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[ List of Symbols

The following list of symbols presents the primary symbols and nota~-
tion used throughout the report. It does not include those symbols which
are used just one time for the purpose of illustrating some particular
point in passing, nor does it include all of the variations of subscripts,
superscripts, or functional dependencies. These variations are explained

within the report itself.

i Location First
Symbol Meaning Appearing or Defined
aj(t) Scalar functions in polynomial Eq (131)
representation of eAt
1)
3 a(t) 2n dimensioned vector function Eq (185)
& with components aj(t)
. N
: a*(t) rx2nr dimensioned matrix function Eq (219)
with elements aj(t)
ak(t) Scalar functions used in definition Eq (454)
of secpnd order parameter sensitiv-
ities
b1 Real parameter component Pg S5
b Real p dimensional parameter vector Pg 5
bo Nominal parameter vector Pg 5
b Estimate of b ¢ RP Sections II.7 and V
b* Optimal estimate of b ¢ RP Sections II.7 and V
"'p" Subscript denoting total derivative Pg 21
with respect to b ¢ RP
€1s¢y Real constants Pg 36, Pg 131
d Initial state vector Pg 5
d Augmented "sensitivity" initial Eq (6)
| state
e
| et Exponential raised to power of Pg 59
| superscript
i
‘ At
e Matrix exponential Pg 59
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Location First
Symbol Meaning Appearing or Defined
ey The 1th Euclidean basis vector Pg 57
f(x,b,t) General nonlinear function Pg 4
f(t) 2n dimensioned vector function Eq (405)
fj(t) Components of f(t) Pg 174
g(t;u) 2nr dimensioned function Eq (186)
8(q) Polynomial Pg 65
gi(q) Polynomial Pg 65
h(t) €2alar function of t Eq (301)
i Subscript og superscript generally Pg 5
denoting 1t parameter component
(1) Subscript denoting partial deriva- Pg S
tive with respect to bi
q Subscript of superscript
3 k Subscript or superscript. Also Eq (300)
scalar constant
kij Scalar: constants in weighted trace Eq (75)
cost functional {
|
m Number of outputs Pg 20 |
» n State dimension for ordinary differ- Pg 5 E
ential equation systems
n, Multiplicity of eigenvalue q, in Pg 60
characteristic polynomial of A
matrix
P Parameter dimension PR S
%Y kth distinct eigenvalue of A Pg 60 ’
matrix :
9% Maximal eigenvalue of VQ Pg 150 i
r Control dimension Pg 5 ‘
8 Dummy parameter of integration :
. Scalar step size for gradient itera- Pg 34
tions
s* Optimal step size Eq (47)

= ix
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: Location First
Symbol Meaning Appearing or Defined
@ t Independent "time" variable Py 4
to Inftial time Pg 4
te Final time Pg 4
§ u Control input Pg 4
u* Optimal control Pg 28, Pg 51
@ Qutput parameter sensitivity Pg 21
with respect to b1
'
vjm Sensitivity of 3" output with Eq (195)
respect to b1
v(i’J) Second order output parameter Eq (40)
sensitivity with respect to b1
and b
b
wj jth column vector of Valsh matrix Wa Pg 159
% x System state Eq (4)
y System m-dimensional output Eq (®)
yj jth oufput component Pg 83
z Output error function Eq (32)
bt 2 Pl Subscript denoting zero input Section 11
response
3 Yz.0." Subscript denoting zero state Section 1T
3 response
A nxn dimensioned plant matrix Pg 5
A n(p+1)xn(p+l) dimensioned "sensitiv- Eq (7)
ity system'" plant matrix
Ai 2nx2n matrix of ith sensitivity Eq (118)
system
AK Zero-input self-adjoint operator Eq (78)
2.4,
AK Zero-state self-adjoint operator Eq (82)
z.s.
B nxr control input matrix Pg 5
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Symbol

