inc.

Ii
Margaret Hamilton and Saydean Zeldin

HAS

r ~HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (817 661-8900

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1

2.0 STATEMENT OF THE PROBLEM 5

2.1 Current DoD Efforts 11

2.2 Commercially Available Software Development
Aids 15

2.3 Current System and Software Development
Techniques and Methodologies 19

2.3.1 Structured Design 19

2.3.2 System Design Laboratory 22

2.3.3 Information System Design and
Optimization System (ISDOS) 23

2.3.4 Software Factory 29

2.3.5 Ballistic Missile Defense (BMD) Soft-
ware Development System (SDS) 35

2.3.6 Hierarchy plus Input-Process-Output
(HIPO) 42

2.3.7 Multipurpose User-Oriented r -ware
Technology (MUST) 48

2.3.8 Domonic 52

2.3.9 Summary 53

3.0 RATIONALE FOR ISDS/HOS 55

3.1 Background 57

3.2 Concept of the HOS Formalized Approach 59

4.0 FOUNDATIONS OF ISDS/HOS 61

4.1 Preliminaries 63

4.1.1 Trees and Functions 63

4.1.2 Modules and Nodal Families 67

4.2 The Axioms 68

4.3 Functional Decomposition 72

4.4 Illustration of the Axioms 751 4.5 Examples 85

4.5.1 The BRIGGEN System 85

v

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 61-89M

II 1:

Page

4.5.2 The Line Justifier 100

5.0 THE USE OF ISDS/HOS DURING THE LIFE-CYCLE OF
COMPUTER-BASED MILITARY SYSTEMS III

5.1 Systems Preliminaries 117

5.2 ISDS/HOS Disciplines for Use in Developing
a System 127

5.3 ISDS/HOS Development Phases for a System 137

5.3.1 Concept Formulation Phase 145

5.3.2 Program Validation Phase 152

5.3.3 Full Scale Development Phase 158

5.3.4 Production and Deployment Phase 168

5.4 Tools Used During the Phases of System
Development 169

5.5 System Building Process 172

5.5.1 ACS Demonstrated by System Layer
Function S 176

5.5.2 The Management Building Layer (M) 181

5.5.3 Subsystems of System S 184

5.5.4 The Environment Layer Subsystem 186

5.5.5 The Application System Layer SA 191

5.5.6 The Building Levels of Support Tools
Functions 194

5.5.7 'Frozen" Modules 194

6.0 TOOLS FOR ISDS/HOS 197

6.1 Component Tools of ISDS/HOS 199

6.1.1 Specification Language (AXES) 199

6.1.2 Design Analyzer 207

6.1.3 Static Resource Allocation Tool (RAT) 215

tt 6.1.4 Structuring Executive 228

4 6.2 Support Tools 233

6.2.1 Management Support Tools 233

6.2.2 Documentation Support Tools 248

vi

f HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 0213g. (617) 661-8900

Page

6.2.3 Design Support Tools 250

6.3 Incremental Tools for Current Use of
ISDS/HOS 259

6.3.1 Assembly Language 259

6.3.2 Macro Processors/Assemblers 261

6.3.3 Higher Order Language (HOL) 262

6.3.4 Compilers 266

6.3.5 Structured Design Diagrammer 268

6.3.6 Interactive Debugger 274

6.3.7 Interpreter 274

7.0 CONCLUSIONS 277

BIBLIOGRAPHY

APPENDIX I. Definitions and Properties of Control

APPENDIX II. Derivation of the Primitive Control
Structures

t ,

vi

HE Ovii

!' , HIGHER ORDER SOFTWARE. INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE. MASSACHUSETTS 02139. (617) 661-8900

MEC'ZDIM PA~ik*6.LMC TIU.ED

FIGURES

Page

2.1 Interrelation of Software Acquisition Study

Findings 9

2.2 Problem Summary 10

2.3.6.1 The HIPO Technique 46

4.1.1.1 An Example of a Tree Structure 63

4.1.1.2 Tree Levels 64

4.1.1.3 Parent-Offspring Relationship 64

4.1.1.4 Tree Substructures 65

4.1.1.5 Illustration of a Function from
X into Y 67

4.3.1 An Example of Composition 72

4.3.2 Composition with Three Functions on One
Level 73

4.3.3 Multilevel Composition 73

4.3.4 An Example of Set Partition 74

4.3.5 Set Partition with Three Functions on
One Level 75

4.3.6 Multilevel Set Partition 75

4.4.1 Axiom 1 - Invocation Rights 77

4.4.2 Axiom 2 - Responsibility Rights 79

4.4.3 Axiom 3 - Output Access Rights 80

4.4.4 Axiom 4 - Input Access Rights 81

4.4.5 Axiom 5 - Rejection Rights 82

4.4.6 Axiom 6 - Ordering Rights 84

4.5.1 BRIGGEN Invocation Tree 86

4.5.2 BRIGGEN Management Structure Control Map 88

4.5.3 BRIGGEN Time Requirements 95

4.5.2.1 The Initial Assumption of Line
Justifier together with its
Supporting Narrative 101

4.5.2.2 Line Justifier Decomposed Using
the Composition Primitive
Control Structure 102

ix

j HIGHER ORDER SOFWARE, INC. o 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Page

4.5.2.3 F, Decomposed Using the Set
Partition Primitive Control
Structure 103

4.5.2.4 Set Partition Decomposition of
F2 to Return Lines Containing
Only One Word 104

4.5.2.5 Decomposition Using the Composi-
tion Primitive Control Structure 105

4.5.2.6 Restructuring of the Control Map
to Include Line Parity Requirement 106

4.5.2.7 Line Parity Set Partition of F 4 108

4.5.2.8 Invocation Map for Line Justifier 109

4.5.2.9 HOL Code for Line-Justifier System 110

5.1.1 System A 117

5.1.2 System TRANSLATE 118

5.1.3 An Example of a Support System Function
COMPILER which Creates a New Layer for
System A 120

5.1.4 The OS System Translates (a) and Returns
Execution Control Back to System, A (b) 121

5.1.5 Dynamic Translation Process 122

5.2.1 Development 127

5.2.2a Development Process - One Phase 130

5.2.2b DesignImplementation Disciplines 131

5.2.2c Verification Discipline 132

5.2.2d Management Discipline 133

5.2.3 Example of Management Discipline Between
Steps of One Phase Within an Integrated
System Development Process 135

5.3.1 Four Major Phases of a System Development 138

5.3.2 Delivery of Requirements for Next Phase 138

-~I5.3.3 Example of System Management Techniques 140

5.3.4 The Top-Level Design and Implementation
Disciplines of an Integrated System Develop-
ment Phase 143

5.3.5 The Top-Level Verification Disciplines of
an Integrated System Development Process 1444x

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 681-8900

Page

5.3.1.1 one Step of Concept Formulation
Phase 147

5.3.1.2 Examples of Iterative Steps Within
the Concept Formulation Phase 149

5.3.1.3 Concept Formulation Phase Specifi-
cation Process 150

5.3.2.1 Target System AXES S 153

5.3.2.2 An Example of Top Layer Resource
Allocation for Target System AXES 154S

5.3.2.3 One Step of the Program Validation
Phase 156

5.3.3.1 Potential Iterative Steps Within
the FSD Phase 159

5.3.3.2 An Example of One Step of the
Full Scale Development Phase (For
the Incremental Model) 160

5.3.3.3 Major Translation Steps of an
Integrated System Development
Process 163

5.3.3.4 Translation Process for System A 165

5.3.3.5 Development and Execution-Layers
of System A 167

5.3.4.1 An Example of Processes of the
Production and Deployment Phase 170

5.5.1 Building Matrices for Various Levels of
System Development 175

5.5.1.1 Building Process for System S with
Respect to Personnel Management
and the Translation Process 177

5.5.1.2 The Assembly Control Supervisor
Concept 179

5.5.1.3 Building the Library and the use
of the Library Managed by ACS 180

5.5.2.1 System Layer Function M With Respect
to System S and the Personnel

Management 183
5.5.4.1 Sample Building Process for Layer

System Function E 188

5.5.5.1 Building the Applications System 193

xi

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Page

5.5.7.1 ISDS/HOS Building Process 196

6.1.2.1 Top Level Decomposition of
Analyzer Tool 208

6.1.2.2 Assertions for Composition
Primitive 211

6.1.3.1 The Primitive Control Structure:
Composition 217

6.1.3.2 The Primitive Control Structure:
Set Partition 219

6.1.3.3 The Primitive Control Structure:
Class Partition 220

6.1.3.4 Condensing of the Composition
Primitive 221

6.1.3.5 Condensing of the Class Partition
Primitive 222

6.1.3.6 Time-Optimal Resource Allocation 225

6.1.4.1 Dynamic System Reconfiguration 229

6.2.1.1.1 Structure of ISDS/HOS
Project System Data Base 236

6.2.1.2.1 Simplified ISDS/HOS
Decomposition Map 239

6.2.1.3.1 Inter-Revision
Updater Example 243

6.2.1.4.1 User Creation of New
System via the ISDS/HOS Collector 247

6.2.3.1.1 Top-Level ISDS/HOS
Decomposition of a Simulator 251

6.2.3.3.1 Summary of Procedure
for Producing Optimal Specification
for Emulator 258

6.3.5.1 A Structured Program Using Standard
Symbols to Show Flow of Program
Execution 269

6.3.5.2 Same Structured Program Using
Structured Flowchart Conventions 270

6.3.5.3 Design Diagram Notation 273

xii

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-891

Wig

TABLES

Page

2.2.1 Commercially Available Software-
Development Support Tools 16

4.2.1 Axioms of ISDS/HOS 71

5.1.1 Requirements Affecting the Development
of a Target System 124

5.1.2 Requirements of the Target System 126

5.3.1.1 Concept Formulation Phase
Tools and Techniques 148

5.3.1.2 Concept Formulation Phase
Specification Process Tools
and Techniques 151

5.3.2.1 Program Validation Phase Tools
and Techniques 157

5.3.3.1 Tools and Techniques Applied
Within One Step of the FSD
Phase 161

5.4.1 Tools Used During the Phases of a F- lem
Development 171

5.5.1 System Building Matrix Used by Transla-
tion Project Management Personnel to Track
Translation Development 173
5.5.3.1 System Building Matrix for

Subsystem of S 185

5.5.4.1 Building Matrix for System SE ,
The Environment System Layers 187

5.5.5.1 Development Layers 192

5.5.6.1 Building Matrix for ISDS/HOS
Support Tools 195

6.1.1.1 Characteristics of Proper
Specifications 200

6.1.3.1 Input and Output of the Resource
Allocation Tool 218

t6.2.1.3.1 Files Maintained by
Inter-Revision Updater 244

6.2.1.3.2 Statistics Automatic-
ally Collected by the Inter-
Revision Updater 245

6.2.3.1.1 Characteristics of
an ISDS/HOS Simulator 253

xiii

* ER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

1.0 INTRODUCTION

4

I
I

I *~

1.

1.0 INTRODUCTION

The rapidly increasing cost of software represents a serious

threat to the effectiveness of future systems for the Depart-

ment of Defense. Already software cost is a major component

of overall systems-development cost, and this trend is expected

to accelerate in the near future. As systems grow in complexity,

there is an increasing dependence on sophisticated computer soft-

ware to support them. It is widely recognized that present methods

of software development are not sufficient to produce reliable

software systems at an acceptable cost (RAM75) (WU74) (BOE72)

(GAN76). Reliable software is particularly important for tactical

systems required to respond to multiple threats in a real-time

environment. A significant improvement in software-development

technology is required to ensure the success of future large-

scale systems. In order to satisfy this requirement, the Army

has identified the need for an Integrated Software Development

System/Higher Order Software (ISDS/HOS) for the development of

reliable, maintainable, versatile computer systems at a signifi-

cantly reduced life-cycle cost.

This document presents ISDS/HOS as a comprehensive approach to

the solution of the software-development problem. The problem

is defined in Chapter 2 by presenting available methodologies

and techniques for system and software development. A rationale

of ISDS/HOS is presented in Chapter 3, by means of its histori-

cal development. Chapter 4 then describes the theory of Higher

Order Software'which is the foundation of ISDS/HOS. Chapter 5

describes the use of ISDS/HOS during the life-cycle of computer-
based systems. This includes the step-by-step transformation

of user requirements into hardware, software, and firmware de-

signs. Chapter 6 describes the automated tools of ISDS/HOS.

3

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (61) 661-8900

2.0 STATEMENT OF THE PROBLEM '

2.0 STATEMENT OF THE PROBLEM

Concern with software costs is evidenced in a DoD memorandum (DDR74)

which presents the trepd in the increasing ratio of software to

hardware costs. The memorandum further references a RAND fore-

cost which predicts a 95% expenditure of the ADP budget on soft-

ware by 1985. Without being concerned over the accuracy of the

forecast, it is apparent that the trend of increasing software

cost is expected to continue. A later DoD memorandum (DDR75)

states that "There is an urgent need for technical and managerial

innovations which lead to more reliable and cost-effective soft-

ware throughout DoD." The memorandum then places emphasis on the

areas of command and control and weapons-system software.

The increasing ratio of software to hardware costs can be attri-

buted to (1) historical emphasis placed on hardware technology

and its attendant design and development methodologies, and (2)

the lack of similar rigor placed on the software technology and

its attendant design and development methodologies. Of particu-

lar interest is the fact that the hardware required for a system

was generally designed and, sometimes, developed prior to even

considering the required software. This development process forced

the software not only to perform its required functions, but, also,

to make up any deficiencies in the hardware and/or changes in

requirements. As a result, the software became complex, specific

to the mission, inflexible, costly, and untimely. A review of

previous system development efforts indicates:

* software development costs are much higher than expected,
and almost always exceed initial estimates.

* schedules are undependable, resulting in excessive system-
development cycle time.

e reliability of the systems developed is unsatisfactory.

e computer resource requirements almost always seem to
exceed initial estimates.

o measures of correctness are inadequate.

4

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-800

" communication between users is poor due to lack of
visibility.

" the resultant software is often inflexible, which impedes
correction, transferability, and enhancement.

" the resultant system is frequently less useful than
initially desired.

" developers and users are uncertain as to the amount of
testing required; frequently redundant (unnecessary)
tests are conducted which are costly, or tests are omitted
(which eventually, are probably more costly).

" management problems are all too frequent in large systems.

* documentation in large systems becomes unwieldy.

* requirements never seem to get nailed down (made precise
and stabilized).

Figures 2.1 (K0S75) and 2.2 (DER75) summarize the findings of

a joint study on "DoD Weapons Systems Software Acquisition and

Management" performed by MITRE (ASC75) and the Applied Physics

Laboratory at Johns Hopkins University (1(0575). Various combina-

tions of the problems indicated in these figures are plaguing

the DoD in current systems-design and development activities.

The remaining sections of this chapter present various methods

(including approaches and guidelines) used by the DoD and com-

mercial industries, and methodologies available to the DoD which

may alleviate certain of the problems mentioned above.

8

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

K

z it

z- Q

, >~

> L.- -

4.)

ou

-4

'S~ 1 :1r.~~~jT- ~

4'S 0
04

Ij 0

4-
>

00

44

$4

44 4

.0

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139.- (617) 661-8900

Visibility in weapon system acquisition Quality assurance and control

" Inadequate requirements analysis e Lack of management monitoring
" Inadequate interface management of software reliability
" Inadequate documentation * Lack of software reliability
" Lack of transferability quality assurance discipline
" Inaccurate cost/schedule projections * Lack of quantitative data base
" Low quality

Lack of software acquisition manage-

Language selection ment standards

e Low correlation of machine-oriented e Terminology
language to engineering problem * Directive, instructions, stand-

* Lack of design visibility ards
* Machine dependence

Lack of acquisition, management, opera-
Language proliferation tions and support guidelines

* Difficult learning process Lack of formal personnel development
" Discourages development of test and and training

support tools
" Reduces management visibility Research and development
" Complicates institutional control
" Cost redundancy * Lack of focus

9 Relevancy
* Lack of technology base
* Redundancy and duplication

Figure 2.2: Problem Summary

10
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

2.1 Current DOD Efforts

DoD is cognizant of the problems encountered in developing soft-

ware for weapon systems. The DOD Software Management Steering

Committee in July 1975 issued a Statement of Principles known

as the Capstone Directive (which later evolved into DOD Directive

5000.29). The document seeks to make the role of software ex-

plicit, visible, and controlled in the weapon-system acquisition

process.

The Committee also provided for studies (K0575) (ASC75) to be

conducted on the state of software acquisition, development, and

management for DOD weapon systems. These studies provide a strong
statement of technical and management problem areas and supply

recommendations on directions along which solutions may be found.
The following quotation is from the MITRE study report:

The major contributing factor to weapon system
software problems is the lack of discipline and
engineering rigor applied consistently to the
software acquisition activities.

(One of the lessons learned is that DoD must provide a level

of staff support commensurate with the detail and expertise re-

quired to monitor tightly the range of activities related to the

software-development process in weapon-system acquisition.)

Studies (ASC75) (K0575) have shown that early and adequate plan-

ning is essential to the proper cost-effectiveness of weapon-

system software. Planning is an intangible area which requires
a large amount of money for "concept" rather than product.

There is always pressure, therefore, to compromise this aspect

t of weapon-system development.

HIGHER ORDER SOFTWARE, INC *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

DoD is aware of the problems in cost, management, and technical

development of software in general, and software for weapon sys-

tems in particular, as reflected in DoD Directive 5000.29. Due

to its importance, the policy stated in this directive is re-

produced below:

V. Policy

A. General

1. Annual expenditures by DoD in the design, development,
acquisition, management, and operational support of
computer resources embedded within, and integral to
weapons, communications, command and control, and
intelligence sensor systems are measured in the bil-
lions of dollars. Unreliability, particularly of
software, diminishes DoD mission effectiveness in
many major Defense systems.

2. Computer resources in Defense systems must be managed
as elements or subsystems of major importance during
conceptual, validation, full-scale development, pro-
duction, deployment, and support phases of the life
cycle, with particular emphasis on computer software
and its integration with the surrounding hardware.

B. Requirements Validation and Risk Analysis

1. Validation of computer resource requirements, including
software, risk analyses, planning, preliminary design,
security where applicable (DoD Directive 5200.28,
reference (f)) and interface control and integration
methodology definition will be conducted during the
Concept Formulation and Program Validation phases of
Defense system development, prior to Defense Systems
Acquisition Review Council (DSARC) II.

2. This analysis must assure conformance of planned
computer resources with stated operational require-

ments.

t3. Risk analysis, preliminary design, hardware/softwareinteraton ethooloy, xteral ntefaceconrol
security features (DoD Directive 5200.28, reference
(f)), and life cycle system planning shall be in-
cluded in the review.

4. Correctness of software, reliability, integrity,

maintainability, ease of modification, and trans-
ferability will be major considerations in the initial

12

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5. The risk areas, and a plan for their resolution shall
be included in te Decision Coordinating Paper (DoD
Directive 5000.2, Reference (g)).

6. In addition, computer resource requirements will be
0 continuously coordinated and reconciled with system

operational requirements throughout system development
after DSARC II.

C. Configuration Management of Computer Resources. Defense
system computer resources, including both computer hard-
ware and computer software will be specified and treated
as configuration items. Baseline implementation guidance
for this action is contained in DoD Instruction 5010.21
(reference (i)).

D. Computer Resource Life Cycle Planning. A computer resource
plan will be developed prior to DSARC II, and will be
maintained throughout the life cycle. The purpose of the
plan is to identify important Defense system computer
resources acquisition and life cycle planning factors,
both direct and indirect; and to establish specific guide-
lines to ensure that these factors are adequately consideredin the acquisition planning process. Examples of factors

to be addressed are the following, as applicable:

1. Responsibilities for integration of computer resources
into the total Defense system and the determination
of overall system quality and integrity.

2. Personnel requirements for developing and supporting
computer resources.

3. Computer programs required to support the development,
acquisition, and maintenance of computer equipment
and other computer programs.

4. Provisions for the transfer of program management
responsibility after initial system operating cap-

* ability has been achieved; provisions for system/
equipment turnover.

E. Support Software Deliverables. Unique support items re-
quired to cost effectively develop and maintain the de-
livered computer resources over the system's life cycle

*will be specified as deliverable, with DoD acquiring
rights to their design and/or use. Examples of such
support items are compilers, environmental simulators,
documentation aids, test case generators and analyzers,
and training aids. The provisions of ASPR, section IX
(reference (j)) shall govern the implementation of the
policy.

13

HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139, (61) 661-8900

F. Milestone Definition and Attainment Criteria. Specific
milestones to manage the life cycle development of computer
resources, including computer system and support software'
will be used to ensure the proper sequence of analysis,
design, implementation, integration, test, documentation,
operation, maintenance, and modification. These milestones
will include specific criteria that measure their attain-
ment.

G. Software Language Standardization and Control. DoD approved
High Order Programming Languages (HOLs), (reference (k))
will be used to develop Defense system software, unless
it is demonstrated that nor e of the approved HOLs are cost
effective or technically practical over the system life
cycle. Each DoD approved HOL will be assigned to a de-
signated control agent who will be responsible for such
activities as validating compliance of compiler implementa-
ations with the standard language specifications, gathering
data as to the use of the language, and for disseminating
information, compilers, and tools. The designated control
agent will also be responsible for assuring language
stability except for DoD HOL specifications which already
fall within the purview of DoD Manual 4120.3M (reference
(m)).

In addition to the policy stated above, DoD Directive 5000.29

established the DoD Management Steering Committee for Embedded

Computer Resources (MSC-ESR), and included the charter of the

MSC-ESR in the directive. One of the objectives'of the MSC-ESR,

as stated in its charter, is to

Formulate a coordinated DoD Technology Base Program
for software basic research, exploratory development,
advanced development, and technology demonstrations ad-
dressing critical software issues that can be recommended
to the Director, Defense Research and Engineering.

The net result of the management policy just stated is to:

* place software on a par with hardware throughout
the acquisition process.

o provide guidelines for DoD management and technical
staff in developing weapons-system acquisition pro-
grams conducive to management and technical review.

o provide qualified DoD staff for management and tech-
nical review.

14

HIGHER ORDER SOFTWARE, INC. ° 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

* provide software tools (HOL's and support software)
for weapons systems development, thus reducing training,
development, and review staff requirements.

* establish a coordinated software research and develop-
ment proqram addressing critical software issues.

The environment which will be provided by DoD Directive 5000.29

will greatly facilitate the weapons-system acquisition process.

MITRE, APL, CENTACS (LIE73) (CEN75), and others (GAN76) (R&D76),

however, recognized that technical information, guidelines,

management concepts, and directives alone will not solve the

overall software problem. Flexible and effective software-

development tools, within the context of a coherent, thorough

and rigorous development methodology, have been perceived as

the technology base necessary to surmount the problem.

2.2 Commercially Available Software Development Aids

Computer-based systems found in the military have counterparts

in the commerical marketplace, including:

* Business applications such as accounting and
inventory control.

* Scientific computation for research and develop-
ment.

* Large data-base applications with the requirement
for data-base management and management information-
system software.

* Real-time, stimulus-response applications for command
and control, communications, signal processing, and
process control.

It is important to realize that commercial organizations, in-

cluding computer manufacturers with their associated software

development divisions and software vendors, are able to approach

software and systems development with the advantages of continuity

of personnel over time and identifiable common requirements for

15

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

a particular set of users. For these reasons, it is possible

for commercial organizations to develop a certain amount of ap-

plications-software support tools to aid their users in software

and systems development. Table 2.2.1 lists examples of these

software tools.

N HIGHER-ORDER LANGUAGES/COMPILERS

a ASSEMBLERS AND MACRO-ASSEMBLERS

LINKAGE EDITORS AND RELOCATABLE

LOADERS

LIBRARIES OF COMMON SYSTEM-UTILITY

ROUTINES

* LIBRARIES OF COMMON APPLICATIONS

ROUTINES

DATA-BASE MANAGEMENT AND MANAGEMENT-

INFORMATION SYSTEMS

* INTERACTIVE MAN-MACHINE INTERFACE

SUPPORT

TABLE 2.2.1: Commercially Available Software-
Development Support Tools.

16

HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

-t. . . ". ' = " " i I n l | l : 2 .,,.- - - ~

Due to the availability of these software-development support

tools, many users of commercial computer facilities and organi-

zations have been able to realize cost benefits in their appli-

cations and systems-development efforts. These users share only

marginally in the costs of tool development, but obtain the total

benefit of each tool. It is clear that each of the tools (es-

pecially each common routine) used in a development project is

simply one less tool to be designed, coded, and verified.

In the absence of such tools, a decision may be made to develop

such tools first, or to proceed without them. In either case,

project costs will be increased greatly. For systems that will

use minicomputers, software development may be a problem since,

in general, minicomputers do not have as complete a battery of

software-development support tools as large-scale computers.

In addition, even with a reasonable battery of support tools,

software development on a small-capacity computer is much less

convenient than on a large machine for those applications which

strain the resources of the minicomputer system. Therefore, an

approach to the development of software for minicomputers that is

often used in commercial organizations is to host the effort on

a large-scale computer with the target as the minicomputer.

This approach requires cross-assemblers, cross-linkage editors,

and cross-compilers (if an HOL is to be used). This approach,

while allowing greater flexibility, requires ready access to

the cross capabilities for the particular host-to-target combina-

tion.

It should be pointed out that those host-to-target cross cap-

abilities which are not available can be developed as a low-risk

item with a cost of at most a few hundred-thousand dollars. In

a minicomputer application, therefore, development of the sup-

* port cross-targeting software, if it does not exist, might be

cost-effective from an overall point of view. This would be true

especially if a number of projects would realize benefit from

the cross-targeting software.

17

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

The following lesson, learned from the commercial world, should

be applied to the world of weapons-systems software development.

Centralized software-development facilities should have avail-

able software-development and support tools, common routines,

etc.* Such efforts alleviate the need to "reinvent" software,

and, thus, reduce costs. Supporting these facilities should be

an organization whose responsibilities are to acquire, verify,

and maintain software-development and support tools.. This would

assure the visibility of such tools, and would eliminate redun-

dant acquisition, verification, and maintenance efforts. Ex-

amples of such activities currently being implemented or under-

way in the DOD are: Navy System Design Laboratory (SDL), the

Air Force SAMSO Aids Project, and the Ballistic Missile Defense

Software Development System.

The DoD management policy as presented in Section 2.1 and the

collection of available and relevant software-development sup-

port tools provide a basis for significant visibility and cost

reduction in the area of systems development. The greatest sav-

ings in cost, with an attendant increase in reliability, can be

realized by incorporating the management policy and support tools

within a framework of a development methodology which encompasses

the total weapon-system acquisition process--from requirements

definition to deployment and maintenance. In the next section,

several methodologies and support-tool collection efforts which

could apply to various stages of the weapons-system acquisition

4 process are discussed.

L. *Many of the commercially available tools and routines may be
directly applicable to DoD problems.

t . 18

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

2.3 Current System and Software Development Techniques and
Methodologies

The following methodologies and techniques for software and sys-

tems development are presented in this section:

1. Structured Design

2. System Design Laboratory (SDL)

3. Information System Design and Optimization System (ISDOS)

4. Software Factory

5. Ballistic Missile Defense Software Development System (SDS)

6. Hierarchical and Input-Process-Output (HIPO)

7. Multipurpose User-Oriented Software Technology (MUST)

8. Dominic

These methodologies and techniques were selected for review be-

cause they were considered to be either fairly widespread or

representative of approaches being developed. It is understood

that these approaches may not represent the entire spectrum of

software and system development techniques.

A separate section is devoted to each approach. In each of these

sections, the salient features of the approach, as made avail-

able or published by the developing organization, are presented.

The last section focuses on shortcomings and a preferred approach

applicable to the complete life-cycle of a military computer-

based system.

2.3.1 Structured Design*

Structured Design is a methodology for system design currently

in use at Hughes Aircraft Company. The methodology is basically

the methodology developed by L. L. Constantine with modifications

based on Hughes' real-time military experience. It consists of

HGE * This section was supplied by (BEN76)

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

a set of guidelines and techniques which aid the engineer in con-

ceptualization, decomposition and structuring of the system de-

sign. Two visual aids are used: structure charts and bubble

charts.

The bubble chart shows the conceptual data flow of the system.

It is composed of bubbles (circles) which represent the data

transforms and connection lines which represent the flow of data.

The bubble chart defines the required order of data transforma-

tion. It does not show control flow or indicate the modular

structure. It is equivalent to a functional data flow with

strict naming conventions.

The structure chart shows how the bubble chart is to be imple-

mented. It shows the hierarchical relationship of the modules,

the major procedural information, the table structure, and con-

trol/data flow. It is composed of boxes joined by connectors,

and text with connectors indicating data and control flow.

The Design Process

The design process is divided into three phases. The first phase -

the First Cut Design - is heavily conceptual. It seeks to

identify the most basic tasks performed by the entire system,

i.e., the "main mission" is delineated. All hardware, data sys-

tem control, and module internals are ignored as the basic data

flow and structure are established. The second phase - The In-

termediate Design - is partially conceptual and partially real

world. The data base, system control, etc., are given some con-

sideration. The system decomposition process proceeds along

prescribed guidelines. Independent sections are identified and

the basic structure of the data base is discovered rather than

rj assumed a priori. The result of this phase is the basic, or

top-level design. The third phase - the Final Design - is pri-

marily real world. Codeable modules are produced; the data base

is finalized; the design is packaged for hardware; and coding

N documentation is produced.

4 20

HIGHER ORDER SOFTWARE, INC. o 843 MASSACHUSETTS AVENUE o CAMBRIDGE, MASSACHUSETTS 02139e (611) 661-8900

Guidelines

A set of three categories of guidelines and a set of Rules-of-

Thumb which are key to the design process and the creation of

the bubble and structure charts are summarized below. The guide-

lines are many (about 40) and are very detailed.

1) Basic Guidelines - A set of formalized rules and methods.

The basic guidelines deal specifically with the structured

design methodology, i.e., modular decomposition: inter-

active use of the charts: and design considerations.

2) Secondary Guidelines - A set of quasi-formalized design

methods. These guidelines attempt to describe the

characteristics necessary in the human problem solving

process and hence deal with concepts related to learning,
understanding, and conceptualization.

3) Supplemental Guidelines - A set of non-formalized rules

and methods which are derived from the basic and secondary

guidelines. They identify diverse conclusions such as

data base design, duplicate code, module compression,

error handling, module size, and design changes.

4) Rules of Thumb - A set of eight very informal rules which

are intended to increase the design speed and ease the

burden on the designer. They cover such areas as nam-

ing, optimizing, and packaging.

Design Implementation

It is to be noted that structured design does not impose any im-

plementation technique. That is, top-down, bottom-up, or most any

other technique of implementation can be used.

h• ,21

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-0

2.3.2 System Design Laboratory*

System Design Laboratory (SDL) is a facility to provide designers

and developers of embedded naval computer systems a comprehensive

library of tools to design, model, implement and test systems.

SDL utilizes the National Software Works (NSW) interface to access

the tool library.

Conceptually SDL will offer tools to support hardware, firmware

and software aspects of system design, modeling and development.

The Initial Operating Capability (IOC), scheduled for 1 October

1976, will offer a full complement of software development tools

foy: the Navy standard minicomputer, AN/UYK-20 and the Intel 8080

micro computer. These tools include high level language compilers

and hardware simulator/emulator with interactive debugging aids.

Expert personnel at NELC will provide users of SDL with both inter-

active assistance in specific tool use under NSW and documentation

describing tool operations. User acces to SDL is by interactive

terminals using the EDATL TIP and by an Input/Output (I/O) station

for printed listings and magnetic tape transmission.

During FY 1977, two tasks are scheduled for SDL. The first task

will be to assist selected users in validating the IOC facility.

This effort will establish operational data to insure SDL's immedi-
ate effectiveness and to provide requirements for future enhance-

ments to SDL.

The second task will be to augment the SDL tool library. A key

concept of SDL is extensibility; that particular capability to
I quickly and easily incorporate existing tools from other sources

b into the SDL tool library. Planned for 1977 addition are tools
in the following areas:

1. Automatic partitioning of design
2. Automatic verification and validation for CMS-2

3. Multiple processor AN/UYK-20 emulator

.fr * This section was supplied by (HAMP76)

422

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Under investigation but not confirmed for implementation into

SDL in FY77 are tools for these functions:

1. Problem Statement Language

2. Specification Language (AXES)

3. Modeling

4. Program documentation and maintenance aids

5. High Level Language

2.3.3 Information System Design and Optimization System (ISDOS)*

The ISDOS Project is being conducted by faculty and students in the

Department of Industrial and Operations Engineering at the Univer-

sity of Michigan. The objective of the Project is to study the

-process by which Information Processing Systems are being built

and operated. The term "Information Processing System" is used to

mean a collection of hardware, hard software, programs, files and pro-

cedures which have been assembled to accomplish some requirements.

Usually the basic requirements include the ability to produce out-

puts (answers to inquiries, reports, documents, messages, displays,

etc.). Examples of such systems are various business data pro-

cessing applications, information storage and retrieval systems,I
etc. The systems may include batch, remote job entry, on-line,

interactive, real-time, etc., facilities or some c ombination.

They may utilize data base management systems and communication

systems. Most large organizations have a number of such Infor-

mation Processing-Systems, frequently sharing hardware and files

and occasionally also software.

The long term objective of the ISDOS Project is to develop method-

ologies for automating, as much as possible, the process of build-

ing systems. Shorter term objectives are to improve the present

(primarily manual) systems building process and to prove feasi-

bility by providing computer-aided methods.

*This section is excerpted from (TE176).

ks. 23

* HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661490

One fundamental concept of the Project is that the basic data

needed for building a system, namely the description of the require-

ments, should be recorded, as early in the process as possible, in

machine readable form. Thereafter, the building of the system

(construction of programs and data bases, etc.) is to be accomplished

with the aid of the computer itself using algorithms which would

analyze the requirements and aid in the construction of programs

and data bases using operations research techniques to develop first

feasible and then, eventually optimal solutions in accordance

with stated performance criteria.

Computer-aided systems building will result in a number of bene-

fits. Perhaps the most important is flexibility - a change in a

requirement can more easily be incorporated into the system.

Another major benefit will be will [sic] increase in productivity

of systems analysts, designers and programmers since they will be

concerned with the development and maintenance of the partially-

automated system which will then be able to produce software to

satisfy the user requirements. The computer, in effect, will be

used to amplify the capability of analysts and designers. Even

without full implementation, the formalization of the process can

be used as the basis for education, research, and development.

The ISDOS System

The basic approach of the ISDOS Project is to focus on the system

building process as an organizational activity similar to many

other activities in that it depends very heavily on information

flow and data processing. Furthermore, it is a process which is now

primarily manual--in many organizations the only automated part

being the compilation of source language statements into object

code. The approach being followed in developing the ISDOS system

is therefore very similar to that followed in automating other

information systems:

- Study and describe the "present system."

- Improve the present system wherever possible.

24

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

- Propose a "new system" which makes use of the computer and
operations research methodology whenever technically feasi-
ble and economically workable.

- Divide the proposed system into subsystems and develop a
plan for phased development, testing, and installation of
the subsystems.

In the development of the proposed system the "data base" approach

is being followed. The steps are:

- Identify what information is, or should be, recorded.

- Develop a language for expressing this information.

- Provide a system for storing information in a computerized
data base.

- Provide capability for displaying data with appropriate
rearrangement, etc.

- Provide capability for checking for consistency, complete-
ness, etc.

- Provide capability for analysis and evaluation.

- Provide decision-making aids.

The goal is to eventually replace the current documentation methods,

in which documentation is prepared and analyzed manually, with one

in which the necessary information is available for use by the various

individuals who need access to it.

The initial subsystem is concerned with the phases of system build-

ing in which users requirements are determined, recorded, and an-

alyzed and a "logical" system is designed. This requires the de-

velopment of a language for stating requirements, and software

for storing the requirements in computer manipulatable form for
retrieval and analysis.

The methodology and the software developed in the ISDOS Project

have been designed to overcome the factors which have limited the

use of earlier attempts. A language, Problem Statement Language

(PSL), to describe systems has been developed.

25

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Problem Statement Language (PSL)

The requirements for a target system should be expressed in an

unambiguous machine processable form. PSL has been designed to

meet this goal by being able to accurately and completely express

all relevant requirements for the logical design of the target system

and by having a precise syntax and semantics. The complete col-

lection of requirements for a target system written in PSL is termed

a Problem Statement, in that it is a "problem" to be solved during

the physical design and implementation phase.

A target system is described by listing its subsystems or com-

ponents, by giving properties, and by stating relationships among

the components. In PSL, each component is called an "object."

The relationships may be grouped into eight major groups on the

basis of the "aspect" of the system which they describe. These

eight major aspects are:

System Input/Output Flow

System Structure

Data Structure

Data Derivation

System Oize and Volume

System Dynamics

System Properties

Project Management

In addition to the formal relationships, any information which is
j needed to describe an object and which cannot be specified by using

one or more rell ionships can be specified in a narrative or text

description called a comment entry. These comment entries are not

named (as objects are named) and, therefore, apply to only one

particular named object. A number of different types of comment

entries may be defined depending on the type of object they per-

tain to.

26

HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE , CAMBRIDGE, MASSACHUSETTS 02139o (617) 661-8900

The Problem Statement Analyzer (PSA)

As information about a particular system is obtained, it is ex-

pressed in PSL and entered into a data base using the Problem

Statement Analyzer. The Analyzer is designed to operate in an

interactive environment using the facilities of the host operating

system. It is intended to be as system independent as possible.

In order to achieve this independence, the software, including

the data base management system is written almost entirely in

FORTRAN IV and can be installed on any environment which has a

FORTRAN IV compiler and sufficient memory.

The main subsystems are a Command Language Interface, Data Base

Update Facility, Report Generator Facility and a Library Facility.

The Command Language Interface module interprets commands in the

Command Language from the user and causes the execution of the

appropriate module to handle that command. The command process-

ing modules fall into two categories: data base update modules

and report generation modules. The command processing modules

interface with the data base management system which is part of the

Library Facility. The library facilities also perform certainI

Peripheral functions, such as data base initialization, and dump

and restore.

At any time standard outputs or reports may be produced on request.

While this system is not directly oriented towards project manage-

ment, a few reports, which are useful to project managers, are avail-

able. These reports include, in particular, the number of objects

of each type in the data base together with the number and per-

centage which have specified properties. Such a data base summary

can be used as a basis for evaluating progress made on the de-

* finition of objects, as well as used in estimating the size of

the system being described.I., There are also facilities for analysts to develop their own reports

as they wish and include them in the standard report repertoire.

27

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

The reports can be used during the development activity, after the

requirements are completed, and for maintenance throughout the life

of the system.

During the requirements development activity, while data is being

added to the data base and the data base is being modified, the

analysts can use the various reports for making additions and

changes. They can also produce reports to analyze various aspects

of this system, and produce reports to determine what more in-

formation is needed. These reports can also be used by the Stan-

dards section to verify consistency on data naming conventions

and use of other Standards. The project leader can use the report

to determine the complete extent of documentation to date.

After the requirements have been completed, the final documentation

required by the organization can be produced semi-automatically,

in a user standard format. Summary reports can also be

produced to enable individuals to understand this system and re-

ports can be produced which serve as specification for the succeed-

ing activities.

During the system implementation and operation, changes will be

suggested. The data base can be used to determine the effect of the

changes, such as which other objects are involved, etc. The change

in the evaluation procedure can be monitored by the use of the

data base modification reports.

Summary of ISDOS

PSL/PSA is designed to be usable by any organization that develops

information systems. Such an organization is incurring the direct

cost of manual documentation and the hidden cost of correcting the

mistakes in the system that are made as a result of ambiguity, in-

consistencies and omission in the manual system. With PSL/PSA

'. much of the manual and clerical work can be done by the computer.

28

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139, (617) 661-8900

PSL/PSA is designed to complement system development practices and

procedures. It can be used regardless of which system development

procedure is followed, which project management system is used or

which documentation standards have been instituted.

2.3.4 Software Factory*

[Basic to the overall approach of Software Factory is a methodology

which] emphasizes discipline and repeatability, but has sufficient

generality and flexibility for application in a wide variety of

situations. The methodology is not new or revolutionary. Most

of its concepts have been used in successful software development

projects. [it is intended that the system be applied consistently

and be supported] with tools that will simplify and standardize

application of the methodology. It is, then, the specific purpose

of this [section] to describe this set of tools, which comprise

the "Software Factory."

Structure and Components of the Factory

The Software Factory consists of an integrated and extensible

facility of software development tools that supports a recommended

methodology. The Factory is designed to operate on a host machine

and use the facilities of the host operating system, The design

is flexible so that new tools can be added as they become avail-

able, and the system components are written in higher-order lan-

guage to enhance transferability of the system or its components to

other machines. The structure and capabilities of this facility

are, wherever possible, based on available technology to enhance

*near-term usefulness.

The following basic structural and control components of the system

are either in operation or under development:

* This paper is excerpted from (BRA75).

29

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

The Factory Access and Control Executive (FACE), which per-

forms control and status gathering services for all processors,

supports the factory command language, integrates the processors

with the system development data base, and provides program pro-

duction library services.

The Integrated Management, Project Analysis, and Control

Technique (IMPACT), which utilizes production data base infor-

mation on milestones, tasks, resources, system components, and

their relationships to provide schedule, resource computation,

and status reports at the individual components level or summa-

rized at any module or task hierarchy level. Since IMPACT is

closely integrated with the development processors, much of the

status information is derived automatically.

