

AFGL-TR-76-0288

Reprinted from Preprint Volume: Seventh Conference on Aerospace and Aeroneutical Meteorology and Symposium on Remote Sensing from Satellites. Nov. 16-19, 1976; Nelbourne, Fla. Published by American Meteorological Society, Boston, Mass.

A MODEL FOR ESTIMATING JOINT PROBABILITIES OF WEATHER EVENTS

Iver A. Lund Donald D. Grantham

Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731

INTRODUCTION

1.

Meteorological satellites have made it possible to obtain information on areal coverage and joint occurrences of meteorological events not heretofore possible. However, a long record of observations is required to derive a climatology of joint occurrences. Routine hourly surface weather observations may be sufficiently concurrent to estimate joint occurrences among sites where such observations are taken. Satellite observations are especially useful in areas where surface observations are unavailable or unsuitable.

Unconditional probabilities of weather events, such as precipitation, freezing temperatures, overcast skies, etc. can be estimated with considerable accuracy from available records. However, the probabilities of such events occurring jointly at two or more locations is often difficult to estimate if the events are not statistically independent. Joint probabilities of a weather event can be estimated either from relative frequencies obtained directly from the data or from a model. Large samples of data must be processed to obtain relative frequencies that are good estimates of true probabilities. Models eliminate the need for data processing to estimate joint probabilities and, in some cases, they can actually provide better estimates of true probabilities than those obtainable from data samples, except in those cases where the data samples are very large.

·2. THE MODEL

2.1 Two-site Joint Probabilities

Let us denote the probability that a weather event, W, will occur at site A by $P(W_A)$, at site B by $P(W_B)$, and jointly at the two sites by $P(W_AW_B)$. We know that

 $P(W_{A}W_{B}) = P(W_{A}) P(W_{B})$ (1)

if the events at the two sites are statistically independent.

We also know that

$$P(W_{a}W_{p}) = P(W_{a}) = P(W_{p})$$
(2)

if the events at the two sites are perfectly correlated and mutually dependent.

If we denote the absence of the event at site A as $P(\overline{W_{A}})$, and at site B as $P(\overline{W_{B}})$, then $P(W_{A})=1-P(\overline{W_{A}})$ and $P(W_{B})=1-P(\overline{W_{B}})$, and we can write Eq. 1 as:

$$P(\mathbf{W}_{\mathbf{A}}\mathbf{W}_{\mathbf{B}}) = \left[\mathbf{1} - P(\overline{\mathbf{W}_{\mathbf{A}}})\right] \left[\mathbf{1} - P(\overline{\mathbf{W}_{\mathbf{B}}})\right]$$
$$= \mathbf{1} - P(\overline{\mathbf{W}_{\mathbf{A}}}) - P(\overline{\mathbf{W}_{\mathbf{B}}}) + P(\overline{\mathbf{W}_{\mathbf{A}}}) P(\overline{\mathbf{W}_{\mathbf{B}}})$$
(3)

Eq. 3 applies only in the case when the events are statistically independent. For the case when the events are not statistically independent, the joint probability can be estimated with the expression

$$\widehat{P}(W_{A}W_{B}) = 1 - P(\overline{W}_{A}) - P(\overline{W}_{B}) + P(\overline{W}_{A}) P(\overline{W}_{B})^{\wedge 1}$$

$$P(\overline{W}_{A}) \ge P(\overline{W}_{B})$$

$$(4)$$

When there is perfect correlation, $K_1=0$ and Eq. (4) reduces to Eq. (2). When the events are statistically independent, $K_1=1$ and Eq. (4) reduces to Eq. (3). Nearly perfect correlation might be expected when the sites are very close to one another. Statistical independence is approached as the distance between the sites becomes large. Obviously K_1 is a function of the distance between sites A and B.