B

Meaning

n(p+l)xr "sensitivity.system"
control matrix

mxn output matrix

m(p+l)xn(p+l) "sensitivity system"
output matrix

State space
Matrices used in matrix operator
representation of zerc-input

sensitivities

Matri-es used in zero-~input
identit ability

Matrices used in rhe matrix-operator

"compenent" representation of the
zero-input sensitivities

Matrices used in the matrix-oper-
ator representation of the zero-
state sensitivities

Matricgs used in zero-state
identifiability

A Yx2nr dimensioned matrix of
rank y

Matrices used in the matrix-oper-
ator '"component' representation of
the zero-state sensitivities

Ay

x2n(r+1l) dimensioned matrix of
rank

b
A npx2n(r+l) dimensioned matrix

Cost functionals used in parameter
idencification

Cost functionals used in input
design

Cost functionals used in minimum
sensitivity control design

xi

Location First
Appearing or Defined

Eq (7)

Pg 54

Eq (94)

Pg 20
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(200)
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(200)

Eqs (252)(253)
Pg 91

Eqs (409) (410) (413)
(414)

Pg 92

Eq (278)

Eqs (29) (35) (51)

Eqs (75) (76) (80)

Eqs (22)(295)




o

AFAL-TR-76-118
?. Location First

Symbol Meaning Appearing or Defined
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pings
Identifiability matrix Eq (50)
Local information matrix Pg 45
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A 2nrx2nr dimensioned partitioned Eq (218)
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Control weighting Pg 122
Self~adjoint operator mapping on Eq (302)
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Partitioned diagonal weighting Eq (381)
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Section I

INTRODUCTION

A central topic of modern system theory is parameter sensitivity.
The first step in the analysis of a system 1s to obtain a mathematical
model of that system. Such a mathematical model invariably contains {
parameters (fixed constants such as the value of a resistor in an elec-
trical network) which are known with varying degrees of certainty. Para-
j meter sensitivity, then, is the study of any property of this mathematical
model which might be altered by a change of these parameter values from
their nominal or assumed values.

To limit the scope of the discusslon, the parameters are assumed to be
constant and only local variations of the parameters from their nominal
values will be treated. Also, the main concern will be with variations in
the mathematical model output (or system response) caused by these local
perturbations of the parameters. To be specific, if it is not stated

otherwise, then "parameter sensitivity" will be defined as the Fréchet

derivative of the mathematical model output with respect to the unknown
constant parameters evaluated at the nominal parameter values. This has
become a fairly stendard definition of parameter sensitivity. (See, e.g.,
Tomovic and Vukobratovic (Ref 29)).

Notice that a derivative (or partial derivative) is a linear operator

l.g., (Ref 3: 182)) and hence the parameter sensitivities will also be
referred to as "sensitivity operators'". Indeed, this is the central theme
of this presentation: the parameter sensitivities are linear operators

i and by treating them as such many of their system properties become more

| apparent and easier to deal with. By further limiting the discussion to

linear mathematical models of systems, the system output is defined by

1
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the sum of linear operators on the initial conditions and the control

input. The "sensitivity operators" are then defined in terms of the Fréchet
derivatives of these system operators. This operator structure is used

as & unifying foundation for the sensitivity-related system properties
which are presented.

Often the first step in the analysis of a system is to identify or
estimate the system parameters from experimental measurements, and para-
meter sensitivity is the basis of many numerical techniques for,parameter
identification. The sensitivity operators are intimately related to the
question of "identifiability"; that is, the a priori capability to deter-
mine whether or not a set of parameters may be uniquely estimated from a
given set of experimental measurements. Also, parameter identification
capability may be optimized by proper design of the sensitivity operators
through either selection of the initial conditions or control input. The
sensitivity operators are analogous to signal strength in a communication
channel, and it will generally improve estimation capability if the sensi-
tivities are "large".

