AD=AO34% 063 PURDUE UNIV LAFAYETTE IND SCHOOL OF ELECTRICAL ENGI--ETC F/6 12/2
INFERENCE FOR TRANSITION NETWORK GRAMMARS: (U) .
1976 S M CHOU, K S FU AF=AFOSR=2661~=T4
UNCLASSIFIED AFOSR=TR=T6~1308 NL

o | END

432 m_w_,

SEEE

mm&mummuuﬂm

nw_____.

RDS-1963.

s
1.
Y- &
N T
TN N

W‘SUREAU OF ST
PEH ;
4 \v

 MICROCOPY RESOLUTION TEST
v M?‘I’

L A 0. Lk NNl s NS0 e P sl
TNnird » ationa)l

S i ~ e
it e T, e WoidSubnibabon s i

m - et e e
Mt CoRTerend FEOPR RSSOPAIEToN .

*
INFERENCE FOR TRANSITION NETWORK GIMHARS* '

s. M. chou™t and k. S. Fu (™
School of Electrical Engineering
Purdue University
W. Lafayette, Indiana 47907

'~ AFOSR -TR-76~-1808

Abstract

This paper gives a brief introduction to trans-
ition networks and proposes an approach to the in-
ference of transition network grammars.

l. Introduction

In order to model a language more realistically,
it Is desirable that the grammar used can be directly
inferred from the set of sample sentences. This pro-
blem of learning a grammar based on a set of sample
sentences is called grammatical inference. The appli-
cations of grammatical inference include areas of
pattern recognition, information retrieval, artificia)l
intelligence, and translation and compiling of pro=

gramming languages‘ ,2.

A unique relationship between a language and a
grammar does not exist. Quite often different
grammars generate the same language. By deflnltlonB,
two grammars are equivalent if and only if they both
generate the same language. It is possible to tell

if two finite state grammars are equivalent3. How=
ever, for two grammars of types other than finite
state, there is no way of telling their equivalence,
Thus, except for finite state grammars, the inference
problem does not have a unique solution unless addi-
tional constraints are placed upon the grammar being

One of the constraints may be to select a

grammar of minimum complexltys.

Inferred“.

In the process of inference, a set of sentences
that are known to be in the language must be given.
This set is called a positive sample of the language.
There may be another set of sentences given called a
negative sample of the language that are known not
to be in the tanguage. A positive sample of a
language L(G) is said to be structurally complete if
each rewriting rule of G is used in the generation of
a nonempty subset of the sample. In general, as-
sumptions are made for all existing inference tech-
niques as follows:

1. The type of the grammar being inferred is
specified,

2. The given sample of the language is finite,

3. The given positive sample of the language is
structurally complete,
h. The Inferred gram'r G is such that S‘g L(G)

and $” ¢ L(G), where s* and $™ are positive
and negative samples of the language, re-

spectively; and L(G) is the complement of the
language L(G).

1"l'Ms work was supported by the AFOSR Grant 74-2661.

"s. M. Chou is presently with the Automation and Con-
trol Laboratory, General Electric Corporate Research
and Development, Schenectady, New York 12301,

diStribu-’.l on

uulimited, 1 N t//
1>

ure in tht area of grammatical

inference can be found in 2'6. In this paper, an
introduction to transition networks will first be
given, Then following a brief review of the problem,
an approach to the inference of transition networks
will be proposed,

A survey of lite

1. Transition Network Grammars

The transition network grammar has been developed
as a model of natural language analysls7"°.

A basic transition network (BTN) is a directed
graph with labeled states and arcs, a distinguished
state called the start state and a distinguished set
of states called final states. It looks essentially
like a nondeterministic finite state transition dia-
gram, except that the labels on the arcs may be state
names as wel) as terminal symbols. The interpretation
of an arc with a state name as its label is that the
state at the end of the arc will be saved on a push-
down store and the control will jump (without advancing
the input pointer) to the state that is the arc label.
When a final state is encountered, the pushdown store
may be 'popned'’ by transferring control to the state
which is named on the top of the stack. An attempt to
pop an empty stack when the last input symbol has just
been processed !s the criterion for acceptance of the
input string.