The Project Development Data Base, which is established for

each project using the facility and contains all of the schedules,

tasks, specification components, test cases, and their relation-

ships along with the various forms of the evolving software com-

ponents and the complete development status. The data base con-

sists of two parts: a software development data base and a pro-

ject control data base.

The development of program modules from their first functional

definition, through the definition of their interface with other

modules and system data, and finally - as developing source- and

object-language programs - is reflected in the software develop-

ment data base. It is an extension of the program production lib-

rary concept.

The system and program descriptions and supporting management data

are maintained in the project control data base. Early in the

design phase, the management data is oriented toward the software

system structure and the activities performed to develop the soft-

ware system. This use of a project development data base furthers

the automation of program development, management visibility, con-

figuration control, and documentation.

30

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

FACE and the System Development Data Base, make up the framework

which integrates and porvides the control structure for the various

Factory processors. As new processors are developed, additional

commands can be added to the factory control language and new

sections can be added to the data base.

The initial complement of Software Factory processors includes

the following:

Automatic Documentation Tool (AUTODOC) - a tool to produce

program and system documentation. It obtains a large amount of its

information from sources in the system development data base that

represent the actual state of the software system. The principle

source of data for AUTODOC are the comments inserted into the pro-

gram modules by the programmer. When a program module is defined

during the design phase, it is entered in the system development

data base in the form of specific AUTODOC comments. As the program

module is further defined, the programmer adds source language

statements. AUTODOC starts its operation by scanning a source

module and extracting the special comments: it also reports on

missing or incomplete comments. These special comments provide

a means for the programmer to transmit information to various

Software Factory development tools in a format that is compiler-

indpendnent and primarily language-independent. The special com-

ments consist of a number of keywords, which indicate to the ao-

propriate tool that information of a specific kind is contained

in the comments which immediately follow.

Program Analysis and Test Host (PATH) - a program flow analyzer

that analyzes a source program and inserts calls to a recording

program at appropriate locations. The analysis of the program

i Iresults in static profile analysis reports, which provide infor-

mation about the structure of the program. During program execu-

tion, the recording program gathers data concerning the performance

of the program for a given test data set: after program execution,

the recorded data is processed and output. Rather than finding only

31

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

r" " 3

errors in a program, the objective of PATH is to quantitatively assess

how thoroughly and rigorously a program has been tested and to

support the improvement of the test dsicgn that will best satisfy

the conditions of program verification.

Test Case Generator (TCG) - an automatic technique for the

design of test data which, when input to the program under test,

will provide the user with a means of fully executing all program

statements successfully. The series of test cases that are gener-

ated will be stored in the system development data base. The TCG

technique of determining the total network of statements in a pro-

gram and of generating an adequate set of test cases has evolved

from analysis of the work being done in the program verification

and validation field.

Top-Down System Developer (TOPS) - a tool which provides a

design verification capability. This involves the development of

a modeling tool that provides not only the capability of describ-

ing and verifying a design, but also the facility to describe much

of the control and data interface logic in the actual coding lan-

guage.

This later capability provides early validation of a logic com-

ponent that normally does not get checked until system integration.

A further and most desirable aspect of the tool is a structure

that allows the replacement of modeled system components with real

components as they are implemented, thus allowing each new com-

ponent to be validated in the context of the total system. Hence,

this tool provides an automated approach to the "top-down imple-

mentation" technique in which succeeding levels of logic are im-

plemented with calls to skeleton or simulated segments at the next

lower level being used to close the logic loop. Thus, complete

validation occurs At each logic level. Top-down implementation

and testing by levels along with the accompanying exercise of actual

interfaces, results in a continuous system integration process through-

out the development cycle.

32

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900
I

All of the tools described are further complemented by the exist-

ing utilities and interactive development capabilities of the IBM

370/VS2 operating system.

Summary of the Software Factory

The Software Factory is an integrated set of tools that supports

the concepts of structured programming, top-down program develop-
ment, and program production libraries, and incorporates hierarchi-
cally structured program modules as the basic unit of production.

FACE and IMPACT record the hierarchical and interdependent struc-
tures of software system and programming tasks which are then used
to evaluate project and program changes and to assist the system
implementer in building the system and ensuring the completeness
and accuracy of his designs and tests. IMPACT is intended to

serve as an initial planning tool and as an integrated subsystem
that supports software configuration management from the inception
of a project through the post-delivery maintenance of a system.
FACE and the system development data base are intended to provide

a controlled environment for systems development and serve as a
framework for a standardized approach to program implementation and

verification.

The top-down phased description of performance specifications and

system components and their relationships as required by IMPACT

along with the consistent use of the various Factory processors
provides discipline and uniformity to the development process,

leading in turn to a high degree of repeatability with its con-
sequent continuous improvement in proficiency.

The monitoring and control aspects of FACE and its linkage via

the development data base with IMPACT provide objective development
status visibility. TOPS and IMPACT provide earlier and more visible
assessments of design completeness, and PATH provides a more

quantitative assessment of testing completeness.

IL 33

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 66148900

Since IMPACT supports a development data base in which each require-

ment is related to the system components by which it is implemented,

the impact of requirement changes on the system architecture can

be more completely and easily determined.

TOPS is a design support tool which provides more automation and

better verification of the design process and also smooths the

transition between the design and coding phases. PATH and TCG

are verification tools which support the generation and performance

assessment of program test cases.

While not specifically attacked by any currently-implemented

Factory component, software reusability is enhanced by the care-

ful system component structuring, the specific relationship with

performance requirements, and the improved documentation inherent

in software developed in the Factory.

The basic elements of the Software Factory (FACE, IMPACT, develop-

ment data bases) are now operational and are undergoing some proto-

type use. It would be premature to assess the benefits which

have accrued, but it does seem clear that a significant degree of

discipline, organization, and visibility has been added to the de-

velopment process.

It is intended that the Software Factory will be augmented by

the continued development of more sophisticated tools and tech-

niques such as application-oriented process design languages, re-

usability technology, correctness verifiers, and cross compilers,

and will therefore evolve into a truly automated software develop-

ment facility.

34

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

"0

2.3.5 Ballistic Missile Defense (BMD) Software Development

The large amount of money and research successfully spent in the

SAFEGUARD and System Technology programs provided evidence that the

ability to produce large complex real-time BMD systems was not keep-

ing pace with the increasing complexity and capacity demanded of

advanced defense concepts. In recognition of this problem, the

Ballistic Missile Defense Research community initiated a software

research program in the early 1970's to address the issues which had

arisen in BMD software development. It became apparent early in

this program that any attack upon a problem of this complexity

must be of broad scope and yet provide a degree of formalism not

currently available nor required for less stressing developments.

This resulted in the Software Development System (SDS), which

is a software development approach that forces early error detec-

tion, allows rapid assessment of design decisions, insures the

capability to respond rapidly to change, and insures visibility

and control of the development process. The program has concen-

trated upon developing a set of defined and measurable procedures

supported by special purpose languages and advanced tools. This

methodology has been developed, implemented, and is cui..ently under-

going evaluation. It consists of a defined approach to Require-

ments Engineering, Software Design, Coding and Testing, and Veri-

fication and Validation. Component parts of the methodology have

been used with favorable results. The integrated effect of the

overall approach is currently under investigation through a series

of proof-of-principle exteriments.

The Development Cycle

[We will discuss the phases of the software development cycle

which provide a framework within which the research activities

have been pursued.] The initial activity, Data Processing System

*This section is excerpted from (DAV76)

35

* i
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661400

Engineering, is concerned with the development and transformation

of a set of system requirements into functional and performance

requirements upon the data processing subsystem which will insure

proper system performance. Included are the activities of sys-

tem design, subsystem definition, interface specification, per-

formance allocation to the data processing subsystem, arnd identi-

fication of normal and contingency system operating rules.

This activity would proceed until the data processing subsystem

has been identified by its functional and performance require-

ments and interface definitions. The resulting requirements

(Data Processing Subsystem Performance Requirements - DPSPR)

are communicated to the data processing subsystem-developers

for further decomposition, design, implementation'and testing.

Based upon the DPSPR, detailed subsystem requirements are developed

for the data processing subsystem in a phase known as Requirements

Engineering. In the Requirements Engineering phase the detailed

subsystem computational requirements are developed in a

Software Requirements Engineering (SRE) activity which forms the

basis for data processing hardware requirements. The Software

Requirements Engineering activity is a process of iterative ad-

dition of design detail with the emphasis upon avoiding unnecessary

constraints upon the following process design phase. This activity

may include the demonstration of the feasibility of requirements

through the development of non-real-time simulation. It should

be noted that the term requirements used in this activity is the

statement of requirements upon processing to meet system objectives,

e.g., the timing accuracy and computation requirements for the

tracking of a potential target, as opposed to the formal definition'I of detailed requirements for software modules. Design decisions
t required in developing computational and functional requirements

are those affecting the functional and logical flow of requirements,

e~.,, decision to specify synchronous or asynchronous tracking.

The requirements are also developed with a minimum number of de-

cisions affecting processor configuration, core size, etc., with

36

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

the resulting Process Performance Requirements (PPR) minimizing

any optimization for a particular hardware configuration. [since

a highly sensitive real-time system is involved], the response

time for various computational processes are very critical.

The PPR contains performance requirements for each computational

path within the process including interface definitions, suggested

candidate algorithms, etc., required to meet system performance.

The hardware requirement aspects of Requirements Engineering are

concerned with the development of data processing hardware require-

ments which will insure the selected configuration will satisfy and

meet system computational requirements of the system. Decisions to

be made in this phase include specifications of the various hardware

characteristics, such as size, number of processors, performance,

etc.

The PPR functional and performance requirements are then analyzed

together with the characteristics of the hardware system. This

mapping of requirements with the hardware characteristics form the

first step of Process Design Engineering. This results in a top

level software design and a definition of operating system require-

ments. From this structure the design proceeds in a structured

manner with implementation and testing of each level of definition.

At each step of the SDS methodology, a comprehensive testing pro-

cedure, Hierarchical Verification and Validation is used to validate

and verify the functional and/or Performance characteristics of the
software phase. Total system requirements and the specifications

derived from them are used as the absolute reference to verify the

design and implementation correctness at each level.

Software Requirements Engineering Methodology (SHEM)

L The approach to the development of SREM concentrated heavily upon
definition of its requirements in the early development and has pro-

ceeded as a sequential set of proposed approaches backed by empirical

verification. The resulting SREM consists of a combination of

37

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

languages, tools and procedures which will reduce or eliminate

known error sources. As an example, the generation of testable

requirements in SREM is addressed in a positive fashion through

the development of a structure for statement of requirements which

allows the identification of (1) test points in the requirements,

(2) identifies the data to be collected at these points, and (3)

an executable description of the tests to which the data will

be subjected. The requirements statement thus contains a clear

description of the tests to which the software will be subjected.

Computer aided Simulation Generation Techniques are also an inte-

gral part of the methodology and provide the capability to vali-

date, statically and dynamically, the requirements description.

Another example of a positive approach for error reduction are the

techniques used to reduce errors, delays and frustrations involved

in documentation. This was addressed by developing a set of auto-

mated documentation tools based upon the ability to flexibly access

information stored in a requirements data base.

Positive approaches in SREM to insure traceability of require-

ments are contained in features of the Requirements Statement

Language, RSL, which have elements TRACES FROM, TRACE TO to

insure upward and downward traceability of requirements. In ad-

dition, the language element DECISION allows requirements affected

by a design decision to be later traced to that decision. Flexible

data extraction of requirements information stored in a relational

data base provides a rapid and reliable means to insure location of

all affected requirements. Accurate modification of requirements

is insured through the ability to rapidly enter data, interactively

or batch, tools which will check for consistency with existing

descriptions, and static and dynamic verification through simu-

lation.

Requirements Statement Language (RSL)

Requirements have been stated in a wide variety of languages ranging

* from English text, equations, logical expressions or to machine pro-

cessable forms such as PSL. Large projects tend to have a predomin-

ance of English text with its associated ambiguities and misinter-

pretations. While some work and progress has been made in the area

38

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

of machine recognition and analysis of English this is for the most

part manually resolved through review meetings, interface control

boards, etc., in a lengthy and costly manner. To avoid ambiguity

and promote precision and communication of BMD requirements, the

Requirements Statement Language (RSL) was developed. RSL supports

the statement and documentation of requirements, and along with the

Requirements Engineering and Validation System provides a flexible

means for statement, verification and documentation of require-

ments. As was previously mentioned the desire is to provide for

naturalness of expression, unambiguous communication and machine

processing. The language requires a minimum of punctuation and when

passed through a post processor produces a product very difficult

to distinguish from English expect for the repetitive nature of the

statements.

Support Software

The BMD systems which are being described are so large that it is

virtually impossible for humans to ensure that all parts of a

requirements specification are complete, consistent, and correct.

The rigor and thoroughness of the computer is a great asset in

checking requirements specifications. A computer-aided system must

enforce some measure of discipline on the creativity of the engineer

so that the development process always moves in the direction of

reduced ambiguity and increased consistency. For example, the

computer can perform static checking of the requirements to illumin-

ate inconsistencies such as conflicting names, improper sequences

of processing steps, and conflicting uses of items of information

which must be present in the system. With a flow-orientation such

Ii as the one that we have developed, the computer can even check the

dynamic consistency of the system through the use of a simulation.

The set of support tools isreferred to as the Requirements Engineering

and Validation System (REVS).

39

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

.- 1

Process Design Engineering

The BMD approach to the design coding and testing of software is

encompassed in the Process Design Methodology, PDM. This approach

consists of a set of process design procedures and techniques

supported by software development tools accessed through a single

language PDL. PDM consists of the following major components:

* A structuring technology to allow an unambiguous and traceable

transformation from computer-independent computational

requirements (the PPR) to a top-level process design

effectively.

9 Design, implementation, and testing techniques supported

by PDL.

* A Process Design System, consisting of support tools for

automating such functions as requirements traceability,

configuration management, library management, simulation

control, data collection and analysis, and documentation.

o A set of models and techniques to accurately estimate pro-

ject costs and schedule. These approaches provide in-

formation to assist management in the effective control

of BMD software development.

Initial structuring techniques identify a set of tasks and hardware/

software trade-offs that must be performed to identify a top level

software structure. The Process Design System, throug the cap-

abilities of PDL2 and its support software, provide the tools to

make the trade-offs and support evolution to the final code.

These trade-offs not only include the tasking structure but also

impact the operating system design.

40

I

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

w!

The design of the software proceeds in an evolutionary manner as

each task is further partitioned into a set of computational al-

gorithms that are executed via a prescribed sequencing logic.
This approach proceeds in a somewhat top-down manner, seeking to
initially describe the sequencing logic and final process and

adding detail through increasingly detailed algorithmic models.

The process is thus represented as a mixture of modules at each

stage of the development where some modules are detailed code and
some are merely skeletons of the tasks to be performed. The Pro-

cess Design System keeps track of these modules as they evolve through

the development steps into final code, executes the process with
an environment simulator at any stage of development, and analyzes

the performance of the process. Since the entire process is re-

presented at any development stage, each module is tested in its
complete environment. The interface problems usually associated

with software integration are identified early in the design where

they can be more easily resolved.

This approach is designed to force resolution of control, structure,

and interface problems early in the design cycle prior to the major

coding efforts. The integration of more detailed algorithms in a

logical "forward integration" sequence, in which the highest level

of the system is detailed first, and subsequent processing steps
are detailed in the order of processing. In this way, analytic

data provided by the initial processing steps is available as an

input to subsequent analytic algorithms. Iteration of this im-

plementation, test, and evaluation cycle results in the complete

real-time process.

Throughout the development cycle, the evolving process is tested
against the performance criteria stated in the Process Performance

Requirements to ensure that the real-time software will satisfy

the system requirements.

The PDS capabilities are provided through ... [a set rfj integrated...I software tools.

41

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Verification and Validation

The testing of large interactive, real-time systems such as BMD

provides a set of problems which strongly parallel those of the

development of the tactical code. A testing philosophy which pro-

vides the maximum assurance of early error detection is essential

to provide a highly reliable software product. Significant investi-

gations into testing via non-real-time interactive and externally

resident simulation of all non-data processing components called

a System, Environment and Threat Simulator (SETS) discusses an

approach to providing a significant decrease in the testing and cost

of BMD system testing as well as providing the ability to better

define the "performance space" of the software under test and

determine a measure of its robustness over wide ranges of input.

This is being approached by investigating automated techniques

for the interactive generation of test cases, performance evalua-

tion techniques to allow the assessment of the BMD software response

to that threat, and algorithms to intelligently perturb the input

space.

Preliminary Research results based upon experience with SETS has

shown the interactive construction and modification of test cases

does provide significant reduction in the time to develop test

variants. Performance measure characterization to all assessment

of the software response to the threat still suffer from the ability

to relate data processor subsystem functions to higher level

system functions. This activity will result in a feasibility de-

monstration of achieved capabilities early in 1977.

2.3.6 Hierarchy plus Input-Process-Output (HIPO)*

Some IBM personnel believed that programming systems documentation

emphasizing function could contribute to the efficiency of the

program maintenance effort by speeding the location in the code

*This section is excerpted from (IBM1).

42

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

of a function to be modified. They developed the HIPO technique

of documenting function to meet this objective. Today HIPO is

being used by some groups throughout the development cycle as a

design aid and documentation technique.

Hierarchy plus Input-Process-Output (HIPO) addresses the require-

ments of the people who rely on documentation for many different

purposes. A manager or user, for example, may want to obtain an

overview of the system. An application programmer needs the docu-

mentation to determine program functions for coding purposes.

Someone involved in a maintenance activity requires documentation

that quickly identifies functions in which changes have to be made.

HIPO meets these needs because of its graphical representation

of function, its organized nesting of increasing detail, and the

depiction of input and output data items at each level.

A HIPO package consists of a set of diagrams that graphically

describe function from the general to the detail level. Initially,

each major function is identified and then subdivided into lower-

level functions; the summation of the lower-level functions equates

to the higher-level functions. Programs are then developed starting

with the functions described in the topmost level of diagrams.

HIPO diagrams can be used from the start of the project through

implementation and are useful for program maintenance by easing

the identification of the code to be changed.

The major objectives of HIPO as a design and documentation technique

are to:

* Provide a structure by which the functions of a system can be

understood. The diagrams are organized in a hierarchy structure
4(seeFig.f2.3.6.]1, much like an organization chart, where each dia-

gram at any level is a subset of the level above it. Complex

systems or programs can thereby be broken into manageable pieces.

For example consider a project of mapping the United States.

If the project team developed page after page of prose describ-

ing the states and highways, and each city's streets and all the

"43

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

connections, it would be difficult to verify or use this text

even if one had the time. Even if all highways in the states

and all streets of all cities were shown graphically on one dia-

gram, it would be impossible to work with all the information

at one level of detail. Therefore, a hierarchical scheme of

maps, some showing states with highways, others showing cities

with streets, best allows a person to view the total network as

required.

* State the functions to be accomplished by the program rather than

specify the program statements to be used to perform the functions.

A section in the diagrams called "Extended Description" provides

additional information about the functions to reduce reliance on

other documentation and to provide guidance to programmers.

e Provide a visual description of input to be used and output

produced by each function for each level of diagram (see Fig-

ure2.3.6.1b). Typically, the mo!t important objective in a pro-

gramming system isto produce output that is technically correct

and meets users' requirements. HIPO allows this transformation

of input data to output data to be visible.

Kinds of Diagrams in a HIPO Package

1. Visual table of contents - This diagram contains the names

and identification numbers of all the overview and detail HIPO

diagrams in the package and shows the structure of the diagram pack-

age and relationship of the functions in a hierarchical fashion as

depicted in Fig. -2.3.6.la. It also contains a legend indicating how

symbols in the package are to be used. With the visual table of

contents, the reader can locate a particular level of information

or a specific diagram without thumbing through the entire package.

2. Overview diagrams - High-level HIPO diagrams, called overview1 ~ diagrams, describe the major functions and reference the detail
diagrams needed to expand the functions to sufficient detail.

44

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

-r- . . i r T " ,

The overview diagrams provide, in general terms, the inputs, pro-

cesses, and outputs. The process section contains a series of

numbered steps that describe the function being performed. The

input section contains those data items used by the process steps.

Arrows connect the input data items to the process steps. The*

output section contains those data items that are created or modi-

fied by the process steps. Arrows connect the process steps to the

output data items. An extended description area can amplify the

process steps and input and output data items. The extended des-

cription also refers to lower-level HIPO diagrams, non-HIPO docu-

mentation, and code. Figure [2.3.6.1b]is an example of an overview

diagram.

3. Detail diagrams - Lower-level HIPO diagrams contain the funda-

mental elements of the package. They describe the specific functions,

show specific input and output items, and refer to other detail

diagrams. The detail diagrams contain an extended description

section that amplifies the process steps and references the code

associated with the process steps. They also reference other

HIPO diagrams as well an non-HIPO documentation such as flowcharts

or decision tables of particularly complicated logic, record lay-

outs, and so forth. The number of levels of detail diagrams is

determined by the number of functional subassemblies, the com-

plexity of the material, and the amount of information to be docu-

mented. Figure r2.3.6.1c] is a sample detail diagramn with an ex-

tended description section.

How HIPO Fits with Other Improved Programming Technologies

HIPO assumes that a system (a collection of related programs)
will be organized into a hierarchical structure of functions.

The scope of the topmost function encompasses all subfunctions.
Those subfunctions that require further clarification are treated

as major functions consisting of additional subfunctions. This

I process continues for as many levels as required until all functions

are defined.

45

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

(a) A Visual Table of Contents

'___-Legend

(b) Overview Diagrams

Input Process Output

40

(c) Detail Diagrams

Input. PoesOtu

ExtendedDescription

Figure 2.3.6.1: The HIPO Technique

46

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The hierarchical structure of HIPO is well suited to a functional

design made by starting at the top and subdividing into increas-

ingly lower levels of detail. In top-down development, the functions

are implemented in the same sequence as this structure. The top

module contains the highest level of control logic and decisions

for each program within the system, and either passes control to

lower-level modules or identifies lower-level modules for inline

inclusion. The parts of each program are continually being inte-

grated.

If structured programming is used in the implementation, the func-

tions are considered as single entities. The code is written in

segments, each with a single entry and single exit. These seg-

ments can be created from HIPO diagrams drawn with only one entry

and one exit. Some recommended practices to use in writing struc-

tured code are to limit a segment of code to one page (approxi-
mately 50 lines), and to indent subfunctions or substructures.

These practices enhance readability and allow easy understanding.

Combining top-down development and structured programming results

in a program of extreme modularity both in function and logical

structure. HIPO diagrams are a logical extension of the functions

identified in top-down development and provide the necessary docu-

mentation from the start of a project through implementation.

Another concept that is being used with top-down development and

structured programming is the chief programmer team organization.

Team operations represent a change in approach from a loosely

structured group of programmers to highly structured team of pro-

gramming specialists. The nucleus of a team operation consists of

SI a chief programmer, a backup programmer, and a librarian; other

L members are included as required. The chief programmer designs the
major functions of a system and codes the topmost levels of modules.

He is assisted in these tasks by the backup programmer. The lib-
~rarian is responsible for entering all information into the develop-

ment support library, the principal objective of which is to provide

47

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

constantly up-to-date and visible descriptions of the programs,

test data, and exact status of the system under development.

The HIPO documentation should be included in this library and may

be maintained by the librarian. When other team members are added

to develop and program low-level modules, they can work indepen-

dently down various paths of the hierarchy with separate HIPO dia-

grams.

2.3.7 Multipurpose User-Oriented Software Technology (MUST)*

Problems that result from the fundamental interactions between

program, computer, and programmers, and the traumatic and costly

effects when changes are made between them are resolved through

Multipurpose User-Oriented Software Technology (MUST). MUST pro-
vides a more effective user interface so that the programmer-user,

the system designer, and the engineer responsible for the flight

control system can interact with the flight computer. The user-

oriented system contains the software that the user needs to ef-

fectively interface his problem to his machine.

First, the user is provided with a requirement definition/analysis

tool which permits him to express his system design requirements

in a precise problem statement language and then analyze the soft-

ware requirements to meet those system specifications. He then
has a compiler-writing system (CWS) which permits the effective

utilization of HOL programming procedures. The designe. has less

need for a special programmer if he can understand both problem and

machine. A programmer can use the HOL to produce code that is

more problem-oriented, more easily understood by the system designer,

more easily documented, coded more rapidly, and more easily main-

tained or transferred. The programmer-user is aided by a modular

library which has many well documented typical flight control ele-

ments available in standard HOL software so that changes can easily

be accomplished.

*This section is based on information in (STR76).

48

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The CWS allows code to be generated for both target and host machine.

On the host machine the programmer-user can check his algorithm by

deriving solutions and by using verification and validation tools

to thoroughly check the performance of his program. For example,

he could determine program flow, whether all variables were initialized
before use or that none were out of range if all parts of the code

were used, and which partsof code were most extensively used if

further optimization is required. MUST, therefore, would provide

the programmer many tools for checking and debugging his software.

The CWS can, using the exact same HOL program, develop code for the

target machine. Hence after debugging, the actual load tape for

the machine in relocatable binary format modules could be obtained.

Linking a program with other available machine language programs

could then be accomplished. If necessary, the programmer-user

can write critical procedures in the machine language. Besides

running on the actual machine, an interpretive computer simulator

(ICS) system in MUST can be used. Here the host-computer generates

the bit pattern in the registers, and arithmetic units and the actual

values in the memory locations resulting from the execution of

each machine instruction. Hence, the programmer-user can solve

any remaining problem by direct execution of code as well as

determine the precise machine instruction time cycles used.

SPECIFIC MUST DEVELOPMENTS

The broad objectives of the program will be accomplished by de-

veloping and demonstrating technology advances in the flight soft-

ware development process by specific technical goals and targets

enumerated below:

Support Tool Development

Software support tools are used to relieve the programmer-user of

many of the tedious and repetitive tasks associated with software

49

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE. MASSACHUSETTS 02139. (617) 661-8900
I

P. .

translation and checking. They also provide him with clear insight

into the program flow and execution.

Compiler Writing System - (CWS)

Target: To develop a user-oriented, compiler-writing system

covering a variety of source languages and target computers where

utilization requires detailed knowledge of the desired language

and the target computer system idiosyncrasies rather than of sophis-

ticated compiler writing principles. To demonstrate the order of

cost savings, lead-time reduction, and inherent reliability achieved

through compiler-writing techniques as applied to a wide range of

flight computers and research flight project requirements.

Assembly Language Generations

Target: Develop or modify an existing generalized (universal)

assembly language program for inclusion into the MUST system as

a complement to the CWS and for those conditions where assembly

language programming is needed.

Static Code Test Tools

Specific Targets: The development of MUST compatible proof-of-

correctness and code anomaly analysis tools will be pursued.

In addition, a MUST compatible sneak analysis tool will be developed.

Dynamic Code Test Tools

Specific Targets: Develop the capacity to automatically aid in

the generation of test cases including assessment of test coverage

and range variables; to model the flight computer using a flexible

ICS to find errors, trace program execution, and determine soft-

ware performance. The dynamic test tool will include the exten-

sions of dynamic test tools such as RXVP to allow MUST compati-

bility.

t 50

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Not

Modular Adaptable Software Library

Target: Define and develop a modular software library and user

interface for both aircraft and spacecraft applications. Develop

techniques for the checkout and testing of library software on a

modular basis to reduce implementation costs for large flight com-

puter programs.

Requirements Definition Analysis

Target: Part of the MUST system will be a tool to aid in the

unambiguous, precise, and complete statement of the software re-

quirements. The tool will allow the user to detect inconsistency

between the inputs and outputs of the various elements of the soft-

ware being designed.

Integrated Flight Software Development System

Target: Investigate and implement software support tools with

multilanguage qapability. Define and develop an interactive inter-
face involving user-oriented software specification design and

test utilities under MUST.

Languages for Distributed Compiler and Microprocessor Systems

Target: Define the impact of microprocessors and distributed

computing systems on the flight software development problem.
Determine the features necessary to effectively describe the

computer executive processing structure and its software imple-

mentation and integrate these features into MUST.

[: r ,. 51

t. , HIGHER ORDER SOFTWARE, INC. o 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

RO

2.3.9 Domonic*

The purpose of the system is to help document, monitor, and con-
trol software development projects. It is written ,in COBOL which
makes the system machine independent. It can operate in either
a batch or interactive mode which makes it easily adaptable to
a user's style of development. It can monitor all phases of soft-
ware development projects. Data can be gathered by the monitor
which is useful in categorizing errors, predicting programmer
productivity, and validating software reliability models.

Furthermore, the system will be applied to monitor development
projects and to gather programmer productivity data and program
error data. The productivity data will be used to develop an ac-
curate programmer productivity model. This model will be useful
for accurately estimating project cost and completion times.
Program error data will be useful in validating existing software
reliability models and for developing new models.

Technical Objective

It is expected that a system of digital programs for the IBM 360,
UNIVAC, and CDC computers will be produced. This system will be
capable to document, measure, improve and predict the quality
and reliability of other digital programs. Furthermore, the system
will be capable to evaluate software projects which have been
developed without using this system. Major modules from the sys-
tem would be configured to create the project evaluation system.
The system would be able to: 1) predict software reliability

using software acceptance reliability model aids, 2) drive soft-

ware packages that automatically test software, 3) analyze pro-

gram structure to determine if structured programming techniques

were used, 4) check program and appropriate documentation to de-
termine if local programming practices have been followed, 5) check
program to determine if proper standards were used.

* This section is excerpted from informat-ion supplid-by"°tAM7).

52

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

2.3.9 Summary

The previous sections have presented various approaches to solving

some of the problems of systems development discussed early in

this chapter. These approaches range in stage of development

from those which are now undergoing conceptual definition to those

currently in use.

Most of the approaches currently available intentionally concen-

trate on a subset of the spectrum of problem areas confronting

systems developers. Of the currently developed approaches dis-

cussed in this section, the BMD Software Development System is the

most comprehensive with respect to its applicability across the

development spectrum. The BMD approach, however, utilizes differ-

ent methodologies in the different phases of development whtch

results in the requirement to "shift gears" as the development

progresses through the various phases. Consequently, interfaces

between phases may present problems.

All of the approaches presented require manual intervention in the

various development phases (e.g. by the designer, implementer,

manager, etc.). Such manual efforts are primary sources of errors

in systems development; this is supported by the large effort

(and expense) that has been required to verify these manual pro-

cesses in the. various approaches.

In order for reliable, cost-effective systems to be developed

in an efficient, straightforward manner, the systems development

approach must have:

1. A methodology which can be applied consistently throughout
all phases of the development process.

2. A methodology which has a formal basis which will allow
elimination of a major portion of the verification re-
quired to prove that the system developed meets its
intent.

53

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

3. Automated tools which enable the system development to
proceed automatically with a minimum of manual inter-
vention, from the requirements to the deployed software.

The approaches presented in the previous sections of this chapter

are, without question, improvements over earlier systems develop-

ment approaches. They do not contain, however, the required

methodology or support tools for an integrated approach in sys-

tems development.

[it

54

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

3.0 RATIONALE FOR ISDS/HOS

55

MCEDfl PAA.;* 4 AM.NCMp

3.0 RATIONALE FOR ISDS/HOS

3.1 Background

Higher Order Software (HOS) evolved from attempts to bring en-

gineering rigor and discipline to the various phases of computer

system development (HAM73a). The natural evolution of these

separate efforts on the distinct phases of system development

has resulted in a formal methodology that is applicable to the

entire system design and development process (HAM73b). In the

following paragraphs, the background and early evolution of

HOS is outlined.

The Apollo study was of great value for determining the direction

for future software efforts (HAM73c) (HAM7l). For example, the

fact that 44% of all of the anomalies in the software were found

by "eyeballing" was a clear indication that static verification

was important. Also, the fact that seventy-three percent of the

anomalies studied occurred at software-to-software interfaces

encouraged concentration on interface correctness. Another reali-

zation resulting from this software analysis was that flexible

software systems are a key to managing software developments.

A case in point is the Apollo on-board asynchronous systems soft-

ware. If the Apollo Guidance Computer (AGC) systems software

had not been asynchronous, the development process would have

been much more expensive, much longer, and at least one of the

Apollo flights would have been a disaster (HAM72). (During the

aforementioned APOLLO flight, the system was required to recon-

figure its job queue to avoid overload.)

The difficulties encountered during integration at the Assembly

Control Supervisor (ACS) focal point in the Apollo development

L led to the requirement to formally define software modules (HAM76a).t Programmers were required to deliver finished modules to the ACS

57

H ,C

| HIGHER ORDER SOFTWARE, INC..* 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

_ ,, ~- ---- - ,,-.. . . .

who was charged with ensuring that each module:

a. performed its specified function

b. interfaced correctly with other modules

c. did not impact other modules in an unreasonable way.

It was observed that modules which were defined with standard

interfaces produced fewer problems for the ACS than modules de-

fined in non-standard terms. Further, from the management view-

point, the ACS concept was found to be beneficial in that it es-

tablished a focal point through which all official software was

filtered, thereby providing increased management visibility and

software integrity.

Over the last several years, a design approach has evolved wherein

large problems are divided into smaller problems, each of which

is defined as a new problem (DAH72), (JAC76), (MIL71), (MYE74),

(ROS76), (SNO72), (STE74), (WIR72), (YOU75). The division pro-

cess continues until the problems are small enough to solve.

Hopefully, the aggregation of the solutions to the small problems

solves the original problem. In order for this to work, it was

found to be necessary to decompose the problem so that the indi-

vidual solutions fit together properly.

During the APOLLO software development, anomalies were analyzed

and characterized to determine rules which would have prevented

such classes of anomalies. Checklists for all of the disciplines

of the software development process (design, implementation, veri-

ficiation, documentation, and management) were refined (HAM73b).

The refined manual checklists proved to be identical for each
discipline. Checklist items were then categorized, and it was

determined that many of the manual processes could be automated.

58

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

3.2 Concept of the HOS Formalized Approach

The key features of the Higher Order Software Methodology were

derived as specific solutions to the problem areas discussed in

Section 3.1. To address the problem of interface errors, six

axioms were developed, the adherence to which will assure inter-

face correctness without requiring program execution. These six

axioms, which became the base of the formalized system, explicitly

define hierarchical software control. These axioms distinguish

HOS from other software methodologies.

In order to assure software reconfigurability in real-time, an

asynchronous approach was adopted in which processes do not have

to fit into timed intervals. Through the use of the HOS methodol-

ogy, such processes can be dynamically reordered since the systems

software can schedule processes based on priorities (clocks or

other events).

The observation that modules should be formally defined in order

to provide more efficient module integration lead to the HOS ap-

proach to modularity. As a result, the definition of an HOS

module includes in a formal way iis functions and control aspects.

The Assembly Control Supervisor concept has shown the importance

of a management structure in developing reliable software. Con-

sequently, the HOS concept also places constraints on a manage-

ment structure by requiring its adherence to the HOS axioms.

Through this approach, the following management benefits accrue:

(1) the methodology is applicable to systems over the total range

of sizes and complexities; (2) there is reduced dependence on

individual people; (3) clear traceability of project progress

is possible; (4) the impact of a manager's decision on other man-

agers is clearly defined; and (5) the management structure helpsI. to determine the relationship between groups and organizations.

59

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-800

In the area of problem decomposition, HOS formalizes the process

of dividing problems to ensure that the interfaces between parts

of the solution are correct. The decomposition is based on the

six HOS axioms which results in a tree structure solution to the

problem where the nodes of the tree represent hierarchical levels

of specification.

Through the formalized approach to software development offered

by HOS, a set of techniques and automated tools applied in an

integrated manner to the various software phases and disciplines,

has been defined. Such tools will enforce a rigorous software

engineering approach, the consequences of which will be reduced

software costs and much greater software reliability.

The rationale delineated above is further supported by the MITRE

and APL studies referenced in Chapter 2. Specifically, the MITRE

study identified the "lack of discipline and engineering rigor

applied to the weapons systems software acquisition activities"

as the major contributing factor to the problem of controlling

increasing costs and improving the quality of software in weapon

systems. The APL study agreed that "the lack of systems engineering

methodology to computer systems design is at the root of a number

of critical problems in the development of major weapons systems."

HOS forms the basis of the Army's Integrated Software Development

System (ISDS/HOS) which is shown in this report to be a formal

systems engineering methodology with supporting software tools

for developing reliable tactical real-time software.

S60

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

4.0 FOUNDATIONS OF ISDS/HOS

V 61

MCIDf10 PA0Ik~kA.a0 71US

4.0 FOUNDATIONS OF ISDS/HOS

4.1 Preliminaries

4.1.1 Trees and Functions

Using the ISDS/HOS approach, software systems can be developed

with the aid of simple mathematical concepts and a set of

software engineering axioms. In this section, the required

mathematical concepts are described. In the following section,

these concepts will become the means (language) by which ISDS/

HOS is described.

The two mathematical concepts required in order to

describe ISDS/HOS are the tree and the function. The tree

is a structure comprised of a finite number of nodes which

are connected by branches as shown in Figure 4.1.1.1.

Figure 4.1.1.1

An Example of a Tree Structure

A branch may be interpreted as entering a node (from

above the node) or leaving a node (from below). The unique

Lnode at the top of the tree that has no branches entering

it is called the root of the tree. A node that has no branches

leaving it is called a leaf of the tree. It should be noted

63

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

that all nodes other than the root have exactly one entering

branch.

A root is considered to be at level 0 of the tree (see

Figure 4.1.1.2). As one starts at the root and traverses a

path to a leaf, each successive node defines the next level

root
-level 0

*level 1
leaf

4-level 2
leaf leaf leaf

+level 3
leaf leaf

Figure 4.1.1.2

Tree Levels

of the tree. If a branch leaves node A (Figure 4.1.1.3) and

enters node B, then node A is the parent of node B, and node B
is an offspring of node A. (In Figure 4.1.1.3 node C is also

an offspring of node A.)

A

'i B C

Figure 4.1.1.3

Parent-Offspring Relationship

64

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

A nodal family is a particular parent node and all of its

offspring (see Figure 4.1.1.4).

PARENT NODE

FAMILY

SdwA SUBTREE

OFFSPRING

NODES

Figure 4.1.1.4

Tree Substructures

If there exists a sequence of nodes nI , n21..., nk, such that

for every i, n+1 is an offspring of ni, then each ni+1 is a

descendant of nI. A particular parent node of the tree together

with all of its descendants and connecting branches is the

subtree defined by the given parent.

If a and 8 are set elements (frcin either the same or

different sets), then (a,8) denotes .he ordered pair consist-

ing of a and 8 in that order. (Thus, the ordered pair (8,a) is
not the same as (a,8) except for the case where a and 8 are
the same elements.)

65

HIGHER ORDER SOFTWARE, INC. 34 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-6900

If two sets, X and Y, are given, and x and y represent

arbitrary elements of X and Y, respectively (i.e., x and y are

variables), then any set of ordered pairs of the form (x,y)

is a relation between X and Y. For example, if X = {1,2,3,4,5,61

and Y = Im,s,e,wl, then one possible relation between X and Y

is R ={(4, m), (3,s) , (4,w).

r The set of left elements of the relation is called the

domain, and the set of right elements, the range. In the above

example, the domain is {3,41, and the range is {m,s,wl.

A relation is a function when each element of the domain

has only one corresponding range element. If f is a relationI between X and Y, and f is also a function, then we say that
"f is a function from X into Y" (usually written y = f(x)).
An example of a function is

f = I (l,m) , (2,s) , (4,m) , (6,e)}I

as illustrated in Figure 4.1.1.5.

In the sections that follow, the variable that represents

the domain elements is referred to as the input variable, and

the variable that represents the range elements is referred

to as the output variable. Individual domain and range elements

may be called inputs and outputs, respectively.

66

HIGHER ORDER SOFTWARE, INC. e843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

RANGEOF FDOMAI OF

Fiue4...

Illstrtin o a untio frm ino3

4.1. Modlesand oda Famlie

M
*~~ 6nID/Otedcmoiinpoesfrasse eut

inatrestutre t h satofte eomoiio roes

requirementlstro of th syte, nherotis dompinoe Yrelcn

It by a nodaSaiyhihrpeet the decomposition ofoes frastersuthe

rooate Thstrcue ttesatoh decomposition process, ta frpaigafnto

itby it nodal family, wcan bepntednti the enstie systea

67

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

been explicitly specified to whatever detail is required or

desired. It may turn out that during the decomposition process,

a requirement is shown to be erroneous or missing. In such a

case, an iteration of the system description is required.

The parent node of the nodal family controls its offspring.

when referring to this control relationship, the parent node

will be called a module, and its offspring will be called

functions. The offspring of the nodal family are the functions

required to perform the module's corresponding function (MCF)

(i.e., the function that the nodal family replaces).

The resulting tree represents the system where the leaves

represent, in an abstract machine sense, the machine "instruc-

tions" that are to be actually performed; the intermediate

nodes represent control with respect to the performance of

these leaves. It can be shown that the ISDS/HOS axioms

provide rules for the way that a nodal family can be constructed.

These methods for constructing a nodal family will be presented

after the axioms are introduced.