Once a system model with fairly accurate nominal parameter values is
obtained, usually the next step in system analysis is to design a control
function to achieve some objective or optimize some performance criterion.
Here one generally wishes the system to be forgiving of one's inaccurate
knowledge of the true parameter values, and so, in this casé, one would
like the sensitivity operators to be small. Associated with this objective
we discuss the sensitivity-related system properties of insensitivity,
sensitivity operator controllability, and optimal design of a control in-
put to minimize the value of the sensitivity operators.

The sensitivity-related system properties mentioned above are con-
sidered in this dissertation, but they are examples of just a few of the

2




AFAL-TR-76-118
3 many important ways which parameter sensitivity enters into system theory.

Each of these properties is 1ideally treated via an operator viewpoint

and many useful digital computational techniques are thereby obtained.

Finally, we note that an operator structure is equally epplicable in
either the time domain or frequency domain, but to 1limit the scope of the |
presentation we will only treat the time domain description of linear

dynamic systems.

1. BACKGROUND LITERATURE

The earliest interests in parameter sensitivity stemmed mainly from
the effect which parameter variations would have upon control system per-
formance. Bode (Ref 4) was one of the first investigators to consider
parameter sensitivity in dynamic system analysis. Broadly, he defined the
sensitivity function as the ratio between a given percentage change in a
parameter component and the resulting percentage change in the system out-
put (delivered voltage in an electrical network). Through frequency domain
analysis he showed that feedback could significantly reduce the "sensitivity
function" in an electrical network. This original work spurred a great deal
L of research into a frequency domain analysis of parameter sensitivity and

an analysis of the effect of feedback on reducing sensitivity in automatic

control systems. (See,eg., Horowitz (Ref 1L) and Horowitz and Shaked (Ref i5).
Although the operator approach to parameter sensitivity is closely

related to a frequency domain treatment, this specific analysis treats

linear dynamic systems in a time domain state-variable description (Kalman
(Ref 16)). Tomovic (Ref 28) develops a time-domain description of para-
meter sensitivity for linear and nonlinear dynamic systems and introduces
the concept of the "sensitivity system"; that is, if a system is descridbed
by the nonlinear differential equation

3
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x(t; b) = £(x, b, t)  x(t ) = d(d) te [ty tgl (1)
vhere b is an unknown constant parameter with nominal value bo, then the

linearized differential equation

4
at

E(tsp) = g§<x,b,t)l gt v) + 3 &,v, ) (2)

b= b, [b = v,

is referred to as the "sensitivity system", and for t X Tin
9x

EGargle 2 bl o

o
is termed the "sensitivity function” or "parameter influence function".

This fundamental differential equation description has been the basis
for nearly all of the time-domain analyses of the parameter sensitivities.
(see,e.g., (Ref 29) (Ref 6) as general references on sensitivity). For
general nonlinear systems this is perhaps the most appropriate way of
dealing with parameter sensitivity, and very few general results beyond
this basic relationship have been obtained. However, for linear systems,
and in particular for linear time-invariant ordinary differential equa-
tion systems, there has been a tremendous amount of research into the
structure and system mroperties of the "sensitivity system". Our specific
applications focus on such linear time-invariant ordinary differential
equation systems, and so we discuss the relevant literature of parameter
sensitivity for such systems. However, before doing so it is important to *
comment that the fundamental difference between the research reported herein
and that of previous investigators is the fact that we do not use a "sensi-
tivity system" differential equation representation of the parameter

sensitivities; rather we use an operator time-domain description of the

linear system. To obtain the parameter sensitivities we then directly
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differentiate this operator description. Therefore, although the previous
literature on sensitivity is quite pertinent in that many of the results
obtained are similar or identical to those reported here, the fundamental
approach taken in deriving these results is generally quite different.