The TN described above is a generalized pushdown
automaton and is equivalent to a context-free grammar.
However, a TN could be augmented into a more powerful
machine by adding facilities to each arc. These in-
clude arbltrary conditions which must be satisfied in
order for the arc to be followed and a set of register-
setting actions to be executed if the arc is followed.
The power of an augmented transition network (ATN) is
determined by the facilities added to the arcs. With
certain restrictions of the arcs, the power of the ATN
can be modified for any kind of applications needed.

A TN can be described as a generalized pushdown
machine consisting of a finite set of finite-state
machines and a finite set of pushdown stores. Formal-
1y, a TN can be defined as a 6-tuple.

™= (L, Q, A, Q, Q. qg)s where I is a finite

set of (nput symbols, Q is a finite set of states,
Q S Q is the set of initial states of the finite-

state machines, Qc C Q is the set of final states of
the finite-state machines, 9 € Qo Is the initial

state of the TN, A is a finite set of arcs. Associ-
ated with each state there are several arcs for trans-
itions and actions. The arcs can be categorized intd
five classes:

1. CAT arc: (CAT C). Atransition is made from
the present state to the s.ate at the end of the arc
consuming an Input symbol which is in the syntactic
class labeled on the arc. The consumed symbol may be
saved In a hold list when a HOLD action is required
on the arc. This Is done for future tests of context

GOPY AYAILABLE T0 P2C MOES NOT
PERMIT FUALY LEGIBLE PRADUCTION

B

—— 'r,\.a:j'n-s'xﬁ’mh .

St N

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is

approved for public release IAW AFR 190-12 (7b) .
Distribution is unlimited.
A. D. BLOSE

Technical Information Officer

PR =0

O T P A U

L

e R PRV e

relationship.

2, PUSH arc: (PUSH qo‘). qo' € Qo. The desti~

natlon state of the arc is saved In the pushdown store
and the state Is transferred to the state shown on the
arc which is the initial state of a finite-state
machine.

3. POP arc: (POP). The state is transferred to
the state shown on the top of the pushdown store. And
the stack is popped one element up.

h, VIR arc: (VIRC). A transition from the
present state to the state at the end of the arc is
made by testing for the symbol shown on the VIR arc
In the hold list.,

S. JUMP arc: (JUMP). A transition from the
present state to the state at the end of the arc is
made If the conditions specified on the arc are satis-
fled. The transition does not consume any of the in-
put string. This Is a means of making a transition
from one state to another without advancing the input
pointer,

The input string is accepted when the TN is
popping the empty pushdown store with empty hold list.
The language accepted by a TN is denoted as L(TN).

It Is interesting to compare the acceptors of
phrase structure grammars with the transition networks.
Note that a TN consists of a finite set of finite-state
machines and pushdown stores. Consider a TN with only
one network which Is a set of states with CAT and POP
arcs. This appears exactly to be a finite-state au-
tomaton which accepts type 3 languages. Furthermore,
consider the BTN which is a set of finite-state
machines and a pushdown store. The BTN is equivalent
to an acceptor of a context-free language. With the
ald of register-setting actions on the arc and the
checking action of the VIR arcs, the ATN could achieve
the power of a Turing machine. Suppose that there is
a bound on the summing size of all the stores of the
ATN such that the size Is less or equal to the length
of the part of the input string not yet scanned by the
input pointer. Then it appears to be like a linear
bounded automaton which accepts context-sensitive
languages. It is then clear that an ATN is equivalent
to a Turing machine. All the acceptors accepting dif-
ferent classes of languages can be derived from special

cases of augmented transition networks".

A detailed discussion of the relationships between
transition network grammars and Chomsky's hierarchy can
be found in Ref. 11.

111, Inference for Finite-State Au.m:mata2
Finite state grammars are the simplest grammars.
Most of the questions on the characteristics of this
class of grammars are decidable or solvable. Finite-
state languages are closed under union, complement,
and Intersection. |If GI and Gz are finite-state

grammars generating L‘ and Lz respectively, then
there is an algorithm to determine if the set

(L| n tz) v (tl n Lz) is empty. If it is empty,
L| and l.2 are equivalent, and hence G| and Gz are

equivalent. There are a number of inference algorithms
established for finite-state grammatical inference.
Two of them are practical in implementation and easy
to apply, and will be illustrated here.