4.2 The Axioms

Axiom 1 is concerned with invocation which is the act the module

F carries out in order to set up the initiation of the execution
of its function. The axiom limits this right of invocation so

that the module, as a parent in a nodal family, can only invoke
its offspring. Thus, the module (1) cannot invoke itself, (2)

cannot invoke its parent, (3) cannot invoke any of its descendants

other than its offspring, (4) cannot invoke another offspring
of its own parent, and (5) cannot invoke another parent's of f-

spring.

68

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Axiom 2 is concerned with the function associated with the module.

For any given element in the domain of the module's function, the

module is responsible for producing the correct corresponding

range element. In other words, the job of the module is to per-

form a function. While the module can get "help" from its off-

spring in the performance of this function, it cannot delegate

this responsibility. For a given input, only the module can

ensure the "delivery" of the corresponding output. A module

looses control (cannot ensure correct outputs) when any of its

offspring (1) stop before completion, (2) go into endless loops

or, (3) do not return required information back to the module.

Axiom 3 is concerned with where the required range element (as

produced by an offspring) is delivered as dictated by its module.

Clearly, it is undesirable for every function in the system to

obtain or alter values of every variable in the system. The

ability to obtain or alter the values or variables is called

access rights. According to Axiom 3, the module can assign to

its offspring the right to alter the values of the output vari-

ables of the module's corresponding function (i.e. the output

access rights to these variables). (The module's corresponding

function, similarly, will have first secured access rights from

its parent.) As a consequence of Axiom 3, each range variable

(output variable) of the MCF must appear as a range variable of the

function of at least one of the module's offspring.

Axiom 4 is concerned with the way that the module controls access

to its domain elements (input access rights); specifically, the
module can grant its offspring the right to access its domain

elements for reference purposes only. The module does not have

the ability to alter its domain elements. As a consequence of

Axiom 4, each domain variable (input variable) of an MCF must ap-

pear as a domain variable of the function of at least one of its

offspring.

69

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

As a consequence of Axioms 3 and 4, a variable cannot represent both
domain and range elements.

Axiom 5 requires that the module must ensure the rejection of

inputs received that are not in the domain of the MCF. A function

remains undefined for elements that are outside of its domain.

A module, however, in performing its corresponding function, is

responsible for determining if such an element has been recieved,

and, if so, it must ensure its rejection. In a sense, the im-

proper input element is not in the domain of the module's intended

corresponding function but is in the domain of the MCF.

Axiom 6 is concerned with ordering. It requires the module to

control the order (which includes priority based on time, events,

importance, computational needs, etc.) of invocation of its off-

spring and their descendants.

Table 4.2.1 summarizes the axioms of ISDS/HOS.

70

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

I' :

Table 4.2.1

Axioms of ISDS/HOS

DEFINITION: Invocation provides for the ability to perform a function.

AXIOM 1: A given module controls the invocation of the set
of functions on its immediate, and only its immediate,
lower level.

DEFINITION: Repsonsibility provides for the ability of a module to

produce correct output values.

AXIOM 2: A given module controls the responsibility for

elements of only its own output space.

DEFINITION: An output access right provides for the ability to locate a

variable, and once located, the ability to place a value in the

located variable.

AXIOM 3: A given module controls the output access rights to
each set of variables whose values define the
elements of the output space for each immediate
and only each immediate, lower level function.

DEFINITION: An input access right provides for the ability to locate

a variable, and once located, the ability to reference the

value of that variable.

AXIOM 4: A given module controls the input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate,
lower level function.

DEFINITION: Rejection provides for the ability to recognize the

improper input element in that if a given input element is not

acceptable, null output is produced.

AXIOM 5: A given module controls the rejection of invalid
elements of its own, and only its own, input set.

DEFINITION: Ordering provides for the ability to establish a relation

in a set of functions so that any two function elements are comparable

in that one of said elements precedes the other said element.

AXIOM 6: A given module controls the ordering of each
tree for the immediate, and only the immediate,'
lower level.

ii 71
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-900

4.3 Functional Decomposition

While a function can be decomposed in many ways, the HOS axioms

provide rules for the construction of nodal families (i.e. the

decomposition of a function). From the axioms, three primitive

control structures are derived which are used for functional de-

composition (HAM76b). These control structures arc composition,

set partition, and class partition.

Composition is illustrated in Figure 4.3.1. In order to perform

flI W, the function f2 must first be applied to x which results

in output z. z then becomes an input to f3 which produces the

desired range element of the overall function f

y = f1 (x)

y = f3 (z) z = f 2(W

Figure 4.3.1: An Example of Composition

It is important to observe the followinq characteristics of com-

position (.characteristics are explained with respect to the ex-

ample in Figure 4.3.1):

(1) One and only one offspring (specifically f2 in this

example) receives access rights to the input data, x,

from module f1 ,

(2) One and only one offspring (specifically f3 in this ex-

ample) has access rights to deliver the output data,

y, for module f1 "

(3) All other input and output data that will be produced

by offspring controlled by f1 will reside in local vari-

ables (specifically z in this example). Local variable,

z, provides communication between the offspring, f2 and

3 CT72

-NOW S" /ARE NC 43 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETT 0139(617) 61-8900

(4) Every offspring is specified to be invoked once and

only once in each process of performing the parent

MCF.

(5) Every local variable must exist both as an input vari-

able for one and only one function and as an output

variable for one and only one different function on the

same level.

Additional examples of composition are given in Figures 4.3.2

and Figure 4.3.3.

Y = f0 (x)

y = f3 (h) h f2 (g) g = f1 (x)

Figure 4.3.2: Composition with Three Functions
on One Level

y = f0 (x)

y = f2 (g) q = f1.(x)

y f4 (h) h = f3 (q)

Figure 4.3.3: Multilevel Composition

73

4 . HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Set partition, which involves partitioning of the domain, is

illustrated in Figure 4.3.4. In this example, the set which com-

prises the domain is partitioned* into two subsets. For set

partition, only one of the offspring will be invoked for each

performance of the MCF at f1 (the determination being based on the

value of x received) and that offspring will produce the required

range element for its parent module when it is performing.

y f f1 (x)

y f 3(X= f 2(x{I{x1x > 0} fxlx < 0}

Figure 4.3.4: An Example of Set Partition

The following characteristics with respect to set partition should

be observed:

(1) Each offspring of the module at fl is granted permis-

sion to produce output values of y.

(2) All offspring of the module at f1 are granted permis-

sion to receive input values from the variable x.

(3) Only one offspring is specified to be invoked per input

value received for each process of performing its MCF

i.e., only one offspring has a state change for a given

state change of the parent module.

(4) The values represented by the input variables of an

offspring's function comprise a proper subset of the

domain of the function of the parent module.

(5) There is no communication between offspring.

* Partitioning implies the subdivision of the original set into
non-overlapping (i.e. mutually exclusive) subsets.

74

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Alternative approaches to the set partition illustrated in Figure

4.3.4 are presented in Figures 4.3.5 and 4.3.6.

y f fl(x)

Y f f4(X) f 3 f (x) f 2 f (Xfx(x > 01 3 xjx = 0}f 2 xx < 01

Figure 4.3.5: Set Partition with Three Functions on One Level

y = f(x)

y= f3 (x) y f2 (x
{xlx > 0} {xlx < 0}

y = f5 (x) Y= f4 (x

{xx > 0} {xlx = 01

Ficure 4.3.6: Vultilevel Set Partition

4.4 Illustration of the Axioms

To explain the concept of control, we now illustrate the axioms

of ISDS/HOS individually. Each individual axiom shows properties
of control.

In the.e illustrations, the reader should associate the titles

LT.COLONEL, MAJOR, etc., with a module and its corresponding

function. For example:

PROTOTYPE = MAJOR(CONTRACT)

75

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

is analogous to

y f(x).

People may be "allocated" to actually perform each function.

We can even allocate the same person to more than one function.

For the purposes of the axiom illustrations, separate the allo-

cation concept from the function concept., i.e., LT.COLONEL is

a function, not a person.

1 4

1 4

76

" HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Axiom 1

Axiom 1 is illustrated with the aid of Figure 4.4.1. The function

is LT.COLONEL and the input (domain) and output (range) variables

are REQUIREMENT and SPECIFICATION, respectively, i.e.,

SPECIFICATION = LT.COLONEL (REQUIREMENT)

(rMololr' (CONMACT kFP)

P1'

P3
-R 2-

speCTICnriol's LT COLOME- Q a .RC/AV

(
0

.,1mAL Olz

Figure 4.4.1

AXIOM Q Invocation Rights

77

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In Figure 4.4.1 (PROTOTYPE, PROPOSAL) is a data structure* of

SPECIFICATION; (CONTRACT, RFP) is a data structure of REQUIRE-

MENT. LT.COLONEL ensures the completion of his function by get-

ting the MAJOR and CONTRACTOR to work together to do the LT.COLONEL's

job. Together, the MAJOR and CONTRACTOR use the input of the

LT.COLONEL's function and produce the output for the LT.COLONEL.

An instance of this effort is indicated by its ordered pair

((TYPE2, P2), (C2,Rl)) pointed to by the arrow.

If the MAJOR and CONTRACTOR are the only functions that belong

to a control level controlled by LT.COLONEL, then both MAJOR and

CONTRACTOR contribute to completing the LT.COLONEL function.

The act by LT.COLONEL of getting MAJOR and CONTRACTOR to contri-

bute is called invocation. Axiom 1 relates each invocation to

the total function of LT.COLONEL. This is illustrated in Figure

4.4.1 by the arrow pointing to the collection of functions within

the dotted line. Specifically, LT.COLONEL controls only the in-

vocation of MAJOR and CONTRACTOR and the invocation of MAJOR and

CONTRACTOR is controlled only by the LT.COLONEL.

* The notion of a data structure, often referred to as an imple-
mentation of a variable, is helpful in understanding a complex

* - set of values of a variable. PROTOTYPE and PROPOSAL are vari-

ables in their own right since a value of PROTOTYPE and a value

of PROPOSAL are both necessary to complete a value of SPECIFI-
CATION (e.g., a value of PROTOTYPE is TYPE2; a value of PROPOSAL
is P2; the corresponding value of SPECIFICATION is (TYPE2, P2)).

78

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139.(617) 661-8900

Axiom 2

Axiom 2 is illustrated with the aid of Figure 4.4.2. The axiom

requires LT.COLONEL to be responsible for relating each input

value (domain element) to the correct output value (range element)

(e.g. for input (Cl, Rl), LT.COLONEL ensures the assignment of

output (TYPE1, PI)). Axiom 2 requires that, for a particular

input value, there be one, and only one particular output value.

LT.COLONEL must take full responsibility for the final product.

He cannot delegate this responsibility to any of his subordinates

or to any other module. (LT.COLONEL, however, must delegate the

work. See Axiom 1.) By itself, Axiom 2 does not address the

concept of control with respect to lower levels. In Figure 4.4.2,

LT.COLONEL is pulling the strings; this demonstrates only LT.COLONEL's

responsibility as total caretaker of the function.

(TYPE I, P3) le-, I

L.r.C LOE

I Figure 4.4.2
AXIOM Responsibility Rights

:' !:i 79

r . HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661400

Axiom 3

To illustrate Axiom 3 (Figure 4.4.3), we refer to LT.COLONEL's

corresponding function in terms of the data structure representa-

tion:

(PROTOTYPE, PROPOSAL) = LT.COLONEL (CONTRACT, RFP)

According to Axiom 3, LT.COLONEL* grants (1) to CONTRACTOR the

access rights to PROPOSAL (i.e., CONTRACTOR has the right to

deliver the proposal to its assigned location), and (2) to MAJOR,

the access rights to PROTOTYPE (i.e., MAJOR has the right to

deliver PROTOTYPE to its intended location). Since the MAJOR has

output access to PROTOTYPE, he must deliver (in a given perfor-

mance) the same value of PROTOTYPE as that of LT.COLONEL's cor-

responding function.

LT COLONEL

Figure 4.4.3
AXIOM G) Output Access Rights

•The LT. COLONEL's corresponding function will have first
' secured output access rights to PROTOTYPE and PROPOSAL in a

similar fashion. 8

i IHIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

L

Axiom 4

According to Axiom 4, (Figure 4.4.4), LT.COLONEL grants (1) to

CONTRACTOR the access rights to RFP (i.e., CONTRACTOR has the
right to reference RFP from its assigned location) and, (2) to

MAJOR, the access rights to CONTRACT (i.e. MAJOR has the right

to reference CONTRACT from its assigned location). Since MAJOR

has input access rights to CONTRACT, he must reference (in a given

performance) the same value of CONTRACT as that of LT.COLONEL's

corresponding function.

LT. MOONCL.

It'J

Figure 4.4.4

AXIOM 45) Input Access Rights

81

" "HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Li

Axiom 5

Axiom 5 is illustrated in Figure 4.4.5. Here, we use the same

function, REQUIREMENT = LT.COLONEL (SPECIFICATION), as shown in

Figures 4.4.1, 4.4.2, 4.4.3, and 4.4.4.

Axiom 5 deals with the rejection of invalid input values. Tech-

niques used to determine if input values are valid are controlled

by the module itself. This means that if LT.COLONEL knows he can

accept only (Cl, Rl), (Cl, R2), (C2, R2) or (C2, Rl), then he must

reject anything else (see Figure 4.4.5). He must carry out this

rejection without requesting any aid from his offspring, i.e.,

rejection control is limited to the module itself.

Figure 4.4.5

AXIOM 0 Rejection Rights

82

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Axiom 6

Axiom 6 relates ordering of immediate subordinate offspring and

their dependents with respect to the module. In Figure 4.4.6,

we illustrate Axiom 6 in terms of the data structure representa-

tion of the LT.COLONEL's corresponding function.

In this example, not only are the LT.COLONEL's inputs related

to his outputs; but the inputs are functionally related to each

other, and the outputs are functionally related to each other.

The ENGINEER and BUSINESS.OFFICE functions in Figure 4.4.6 are

external to the system and only provide an explanation of where

the inputs to the LT.COLONEL's system comes from.

The inputs are functionally related to each other by means of

the BUSINESS.OFFICE function:

CONTRACTRFP = BUSINESS.OFFICE (RFP)

The engineer function chooses which prototype is needed for the

major:

PROTOTYPE = ENGINEER (PROPOSAL)
PROPOSAL

The input and output values of the variables, RFP and PROPOSAL,

of the CONTRACTOR function are used as input values for the

BUSINESS.OFFICE and ENGINEER functions. The ENGINEER and BUSINESS.

K i OFFICE furctions produce values which become variables for the

I I MAJOR function.

The LT.COLONEL must control his immediate subordinates so that

each subordinate knows when he can start to work and the conditions

under which he must complete his job. When the RFP is available

from the LT.COLONEL, the CONTRACTOR can immediately start working

in order to produce the proposal. If the CONTRACT has already
been prepared by the BUSINESS.OFFICE when the LT.COLONEL starts

83

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

his task, the MAJOR can also begin work immediately. On the

other hand, if the BUSINESS.OFFICE has a work overload, the MAJOR

will have to wait longer for the BUSINESS.OFFICE to complete

the CONTRACT.

Once the CONTRACT is in, the MAJOR can begin work. The LT.COLONEL

insures that the CONTRACTOR must produce the PROPOSAL before the

MAJOR can finish his job. For every PROPOSAL the CONTRACTOR

creates, the ENGINEER uses that PROPOSAL to choose the prototype.

The LT.COLONEL controls the CONTRACTOR to complete his job before

the MAJOR can complete the task of building a prototype.

PROTOTYKtc~
.

>~ ~RFP)

9 wo"& t .F

L.T (ILW orWoE'

Figure 4.4.6

AXIOM (D Ordering Rights
•

84

S HIGHER ORDER SOFTWARE, INC . 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

4.5 Examples

4.5.1 The BRIGGEN System

Hierarchical systems exist in many forms. Many management struc-

tures such as a military management structure, a business organi-

zation, or a government are structured hierarchically. The key

to understanding the structure of any hierarchy is in determining

what objects belong to the hierarchy and what relationships exist

between the objects of the hierarchy.

To explain and illustrate the axioms of ISDS/HOS, we have created

a fictional system called the BRIGGEN system. For the BRIGGEN

system, we describe the objects which are variables, values,

functions, and trees; the relationship of the hierarchy is con-

trol.

We have chosen to make the military chain of command a management

structure analogous to an ISDS/HOS hierarchy. For the BRIGGEN

system, the system function is to direct a research project in

systems engineering to be completed one year from the start of

the fiscal year. The system is decomposed into functions, each

labeled to correspond to the person responsible for that function

(Figure 4.5.1).

The management hierarchy shown in Figure 4.5.1 is referred to

as a tree. Each member of the hierarchy (e.g., BRIGGEN, COL1,

CAPT2) has a particular position of responsibility. Each member

of the hierarchy controls the use of his immediate subordinates.

For example, BRIGGEN controls the use of COL1, COL2, and COL3;

COL1 controls the use of LTCOL1 and LTCOL2, etc. The properties

of control are determined by the axioms of ISDS/HOS. When we refer

to COL1 giving orders to LTCOL1 and LTCOL2, COLl is referred to

as a "controller" or as a "module". When COLl receives orders

from BRIGGEN he is referred to as a function. A module is a super-

visor; a function is a subordinate.

85

HIGHER ORDER SOFTWARE, INC. 9843 MASSACHUSETTS AVENUE- CAMBRIDGE, MASSACHUSETTS 02139. (6171 I 1111

BRIGGEN

COL1 COL2 COL3
I

\
I \

/ / \\

LTCOL1 LTCOL2

/I\

MAJI MAJ2 MAJ3

CAPT1 CAPT2

Figure 4.5.1
BRIGGEN Invocation* Tree

Figure 4.5.2 is a more detailed version of Figure 4.5.1. Figure

4.5.2 is referred to as a control map because the inputs and the

* outputs of the functions are provided. In Figure 4.5.2, inter-

. I faces of the functions are shown by illustrating the access rights

to the variables of the functions as well as the invocation tree

of the BRIGGEN management structure.

BRIGGEN has access to MEMO1, MEMO2, and MEMO3. BRIGGEN can read

these memos or allow any of his subordinates to read these memos,

but he cannot rewrite the memos or alter them in any way. Each

memo can be delivered to BRIGGEN at different times or at the

same time. If one memo arrives, BRIGGEN can allow the memo to be

4 sent to the responsible subordinate before the other memos arrive.

KLikewise, if one subordinate can get his job done based on theI?
contents of one memo, the subordinate can deliver his product to

rt BRIGGEN as long as BRIGGEN has not imposed restrictions (e.g.,

timing delays) on that subordinate.

* An invocation tree is a representative control map which

includes only function names.

86

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSE1TS 02139. (617) 661-8900

In this project, the Brigadier General, BRIGGEN, has been asked

by his superior to complete two presentations and a prototype

based on the contents of three memos. BRIGGEN must complete the

project one year from the start of the fiscal year.

BRIGGEN requirements include the time constraint imposed on the

research project. This time constraint will be discussed in the

section entitled The Initiation of Command in BRIGGEN. The struc-

ture of BRIGGEN (Figure 4.5.2) illustrates the three HOS primi-

tive control structures: class partition, composition, and set

partition (HAM76b).

CONTROL STRUCTURES OF BRIGGEN

BRIGGEN has ordered his three colonels to perform three indepen-

dent functions, COL1, COL2, and COL3. BRIGGEN is using a class

partition to control his subordinates. Each colonel can

perform his job independent of the other two colonels. COLl

uses the information in MEMO1 to produce PRESENTATION 1; COL2

uses the information in MEMO2 to produce PRESENTATION 2;COL3

uses the information in MEMO3 to produce the PROTOTYPE. Each

colonel can begin his job immediately if the BRIGGEN has all the

memos available at the start of the project. If any of the

three memos is delayed, the colonel responsible for the delayed

memo must wait until he has the information required to begin

work. BRIGGEN is responsible for informing his subordinates

when to complete the job. This aspect of BRIGGEN's function

is not depicted in Figure 4.5.2, but will be discussed later

with respect to the Initiation of Command in BRIGGEN.

In Figure 4.5.2, we do not show how COL2 and COL3 do their jobs.

Figure 4.5.2 only shows the relationship of COL2 and COL3 with

respect to BRIGGEN.

87

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

. d - + .' .=- ' ' .. - . .- I- -- - '- - "" . •"

-- ~4)

4-I - I

U) O
r- t)

I, *,r4 bo

W 41 M)4

II LA"Z
w 0 44

4. $

II .• k
o0

E- k

- 0 1

t4 0 10

C4 ." 88 (4

0 z) (I

zz

Lu Lu

V
I ~ HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139.1(617) 661-8900

Figure 4.5.2 does, however, indicate how COLl performs his job.

In this case, COLl is controlling his immediate subordinates,

LTCOL1 and LTCOL2, by means of a composition control structure.

COLl would like his subordinates to communicate with each other.

LTCOL1 depends on LTCOL2 to get his job done. LTCOL2 receives

MEMO1 from COL1 and produces an imtermediate REPORT for LTCOLl's

use. COL1 does not care to see the REPORT; he is interested in
receiving only PRESENTATION1. The same control structures can

be used for many different functions in the BRIGGEN system.

For example, MAJ2 uses the same management scheme (i.e., composi-

tion control structure) as COL1 to produce the REPORT for LTCOL2.

Often, the contents of the input of a module are used to determine

which subordinate should do the entire job. The management scheme

used to perform a job in this manner is the set partition control

structure. LTCOL2 is controlling his immediate subordinates,

MAJ1, MAJ2, and MAJ3 by such a control structure. For example,

the contents of MEMO1 could determine which Major must be avail-

able to do the job. Each Major has access to MEMO1, but each

Major has access to the contents of MEMO1 only when the contents

falls into his own sphere of responsibility. In Figure 4.5.2,

MAJ1 is a hardware expert; MAJ2 is a software expert; and MAJ3

is a firmware expert. Jointly, all three Majors must account

for all the information that could appear in MEMO1. When

LTCOL2 finds out what kind of information is in MEMO1, he assigns

either MAJ1, MAJ2, or MAJ3 to write the REPORT.

I
RATIONALE FOR THE MANAGEMENT STRUCTURE

To comply with Axiom 1, the colonels must use the information

supplied by the Brigadier General; the Major must report it to

a particular Lt. Colonel. Conversely, the Brigadier General

can only ask his colonels to do his job and a colonel can request

his own Majors to do his job. If a Major tried to tell any

89

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE , CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

-,Ad

Colonel how to do his job; attempted to give orders to another

Major; or attempted to interfere with a Captain's command to

his subordinates, Axiom 1 would be violated. If LTCOL2 were

responsible for performance analysis, in addition to hardware,

software, and firmware designs, he might not ever get his job

done by one of his subordinates. If this were the case, LTCOL2

might request at least one more Major in order to comply with

Axiom 1. Suppose MAJ2 assigned a third task to CAPT3 to redo the

software design. In this case, since MAJ2 would be doing extra

work (and possible redundant work), he would be violating Axiom 1.

Everyone in the BRIGGEN system must be a responsible person via

Axiom 2. That is, there must be an output from every function

in the system. Axiom 2 could be violated if, for example,

a Major got sick, or a Colonel retired before his job was done,

or a Lt. Colonel did not know how to do his job.

In the BRIGGEN system each controller designates the data access

to his immediate subordinates and conversely his functions acquire

the right to access information from their controller. Note,

for example, that the input access rights of MEMO1, MEMO2, and

MEMO3 can be traced down the control map (Axiom 4) and

similarly that the outputs can be traced up the control map

(Axiom 3).

In BRIGGEN, it is possible for more than one subordinate to have

the potential to access the same input variable, as in the case

of the LTCOL2 and his immediate subordinates. Here, LTCOL2 con-

trols the access rights to the variable, MEMO1, by making sure

that if one subordinate can access a particular value, no other

subordinate can locate the same value. If LTCOL2 allowed MAJ2

to analyze the hardware design, LTCOL2 would get an incorrect

report. This mistake would illustrate a violation of Axiom 4.

90

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617 661-8900

IJ

A controller can set up a communication path between his immediate

subordinates (c.f. COLl in Figure 4.5.2). That is, a subordinate,

such as LTCOL1, can access an input value other than COLI's input

value if the subordinate's input value has been derived from

COLl's input value. The access rights to the variable used to

communicate the derived value are controlled by COLl in that such

a variable is never used to locate COLl's output; and such a

variable can be used to cummunicate between only two of his imme-

diate subordinates.

Axioms 3 and 4 prevent conflicts in the use of data resources.

Suppose that LTCO1 had PRESENTATION1 typed on the same paper

as the report had been typed on. As parts of PRESENTATION1

are prepared, relevant sections of the REPORT -or PRESENTATION1
would be hard to decipher correctly. Axiom 4 distinguishes

REPORT as input to LTCOL1 only. The value in REPORT cannot be

changed after LTCOL2 produces his output. Axiom 3 requires

PRESENTATION1 to be different from REPORT in that it is only

produced by LTCOL1. Although such an example appears extreme

in a management scheme such as BRIGGEN (we assume a plentiful

supply of paper), this example has characteristics typical

of a software system resource allocation problem.

If BRIGGEN were to be modified as in the following examples,

Axioms 3 and 4 would be violated.

1) Suppose COL3 were to read MEMO4 as well as
MEMO3. BRIGGEN has no control over the access
of MEMO4. In this case, BRIGGEN would not
know the implications of MEMO4 to BRIGGEN's

job. If COL3 uses MEMO4 to do his job, COL3II could devise many different prototypes for
BRIGGEN depending on the contents of MEMO4,

as well as the contents of MEMO3 (i.e, BRIGGEN
could get more than one prototype for the same
value of his input). BRIGGEN could not control
the contents of the prototype. Most likely,
irrelevant detail or artificial constraints
would be introduced by COL3 which would
jeopardize the quality of the reseach project.

91

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-690

ri

2) Suppose COLl were to be able to read MEMO2
instead of MEMO1. Here, BRIGGEN would not be
controlling access to MEMO1. Since no one would
be able to use MEMO1, the research project would
essentially ignore that information. Real
constraints to the project would be neglected
which might cause BRIGGEN to oversimplify the
significance of the research. In such a situation,
BRIGGEN might also cause unnecessary arguments
between COLl and COL2 because, both being con-
scientious, they would both want to begin using
MEMO2 at once. If BRIGGEN were to keep his
subordinates happy, he would have copies made of
MEMO2 so that both COLl and COL2 could use the
contents of MEMO2 whenever they wished.

3) Suppose MAJ2 were to present his product as a
BRIEFING instead of a REPORT. Since LTCOL2
would be counting on MAJ2 to produce the
REPORT if MEMO1 contained a software design,
LTCOL2 could not perform his job if MAJ2 were
able to decide to produce a BRIEFING instead of
a REPORT.

4) If LTCOL1 and LTCOL2 worked together to pro-
duce the REPORT, how would PRESENTATION1
be produced? One of COLl's subordinates must
prepare his presentation in order for COLl
to do his job.

5) Suppose BRIGGEN were to have input access rights to
RESULTS in addition to MEMO1, MEMO2, and MEMO3.
If the functions of COL1, LTCOL2 and MAJ2 were
not modified to be able to access RESULTS,
then CAPT2 would have to do the job of obtaining

RESULTS over again. Not only might CAPT2 be

doing an unnecessary job, but since he has access

to less information than BRIGGEN, he might not
get the same RESULTS that BRIGGEN started with;
and there would be no means to check the validity
of RESULTS.

92

4 HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

6) Suppose BRIGGEN had been asked by his superior

to produce REPORT in addition to PRESENTATION1,
PRESENTATION2 and PROTOTYPE. If COLl were
unaware of this modification to the project,
he would keep the REPORT in his files and not make
a copy of the REPORT for BRIGGEN. If BRIGGEN
asked COL2 for a copy of REPORT, COL2 would be
at a loss as to how to respond to such a request i
because COL2 never communicates with COL1.

It is not always possible for a subordinate in the BRIGGEN system

to produce a good result. In this system, a subordinate is res-

ponsible for recognizing the validity of his input and for taking

action if he does not receive the proper information (Axiom 5).

Suppose MEMO1 were to contain a set of 'humanware' values.

LTCOL2 would have to recognize that he cannot do his job with

such information. The LTCOL2 takes action and sends a REPORT

informing LTCOL1 that he cannot supply LTCOL1 with a comprehen-

sive REPORT. LTCOL1 is responsible for sending a message to COLl

that PRESENTATION1 will not get done. Likewise, COLl sends a

message to BRIGGEN indicating that PRESENTATION1 cannot be com-

pleted properly, making for a very unhappy Brigadier General.

A more sophisticated system would provide recovery from

this problem. COLl might be modified to accept 'performance

analysis' values and call on another subordinate, such as

LTCOL3, to prepare PRESENTATION1 under such conditions. In

an even more sophisticated system, there might be deadlines to

adhere to which could result in many more alternate ways to

recover from such a situation. In the BRIGGEN system, LTCOLI
could not be permitted to check the contents of MEMO1 for

validity, because LTCOLI would be meddling in LTCOLs's do-

main.

!{

* "93

• HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

In every system there must be order. Each manager must know

the conditions under which he can expect each result produced

by the system functions. Some orderings of output are more

apparent than others in the above examples. For example,

it is clear that LTCOL2 must deliver his report to LTCOL1

before LTCOLI can prepare his presentation. Other cases are

not so apparent. For example, two presentations are to be made

to "he Brigadier General. If they both occurred on the same

date at the same time the Brigadier General could not attend both

presentations. But then again, if COLl and COL2 began speaking

at once, the Brigadier General would be quite confused. When

a presentation and a prototype occur simultaneously, it is not

always obvious as to why they should occur in any given order.
However, it might make more impact if one occurred before the
other. Also, there may be limited resources available to the

Brigadier General. If, for example, the functions of COL1 and

COL3 were performed by one person, that particular person must

know the priority of each function assigned to him so tblv e

knows how to use his time properly. If there were no way to

determine the ordering of functions in the system, or if they

were ordered improperly, the manager in charge would be violat-

ing Axiom 6. If BRIGGEN had less authority than COL3, BRIGGEN

could not tell COL3 when to produce the PROTOTYPE. If BRIGGEN

had less authority than CAPTI, then CAPTI could tell the Brigadier

General when to do his job. Such inconsistencies in the chain

of command would only occur if Axiom 6 were to be violated.

THE INITIATION OF COMMAND IN BRIGGEN

Thus far, we have discussed the BRIGGEN system with respect to

several hierarchical levels of control, but we have not discussed

that system with respect to the time constraint imposed on the

research project. Let us consider the time requirements of the

BRIGGEN system (Figure 4.Z..3).

94

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

OUTPUTTIME C' TIME C = MJGEN (INPUT TIME S' TIMES)

OUTPUT TIMEC BRIGGEN (INPUT TIME_)

TIME C= CLOCK(TIMES

[Such that [Such that
TIME C is TIME S is
09/30/811 10/01/801

Figure 4.5.3: BRIGGEN Time Requirements

The Major General, MAJGEN, has requested that BRIGGEN start the

research project at the beginning of the fiscal year. MAJGEN

has ordered that BRIGGEN complete the project in one year. In

Figure 4.5.2, BRIGGEN was represented as:

(PRESENTATION1, PRESENTATION2, PROTOTYPE) = BRIGGEN (MEMO1, MEMO2, MEMO3)

To illustrate the manner in which BRIGGEN is constrained by time,

it is simpler to discuss BRIGGEN with respect tc representative

variables instead of data structures. An alternate representation

of BRIGGEN is:

OUTPUT = BRIGGEN (INPUT)

!where output represents PRESENTATIONI, PRESENTATION2, PROTOTYPE,

and input represents MEMO1, MEMO2, and MEMO3. Both INPUT and

OUTPUT are functionally related to time.

BRIGGEN's INPUT is related to the start time of the project,

TINE-S:

INPUT aMAILNM (TIME_5)

95

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617)661-00

Here, the MAILMAN delivers BRIGGEN's INPUT (i.e., MEMO1, MEMO2,
and MEMO3) at time, TIME S. To distinguish this type of input/
output relationship from others, we use a subscript attached to
the output variable. Thus we rewrite the above equation as

INPUTTIME S = MAILMAN (TIMES)

In Figure 4.5.3 the MAILMAN function is not shown, but implied
via the use of the subscript. BRIGGEN has been told that on
the day the project is to start, he will receive the information
he needs by mail. According to Figure 4.5.3, BRIGGEN will
start his job when TIMES has the value October 1, 1980. Although
BRIGGEN could recieve the three memos at different times if the
MAJGEN wished, in this case, BRIGGEN has been restricted to
receive all three memos on October 1, 1980.

BRIGGEN OUTPUT is related to the completion time of the project,
TIMEC:

OUTPUTTIME C = MESSENGER (TIMEC)

When the project is completed, the MESSENGER delivers the
OUTPUT for BRIGGEN.

The CLOCK function is used by the Major General to initiate
BRIGGEN and control BRIGGEN's completion time. We call a

:1 function such as CLOCK an effector function with respect to

BRIGGEN. The BRIGGEN function is referred to as an affector

function (because BRIGGEN's input/output relationship, although
independent of CLOCK with respect to the values of INPUT and
OUTPUT, is dependent on CLOCK in order to "run") with respect

to CLOCK.

96

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 6618900

RESOURCE ALLOCATION

We have shown in system BRIGGEN how to set up the functions

that need to be completed and how these functions are

initiated. To actually do the job, resources such as time and

space must be assigned for each function. Time, in the case of

a management structure is usually addressed in terms of man

hours. In the case of computers, time is allocated in terms

of CPU. In a management structure, we need enough offices,

desks, etc. for space. In the case of computers, we need

enough computer memory.

Suppose COL3 does not receive MEMO3 until February 1, 1981.

Then COL3 would have eight months to complete his

job. In addition, suppose COL3 had originally intended LTCOL3

and LTCOL4 to do COL3's job. LTCOL3 needed ten months to

do the work required of Section 1 and Section 2 of MEMO3

and LTCOL4 needed seven months to do the work required of
Section 3 of MEMO3. In order for COL3 to adjust to his new

requirement, LTCOL3 would either be over-worked or else he could

not complete his job on time. One solution would be that

COL3 ask for more manpower and ask LTCOL3 tosconcentrate on

Section 1 while a new person, LTCOL5 concentrated on Section 2.

For this solution, we have restructured by adding additional

manpower.

97

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In the implementation of an ISDS/HOS system, it is possible

to share common resources.

For example, suppose MEMO1 were stored in a file cabinet while

CAPT2was using that information. From observing the system

structure we can determine that once CAPT2 produced the RESULTS,

MEMO1 would no longer be needed and, therefore, does not

have to be saved in the active file cabinet. We can now make

room for REPORT to be stored in the same place in the file

cabinet that had once been reserved for MEMO1.

In an ISDS/HOS software system we can make use of the system

structure properties in a similar manner when we allocate memory

resources.

Using the BRIGGEN structure we can also allocate time resources

efficiently by investigating system properties. For example,

COL1, COL2, and COL3 could all work at the same time if three

different people were associated with the three functions, COLl,

COL2, and COL3 respectively. Suppose on the other hand, BRIGGEN

had only two people to allocate to his functions. In addition,

suppose function COL1 needed six months to do his job; function

COL2 needed five months to his job; and function COL3 needed

eleven months to do his job. Since the research project must

be completed within one year, BRIGGEN could assign one person

to functions COL1 and COL2 and the other person to function COL3.

In this way, BRIGGEN could fulfill his requirements.

In a software system, ISDS/HOS tools determine the best way to

use time resources in a similar way.

In the implementation of an ISDS/HOS system, it is also possible

to share common operators. For example, in the BRIGGEN system,

both LTCOL1 and LTCOL2 could use the same typewriter to type

k 98

HIGHER OrnER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

the report or the presentation. We could determine this

because the structure shows that the report must be completed

before the preparation of the presentation is begun.

CHAIN OF COMMAND

Although an ISDS/HOS system requires each controller to "go through

a chain of command" to carry out his necessary functions, it is

not necessary for the General to actually talk to a Colonel and

a Colonel to talk to a Lt. Colonel, etc. in order for a Captain

to obtain his orders. If the General wanted Captains to receive

a memo, the Captains could receive the memo, or copies of the memo

directly, as long as access rights had been established for the

Captains throughout the entire chain of command. If the General

wanted to send an order via the loud speaker to everyone involved

in the research project, he could do so by effectively setting

up inputs to everyone in the project where each person's unique

input is a unique function of the same originating loud speaker

input. In this way, the BRIGGEN system could be compared to a

system of several processors receiving information that is in

a practical sense received simultaneously.

In an ISDS/HOS system, it is absolutely clear just who the boss is,

and the communication lines in a system are clearly defined. In

system BRIGGEN, each subordinate always has the same boss. Thus,

subordinates have no need to question where the orders come from
since they always come from the same place. Every person in the

system always communicates via his own communication channels.

Not only must the communication path be appropriate, but the

messages transmitted on these channels must be germane.

BRIGGEN SOFTWARE SYSTEM

BRIGGEN has been presented as an ISDS/HOS military management

system. If we were to model the functions of this system on a

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

computer, the BRIGGEN functions in the software system would be

the same functions as those in Figure 4.2.1. The software system

that represented BRIGGEN would have the same characteristics as

the BRIGGEN management system.

4.5.2 The Line Justifier (GR176)

The Line Justifier system is to insert blanks between words of

a line so that the last character of the last word appears in

the last column of the line. In addition, the following con-

straints are imposed: (1) the number of blanks between different

pairs of words on a line may differ by no more than one and (2)

for odd (even) lines more blanks are inserted toward the right

(left) of the line.

Assume the above paragraph (taken from GR176) stated the initial

requirements of a problem. After manually examining sentences
of a random chosen paragraph, these requirements were found to

be incomplete. Therefore, the following additions to the require-

ments were made: (1) the first word always remains where it

started, (2) only one blank separated words on the original un-

justified line* and (3) the punctuation marks ,,,4;:"are

part of the word on its left while" is part of the word on its

right. In addition, it was ascertained that what was provided

to the line justifier was (1) the column numbers where the words

begin, (2) the total number of columns and (3) the length of the

last word on the line.

*For the purpose of this discussion, this requirement was added
to simplify the problem.

100

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In what follows, the line-justifier will be explained by walking

through the process of building its tree.

The first step is to represent the system as the root of the tree

in which the domain and range is specified (Figure 4.5.2.1).

In addition, a supporting narrative is developed (i.e. the key

of Figure .1.5.2.1).

AN = LINE JUSTIFIER(L,S,C'N)

Key

L = length of the last word

S = total number of columns on the line

N = number of words on the line

CN = an N-tuple of variables whose values represent the
column numbers where the words begin on the unjustified
line

AN = an N-tuple of variables whose values represent
column numbers where the words begin on the justified
line

Figure 4.5.2.1: The Initial Assumption of Line
Justifier together with its Supporting
Narrative

The next step is to use one of the primitive control structures

to decompose the system (Figure 4.5.2.2).

101

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

A = LINE JUSTIFIER(L,S,CN)

TC, fTITEI, at0-s+i}) = BLANK- (L,S,CN) AN = F1 (C ,T,a)
CALCULATOR

KEY

T = Total number of blanks at the end of the line

CN copy of CN

FIGURE 4.5.2.2: Line Justifier Decomposed Using the
Composition Primitive Control Structure

The above decomposition was determined by the realization

that a local variable T (the total number of blanks

occuring after the last word) was needed in order to determine

the type of processing required (eq. if T = 0, then the problem

is solved and hence no further processing is required). The

function END_ OFLINE BLANIKCALCULATOR produces the value for

the local variable, T, which is then communicated to the function

F This function, Fl, completes the requirements for its

MCF.

Ii We continue to apply the primitive control structures and

t decompose F1 as shown in Figure 4.5.2.3.

102

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

A= F(T a)

AN -UNCHANGE (C, 1T{T TE{0, t) A% F2 (C , 2T{TT{ _1T}'a)

FIGURE 4.5.2.3: F1 Decomposed Using the Set

Partition Primitive Control

Structure

Set partition on variable T was used to decompose F1 (i.e., 1T

and 2T are non-overlapping subsets of T; ITU 2T = T) so that the

module F1 , which has the responsibility to insure that its cor-

responding function is carried out, can decide whether the original

line was already in the required format (in which case it would have

invoked function, UNCHANGE) or that additional processing is

required (in which case it would have invoked function F2).

t} Another set partition must take place to account for the possible

condition that only one word happens to occur on the line given.

This specification illuminated an inconsistency in the original

requirements. If the line contains only one word, then the

last character of the last word cannot possibly appear in the

last column of the line if at the same time the first word always

i remains where it started. (Except in the unlikely case where i

the length of the word equals the total length of the line.) If

only one word does occur in the line, then a design choice must

be made between these conflicting requirements. In this case

I.".; it was decided that the line should be returned unchanged accord-
ing to the decomposition of F2 in Figure 4.5.2.4.

103

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE o CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

AN = F2 (CN T,ca)

N 2 2

A UNCHANGE (CN , 2T,a) AN * F (CN 2 Tja)
N{NIN=11N {NINOl1

Figure 4.5.2.4:

Set Partition Decomposition of F2 to Return Lines

Containing Only One Word

F3 is now decomposed (Figure 4.5.2.5) by the realization that

two local variables would be needed for determining AN. These

variables are (1) b, the number of blanks to be inserted between

each word and (2) r, the number of word pairs requiring one addi-

tional blank between them after the inserting of the b blanks.

These local variables were needed in order to fulfill the require-

ment that the number of blanks between different pairs of words

on a line may differ by no more than one. Note that F3 is de-

composed by using the composition primitive control structure.