a. Structural Properties

Consider the system
x(t;u) = A()x(t;u) + B(Blu(t)  x(0) = d(d)  te[0,t.]  (4)

where x(t) is an n-dimensional state vector, u(t) an r~dimensional control
input, and b a p-dimensional real parameter vector which parameterizes the
matrices A and B and the initial condition vector d. It is assumed that
these latter quantities are continuously differentiable with respect to

the individual parameter components b, at a nominal value of the parameter

i

vector bo e RP. Then the state sensitivities (g = ) may be

(i)(t'u) - g: ti;u)

computed from the so-called "sensitivity system'" (Ref 29)
X(t;u) = AX(t;u) + Bu(t) X(0) = d (5) |

where all the quantities are evaluated at bo ¢ RP and are defined by

#” Px(t;u) d
5(1) (t3u) d(l) g
X(t3u) = : da:=| . (6)
, ®,,.
{ L gl
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F TR S oj B
Yy A B(1)
A(2) 0 A
A= B= (n
_A(p) O i e A— L_B(P)_

The subscript within parenthesis indicates partial differentiation with
respect to the parameter component. Therefore, by a direct analysis the
complete solution for all of the parameter sensitvities would require
solving n(p + 1) coupled linear differential equations; if n and p are
both large this can be quite a large number of differential eqguations
indeed.

However, the structure of this "sensitivity system" is quite unique
and many interesting facts have been discovered about its properties. A
number of researchers have investigated canonical form representations
and interrelationships which significantly reduce the required number
of differential equations for producing the sensitivity system. (Refs
34-42) Much of this work stems from the "sensitivity-points" techniques
introduced by Kokotovic (Ref 37). Varshney (Ref L0O) provides an excellents
summary of these techniques, and shows that the required number of
differential equations for generating the first order sensitivity system
may be reduced from n(p + 1) to n(r + 3) where r is the control dimension.
He also considers extensions of these techniques to obtain minimal order
models of the second order sensitivity operators and the first order

sensitivities for linear time-invariant time-delay systems.

6
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More recently the controllability and structural properties of the
sensitivity system have been an area of considerable interest. Holtzman
and Horing (Ref 69) examine optimal control methods for making the
sensitivities zero at the terminal time. This work has initiated an
interest in sufficient conditions for uncontrollability of the sensitivty
system (Refs L8-53)., Through a Jordan canonical form analysis of the
sensitivity system plant matrix K; Guardabassi, et al, (Ref 51s) (Ref 52)
investigate the structural properties and the controllability of the
sensitivity system. In reference 51 they examine the minimal polynomial of
A and obtain & general formula for eigenvalue sensitivity based upon

the Jordan ca;snical form of A. They conclude that the eigenvalue
multiplicities of A are no more than twice that of the original A matrix.
They also examine uncontrollability of the sensitivity system and obtain
a composite of sufficiency conditions for uncontrollability. In reference 52
they give further consideration to the Jordan canonical form of A for
the special case in which A has no repeated eigenvalues. They show

that the structure of the Jordan canonicel form of A is intimately
related to the eigenvalue sensitivities and that sufficiency conditions
for uncontrollability are also related to the eigenvalue sensitivities.

A general statement of their results is that the sensitivity system is
always uncontrollable if the number of parameters is greaté§ than the
number of control inputs. Finally, for the special case of single

input systems, they obtain necessary and sufficient conditions for
controllability of the sensitivity system. These conditions are inde-
pendent of the nominal parameter value, b° € RP, and, again they are
dependent upon the eigenvalue sensitivities.