!, Derivative grammars

Deflnlt-lon 1: The formal derivative of a set of
strings A with respect to the symbol a € \IT is defined
12
" DA = {X|axeA}

The canonical derivative finite-state ‘9nmr6 Gco‘

associated with a positive sample S* = {x‘.xz....xv) is
defined as follows:

GCD - (VT'VN' R, o}

a., letU= {IlI .Uz......Ur) be the distinct de-

rivative of s* not equal to A or ¢ where A and ¢ re-
present the null string and the empty set respectively.

+
LetUIUDXSa
b. G-l.l‘

Ce v“-u

d. The set of all distinct symbols found in st is
%
e. R is defined as follows:

v *auj if and only lfb.u|-uj

U, + 2 If.ndonlylflcb.ul

2, ¥-Tail derived grammars

Definition 2: A derived grammar ‘D =

(v” » Vo Ry, Bo) is a grammar generated from a canoni-
] D

cal grammar Gc by the following procedure 6:
a. The terminal set VY is the same for Go and Gc

b. The nonterminal set corresponds to a partition
N» Where Yy is the set of nonterminals of G
c (4

Ce 'a is the start symbol corresponding to the
block In the partition containing ©

de RD is defined as follows:

1. l| +a ’j is in RD If and only if there exists
lu, 28 € V"c such that

of V

lu-oals, l“el'. Zsclj

2, l| +ais in RD if and only If there exists

Zucvcsuchthatla»a. ch:l'

*
Definition 3: Let u = a'nz...cr € '1' , and let

ACL(G). The K-tail of A with respect to u is de-
fined as g(u,A,K) = {X|xeDuA. Ix| <x}.

Blermann and Feldman 3 have proposed a method of
applying the idea of K-tail equivalence to partition
the nonterminal set of a derivative grammar in ob-

taining the derived grammars. Let U' and Uj be two

distinct states of the canonical derivative grammar
GCD' These two states are associated with the de-

rivatives D s* and D, s* respectively where X, and
i J
are sequences from VT.. U, and U, are K-tail

X i j

J

e i ke

T

Sl s L

i s

Gl = e R e e i e S G T

equivalent If and only If 9(x|.s’ WK) = g(xJ.s’ oK) .

The method of K~tail derived grammars is easy to apply.
In obtaining a quick rough approximation of the posi=
tive sample set, this method is practical and useful.

Since a simple transition network without any
pushdown stores and registers function exactly the
same as a finite automaton does, all the techniques of
finite-state grammatica) Inference can be applied to
the Inference of simple transition network grammars
without any difficulty.

IV, Inference for Basic Transition Networks

Context-free grammars are more complicated than
finite-state grammars. It has been found that if a
context-free grammar Is non-self-embedding, then the
language generated is a regular language. It is mainly
this self-embedding property that distinguishes a
context-free grammar from a regular grammar. Hence,
most Inference techniques for context-free grammars
concern the revealing of the self-embeddings from the
sample set. The theorem concerning self-embedding of
context-free grammars is stated below:

3
Theorem 17: For any context-free grammar L (G)
there exists Integers m and n such that if there ex;sts
a string Z in L(G? with |Z] > n then Z can be decom-
posed to the form Z = uvuxy, where vx # A and |vux| <

m such that for | > 0, u v' ux' y is in L(G).

The existing inference techniques for context-free
grammars are still limited to some specific types of
context-free grammars. Also, they often rely on heu=
ristic methods during the process of inference. Gips
has described a method to infer a pivot grammar which

Is an operator grammar in a very restricted forms.

Crespl-Reghizzi, through the use of a structured
sample set, has developed an inference procedure for

K~distinct and K-homogeneous context=-free grmr“.

For the discovery of the self-embedding structures,

Solomonoff has proposed a strltogy's. The idea is to

“guess' the elements of self-embedding, 'v, w, x,"
from the given positive sample set. This heuristic
method is not practical in implementation. However,
it suggests an important clue for later research in
this area. Here, we will present a method of revealing
the seif-embedding structures using the idea of formal
derivatives.