2.2 Three-site Joint Probabilities

When weather events are statistically independent, three site joint probabilities can be expressed as follows:

$$P(W_{A}W_{B}W_{C}) = \left[1 - P(\overline{W}_{A})\right] \left[1 - P(\overline{W}_{B})\right] \left[1 - P(\overline{W}_{C})\right] (5)$$

When the events are not independent they can be estimated with the following expression:

$$(\mathbf{W}_{\mathbf{A}}\mathbf{W}_{\mathbf{B}}\mathbf{W}_{\mathbf{C}}) = 1 - P(\widetilde{\mathbf{W}}_{\mathbf{A}}) - P(\widetilde{\mathbf{W}}_{\mathbf{B}}) - P(\widetilde{\mathbf{W}}_{\mathbf{C}}) + P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}}$$

$$+ P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{1} + P(\widetilde{\mathbf{W}}_{\mathbf{B}}) P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{1}}$$

$$- P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}} P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{2}}$$

$$P(\widetilde{\mathbf{W}}_{\mathbf{A}}) \ge P(\widetilde{\mathbf{W}}_{\mathbf{B}}) \ge P(\widetilde{\mathbf{W}}_{\mathbf{C}})$$

$$(6)$$

The K_1 values are obtained from the same function as those used in Eq. (4). The distance

This paper has been submitted for publication in the Journal of Applied Meteorology.

141

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION between sites Å and B, \overline{AB} , is the only distance required for finding K₁ in Eq. (4). Distances \overline{AB} , \overline{AC} , and \overline{BC} are required for determining the necessary K₁ values in Eq. (6) and K₂ is a function of the distance \overline{AC} or \overline{BC} , whichever is shorter.

2.3 N-site Joint Probabilities

In the general case, say n sites, joint probabilities of independent events can be expressed as follows:

 $P(W_{A}W_{B}...W_{n}) = \begin{bmatrix} 1-P(\overline{W}_{A}) \end{bmatrix} \begin{bmatrix} 1-P(\overline{W}_{B}) \end{bmatrix} ... \begin{bmatrix} 1-P(\overline{W}_{n}) \end{bmatrix}$ (7)

When the events are not independent, they can be estimated with the following expression:

$$\begin{split} & \stackrel{P}{P}(\mathbf{W}_{\mathbf{A}}\mathbf{W}_{\mathbf{B}}\dots\mathbf{W}_{\mathbf{n}}) = 1 - P(\widetilde{\mathbf{W}}_{\mathbf{A}}) - P(\widetilde{\mathbf{W}}_{\mathbf{B}}) - \dots - P(\widetilde{\mathbf{W}}_{\mathbf{n}}) + \\ & P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}} + P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{1}} + \dots + P(\widetilde{\mathbf{W}}_{\mathbf{n}-1}) P(\widetilde{\mathbf{W}}_{\mathbf{n}})^{K_{1}} - \\ & P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}} P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{2}} - P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}} P(\widetilde{\mathbf{W}}_{\mathbf{D}})^{K_{2}} - \dots \\ & - P(\widetilde{\mathbf{W}}_{\mathbf{n}-2}) P(\widetilde{\mathbf{W}}_{\mathbf{n}-1})^{K_{1}} P(\widetilde{\mathbf{W}}_{\mathbf{n}})^{K_{2}} + \dots + P(\widetilde{\mathbf{W}}_{\mathbf{A}}) P(\widetilde{\mathbf{W}}_{\mathbf{B}})^{K_{1}} P(\widetilde{\mathbf{W}}_{\mathbf{C}})^{K_{2}} \dots \\ & P(\widetilde{\mathbf{W}}_{\mathbf{n}-1})^{K_{\mathbf{m}-1}} P(\widetilde{\mathbf{W}}_{\mathbf{n}})^{K_{\mathbf{m}}} \\ & P(\widetilde{\mathbf{W}}_{\mathbf{n}})^{k_{\mathbf{m}}} \\ \end{split}{8}$$

 K_1 is found for the distance between the two sites with the highest probability of the weather event not occurring, in each term of Eq. (8) in which K_1 appears; K_2 is found for the distance between the site with the third highest probability and the closer of the two sites with higher probabilities of the weather event not occurring, and, so on. The last K in Eq. (8), K_m , is found for the distance between site n, the site with the lowest probability, and its nearest neighbor.