104

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

2),N , '#2

(C" ,b, r) = REQUIRED (C T,4a) % F (C; b,r)
BLANK INSERT 4 - NIN1})

KEY

b = number of blanks to be inserted between each word

r a number of word-pairs requiring one additional blank between
them after the insertion of b blanks

CN = copy of

FIGURE 4.S.2.5: Decomposition Using the
Composition Primitive
Control Structure

At this point, an attempt was made to insert the required blanks

between the words in order to meet the requirements. However,

the requirement that for odd (even) lines, more blanks had to be

inserted toward the right (left), of the line, could not be de-

termined with the previously defined input. An additional input,

P, was required. P represents the parity of the line indicating

whether it is even or odd. It was then necessary to iterate the

design process by adding the variable P to line-justifier's do-

main variables (Figure 4.5.2.6).

105

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661000

-4

F44

4 ,,.4 z

Z -4

I -0

* -I"

E- -
.

'-.a . z

I2 "2

-- N

-z ,2

U)
)

(-44

Ci)II
I

z 2

'-4C4
U)y

HH
U

Z3. .4

Z5I S

. : 106

HIGHER ORDER SOFTWARE, INC. •843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139, (617) 6614800

b o a
" ' " -

Now we explicitly demonstrate that last requirement by decomposing

F4 using P depending whether the lines parity is odd or even as

shown in Figure 4.5.2.7.

At this point, it was felt that the requirements for the line-

justifier were completely and explicitly stated. Therefore, the

decomposition process for stating the line-justifier's functional

requirements was stopped. The complete tree in the form of an

invocation map is shown in Figure 5.4.2.8.

Using the system control map as a guide to design, the HOS code

was produced as seen in Figure 4.5.2.9.

i

! I

107

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-90(

w

It

-

C4

s°-, 144
o0

0

4.)

0 A4

a)

ot

HrZ
5 4.

U --)

rz4 a
0

IN I

Pr4

. 0

0

108

lIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

INSETERJR INERTE..YO

ODDLINE EVENLIN

FigAK-ALuL:0r4528InoainapfrLnJutir

UNC~kI 109

HIGHR ODERSOFWAR, IC. 84 MASACHSETS AENU * AMBIDG, MASACUSETS 213. (17)661

LINE JUSTIFIER: PROCEDURE(C,L,S) ASSIGN(C);

DECLARE A,C ARRAY();

DECLARE B,L,N,S,T INTEGER;

N = SIZE(C);

T = S-(C(N).L-l); /*no. of blanks left at end of line *

IF T = (S.1) I T=0 IN=1 /* line was empty or words were justi-
fied or only one word was on line
(which may be all blank) *

THEN RETURN C;

ELSE

DO;

B =TI(N-l);

R =REMAINDER(T/N-1);

DO I=2 TO N; /* insert b blank between each word *

A(I) =C(I)+(I-l) B;

END;

IF LINE =ODD

THEN

DO;

DO I =1,TO R;

A(N-R~l) =C(N-R+l).I;

END;

RETURN A;

* END;

ELSE /* line is even *

DO;

DO I=1 TO R;

A(I+l) = C(I+1).I;

END;

DO I = R+2 TO N;

A(I) = C(I)+R;

END;

RETURN A;

END;

['4' END;

ALL DONE: CLOSE;

Figure 4.5.2.9: HOL Code for Line-Justifier System

110

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.0 THE USE OF ISDS/HOS DURING THE LIFE-CYCLE

OF COMPUTER-BASED MILITARY SYSTEMS

I

!t

PRMCEDI!O PAG4s*4X.WNr FrLlED

5.0 THE USE OF ISDS/HOS DURING THE LIFE-CYCLE OF COMPUTER-BASED
MILITARY SYSTEMS

Despite the high level of sophistication of contemporary systems

analysis, the field suffers from a serious defect. The system-

specification process is itself a system,.but, ironically, it is

generally carried out in an unsystematic fashion.

Much of what systems designers could leirn from each other is often

lost in the shuffle; new systems must commonly be started from

scratch. There has been no way to guarantee the efficiency of a

system ahead of time. There have been problems of interface cor-

rectness, especially in complex systems designed by a large group

of individuals, and there can be subsystems included which are

superfluous. Overspecification of a software system can detract

from its transferability from one machine to another. The failure

to separate specification clearly from implementation thus can

unintentionally rule out the most efficient implementation of a

given system.

Let us say that a system specification is functionally adequate,

if it does what its designer wanted it to do, that is, if it does

carry out the function it was supposed to. There is little doubt

that most systems in use today are functionally adequate, in this

sense. Otherwise, they would not be in use at all. Let us also

say that a system specification is fully adequate, if it does what

it is supposed to do in the most effective and efficient possible

way. As noted in the last paragraph, though functionally adequate,

most software systems in use today most likely are not fully ade-

quate. For all the reasons noted and others, although the jobs

software systems are intended to do get done, they get done with

a lot of waste of time, money and manpower.

The purpose of developing a standardized system-specification

methodology is to eliminate this waste. Given some generally

applicable principles governing the specification of systems,

113

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

we can reduce the problem of guaranteeing full adequacy to that

of guaranteeing functional adequacy. With the correct set of

principles on possible (allowed) system specifications, we can

guarantee ahead of time that any system defined in accordance

with those principles that does what it is supposed to do auto-

matically does so in the most effective and efficient possible

way.

We can get a clearer idea of what a systems methodology would be

by considering explicitly what it is not. A priori one might

interpret the term "methodology" in either of two possible ways.

The most ambitious form of methodology one might hope to develop

would be a discovery procedure* (CH057) for system specifications.

A discovery procedure would be a mechanical (algorithmic) pro-

cedure or set of procedures that would automatically produce, from

a given set of requirements and specifications, a system that would

* produce those specifications from those requirements. Ideally,

if we could manage to develop such a discovery procedure, we could

eliminate systems analysts and designers altogether. The discovery

procedure would automatically provide the appropriate system for

any desired purpose. At our present level of knowledge, however,

and probably in principle, such a notion of methodology is un-

realizable. The most we can hope for at this time is a theory of

constraints on system specifications. Such a theory would severely

limi thekinds of system specifications an analyst could design.

If the system specification is functionally adequate, and if the

designer has adhered strictly to the constraints provided by the

theory, then the theory would guarantee that it is fully adequate

as well.

Developing such a theory of constraints would place systems analy-

* sis on a par with the already developed natural sciences. When

a physicist or chemist performs an experiment and observes a new

*It is worth noting that the tremendous growth and development
of linguistics that began in the late 1950's was a direct re-
sult of tI'e explicit rejection of the discovery-procedure notion
of methodology in favor of that of a theory of constraints.

1 ~ 114
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

phenomenon, for example, s/he tries to construct a theory that

explains it. There is no discovery procedure that automatically

produces a theory from the observations. The human scientist must

use his/her ingenuity to construct the theory, just as the human

systems analyst must use ingenuity in designing a system. What

the scientist does have available, however, is a theory of con-

straints on possible theories that limits the options available.

Any theory the scientist proposes must guarantee conservation of

mass-energy and of momentum, for example, and must be consistent

with the laws of thermodynamics. These principles serve as axioms,

so to speak, which any acceptable scientific theory must satisfy.

What we need in systems analysis, analogously, is a set of axioms

(principles) which any fully adequate system specification must

satisfy.

We are using the term "methodology," then, in exactly the sense

in which it is used in the natural sciences. Which specific

* principles we will have to recognize as the axioms of our method-

ology is, as in any beginning science, an empirical question.

In order to automate the process of developing systems, we need

a methodology for defining systems which are understood by auto-

mated tools, i.e., ISDS/HOS. The methodology of ISDS/HOS is used

throughout all phases of a given system development. With the

methodology of ISDS/HOS, we apply the same axioms and therefore

the same decomposition techniques of ISDS/HOS throughout an inte-

grated system development to define:

the target system - the system whose functions define the mission

(i.e., the application which is the focal point of the develop-

ment process);

real-time support systems - the support systems (such as an oper-

ating system (OS) or interpreter) which are resident in the tar-

get machine when the target system is deployed;

non-real-time support systems - the support systems (such as a com-

piler or a static analyzer) which are not resident in the target

machine when the target system is deployed. These systems might

115

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8

be able to be run on the same machine as the target system in
non-real time or exist in a host computer. These support sys-
tems are used only to develop target applications;

the personnel management system - the system which reflects the
management structure of the personnel who direct all of the de-

velopment efforts of the target system and all the development

efforts of the systems involved in supporting the target systems;

the environment system - the system which represents the environ-
ment within which the target system resides;

the development process - this is a system whose functions define
the process for each phase of development from the conceptual

phase to the final delivery and maintenance of the target system;

the building process - \the system which defines the functions

of building libraries of~ the target system and target support

systems modules, and building assemblies of subsystems to form

an official assembly of 'Frozen' modules;

source systems - the systems which produce the requirements for
the target system;

the disciplines of development - the subsystems of the development
process which define the process steps within each phase of de-

velopment; these disciplines are design, implementation, verifi-

cation, management and documentation.

combinations of the above systems - various systems and subsystems
can be combined to form new systems, (e.g., an environment sys-

tem can be combined with a target system to form a simulated sys-

tem of a target system in its real environment);

the definition of the development process - this is a system which

defines the methodology of putting together systems (e.g., the
definition of ISDS/HOS).

With the methodology of ISDS/HOS, we use the same tools and tech-

niques to define and describe functions and interfaces of a sys-

tem throughout all phases of a system development.

f. 4 With the methodology of ISDS/HOS, we use the same tools and tech-
niques to implement and describe the execution flow of a system

throughout all phases of a system development.

116

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

With the methodology of ISDS/HOS, we use the same tools and tech-

niques to verify and describe the verification processes for a

system throughout all phases of a system development.

With the methodology of ISDS/HOS, we use the same tools and tech-

niques to manage and describe the management processes for a sys-

tem throughout all phases of a system development.

Before we discuss the development properties of ISDS/HOS, we will

first discuss the problems involved in developing a system. In

what follows, we will discuss what we mean by a system and by the

environment within which a system resides; we will also discuss

the types of requirements that are involved in developing a sys-

tem. These requirements include those which are related to the

system being developed (i.e., the target system). We will dis-

cuss a model which shows representative development phases a sys-

tem goes through. We will discuss the type of automated tools and

techniques we believe are feasible, given the framework of ISDS/

HOS.

5.1 Systems Preliminaries

System A (Figure 5.1.1) will be used to illustrate what we mean

by a system. Let us consider System A as a function. When A is

a function, we can consider the levels of A by decomposing it.

In Figure 5.1.1, System A has been decomposed into two levels.

Functions A1 and A2 are on the first lower level of A and func-

tions B1 and B2 are on the second lower level of A.

A

A AZ/ 2

B B2

Figure 5.1.1: System A

117

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE e CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-900

The representative control map in the form of an invocation tree
(Figure 5.1.1) shows the functions which will complete the speci-

fication for the execution requirements of A. The functions A1
and A2 are on the next most immediate lower level of A. When A

is considered as data (i.e., a description of A) we refer to A as
a layer instead of a function. When considered as data, the first

immediate lower level of A (i.e., A1 and A2) is the data structure

of A; similarly, B1 and B2 are the data structure of A2.

There are may trade-offs that must be considered in developing

the layers of a system. They involve not only how many layers,

but whether or not these layers are created statically or dynami-
cally. We call those layers which are created statically (without

execution of the target system) development layers. We call

those layers that are created dynamically (during execution of
the target system) execution layers.

Let us consider the problem of representing A in a form that is

closer to a machine that will someday execute System A. In this
case, we might need another outside system whose function is to

convert A into a machine readable form. The name of this system
is TRANSLATE (Figure 5.1.2). TRANSLATE is an example of a support

system which may reside outside the realm of the target system.

CODE A = TRANSLATE (A)

CODE COMPILER (HOLA) HOLA COLLECT (A)

Figure 5.1.2: System TRANSLATE

Here, TRANSLATE chooses System A modules from a library in a higher
order language form called HOLA by means of function, COLLECT.
TRANSLATE then produces machine code for the System A target

118

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

machine by means of function, COMPILER. This translation process

is a static translation process. In this example, system HOLA

will never physically reside in the target machine when the tar-

get system is deployed; it is CODE A that will reside in the actual

target machine. HOLA will reside in the target system library

within the host system library; COMPILER and COLLECT will reside

in the host system library or in the host machine system itself.

A new layer, CODEA , has been created by TRANSLATE. CODEA is a

lower development layer of System A than HOLA (Fig. 5.1.3). That

is, CODE A is closer to executable form for the target machine than

HOLA.

In this example, we are treating System A as a target system and

system TRANSLATE as a support system of System A. However, when

TRANSLATE is the system being developed, it becomes the target

system.

Some system support tools will reside in the target machine with

the target system and dynamically produce "temporary" lower "de-

velopment" layers of the target system as a result of a requirement

from the target system itself. An example of such a function is

an OS system or an interpreter which resides in the same machine

with the target system application. These functions represent

lower execution layers with respect to layer HOLA. During execu-

tion, the request to execute the target system in a lower-layer

state is relayed to the OS (Figure 5.1.4). The OS then creates
the equivalent of a lower layer replacement (Figure 5.1.5) which

temporarily resides in the computer until execution for that per-
formance pass is completed. When this happens, the lower develop-

ment layer disappears and the target system is once again resident

in the target machine without its lower layer.

F "119

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139, (617) 661-8900

TARGET X:
SYSTEM HL
LIBRARY

SI

SIA

II I

/ ' C O IEAA

/
CODEA CODEA

i % TARGET
MACHINE

Y = COMPILER (X)

FIGURE 5.1.3: An example of a support system
function COMPILER which creates
a new layer for System A.

120

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8

(a) HOLA OS (A)
QA

HOL A = TRANSLATE (HOLA) HOLA = COLLECT (A)
QA

(b) y = EXECUTE (HOLA

y= APPLICATION (X Q) READ (HOL AQA

1 !Figure 5.1.4: The OS system translates (a) and
returns execution control back
to System, A (b).

I

121

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-80

TIR

HoL A o0S

HL OA2 Okl OS 2

QAOSA

Ao A TEMPORARY
()A ')A2

II.

Figure 5.1.5: Dynamic Translation Process
(all in target-system machine)

122

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE- CAMBRIDGE, MASSACHUSETS 02139. (617) 661-8900

It is important that a target system specification is consistent

and complete. In order to define a system for completeness, it

is helpful to know the requirements which include the characteris-

tics of the various systems which influence the target system.

Examples of these requirements are shown in Table 5.1.1. In order

to define a system for consistency, it is helpful to know the
many requirements to consider in defining the target system it-

self. Examples of these requirements are shown in Table 5.1.2.

4

123

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

TABLE 5.1.1

Requirements affecting the development of a target system

Customer This includes the financial resources that
are allocated and schedules that must be met
for completing a system.

Mission What is the job that is to be done and what
is the environment within which the system is
to be deployed? These requirements include
nominal and off-nominal conditions.

User What features are expected to be provided to
the user of the system and how does the user
interface with the system? (For example,
does the customer expect faster turnaround
time on an interactive system than the con-
tractor expects?)

Tool What tools are needed to develop the system
throughout all phases of development? What
tools are not needed, but would make the de-
velopment of the system more cost effective?
What are the requirements of these tools?
What tools are already available and have
been specified as off-the-shelf resources?
How do these available tools affect the de-
sign of a system?

Methodology How does the methodology affect the system
and its development?

Development What should the phases of development be?
How many phases of development should there
be? The more development layers there are
in a system the more phases of development
there might be to define and the more phases
there are to define requirements for.

Host Facility What are the requirements forced on the
system by an existing host environment and
its tools? What are the necessary require-
ments for the host facility to assist in
the development of a system?

Completed What modules are around that could
Requirements be used to build a system? For example,

if a subsystem is already completed, this
might save development costs.

124

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

r-

Support Systems Each system that is developed has associated
support systems. Examples of such systems
might be an OS system to become part of the
target machine, the environment system for a
simulator, a data management system for keep-
ing track of all the information about a sys-
tem and its development; and a personnel sys-
tem which manages a system. What are the re-
quirements for those systems that are non-
existant or those which require change? if
these systems are not able to be changed,
what requirements do they impose on the sys-
tem being developed?

Design What design requirements are enforced on a
system design? For example, is it determined
ahead of time that-the system could be multi-
processed, or parallel processed; that certain
resources must be shared; or that error detec-
tion and recovery is required?

Standards Certain standards force requirements on a
system development. These include control
structures and data types used to define the
system; rules for decomposition; which'tools
to use for which process; approval forms for
the request of a requirements change, anomaly
reports; format for data-base descriptions of
the content (type of information and level of
detail) of requirements; development plans;
official milestones; official meetings; official
building process rules; approved hierarchy
check points; numbered and titled memo series
(for inside and outside of the project) for
disseminating orders and information; reports;
test plans.

Redundancy These requirements might include the mean time
between failure required of the target system,
error detection and recovery, and back-up sys-
tems.

Testing These include requirements for different levels
and different types of official testing for a
given module.

Statistic These include the information that is gathered
Gatheriny on all the development processes for a system.

For example, information is gathered on
anomalies, categories of anomalies, where
anomalies are found, how anomalies are found,

correction to anomalies, turn-around time forL verification runs, CPU time, core size, costs,
etc.

Overall The ideal for all requirements is to be
reliable, cost effective, and flexible both
for development and during real-time.

125

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE.- CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

TABLE S.1.2

Requirements of the Target System

All systems have several categories of requirements as a stand-alone system.
For example, consider System A (Section 5.r). Each development layer of
System A inherit a set of requirements from the previous development layer.

Functional In order to complete the specification of
the execution of A, functions A1 and A2 are
required. In order to complete the specification
of the developmental layers of A, function
TRANSLATE is required. In order to complete
the specification of the execution layers of A,
function OS is required.

Data Certain data types and data structures are
required to complete the specification of the
exectuion of A. If, for example, A operates on
a matrix, one data requirement for A is a matrix.

Performance Peformance requirements give limitations to input
and output data. For example, the performance
requirements of A might include a minimum and
maximum range for the input values of x.

Documentation Each layer of A has its own set of documentation
requirements. The top development layer might
have more comments for management than lower layers.
A lower development layer contains more machine
dependent information than a higher development
layer. A layer described in AXES has AXES document-
ation requirements. A lower layer described in a
HOL has its own documentation requirements. All
layers of A should have a standard definition as
to content of documentation. That is, some design
docutentation (like the name of a function) is a
necessity for the system to run. Others may be neces-
sary. to' convey-useful information for testing purposes.

Resource Allocation Each development layer of A is a resource allocation
requirement for the next development layer of A (or
on the next "machine"). The functions which trans-
late one development layer of a system to anotherF development layer (e.g., TRANSLATE in System A)

provide resource allocation. Thus, a translationI from the layer, A, in AXES to the layer A, in a

HOL, could determine (from A in AXES) necessary
and efficient resources.

126

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.2 ISDS/HOS Disciplines for Use in Developing a System

In a system which is solving the problem of developing another

system (i.e., where DEVELOP is the function), we view require-

ments (R) and specifications (S) in the development system as

input and output data respectively, as in (1):

S = DEVELOP (R) (1)

In a development system, requirements are those items which are

desired or needed; and specifications are the results which

realize these requirements.

Every node of a system could be viewed as a development function.

The subfunctions of a development function are phases. Thus,

when a phase is viewed as a development function, its subfunctions

are viewed as phases.

The function, DEVELOP, is decomposed in Figure 5.2.1. In

decomposing a function, the designer makes use of the three

ISDS/HOS primitive control structures discussed in section 4.0.

In Figure 5.2.1 a phase of development is a subsystem of the

DEVELOP system.

DEVELOP

DEVELOP DEVELOP2 DEVELOP3123

(Phase 1) (Phase 2) (Phase 3)

j Figure 5.2.1

127

t HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 * (617) 661-8900

Each node in the development system is data used by the develop-

ment discipline "machines" to realize the development function.

These disciplines are design, implementation, verification,

management, and documentation.

Later in this section, we will discuss, individually, the applica-

tion of the design, implementation, verification, management and

documentation disciplines.

In order to produce a specification, first a design process

whereby one "conceives" and plans takes place. The implementa-

tion process realizes the plans which were conceived in the

design process. A design process produces a set of requirements.

The implementation process of that set of requirements produces

a specification. That same implementation process is considered

a design process with respect to the process that views that

specification as a requirement.

The verification process verifies that the specifications fulfilled

the requirements.

The management process directs the other discipline processes

and ensures that all of these processes are carried out in a

cost-effective manner and that the results of these processes

are reliable. The manage function* either approves or disapproves

its inputs which are outputs from one of the other disciplines.

This function is provided for by an Assembly Control Supervisor

(ACS). There is an ACS associated with each function in
the development process, e.g. the AGS who corresponds to the
manage discipline is a higher level ACS than the ACS for
each discipline under his direction.

1128

HIGHER ORDER SOFTWARE. INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The documentation process records all of the outputs of the

design, implementation, verification and management processes.

If the process of design is manual, the documentation process

is manual. If the process of implementation is manual, the

documentation process is manual. If the process of verification

is manual, the documentation process is manual; and, if the

process of management is manual, the documentation process

is manual.

In the case of a manual process, standard formats should be

provided as to type and content needed to describe the outputs

of that process. If, however, the design, implementation, veri-

fication or management process is automatic, the respective

documentation for each process should only be produced auto-

matically, since the output of each process is its documentation.

In Figure 5.2.2a, one step of the development process, where

the input is requirements, R, and the output is specifications, S,

as shown with their respective subsystems. For one step, the

Design-..Implementation disciplines, (Figure 5.2.2b), the Verifica-

tion discipline, (Figure 5.2.2c), and the Management discipline

(Figure 5.2.2d) are shown with their respective subsystems.

In Figure 5.2.2, the documentation system (DOCUMENT) is included

as subsystems of each discipline.

Note that verification discipline (Figure 5.2.2c) shows that

verification is a reverse process to the design-.implementation

discipline, because in this process we are comparing the results
to determine if the specifications meet the desired requirements
instead of developing the specifications from the requirements.

The design-implementation process not only produces preliminary

j specifications, but also produces test specifications for the

verification process (Figure 5.2.2b). At the end of each process

step, for all disciplines, documentation is produced to record

the results.

ml 129

HIGHER ORDER SOFTWARE, INC. e843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

2
0
H
14
gg~
Ii

2I
Co

H

Co

P4 Co

14 N
Co1 2

0 N
H
14 In

H 05.4

H

Co

~y I
I IICo

I

t

130

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

i

w-FE

oil

ri)r

1311

HIGHR ODERSOFWAR, IN. 83 MSSAHUSTTSAVENE CMBRDGE MASACUSETS 0139 (67) 61-

MU.

@2

UU I
- U

4-

5'
U -~

f II
Ii 4

.1
3 I

U

U I
B B

I,
.1

I.
18

1
I
I'nV4
132

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 6614900

WWI'

UU

II-

U))

W-

U)

E-44

I 0 $

E-4 Wz

U)4

E-

133

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

To develop a given system, there are several successive and

recursive steps of functions which provide a set of specifica-

tions from a set of requirements.

For example Figure 5.2.3*, one step of a typical management process

is shown with an ISDS/HOS control map to illustrate the functions

of a manager (which includes the design, implementation

and verification disciplines). In this example, the manager

determines if the requirements, R, are sufficient for his

project. The documentation associated with each discipline

in this step of development effects the output of each function

in this example. In the manage process, the manager determines

if all the proper forms have been filled out and if all the

right testing procedures have taken place for a particular

entry candidate. The manager checks the content of the forms

and the requirements submitted. If the manager determines,

along with experts in the areas relevant to this type of

change, that the change is correct and its testing results

are sufficient, the requirement or requirement change is

approved by the signing of an official form. The new specifica-

tion is then relayed by the manager as a new requirement for

the next phase. If the requirements are not sufficient, he

rejects them and starts a new step of the same development

phase. This process continues until he is happy.

* In the examples that follow we refer informally to names
of functions and their inputs and outputs. Thus, for example,
when we refer more than once to DESIGN as a design process,
it is not necessarily the identical function unless we
specifically single out an equivalence.

134

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

II

X ° 4

II e I

0
0464

4) 0

• C .E1 41t

II 0) ,i 4a

0
U)1

- 0

MM

0 o I

.4 4

H -4 U '1

F. .8 O

II) 0JJ 1 4 4 $

914'
(A

.... ,U-' ' 4

I, -'En 0..

AL z In

od

135

'" . ~HIGHER ORDER SOFTWARE, INC. ,843 MASSACHUSETTS AVENUE • CAMBRIDGE,MASCUET013117 680

. ' 4

' -"- " ":" " : . .. ° . .." .:.. .'" W..,_n,-

For every development step of a given phase eq., (1) can be

expanded to the following type of development function:

R DEVELOP

Document(Results)= MANAGE (Verify(Implement(Design(R)))) (2)

All of the outputs of the MANAGE function and each nested function

of MANAGE are the documentation of the development disciplines.

Figure 5.2.2 and Figure 5.2.3 are examples of system development

disciplines which occur in any step of any phase of any system

development. Thus, we have presented a template which illustrates

the disciplines for application to the ISDS/HOS system develop-

ment process.

In these examples, we have not yet singled out the particular

tools that perform these functions. In some cases they are manual

and in some cases they are automatic. The tools and their use

is determined by availability or knowledge of availability at

the start of a project development; the phase of development

the project is in; and the decisions of project management.

These template examples show only the type of functions that are

needed to perform a development step and clarifies through

standardization the patterns common to various concrete systems.

In section 5.2, however, we do recommend tools for a system

developed according to ISDS/HOS.

136

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

......................................

...... r..

5.3 ISDS/HOS Development Phases for a System

Within ISDS/HOS there are only two development layers; i.e.,

the specification layer and the product which is the executable

program. Because, however, not all the ISDS/HOS tools have been
automated, other development layers would be required in the

interim. We will discuss, here, a development process which

includes transitional development layers that are developed

manually. That is, we will assume that development layers go

through translation processes which result in a description in

a specification language, a resource allocation map, an HOL

language and/or an assembly language and a target machine

language. The target system OS could be either incorporated

as part of the first execution layer of specification, a lower

execution layer of specification or a lower development layer

of the translation process (e.g., HOL layer). Thus, we will

attempt to show alternative ways of developing a system with

respect to its own OS.

In describing the development phases for a particular system

we have chosen to relate ISDS/HOS to those phases which

correspond to large DoD systems development (KOS75). For the purpose
of flexibility (in case a project chooses a different breakdown

of phase development) we will describe "templates" for various

processes, tools or management techniques that could be used

during each phase. In this way, substitutions can be made
(e.g., if a project is too far along in development to replace

or change already established methods; or if incremental

introduction of a new methodology could be established where

necessary for improvement of cost or reliability).

137

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Our development model consists of four phases: (1) the Concept

Formulation Phase (CF); (2) the Program Validation Phase (PV);

(3) the Full-Scale Development Phase (FSD); and, (4) the

Production and Deployment Phase (PD) (Figure 5.3.1).*

CONCEPT PROGRAM FULL-SCALE PRODUCTION
FORMULATION VALIDATION DEVELOPMENT AND DEPLOYMENT

Figure 5.3.1: Four Major Phases of a
System Development

Each phase receives requirements and produces specifications.

These specifications are relayed to the next phase which in

turn become the requirements to the new phase. In Figure 5.3.2,

PhaseN receives RN as requirements and produces the specifica-

tions, RN+l. RN+l is relayed to PhaseN+l as requirements.

R N+l = PHASEN (R)

RN+ 1 = RELAY (S N) SN = DEVELOPSTEP (RN)

Figure 5.3.2: Delivery of Requirements

for Next Phase

* The reader should be aware of the fact that these phases
are sometimes associated with DoD funding divisions.
This report is not intended to make such an association.

138

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Throughout the development process of a system there are certain

items which should always be made available to the various

developers of the system. The same methodology and standards

should be adhered to throughout. Common support systems,

resources, tools, and modules should be made available if needed.

In addition, certain new information is necessary to pass on

from phase to phase. Sometimes quick turnaround information

must be relayed as quickly as possible to relevant parties

involved. Thus, the development management process should contin-

uously facilitate all other development processes. In order

not to overcomplicate the description of the individual target-

system development process steps, we have chosen not to describe

this process in all of the illustrated examples of the phases,

but rather, we ask that the reader be cognizant of the fact that

such a process is ongoing throughout a given system development.

We will assume that all of the requirements passed on to a new

phase from a previous phase include all of the items which later

phases will need. For example, when a given phase turns over

its specifications with all relevant information, libraries,

etc. to the next phase as requirements, Phase N deciphers what

is needed to fulfill its own requirements for the target system

development and maintains access to relevant information and

resources (Figure 5.3.3).

[:t.

139

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

3U

Z

141

-

am I a

ar)

I0.4

I OA

14

HIGERORERSOFWAEIN. -84 MSSCHUETS VEUE CMBIDE, ASACUSTTS0239- 617 61-90

Each phase turns over many requirements to the next phase. In

addition there is always a new step of a phase which produces

new sets of requirements for the next phase. Thus, it is possible

for development activity to be doing on in all phases simultan-

eously. When partial specifications are completed by one phase,

the next phase can begin to work on these partial specifications

as partial requirements. Thus, one module could become frozen

and delivered in the final phase before another one was ever

formulated. Each requirement should be visualized as

RN+l = DEVELOPMENTN (RN) (3)

where eq. (3) can be replaced by

(rl,r2,r3,...)N+1 = DEVELOPMENT(nnn (rlr 2 ,r3 ")N (4)

A change in requirements to a system always results in new develop-

ment steps (iterations). A change to one phase always forces

an iteration of its phase and the phase immediately following it.

Thus, if a change were made in the concept formulation phase,

the CF phase would be directly affected (eq. (5)) and the

program validation phase would be directly affected (eq. (6)).

Likewise, the PV change would cause a change to the FSD phase

(eq. (7)) which would cause a change to the PD phase (eq. (8)).

CFsTEP (NEWR) = CHANGE (RI,CF(R1) (5)

PVSTEP (NEWR) = CHANGE (CF(R1),PV(R 2)) (6)

I FSDsTEP (NEWR) = CHANGE (PV(R2),FSD(R 3)) (7)

PDsTEP (NEWR) = CHANGE (FSD(R 3),PD(R 4)) (8)

141

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Many times a necessary change (due to an error or an adjustment

needed to produce a specification) in requirements in one phase

affects the requirements of an earlier phase. In this case

the manager of each phase decides to change his own phase if it

is determined that it does not affect the requirements of a

previous phase; but he sends the change back to only the previous

phase if the change falls in the category of a higher-level

requirement. Therefore, it is possible that such a requirement

change is sent back through all the preceding phases until it

reaches the conceptual phase. In eqs. (9), (10), and (11) we

show the possible requirements changes made to an earlier phase

as a result of information found in a later phase.

CFTE (NEWR) = CHARGE (PV(R)) (9)

PV (NEWR) = ERROR FDR)(0* ~~STEP CHANGE(FDR)10

FSD (NEWR) = ERROR (DR)(1STEP CHANGE (DR)(1

Although only the previous phase receives official notice of a

requirement error, the managers of each phase receive all error

* reports and notification of all requirements changes for each

phase.

-~ In Figure 5.3.4 and Figure 5.3.5 top level interfaces between

development phases are shown with respect to the design, implemen-

t* tation and verification disciplines which take place in each

phase.

142

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

'ad

NN

0)
be4

E4 0

C E1

0. tr

00

0. 01

11 IK I cO

0

o E.

0 i
o 143

HIHE ODE SFTARNC 43 MASAHSET AVNU -ABIGE.0SCHSTS023 67)6180

ra

O 0

a1.

0 4

ca.

mSm

a9 04 1

0A

u 144
HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

!*

5.

5.3.1 Concept Formulation Phase

The first phase of our system development model is the concept

formulation phase. In this phase, customer requests, mission

requirements and top-level target system requirements are

formulated. Requirements forced upon project management by

support systems, developed target system modules or support

tools which are determined by the customer as mandatory are

formulated. In addition, support tools, support systems already

developed, candidate target system library modules, or support

tools which are determined by the customer and project manager

to be available are considered as trade-offs and either incor-
porated or not incorporated into the formulations.

Once all of these requirements are well formulated, the designers

use this information to design a preliminary control map for the

target system.

The designer first jots down what he believes the functions

to be in any order envisioned using whatever notation (English

or otherwise) so desired. An attempt is then made to organize

these functions hierarchically as a partial representative

control map (an invocation map showing only function names may

be sufficient at this time). After one or more preliminary

design iterations, the partial map is complete enough to use

as a guide for gathering more information. At this time the

designer may have several questions he needs answered in order

to make a complete control map. A complete control map will
define and describe the functions and interfaces of the target

system. The designer then writes down his questions for himself

and/or others to perform interviews with the customer, various

contractors and engineers involved in the project in order to

determine more detailed contents of the requirements. A standard

mechanism should be provided for recording the answers to these

questions (that others or he, himself, have provided) in a data

145

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

... ,I .,

base. This clerical process should be aided by standard forms

or it could be automated.

After several iterations of data gathering and adding refine-

ments to the control map, enough information is available for

the target system designer to define additional standards.

These standards can be formalized as specifications to define

control structures or data types. These formal standards can

be used to describe the formal specification of the system.

The formal specification of a system is described using the

AXES specification language syntax and using the formal stand-

ards (AXES-defined data types and AXES-defined control structures).

The formal specification is automatically checked for interface

correctness by a tool called the analyzer. Otherwise, a manual

check of the specification is made for interface correctness.

In addition, a manual check is made to see if the problem was

defined as originally intended. The end result of the analysis
could be either a small change or a restructuring of part of

the system. This iterative process continues until the specifi-

cation is a valid one in that it has complete and reliable inter-

faces. It is important to note here that it is possible for
a specification to be a valid one and not do the job that the

designer intended it to do.

The advantage of having the ISDS/HOS methodology to specify a

valid specification is that the process of finding out why

a specification does not produce the desired results is now

*1 limited to the question, "Did I specify the functions I really

intended to specify?".

146

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In Figure 5.3.1.1, an example of the concept formulation phase

decomposition is shown. Table 5.3.1.1 shows the tools and

techniques that correspond to the subsystems of the concept
formulation system. Figure 5.3.1.2 is a more detailed decompo-

sition of the concept forumulation phase which demonstrates

the iterative nature of the concept formulation process. Figure

5.3.1.3 demonstrate's the interfaces within the SPECIFY system of

the COMPLETESPECIFY system of Figure 5.3.1.2. Table 5.3.1.2

shows the tools and techniques that correspond to the subsystems

of the SPECIFY system illustrated in Figure 5.3.1.3.

The output of the concept formulation phase is a set of speci-

fications for the target system represented in AXES syntax,

new standards defined with AXES, and a control map which shows

graphically the decomposition of the functions of the system.

In addition, the specifications for this phase include the
original formulated requirements for the methodology and develop-

ment processes as well as those requirements provided for support

systems and support tools. All of these specifications are

relayed to the next phase as requirements for the PV phase.

R 2 CFSTEP_(CONCEPTS)

COMPLETE R APPROVAL_ (R2 pROTO)
R FoRMULATE (COCEPS) R2PROrO SPECIFY (R) = PROCESS

R I1 (CONCEPTS 1I R 2 F2 (CONCEPTS 2) R3 = F3 (CONCEPTS 3) R4 = F4 (CONCEPTS 4)

Figure 5.3.1.1: One Step of Concept Formula-
tion Phase

k 147

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

TOOLS & TECHNIQUES PROCESS

ISDS/HOS F1 Define standards for management
Concepts structure, phases, building procedures

and disciplines for system development..
Determine requirements for customer.

ISDS/HOS F2 Determine mandatory available candidates
Concepts for support tools, target module, and

support systems available now for use
in this and later phases.

ISDS/HOS F3 Determine mission requirements for
Concepts conceptual inputs. Specify standards

for describing target system functions.
Specify system functions and determine
those which are already defined.

Manual and Data F4 Determine preliminary resource alloca-
Management tion needs from system resources that
System are mandatory and/or available for

later allocation (e.g., sensors, host
and target computers, resident
software).

ISDS/HOS APPROVAL The CF manager approves CF specifica-
Management PROCESS tions as a deliverable for CF process.
Concepts

(See SPECIFY SPECIFY The formulation of the target system
Figure requirements.
5.3.1.3)

Table 5.3.1.1: Concept Formulation Phase
Tools and Techniques

L

F148
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

F-

0 o>

-r4

41

_14

0 I

8' 4)0r

0 HrZ0

r34 0

NN 0

IF 149

134 0f :sa

L)) w ~ -A

0 44O

020 04 0
11)

41

04 141

149)

' HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

.

• I

ItnI

U

* / Ifi

a: 2

* HIGHER ORDER SOFTW3ARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139° (611) 661-8900

TOOL & TECHNIQUES PROCESS

ISDS/HOS Decomposition JOT -jot down notes about functions and
Concepts function names that are in target system,

organize and reorganize the notes until
they are existent in a hierarchical for
to work with (i.e., attempt to formulate
a representative control map).

ISDS/HOS Decomposition PLAN_1 -complete as much as possible a commented
Concepts; control map with questions which reflect

access rights, ordering, invocation speci-
fication properties of target system
functions.

ISDS/HOS Decomposition INTERVIEW -use the control map, cosments and questions
Concepts; Data Management to interview system, support system
System; Standard Forms engineers and customer to fill in the
recorded manually missing parts of the control map. Enter
or automat ,cally incor- your own original information and infor-
porated with problem mation acquired from questions on
statements format into standard forms into the requirements
data base; Text Editor. data base.

AXES Abstract Control PRODUCE -(1) define and-design new abstract control
Structures, Abstract SYSTEM structures or data types or standard methods
Data Types, Data Manage- of expressing requirements in the specifi-
ment System Text Editor cation using AXES created statements *;

(2) transcribe data base information about
control map to AXES statements; (3) write
a complete narrative for information
purposes; and (4) initiate top-level test
specifications for program validation
performance constraint testing.

Analyzer (manual or TRANSLATE - analyze AXES statements, standards for
with analyzer) Text Sim interface consistency (proper decomposition)
Editor Formatter format AXES listing, standard listing and

English narrative listing. A control map
is produced which notates and describes
interface errors if not correct or which
shows functions and interfaces if correct.
Manual check to see if problem is defined
as originally intended.

Manual,
Data Management, Approval APPROVE -go through ACS approval channel for
Forms, Sign-Off Proce- acceptance for a frozen specification
dures, Text Editor module.

*Some preliminary standards are already chosen.

Table 5.3.1,.2: Concept Formulation Phase
Specification Process Tools
and Techniques

151
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.3.2 Program Validation Phase

The Program Validation (PV) phase concentrates on the detailed

analysis of the functions defined in the Conceptual Formulation

phase. At this time system performance constraints are considered

in the design process of completing a more detailed specification.

Timing and accuracy analysis is performed. Restrictions imposed

by known environments of the target machine are studied. Trade-

offs for reliability are performed. Included are considerations

of fault tolerance, error detection and recovery, customer needs

and security requirements. These studies are performed either

manually or automatically by simulation performance testing.

The design discipline in this phase is very similar to the design

discipline in the CF phase. That is, after several iterations

a revised control map is formulated along with a revised data

base reflecting all the changes and additions made to the target

system.

Throughout this process, the simulator requirements may also

need to be updated to reflect the changes to the target system

requirements. After the revised control map has been verified,

the top layer resource allocations that have not been associated

with target subsystems are determined, i.e., determinations

are made as to which functions will be executed in a hardware,

software or firmware "machine".

If prior resource allocations have not been determined, the

complete control map now exists in the form of one development

layer described and verified in AXES statements. Without the

resource allocation (Figure 5.3.2.1, System AXESS illustrated

with only its function names) there is flexibility with which

to build the development layers, since this same system could

now be used with various alternative resource allocations.

152

; - HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

II ' ' -A--.-- . --...

AXES S

AXESB AXESC AXESA AXESD

AXESBI AXESB2 AXESc AXESc2 AXESA AXESA2 AXESDI AXESD2

Figure 5.3.2.1: Target System AXESS

Top level resource allocations are manually assigned to AXESS.

This process is a similar process to choosing top level managers

or top level functions of a system. System AXESs

is an example of a system where specifications S

include the top layer resource allocation decisions (Figure 5.3.2.2).

Here, the target system AXESS has been assigned to reside in a

computer-based system. AXESC has been assigned to reside in a

sensor system. AESA has been assigned to reside in a target

computer, etc. Later, AXESAI might be assigned (manually or auto-

matically) to software of the computer system; AXESA might be
2

assigned to firmware of the computer system.

k: 153

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

Figure 5.3.2.2: An Example of Top Layer
Resource Allocation for Target
System AXESS

Once the top layer resource allocation choices have been made,

support systems to the target system and support tools for

the various subsystems can be determined. Some of these support

systems and support tools may be selected from an existing

library of support systems and support tools. Thus, an existing

OS system might be chosen as a support system which will reside

with the target system in the target machine when it is deployed.

An existing HOL or existing compiler might be chosen as off-the-

shelf tools which will not reside in the target machine when it

is deployed.

Once the tools have been selected, those that do not exist

or only partially exist should have the development of their

own systems completed. The priorities and milestones for these

systems development should, of course, take into consideration

the milestones of the development of the target system. Each of
the support system developments should proceed with a development

process similar to the one used for the target system described

1 ~ here, since these support systems are target systems with respect

154
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

rr

to their own development processes. The processes that can

take place within the Program Validation Phase are illustrated

in Figure 5.3.2.3. Table 5.3.2.1 is included as a description

of the functions of Figure 5.3.2.3.