*

Definition A: Let v, x ¢ I*, and Se2” , then
Iy (80K = {wluez’, vuxes and Jo|<K)
-0, £ (5,K)

where 0,(5,K) = {weL” |wues and |ul<K}

£, (5,K) = {weL” [uxes and [u]<K)

Wote thet D, (S,K) = €y (S,K) = 39, (S,K) = 8.
Suppose that the grammer G being inferred is
context-free, then by the self-embedding theorem, for
some U, V, W, X, Y, w'u'y is In L(G), where u, v, w,
:,yct‘, vxéland i >0, This implies that for a
structurally complete positive sample s* and for some

thot K= Ju| then _ 19 ' (5.0 D(u) for 1 =
::‘.’. ooo'.' s e -

It can be seen that the substrings of (v'u'll;ﬂ

are generated by a recursive subnetwork shown in Fig. 1.
The subnetwork is a finite-state automaton which can be
obtained from the derivative grammar described In
Section 111 using the sample set Sz = {w,vAx}, where A
is the name. of the submmrk.‘ if such a subnetwork is
found, the substrings of {v ux |10} in S* are replaced
by a nonterminal which is the name of the subnetwork,
l.eey, A. The procedure of revealing a recursive sub~
network Is then re-applied to the new sample set,
treating the nonterminal symbol as a terminal. The
procedure is repeated unti! no more recursive sub-
networks can be found. Then the techniques of finite-
state automaton Inference described in Section (1| can
be applied to complete the network of the sentences.

Given a sample set S’. the procedure of inferring
a BTN, such that L(BTN) 2 S* is described step by step
as follows:

Step 1. Construct the derivative table.

a. Put the sample set st in the first column,
first row, : -

b. List all the nonempty Dv (S‘.n) in the first
i

column, with row number | = 2,3,..., where
v,ct‘, and n Is an Integer such that for every
xes*, x|

c. List all the nonempty E_ (S‘.n) in the first

row, with column number j = 2,3,..., where
+
X. €L

3

d. Let the element of the table at column j, row
i be denoted as T' « Complete the table with

+
TU - v ng (s",n), for i, j>2.
Step 2. Find the equivalent classes.
a., For K= 1,2,..., 1ist the equivalent classes
Uy g of the derivatives g (s*,K). If
» v x
v, ¥ x : is In I.IK." then for any Vine Xpue
] J * 9
such that (] (s",x),
V'..’ IJ (]
i 9 Xjn is in l!“'l. If there are L distinct

+
. ($°,K) = i 9 !j

equivalent classes for }. then £ = 1,2,.000L0

b For K= '.2..... examine Ul'.., |] '.2.-...Lo

lf.wbutofll“lsfmuhcsuutof
the set v

ey 'lu. Vo X, ¥ € t‘..ni A, 120},
90 to Step 3, otherwise, to Step A.

Step). Construct a subnetwork for the self-embedding

[’lm U'" s (. " ’ l' 'liu v, l? Ye :..
wméd, l;_.). substrings v, x are found.
m.'l‘ .l"ulnu‘.‘udathtw
9

.'l' .|’ ye 'l.l’ |'=|‘. Oenote the
i o b8
hbl._ Volu i<k}, Form o semple set

ek

AT i TR

+
Sa =00y O g 13} U (VAX) where A Is the
name of the new subnetwork.

b. Construct a derivative finite-state grammar
for SA’ using the procedure described in
Section 111,

c. Obtain the subnetwork from the derivative
grammar, Note that an arc In the TN with a
nonterminal as its label Is a PUSH arc.

d. Replace the substring (v' w, x' | 121, mo}
In s* with A,

e. 6o to Step 1,

Step A, Construct the network for the sentences.
a. Construct the derivative finite-state grammar

for S’.

b, Obtain the subnetwork S from the derivative
grammar.

¢s The name of the subnetwork S is the start
state of the Inferred BTN.

d. The iInferred BTN Is the set of all the sub-
networks Inferred.

e. STOP

The procedure is easy and practical to implement
on a computer, Any sample set with a reasonable size
which Is large enough to imply the self-embedding
structures of the language and is not so large as to
consume up the computer memory, can be put on a com-
puter to infer its BYN.

%y Congider s tanguage t =
{b%ab%ch*ab |2,k>1}. The substring rab¥cb¥at is em

bedded between the b's In the sentence and the symbol
ic! Is embedded between the b's In the substring. The
language could be the encoded strings of two arms of
chromosomes on each side of the centromere con-
striction. This can be shown in Fig. 2.

A sample set of size 35 which is listed in Table |
is fed to the computer program implementing the in-
ference procedure as stated. After the table of the
derivatives Is completed, an equivalent class of value
‘! Is found, The class is shown as Table 2(a) which
Is summarized as Table 2(b). Examining Table 2(b), a
self-embedding 'c' Is found with substring v = x = b,
A subnetwork for the sample set SA’ = (bcb,bAb) s con=
structed as Fig. 3.