3. AN EXAMPLE

Records of hourly precipitation occurrences, observed in winter and summer, during the 13 year period 1951 through 19*3, at the following nine observing sites, shown on Fig. 1, were studied:

LGA-LaGuardia Airport, New York, NY JFK-Kennedy International Airport, New York, NY EWR-Newark Airport, NJ PHL-Philadelphia International Airport, PA BAL-Baltimore-Washington International Airport, MD DCA-National Airport, Washington, DC ADW-Andrews AFB, MD RIC-Byrd Field, Richmond, VA RDU-Raleigh-Durham Airport, NC

Each hour, approximately on the hour, a weather observer at each of the above sites went outdoors to make his regular hourly observation. One of the weather elements that he recorded was precipitation. The Federal Meteorological Handbook (1975) describes how the observations are taken.

For this study, only active precipitation occurring at the time of observation was considered as a precipitation event. All types of precipitation (rain, snow, sleet, hail, etc.) and all intensities (very light, light, moderate and heavy) were included.

Figure 1. Location of the nine stations whose winter and summer hourly observations of precipitation were studied.

In winter, the observers recorded 0.0641, 0.638 and 12.638 percent of the observations as heavy, heavy or moderate, and all intensities of precipitation, respectively. In summer, the percentages were 0.202, 0.459 and 6.257. Clearly most of the precipitation events were of the light or very light variety.

This study addresses neither the subject of precipitation intensity nor the amount of precipitation. The joint occurrences studied are occurrences of active precipitation at two, or more, locations.

3.1 Unconditional Probabilities

The relative frequencies of precipitation as reported on the hourly observations were used as estimates of the unconditional probabilities. Because these relative frequencies were based on 28,080 hourly observations taken at each station in winter and 28,704 hourly observations in summer, they are believed to be good estimates of the true probabilities. The relative frequencies are shown in Table 1.

-	SITE	WINTER	SUMMER
	LGA	.1470	.07643
	JFK	.1405	.07639
	EWR	.1494	.07624
	PHL	.1379	.07238
	BAL	.1353	.06881
	DCA	.1289	.06730
	ADW	.1259	.06487
	RIC	.1297	.06951
	RDU	.1165	.06970

Table 1. Relative frequencies of precipitation, RF(W), at each of the nine sites under study.

3.2 Two-site Joint Relative Frequencies

As previously stated the probability of precipitation occurring concurrently at two observing sites is a function of the distance between sites. The distances between sites are shown in Table 2.

Table 2. Distances between sites, in nautical miles.

			and the second se		and the second second	and the second second	and the second second	in the second		-
-		JFK	EWR	PHL	BAL	DCA	ADW	RIC	RDU	
-	LGA	9	16	95	185	210	214	292	431	
	JFK		21	94	184	208	213	289	427	
	EWR			80	169	195	198	279	417	
	PHL				90	115	119	199	337	
	BAL					29	30	121	256	
	DCA						9	93	228	
	ADW							95	227	
	RIC								138	
										171

The relative frequencies of joint occurrences of precipitation at the 36 pairs of observing sites are shown in Table 3. Because the data samples are large the relative frequencies should be good estimates of true probabilities.

Table 3. Relative frequencies of joint occurrences of precipitation, RF (WW), at each of the thirty-six pairs of observation sites, in winter. Estimated joint probabilities, $\hat{P}(WW)$, obtained from the model are shown in parenthesis.