Gupta and Mehra (Ref 84 ) and Gupta and Hall (Ref 108) consider

controllability of the sensitivity system by a direct analysis of con=-
7
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trollability of the matrix pair (K; B). By analyzing linear dependence

of vectors in the controllability matrix of (A, B) they obtain sufficiency
conditions for uncontrollability. They use the linear dependency of
column vectors in the controllability matrix of (A, B) to provide a con-
structive means to reduce the number of difrerentiq} equations to the
minimum number, and remove some of the undesirable computational

features associated with reduction of the sensitivitv system via canonical
form analysis (Ref L40)

An area which has also used the structural relationships of the
sensitivity system for analysis is the question of "insensitivity". (Refs
54-67) Various definitions of insensitivity have been utilized, and
Guardabessi et al, (Ref 61) provide an excellent summary of the various
definitions and conditions for insensitivity. Also they show the rela-
tionships between parametric insensitivity and the related concepts of
signal inveriance (eg., (Ref 57)), signal insensitivity (e.g.,(Ref 6L)),
and parametric invariance (Ref 54)). All of these concepts are con-
cerned with system conditions which ensure that parametric or signal
perturbations cause no change in the system output. Insensitivity
generally connotes zero effect for local or small changes of the parameters,
whereas the property of invariance is generally concerned with the stronger
condition of zero output perturbation for larger changes of the parameters.
We will later be concerned with the weaker condition of parametric
insensitivity, but some recent work of Guardabassi, et al (Ref 62) shows
that insensitivity of a suitably defined assoclative system can often
imply invariance of the original system. The conditions for insensitivity
are well-known (e.g,(Ref 61)), and recent research has concentrated on

the geometric construction of feedback contrcl) laws which achieve insensi-

tivity (eg, (Ref 55) (Ref 58) (Ref 59) (Ref 65),. We do not delve into this
8
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latter synthesis area; rather, we only wish to demonstrate the ease by which
the operator description of the parameter sensitivities enables one to
obtain conditions for insensitivity. Also, we will discuss some of the
relationships between insensitivity and identifiability. The connection
between non-identifiability and insensitivity has been previously noted fe.g,
Bonivento (Ref 55), but no specific results on identifiability which utilize
this association have been reported.

b. Optimal Control Laws to Minimize Parameter Sensitivity

The determination of control laws which meintain adequat; performance
with system parameter changes is a basic problem of control theory
and sensitivity analysis. The concepts of sensitivity controllability
end insensitivity are related to this problem, and, as mentioned in
Section I.l.a,there is current research in the synthesis of control lews
which achieve insensitivity. Another popular synthesis technique is the
design of minimum sensitivity control laws through the use of optimal
control theory. (.g, (Refs 68 - 78)) The basic concept of such techniques
is to place some measure of the sensitivity variables within the optimiza-
tion cost functional, and then use the methodology of optimal control
theory and the Maximum Principle (Pontryagin, et al (Ref 22)) to determine
the optimal control law or feedback gain matrices which minimize this cost
functional.

For the linear time-invariant system (1) with & quadratic cost func-
tional on the state and state sensitivities, the optimal open-loop control
law may be uniquely determined via a Riccati equation (e.g, Kahne (Ref 70)).
However, unless minimum order sensitivity models are utilized, the Riccati
equation has dimension n(p + 1) x n(p + 1). The computation time by this

method can then be quite large. We investigate this specific open-loop

minimum sensitivity problem and show that the operator approach providec

9
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an interesting alternative to the nonlinear matrix Riccati differential
equation method of solution.

Closed-loop or feedback control laws are known often to have smaller

sencitivity than the nominally equivalent open-loop control law (eg,
Horowitz (Ref 14), Cruz and Perkins (Ref 7)). Therefore, there has also
been a considerable amount of research into the design of feedback control

laws which minimize parameter sensitivity by using both classical frequency

e

domain and optimal control techniques. For the linear time-invariant system
(4) the Riccati equation solution does not produce an optimal closed-loop
minimum sensitivity control law because the optimal control is based
upon the nominal values of the parameter sensitivities, which are com-
puted under the assumption that the control is open-loop. However,
there has been quite a number of attempts to design suboptimal minimum
sensitivity feedback control laws based upon this Riccati equations
structure. (See,e.g, Lamont and Kahne (Ref 72)). Also, there is con-
siderable interest in the design of minimum sensitivity control laws when
there is noise entering into the system as well as parameter variations
e.g., (Ref T7)) or when the control law is adaptively adjusted by using
on-line estimates of the parameter values (e.g., Ref Th4)). However, to
limit the scope of our presentation we only consider the open-loop problenm
and do not discuss the closed-loop adaptive control problems.