Jable 1. The le Set for the BTN Infe Experi=
sent.

babcbab bbabcbabb
babbcbbad bbabbcbbabb
babbbcbbbab bbabbbcbbbabd
babbbbcbbbbab bbabbbbcbbbbabb
babbbbbcbbbbbab bbabbbbbebbbbbab
babbbbbbcbbbbbbab bbabbbbbbcbbbbbbabb
bbbabcbabbb bbbbabcbabbbb
bbbabbcbbabbb bbbbabbcbbabbbd
bbbabbbcbbbabbb bbbbabbbcbbbabbbb
bbbabbbbcbbbbabbb bbbbabbbbcbbbbabbbb
bbbabbbbbcbbbbbabbb bbbbabbbbbcbbbbbabbbb

bbbabbbbbbcbbbbbbabbb bbbbabbbbbbebbbbbbabbbb

e - .
bbbbbabcbabbbbb '
bbbbbabbcbbabbbbb bbbbbbabcbabbbbbb
bbbbbabbbcbbbabbbbb bbbbbb bbebbabbbbbb
bbbbbabbbbebbbbabbbbb bbbbbbabbbcbbbabbbbbb
bbbbbabbbbbcbbbbbabbbbb bbbbbbabbbbcbbbbabbbbbb
bbbbbabbbbbbcbbbbbbabbbbb bbbbbbabbbbbcbbbbbabbbbbb
Table 2‘12. The Equivalent Class of Value 'c'.

Oab Epab Ppbabbbb Ebbbbabb

®babb Ebbab Obbbabbb Ebbbabbb

Pbbab Epabb Opubbabb Ebbabbbb

bbbbbab Ebabbbbb

babbbbbb Ebbbbbbab
Oyubabb Ebbabbb bbabbbbb Ebbbbbabb
Opbbbab Ebabbbb Pbbbabbbb Ebbbbabbb
Obabbbbb Ebbbbbab Cbbbbabbb Ebbbabbbb

Table 2§bz. Summary of Table 2(a).

Obabbb Ebbbab
Obbabbb Ebbbabb

Oab’ Epfab 1<i<é6
D2, E 2 1<1<5
03,51 Eplapd "1 ST 2 h
Dphgpt Epigpd 15123
Dbsab' Ebl.bs i=1

Replacing substrings b'cb'lbl} in the sample set
of Table | by the nonterminal symbol 'A', we get a new
sample set shown in Table 3. :

Jable 3. The Sample Set After Replacement.

baAab bbbbaAabbbb
bbaAabb bbbbbaAabbbbb
bbbaAabbb bbbbbbaAabbbbbb

The equivalent class of the derivatives of the
new sample set is shown in Table &. A self-embedding
of ‘aAa’ is found with vex=b, The subnetwork for the

sample set s.’ = {baAab, bBb} is constructed as Fig. 4.

Replacing substrings {b'aAab’'|i>1} in the sample
set of Table 3 by the symbol *8', we get the set {8}.
The Inference procedure Is completed with the in-
ferred transition network B shown in Fig. 5. The
language generated by this transition network is

L = (b"ab*cbkab|k, £ > 1.

Jable k., The Equivalent Classes of the Derivatives of
tE E&_«'@le §t !n !aE!e :.

'A. .“l

Oba Eab O &b

Obba Eabb O%ba Ebb
Obbba Eabbb Obbbatbbb
Obbbba Eabbbb Obbbbe Ebbbb

Obubbba Eabbbbb Obbbbba Ebbbbb
Opbobbba Eabbbbbb “bbbbbba Ebbbbbb

M e i i

R R T T Y

S o WW' " Gl B L Lo
? "
‘ul lml
O Eap Oa Ex
OybEabb Pbba Ep
OybbEabbb Oubba Ebb
Pbbbb Eabbbb Oytbba Ebbb