	JPK	EWR	PHL	BAL	ADW	DCA	RIC	RDU
LGA	.125	.126	.0942	.0738	.0643	.0647	.0551	.0360
	(.128)	(.124)	(.0905)	(.0710)	(.0659)	(.0655)	(.0542)	(.0365)
-		.119	.0925	.0718	.0625	.0627	.0536	.0346
		(.121)	(.0869)	(.0681)	(.0634)	(.0629)	(.0523)	(.0353)
-			.0991	.0771	.0670	.0676	.0579	.0376
			(.0962)	(.0751)	(.0695)	(.0692)	(.0568)	(.0385)
PHI.				.0921	.0808	.0808	.0669	.0425
-				(.0862)	(.0795)	(.0788)	(.0640)	(.0442)
BAL					.104	.106	.0793	.0516
-					(.105)	(.105)	(.0771)	(.0534)
-						.108	.0821	.0528
			1			(.112)	(.0000)	(.0535)
-							.0828	.0539
-							(.0796)	(.0548)
RIC								.0696
_								(.0697)

3.3 Two-site Estimated Joint Probabilities

Eq. (9), shown below, was found by solving Eq. (4) for K_1 and substituting relative frequencies for probabilities.

$$K_{1} = \left\{ \log \left[\operatorname{RF} \left(W_{A} W_{B} \right) + \operatorname{RF} \left(\overline{W}_{A} \right) + \operatorname{RF} \left(\overline{W}_{B} \right) - 1 \right] - \log \operatorname{RF} \left(\overline{W}_{A} \right) \right\}$$

$$\left\{ \frac{1}{\log \operatorname{RF} \left(\overline{W}_{B} \right)} \right\}$$
(9)

RF (WA) > RF (WB)

The relative frequencies in Table 3 and the complements of the values found in Table 1,

 $RF(\overline{W})=1-RF(W)$, were substituted into Eq. (9) and thirty-six solutions were found for K_1 , one for each pair of sites.

The K_1 values are given in Table 4 and plotted in Fig. 2. A curve of the form

$$K_{\beta} = \frac{a_{\beta} D^{-}}{b_{+}c_{\alpha} D^{-}}$$
(10)

was fitted to the data points.

Table 4. Solutions for K_1 obtained from Eq. (9) in winter.

Figure 2. The parameter K_1 plotted as a function of distance. The dots and X's are solutions to Eq. (9) for winter and summer, respectively. The curves are of Eq. (14) with $a_1=1.2$ in winter (solid) and $a_1=2.7$ in summer (dashed).

Eq. (10) was chosen because of its characteristic shape and because it met the two necessary conditions, that: (1) Kg equals zero when the distance, D, equals zero; and (2) by setting

 $b = D_{g}^{al}$ (11)

where D_g is the distance at which the events are statistically independent, Kg equals one when D equals D_g . At distance D_g when Kg equals one Eq. (10) can be written

$$c_{\beta} = a_{\beta} - \frac{b}{b_{s}}$$
(12)

and from Eqs. (11) and (12) it can be seen that $c_{\beta} = a_{\beta} - 1$. Thus, if the distance D_{β} is known, a_{β} and \ll are the only parameters that require evaluation.

The parameter was set equal to one-half and the distance D_s was estimated to be 650 and 550 nautical miles in winter and summer, respectively, based on extrapolation of the points in Fig. 2. Eq. (10) was solved for a suing the above

143

information. The resulting equation is

$$\beta = \frac{\mathbf{K}_{\beta} \quad (\mathbf{b} - \sqrt{\mathbf{D}})}{\sqrt{\mathbf{D}} \quad (1 - \mathbf{K}_{\beta})} \tag{13}$$

where for winter $b = \sqrt{D_s} = \sqrt{650} = 25.495$, and for summer $b = \sqrt{D_s} = \sqrt{550} = 23.492$.

The 36 K₁ values given in Table 4 together with the distances between the sites were used to find estimates of a_1 for winter. The average value of the 36 a_1 's, used as the first guess, was 1.19. Because the points are unevenly distributed along the curve a "best" fit, to the authors' eye, was found by slightly varying the a_1 value from its average. The value chosen was 1.20. The summer average was 2.69 and the value chosen was 2.70.