¢. Parameter Identification and Sensitivity

The problem of estimating the parameters in a dynamic system can be
formulated as an optimization problem in which the parameter values are

selected to either minimize or maximize some criterion. Most often this

criterion involves the difference between the measured system output and

the model system output, where the model output is dependent upon the

10
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estimated parameter values. Generally such a criterion is a nonlinear
functional of the parameter values, and an iterative technique must be
used to obtain the "optimal" estimates. These iterative techniques in-
herently involve the computation of the parameter sensitivities; the output
parameter sensitivities indicate approximastely how much the system output
will be changed by small changes of the parameter values.

Many different iterative techniques exist for estimating %the para-
meters, and several excellent survey papers have been written of the use
of various optimization criterion (See, eg., Astrom and Eykhoff (Ref 80),
Cuenod and Sage (Ref 82) and Eykhoff (Ref 83)). We will be concerned
with minimizing a quadratic functional of the output error (the difference
between the measured system output and the mathematical model output).

Such a functional is compatible with either least squeres or maximum likeli-
hood identification. . (See, eg, Gupta and Mehra (Ref 84)). Quasilineari-
zation, also known as modified Newton-Raphson or the method of parameter
influence coefficients, is a popular method for determining the minimizing
estimates. (Ref T9) (Ref 86) It is less complex than the full second
order Newton-Rephson method, but it has nearly equal convergence properties.
(See Banks and Groome (Ref 81)). However, due to singularity of the
information matrix, a conventional gradient technique must often be used as
& starting procedure to the quasilinearization method. The Newton-Raphson,
quasilinearization, and gradient methods are all specific examples of
general iterative techniques knowr as stochastic approximation (see,e.g.,

Saridis (Ref 87) for a survey of stochastic approximation) and all of

these methods explicitly involve the parameter sensitivities in their
computation.

4., Identifiability

11
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One of the important questions of parameter identification is whether

or not the parameters in a system model can-be uniquely determined
from a given set of experimental observations. This question is the
essence of what is called "identifiability" (Lee (Ref 18)). If unique
estimates of the parameters cannot be obtained (the system is not identi-
fiable), then either the mathematical model or the experiment itself must
be modified. Because it is such a basic question and because the research
on parameter identification is so extensive, the literature on identifi-
ability is equally diversified.

Tse and Anton (Ref 103), Aoki and Yue (Ref 88), Staley and Yue
(Ref 101), Tse (Ref 102) and other have used a stochastic definition of
identifiability in which identifiability is defined by whether or not
there exists an estimator which gives convergence in probability (or in
mean square) to the true parameter value. The concept of stochastic
identifiebility is then stronger than the deterministic view of identifi-
ability discussed in the above paragraph (uniqueﬁess of solution), and
deterministic identifiability is necessary but not sufficient for
stochastic identifiability when there is system measurement and/or system
plant noise (Tse and Anton (Ref 103)). For linear time-invariant systems
with Gaussian white measurement noise, the conditions of stochastic
identifiability lead to the conclusion that the local information matrix
must be positive definite to ensure local identifiability (Tse (Ref 102)).

On the other hand, many researchers (.g., Lee (Ref 18)), Bellman and
Rstrom (Ref 89), Glover (Ref 91) (Ref 92), Glover and Willems (Ref 93),
and Martenson (Ref 96)) have adopted a deterministic approach to identifi-
ability similar to that discussed in the first paragraph above and this
is, in fact, the approach which we will teke. In addition to conditions

equivalent to the information matrix belng positive definite, these
2
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deterministic approaches have provided considerable structural infermation

concerning identifiability in linear time-invariant ordinary differential

_;? equation systems. Bellman and Rstrsm (Ref 89), Mehra (Ref 98), Mayne
| (Ref 97), Denham (Ref 90), and others examine conditions under which
certain canonical forms will be identifiable regardless of the nominal
parameter values. Mehra (Ref 98) gives an excellent summary of these
conditions.