155

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

-t;

2
Cc

I.0

me

- - V

d6
"4 '

a

156

4 IGERORERSFTAR, NC 43MASAHUETSAVNUM: AMRIGE MSACUSTT 019-(67)66N

TOOLS & TECHNIQUES PROCESSES

Manual, Data Management DESIGN PERFORMANCE CONSTRAINTS - perform
System analysis of timing, accuracy, environment

restrictions, error handling, fault toler-
ance, security and customer needs. Design
test plan for trade-off studies and
analysis

Manual EYEBALL DESK CHECK - static and manual
analysis and-verification.

Digital simulator, SIMULATE - dynamic analysis and verifi-
Hybrid simulator, Text cation
Editor, Performance
Monitor

AXES, Analyzer, Data SPECIFY - redesign control map incorporat-
Management System, ing performance constraints narrative, etc.
Narrative Updater this is a new step of the CF phase, func-

tion SPECIFY (Figure 5.3.1.3).

Manual or Data Manage- IDENTIFY - select control map informa-
ment System Collector tion needed to describe target system.

Manual, Data Manage- RA MACHINE - perform top layer resource
ment alfocation.

Manual, Collector COLLECT - collect available support
systems needed to develop target system.

ISDS/HOS Concepts BUILD - begin building support systems
needed to build target systems.

Data Management, APPROVAL - ACS supervisor approves PV

Approval Forms, Sign- Phase requirements.
off Procedures,
Text Editor

Table 5.3.2.1: Program Validation Phase
Tools and Techniques

1157

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.3.3 Full Scale Development Phase

The purpose of the Full Scale Development (FSD) phase is to

translate all of the requirements for the target system into

a form which is able to be interpreted for execution on a target

machine. Ideally, these requirements exist in a control map

form, are described in AXES, have been analyzed by the analyzer

for correctness of interfaces; and have been analyzed by a means

such as simulation to verify that certain performance criteria

have been incorporated into the system definition.

The development process of the FSD phase is shown in Figure 5.3.3.1.

During the FSD phase, iterative steps take place if there is a

change to be made in the requirements. If the change only affects

the FSD itself (i.e., an error was made in the FSD phase), the

ACS of the FSD phase decides to fix his own intermediate require-

ments (CHANGETHISPHASEONLY). If the change is necessary due

to a problem resulting from a previous phase, the ACS of the FSD

phase officially notifies the ACS of the PV phase (PROGRAM_

VALIDATION) .

A step of the FSD phase is shown in Figure 5.3.3.2a. This

step includes two major resource allocation efforts, RESOURCE_

4 ALLOCATE and RAT,. Table 5.3.3.1 is included to describe the
* functions of Figure 5.3.3.2. RESOURCEALLOCATE illustrates

the pror.ess of selecting target "machines". (If the target

machinc is not selected, an iterative resource allocation process

takes place.) Several trade-off studies for timing and memory

considerations are made. A candidate target machine is then*.? Iselected and the process of optimally allocating the system to
that machine takes place. The function, RAT,, provides resource

allocation within selected machines. After the target machine

158

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

OR fu

LuL

W Iu

4).2

'4.1

-W'41

00

cc

'4. 4.0
00

020
InS

0c

1594
at4

HIGHER ~ ~ ~ ~ ~ ~ .-- ORDE SOTAE N.83MSAHSTSAEU ABRDE ASCUET 23 (1)6180

LL.

LuU

-3

< 43

-2 -2

F- 8 .0

to

V.~
-

1133

-c0

C4-4W

me4

LU 4

Il

53 L2

Lo CC4

LuL

US,

LL3-

-03

OCJU6

Lu

160

HIHE RDRSOTARIN.84 ASACUETSAVNE ABRDEMSSCHSTT 219 (1) 6-80

TOOLS & TECHNIQUES PROCESSES

manual, simulator, SELECT - Select those requirements
structuring executive which go in software, hardware and

humanware machines. These require-
ments all exist in AXES form. The
OS modules for the target machines
are included in these requirements.

RAT, RAT ALLOCATE - perform a resource
manual analysis (if RAT is allocation process which is independ-
manual) ent of the target machine that the
simulator target system will execute on.

Verify these results;

COLLECTOR COLLECT - Collect the requirements
in architectural form.

manual writer or automatic TRANSLATE - Translate the require-
translator (either a post- ments to an intermediate form(s)
processor for an analyzer or such as an ROL, assembly language,
pre-processor for an existing macros, etc. produce an execution
HOL), automatic structured map (structured diagram).
design diagrammer.

COMPILER, ASSEMBLER, simu- COMPILE - Compile intermediate
lator, manual analysis if language to code for target machine,
translate process is manual host machine, verify the results.

Table 5.3.3.1: Tools and Techniques Applied
Within One Step of the FSD Phase

161

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

is selected, RATI is concerned with optimally allocating the

target system to fit the resources of that machine.

In Figure 5.3.3.2, RATI is decomposed for the incremental

ISDS/HOS development model whereby resource allocation is not 4

completely automated.

The system and its subsystems are then translated into a form

which is ready to be executed on the target machine. Until

the target machine is built, the target machine can be simulated

in a host computer with the simulated environment of the target

system. In this way the target system can simulated in order

to verify that performance requirements are met by the system.

We envision for ISDS/HOS that the FSD phase will become more

straightforward than it is today; since it should be possible

to automatically translate a functional requirement (described

in AXES and analyzed by the analyzer) direct to its target

machine coded form. This translation process would be performed

by the RAT. (Some of the resource allocations are made statically

and some are saved for dynamic allocation). We would perform

the major steps as indicated in Figure 5.3.3.3 for each target

system.

tI

S .:

162

HIGHER ORDER SOFTWARE, INC. • 843 MASSACr 'USETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

fFSD PHASE

STATIC STATIC STATIC
SCHEDULER ANALYZER RAT

ISDS/HOS AXESMAHN
PROBLEMMAHN

rSCHEDULER ANALYZER RAT
SUPPORT

Figure 5.3.3.3: Major Translation Steps of an
Integrated System Development
Process

Until the tools which will automate the FSD phase are available,

we must consider alternatives for the FSD phase. There are many

ways in which a system in AXES could be translated to a target

machine. The various translation processes and alternate combina-

tions of these processes are sometimes performed manually and

sometimes performed automatically. Some of these translation

processes are static.

Assembler -translates assembly code (and sometimes
interpreter code) to machine code.

Analyzer - translates from a language form to a
control map form.

Writer - translates from one language to another
language (e.g., convert from AXES state-
ments to HOL statements).

Compiler -translate from a language to a lower
level code that is closer to the "machine
layer".

163

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Collector - collect from a library several subsystems
to form a system.

RAT - translate unlimited resource allocations
to limited resources for target machine.

Some of these translation processes are dynamic:

Interpreter - interprets in real time higher layer
code and temporarily creates lower layer
code for a given execution pass of each
higher level code statement.

Dynamic - translates a target system in real time
Analyzer to a temporary control map.

Dynamic RAT - allocates resources to a process in real
time.

Dynamic - interprets in real time requests of the
Scheduler target system to be executed and tempor-

arily creates a lower layer for the target
system until a given process is executed.

Dynamic - collects and gives priorities to subsystems
Collector in real time.

Various combinations of static and dynamic translation processes

can be collected for a particular target system development.

Suppose we deploy a target system, A, with a resident OS. Both

system.A and system OS requirements have been received by the

FSD phase in tt e-fiocw of AXES statements, R. The ACS of the

FSD phase decided that the requdciements-for both system A and
system OS should be translated to an HOL for -lementation.

In this case the translation process to the target machine might

proceed as follows: (see Figure 5.3.3.4).

R

(CODEOS, CODEA) COMPILER (WRITER(COLLECT(AROS R))) (12)

Here, the translation process which occurs in the target machineK would be represented by
' Y =os(A(x)) (13)

164

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-M900

Other alternatives for the set of translation processes for

the FSD phase of System A are:

R

(CODE CODEA TRANSLATE (A ROS)

RR

(CODEos, CODEA) COMPILER (HOL) HOL WRITER (Rd RC: COLLECT (AR OSR)

Figure 5.3.3.4: Translation Process for System A

R

CODE = ASSEMBLER (WRITER(COLLECT(AROSRINTERPRETERR))) (14)

where, in the machine y = OS (INTERPRETER(A(x)));

CODE = ASSEMBLER (WRITER(COLLECT(R))) (15)

where, in the machine, y = A(x);

CODE = COMPILER (WRITER(RAT(COLLECT(AR)) (16)

1' where, in the machine, y = A(x).

When we have the ISDS/HOS tools automated, the recommended

translation method for the FSD phase would be to proceed as

follows:

165

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

R

CODE A = RAT (A, OS, MOS) (17)

where, in the machine,

y = MACHINE (MOS(OS(A(x))) (18)

is the functional specification for executing System A where

OS (represents the machine independent operating system functions),

MOS(represents the machine dependent operating system

functions) and machine are execution layers of CODEA;
MOS is an execution layer of OS; etc.

The recommended development and execution layers of a system

are illustrated in Figure 5.3.3.5. The function described in

Figure 5.3.3.5 is

TM = FRAT (L) (19)

where

CODEMACHINE (MOS(OS(A(x)))) =

(20)

FRAT (AXESMCHINE (MOS (OS (A (x)

FRAT is the functional specification for translating target

machine systems to an executable form; e.g., CODEA is a
development layer of AXESA; CODEos is a development layer of

AXES os, etc.

166

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

S83AVI WrnOIRl3

-u
LiiL

'C u
WI-I

I z

LI -

ui wl

4j uJ, -mcLi

zw

hA 167

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 6614900

With this recommended method, the requirements (stated in

AXES) for the target system, the independent of the machine

OS support system, and the dependent on the machine OS support

system can all be translated directly to the target machine

code. Changes to each of these systems can be made without

affecting each other. The target system can be transferred

to another machine system, the independent of the machine OS

support system can be transferred to another machine system;

and the dependent on the machine OS can be changed separately

to reflect changing machine requirements.

5.3.4 Production and Deployment Phase

During this phase, efforts are concentrated on preparing manuals

and instructions for the use of the target system that has been

developed. User requirements were initially stated before

the CF phase and formulated in the CF phase. The user manual

should reflect these functional requirements but it should

also contain additional information which describes the developed

and working system.

The target system is now operational. Often, many changes are

requested as a result of operating the target system in its

real environment. These changes are due to improvements desired

by the user of errors found in the use of the system. All

errors should be treated as if they were a change to the FSD

phase requirements and are reported to the ACS of the FSD phase.1 1All new user requests are treated as new requirements and are
reported to the ACS of the CF phase, the ACS of the PV phase and

the ACS of the FSD phase. All three managers must officially
* i approve the introduction of a change.

168

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Once all the changes have been incorporated, the manufacturing

of the target system is completed and the target system is

deployed into the field as a delivered product. Figure 5.3.4.1

shows an example of processes that might take place in the

Production and Deployment phase.

5.4 Tools Used During the Phases of System Development

Table 5.4.1 summarizes all the tools used during all phases of

system development. These tools will be further described in

Chapter 6.

169

UIIPIwA. c. . 43 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

o1 Ilk

E-

.4

<

04-

u0

0 cd
P:4

0.0

U~ =.

170

4.1

CONCEPT PROGRAM FULL-SCALE PRODUCTION AND

TOOLS FORMULATION VALIDATION DEVELOPMENT DEPLOYMENT

COMPONENT TOOLS

AXES * * * *

ANALYZER * * * *

STRUCTURING EXECUTIVE * *

STATIC RESOURCE ALLOCA-
TION TOOL

SUPPORT TOOLS

DATA-BASE STRUCTURE * * * *

RESOURCE MONITORING * * * *

INTER-REVISION UPDATER * * * *

COLLECTOR * * * *

TEXT EDITOR * * * *

TEXT FORMATTER * * *

SIMULATOR * *

EMULATOR * * *

PERFORMANCE MONITOR * * *

INCREMENTAL TOOLS

ASSEMBLY LANGUAGE * *

MACRO-PROCESSOR/ASSEMBLER * *

HIGHER ORDER LANGUAGE * *

COMPILERS * *

STRUCTURED DESIGN

DIAGRAMMER

INTERACTIVE DEBUGGER * *

INTERPRETER

Table 5.4.1: Tools Used During the Phases of a
System Development

F; 171

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.5 System Building Process

The ISDS/HOS building process is an orderly technique for

"freezing" system modules. Table 5.5.1 demonstrates a system
building matrix used by management personnel to track the

development of a system. Each subsystem can be tracked by

the elements of the system building matrix. In Table 5.5.1

each building layer of system functions are tracked separately

as an integrated system building layer. With respect to a given

system, a building layer is another system that uses the given

system as input data if the two systems were to be executed in a

building process. The functions of the development layers are

indicated between columns. Each row indicates the translation

process from system conception through actual machine implementation. Each

element of the row is data such that each column element of

a row is the output data of a translation function for which

the input data is the most immediate previous column

(e.g., PHOL is output of the Guide-to-Design function; P AXES

is the input to Guide-to-Design function).

The Guide-to-Design can complement different HOLs. For

example, P HOL M could be written in DoDl*. P HOLS can be*

written in a test input language (TIL). S is the integrated

system of mission and environment subsystems and therefore an

HOL program for S is the simulation test system for the target

subsystem. The verification functions of the translation tools

are indicated within each translation step. The design tools

$ are incorporated in the name of the row element for each

translation process.

*DoD Higher Order Language Working Group, "TINMAN," version of
"Requirements for Higher Order Computer Programming Languages,"
March 1976.

172HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

4)

0%

-4 0%

0 0 0 I U-4 r. % 0

4 .U -4

0 0 >
S -4) 0

, , - -0 . -4 A

- 0 .0zn U' w 0 1

r -~~ -4 "4 U

o__ __ __o 0 0 0 4 U

04)

4J~ 0 u /].

4Z&"r: . -4

4)- " 4) " 4) $4 0

Ile . 4 $4 0 a.
V~

• '>1 o.
4 -

0 0000 0 0 0 h
k ,4 $Ia 4 1 1.

0) 0)0 . 0.. 0

00

41 cn E)

0.'.4 "m m .-4 E . . .

-1 <1 61 w '

(nOot 0

9 0o4 04 x4 o .,n1
(d w f 1 4 9 U

$4 r. (0 I I I I *'
E-4 edI' " 04 m4 m4 N04

• .0,

E41 4) H.
U) ta U) 0 nQ U)

U)1 U) 0 4)
000 0 fa.

x 0 to.1
-1 4J 0 OQ

k) 0 nU I) U "41

t3)0 o 0 0 0
H 44

T1 14) a. a) 0
.4 '-4 0 0-

140 (L) 4

Ci) 4)~iU

r. U) i

to) en: wn -H >1 VU)

>1 0 CAU u) 0 0Ud 0

W w w.4 0 0.1 -4V
x xf 4) U): '4. to a

>17m

U)TC A UST 01.

Eni 0nE i
4 4 FA -4 IJ 444

x ta 0 U) (
ww 0 c) V CO

x .. (D 1.73
HIGHER ~ ~ ~ ~ ~ ~ ~ ~ 4 ORE SOTAE N.*83MSAHSTSAVNE*CMRDE ASCU: 239 (674 6180

ca-4M i r
040 0t

fo~- 0 4 w . 4

Where indicated, the personnel management in the form of the

assembly control supervisor (ACS) for each translation process

is required. The ACS is required whenever the design is a

manual process. Each column of the matrix of Table 5.5.1

indicates one development layer which contains all the

building layers. Each row is arranged so that each successive

row is a function whose input is the system indicated as the

most immediate higher row. For example, system S uses data

X as input (i.e., (S(X)); the management information system,

M, uses system S as input (i.e., M(S(X))).

This building matrix assumes that the tools used to build the

system have themselves been developed and 'frozen' before the

translation process that uses them has begun. Each translation

is a replacement of the previous translation (e.g., the

program in the higher order language (HOL) replaces the AXES

specification). Each translation is dependent on the

previous development layer. Thus, the AXES specification must

be 'frozen' before the HOL program is begun, and so on.

Each row in the matrix can be developed and built separately

and in parallel since the interfaces among the layers have
tbeen specified.4

The manager of a building layer such as system S would have a

F Ibuilding matrix showing the subsystem building layers that are
monitored by the manager of S. Eventually, there is a

manager in charge of a building layer that is divided so that

tthe subsystems are either independant of each other or their
communication is that of one system using the output data of

another system. At this point, this manager would use a level

building matrix which would use the levels of that one layer

as the columns of the matrix. The row elements of the matrix

using the levels as columns would remain as the development

layers of the level subsystems (Fiqure 5.5.1).

174
HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

to

.J

~c
I- >.

~z

,-u

4 U)
.e

to 0

iu

117

in

fr I

175

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETfS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

5.5.1 ACS Demonstrated by System Layer Function S

The building process with respect to personnel management and

translation process interfaces is shown in Figure 5.5.1.1

for system S. The project manager, the assembly control

supervisor (ACS),monitors the task of developing standards to be

used as the guide to design:

ACSHOLS ACS AXESS

(f 2 (P-HOLs)= ACS (fi(PAXESS)) (20)

The guide to design standards aid in the manual process of using

the AXES specification to obtain the HOL resource allocation.

The ACS AXES S is in charge of producing an AXES specification

for system S. This manager manages the official assembly

of the specification, PAXESS. The ACSAXESS monitors the work

of managers ACS AXES and ACS AXES s2* Manager ACSAXESs1

is in charge of producing P AXESsi, a lower-level AXES

specification with respect to PAXESS. Likewise, manager

ACSAXESS2 is in charge of producing P AXESS 2. Modules P AXESsI

and PAXESS2 must be officially approved by ACSAXESS before

being allowed into the official assembly. In a similar manner,

J ACSAXESs1 monitors the activities of the personnel on his

next most immediate lower level corresponding to P AXESs1
specifications. This management assignment process can be nestedI' as deeply as desired.

'441

176

HIGHER ORDER SOFTWARE, INC. ° 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

LI0

CA

0.~u z
I--

(n z

U) Z

U. 0m

KC

0 a-0z

U) ms-a
CO 5 4c

'C cow

N co

14

U)4

C

W

9U)

Z4

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

Figure 5.5.1.2 illustrates the ACS concept of managing the module

building process. The modules can then be placed into a library to

be collected at any time for the present development system or for

other systems that need similar capabilities (Figure 5.5.1.3).

The specification analyzer is used by each ACS to verify

the interfaces of the functions the ACS is responsible for

specifying. Each of these functions can then be developed in

parallel. When one of these functions is completely specified

(stand alone mode), that function can be verified by the analyzer

with the other functions on its own level. The incomplete

functions or 'pseudo' modules, can be used with the completed

function to verify the interfaces at this time ("with" mode).

When the ACS receives all the completed functions that correspond

to the level of specification being monitored, the analyzer is

used again for verification of the level. In addition, a

simulator may be used for performance testing. When this verifi-

cation process is complete, the level of specification is accepted

into the official building assembly for this functional phase

of development.

Since levels of P AXESS can be developed in parallel, it is

possible for a completed specification level to begin the next

step in the translation process before the entire PAXESS
element is complete. ACSHOLS monitors the building activity

of the personnel assigned to build the HOL program using the

same management techniques described for ACS-AXESS. To verify

modules at this translation process we use a compiler. It is

possible then, for sections of the HOL program to be built in

parallel with sections of the specification process. A library

of specification modules is developed in parallel with the

development of the library of HOL program modules.

178

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

EO

0

U) E

00
(4 Latn U

0 LL0

C.-)

I--

IIL

00

00

1-91-

179t HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

FIOI

OBJECTM
MODULE -TR

SUBSYSTEMI

I LuNOGUAGES

I II SPPORT I

SYSATEM LOA

jJ~M

OLLECTOR EY

J" L

O|U IIII

LR Y ARY

SAD

ALOE

THE USE OF THE LIBRARY CO co40 A MODUILE

A MODULE

180 SYSTEM CONTROL

Whenever a modification to an element of a library is made,

that change is reflected throughout the translation process by

tracking the interfaces via management system,M.

If the translation process from P HOL s to PASSS to PMACHS

is automated by a compiler, there is no need for assembly control

supervisor personnel to monitor these activities. In this

case, ACSHOLS is in charge of the activities from HOL code to

machine code. If an automatic tool such as the resource

allocator is available, the role of ACSHOL

could also disappear.

Each row of the system building matrix is built in a similar

manner as shown for system S. Another example might show the

building process for a system in which the translation process

to assembly language is a manual process. Here, ACS manage-

ment would be required to assure that the HOL, implemented in

assembly language macros corresponds to the HOL specification

In this case, the guide to design function would again aid the

verification, this time from HOL program to the assembly language

code.

5.5.2 The Management Building Laver (M)

Table 5.5.1 assumes the use of an automated management system, M,

to aid in the building process. System M uses S(X) as

input in order to collect statistical information about the

elements of S, to relate the development status of the

elements of S; and to modify the elements of S.

181

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In the official building process for the enti re system, M,

it is recommended that some implementations of M be 'frozen' first

so that M can collect data for the other systems being developed.

The M system itself is a collection of library modules. The

interfaces of system M with respect to system S is shown in

Figure 5.5.2.1. System function M uses data S(X) (in any

form, e.g., PAXESs , PHOLs) and produces a data base. The

personnel management (ACS) use M to record statistical information

each time a change is made to the functions the ACS is monitoring.

System M will provide standard ways for recording

the information that must be incorporated manually (e.g.,Ipro-

gram change request (PCR) numbers, reason for new revision)

and can automatically collect information that in past develop-

ment efforts either have never been recorded or have been

recorded manually (i.e., where error was found, what tool

found the error, average execution time for a module, etc.).

System M is also used to build libraries of system functions

and to correlate this information with the corresponding

function. For example, M can 1) collect PAXES with

P_AXESx1 and PAXESS2 with PAXESX2 to form PAXESS with

SAXESx or collect PHOLsl with PHOLxl , and PHOL with
PAESX or colec PHL- S2

P_HOL to form PHOL with P HOL ; 2) associate the documenta-
X2 - S - X

tion for an element in Table 5.5.1 with its corresponding function
irevision by revision (e.g., a control map for PAXESs; a design

diagram for PHOLs; a report form for ACSAXES.

i.1

h1 182

i ll

(n0

I-.u 4cU

I-~L Li ..

xz
0

Z U)J
M x

ILL Z

CX-X

U0) U)

I.-,

U) U

C14 d<

183I

HIGHR OOERSOFTARE IN. 84 MASACUSETS AENU* CM8RIGEMASACHUETT 0239.(17)66189D

Layer M has its own personnel management layers (Figure 5.5.2.1)
and its own translation project management process (Table 5.5.1).
The subsystems of layer M interface with the subsystems of
S in a similar manner. ACSM (Figure 5.5.2.1) monitors the

task of building the M layer function whereas ACSDB monitors

the task of building the data base:

ACSDB ACSS

(f2 (M(S)) = ACSM(fl(S(X)))

Data
Base

5.5.3 Subsystems of System S

System S can be divided into two main functions: the environment

and the mission functions. Table 5.5.3.1 shows the building matrix

for the subsystems of S.

Table 5.5.3.1 is arranged in a manner similar to Table 5.5.1. Here,

the application subsystem, SA uses data X as input; the

environment subsystem, SE, uses system SA as input. Just as

system S can be built independently from and in parallel
with system M, subsystem SA can be built independently
from and in parallel with subsystem SE. The same translation

tools are used to build S and S that were used to build
system S and system M. Again, the translation data is
dependent on the previous translation data. The more of this
process that can be automated, the more reliable the transla-
tion process will become.

I '184
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

L=

1-9

)

(a

X~to U)U)

En ,-4 i lid

S4.0 4.. 4
44.. 0 4-J 4.1 4.

1)40 0 -

to En En n (a I I

- -a t o

4' 4 r-ja
tn -rl W k $

a) 0~ 0 0

cc --4 04 (4

14. En- .,.

i " 4 4

*r *d r4 *..

• (2 .(2,,,. l.5

HIHR RE SOTAE(N. 142ASCUSTSAEU CABRDEMSSUSET 39 6u 6180

4'I H !u I 0 4-Ua2a (

0s a4 A 04 a4

>t

. .. 0 0

0 0

$4 (12 (1
01 rx (L 0)

< i) 4J 41
En tf)
U >11

r4 0 0(0a

'0 0

H Er) .n

6--

We assume in Table 5.5.3.1 that only the AXES and HOL translation

steps are managed by assembly control supervisors, since these

are manual steps for this building matrix. Management system M

can operate on SA and SE to collect modules during development

and to create system libraries for SA and SE -

5.5.4 The Environment Layer Subsystem

Table 5.5.4.1 shows the building matrix for the environment sub-

system (SE) of S. Table 5.5.4.1 is arranged in a manner similar

to Table 5.5.1 and Table 5.5.3.1. Here, the environment E function

(in the form of models or hardware) uses data XE; the operating

system function (OSE) uses system E as its input data. Each

system layer function can, again, be built independently.

This process is similar to the process for the integrated system

shown in Table 5.5.1 and to the sub-integrated system of Table

5.5.3.1. To build each system layer function, we use the same

tools for the translation steps that were used to build the

integrated system of Table 5.5.1 and Table 5.5.3.1.

The translation building process for environment, E, modules

might be more varied. Some E modules might translate directly

from the AXES specification to the hardware; others might be

modelled in software and also built in hardware in parallel

with the modelling effort; others might only be modelled in

software. In Figure 5.5.4.1, a sample system E has five functions

on its most immediate lower level in the AXES specification:

the universe function, a human operator function, a radar system

function, the engine function and the computer function.

To build system E, all five E functions are specified in AXES and

monitored by the ACSE personnel.

186

HIGHER ORDER SOFTWARE, INC. o 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900If

o

' ~ b 1oo o o

H I I I

I4 0 0

o CU, ,

v bo
.'4 - 4 c b

C -4) 0 C

W b I 0 I

.14 44. - 440

-M -4 -14~ .. 1

0 3 [0 0 0

001 04 C4

.,- 0~*4 *-

000

4L4 to 4) 4

•0 >4 0

*i WW

x 03 0

0 0 0
U rzz

4J 4J

.,I >L 04 01

4Jcjo#M >4

w 18 0

HE OE S 02

4J
1 4

En) CU)

z 4J
H' U))'

H, 04 0 0

.A 181

HIHE RDRSOTARIN.84 ASAHUETSAENECABIDE MSACUETS023U(1) 6-80

HYBRIDE

p *k HOST E
/P MACH. -jA40~MPUTE -AHNIEHYRD

MAC OPERATOR >

PACENGINE (AH~ A P MACH
PJ ACR~nARP-MACHCOTP TERHsT

/IMCRD PJ ACHRADfAR
(HARDWARE)

/

I -'UNIVER' SE

\PAS E ..ASS

ESORfERP-AS ,,,(HYBR ID) lE (HOST)

/I -H-

P-AXSPERATMAX~EUI 6

V AXESS Figure5.5.41: SAPLE BIIIDI~C PROES FR lYERSYSEMFNCIO

R188
* HIGHER ORDER SOFTWARE.INC. ------- 84 MASAC-STT /AE ABIGMSAHSET 23.(1)6180I.AES-

Once verified and placed in the specification library, the

interfaces are determined. These specifications are to be

used for an actual mission system, a hybrid computer simulation

of the mission and a host digital computer simulation system.

The radar is translated directly to hardware and tested on the

hybrid machine system before transfering the hardware to the

mission software. Here the radar hardware is a 'frozen module'

collected in the mission system, i.e., the mission system uses

the radar as though it were a library function in that once built

for the hybrid, the same radar can be used for the mission.

In parallel with this effort, a model of the radar system is

translated to a higher order language and then to the host

machine. This modelling effort in the HOL for use on the host

machine is done in order to run system S as an integrated system

for performance testing the S system functions.
A

The operator function is performed by a person to guide the

hybrid simulations for performance testing. The same

specifications of the operator are used during the mission.

The operator function is modelled in an HOL and translated

to the host machine. The HOL for the operator function can

be a test input language.

The engine function is built directly from the AXES specifica-

tions. Both the universe and engine functions are modelled

for the host and hybrid machines. Since SE uses S as input,

SE has the characteristics of the application system so

that the computer specification can be developed independent
of the application system itself. Once the computer is

specified, it can be built directly and also modelled on the

host machine. The hybrid system could use the computer hard-

189

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

I

ware as one of its subsystems. During the HOL translation

process, the AXES specifications for universe and engine are

collected as a unit (AXES function specifications can be re-

grouped) and compiled. Thus, the universe and engine unit can

be translated to both the assembly language of the hybrid and the

assembly language of the host without any additional work on

the part of the people translating AXES specifications to

HOL allocations. The ACS of the HOL translation process assures

that both the hybrid version of the universe and engine

unit and the host version of that unit are produced.

The hybrid and host machines are used only for performance

verification. If an error occurs during a hybrid simulation

by either the operator or radar functions, the error can be

traced directly to the AXES specifications (Figure 5.5.4.1).

If the error occurs in the universe/engine unit, the HOL

program is checked first. If no error is found, the program

unit in question is traced back to the AXES specification

for that unit (Figure 5.5.4.1).

System SE for the mission is regrouped and collected so that

the interface with the real world (i.e., the real universe)

is separated from the remainder of system SE functions.

The environment system SE is often referred to as a tool withE=

respect to the application system, SA' When referred to as

a tool, SE is called a simulator.

190

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CA MBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.5.5 The Application System Layer SA

The application system SA is built as seen in Table 5.5.5.1.

Table 5.5.5.1, arranged ina similar manner as the other building

matrices, shows A using XA as input data and OSA using A

as input data. SA is built and managed in a manner similar

to that described for each of the other building processes

Once all the subsystems of SA are built and verified, SA

as a unit can be placed in the mission system without concern

as to its interface consistency with other system S modules.

In Figure 5.5.5.1, function f1 shows a possible management

scheme for S functions which is not one-to-one Here

ACSAXESA monitors several tasks to be built in the AXES

specification.

As soon as the AXES specification is built, some functio

of SA could be built directly in the hardware (Figure .

For example, we could build a square root function, a matrix

data type or even a navigation function directly in the

hardware. The resource allocator tool would be very beneficial

here, in order to determine the number and type of processors

that would best suit the application. If the AXES specification

is translated to an HOL, we can use a compiler to build object

code for various host machines. This might be necessary if

more than one organization of people are involved in building

the application system or if one organization of people is

responsible for the application system but another organization

of people is responsible for the integrated system, S.

191

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

0 4
0 w ' 02 9

-4 > o
04 x

40 0'

4 0 >i 1.40
• 4 -4 4

0i 0 0

0 *q .,4 -,

w0o w 0 N

0a I (n

"in 1'1 -cn o

4 c.n
0 '-4

.4 = 0 0

000

> 04

4) 0) 0)44

.. . .,4 ,4 Q

oo0 0 0

04f0 0 4 04 w 4 E

m m

x0a 41 0

192

CA rA CAo

" t

(192

.HIGHER ORDER SOFTWARE, INC. •843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

- N

T

iI,,--,

TARGET MACHINE

I MACHAPMC
~~(HOST?), (HOs)-.

I -O

I I)
IQR P-XE A ~ -

I IP- /
I I IS/

NAVGAIO

J- O

Figure 5.5.5.1: BUILDING THE APPLICATIONS SYSTEM

I ~j 193

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

5.5.6 The Building Levels of Support Tools Functions

The system of support tools used for the translation process

can be built and managed in a manner similar to building any

other system. Table 5.5.6.1 illustrates the building matrix

associated with this building process.

The analyzer uses a specification in AXES, PAXES, as input. The

resource allocator uses the analyzer system output as input.

The compiler uses output from the resource allocator as input.

These tools use a 'bootstrap' process to get started. For

example, the analyzer is written in AXES and then the P AXESAN

is analyzed by the analyzer itself.

5.5.7 'Frozen' Modules

When we divide a system into layers, it becomes apparent

which tools, system functions, and system data must be built

and the order in which these modules must be built.

Figure 5.5.7.1 illustrates the ISDS/HOS building process.

AXES and the analyzer must be built and 'frozen' before any

other system. Once AXES and the analyzer are 'frozen', system

M can be specified in AXES; and HOL, compiler, assembler,

and machine can be specified and built in parallel. Once the

compiler, assembler and machine are 'frozen'l syote M modules,

specified in AXES, can be built. The development of

system S needs the management system to keep track of its

building process. Thus, M should be 'frozen' before S is

built. System S now has all the support tools necessary

for its development. The ISDS/HOS support system can be

used over and overagain to build any application system other

than S.

L4

194

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

c: " r 4
-4

o 0 00

-4 - H

.-4 $4 k $4

0-40 0 0

.o l 4 .-1

0 0>
0 ch

S 0~ X0 U "4

)'$4)

Ln4 E-4*4*-

0U 0()

4 r4 0

4J41 J 4

$4 01 q 4 $4

0 M a

tal u x I F

4 M (I (a

I r -

U) En

0'E

Q 0

,4~ 0

1954

4 q) w 0

1) U
t4 N- -4

L44

$4 0 $4 1

),0

ixU 0u

_n 195

HIGHER~~~~~~~~~~~~~~ ORE SOTAE N.83MSAHSTS VNECMRDE ASCUET 023-(1)6180

UJ LAJ

t t t

0)

0

limnilil U

a- HII Una-_ _ =N -

C., JII IJIIJI

St t t

4cr.4

W r1

Li ",i

= 1 96f

I-

CL 4-

119

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

6.0 TOOLS FOR ISDS/HOS

I'k 197

IqcxDIm JkMkJ1 UMD'

6.0 TOOLS FOR ISDS/HOS

The previous chapter described the use of ISDS/HOS

throughout the life-cycle of computer-based military systems.

This chapter presents the automated tools used in the disciplines

of design, implementation, documentation, verification, and

management of computer-based systems. This chapter is divided

into three sections as follows: The first section, Component

Tools of ISDS/HOS, describes the associated tools which would

enable one to proceed automatically from initial requirements

to the target-machine coded form. The second section, Support

Tools, describes tools which provide support to project manage-

ment, interactive development and engineering analysis. The last

section, Incremental Tools for Current Use of ISDS/HOS, describes

guidelines and conceptual-design modifications to currently

available technology, thus providing an incremental approach

toward meeting the objectives and concepts of ISDS/HOS. Within

each of these sections the conceptual descriptions and the use

of the tools as well as their availability will be presented.

6.1 Component Tools of ISDS/HOS

6.1.1 Specification Language (AXES)*

The specification of systems in general and of softwdre systems

in particular, has always been a difficult task. This problem

increases as systems become more complex. Systems that include

Excerpted from HAM76b. The specification language AXES is
currently being designed and developed at Higher Order
Software, Inc. sponsored by the Naval Electronics Laboratory
Center.

kl 199

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

software as a major component are especially difficult to

specify. This is largely due to the fact that software systems

are becoming increasingly more complex as a result of advanced

hardware technology. The result is that large software systems

are often error prone and are always very expensive to develop.

Unfortunately, the errors are usually found too late, and the

cost of developing systems can far exceed the original estimates.

Such system-development processes are usually fragmented. We

concern ourselves, therefore, with the beginning of a given

system-development process: the specification and its relation-

ship to the total system-development process.

Table 6.1.1.1 lists characteristics of proper specifica-

tions. In addition to these characteristics, the specification

language should be flexible enough to provide managers of a

given application the means to provide standards that satisfy

their individual needs. Yet even with this flexibility, the

specification languages should also be able to provide the

means to communicate any given application system to managers

or users of other systems.

A proper specification should be:

a free of errors

* flexible to change

* traceable with respect to a given change

* transferable from one machine to another
a adaptive to different and changing implementations

• easy to define

* easy to use

• easy to understand

a used as either a direct or an indirect means for
Implementation

* used to maintain proper interfaces throughout a given
system development (thus providing for automatic,
static vekification of interfaces)

a in sufficient and varying degrees of detail so as to
satisfy the needs of the. manager

& a user

a systems designer

* able to provide the means of predicting potential
problems that would occur in a given implementation

Table 6.1.1.1
Characteristics of Proper Specifications

200

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 6614900

A successful specification must be designed independent of

implicit assumptions; it must be designed independent of its

implementation tools; it must be designed independent of system

implementation-design concepts; it must convey intent unambi-

guously; and it must provide mechanisms to describe the properties

of systems in as abstract a manner as desired.

A successful specification language should 1) convey to

the manager the intent of the specification in a natural manner;

2) provide to the user mechanisms which are easy to use and

easy to understand; and 3) provide flexibility to the designer

to define any building blocks and be able to show the designer

all properties of a given system.

The specification language AXES is intended to provide

the mechanisms to define computable systems. These systems

include those which are real-time, multi-programmed, or multi-

processed. Each system can incorporate built-in error detect-

ion and recovery. Towards this end, we are basing the founda-

tion of AXES on a formal methodology which defines a valid

specification to be one which is based on completeness of

control. The foundations of AXES are based on the methodology

of ISDS/HOS. This means that AXES, the building blocks of AXES,

and systems defined by AXES will be consistent with the proper-

ties of ISDS/HOS.

AXES will provide a reliable means by which to define a

successful specification. Reliability is to be obtained from

the properties of systems defined by ISDS/HOS. These properties

are embedded in the specification techniques for defining

abstract control structures. Each abstract control structure

uses abstract data types to complete a given system specifica-
tion.

With AXES, the abstract control structures can be defined

in such a way to conform to the formalism required for reliabi-

lity and to convey intent of the designer to managers and users

of a given system application.

201

4 HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

It is envisioned that those involved in a system-specifica-

tion process will have available an option to provide, selectively

(and automatically), any layer* of specification. Specifications

can be defined in an English-like manner for the manager. Speci-

fications can be defined in terms of representative control

structures for the user. Specifications can be defined in terms

of their formal definition for the designer.

It is envisioned that the syntax of AXES will become a

'frozen' module, because it is intended that all systems use

the same syntax. AXES will be used to design representative

abstract control structures and abstract data types as an aid

to the user. A system designer can use AXES to design new

abstract data types and new abstract control structures. A

manager can use AXES to define system standards.

AXES provides for commonality between systems for they will

all use the same formal syntax. Many will use the same standard

building blocks. Of most importance, all building blocks and

specifications will follow the same axioms. Although users

of specific applications will have flexibility to choose differ-

ent building blocks, these building blocks, when "compiled",

will be brought to a common meeting ground with all other users

of AXES. Again, the adherence to AXES principles is maintained

throughout all layers of abstraction.

The basic philosophy of the abstract-building block concept

is to treat both the mechanisms of defining a specification

and the modules of a specification as if they were 'instructions'

That is, no abstract control structure has any knowledge of a

*Refer to Chapter 5 for definition of "layer".

202

HIGH4ER ORDER SOFTWARE, INC. * 43 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

higher-level abstract control structure using it. Thus, we

do not distinguish, in this sense, between an abstract control

structure and a module in that they are both systems. In fact,

when abstract control structures are defined with specific

data types, they are interchangeable with the modules of a

system. Ultimately, it is envisioned that systems can be

implemented directly from the system specification. Here, the

primitive control structures become the instructions of the
'"machine" itself.

AXES provides the means to define a layered specification

in that a "function-first approach" can be used from layer to

layer of implementation. Thus, a flexibility exists for choos-

ing mechanisms and allocating resources for a given application.

With this approach, a given specification can be transferred

to other implementations and their respective machines.

Criteria for AXES Language Statements

Language statements will provide the mechanisms to define

a system specification, an abstract data type specification,

and an abstract control structure specification. The semantics

will include type-checking mechanisms for data types, data

structures and control structures.

A system specification is described in AXES by using

1. a set of primitive data types (supplied and implemented

* in the language); e.g., integers, real, boolean, and
string.

2. a set of primitive control structures (also supplied and
implemented in the language):

composition

class partition

set partition

203

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

3. abstract control structures (the specifications are
supplied by the user or by a representative set of
"built-in" specifications supplied by the language
designers).

4. abstract data types (the specifications are supplied
in a manner similar to the abstract control structures).

5. syntax to describe the relationship between the data
types, control structures and names of subsystems that
comprise a given system.

Lai~guage statements will be available to effect the system

specification. in order to describe a system specification, the

following types of language statements will be included:

* function name identifiers

o data type identifiers

o function equations - implemented data types will have
a standard set of operations. Use of abstract data
type equations will be limited to the equality
operator.

o class construction - used to establish access
variables, domain and range for each module.

0 function partitions

o function blocks

a parametric replacement statements

o analyzer directives

* comments

Language statement will be available to effect an abstract data

type specification. Such a specification consists of three

parts:

1. data type name

2. operations on that data type:

the domain and range for each operation on the
t data type can be specified.

3. the set of axioms that define the algebraic specifica-
tion for a g iven data type. Each axiom is represented
by a system in which:

a) the 1/0 relationship for the system can be
determined without a control structure (i.e.
by function equations on the data-type), and

k 204

tHIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

lawJ

b) the bottom nodes for each system are the

operations on the data-type.

Language statements will be available to effect an abstract

control structure specification. Such a specification consists

of four parts:

1. name and category*

2. semantics

a) the set of relations among systems. This includes
relationships with other abstract control struc-
tures and identification of data types and data
structures.

b) a control map. This shows the relationships
of a system with respect to a given layer.