Substituting Eqs. (11) and (12) into (10) yields:

$$K_{\beta} = \frac{a_{\beta} \vee D}{\sqrt{D_{s}} + (a_{\beta} - 1) \sqrt{D}}$$
(14)

when $0 \leq D \leq D_{g}$ and $K_{g} = 1$ when $D > D_{g}$.

Table 5 gives values of Dg and a for winter and summer.

Curves of K1 are shown in Fig. 2.

Table 5. Values of Dg and ag for winter and summer.

	Winter	Summer
D ₈	650	550
•1	1.20	2.70
*2	1.00	2.30
43	0.90	2.15
•4	0.85	2.10
45	0.822	2.08
*6	0.803	2.068
a 7	0.790	2.062
-,	0.780	2.057

With al equal to 1.20, Eq. (14) was substituted into Eq. (4) and estimated joint probabilities were found for winter. They are shown in Table 3. The agreement between the relative frequencies and the probabilities estimated by the model is excellent.

3.4 Three-site Joint Relative Frequencies

The nine sites provided 84 combinations of three-site concurrent precipitation occurrences. Sample relative frequencies of these three-site joint occurrences are shown in Table 6.

Le 6. Belative frequencies of joint occurrences of precipitation, By (MMB), at LGA and sech of the other twenty-sight pairs of phearvation sites in winter. Estimated joint probabilities.

		PHL	BAL	NDW	DCA	RIC	RDU
JPK	.113 (.117)	,0863 (.0869)	.0671 (.0670)	.0585 (.0620)	.0585 (.0616)	.0500 (.0501)	.0322
-		.0892 (.0915	.0691 (.0700)	.0602 (.0645)	.0602 (.0642)	.0517 (.0515)	.0331 (.0331)
PHL			.0657 (.0625)	.0573 (.0575)	.0569 (.0569)	.0482 (.0447)	.0298
BAL				.0581 (.0586)	.0590 (.0583)	.0453	.0271 (.0257)
ADW					.0558 (.0582)	.0436 (.0444)	.0256
DCA						.0436 (.0443)	.0258
RIC							.0273

3.5 Three-site Estimated Joint Probabilities

Eq. (15), shown below, was found by solving Eq. (6) for K_2 and substituting relative frequencies for probabilities.

$$\begin{aligned} \mathbf{K}_{2} &= \left\{ \log \left[1 - \mathrm{RF} \left(\mathbf{W}_{\mathbf{A}} \mathbf{W}_{\mathbf{B}} \mathbf{W}_{C} \right) - \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{A}} \right) - \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{B}} \right) \right. \\ &- \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right) + \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{A}} \right) \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{B}} \right)^{K_{1}} + \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{A}} \right) \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right)^{K_{1}} \right. \\ &+ \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{B}} \right) \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right)^{K_{1}} \right] - \log \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{A}} \right) \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{B}} \right)^{K_{1}} \right\} \\ &\left\{ \frac{1}{\log \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right)} \right\} \\ &\left\{ \frac{1}{\log \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right)} \right\} \\ \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{A}} \right) \geqslant \mathrm{RF} \left(\mathbf{\overline{W}}_{\mathbf{B}} \right) \geqslant \mathrm{RF} \left(\mathbf{\overline{W}}_{C} \right) \end{aligned}$$
(15)

The relative frequencies in Table 6 (and the others, not shown, involving sites other than LGA), the complements of the values found in Table 1, and K_1 values using a_1 equal to 1.2 and 2.7 were substituted in Eq. (15) and eighty-four solutions were found for K_2 , in winter and summer, one for each set of three sites.

The solutions are plotted in Fig. 3 and sample solutions are shown in Table 7. A good fit to the data points was obtained when a_2 was set equal to 1.00 and 2.30 in winter and summer, respectively.