Oubbbb Eabbbbb Pbbbbba Ebbbb
Opbbbbb Eabbbbbb Pbbbbbba Ebbbbb

nl Ecb Db, Eb

O Eabb %5 Ebb

O Eabbb Obbb Epbb

0., E ... E

bbb Eabbbb bbbb Ebbbb
Oubbb Eabbbbb Pobbbb Ebbbbb

Oubbbb Eabbbbbb Pbbbbbb Ebbbbbb

An analysis of CSL in terms of transformational
grammars can be found in Ref. 11. A CSG can be seen
as a CFG (base) and a set of transformationa) rules.
The CSL is obtained by applying a sequence of trans=
formatlions to the CFL generated by the CFG. For a
glven sample of CSL, suppose that some reverse trans=
formations are assumed, then a sample set of CFL can
be obtained by applying the reverse transformations.
To complete an ATN for the CSL, the technique. of BTN
inference is used to construct the BTN for the CFL and
then augmented arcs are added to achieve the trans~
formations. It can be seen that the set of assumed
reverse transformations plays an important role in the
resulting ATN. The system of ATN inference may be
operated under a supervisor in the fashion of trial and
error. For example, the sketch of an ATN inference
system shown in Fig. 6 may be a possible solution.
For the fllustration of the ATN inference technique,
Example 2 Is given below.

Example 2: A sample set shown in Table 5 is
given to the ATN inference system sketched in Fig. 6.
A reverse transformation 'bbctbcb'! to the strings Is

fverss traiiforiacion Is ot tn TekIe .

Jable 5 Jable 6
abc abc

a%v?c? a?(be)?
33 a3(be)?
o -a%(be)®
avoed a>(be)®
.‘bs c‘ .6 (bﬁ)‘
alvle! ol (be) 7

Now, for the new sample set, a BTN shown in Fig. 7
is Inferred using the technique described previously In
this Section. To complete the augmented transition
network, two augmented arcs, 7 and 8, are added. The
resulting ATN Is shown in Fig. 8. It Is clear that the
glven sample set is a subset of the language generated
by the Inferred ATN,

V. Conclusions and Remarks

In this paper, the Inferences of transition net-
work grammars are presented. In particular, a strategy
to reveal the self-embedding structures in context-free
lanaguages has been proposed. It Is found to be a
rather systematic and practical approach compard to the
existing heuristic methods.

Although the research of finite-state grammatical
Inference has been reasonably successful, the research
in the whole area of grammatical Inference Is still In
its Infancy. In many cases, finite-state grammars are
not powerful enough to fully characterize the language
under study. Therefore, more complex grammars are
needed. The subject of grammatical inference for
grammars of types other than finite state is of in-
creasing Importance. It has been proven that trans-
formational grammars are as powerful as type 0 grammars.
The close relationship between transition network 1
grammars and transformational grammars has been SM.
Clearly, a context-sensitive grammar can be represented
as a context-free grammar plus a set of transformation
rules. These can be fully expressed in terms of basic
transition networks with a set of augmented arcs. It
turns out that the basic transition networks, which
correspond to the context-free grammar, are the foun-
dations of grammars of different complexities. The
inference of basic transition network grammars becomes
a key to the area of grammatical inference. Much work
remains to be done; however, it Is hoped that more in-
terest and research will be stimulated on this subject.

References

1. Crespi-Reghizzi, S., Melkanoff, M. A., and Lichten,
L., ""The Use of Grammatical Inference for Designing
:rogramlng Languages,' CACM, February 1973, pp.

3-90'

2. Fu, K., S., Syntactic Methods in Pattern Recog-
nition, Academic Press, 1974,
3. Hopcroft, J. E. and Uliman, J. D., Formal

Languages and Their Relation to Automata, Addison-
V;siey, 1969.

4, Solomonoff, R, L., ""A Formal Theory of Inductive
Inference," Information and Control 7, 1964, pp.
11=22, 224-254,

S. Feldman, J. A., Gips, J., Horning, J. J., and
Reder, S., '"Grammatical Complexity and Inference,"
Tech. Rept. No. CS-125, Computer Science Department,
Stanford University, Stanford, California, 1969.

6. Fu, K. S. and Booth, T. L., "Grammatical Inference:
Introduction and Survey - Part |,'" IEEE Trans-

actlions on Systems, Man, and Cybernetics, Vol. SMC-
;. Eo i' January |§,;, PP. ;;-ll'.

7. Thorne, J., Bratley, P., and Dewar, H., ''The
Syntactic Analysis of English by Machine,' Machine
Intelligence 3, Michie, D., editor, American

sevier Press, New York, 1968, pp. 281-297.

8. Bobrow, D. and Fraser, B., 'An Augmented State
Transition Network Analysis Procedure,' Proc.
Internationa) Joint Conference on Artificial
Intelligence, Washington, D.C., 1969, pp. 557-567.