3. syntax. This considers an English-like equivalent
that can be used interchangeably with other control
structures.

"Built-In" Subsystems, Abstract Data Types, and Abstract
Control Structures

The language syntax will provide only the mechanisms to

build systems. It will not include actual system specifica-

tions. In order for a systems engineer to be able to use the

language effectively, specific "built-in" subsystems, abstract

data types and abstract control structures should be provided.

The high-level system designer has all the flexibility necessary

to create new definitions. The engineer has all the flexibi-

lity to use the built-in "subroutines" to establish more complex

specifications based on representative system definitions.

I* Category depends on type of abstract control structure (HAM76b).

205

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

For example, "built-in" subsystems might include functions

such as ,sine, cosine, square root, etc.; "built-in" abstract

data-tyfes might include stack, matrix, etc.; "built-in"

abstract control structures might include schedule, copy, etc.

"Built-in" subsystems should include abstract control

structures so that an option will exist for each module to

define:

(1) specifications for error detection and recovery
for each function.

(2) predicted time and predicted memory usage. (Such
information is applicable when it is necessary to
predict a system's behavior from the point of view
of resource allocation.)

The efficiency and therefore the cost of any given

system development is directly related\to both reliability

and clarity. With AXES, the necessary r liability, the

necessary means of communication, and the roper definition

of standards can be established for a compl te system-develop-

ment process. /
It is envisioned that the cost of a given system develop-

ment will decrease significantly with the use of AXES.

206

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 2139. (617) 0614900

6.1.2 Design Analyzer

The main function of an analyzer is to guarantee that a given

ISDS/HOS system is consistent with the axioms. Automatic inter-

face analysis is provided on a static basis (without execution)

by the Design Analyzer.

Real-time software systems cannot be exhaustively tested.

The intent of the Design Analyzer is to verify exhaustively and

statically a given system defined according to the rules of

ISDS/HOS. Interface errors in multiprogramming or multiprocessor

systems are caused by data or timing conflicts. Given the

ISDS/HOS control system, it is possible not only to design a

system with a known and small finite number of logical inter-

faces to verify, but to prevent both data and timing conflicts.

Thus with the Design Analyzer, the more expensive methods of

simulation and/or dynamic verification can be limited to unit

performance testing.

The Design Analyzer checks the consistency of a specifica-

tion written in AXES language statements. Figure 6.1.2.1

illustrates the top levels of specification for the analyzer.

The Design Analyzer produces a control map as a visual aid in

determining valid functional relationships. The Design Analyzer

also aids in the design process by means of heuristic algorithms

to check the data-type specification and proof-of-correctness

algorithms to check the contents of a specification. A manner

in which these design verification aids are employed in the

Design Analyzer is outlined in what follows.

207

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Control Map = Analyzer(AXES statements)

C1 = Interface C2 = Heuristics to check_ C3 = Proof of_
Consistency(A 1) datatypes(A 2) CorrectnessAids(A 3)

Figure 6.1.2.1

Top Level Decompositioi of Analyzer Tool

Interface Consistency

Analysis of a system specification for interface consistency

requires a syntactic verification that each function decomposi-

tion complies with the axioms. Decompositions that are purely

composition, class partition, or set partition can be analyzed

directly, according to the considerations outlined for the primi-

tive control structures in Table 5.2.1. These considerations

also apply to functional decompositions that have more than two

offspring functions but are still of a single type (for example,

seeFigures4.3.2 and 4.3.5). Decompositions which combine two
I I or more of the primitive types must first be reconfigured into

homogeneous control structures. This can be done automatically

! . by the Design Analyzer through a trace on the input data. If a

structure is encountered in the static analysis that cannot be

208

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

formed from the primitives, then it is not a legal HOS functional

decomposition and will be declared to be in error. All functions

which are found to be consistent with the axioms and rules of

the structure types would then be guaranteed to interface

correctly with the remainder of the system.

Proof-of-Correctness Aids

In program-correctness terminology, a correct program is

one for which, given that a specified initial assertion is true

preceding a program execution, then its related terminal assert-

ion will be true at program completion. If this definition is

translated to ISDS/HOS concepts, a correct specification would

be one in which, for each possible input which satisfies an

assertion defining the domain of a function, the unique output

specified by the function mapping will satisfy a respective

assertion defined on the range of the function and the particular

input.

To be specific, consider the function,

y = F(x)

where the variables x and y have been defined as elements of

particular data types. For example, a function F, which has

input and output assertions, R and P, respectively, could then

be

Ji I y{yjp(y)} = F(X{xIR(xy)}) (i)

Thus, for (1), for all x such that R(x,y) is true, the mapping
y=F(x) will produce a value of y such that P(y) is also true.

209

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE o CAMBRIDGE, MASSACHUSETTS 02139o (617) 661-8900

It should be apparent that R(x,y) has explicitly defined the

domain of F and P(y) has explicitly defined the range of F.

A specific example of such a function description is the square

root (SQRT) function.

YSyly>} SORT(X{xlx=y2}) (2)

Here, the relation x=y2 limits the domain of x to positive

numbers, as well as describing function SQRT, and the statement

y>O limits the range of y to be positive numbers.

Before an examination is made of the implications of

correctness assertions on the decomposition of a function, it
is appropriate to examine this particular definition of specifi-
cation "correctness". Assuming that a particular system speci-

fication satisfies the preceding criteria of correctness, it
still remains to be determined whether the system function
actually does the job that is required of it. Obviously, a

function which correctly specifies the mapping for assertions

of a square-root operation will be of absolutely no value if the

operation that is actually desired is the determination of the

cosine. Thus it remains the ultimate task of the system designer

to assert (i.e., prove) that the correctness assertions defined

for the system do actually specify the function called for.

It may be apparent from the correctness assertions them-

selves that a desirable system must satisfy the specified

Icriteria. If not, then some lower level in the system will be

tractable by human understanding and, hopefully, justification

of the correctness criteria could be pieced together from that

point upward. It is obvious, then, that the determination of

proper correctness criteria (i.e., the requirements of the system)

is a critical part of the system specification and should be

210

$ HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

accomplished as soon as possible in the specification process.

However, it may take many iterations through attempted specifi-

cations to identify all the deficiencies in the proposed system

correctness requirements.

These higher concepts of specification correctness

notwithstanding, consider now the implications of functional

decomposition on the correctness conditions of a parent function.

Because a system control-map specification can always be auto-

matically reconfigured into modules which are primitive control

structures, correctness results established for the primitive

control structures themselves will generalize to any abstract

control structure. The COMPOSITION primitive with correctness

assertions could be as shown in Figure 6.1.2.2. This example

uses the same form as (1).

(Yyyp 0 (y)}) FOx {xjR 0(x,yl)

(Y{ypl(y)}) = F(Z{zll(YZ) } (z{ZIP2(z)}) = F2(x{xlR2(x,z)})

Figure 6.1.2.2: Assertions for Composition
Primitive

211

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139-. (617) 661-89

The considerations of the input/output assertions in the composi-

tion primitive are as follows:

1. obviously, because x is input to both F0 and F2,
then R0 (x,y)=R2 (x,z),

2. because the output of F is defined to be the identical
value input to F., in t~e value of z, then P2(z)=Rl(YZ) ,

3. because the output of F1 is identical to the output of
F0 , this being the particular value of y, then y must
satisfy both P0 and P1 . However, the value y of Pl(y)
must also satisfy Rl(y,-). Thus for P0 to be true,
both P1 and P2 must also be true for the same values of
x, y, and z. Thus, P0 (y)=Pl(y) AND P2 (z).

Therefore, the functional decomposition of F0 into F1 and F2

implies that the output condition P0 of F0 is also decomposed

into the output conditions P1 of F1 and P2 of F2.

Similarly, other functions decomposed by other control

structures can be described by input/output assertions. The

input and output assertions would be supplied by the system

designer to aid in system specification as well as substantiate

the final product. It may be possible for the Design Analyzer

to verify proper decompositions of assertions automatically,

according to the characteristics of the primitive control

structures. This verification process can be applied at all

stages of system decomposition to help the designer define

consistent and complete input and output requirements.

Data-Type Analysis

The definition of data objects and their operations is an

* iintegral part of a system specification. The data-type specifi-

cation techniques outlined in Section 6.1.1 for ISDS/HOS are

* adapted from the algebraic approach of Guttag (GUT75). Using

this axiomatic approach, it is possible to define abstract

212

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

data types and the primitive operations performed on them without

prescribing a manner of implementation. For a data type defined

in this manner to be useful, (1) the data type characterized by

the axioms must actually be the desired data objects, (2) the

axioms must be consistent with one another, and (3) the axioms

must comprise a complete set in that they are sufficient to

define the meanings of the primitive operations.

The problem of guaranteeing that axioms are consistent is

much simpler for the system designer than that of insuring that

every necessary characteristic of the desired data object has

been included. This fact is reflected in the formal theory of

algebraic data-type specification. It has been shown that it

is impossible, in general, to verify a set of axioms mechanically.

The completeness and consistency of a data-type specification

can be mechanically guaranteed, however, if the designer system-

atically limits the complexity of the axiom definitions and

requires that the operations be both primitive recursive and total..

These limitations appear not to eliminate any axiomatizations

that might be useful in specifying computational systems. The

complexity of the axioms may also have to be limited to allow

human comprehension of the overall data-type specification. This

may be necessary to guarantee that the defined data object is

really the desired one.

This systematic procedure can be implemented as automatic

design-aid heuristics. These can interactively assist the system

designer in generating a set of algebraic data-type axioms that

are suitable to mechanical verification of consistency and

completeness. As outlined, an abstract data-type specification

process would begin with the syntactic definition of the

4i primitive-operation interfaces (see Section 6.1.1). The system

designer will derive this information from what he knows about

213

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900, 71

the desired operations, their domains, and their ranges. Given

this, the design-aid tool can query the designer for more

specific definition where required, or reject inconsistent speci-

fications, until a complete and consistent set of axioms is

defined for the operations. Once the data types have thus been

specified, the Des:.cn Analyzer can then verify the axiomatic

consistency of each instance of a primitive operation in a

system control map.

.21i

t

i
1*

6.1.3 Static Resource Allocation Tool (RAT)

The Resource Allocation Tool will automatically generate

machine executable code for a target machine from a system-

specification control map. The RAT will provide a vital link

in automating the process of software production by eliminating

the expense and error of manual allocation of computer resources

and computer-program implementation. This tool will generate

a software configuration from a control map and optimize this

configuration to the particular implementation requirements.

To perform these functions, the Resource Allocation Tool

must first reconfigure a system-specification control map into

a standard architectural form still independent of hardware consi-

derations. The architectural form presents the system specifica-

tions in a communicable format, suitable for use by designers

in the selection of hardware. An architectural form is a

reduction of the control map into as few levels as possible.

From the architectural form, the RAT can analytically

determine both the time-optimal and memory-optimal software

configurations. The time-optimal configuration will be found

under the assumption that an unconstrained number of multiple

processing units, as well as unlimited memory space is avail-

able. To determine the memory-optimal configuration, it must

be assumed that unlimited execution time is available and that

a single processing unit is executing. The time-optimal confi-

guration will make apparent the time-critical execution paths

in which data dependencies require sequential execution. The

memory-optimal configuration will illuminate the dynamic

memory-allocation possibilities for both data and instructions.

The time-optimal and memory-optimal configurations will provide

bounds on the possible time/memory performance trade-offs

that must be made in the determination of an overall optimal

configuration for a particular hardware implementation.

215

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-89

The next step in resource allocation is to generate an

optimal software-module configuration according to specified

implementation constraints. The RAT will accept time and

memory constraints and system input-data information and apply

analytical optimization techniques and functional-simulation

optimizing techniques to arrive at an optimal configuration.

The RAT then generates machine code for a particular machine.

It will receive the specific machine parameters as input and

produce optimal machine executable code as output, entirely

bypassing the traditional HOL step of system development. The

inputs and outputs of the RAT are given in Table 6.1.3.1.I Resource Allocation With Primitive Control Structures
System specifications can be expressed as a control map

containing only primitive control structures. Insight into

the resource allocation for abstract control structures can

be gained by examining the resource allocation for primitive

control structures. All of the concepts discussed below also

apply to more complex data types and control structures.

COMPOSITION

Figure 6.1.3.1 illustrates the primitive control structure

of composition. obviously, sequential execution is implied;

function f 2 must be performed before f I, because f 1 requires

the value of z as input. z itself might consist of more than

one variable. Consider z = (u,v). In this case, if f 2 were

to generate the value of v before that of u, f1could begin

executing those of its internal functions which require only

the value of v as input. When u is subsequently defined by

f 'the remainder of f, could begin executing.

216

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

y = f (x)

y = f1 (z) z = f2 (x)

Figure 6.1.3.1

The Primitive Control Structure: Composition

There are additional allocation implications of the compo-

sition primitive structure. These are as follows:

1. z exemplifies the generation of data that is local to
a module. Storage space for z does not need to
be allocated until f2 has generated its value. When
fl has completed its references to z, the storage
for z may be released.

2. If x has no other references outstanding in modules
above f in the control tree, then the storage for
x may be released as soon as f2 completes its
references to x.

3. The storage for y need not be allocated until its
value is generated by fl"

4. Because f2 is not needed after z is defined, the
storage for its instructions may be released when z
is defined.

5. Similarly, the storage for fl's instructions need not
be allocated until z is defined.

6. Because the data dependency of f2 and fl imply.a
sequential execution, fl and f2 might best be
performed within a single processor to minimize the
overhead of transfers. However, if it can be assumed
that f, will be able to begin execution before all

of f2 is completed, it might be advantageous to exe-
cute these functions on different processors.

217

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

-..

Table 6.1.3.1

Input and Output of the Resource Allocation Tool

INPUT

A. System-specification control map.

B. Target-machine configuration parameters.

C. System-operation input-data distribution
statistics (or estimates).

OUTPUT

A. Standard Architectural form of control map.

B. Optimal software configuration for general
hardware configuration as specified by:

(1) maximum number of usable processing units.

(2) maximum available storage space.

(3) upper bound on permissable execution-time
statistics

C. Optimal machine-executable code for target
machine as specified by:

(1) mapping of standard abstract-machine
instruction set into target-machine
instruction set.

(2) memory-storage address-space size- and
access-constraints.

(3) number of data banks.

(4) number of data-access ports for each processor

(5) number of registers available.

(6) amount of cache memory available to each
processor.

218

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Set Partition

Figure 6.1.3.2 illustrates the primitive control structure

of set partition. Set partition provides the means for a

decision process; only one of the functions f1 or f2 is

performed for any given invocation of the module. Consequently,

the decision to execute f0 or f1 cannot be made until the value

of x has been determined.

y = f(x)

Y = fO(x{xlx>1o}) = f {xlx10})

Figure 6.1.3.2

The Primitive Control Structure: Set Partition

Because neither the output of f0 or f1 can be produced

before the value of x is determined, it might be desirable

to postpone loading instructions for f0 or f, until that time.

However, it is also possible that the time overhead of loading

f0 or f1 dynamically may be more "expensive" than loading

both f0 and fl into storage before the value of x is determined.

219

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Class Partition

Figure 6.1.3.3 illustrates the primitive control structure

of class partition. Functions f1 and f2 are strictly independ-

ent and may be executed on different processors provided the

extra overhead is justified.

(yly 2) = f(x11 x2)

Y2 = f2 (x2) y1 = f 1 (xl)

Figure 6.1.3.3

The Primitive Control Structure: Class Partition

Standard Architectural Form

The architectural form of a control map provides a

standard means to communicate a specification and provides

insights into general hardware requirements. It is a reduction

of the control map into as few levels as possible, with the

set partition being the only control structure that would not

be condensed into its controller. Figures 6.1.3.4 and 6.1.3.5

illustrate the condensing of primitive control structures.

220

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

y f f(u) u f f3(v) V f f2(x)

u = f4 (w) w = f5 (v)

condenses to

= (u) u = f4 (w) w = f 5 (v) v = f2 (x)

Figure 6.1.3.4
Condensing of the Composition Primitive

The architectural form provides a maximal grouping of

data-dependent execution paths. These are the critical paths
of execution in which the output of one operation is needed

as input to another, this being simply an occurrence of the

composition primitive. When a control map is condensed into
the architectural form, these paths are carried out as long as

possible within a single module. Module invocation in a

set partition control structure is the only interruption
in the data-dependent paths, because execution flow in a set

partition depends on the values of the test data and cannot

be determined statically.

221

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

-4
C144

'-4!x
4 X

II

C14 >-

X €

4-4 X 0/ -E

- -41..

> > ,
II I 4

* - U, *.-
X1 C14 >1

o 0

IIl -4 '.04 r j
>1 r-:3nl4

44- - 44r

N1 C.4

>1 r->1

5- - 4-4 -4 4- 4--

II II 0

,. 222

• HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-Mg0

Optimization Techniques

It is possible to apply both analytical and heuristic

optimizing techniques in the RAT. These would be predominantly

based on the critical paths of data-dependent execution. In

an HOS specification, these paths can be traced explicitly,

down to the primitive machine-operation level.

While it is impossible to determine the flow of execution

in a system statically, it is possible to generate statistics

on the average execution flow through functional simulation

of module invocation. From a priori distribution statistics

on the system input data (measured or estimated), it is possible

for the RAT to determine invocation statistics for each module

in the system by means of a top-down analysis of the data

distributions at each level. With the invocation-distribution

statistics and execution-time estimates for each module in the

system, the RAT could use analytical or simulation techniques

to estimate system-execution times and resource utilization.

The statistics for the unconstrained time-optimal and

memory-optimal configurations will provide bounds within

which the RAT can optimize the trade-offs of configurations

evaluated by functional simulation.

Code Generation

Once the architectural form of the control map has been

produced and the data-dependent paths have been optimized for
. a given implementation, the RAT would generate the required

target-machine code.

The bottom level of the architectural form of the control

map contains the primitive machine operations. These primitive

operations would be placed in the sequence dictated by the

architectural form. Utilizing the dynamic memory allocation

and time-critical paths indicated by the optimization techniques,

t -223

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

l a,.k.,.= .MOON"...

optimal target-machine code will be produced for a given imple-

mentation.

Resource Allocation ExampleI
Figure 6.1.3.6 is an example of possible alternative

* ISDS/HOS resource allocations for the following expression.

X= (a+b) *(c-d)
X(e-f)*(g~h)

Figure 6.1.3.6(a) depicts the evaluation of the expression

through sequential programming. Using this method, memory

cannot be allocated dynamically because it is impossible to

determine at what point in the execution the storage for a

datum may be reallocated. As a consequence, memory for all

the data must be allocated before execution.

Figures 6.1.3.6(b), (c), and (d) show three possible

alternatives ISDS/HOS resource allocations for the same

expression. In each of these alternatives, memory may be

allocated dynamically. As prescribed by the axioms of ISDS/HOS,

a datum is assigned a value only once and referenced only once.

- Single reference implies that a new name is used for each

reference to a datum. This may be implemented with a single

name or address for the variable and a counting mechanism to

determine when the storage for that datum may be reallocated.

In either case, the number of references to a datum and how

they are made is known statically from the specification.

Figure 6.1.3.6(b) shows the time-optimal resource alloca-

tion of the expression. Its evaluation requires only three

execution steps compared to the seven steps of sequential

programming. While the time-optimal decomposition requires

t '~ 224

jHIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

(a+b) * (c-d)
x (e-f)*(g+h)

SEQUENTIAL
PROGRAMING Possible Alternative ISDS/HOS Resource Allocations

TIME M4MORY TRADE OFF

ALLOCATE 10 MEMORY TIME OPTIMAL MEMORY OPTIMAL CONSTRAINED PROCESSORS

1X R 11 R 2 Ja bjc djeff g h

1 2 3 4 5 6 7 8 9 10 11

STEP 1: R,
=

a+b STEP 1 MEMORY STEP I MEMORY STEP I MEMORY

STE 2 R2 cd i =af t -a I I ti = a+b
t2 c-d 12 c,d,efg,h=

STEP 3: R, RlR 22 c~~e hl] -1.. t 2 = C-d 1
St 3 e-f STEP 2 MEMORY i,f,gih

STEP 4: R2 = e-f tM4 = E+hM -

STEP 5: R 1 = R1 /R 2 IZ ." III]
STEP 6: R 2

= g+h t, , e

STEP 3 MEMORY STEP 2 MEMORY

STEPt5 = tl*t 2 t3 e-f

e, f 9,h t 4 - g+h a

STEP 4 ME O tilt 2

STEP 2* 4
TP MEMORY 6

STEP 5 MEMORY S 3 MO

STEP 6 MEMORY

' It6 =t3*t4 4
ts

5E STEP 3 MEMORY

AVERAGE MEMORY USE AVERAGE MEMORY USE AVERAGE MF-ORY USE AVERAGE MMORY USE
PER STEP: II PER STEP; 7 PER STEP: 6 PER STEP: 6.75

EXECUTION TIME: 7 STEPS EXECUTION TIME: 3 STEP 7 E S EXECUTION TIME: 4 STEPS

(a) (b) (c) (d)

I

225

HIGHER ORDER SOFTWARE, INC. o 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

a larger initial memory consumption (twelve memory locations)

because four processors are executing simultaneously, the average

memory use is lower than that of sequential programming (seven

locations compared to ten locations) due to dynamic memory

allocation. In a large system this would mean that the storage

not used in the latter stages of execution could be allocated

to some other process, providing an overall improvement in

memory utilization.

Figure 6.1.3.6(c) illustrates the memory-optimal resource

allocation of the expression. Minimum memory consumption

requires simplex processing, because each processor requires

storage space for its results. Therefore, the time required

in the evaluation of the expression is seven execution steps,

the same as required by sequential programming. However,

due to dynamic memory allocation, the average memory used by

the memory-optimal resource allocation is six locations,

compared to the sequential programming which requires eleven

locations.

Figure 6.1.3.6(d) is an ISDS/HOS resource allocation illus-

trating a possible trade-off between time and memory constraints.

In this case, only two processors are used, compared to the

four required for time optimality. The average memory use

and execution time can be seen to be between the bounds of the

time-optimal and memory-optimal configurations. In a large

system this would be indicative of relaxing execution-time

constraints to save the expense of using more processing units

and more storage space while still providing a significant

improvement in execution time over the memory-optimal configura-
tion.

[

226

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE .CAMBRIDGE. MASSACHUSETTS 02139. (617) 661-8900

Resource Allocation Summary

The results derived from the simple example examined in

this section generalize to large systems with even more signi-

ficant implications. The possible configurations of complex

systems are far more numerous and could not be evaluated manually.

ISDS/HOS techniques, via the Resource Allocation Tool, enable

automatic determination of the optimal configuration for a

specified implementation. The key to the automation of the

process is that every cause or effect within a system appears

explicitly in an ISDS/HOS system specification.

When a computation is defined by sequential programming,

for example, the availability of each operand is assumed by

the processor when it executes an instruction and this must

be guaranteed by the programmer. The fact that instructions

must be arranged in the proper order so that execution may

proceed correctly is a principle reason that programming skill

is needed and is a source of programming error. In an ISDS/HOS

resource allocation, the readiness of an operation for execu-

tion depends solely on the availability of its input operands.

This is a condition that can be determined dynamically or

specified statically in many possible configurations in response

to other constraints. As a result, much greater flexibility

and better performance can be obtained without implementation

errors.

I :

i '22227

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

.. ."1. I ' " - -

6.1.4 Structuring Executive

Systems operating in real time are subject to unpredictable

external events which cannot be analyzed during static develop-

ment. Processes also must be dynamically scheduled in response

to real-time events.

It is the responsibility of the Structuring Executive to

perform these functions in real time. This requires that the

tool be target system resident. In effect, the Structuring

Executive subsumes the functions of an operating system as well

as performing resource analysis and target system reconfigura-

tion.

The need for dynamic reconfiguration of the system-control

map in response to external events can be illustrated by a

simple example. Consider a system in which a single communica-

tions channel is shared by multiple users as depicted in

Figure 6.1.4.1(a). This could represent a hardware multiplex

data bus, a single-frequency radio communication system, or

even a group of people talking around a table. Because the

system has only one communication channel, only a single user

can broadcast at any given instant. There may be one or more

listeners, depending on the nature of the system, so some

mechanism of control must exist to route the transmission to

the proper listeners. This situation is illustrated in Figure

6.1.4.1(b) where the user B is broadcasting to one or more of

the other users. However, when B has completed its transmission,

and another user is to broadcast, then the system must be

reconfigured. The case where D is given the transmission rights

is shown in Figure 6.1.4.1(c). To control the reconfiguration,

a reconfiguration system would be established so that the

228

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

--f- " d

system of Figure 6.1.4.1(b) and the system of Figure 6.1.4.1(c)

would be input to the reconfiguration system as data. Because

of the simplicity of this example, it is possible to analyze

all the possible system configurations manually and to insure

statically all interface and data integrity. However, the same

requirements for dynamic reconfiguration in complex systems

would eliminate the possibility of manually analyzing all

configurations statically. Thus, there is a requirement for

some means to reconfigure the system-control map in response to

unexpected external events and to insure that all data accesses

and module interfaces are consistent with the axioms of ISDS/HOS.

A C

(a) I I

B D

(b) (c)

B D

A C D A B C

Figure 6.1.4.1

Dynamic System Reconfiguration

229

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Functions of the Structuring Executive

The Structuring Executive will have the responsibility of

providing real-time control of the target system operation.

It must implement, in real time, multiprogramming and/or multi-

processing constructs. The functional requirement of the

Structuring Executive is to handle aspects of system operation

such as man/machine interface, hardware/software interface,

error detection and recovery, real-time reconfiguration,

dynamic resource allocation, analysis for timing and memory

limitations, and an axiom analysis of the system in real time.

Specifically, the Structuring Executive will: 1) control the

ordering of those modules which can vary in real time dependent

on operator selection; 2) assign priorities to processes based

on the relative priority relationships, according to Axiom 6,

for each control level; 3) prevent violations of the HOS axioms

so that no two processes can conflict with each other; and

4) allocate the resources of the target system to maximize

its utilization within safe operating limitations and prevent

failure due to system overload.

The man/machine interface aspects of the Structuring

Executive allow for a human to interact with a given system

at any level. If sequences selected are not compatible, the

Structuring Executive would detect an axiomatic error and
and automatically recover the system. The human can then select

any reconfiguration of modules in real time without concern

for introducing errors. For example, an avionics pilot would

not need to memorize the order of a complicated crew selection

list, since the software would provide automatic error detection

and recovery.

230

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The Structuring Executive consists of three components:

the Dynamic Analyzer, the Dynamic Resource Allocation Tool, and

the Dynamic Scheduler. These three processes interact in real

time to realize the requirements for the Structuring Executive.

Dynamic Analyzer

The Dynamic Analyzer can provide a reconfiguration in real

time by reordering of priorities based on the particular human

or hardware inputs to the system. In the restructuring process,

the Structuring Executive always maintains the relative timing

relationships for all functions on a given level (and thus for

the complete system) based on the fixed relative ordering defined

for that level. Analysis can be conducted at the required

module interfaces since the capability exists to provide timing,

memory, domain and range limit requirements for selected

modules in advance. For example, if the throughput of a process

is larger than a given limit within a specific length of time,

the Structuring Executive could terminate the process with the

option to postpone its restart until favorable conditions

exist or to selectively restart the process to include only its

higher-priority functions.

Dynamic Resource Allocation Tool

Using a priori timing and memory limits specified for a

A model, the Dynamic RAT monitors the state of the system

resources and allocates appropriate resources in real-time.

This information is used by the Dynamic Scheduler to change

the state of process queues. Essentially, the Dynamic

RAT with respect to the static RAT is analogous to the

interpreter with respect to the compiler.

231

j HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (611) 661-8900

Dynamic Scheduler

The Dynamic Scheduler enters a process into the process queues
where its position in the queue depends on the current state of

the system resources and the relative priorities of the tasks.

The Scheduler within the Structuring Executive must implement

the allocation decisions made by either a static or a dynamic

Resource Allocation Tool.

Summary of the Structuring Executive

Conceptually, the Structuring Executive replaces the operating

system with a resource-optimization tool for a multiprogrammed,

multiprocessing environment which monitors, analyzes, and

manages the target system in real time for maximum resource

utilization and system reliability. To perform this function,

the Structuring Executive must obviously be resident within the

target system and as such, it will be an overhead process.

While the purpose of the tool is to insure that the least

possible waste of resources occurs, a trade off must be made,

depending on the size and nature of the target system, between

the relatige services provided by the Structuring Executive

and the overhead it requires. Due to the diminishing cost and

weight of hardware and the relaxation of time-critical opera-

tion through use of multiple processing units, the overhead

consumed by the Structuring Executive may become trivial compared

to the operational enhancement and reliability it provides to

a multiprocessing system. However, the prime concern of any

system design is its performance, and particularly in simplex
systems, processing-time consumption may be very performance
critical. Thus, it will be possible to include in the Structuring

Executive only those functions and only that degree of optimiza-

tion power which the system designers determine to be performanceV. justified.

k 232

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

6.2 Support Tools

The Support Tools available in ISDS/HOS will aid the

disciplines of Management, Documentation, and Design. Some

of the tools related to each of these areas are currently

available or have been used in one form or another on various

projects. The Management and Design tools when developed and

used in accordance with the ISDS/HOS concepts provide more

automated and useable tools.

6.2.1 Management Support Tools

Many of the current management reporting systems require massive

amounts of information to be produced and entered into the

data base manually. This effort hinders the utility of the

system in that costs become prohibitive and the timeliness of

the information impaired. It is, therefore, essential that the

Management Support Tools be automatic where feasible in their

data collection efforts and facilitate data entry where manual

intervention is required.

Within the overall framework of the characteristics listed

above, four Management Support Tools have been identified.

These tools are (1) Data-Base Structure, (2) Resource Monitor-

ing, (3) Collector, and (4) Inter-Revision Updater. These

tools are conceived as automated aids to all levels of manage-

ment throughout the system-development process.

Each of the tools listed above is conceptually described

in subsequent sections.

6.2.1.1 Data-Base Structure Concepts

Inherent in effective management is timely access to pertinent

information. In small development projects information can

readily be obtained through informal methods. However, on

large complex development activities, automated means of

233

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139.(617)661-8900

storing, relating and retrieving information is required. The

field of Data-Base Management Systems has provided numerous

ways os storing, relating, and retrieving information effi-

ciently.

The ISDS/HOS concepts utilize tree structures to illustrate

the interactions of related components. However, any given

node in the tree structure may be related to a number of differ-

ent information sources (e.g. requirements, resources, software

modules, hardware modules, statistics, etc.). The concept of

network-oriented data structures is available to handle these

multi-dimensional relations.

In ISDS/HOS three data bases will be of primary concern:

requirements (as represented by an HOS functional decomposi-

tion), resource utilization, and component development.

Until a fairly comprehensive ISDS/HOS functional decompo-

sition is available through the use of the ISDS/HOS specifica-

tion language AXES, the ISDS/HOS Collector and Inter-Revision

Updater are utilized to maintain and structure the require-

ments and their resulting specifications. Upon completion of

the functional decomposition via AXES, the resulting control

will be automatically used to structure the primary data base.

All requirements and/or specifications for a given node in the

decomposition will be placed in this data base.

The data base as generated from the decomposition will

be related to the data bases for Resource Monitoring and Inter-

Revision Updating as illustrated in Figure 6.2.1.1.1. The

Data-Base Structure as illustrated presents an overview of the

various data bases which comprise the core of the Project
Management Support. There are several separate data bases

which compose the foundation of the Project Management Support

Tools. The relationships which can be drawn between theseL data bases give the flexibility and power required for effective

j. ~,management and efficient development.
234

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

In Figure 6.2.1.1.1, the Resource Utilization Data is

structured by the Resource Monitoring tool which is described

in this section. The Component Development Data Base is

structured by the Inter-Revision Updater and the Collector,

both described in this section.

Much of the data relations, illustrated in Figure 6.2.1.1.1,

will be accomplished automatically. As a result, data collected

in the various data bases can be correlated by the Resource

Monitor to provide comprehensive project reporting. Where

manual entry is required, interactive data entry will be

utilized.

The structure and relations built into the Project System

Data Base provide an integrated data base available to all

levels of management in the development process. The ease of

use of the system will facilitate timely reporting and access

to the desired information.

L

i. -

14 235

I HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

I m l m l m... ' - ' "

PROJECT
SYSTEM DATA BASE

COMPONENT RESOURCE REQUI REMENTS
DEVELOPMENT UTILIZATION DATA BASE
DATA BASE DATA BASE

STATISTICS STATUS ACTUAL BUDGETED

TESTING SOURCE

INTEGRATION UNIT DOCUMENTATION PROGRAM

ii
I

I Figure 6.2.1.I1
structure of ISDS/HOS Project System Data Base

236

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

6.2.1.2 Resource Monitor

Effective management can only be accomplished through timely

access to such information as projected and actual resource

requirements. Among the more important types of information

required are: (1) budget vs. costs incurred, (2) schedule

dates and status, (3) manpower allocation and requirements,

and (4) other resource utilization. Given timely and accurate

data in the areas listed above, management can analyze problem

areas* more realistically and take corrective action from an

overall systems-,development viewpoint.

Many data-management systems exist which can readily handle

the information presented above. The processes of collecting

and reporting such information, however, impair the utility of

these systems.

Certain of the major problems associated with these

processes are listed below:

e Data Availability:

& Difficult to make estimates of resource require-
ments

* Data Entry:

e Manual Process of data collection

e Manual Process of data entry

e Iterations of data entry required due to
non-interactive edit checks

In some cases, the information listed would be sufficient
to detect problem areas. However, in general, problem areas
are presented through other means, e.g. meetings, memoranda,
etc. In these cases the information listed above could be
used to determine possible alternatives for corrective
action.

237

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

*Data Reporting:

* Untimely because of data-entry problems
* Voluminous reports f
0 Special reports require additional time with

data becoming even more historic

The first problem area listed above, data availability,

requires additional comment. In many of the studies conducted

on software development (notably SAFEGUARD, MITRE, JHU/APL

studies), the following problem was repeatedly stated: Managers

find it extremely difficult to make estimates of manpower,I budget, time and other resource requirements. Most estimates
made of these requirements were based on "similar" development
activities of the past. This problem area can be greatly

facilitated through the use of ISDS/HOS and modern data-manage-

ment concepts, as will be shown subsequently.

The other problem areas listed previously can also be

alleviated through modern data-entry and data-management

concepts, as will also be shown below.

To illustrate the above statements, a simplified ISDS/HOS

functional decomposition map is shown in Figure 6.2.1.2.1.

(The functional decomposition map can be created through the use

of the ISDS/HOS specification language AXES.)

Resources (e.g. manpower, time, facilities, dollars, etc.)

can be assigned to the nodes of the decomposition. For

example, assume system S is estimated by top level management

to cost five million dollars, and the break-down betweenI!sub-systems S, and is to be one and four million dollars,

respectively. Further resource assignment occurs at each

level during which lower-level and more direct technical

experience is brought to bear on generating the estimates. As

the funds are allocated down the tree structure, it may become

t~. 238
HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

S

S iS'

1ll2'2

Figure 6.2.1.2.1

Simplified ISDS/HOS Functional Decomposition Map

239

HIGHER ORDER SOFTWARE, INC. o 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

apparent that a higher level of reallocation is required. In

any case, once the funds have been allocated to the bottom

level, one can automatically trace back up the tree to determine

higher-level estimates. Iterations of this process will result

in using sound technical and management skills in generating

the final estimates.

Other resources can be similarly assigned and would probably

be done simultaneously. Once all resources have been assigned,

it would be possible to check their consistency at any level

in the system.

To facilitate the above process, a data base would be

created with the structure illustrated in Figure 6.2.1.2.1.

Entering data would be performed interactively on a display

terminal (e.g. CRT or storage tube) with a light pen or cursor.

The user would simply place the light pen or cursor at the

"node" of interest on the tree structure displayed on the

screen. A data-entry program would query the user for the

resource estimates and any supporting text. Inter-active

edits would be performed automatically, and the data would be

stored for the appropriate node. This method of graphical

prompting and interactive data entry, edit and storage would

greatly facilitate the data-collection process.

Data-reporting software would be similarly oriented:

A graphical display would prompt the user to the specific

area of the tree structure (system decomposition) of interest.

Resource estimates could be obtained for a single node and

could be traced up or down the tree. Output could be graphical,

in the form of Figure 6.2.1.2.1 with the resource estimates

indicated at the nodal (function) points, or tabular.

During the project-development process, one would enter

incurred resource utilization (funds, manpower, computer time,

schedule status, etc.) identical to the method described above.

t '.240

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

L

Inter-active edits would be performed and the data entered into

the data base automatically.

The output would be available interactively or as an inter-

active request for graphical or tabular hardcopy. The format

of Figure 6.2.1.2.1 could be used to indicate reporting period

or project-to-data resource utilization. Time-line graphical

presentation of budgeted and actual resource utilization could

be presented by individual resource by node (function) at any

level.

Changes to any resource allocation (e.g. funds, schedule,

manpower, etc.) would be entered as indicated above with any

supporting text and would be automatically retrieved and reported

for any related queries.

The Resource Monitor would be used to correlate statistics

collected by the Inter-Revision Updater with resource data to

provide detailed management reporting.

The emphasis for the Resource Monitor has been to

facilitate management access to resource estimates or utiliza-

tion in a very timely manner and to any level of detail required.

The Resource Monitoring Tool is built on an ISDS/HOS structure

utilizing state-of-the-art data-entry, data-management and

data-presentation concepts.

6.2.1.3 Inter-Revision Updater

As component software modules are completed to the satisfaction

of the software-development personnel, they are turned over*

to the appropriate Assembly Control Supervisor along withI1 A
test-data input and execution command language. At this time,

these component software modules become "frozen". These modules

The act of "turning over" could be simply placing a read-only

lock on the source-code, data-input, and execution-command
language files.~241

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

are then ready for unit testing, integration, and system-

interface testing.

Any subsequent changes to the software modules will be

made by accessing the prior version of the source-code (or

test data-input or execution-command language) file and

entering changes. The file (for source code, test-data input

or execution command language) for a given version will be

maintained separate from prior versions, such that for a given

version only those changes to the immediately preceeding

version are saved. When a version becomes frozen, the file

containing the changes to the preceeding version becomes

frozen. Figure 6.2.1.3.1 illustrates the original source code

with sample commands creating two subsequent revision files.

The Inter-Revision Updater will automatically supply

revision numbers and append them to the module names. The

Inter-Revision Updater will maintain the original source-code,

test-data input and execution-command language files and all

revision files. A reference to a software module will automa-

tically assume the latest changes unless an earlier version

was specifically requested. The use of an Inter-Revision

Updater facilitates concurrent use of software modules by

separate organization (e.g. testing, integration, development),

and assuring each that the current version is used.

Table 6.2.1.3.1 lists the files maintained by the Inter-

SI Revision Updater. All these files would be handled as described

above.

1242

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Original Revision Revision
Source No. 1 No. 2

Code Changes Changes

Sinsert ------
rep lacej

-- insert ---- ---- I
---------------------- insert-----LZ

f repace I Idelete
-delete

add

Resulting Assembly Control Supervisor Files

? jj

[:4. Figure 6.2.1-3.1

Inter-Revision Updater Example

243

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

Table 6.2.1.3.1
Files Maintained by Inter-Revision Updater

source code
test-data input The original file and each
execution command language revision will be mainta-h d
documentation as separate entities.
object code

This file will be updated
statistics throughout development and

testing

Once a module has been frozen, the ACS would compile or

assemble the module and store the resulting object module in

an object-module library. This library along with the execu-

tion command language and test-data input for a given version

will be used by the ISDS/HOS Collector.

The statistics files would be automatically created and

updated by the Inter-Revision Updater. The statistics which

would be collected automatically would include those listed

in Table 6.2.1.3.2. Thcse statistics could be queried by

managers to determine status of the various component software

modules, and to get a better "feel" for the utilization of

resources.

The Inter-Revision Updater will provide the development

personnel and the Assembly Control Supervisor with a coordinated

software development controller in the interim ISDS/HOS environ-

ment. In this capacity the Inter-Revision Updater will auto-

matically indicate which of the files (see Table 6.2.1.3.1)

pertaining to a given software module have been revised. The

244

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

I!

ACS can then verify that the unchanged files are compatible

with the changed files (e.g. keep the documentation or test-

data input files up-to-date with the source-code file). In

addition, the Inter-Revision Updater can keep track of which

tools (e.g. Structured Design Diagrammer) have been used

in conjunction with the development of a software module.

Software-module documentation could be produced using the files

maintained by the Inter-Revision Updater.

Table 6.2.1.3.2

Statistics Automatically Collected by the
Inter-Revision Updater

Number accesses

Number lines source code

Number lines source code
by revision

Compilation attempts

Error-diagnostic summary

Interactive connect time
used

Computer time used

i

245

HU AV C

HIGHER ORDER SOFTWARE, INC. e843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

6.2.1.4 Collector

When a large number of software modules are developed incremen-

tally as components for a system, the job of assimilating these

modules becomes prohibitive and error-prone. In ISDS/HOS this

job would be done automatically by the Collector.

The Collector would operate from a control map. For

purposes of illustration, refer to Figure 6.2.1.2.1. Assume
that system S 1 is to be executed. The user would enter a

command to the Collector to collect and execute system S 1
The Collector would trace down the tree from Sto the bottom-

level nodes collecting as it goes the object-module (compiled

or assembled versions of the source code), the execution-command

language, and any required test-data input files. (The Collector

would utilize the Inter-Revision Updater in performing this

task.)