Table 7.	Sample solutions for K2 obtained from Eq. (15) based	on
	relative frequencies of joint occurrences of precipit	ation
	at LGA and each of the other twenty-eight pairs of	
	observation sites in winter.	

		and the second second second		and the second strends on a			
	-	PHL.	BAL	ADM	DCA	RIC	NDU
JPK	.122	.113	.110	.089	.093	.117	.116
-		.130	.149	.122	.125	.159	.157
PHL			. 409	. 380	. 382	.412	.410
BAL				.530	.542	.542	.545
NDW					.546	.562	. 569
DCA						. 568	.576
RIC							.673

 K_1 and K_2 values were substituted into Eq. (6) and estimated 3-site joint probabilities were found for winter. A sample of them is shown in Table 6. There is good agreement between the observed and estimated values.

3.6 Four-site to Nine-site Joint Relative Frequencies

The nine sites provided 126, 126, 84, 36, 9 and 1 combinations of 4, 5, 6, 7, 8 and 9-site concurrent precipitation occurrences, respectively. Sample relative frequencies of these foursite to nine-site joint occurrences are shown in Table 8. In order to conserve space only a few of the possible 382 joint occurrences are shown. They are believed to be typical and include the highest and lowest observed relative frequencies.

Table 8. Sample relative frequencies of joint occurrences of precipitation at four to sim sites and corresponding estimated probabilities obtained from the magel in winter. In order to conserve space only a few sets of sites are included. They include a range of observed relative frequencies from the lowest to the

aber of Sites			Si	tes			Wir	ter
· · · · · · · · · · · · · · · · · · ·		1		-		2.5.5.6	Observed	Calculated
			ADW	RDU	PHL	LGA	.0234	.0216
			RDU	LGA	ENR	JFK	.0305	.0305
			ADM	RIC	LGA	JFK	.0399	.0422
•			ADM	PHL	RIC	LGA	.0401	.0401
			ADM	PHL	LGA	EWR	.0546	.0590
1. A Shering and			ADW	LGA	EWR	JFK	.0561	.0620
5		ADM	RDU	RIC	LGA	JPK	.0200	.0221
5		ADW	RDU	PHL	RIC	LGA	.0206	.0206
5		ADW	PHL	RIC	DCA	LGA	.0370	.0388
5		ADW	PHL	DCA	LGA	EWR	.0481	.0557
5		ADW	PHL	LGA	EWR	BAL	.0510	.0561
5		PHL	LGA	EWR	BAL	JFK	.0591	.0631
	NDU	PHL	RIC	DCA	LGA	JTK	.0188	.0199
6	ADW	RDU	PHL	RIC	LGA	ENR	.0198	.0216
6	ADW	NDU	PHL	LGA	ENR	JPK	.0212	.0217
6	ADW	PHL	RIC	DCA	LGA	JTK	.0344	.0381
6	ADW	PHL	DCA	LGA	BAL	JPK	.0452	.0512
6	PHL	DCA	LGA	EWR	BAL	JPK	.0484	.0549

3.7 Four-site to Nine-site Estimated Joint Probabilities

Relative frequencies were substituted for the probabilities in Eq. (8) and solutions were found for all 126 combinations of 4-site joint precipitation occurrences. The solutions are plotted in Fig. 4. A good fit to the data points was obtained when a_3 was set equal to 0.90 and 2.15 in winter and summer, respectively.

Relative frequencies were substituted for the probabilities in Eq. (8) and solutions were found for all 126 combinations of 5-site joint

precipitation occurrences. The solutions are plotted in Fig. 5. A good fit to the data points was obtained when a_4 was set equal to 0.85 and 2.10 in winter and summer, respectively.

Figure 5. The parameter K_4 plotted as a function of distance. The lower points are based on winter data and the upper points on summer data. The curves are of Eq. (14).