9. Woods, W. A., "Transition Network Grammars for
Natural Language Analysis," CACM, Vol. 13, No. 10,
October 1970, pp. 591-606.

10, Woods, W. A., “"An Experimental Parsing System for
Transition Network Grammars,'' BBN Report No. 2362,
Computer Sclence Division, Bolt Beranek and Ngmn
Inc., Cambridge, Massachusetts, May 1972,

1. Chou, S, M. and Fu, K. S., "Transition Networks
for Pattern Recognition,' Tech. Rept. TR-EE 75-39,
December 1975, School of Electrical Engineering,
Purdue University, W. Lafayette, Indiana.

12, Brzozowski, J. A., '"Derivatives of Regular Ex-
pressions,' Journal of ACM, Vol, i1, No. 4, pp.
A81-4394, 1|

13. Biermann, A. W, and Feldman, J. A., ""On the
Synthesis of Finite-State Acceptors," Stanford
Artificial Intelligence Project Memo, AlM=114,
Stanford University, Stanford, California, 1970.

Vh, Crespi-Reghizzi, S., '"Reduction of Enumeration in
Grammar Acquisition,' 2nd International Joint
Conference on Artificial Intelligence, London,
1971, pp. 546-552.

15. Solomonoff, R. J., "A New Method for Discovering
the Grammars of Phrase Structure Languages,''
Information Processing, June 1959, pp. 285-290.

fig. 4. The subnetwork for {baAab, bBb}

Fig. 5. The Inferred BTN for s*

’ O —— —
s (csL) [Reverse *(cey) IsTN 1n-| BTN od | ATN
<] 7 :‘I‘::sh *|ference 1% !
‘ l
. 7::‘.':"'::" Transformation Rules T :
(CAT x) means a sequence of CAT arcs accepting a imat fon |
substring x llu es
‘ ‘ L-« Tmh‘f - L~(AAI!)-.-—.——- - — e e e+ e —-—l
Fig. 1. The BTN generating {v wx |i>0}

Fig. 6. An ATN Inference System

b
\\\il oy /% . cn.Oqs;%)g_n()w:()nr*
- 3 "
P - e

,.
8,7\
/ a
L)
by A
/ >4
/ [Ty
/ ik e
L O b ~
,: Y a4
| a b

Fig. 2. A sequential embedding example

“TJQQS_!' i
a 7 S e

Fige. 7. The Inferred BTN

CAT b(HOLD)

g
T h.(‘ sm .-_‘)m
S VIR b

Fig. P. The Inferred ATN

bLNC L\Nﬂ i 9
SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

(19 JREPORT DOCUMENTATION PAGE "BEFORE COMPLETING FORM

2. GOVY ACCE“.ON NO.| 3. RECIPIENT'S CATALOG NUMBER

§. TYPE OF REPORT & PERIOD COVERED

k ; e INFERENCE FOR ;TRANSITIW JETWORK GRAMMARS Interim Pl

6. PERFORMING ORG. REPORT NUMBER

; 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
2
] @ S. M/Chou s K. S. /PL[5 ;/m..uaék‘i*.zsm—;?f',
' 5. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEWENT.PROJECT, TASK |
‘ : doe titversity v . AREA & WORK UNIT NUMBERS
- School of Electrical Engineering L 61102F ‘Bﬂa
f fayette, IN 47907
11. CONTROLLING OFFICE NAME AND ADDRESS 12. PORT DATE™ /
g Air Force Office of Scientific Research/NM
Bolling AFB, Washington, DC 20332 13.SWOMBER OF FAGES

T4. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 15. SECURITY CLASS. (of this report)

JEI UNCLASSIFIED
Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

4 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) . = »-‘-—a*ﬁV
ottt ..{_ Py
i wilia wctes A7 4
Lo L vt
LT ERRHE | o

18. SUPPLEMENTARY NOTES s
" e i

mrmmn/mlulmw cies

19. KEY WORDS (Continue on reverse side if necessary and identily dy dlock number)

ABSTRACT (Continue on reverse side If necessary and identify by block number)

is paper gives a brief introduction to transition networks and proposes an
ayproach to the inference of transition network grammars.

DD , v 1473 eoimion oF 1 nov 6818 oBsOLETE &7 2 o OD o

SECURITY CLASSIFICATION OF THIS PAGE (When Data