If the user wanted to modify any test-data input in the

test-data input files, simple commands would be issued to over-

ride the desired data items in the appropriate file. (The

Collector would utilize the Inter-Revision Updater to perform

this task.) These overrides would be temporarily stored for the

given run and documented automatically on any resulting output.

Similarly, if the user desired versions of modules other

than the latest, the appropriate revision number for the speci-

fied module would be entered. The Collector would retrieve that

version and its associated execution command statements and test-

data input. Prior to establishing the run, the Collector

would verify that the interface would match for the specified

version. Error diagnostics would be interactively produced
and listed on any resulting output.

246

HIGHER ORDER SOFTWARE, INC.* 843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Furthermore, if the user desired to create a new system,

the Collector could be used to automatically assemble the

components of the desired system. For example, assume subsystem

S1 is a simulation with system Sll being the environment and

system s21 being the target system. The user has constructed

a subsystem S3 which is an error-analysis system. The user

could automatically construct the new system S0 shown in

Figure 6.2.1.4.1 by entering commands which: 1) establish the

node SO; and 2) link nodes S1 and S3 with So .

4 new system

S S
11 21

Figure 6.2.1.4.1

User Creation of New System via the ISDS/HOS Collector

The Collector would check subsystem interfaces and indicate

any inconsistencies. This is accomplished in the following

manner: All subsystems (or software modules) would contain

as a special instruction a description of its interfaces with

external modules (e.g. number of data items and data type for

247

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

each parameter).* The Inter-Revision Updater would store these
special instructions as part of the Execution Command Language
files when the module became frozen. The Collector would check

these interface instructions automatically when assembling a

system or creating a new system.

The Collector would assemble any error diagnostics and
computer statistics and update the statistics file maintained

by the Inter-Revision Updater for the system being collected.

The ISDS/HOS Collector is a tool available to an Assembly

Control Supervisor or Testing Team for assembling a system

configuration interactively. Interface analysis would be

accomplished interactively thus eliminating lost time, effort

and funds for assembling incompatible subsystems.

The statistics collected by the Collector provide an

immediate view of configurations tested and the success or

failure of the tests conducted. The Collector used in conjunct-

ion with the Inter-Revision Updater will save valuable time in

the development, integration, and testing disciplines of the

systems-development process.

6.2.2 Documentation Support Tools

The data bases or files that pass from phase to phase in the

development process will contain information in various formats.
Files will contain requirements, specifications, personnel and

resource information, documentation, and for the immediate

* The Compiler could be used to automatically create these
instructions when a reference to an external software
module occurred.

248
A

.4

I

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (611) 661-8900

future, source code. The documentation support tools described

in this section will enable the users of ISDS/HOS to build and

maintain these data bases conveniently and efficiently. The

current use of such tools (text editors and formatters) are for

program and documentation development. In ISDS/HOS they will

be used to input the files of requirements, AXES Specifications,

and resource information. These tools will also be the vehicle

for interacting with the Management Support tools described

in the previous section. The use of these interactive documen-

tation support tools is straightforward; the user accesses the

host system via an interactive terminal to build a file, to

verify its contents, and then stores the file in the file manage-

ment system. He can later call for that file and update or

revise it to reflect new information. When desired, he calls

the file from the file management system and requests printed

output in a selected format.

6.2.2.1 Text Editors

A powerful interactive text editor is an essential tool for

program, data, and documentation development. In addition to

providing powerful techniques for program, data, and documenta-

tion preparation, the editor must have a relatively simple

syntax that is easy to learn and must provide the novice with

some prompting to help him avoid classic beginner errors.

Desirable editing capabilities:

addressing - The editor should provide the ability to
address by absolute line number, relative
line number, and by context. The editor
should allow compound addressing (combining
any of the other three techniques) and
addressing of a series of lines.

I inputting - The editor should provide the ability to
enter text from the terminal or from the
file system into any position of the buffer.

249

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

editing - In addition to the ability to print, delete,
locate, or change a line, the editor should
provide the ability for a global substitution
of one character string for another.

interacting - The editor should allow the user to pass
commands to the command environment external
to the editor.

This list of desirable characteristics is not necessarily

complete; nor is it meant to eliminate existing editors from

consideration.

6.2.2.2 Text Formatter

The text formatter will allow the user to type out text files

in manuscript form. This facility greatly enhances the user's

documentation ability. A user will prepare a file of text

lines and control lines as input to the formatter to be output
on a device and in a format as he prescribes. By using the

editor and formatter, the user can extract documentation from

his program for inclusion in a user's guide to be printed in

manuscript form.

Formatters of this type are often used by the clerical

staff of a project as well as by the engineers. The formatter

must be a powerful tool, yet be simple to use and easy to

learn.

6.2.3 Design Support Tools

The Design Support Tools to be available in the ISDS/HOS

environment are simulators, performance monitors, and emulators.
As described in subsequent sections, each of these tools is

designed and developed in concert with the ISDS/HOS concepts.

These tools provide a comprehensive set of tools to be used

in studying systems under development.

250

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900

Lo,

6.2.3.1 Simulator

"A simulation of a system... is the operation of
a model or simulator which is a representation of
the system... The model is amenable to manipula-
tions which would be impossible, too expensive
or impractical to perform on the entity it portrays.
The operation of the model can be studied and, from
it, properties concerning the behavior of the actual
system or its subsystem can be inferred." (SHU60)

In a systems-development process, simulators provide engineers

and designers with a tool to study the system under development

and its interactions with external influences. Within the

context of ISDS/HOS, simulators are computable systems; they

can, therefore, be designed and developed in accordance with

the axioms of ISDS/HOS.

Figure 6.2.3.1.1 illustrates a top-level ISDS/HOS

decomposition of a simulation into two major functions: the

system under study and its simulator.

Simulation

Target System Simulator

Simulator OS Environment

Figure 6.2.3.1.1

Top-Level ISDS/HOS Decomposition of a Simulator

I251

HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Simulators are generally used throughout a systems

development process: from a feasibility demonstration of the

system to be developed eerly in the process to a full scale

simulator which is carried throughout the development process

and is continually refined with more detailed models. The

ISDS/HOS concepts of software development lend themselves

Preadily to the process of simulator development. For each

new project, specific environment modules are developed in

order to interface in simulations with a specific target system.

Several characteristics of an ISDS/HOS simulator are

required. These characteristics, listed in Table 6.2.3.1.1,

provide users of the simulator added capability to study the

system being developed, the environment being simulated, and

the interaction of the system with the enviroment.

6.2.3.2 Performance Monitors

During design, development and operation, systems are monitored

for resource utilization and anomalous behavior by Performance

Monitors. The function of Performance Monitors is to compare

a priori performance statistics with performance statistics

collected in real-time (via simulation or operation) to detect

anomalous behavior. Examples of these statistics would be:

0 excessive calls to specified routines or executions
of specified instructions

0 number of interrupts outside of the normal bounds

for a given time period.

e accessing protected areas of memory

* inconsistent clock increments

252

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

a) >1
0 4J'-4 4 ,.) I,-4 ,- Eo

-H 41En 0 (0 4J-0 0O.4

E .W) : n a) 0

-4 -'.4 4- -4) 00 4) 4-4 10 4.4 4 -'4 -4d• 0 -1 -0 Q) Cl En 4J4 J --4 U4J4-) =
m 4,) 4) a1) -0 (10 as V, -a 0 0Cdrl4t H 04 0-H 0 0-- 0

44 W $4., Z W J t 0 3 , .) o E c
.a) E ., r. 0 c: wd U 4J - 0 H .- -1U)0 0 toCA a) a)) 0 - 4-) : C -'-4 4j : -,1

4JQ.4 >4 E : 4 a4) 4) En).
W- t of. . r.di ' - '0 4-4 .0 N (o m 4J CO.) -4 5-- u) 0 Cd -4 4-iC.) Q)c r5-4 5-4C tn 1-1 to '-1 0 . 0

. ' 0 0 4 -,n -I'0 a) Z -H to -4d -, 0 4-4 U) r-4 -H 0 --,O 4 4JE 0 0 0 44 . -- I 4A r' r-4 0) (a0 - .-- H - 0-4 r,-4J ' W0 W -4-) Q) -4 4I -H-4 4) 4 - 0 (u -H 0 0H 4. 0 *(a 4-) a) :H 0-4 u (- H 4J 44r- .44 4- a)E 0 E. 4J 0 *-1 C0') 0 >41 >.c '04) - *Hi 0"-4 V ('0 0) uv 0 0 W.-4J) C 41 r.J a a) m 00 -H. r- r4J -H ' I Q) .000 -H C •• • z

'4 0 *.s ' ., ~ 'W '4 0 U 4

E-4 44d Z~ .) d 440 V U) Cd 4J (

:0 -I 10 O$ -

4 ' 03 C -H CTJ44 Cd 0a 4J *>Ci0 a) a))'04J oc () 0-H q 43to '0 -4)IE0 5-i wC (a 04rZ u0 -HO U) 4 Q k m>H En -0 44 4 nr-4 rn 4J Q)d -H t 0) -C0 Ha w

(1)U) '0 -1' - u C41I x Cd a) U) 0n 4-4 -4 -- l ~n k 0W u c q a 4-J 0) a) ()w 1i0 uEU0 0y) (a0 n (0 QW 41l z~C JQi x-.. (s4 w m z
HIE O-A 4J N .44 W E a) 0 C a) 00 (-7 v 8 E'0 0 u l Q) 0 W -H 4J w c) (i q) -H-H 0) - 0) CU) 4 ro U) 4- O 04cc4-40 4i ro '0 ~41 4 Cm0 - : U) .0ICI tod -H >0 .11x 0 (d -i 0.4 ro m~ C -4 :3'-'q --4 4 4-) 4i-) W (0)C 04 0 0 U) 4J U) ~ - ZI)C4 > fS -H 4-4 '0 4-H Cd W 0) En)C0 -H

%4 E0 Zd -A r. r.0w) r.1 1-4 5-i4-4M C-H40a) 0~ Wa)- CU) Q)W 1-i $4-H W1'0 0-H>0 >n -Hir '4 4 J ~ -Ha) >-'4 Cd 9-) 44 U4j -HOfu d4-ia) 4 cflW a)E u~ a) awz~ 0 4 04-4Cd0.--4 r. (a' 0-) z (a 04 .Cd.H rz -0-4(. 0 u -4u) :'.-4 -H '-A Cd r- -4-- 4J - 0 CUw 0- -- a) 10-4 -H 4 .0W *Cd :>d a0
'u L X*0 :j-H4 4-l rz E ; Cd>44- f 0 044 0 C4J M 4-)EH -i) -H *0-) W *ra -H " -- H $ -H 0,(o 41 (E-44()0 u 341 En E Wa $*41 o0 M '4J. 4-)CA QW W$ (0-0a) (0) C4 41 Cdp 4r ro±~ C- 0 a$H 0~ E 4-4 ()l- $4 rU Z Il(d > a00--4 '- 0 0'--4H 0 4 r.0 ~4 Q) .a) w ~ > w H 0qcu 4Ia '0 z- r. t 0 E- w IW l-HEC rzX a0 41 0 x0 -1-1 za)> . 41~' 0 r 4-0a) H.0 c (d -4HEn

4J WE E-U0 > -4J -4) -H) r.-H 4J r-4 t (a0 -4 4j-HCd 4-a)~ t) ~ 0 a) -H0)''41~ 44 r-4 4-4 4 010 Cd -HWI) 14.)1 W 4 J4 -q. -4Cd- *0 0C(0 E -H 0 N >1 4-)0.. Cd 0 0 : Hj 0 :r-x' fc -4C W0) to -1r4 (a U)C.) O 14(l0r: -HO UO0(a 4) r.-H r : aL) wU(E- 4E j 0zu u-Ha 9; W -H.q.)
r:: 040U)o0 E -. 4o) 0Z Cd *-H4 4-4C (0 0 (0X ~4-4 Ea)04 -H Q-H -4 -H -H 0 w)Z -H 'o~ Cdw o-H 4JO t)0)0 -4J1~ ~0 4J 04- U) 4J (ad-H0 H 4r.0 -H4 41Q..o0t) (o C-H- U)4-)~ V0d > (0 > rHd' Cd 4J 44 4414J 4JM C0I)c W)-H0u> o)0 0 r. - J0 4 -r 4 &qU) -H0 Z4 -P4 -4
e -- H 4.0 ocu 5 H) 1 -1 Cd > I4 '0 V)0 OPU-4

(J~ 04-.0 -H10 -H C:0a) 41 () E-4 t C010 M$-4 0)41 a) r, 0u u 0-41E I
440 X '0 'C(a E E 4 4 4. 0 U) a) Cd -H -I0-C 0 0-i-I -H -H 0 d d a) 0.~ w- 4-0

E- :: E 0 0 o E- PLw
000

E-4 a

253

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

0 'a 0
0 4 0. 4

4-4 H *.4 -1 4-)
-40 41-4 44 4-4 Uto .,4 H, 0

Q, 44 uJ k
0 DO4-0 40 4u4. U -4 V (A 44

4 4 0 0 40 4 4

to 41 14o u

.- 1 0 0I -ri4 '. m * 4
4)- 00).- 4) 1.4 IN

0 4JC~ In 'U 1. O I 0

4-4 M to :0 0 0 c
(D 0I.4 In U>.

0 .) 0 -4 '-4 > U 0 $4
• k a) 0 0 4 i 4-4

* ;, >Um -0 4 >: '- Cfl;-Q;

4- 0 0 s 4 - - 0)
00 -4 v-4 44 0 510. 4

-t*41., V 0 40 r. 4 , 4-
0 (d E 4) 0 4J >) , -
U4 ..-) . .aor,94 C 0
0P 0 W) 0L) 0) r. U
'-0 U'a40-)(L U >- 4J -4) 4

4) - 0 . 0 I-

) 0 4-. 0 4- F. 0>0EO w r 54) 04 (d *
V-- 4J0~ (1 c 0 0n

> 4) n-0 4 r.4 4- 0
a) 0o 4. .010 0 0 0

0 r_.4) 14 0 4

-Z• 00 '0 •0 0. • 0 •

_0 4)0 -4 43~ 4J 01rj
r-4 r-f4J t -4 44 0 4 0040 4.)1 4 0

(0 E(- 1 04 (dU0)0 4-4 : 0

.- 4'a r 41 r4 a) -4 0 0) U (D)'
en 0 a)4 03 04 0 4 r 1 4) x 1

.o0 rariE!w 0 r- U~ k
C4 -1 4-4 U)0M *5 4.)0 c:0a) 0 '004

4) -4 H * 14) o 0 04J -4 '.4-l 41) 0)V
0U 4.4 rO4-1 W d r-4 p (o4v) 0 to > 41 4)

0 00 0-1-40 to tU-4 0 -'-) 4) a-
w U 0, .0 L) t4-)En04 u Q U0 0 54 41) 00i

Z -H -4-Z a -4 E (L) 5.4 k r4 4~J 54
0 k 0 4 U - 9: n 9 ~---H 0 4.) 00.o

4J 4.-40 0 0UI 00 i * (1) 0 w5.44) ., (n
44J 1 U) V)o . .

r. 04-)'0 40 00
fNa I 0-4 to 0) 0 M 4-4 14 0

0d-40~- 44 r-0n4-1 -4 =) 4 0) % U
-4 U-l rq 0 E (1 > 0 co
4-) d 4 0 0 9: u I w.>-)o4 0 >W -.- It

tio ~ ~ ~ I> -w-. z .14 0~ 0 (' H14W4 14 w (o.404-)
** -.4 (a (d 0 4 I -r1i14..0 U4) ~ U W 0r

U)I 4-).-40 0"0q(d0 5 VC . X W U >1N
0z o..-4.)~ C- -4I2 o-' V 5.4 0 ao 0 p.-.

4J 4> :3CA-rlM - '-4 2-4 S V Z 0 > 0r

*$ r-4 In 0 $I--4. r-4 .a -q -CUH
E- I .04- Q MrI(04 Wo M 4-)Ad 4 -4 10 1 0
I > E-q 000 4- 4.)
M 0 ~0IO41-4 J1 -34 - 4 rn 00-4 -

$40. 0W 4. w IVQ.)4J.... E-) :1M= 1w - 0 a(p

E- 0 (Aw m-. 4 .- 4 *.4j0 to rd
z 41 1)) 4 p $4 W 54 4 1.i-4 0 0

0 0

I O
254

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

During the design and development phases, the a priori

statistics would be estimates provided by engineers and designers.

These statistics would be compared with similar statistics

collected by the Performance Monitor during simulation or emu-

lation execution. If an anomalous condition was observed, the

Performance Monitor would stop the simulation or emulation and

produce diagnostic information (such as warning or error

messages) and debug aids (such as memory dumps or parameter

listings). Depending on the severity of the error, the Perform-

ance Monitor could restart or terminate the simulation or emula-

tion.

The use of a Performance Monitor in the design and develop-

ment phases provides a more accurate method of developing

resource-utilization statistics. This would be accomplished

via hardware attached to the host (or target) machine or software

monitors, which would increment counters for various instruction

classes as the related instructions were executed. The use of

these counters would give a fairly realistic estimate of proces-

sing time required. Similarly I/O requests, I/O transfer times

and idle time could be obtained.

Refined statistics derived from simulations or emulations

would be used as guidelines for the real-time Performance

Monitor which will be a sub-function of the Dynamic Resource

Allocation Tool in the Structuring Executive. The operation of

the real-time Performance Monitor would be the same as described

above, except in the case of anomalous conditions. If an

I anomalous condition arose, the Performance Monitor would signal

fthe Structuring Executive to initiate system recovery

procedures.

t - 255

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

6.2.3.3 Emulators

"An emulator may be defined as hardware, microprograms,
and software added to one computer system to enable
it to execute programs written for another system." (MAL75).

Once the requirements for a computer system have been defined,

they can be represented in the ISDS/HOS specification language

AXES. AXES would then produce a functional decomposition of

these requirements, in which the bottom level of nodal families

represents primitive operations (specifications for the machine

instruction set) and primitive data types (data types of the

machine). Using this process, one can define the specifica-

tions of a target machine, including the required instruction

set and data types.

In order to study the target machine and do performance

analysis, it is necessary to simulate the target machine.

In some cases, the instruction set of the host machine may

not be adequate to perform the instruction set of the target

machine. In almost all cases simulation of the target

machine would be an inefficient process. As a result, an

emulator of the target machine would be developed for the host

machine.

An emulator consists of a mixture of software and firmware

which would "simulate" (emulate) the target machine on the

host machine.

In developing an emulator, the designers and engineers

must specify the mapping of the target-machine instructions

onto the host-machine instructions. This mapping constitutes

the requirements for the microcode. In ISDS/HOS these require-

ments would be formulated in AXES. This formulation would

result in a functional decomposition, the bottom level of which

would be the primitive operations (machine instructions) and

the data types of the host machine. This decomposition would

Ip 256

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

be analyzed (by the Analyzer) for interface consistency and then

passed through the Static Resource Allocation Tool to obtain

an optimal configuration of the decomposition tree. The result

of this process would be the optimal specification (target-

to-host mapping) for the emulator. Figure 6.2.3.3.1 illustrates

the procedure described above.

The Static Resource Allocation Tool would output the

sequence of host-machine primitive operations (instructions)

required for a target-machine primitive operation (instruction).*

The required execution time (on the host machine) for

each target-machine instruction as represented by a sequence

of host-machine instructions could be obtained. By using an

assumed instruction mix (i.e. frequency of occurrence for

each target-machine instruction) and the execution time for

a host-simulated target-machine instruction, one could deter-

mine which target-machine instructions would be more efficient

to implement in microcode. The remaining target-machine instruc-

tions could be simulated on the host machine.

The result of the process described in this section

would be the development of an optimally efficient emulator

with reliability inhibited only by the manual process of

mapping target-machine operations onto host-machine operations.

Once developed, the emulator would operate similarly to

an interpreter. For further insight into this aspect, refer

to Section 6.3.7.

*In some cases, it may not be possible to map a target-machine
instruction onto host-machine instructions, e.g. in the case
of certain input-output device instructions. The output of
the Static Resource Allocation Tool would be the specifica-
tion for the hardware/firmware to emulate these instructions.

1 .5 257

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

- 4.41

0 0

4,4 4.) .,4 44)

0 0

o 0
-. 4 .1-l - 4 e

u $-q4-00 00

.14 .4-

U44U 044 ce-2 -4.0.0

0 0

44

0 r - 0
u 41~

• .,. -4.

ci) 41 0 c

.CUC.CU 258.

2- g-'Agi

H 4D S1 M.N
$- $4 (4J~f 1H 4

Id 00 =0 0
4J 0.04a..4

.4-4 ~ ~ 4 OCUCU..4.

0 0 0 0 IA

I 4. 4 .14-

I4 00)0 0 4 U

01

x4 -I 5-4 X

u 0 c0
-4 -- 44 i

(44 4(4.4
CA 10

4) 0

-44 Q

a,.1 ad 0

(L) c (LCU

258 n

HIGERORERSOFWAEIN. 83 ASACUETO VNECMRDGMSAHSTS023U(1)6180

6.3 Incremental Tools for Current Use of ISDS/HOS

The tools presented in this section provide for an incre-

mental approach toward adhering to the ISDS/HOS concepts.

These tools are generally available; however, conceptual

descriptions are provided which place requirements on these

tools in order to make them consistent with ISDS/HOS concepts.

Therefore, modifications of the available versions may have

to be performed in order to enhance their reliable operation.

Reliability in the use of these tools cannot be guaranteed

due to their non-automated use; however, an approach toward

gaining reliability can be attained by following the guidelines

presented for the use of the various tools. The tools, as
described, will provide an evolutionary trend toward the

objective of ISDS/HOS.

6.3.1 Assembly Language

Although the ISDS/HOS interim environment centers around the

use of an HOL for program development, it is conceivable that

a particular customer could require the programming to be done

in an assembly-type language. Historically, requirements to

program in an assembly language have been made to improve

efficiency in terms of space and time of the executing code.

This efficiency argument is far less impressive when one

considers the rapid decrease of hardware cost and size, in

relation to the continuing increase of programme: cost. The

reliability argument is that it is much simpler to verify HOL

code than assembly language. ISDS/HOS discourages the use

of assembly languages; they are covered here because the

possibility of their use has not been eliminated.

Since assembly languages generally correspond one-to-one
with the machine code and have full access to the instruction

repertoire of the machine, it is difficult to A-.cribe charac-

259

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSET7s AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

teristics of an assembly language. Such a description would,

if pertaining to the instruction capability or performance,

apply also to the machine.

Static verification appears to be infeasible considering

the large variety of "tricks" assembly-language programmers

have employed. There are no known techniques to trace

variable usage statically, to determine the destination of

transfers statically, or to restrict the usage of variables

across interfaces for straight-line assembly code. Therefore,

the decision to use an assembly language should be made in

light of the explicit trade-offs between reliability and code

efficiency.

To be used in the interim ISDS/HOS environment, assembly

language must have the ability to create and reference macros.

The basic idea of macros is text substitution or insertion:

an identifier in the source program is replaced by a string

of characters from some other character string. These macros

can be created in advance and stored by name. Other assembly

language programs can then include these macros by simple

reference to the name. These macros can be used to insure

interface consistency within the resource-allocation process

made by the user.

Admittedly, this takes away from the assembly programmer's

tricks, and, therefore, the program manager should consider

this fact if he requires that assembly language be used.

The use of macros for module interfaces is the only way

pto adhere even remotely to the concepts of ISDS/HOS when an

assembly language is used for implementation.

260

I HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

6.3.2 Macro Processors/Assemblers

"An assembler is a program which translates a source
program written in assembly language into the machine
language of a computer." (GR171)

A macro processor may be implemented to either substitute

assembly-language code or machine code for a specified character

string. An assembler, as used in the interim ISDS/HOS environ-

ment, would differ from a traditional assembler by including

features to improve the reliability of code. Reliability

enhancements to existing assembler techniques include:

* checks that control transfers are not made
into data

* automatic symbolic labeling for control points
("branch to" points), if not provided by
programmer, with appropriate flag on output
listing

The macro processor is most commonly used as an extension to

the basic assembler. A macro in its simplest form is a one-

line abbreviation for a group of instructions. The macro

processor scans over the text searching for macro definitions

and macro references, and then attempts to resolve these

statements. If statements cannot be resolved (e.g. assembly-

language-statements), the input string is added to the output

string without change; if the statement can be resolved, the

input string is replaced by the specified output string.

261

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE. CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

................................

In order to make macro processing more flexible and to

relieve the programmer of redundant coding, macros may be

referenced with or without arguments. As an example, a given

computer environment may have a standard set of instructions

to perform a certain task, such as pass data between subroutines.

In order to avoid coding the same instructions repeatedly, the
CALL macro would map into the sequence of assembly-language
statements needed to pass arguments between subroutines.

The macro processor as used in the interim ISDS/HOS

environment, will differ from existing macro processors in the

macro-definition phase. Macros will be built on macros by

program-design engineers and be made available to programmers.

Primitive macros such as "+" and "=" will be used in more

sophisticated macros. Programmers will not be permitted to

define their own macros. Design engineers will define macros

in accordance with ISDS/HOS axioms.

Programmers who use macros in place of in-line code will

benefit, first, by ease of programming and, second, by confi-

dence in the reliability of the code supplied by the macro

processor.

6.3.3 Higher Order Language (HOL)

The implementation language, as used in the interim ISDS/HOS

environment, will be based on the HOL recommended by the DoD

High Order Language Working Group (HOLWG) chartered in

January 1975. Without attempting to critique thoroughly the

"TINMAN" version of "Requirements for High Order Computer

Programmer Languages", March '76, we can say that the eventual

HOL must be examined for compliance with ISDS/HOS concepts and

axioms. Certain structures of the language may have to be

k 262

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (611) 661-8900
f

eliminated and others added, but the present state of the

working group's efforts indicate that the final product will

be acceptable for the Implementation Language. Some of the

particular language features to be considered in examining an

HOL for ISDS/HOS use are covered here.

A HOL program shall consist of a set of procedures. Each

procedure shall have an input list and an output list that

specifies all of the arguments of the procedure. A procedure

shall have no access to an object unless the object appears

in the input or output argument list of the procedure or

unless the object is a local variable of the procedure.

A very important consequence of this clear separation

of inputs from outputs is that an HOL procedure cannot produce

side-effects. This means that it is not possible to write

an HOL procedure whose execution can produce a state change in

any object that does not appear in the procedure's output

list.

A HOL procedure cannot produce partial outputs. This

means an invocation of a procedure produces no state change

in any of its outputs until it produces all of its outputs.

The following example illustrates a way in which this might

be accomplished

(a,b,c) = f(x+y, x);

procedure f(p,q) returns (integer, real, real);

*t return (25,7.2,p-q);

end f;

The top line of the example is a call on the procedure f which

returns three values.

263

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The inability of a procedure to produce partial outputs

allows recovery from procedure failure. Failure of any

component of a statement will cause failure of its containing

procedure. Failure of a procedure means that none of its

outputs have been produced. Consequently, failure of any

operation within a procedure leaves the caller of that proce-

dure in the same state that it was in prior to the call. The

definition of a procedure call will allow the caller to detect

and respond to failure of the called procedure, without any

of the elaborate facilities of PL/l or more complicated facili-

ties (GO075).

A very important consequence of the separation of inputs

from outputs and the inability for a procedure to produce

partial outputs is that input arguments do not have to be copied.

An input array argument can be passed by address without fear

that some element of the array will be changed by the procedure

to which it is passed during evaluation of that procedure.

The HOL shall contain facilities for the creation and

control of real-time processes. These facilities shall be

sufficient for control of real-time processes using one or

more processors. As in the ILIAD language, deadlocks will be

impossible because all global objects will be associated with

a boolean valued semiphor called a lock, and because a process

will be unable to access a global object unless it has first

locked the object. Furthermore, all global objects that are

accessed by an operation must be locked prior to the start

t

264

t HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

of the operation.

In addition to the basic locking constraint, the HOL shall

contain facilities for: starting a new process, stopping a

process, delaying a process, changing the relative priority

of a process, and testing the locked/unlocked status of a

set of global objects.

The control structures of an HOL shall be limited to the

D' control structures of Marcotty and Ledgard (LED75) (While,

Until, For, Case).

Input/output facilities of the HOL shall be suitable for

use with a wide variety of devices and/or file structures,

including devices found in typical tactical applications.

An HOL procedure can be declared to be an overlay proce-

dure. When an overlay procedure is called, it will be loaded

into main storage, where it will remain until it is displaced

by another overlay procedure. This facility provides an

efficient and easy-to-use form of demand paging of procedures.

Overlay procedures will be defined in an implementation-

independent manner that ensures that program logic will not be

affected by the transfer of a program to another host system.

The HOL shall facilitate separate or combined compilation

of multiple procedures.

The HOL will facilitate the compilation of optimized

object code due in large part to the separation of inputs

from outputs and due to the elimination of side effects.

4

265

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

4,

Type checking will be total and will be performed at

compile time as well as during the linking of separately

compiled procedures. User-defined types will be allowed in a

manner similar to that of ALGOL-68 and PASCAL.

Type checking of user-defined types will not require

combined compilation of all procedures that use a given type.

However, the compiler will use a type-definition library to

ensure that a given type is always encoded in the same manner.

An HOL object procedure will always be re-entrant. On

the ISDS/HOS host, they may also be shared so that multiple

users will be able to execute the same object procedure simul-

taneously.

It is anticipated that the implementation language will

differ to some degree from the HOL recommended by the HOLWG.

To accommodate those differences, the programs developed in

the ISDS/HOS interim environment will require some amount of

preprocessing to be acceptable to the HOL compiler.

6.3.4 Compilers

It is likely that existing compilers will be used in the initial

ISDS/HOS environment. The HOL section discussed features

that will require preprocessing before compilation when they

are included in the HOL. A further step toward reliability

is to develop a compiler for the prime HOL of the interim

ISDS/HOS environment. By developing this compiler using

incremental ISDS/HOS techniques, the translation process will

be more reliable than an existing compiler with preprocessing.

The "TINMAN' version of "DoD Requirements for High Order

Computer Programming Languages" discusses some desirable

features of compilers specifically in relation to reliability

and portability.

266

•W40010MRFM t Wrw F INC. . 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139o (617) 661-8900

Reliability

Reliability is of primary concern for compilers in the

interim ISDS/HOS environment, both in the production of object

code and in detection of errors. Many current HOL compilers

are known to produce object-code errors; that is, certain

combinations of HOL statements when compiled into object code

do not carry out the intended logic.

The "TINMAN" documentation, referenced above, specifies

that error diagnostics and error conditions should be covered

in a description of the language. This is a desirable feature,

and any additions to the HOL should be accompanied by appropriate

error information. In addition to the language-specified

syntactic and semantic errors, the compiler should examine the

interfaces for consistency. Although the HOL will not permit

blanket enforcement of the axioms, there are some interfaces,

specifically procedure calls, that can be checked for access

rights of variables. Interface errors will be detected and

classified according to severity, and an error diagnostic

will be emitted in the output listing.

Portability
The compiler design will separate the machine-dependent

functions of code generation from the machine-independent

functions. This will allow compiler portability to other

computers by isolating the compiler modules dependent on that

computer.

&i

267

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

L

6.3.5 Structured Design Diagrammner

Documentation has historically been regarded as a chore by

programmers and, as a result, is frequently de-emphasized

in the interest of producing code. The documentation produced

is often out of date, erroneous, of poor quality, or organized

in widely varying formats. Accurate documentation is often

produced only as a final step in the programming process and

is thus unavailable throughout the development cycle. This

lack of, or delay in, documentation leads to communication

problems in coordinating the efforts of individual programmers

within a group.

The Structured Design Diagrammer, as an integral tool of

interim ISDS/HOS, will provide automatic documentation of

computer programs illustrating program flow, data intersections,

and embedded comments.

Automatic documentation provides a mechanism for

maintaining positive control over rapidly evolving programs.

Documentation is produced immediately by the Structured

Design Diagrammer for every revision of each program module.

The documentation is uniform in format and accurately reflects

the organization of the code. Best of all, the production

of the documentation requires minimal effort on the part of

the programmer.

In addition to automating an historically manual and

tedious task, the Structured Design Diagrammer outputs a
flow-chart superior in format to conventional flowcharts.

For example, Figure 6.3.5.1 (MUL72) is a conventional flow

diagram. Figure 6.3.5.2 (HAM73) is basically the same design

but with structured notation replacing conventional flowchart

symbols. A lot of time and effort is necessary to understand

all the algorithm paths in Figure 6.3.5.1. An interruption

268

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

0 I0

I L 4 b replcedbbacono

-0 T%' s /

Li~ ~ ~ Y Fiue6...
A2 tr ucured Pro a g ram Usin Stadar Sybl

ToShwilo o , Progr ExcionKX 269i2
HIGHER ORDER SOFTWAREI C ompu843 MACUET AVNERCMBIGMSSCUET7019067)6180

It Si I (

L'.

p %o

10 0. EFi

P. II .. ,I

l'IPVT *M !c

p 3
II

Figure 6.3.5.2

Same Structured Program Using
Structured Flowchart Conventions

270I *HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

forces the reader to start from the beginning. Consider

Figure 6.3.5.2. Notice that after each logical step has been

completed, control returns to the main flow of the algorithm.

The nested decision levels are clearly distinguished, and it

is easier to see the state of the system at each node.

The Structured Design Diagrammer functions as a design

aid to the programmer and a control aid to the manager. The

linear sequence of program instructions provides assistance

to the programmer in obtaining:

a) an optimal path to minimize the number of logic
test cases, and

b) equivalence comparisons between the proposed design
of algorithms.

The preparation of structured design diagrams has immediate

advantages to the user of a programming language: nested

decision levels can be clearly represented; main algorithm

flow is more visible; assumptions with respect to data can be

separated from the actual data provisions.

The Structured Design Diagrammer requires the source-

program input to be organized in the structured form. Viola-

tions of this structure are detected and flagged. This tool

may be used both to train programmers in the application of

structured-programming concepts and to enforce the use of

these concepts.

The uniform standards and conventions of the diagrams

reduce the effect of major differences in design approach

of different engineers, groups or organizations working on

t a common program. From a management point of view, the

automatic documentation produced by the Structured Design

Diagrammer represents a valuable mechanism for ensuring

communication between groups and for coordinating the program-

ming effort.

271

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

• . .f= , =

Structured Notation

The basic unit of a structured design diagram is the

"block". The "block" isa module which has a single entrance

and a single exit.

The algorithm flow of the program depends on the decision

structure, where the object of that decision can be thought

of as a submodule to the decision statement. The statements

used to make decisions are the basic structured statements

shown in Figure 6.3.5.3.

Inherent in this representation is the knowledge that any

decision statement performs the required submodule resulting

in the main program flow. This is not available with conven-

tional flowcharting techniques.

In addition, the structured design diagram notation

presents a more adequate representation of a CALL in that it

recognizes that the main purpose of any CALL is to manipulate

data flow. Associated with each CALL, therefore, is the data

module which presents the intersection of the data used by the

calling program and the called program (Figure 6.3.5.3).

The definition of the data module assumes that the overall

program structure has been completed and defined elsewhere.

For structured design diagram notation, only the location

(e.g., COMPOOL, local, etc.) and organization (e.g., matrix,

array, etc.) must be specified for each data element of the

data module. The program documentation in this form illustrates

the data flow and control flow to the reader.

272

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

STRUCTURED DESIGN DIAGRAMS

to enclose a logical statement

to enchlise a mathematical section

to iwply if p then q a d return in line
Ifp q

While p q while p then q then return in line

for p)d (I w vhere p a to b then
For p return in line
a tob

I 7C; a d,,). ,, " ithnic ;ection qi then return

in line .- here i-p and p= 1A2A3...An

A: _ __

the CALL and its accompanying Data

CAL. B 1 3 Module

Figure 6.3.5.3

Design Diagram Notation

273

j HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

!

•' _ - ..- ,=... . - ,

6,3.6 Interactive Debugger

An interactive debugging aid is another essential feature of

the interim ISDS/HOS time-sharing environment. The debugger

should be symbol-oriented rather than machine-oriented to

allow references to variables by name. The debugger should

allow the user to:

* suspend execution of his program (break).

* look at data or code.

e modify data or code.

9 perform transfers.

e call procedures.

0 trace the stack being used.

* look at procedure arguments.

* control and coordinate breaks.

* continue execution after a break.

* print machine registers.

Performing transfers and modifying code via the debugger is

for debugging only and does not constitute a reliability

issue for program development.

6.3.7 Interpreter

Certain missions, due to strategic requirements, place tight

restrictions on the size, weight and power of embedded computerfli systems. As a result, additional requirements are placed on

the software system.

By limiting the size of the target computers, common

routines (such as trigonometric functions, exponential

functions, matrix operations, etc.) might be precluded from

274

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

being placed more than once as in-line code. Instead these

functions would be placed in a common subroutine library.

For less tightly constrained systems, these subroutines would

normally be linked into the main modules and accessed via CALL

sequences. For more tightly constrained systems where suffi-

cient space cannot be allocated for the CALL sequences, the

common subroutines could be accessed via an interpreter.

A special in-line instruction invokes the interpreter.

The interpreter then processes the next instruction in

sequence to determine the next common routine to be processed

and the location of any input data. Control is then passed

to the desired common routine until completion, when the

interpreter again takes over. The next instruction in the

executing module is examined in a like manner until an in-line

instruction indicates that control is to be returned to the

executing module.

Through the use of an interpreter, the inclusion of

common logic in in-line code (wherever that code is used) is

eliminated at the expense of a slower execution speed, due to

the system overhead incurred because of the interpreter.

The interpreter, as used in the interim ISDS/HOS environ-

ment, will be designed in accordance with the ISDS/HOS concepts

and in particular, with the axioms of HOS. The unique feature

of the interpreter is that it will ensure, in real time, inter-

face correctness and reliability between the executing module

and the common subroutines.

The use of common subroutines via an interpreter is a

natural by-product of the HOS software-specification and design

process. In particular, in an HOS functional decomposition

or control map, any given node in the hierarchical tree structure

is not concerned with who invoked it but only with completing

its function. Upon completion of the given function, control

275

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

returns to the controlling node. In this sense, the inter-

preter is controlled by the executing function with the required

data for the interpreter being the instruction stream of the

executing module. The common subroutines are controlled by

the interpreter.

In ISDS/HOS the common subroutines could be considered

as primitive operations similar, for example, to an add

instruction. If the primitive operations were hardware, they

could be executed outside of the scope of the software. The

use of these primitive operations could result in a significant

savings in execution time over an interpreter, but at the

expense of added cost to the hardware.

A

:.

276

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 681-8900

~.--,1

..

7.0 CONCLUSION

277

PRECIDIM PA9*k*AMF MED

7.0 CONCLUSION

The Integrated Software Development System/Higher Order Software

has been presented as a formalized approach to the design and

development of reliable cost-effective computer-based systems.

Higher Order Software (HOS) is the formal systems theory that

has provided the foundation of ISDS/HOS. The methodology of

ISDS/HOS can be used to explicitly describe all systems includ-

ing hardware, firmware, software, and humanware, as well as the

dynamic environment within which these systems may reside. A

system specification was defined to be an abstract hierarchical

decomposition depicting the functional characteristics of a sys-

tem. A "function" has been described as a specific transforma-

tion from a particular input set to its related output set. A

function, its input set, and its output set comprise a system

module which is hierarchically decomposed into component sub-

modules according to a formal set of axioms. Functional decom-

positions that comply with the axioms of ISDS/HOS are guaranteed

to have consistent modular interfaces as well as explicitly de-

fined functional control, where control is a formally specified

affect of one module to another. Such an axiomatic theory is

unique to the ISDS/HOS methodology.

ISDS/HOS as described is comprised of the HOS theory, a complete

range of software development tools, and a system of standards
for developing computer-based systems. The principles of ISDS/

HOS are applied to all phases of system development throughout

all disciplines including design, implementation, documentation,

and management. The key features of ISDS/HOS that were outlined

include the standard management procedures, static verification,

flexibility in systems, and automated tools.

An important management procedure developed for ISDS/HOS is the

Assembly Control Supervisor (ACS) concept. This method estab-

lishes a focal point through which all official modules are fil-

tered, thereby providing increased management visibility and sys-

tems integrity.
279

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Static verification assures that an ISDS/HOS specification is con-

sistent with the axioms. This can be done automatically, without

execution of the system, through use of the Design Analyzer Tool,

which statically checks the software interfaces.

Flexible systems are necessary to allow smooth adaptability to

specification or requirement changes throughout the system de-

velopment. With the development of ISDS/HOS, a complete trace

of all repercussions resulting from a component modification with-

in the system is immediately available, automatically. Thus,

system modification can be implemented with a minimum of effort

and the elimination of all possible side effects is guaranteed.

It has been an integral concept of the ISDS/HOS methodology that

the tools and techniques are used to define and describe all as-

pects of the system throughout all phases of development. Thus,

common tools are used to define and describe the functions and

interfaces, the execution flow, the verification processes, and

the management processes of a system, providing a unified struc-

ture within which development can proceed in a standardized,

tractable manner.