The curves for K_1 , K_2 , K_3 and K_4 for both winter and summer are shown in Fig. 6. The separation between the curves decreases with increasing subscript. In other words, the value of "a", the only parameter permitted to vary with the number of observation sites, n, decreases less with the addition of each new site. The a_1 through a_4 values are plotted in Fig. 7.

Curves were subjectively drawn through the points in Fig. 7 and extrapolated to a total of nine sites. Values for a_5 through a_8 were estimated from these curves to obtain values for use in solving for K_5 , K_6 , K_7 and K_8 . The "a," values are shown in Table 5.

Figure 7. The parameter a plotted as a function of the number of observation sites included in the joint probability estimate. The upper curve is for winter and the lower curve for summer.

Eq. (8) was solved to obtain joint probability estimates for all 4- to 9-site combinations of sites. The examples shown in Table 8 were selected to illustrate the errors in estimating the lowest and highest observed relative frequencies and some in the middle of the range. There was generally good agreement between the observed relative frequencies and the calculated estimated probabilities.

4. AN APPLICATION TO RECURRENCE

At the conclusion of the application of the model to spatial joint occurrences a decision was made to test the model on hourly recurrence of precipitation. Only sets of two events, at time t and t + x hours, were investigated with the following results.

4.1 Recurrence Relative Frequencies

Recurrence relative frequencies of precipitation for the nine East-Coast stations are shown in Figures published by Lund and Grantham (1976). They are tabulated for selected hours from one through 30 in Table 9. Eq. (9) was solved for K_1 using the relative frequencies given in this table. It was found that correlation between precipitation occurrences decays about the same amount in one hour as it does in a distance of 22 miles, in summer, and 27 miles, in winter. The "K1" curves shown in Fig. 2 are repeated in Fig. 8 and K1 values obtained from the recurrence relative frequencies are plotted in Fig. 8. The scale is adjusted so that 22 miles equals one hour in summer, and, 27 miles equals one hour in winter. The agreement between spatial K1 values and temporal K1 values is excellent.

4.2 Estimated Recurrence Probabilities

Eq. (4) was solved for probabilities every 22 miles in summer and 27 miles in winter. The probability estimates are given in Table 9 corresponding to selected hours from one through

le 9.	Observed (OBS) relative frequencies of precipitation
	recurrences and calculated (CALC) recurrence probabilities
	using the model derived for joint probabilities in winter.
	One have use sesured to smill 37 -11-s

LAG	WINTER					
(HOURS)	Hiles	OBS	CALC			
1	27	.108	.106			
2	54	.0967	.094			
3	81	.0879	.0864			
4	108	.0803	.079			
5	135	.0737	.0740			
10	270	.0493	.0529			
15	405	.0342	.0380			
20	540	.0256	.0263			
25	675	.0210	.0181			
30	810	.0184	.0181			

Figure 8. Curves of K_1 obtained from Fig. 2. The dots and X's are solutions to Eq. (9) for winter and summer, respectively, when recurrence relative frequencies are substituted for joint occurrence relative frequencies. A distance of 27 miles, in winter, and 22 miles, in summer, was assumed to be equivalent to one hour of time lag.

30. Again there is good agreement between the observed relative frequencies and the calculated recurrence probabilities.

5. CONCLUSIONS

The model developed for estimating joint probabilities of weather events is intended for general usage. However, the parameters of the model must be obtained either from data or theory. They will vary with the unconditional probability of the event and the spatial decay of correlation. The test of the model on winter and summer jointoccurrences of precipitation indicates that the parameters are well behaved. Because this is a dependent sample test, the general applicability of the model parameters, even for precipitation occurrences, is not known.

The model is being tested on other weather events.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge assistance from Professor Donald E. Martin of St. Louis University and Dr. Paul Tsipouras of the Air Force Geophysics Laboratory in the selection of equations for study. Expert computational support was provided by Messrs. James F. Atkinson, Leonard J. Natoli, Kenneth C. Zwirble, of Analysis and Computer Systems, Inc. and Miss Melinda A. Zouvelos, Student Aid from Lowell University. Hourly precipitation data were provided by the USAF Environmental Technical Applications Center and the National Weather Service. 6 min

7. REFERENCES

The second s

- Lund, I. A. and D. D. Grantham (1976). Persistence, runs, and recurrence of precipitation, J. Appl. Meteor., (submitted for publication).
- U.S. Department of Commerce (1975). <u>Federal</u> <u>Meteorological Handbook No. 1, Surface</u> <u>Observations</u>. U.S. Government Printing Office, Washington, D.C., 309 pp.

Content in	white Section
18	Buff Southen
IG	D
CTIEICATION.	
DISTRIBUTION	AVAILADILITY COULS
	IA 2102 and has EDICAL
Dist	AVAIL. BADY OF CITAT
Dist	AVAIL BADY OF CITATION
Dist.	AVAIL BATTON CLASS
Dist	AVAIL BUTY OF CLASS

DOCUMENT CON	TROL DATA BAD
(Security classification of title, body of abstract and indexing	annotation must be entered when the overall report is classified)
. ORIGINATING ACTIVITY (Corporate author)	24. REPORT SECURITY CLASSIFICATION
ir Force Geophysics Laboratory(LKI)	Unclassified
lanscom AFB	20. GROUP
lassachusetts 01731	
EPORT TITLE	
MODEL FOR ESTIMATING JOINT PR	OBABILITIES OF
DESCHIPTIVE NOTES (Type of report and inclusive dates)	
cientific. Interim.	
Dautuon(s) (First name, middle initial, last name)	
Donald D./Grantham	17 Dec 16 (2)8p.
REPORT DATE	74 TOTAL NO. OF PAGES 74 NO. OF REFS
December 1976	7 2
A CONTRACT OR GRANT NO.	AFCI TTP -76-0200
& PROJECT, TASK, WORK UNIT NOS. 86240207	1 AFGL-1R-10-0200
C. DOD ELEMENT 62101F	9b. OTHER REPORT NO(5) (Any other numbers that may be
1 manual (17)hal	ussigned and report/
a dossoelement (Dakt	
0. DISTRIBUTION STATEMENT	
Approved for public veloces distribu	ution unlimited
Approved for public release; distribu	aton diffinited.
1. SUPPLEMENTARY NOTES Reprinted from Pre-	12 SPONSORING MILITARY ACTIVITY
rint Vol. 7th Conf on Aerospace &	Air Force Geophysics Laboratory(LKI)
eronautical Meteorology & Symp on	Hanscom AFB
lemote Sensing From Satellites, Nov	Massachusetts 01731
6-19, 1976, Melbourne, Florida	
3. ABSTRACT Meteorological satellites have	made it possible to obtain information on
real coverage and joint occurrences of	meteorological events not heretofore
ossible. However, a long record of obs	servations is required to derive a clim-
tology of joint occurrences. Routine, h	ourly, surface weather observations may
e sufficiently concurrent to estimate jo	int occurrences among sites where such
bservations are taken.	
This paper will describes a mode	for estimating joint probabilities of
reather events. The model was applied	to 13 years of hourly winter and summer
recipitation observations taken at nine	sites along the East Coast of the United
tates between LaGuardia Airport, N.Y.	., and Raleigh-Durham Airport, N.C.
t requires a knowledge of the uncondition	al probability of the event, distances
etween the sites, and a measure of the	spatial correlation. Probabilities estim-
ted by the model agree very well with r	relative frequencies of observed joint
ccurrences of precipitation.	
Satellite observations are needed	to derive the parameters of the model
nd to test it in areas where surface obs	servations are unavailable or unsuitable.
	4
EYWORDS: Precipitation, Joint occurr	rences, Spatial correlation
DD , FORM 1473	Unglangified 409.57

E.