The objective of ISDS/HOS has been to provide a mechanism to tie

together the entire system development process, incorporating

engineering standards developed from formal foundations in order

to eliminate many of the tradational sources of design and im-

plementation errors.

k 280
HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

BIBLIOGRAPHY

BIBLIOGRAPHY

ASC75 Asch, A., Kelliher, D.W., Locher III, J.P., Connors, T.,
"DoD Weapon Systems Software Acquisition and Management
Study Volume 1, MITRE Findings and Recommendations,"
Vol. 1, MTR-6908, May 1975.

BRA75 Bratman, Harvey and Court, Terry, "The Software Factory",
Computer, Vol. 8, No. 7, May 1975.

BEN76 Bender, G., "Structured Design", Hughes Aircraft Corp.,
Ground Systems Group, Fullerton, CA, 9 September 1976.

BOE72 Boehm, B.W. and Hailey, A.C., et.al., "Information Pro-
cessing/Data Automation Implications of Air Force
Command and Control Requests in 1980, Executive Summary",
Report SAMSO/XRS. 71.1, U.S. Air Force, 1972.

CEN75 "CENTACS: Information Brochure", U.S. Army Center for
Tactical Computer Sciences, October 1975.

CH057 Chomsky, N., Syntactic Structures, Mouton, The Hague,
1957.

DAH72 Dahl, O.J., Dijkstra, E.W.,'and Hoare, C.A.R., "Structured
Programming", C.A.R. Hoare, Gen. Ed., New York, Academic,
1972.

DAM76 Damon, Evmenios, "Domonic", NASA/Goddard Spacecraft
Center, Greenbelt, MD, 1976.

DAV76 Davis, C.G. and Vick, C.R., "The Software Development
System", in supplement to Proceedings for the 2ndInternational Conference on Software Engineering San
Francisco, CA, IEEE Catalog No. 76HI125-4 C, Oct. 1976.

DDR74 DDR&E Memorandum for Assistant Secretaries of the Military
Departments (R&D), "Computer Software", 20 March
1974.

DDR75 DDR&E Memorandum for Assistant Secretaries of the Military
Departments (R&D), "DoD Software Technology Research
Program", 14 October 1975.

DER75 DeRoze, Barry, "An Introspective Analysis of DoD System
Software Management", Defense Management Journal,
October 1975.

281

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 561-8900

it

GAN76 Gansler, Jacques, S., "Remarks", before the Polytechnic
Institute of New York, Microwave Research Institute,
Symposium on Computer Software Engineering, NY, NY,
News Release from Office of Assistant Secretary of
Defense, Washington, D.C., April 20, 1976.

GRI17 Gries, D., Compiler Construction for Digital Computers,
Wiley and Sons, New York, 1971.

GR176 Gries, D., "An Illustration of Current Ideas on the Devia-
tion of Correctness Proofs and Correct Programs", in
Proceedings of the 2nd International Conference on Soft-
ware Engineering, San Francisco, CA, IEEE Catalog No.
76H1125-4 C, October 1976.

G0075 Goodenough, J.B., "Exception Handling: Issues and a
Proposed Notation", Comm. ACM, Vol. 18, No. 12, December
1975.

GUT75 Guttag, J., "The Specification and Application to
Programming of Abstract Data Types", Univ. of Toronto
Technical Report CSRG-59, Sept. 1975.

HAM71 Hamilton, M., "Management of Apollo Programming and Its
Application to the Shuttle", The Charles Stark Draper
Laboratory, Cambridge, MA, Software Shuttle Memo #29,
1971.

HAM72 , "The AGC Executive and Its Influence on Software
Management", The Charles Stark Draper Laboratory,
Cambridge, MA, Shuttle Management Note 2, February 1972.

HAM73a , and Zeldin, S., "Higher Order Software Requirements",
The Charles Stark Draper Laboratory, Cambridge, MA,
Doc. E-2793, August 1973.

HAM73b , and , "Higher Order Software Techniques

Applied to a Space Shuttle Prototype Program", in Lecture
Notes in Computer Science, Vol. 19, Goos and J. Harmanis,
Eds., New York, Springer-Verlag, pp. 17-31, presentedat Program Symp. Proc. Colloque sur la Programmation,

Paris, France, August 1973.

HAM73c , "Design of the GN&C Flight Software Speicfication",
The Charles Stark Draper Laboratory, Cambridge, MA, Doc.
C-3899, February 1973.

HAM76a , and Zeldin, S., "Higher Order Software--A Methodology
To-Defining Software", IEEE Transactions in Software
Engineering, Vol. SE-2, No. 1, March 1976.

282

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

HAM76b , and , "The Foundations for AXES: A Specifica-
El--nLanguage Based on Completeness of Control",
The Charles Stark Draper Laboratory, Cambridge, MA,
Doc. R-964, March 1976.

HAMP76 Hampton, N. and Myers, G., "System Design Laboratory",
Naval Electronics Laboratory Center, San Diego, CA,
September 1976.

IBM IBM Corp., "Installation Management: HIPO--A Design
Aid and Documentation Technique", GC20-1851-1.

JAC76 The Jackson Design Methodology Handbook of Program Design,
INFOTECH International, 1976.

KOS75 Kossiakoff, A., Sleight, T.P., Prettyman, E.C., Park, J.M.,
and Hazan, P.L., "DoD Weapon Systems Software Management
Study", Johns Hopkins University Applied Physics Labora-

•tory, APL/JHU SR75-3, June 1975.

LED75 Ledgard, F.F. and Marcotty, M., "A Geneology of Control
Structures", Comm. ACM, Vol. 18, No. 11, November, 1975.

LIE73 Lieblein, Edward, "Problems in Software Development",
Keynote Address Presented to the Joint Services Electronics
Program Topical Review in Information Services, University
of Illinois, 16 October 1973.

MAL75 Mallach, Efrem G., "Emulator Architecture", Computer,
Vol. 3, No. 3, pp. 24-32, August 1975.

MIL71 Mills, H.D., "Top-Down Programming in Large Systems",
in Debugging Techniques in Large Systems, ed. R. Reistin,
Prentice Hall, New Jersey, 1971.

MUL72 Muller, E.S., "Shuttle Unified Navigation Filter",
Space Shuttle GN&C Equation Document No. 21, The Charles
Stark Draper Laboratory, Cambridge, MA, November, 1972.

MYE74 Myers, G.J., Reliable Software Through Composite Design,
Petrocelli, Mason and Charter, N.Y., 1975.

RAM75 Ramamoorthy, C.V., and Ho, Siu-Vin F., "Testing Large
Software with Automated Software Evaluation Systems",
IEEE Transactions on Software Engineering, Vol. SE-I,
No. 1, March 1975.

283

" HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

R&D76 R&D Technology Panel, "Proposed Computer Resource
Technology Objectives", as modified by DDR&E, July 12, 1976.

ROS76 Ross, Donald T., and Schoman, Kenneth, E., "Structured
Analysis for Requiremeats Definition" in supplement to
Proceedings of the 2nd International Conference on Software
Engineering, San Franciso, CA, IEEE Catalog No. 76H1125-4 C,
October 1976.

SHU66 Shubik, Martin, "Simulation of the Industry and the Firm",
in Computer Simulation Techniques, Naylor, T., et.al.,
eds., Wiley and Sons, New York, 1966.

SN072 Snowden, R.A., "PEARL: An Interactive System for the
Preparation and Validation of Structured Programs",
Sigplan Notices, March 1972.

STE74 Stevens, W.P., Myers, G.J., and Constantine, L.L.,
"Structured Design", IBM Systems Journal, Vol. 13, No. 2,
1974.

STR76 Straeter, T., "MUST (Multipurpose User-Oriented Technology)
Program Plan Preliminary", NASA/Langley Research Center,
Hampton, VA, 21 October 1976.

TE176 Teichroew, Daniel and Hershey III, Ernest Allen, "Computer-
Aided Structured Documentation and Analysis of Information
Processing System Requirements", ISDOS Project, Department
of Industrial and Operations Engineering, University of
Michigan, Ann Arbor, MI, August 1976.

WIR72 Wirth, N., Systematic Programming: An Introduction,
Prentice-Hal. Inc., New Jersey, 1972.

WU74 Wu, Y.S., et.al., "Report on the Navy Ad Hoc Software
Maintainability Committee", August 12, 1974.

YOU75 Yourdon, E., Techniques of Program Structure and Design,
Prentice-Hall, Inc., New Jersey, 1975.

. I

284

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE , CAMBRIDGE, MASSACHUSETTS 02139 (61) 661-8900

APPENDIX I

DEFINITIONS AND PROPERTIES OF CONTROL

ii

APPENDIX I: DEFINITIONS AND PROPERTIES OF CONTROL

We consider a system to be a hierarchy in which the elements

of the hierarchical system are the mathematical functions and

the defining relation of that hierarchy is that of control.

The elementary properties that we attribute to the notion of

control are stated as the axioms of Higher Order Software (HOS).

The rationale for these axioms are based on experience and

r analysis of interface relationships associated with the develop-

ment of large-scale, multiprogrammed systems.

The following symbols*:

V for every o, controlsIA, logical land' ~ ,does not control

V, logical 'or' interrupts

e, element of ~,does not interrupt

~,not an element of 3, there exists

~,such that Ia unique

C, subset of =,logical 'equals'

U, union of .,logical 'does not equal'

(P, empty set a-b, logical 'if a then h'

iff, if and only if

variables: e.g., x, y, x', y', A, B; function names: e.g., A

is a function name of y=A(x) where y and x are access variables;

and brackets: e.g., {}are used in the discussion below. In

addition, the following notation is also used:

For any symbol in which the negative is not specifically stated,
a vertical line "I" or oblique line "/" is drawn through the
symbol to indicate the opposite or negative meaning of that
symbol.

6N AI-i
HIGHER ORDER SOFTWARE, INC. $ 43 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-90

x A variable represents any element
of a class of objects. In partic-
ular, we distinguish those variables
whose values define the input space
or output space of a function to be
access variables. The same access
variable can be used to represent
more than one class of objects if
each representation refers to a
subclass of the same class.

{a,b} class of two elements, i.e.,
{xlx=a V x=b}

(a,b) the ordered pair, i.e., the class
{{a}, {a,b}}; alternately, the
class {{a,w}, {b,{ '}}}.

X{xlP(x)} access variable x representing
class of objects which satisfy

P(x)

any variables referenced in P(x)
other than x are considered con-
stant with respect to P(x), e.g.,
{xlx<z}

(yl,x 2 .. .XA) an ordered A-tuple element. The
A-tuple (xl ,xA..x) is an ordered
A-tuple in thait implies x1 , as
the first element, x2 as the second
element, xA as the last element.
Alternatively, for example, an
ordered 4-tuple implies if (a,b,c,d)=
(e,f,g,h) then, a=e, b=f, c=g, d=h.

! { (xl ,x2...A I

(xl,X 2 ...xA)e Q)' set of ordered A-tuple elements

(x.,x 2l' .XA)IS] an ordered A-tuple referring to
ES] module S

i an access variable referring to
X 1s] module S

AI -2

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139, (617) 661-8900

X={x1 ,x2 .. A

alternatively,

x. set X of A ordered Access variables,
j~jj ,..} i.e., X={IXl= 1X~x 2 V...x=x A}
(xl,x2...xA)

X FG hierarchical element identification
(see page AM-0 where the hierarchical
element is a set of ordered access variables.

X FG}~x {FF= 11 2 .. N)G

alternatively,

{XFG 1, G{ I 6 X2 , G* *XN, set of hierarchical elements at a
' given level of control (see page
AI-6)

(x1 fx(P(x 1)]I

X2f x 2 1 P2(x 2)

) an ordered A-tuple element of
fxAIA(AI access variables where:

{x1 IP1 (xl)1 is the class that
x1 represents; and,,

{x2 lP2(x2)} is the class that
x2 represents; and,

I2
{xAIAx) is the class that

AIPAXAlXA represents.

* AI-3

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139e (617) 661-8900

The following definitions are provided as an aid to under-

standing the aspects of control.

We define an A-dimensional input space by the values of the

A variables (Xl,X 2...XA). And we define a B-dimensional out-

put space by the values of the B variables, (ylY 2 ...yB). An

element of the output set, pEP, is a particular point for

(YlYa...YB).

A function, F: Q-P or P=F(Q), is a mapping from the input set,

Q, to the output set, P. Each element of the input set is

expressed as a unique element of the output set. That is, the

domain of the function is Q and the range of the function is

P such that F={(q,p)J-V-q4EQ 3! p, peP}. p=F(q) has the same

meaning as (q,p)E F whereas P=F(Q) has the same meaning as F.

When we refer to an element in the hierarchy other than the

topmost, or root, element, the function, F, is defined with

reference to the particular access variables associated with

that element.

We define a controller, the module, to be a collection of

mathematical functions whose interface properties uniquely dis-

tinguish each element of the collection. If, for example, A

and B are modules; then, A o B is read "A control the invocation

of B." We say B is a function of A. The symbol for control is

also used when describing a module with respect to other

aspects of the relationship between the module and the hierar-

chical elements it controls. For example, if A is a module and

X is a set of input variables of B, then A o X is read "A controls

the access rights for the set of input variables, X, of B."

The module exists at the node just immediately higher on the

1 tree (or hierarchy) relative to the functions it controls.

Each node (any point at which two or more branches intersect)

of the tree represents a unique point of execution of a function.

Each node and all of its dependents represent the unique tree

structure, T.

AI-4 C

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE o CAMBRIDGE, MASSACHUSETTS 02139o (611) 661-8900 j

With respect to control relationships, the elements of the

lowest level of any tree are referred to only as functions.

The highest node of the entire tree structure is referred to

only as a module. The module controls functions by invocation,

by assignment of access rights to the input and output sets,

and by the determination of the ordering of the functions. The

control system implements the functional decomposition of the

controller function. The functions at the lowest nodes of a

given system specification can be further decomposed if these

functions are nonprimitive functions.

When the choice of subfunctions is limited so that at least

one subfunction implies the same total set of ordered pairs

as that of the controller, we do not decompose that function.

For example, in Figure AI-1, C cannot be decomposed.

(Yl 11Y2) =C(y)
fylly l zly2 Y

(y= 1 y

(Yl'Y 2 =f(y','y2) Y, {yi yi=y} {y'2 y =y)

Y1 =f(Y 1) Y2 =f(Y)

FIGURE AI-1

In the above case, function C is primitive. Therefore, CK controls the empty set with respect to function, input variables,

output variables and dependent trees.

AI-S

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

DEFINITION: The formal control system (Figure AI-2)

is one in which each module, S, has a unique

iden tification

S E[P =F (Qrimi n m.i n mi ni mi)

nim i defines a particular level of control in

which i is the nested level of the module.

i=l implies the level directly below the top

node (or root of the tree). At each level,

there is a set, N i, of N node positions such

that Ni={l,2...N} and niE N. n i is the node

position (from the left) relative to its most

immediate higher node, m i . mi is the recursive

relationship mi=n i- 1 ,m i-1 defined for i>2. If

i=2; mi=ni I. If i-l; ni,mi=ni,{'oj. If i=O;

mi

i
SHenceforth, ni,mi will be represented as himi , but

should be interpreted as n i ,mi .

$' A1 -6

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE ° CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

cr

CE'L

a-r

*,
-C,. " .,,.-,.

,

(y

CCEi "l*, I

p

I, - II~

sy 6-

S
\

fit

t . i
A1-

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139- (617) 661-8900

DEFINITION: Invocation provides for the ability to perform a
function. We perform a function when a particular element
of the input set produces the corresponding element of the

output set. A function within the hierarchy is valid if it
contributes in some way to the performance of the controller's

function. If A and B are modules, we say

A invokes B iff (q,p)[A](q,p)[B]

axiom 1: The module, Snim' controls the invocation of the set of

valid functions on its immediate, and only its immediate,

lower level, IF ni+ln imi That is:

- V-, -n i+ (N i + T! Sn in . ' [(S n im o F) A ((n m n n A, - S n F)1[4- n :m n i n rnim n~j i+1nimi nim i Fnjmr

Thus, the module, S n , cannot control the invocation of

functions on its own level.

It also follows that the module, Sn , cannot control the
nimi

invocation of its own function.

•I

:1 1

IAI-8

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

DEFINITION:

Responsibility - If A is a module, A is responsible for

elements of the output set if for every

given element of the input set

q[A] ' P[A]

axiom 2: The module, Snim., controls the responsibility for elements of the

output space, of only Pn.m.' such that the mapping
1 1

F (Q) is Pn . That is:
n~mi n imi nim 1

-,jV-hnim i
3 ! Snim i , ((Snm 0 Pnimi A ((n m .j *n m) - Sni m i Pn

) I

Thus, there must not exist any member of the input space

for which no member of the output space is assigned. For,

if this were not the case, we would have an invalid function.

I.

Li

AI-9

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 66141900

I "J ' -I Ii'll ' ...

DEFINITIOI: An access right provides for the ability to locate

an element of a given set of variables, and once located,

the ability to reference or replace a value of said element.

If vlv 2. .vn are values associated with access variable w,

i.e., W{wlw{vl.v 2- v n} } and V represents a class of two

elements such that vc is established as the "chosen" element

of the n elements of w

V = {vc,{v ,{vlV 2...v n-vc}}

Then, if A and B are modules, A and B have access rights to

variable w iff

W [A] ' vc A w[B] ' vc

axiom 3: The module, Snmi, controls the access rights to each

set of variables, lY n , whose values define the
ni+l n imi

elements of the output space for each immediate, and only

each immediate, lower level function.

VN ! i (S Y)A ((nm. nn -s 0 Y)

i+1 n m . i m ni ni1 n j)A(i+nimi nim i n mj

NOTE: If any two modules, S and Snm. require the
n- -n.m.11 1 J 3

same function formulation, the same set of computer resid-

ing instructions can be used for the functions as long as

? Ithe access rights of the variables are controlled via

axiom 3.

Al- 10

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

. Ww

axiom 4: The module, S controls the access rights to each
nim

i

set of variables, IXnn 1, whose values define the

elements of the input space for each immediate, and only

each immediate, lower level function.

-%-ni+l r= Ni + 1 3! Snimi, n S nml } A ((n ilj ni.m. xn.m

Thus, the module, Snm. cannot alter the members of its

own input set, i.e., the access to the elements of the

input set of Sn m cannot be controlled by Sn .

DEFINITION:

Rejection - If A and B are modules, A rejects invalid input

elements of A iff

q q[A) = ' - P[A (P, or,

q q[A] + (P'q) (B] 'P[A] "

axiom 5: Thie module, Snimi, controls the rejection of invalid elements of its

own, and onLy its own, input set, Q nim. That is:

',-j V-nm. 3'S . (S o Q)A ((nm m n -S Q Il
imi " " ni i , nim i Qn, M i * nmo nrm!

t ~ ~~HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. 67 6180

DEFINITION: Ordering provides for the ability to establish a

relation in a set of functions so that any two function

elements are comparable in that one of said elements pre-

cedes the other said element. If any two elements in {F}

are comparable with respect to relation, R, this implies

(F,F) E R - F c F

(F1 ,F2) e R A (F2 ,F1) I R F1 = F 2

(F 1 ,F 2) e R A (F2,F3) e R - (F1 ,F 3) E R

F1 1 F2 ,F 3 } is well-ordered.

axiom 6: The module, Snm , controls the ordering of each tree,

ITni i , for the immediate, and only on the immediate,

lower level.

j 19n1 Ni+ 1 3! S
nimi, [(Sn o Tni+nim) A(nm. n nii -S

Thus, the module, Snm.0 controls the ordering of the

4 functions, the input set and the output set, for each node

of IT Im.ii i+lnim i

AI-12

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

I

APPENDIX II

DERIVATION OF THE PRIMITIVE CONTROL STRUCTURES

i.*
I

I
I C

'1

.1
I

APPENDIX II: DERIVATION OF THE PRIMITIVE CONTROL STRUCTURES

Proper decomposition implies that each subfunction is necessary

and that the set of subfunctions is sufficient so that the

controller function is established in an unambiguous manner

(cf. Appendix I).

When a node of a control map (c.f. Appendix I) is to be decom-

posed into subfunctions, we consider the input data type X,

the output data type Y, the input set Q, the output set P, the

data structure for X, {xl,X 2.. XA , and the data structure for

Y, {yly 2 .. yB}.

Consider a particular input set, Q, and the corresponding set

of input variables, X. We can represent the input set, Q, as

a set of ordered A-tuples

SXl,'X2...XA)I (XlX2...XA) (Q} (1)

Alternatively, we can represent the ordered A-tuple itself as

a hierarchy of ordered pairs

(xl,x 2 ... XA) = {{X 1) ,{xl,(x 2 ... xA)}} (2)

Using an alternate formulation for ordered pairs such as

S{{x 1 , (} , { (x *.. .x A) I,{ }}} (3)

leads to an abbreviated form for an ordered set of variables

{xlX 2.. .xA } where xI is first, x2 second, xA is last.

In a similar manner, we can represent a particular output set,

P, and its corresponding set of output variables, Y. As a data

type, we refer to the set of input variables as X. As a data

HAII -I

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

r
structure, we refer to the set of variables {xl,X 2 ... *XA as a

data structure. When we refer to the data type, X, we partition

elements of Q for decomposition. When we refer to the data

structure, X, we partition elements of X for decomposition.

The derivation of primitive control structures is based on

a) decomposition as a complete formulation of a function; and,

b) preliminary properties of control structures including single

assignment and single reference. The proof is then based on

showing the validity of a decomposition level with respect to

its controller. Those control structures that are derived from

combinations of X and Y represented by (1) or (3), and shown

to be consistent with the HOS axioms, are defined as the primitive

control structures.

Decomposition as a Complete Formulation of a Function

We establish the necessity of investigating X and Y of one

control node represented by (1) or (3) at the subfunction

level.

Suppose the data type X is not represented at the next most

immediate lower level of decomposition as X, as Q distributed

among the subfunctions or as a data structure for X distributed
among the subfunctions. Examples of such a possibility are

seen in Figure AII-l.

a: b:
yf0(x1 2) y 3 2)

t Y=f (g) g=f 2 (xl) Y=f 4 (g) gfs(X 3)

fFIGURE AIl-1

AIT-2
HIGHER ORDER SOFTWARE, INC * 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-890

&oh

From the definition of invocation and the property of control

of invocation (axiom 1, Appendix I), a value of the input set

of a controller must influence or contribute to the values of

the input set of its subfunctions. In addition, a module must

control access rights to the variables of a subfunction (from

axiom 3 and axiom 4). This implies that if a variable is used

by a controller and by a subfunction, the same value is used by

both the controller and its subfunctions. In Figure AII-la,

we violate axiom 1 in that for various x2 values, y always has

the same constant value for a particular value of x1 . This

means that if the mapping were different for f0 of Figure All-la

due to different values of x2, the correct mapping could not

be expressed without x2 appearing in a subfunction. In Figure

AII-lb, we violate axiom 4 because there is no way to establish

the access rights to f5 from controller f3 ,

Likewise, a similar deduction can be established for output

variables and values, for there must be a mechanism to access

an element of the output set. Thus, to conform to the axioms

of HOS, we must achieve decomposition as a complete formulation

of a function. To do this, we must investigate representations

of X and Y of a controller as somehow being maintained at the

subfunction level by data types, data structures, and sets of

values.

Update Functions

It is helpful to establish the proof that a given variable cannot

be both referenced and assigned by the same function before'1 establishing the proof of the primitive HOS control structure.

Lemma 1 and Lemma 2 are used to show the proof of Theorem 3,4.1

which establishes the no update property of an HOS system.

AII-3

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Lemma 1: If x is a variable of a tuple of the input set at

level mi, then x cannot be a variable of a tuple of the

output set at level nim.

a) By the definition of decomposition as a complete

formulation of a function, a variable of the input
set of a controller must be accessed as an input

variable of a subfunction.

b) Consider f0,flif2 as seen in Figure AI-2. The

module, So, corresponding to function f0 does not

control access to x because access to x via fl is

not unique (i.e., there are two ways for fI to get

x). This is in direct violation of axiom 3 and

axiom 4.

Y=fo(x)

y=f 4 ()* fl(x) x=f2 (w) x=f 3 (x)

FIGURE AII-2

If f0 gave f1 access to get x from the output set

of f2, we get an invalid function for f This is

in violation of axiom 1. For no matter what

element of x is input to f0 , that input is ignored.
I

If we do not use f2, f2 is extraneous and must be

removed via Theorem 1.2

Thus, we have shown that if x is referenced by a

given controller, then x cannot be referenced and

assigned by different subfunctions of that controller.

The brackets do not imply the empty set; the notation is used only
for convenience of illustration.

AII-4

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

c) Consider f0 ,f3,f4 as seen in Figure AII-2. If

f3 assigns x, So 4 x because, again, there are two

ways for f3 to get x.

if f0 gave access to f3 to use an element of its

output set to obtain its own input element, we get

an invalid function for f0 " For again, the original

input element for f0 is ignored.

If f0 provides access to f3 for x, x would have to

be an input variable to another function such as

f or be extraneous.

If x is used by f4, then there are two ways for f4

to get x and again, SO 4 x.

Thus, we have shown that if x is referenced by a

given controller, then x cannot be referenced and

assigned by the same subfunction.

Conclusion: Since we have established that a variable

of the input set of a controller must be referenced

by one of its subfunctions (via a) and that input

variables cannot be referenced and assigned by

different subfunctions (via b) and that input vari-

ables cannot be referenced and assigned by the same

subfunction (via c), then we establish that x

cannot be assigned by a subfunction if it is refer-

enced by its controller.

Lemma 2: If y is a variable of a tuple of the output set at

level mi, then y cannot be a variable of a tuple of the

input set at level nim. Proof is similar to above.

IAII-5

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE. MASSACHUSETTS 02139' (617) 661-UOO

Theorem 3,4.1 (revisited from (HA/M73b)) A variable of

the output set of a function cannot be a variable of a

tuple of the input set of that same function.

Consider Figure AII-3. Here, Z is a local variable in

y=f0 (x)

Y=fl(t) e=f 5 () /=f2(Z) f3(t) f4 (x)

FIGURE AII-3

that it does not appear in the input or output of the

controller f0 1 If t is used as input to two functions

(c.f. f1 and f3) or as output of two functions (c.f. f5
and f2) or as an update function (c.f. f.) used in combina-

tion with f1 or f3, the ordering of the subfunctions is

not unique and the module corresponding to f0 does not

control the ordering of its subfunctions. This is in

direct violation of axiom 6. Using this consideration,

Lemma 1, Lemma 2, the proof of Theorem 3,4.1 can be shown.

Mutually Dependent Functions

Mutually dependent functions are those functions in which the

output set of one function is the input set of the second

function, and the output set of the second function is the input

set of the first function.* We use the results of the following

theorem as an aid in establishing the proof of primitive control

structures.

See footnote page AII-4

Mutually dependent functions can be specified via the single
assignment approach using recursive operations and different
variables (c.f., discussion on single assignment which follows).

AII-6
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

A

Theorem: If two variables are local to a given control level

then, mutually dependent functions cannot be specified

at the same level using the same two variables.

Such a situation is represented in Figure AII-4. Here,

Y~f0 (x)

Z=f 1 (w) w=f 2 (z)

FIGURE AII-4

the order of fl with respect to f2 is not unique. This

is in violation of axiom 6. The module corresponding to

function f0 does not control the ordering of the dependent

trees corresponding to functions f1 and f2 '

Single Assignment Property

The no update property of a control structure, the constraints

imposed on mutually dependent functions, and the restriction

to single-valued functions (c.f. Appendix I) imply that a

variable is assigned only once per function performance. This

property, single assignment, will also be used to derive the

primitive control structures.

Single Reference Property

Single reference implies that an input variable of a controller
node is accessed as an input variable of a subfunction only
once per function performance. This restriction is based on

the controlled ordering imposed on a set of subfunctions via

axiom 6. Although ordering with respect to invocation can often

AII-7

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900
:'AI -

be ascertained from the data flow relationships, it is not

always apparent that ordering with respect to access time or

storage access or execution can be specified without the single

reference approach. Such ordering relationships must be defined

by a controller node. For example, consider Figure All-S.

Suppose f completed the calculation of h and f2 is initiated.

Y=f 0(xl ,x 2)

Y=f 4 (k,x 2 ,h) k=f 3 (g,x1) j=f 2 (h,x 2) (h,g)=fl(x1)

FIGURE AII-5: Implications of No Single Reference Property

When g is calculated, can f3 interrupt f2 if these functions

are performed in a restricted implementation such as multi-

programming? The answer is not apparent from data flow con-

siderations. Since an arbitrary decision is required to approach

the ordering relationship, the specification of f0 is incorrect.

Suppose, on the other hand, that f and f2 have been completed.

Is the ordering with respect to storage access defined totally?

Again, without a single reference property as seen in Figure AIT-5,

we need an arbitrary decision as to saving space for variables

h and g (we do not know if h and g will be used in future calcula-

tions). Suppose, for another example, the inputs to f3 are

destroyed by some outer system problem. How can we determine

how far to backtrack? Again, the single reference property would

t jsupply the proper information to each function in order to totally

specify the backtrack ordering.

In order to specify total- or well-ordered relations among sub-

functions, we must impose the single reference property on the

input variable of a given set of subfunctions.

'4 AII-8

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

PRIMITIVE CONTROL STRUCTURES FOR HOS

In the following proof, we can assume, from the previous dis-

cussion, that an HOS control structure has at least the follow-

ing properties:

a) no update functions using the same variables

b) no mutually dependent functions

c) single assignment property

d) single reference property

e) the elements of the input set of the controller,
and the elements of the output set of the
controller are to be maintained in some form by
its subfunctions

f) at least two subfunctions are necessary to
decompose a function

The proof that a primitive control structure is valid for an
HOS system rests partially on the definition of a primitive

control structure. Such a definition is derived from the
concept of a construct class.

A construct class represents a function decomposition, the

subfunctions of which can only be regrouped recursively.
Figure AII-6 illustrates two possible regroupings of the same

function. Note that the regrouped subfunctions do not change

in any way. The most primitive level of a construct class
decomposition is a primitive control structure. It is always

possible to regroup the nonprimitive level as a nested hierarchy

of primitive control structures.

IIC C

1 2 3 C 3

1 2

FIGURE AII-6: Recursive Regrouping of C

AII-9

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE. MASSACHUSETTS 02139. (617) 661-19

Case 1:

XA m Xm

QA{AIAN,m= QM. ;

Y{B IB E Ni } -mi =Ymi

PB { B E.N } mi = p m ; and, A B

Q{BIBENi},mi mi

[n this case, Xm.i appears directly in one subfunction at

level i, relative to node mi. and Ymi appears directly in

another subfunction at level i, relative to node m i . By

eliminating the combinations assumed invalid from the control

structure properties listed above, we are left with the

following considerations.

Consider Figure AII-7. If Case 1 is valid, we must assume that:

1) x is input to one and only one subfunction; and, 2) a local

variable is always output of one and only one subfunction and

input to one and only one other subfunction.

y=f0{x)

y=f2 z z=fl(x)

!FIGURE AII-7: Composition as a Primitive
i Control Structure

~Figure AII-7 is considered to be the primitive control structure,

~composition. The canonical form of this primitive control

structure has two subfunctions as seen in Figure AlI-7. Access

: to x and y are provided unambiguously in compliance with axiom 3

and axiom 4. In addition, the ordering of the subfunctions is
F.: unique in compliance with axiom 6. Each element of the con-
b: : troller's function is maintained by the subfunctions in
~compliance with axiom 1, axiom 2, and axiom S.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTMIENUlE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Case 2:

(XA {AIAX. i)+(X 1 = X) *

[CICCN 1 mi i }

C m(YB{BIBN m i #)(YCICCN ,i Y)

(Pc{
(P~ i'm Pm) and,
L{CICCNIi P m' ad

A B

(yly 2'y 3)=fO(xlx 2) (YlY 2)=fO(xl x2)

(yly 3)=fl(x 2) Yzf 2 (x1) yIf(x)l Y2 =f2 (x2)

FIGURE AII-8 FIGURE AII-9: Class Partition
as a Primitve Control
Structure.

Consider Figures Al1-8 & 9: In each case, by performing both
subfunctions once, we obtain an element for (x1 ,x2) and (yly 2).

But, consider Figure AII-8. The order of the ordered pairs is not

unique in that the order for (xl,x 2) conflicts with the order
for (yly 2 ,y3). Example: Suppose f, and f2 had to contend

for the same resources. Ultimately, there is no way to uniquely

determine the ordering of these functions. However, if we restrict

such a structure as in Figure AII-9, in which a one-to-one corres-

pondence exists between the ordered (xl,X 2) and the ordered (ylY2),
then the "first" subfunction can always be ascertained from the

order associated with the input and output variables of the controller.

Thus, Case 2 is a valid primitive control structure under the restric-

tion that if fl is first, x1 is first and yl is first such that

ylof,(x1) and if f2 is second, x2 is second and Y2 is second such that

y 2= f 2 (x2). Such an ordering is established by the controller and maintained

by the subfunctions (Figure AII-9).

All-1I
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 061400

Case 3:

X. ZXmA {AlAEN }'mi m

QA{AJAE-N.' m i Qmi

PBBBE}m P and, A'B

Case 4:

x
A {AIAC-N }Pm i m1

QA (A I A CN } ,mi

{BBP'~ P and, A B

Yf0 (X) Y--f0 (X)

yf (Xx IX>8 }) Y=f(x{xix<io}) y Xflx{i>10}) Y--f2(xfxlx<lO})) ~3xxx1

FIGURE AII-10

ICase 7 and Cae8 aral does not appear directly in

tesubfunction. Due to the function definition for a control
node, there inogerlmechanism to restrict P B ,m S P

AII-11

HIGHER ORDER SOFTWARE, INC. 9 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 861-890

Thus, we refer to all of Y in each subfunction and can then

consider Case 7 and Case 8 together.

Consider Figure AII-10: In Figure AII-10a, we see that if x

is not partitioned, there is no way to provide a unique ordering

of the subfunctions in those cases where the element of the

input set appears in both subfunctions. In addition, the parti-

tion is restricted so that the input variables of the subfunction

cannot represent the same set of elements (c.f., Figure AII-10b).

Again, a unique ordering of subfunctions is not possible under

conditions such as presented in Figure AII-10b.

It follows that Case 7 and Case 8 are valid primitive control

structures under the restriction that Q is divided into a parti-

tion, C, of Q such that Q=Cj, c c C, and Q= . c and for two

sets c. c =W.

y=f 0 (Xmi

{xmi IXEmi Q}

Y-f(XA,m) Y=f(xB,m.
{XA,m I XA,mi=- c} {XBmiIXB,mi (C-c) }

FIGURE AII-11

Set Partition Primitive Control Structure (C = Q and A * B where

ArN i and BN i)

AII-13

HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 61-900

,p

Trhe canonical form of the primitive control structure has two

sub-functions to restrict f 0 from controlling itself. Access

to a particular element of the input set is unambiguous. Sta-

tically, the ordering of subfunctions is equal. Dynamically,

the ordering is uniquely determined by that subfunction which

has the element of Q chosen at a higher level.

Case 5:

XA fAfAEN. 'm i m.i

QAA I'N}mi QM.
1

~B{BIBEN}Imi P m and, A 4~B

a: Y~ ~)b: y=f0 (X)

yyf0(x

Yfyly<a= fl1(Z) Z=f 2(x) Yfyjy>a}=fl()**Yfyly<alf2(x)

FIGURE All-12

II(a) Consider Figure AII-12 To account for all of Y m elements,
we need at least two subfunctions that assign Yn elements.

where PB Pm~ P~ means PB CP A P +Pm
B{BIBEN} 1 i {BIBEN} In B{TBIBEN} M

in general, this can be any relation, R(y).

See footnote page AII-4.
AII-14

*HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

(b) Consider Figure AII-12bto respond to the requirement of

Case (a): If f1 has x as the input variable, we have

violated the single assignment property (here such a

violation results in a multivalued function). If fl

has the output variable of f2 as input, we violate the

no update property (likewise, a vilation of this nature

also would result in a multivalued function). Case 5 is

invalid for HOS, and thus,cannot be considered a primitive

control structure.

Case 6:

XA{A= x.

QA{AIAEN Mi QM

(YBB i Ym)-(Yc Y)-

B BI -)m Mi C C C C Ni P' i mi

=~~1 ,m) ;and,
(P C{cIcCNi} I'M Pmi ad

A B

("1 ,y)f(x)

yl=fl1W Y2 f2 (x)

FIGURE AII-13

Consider Figure AII-13: The case remaining (after eliminating

those control structures that violate the general properties

AII-IS

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

V I i " f - - i 1 -" " - ". . . w , ,. 7 .:. , _.

of control structures) as seen in Figure AII-13. Case 6 proves

to be invalid by the violation of the single reference pro-

perty. (Here, the violation implies an implicit data lock for

x in order for f1 and f2 to attempt to access x concurrently.)

Case 6 is invalid for HOS, and thus, cannot be considered a

primitive control structure.

Case 7:

YB 1 ,m i Ym.

PB{ B JC
B Ni }mi Pm.

I

C
(XA{m = Xm

{A I AENP M i mi {CfCCN i }' 1 1

(QC{cICCNi},mi = Qm); and,

A B

Y=f0 (xl,x 2)

y=fl(xl) y=f 2 (x2)

FIGURE AII-14

:i :1 (a) Consider Figure AII-14: In this case, to get one element

for (xlX 2), both subfunctions must be performed. If one

subfunction assigns all y elements, then the other sub-

function is either extraneous or invalid. Case 7 is invalid

for HOS, and thus, cannot be considered a primitive control

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE * CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Case 8:

Y m

B B JBr=N1 i *

(XA AIAENiI9 X ,m = -X fIC X)4i

(QcCICN 9m~ i QMi and,

A~ B

Y=f 0 (x1 ,x2)

Y~yjyia}=f1(x) Y{ylyka}=f2(x2)

FIGURE AII-15

As seen for Figure All-iS, Case 8 is similar to Case 7 in that

we always obtain an extraneous or invalid function. Case 8 is

invalid for H-OS and, thus, cannot be considered a primitive

control structure.

All-17

rHIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139. (617) 061400

Case 9:

XA {A 1 =X

QA{AIAGNi},mi Qmi

(YB{BIBGNi,m i m . C{CCCN' m i = Ym.

(PCc Pm. and,

A B

(lI'Y2) =f0 (x)

Yl f1(x {x xia Y2=f2(x{x x a})

FIGURE AII-16

Consider Figure AII-16: Here, we cannot get a complete out-

put element for any element of x. Case 9 is invalid for HOS,

and thus, cannot be considered a primitive control structure

To summarize thus far, the primitive control structures in

Table AII-1 have been established.

AII-18

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

LIM ,

CY,

II II

U U Z Zu u W W

U U -

: U U ,..._ 0:

,.1.p -4 .4I•

0 . E,-
It z Uz

U'% UW W
.-4 .-q

- a- w u - 0
0'0

Xa- 0 r= 0' r=

r. r-4. "4"4 -

"4 ,4
z z 2 z r.4 .'4.

zz z
< Wo W: m . w w .. w w

'- < (Y)

>.. 'iLL < LL

go (A an
U U " 'a-" CU-- U

ci u1 A.

Z 0 z

a. 0-

w

L

AII-19

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

The following combinations of primitive control structures

can be used as abstract control structures for building a

system specification. Note that we could not show set

partition and class partition on one level (Figure AII-17)

because to do so implied the need for local variables.

Since local variables imply composition, there is no way to

obtain set partition and class partition on one level without

composition. In each of the cases shown, the combinations

can he regrouped into the original three primitive control

structures.

(Yl'Y 2)=f(x)

Yl=f(X{xjx<a}) Y2'f(X{xlx>a})

FIGURE All-17: An Invalid Combination of Set
Partition and Class Partition

All-Z0

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

IAamples of Valid Abstract Control Structures Derived from Composition

a-iid Se't P1artit ion Primi tivcs.

vf x) y = f (X)

Z) =zt)(xx<l) Z= 3(xfxlxla}) 4f(z zf(X)

z=f 2(xjxix<a1) z= F3 (xfxj- al)

v~ f(x)Yf r(x)

)- (fzz:l z= r,(x) yf 4 (x) z=r I(x)

Yf2(zfzlz<al) v=f3)(z f zV.I1))

Y= f yf({ (> 3-K

y= f(g) gf 3 (xfxjx<al) yf (h) h=f 4 (Xxxx>al)

FIGURE AII-18

AII-21

HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

Examples of Valid Abstract Control Structures Derived from Composition

and Class Partition Primitives

a:
(yl,y2)=f0(x1 x2) (y1,y29=f 0 (x1,x2)

(Y')=fl (zl, Z2) Z1 f2(xl) Z2=f3(x2) (YlY29=fl(zlz2 (Z1,z2)=f4(xlx 2)

I '=2(xl)2

b:

y1 =f2(z1) Y2= f3(z2) (z1,z2)=f1 (x) (Y1,Y2)=f4(z1,z2) (z1,z2)=fl(x)

y=f2 (Z1) y,=f (Z-,)

(Yl1 Y2)=f0(x1 ,x2) (Yl1 Y2) f0(x1 x2)

y1~1(1) 2= 2(z) 1= 3(x,) z2=f4(x2) yf 5(x1) Y2 f6 (x2)

y1 =fl(zl) zl=f 3(xl) Y2=f9 (z2j z2=f4(x.))

i~.FIGURE AII-19
~ I AII-224HIGHER ORDER SOFTWARE, INC. *843 MASSACHUSETTS AVENUE *CAMBRIDGE. MASSACHUSETTS 02139. (617) 661-8900