However, if the parameters of the mathematical model are physical
variables it may be inconvenient to utilize such canonicel form repre-
sentations for identification. Additionally, Glover and Willems (Ref 93)
point out some inconsistencies which can arise in using such canonical
forms. Therefore, using arbitrary parameterizations they consider condi-
tions for both local and globel identifiability from the system frequency
domain transfer function (zero initial conditions). Then in reference 92
Glover extends the work of Popov (Ref 100) to consider general structural
conditions for minimal and nonminal parameterization of linear time~invariant
systems. He relates these conditions to structural identifiability in such

systems, and shows that the parameter identification problem may become ill-

posed if the parameterization is nonminimal,

Martenson (Ref 96) also uses a deterministic approach to identifiability.
By extending some concepts of Silverman and Meadows (Ref 25) concerning
sufficient conditions for observability in linear time-varying systems,
he obtains general algebraic sufficiency conditions for local identifi-
ebility in both linear and nonlinear dynamic systems.

Finally, in the next section we will discuss the fact that the
control input strongly affects the guality of parameter identification

capability, and, indeed, the control input may affect whether or not
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the system parameters are even identifiable. Astrom and Eykhoff (Ref 80)

term such conditions on the control input as conditions for "persistent
excitation". Through frequency domain analysis (steady-state conditions)
Menra (Ref 98), Payne and Goodwin (Ref 99), Hoberock and Stewart (Ref 9L)
and others have examined this question in considerable detail and have
determined the number of frequency components which are necessary to
ensure identifigbility in steady state operation. This interaction
between identification and the control input is extremely important. Later
we examine identifisbility of the zero-state response in linear time-
inveriant systems, and general structural conditions for identifiability
are obtained. However, these structural conditions are only necessary, as
sufficiency is dependent upon control input conditions for "persistent
excitation".

e. Sensitivity Design for Optimal Parameter Identification

The relationship between the control input function and parameter esti-
mation capability has long been recognized. A considerable number of
papers have appeared on various aspects of designing control inputs to
optimize or improve parameter estimation capability, and these techniques
have been successfully applied to many practical problems. f(.g, (Refs 104 -
122)) Mehra (Ref 11L4) gives an excellent summary of the literature on
input design, discussing methods of solution in both the frequency domain
and the time domain. Rather than repeat this general discussion, we
will discuss only the work which is directly relevant to our approach.

Our approach is entirely motivated by the novel work of Mehra (Ref 112).
He shows that the optimal input function to maximize a weighted trace of
the information matrix for linear time-invariaent ordinary differential
equation systems is the eigenfunction corresponding to the largest eigen-

value of a positive self-adjoint operator. He suggests various methods

1L
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of solution including the Rayleigh~-Ritz-Galerkin method. This is the
solution method we later adopt for our operator approach, but Mehra concen-
trates on a method which transforms the problem into a two-point boundary
value problem using the Pontryagin Maximum Principle (Ref 22). Using the
sensitivity system differential equations he suggests solving this problem
by means of a matrix Riccati differential equation technique. In (Ref 120)
a computer algorithm using this Riccati equation approach is outlined, and
the solution method is applied to the determination of optimalbinput func-
tions for the identification of aircraft stability and control derivatives.

This solution method is then further refined by Gupta and Hall (Ref 108)
vho eliminate much of the undesirable features of numerical integration of
the nonlinear matrix Riccati differential equation. They also incorporate
the controllability properties of the sensitivity system to reduce the
amount of computations still further. The computationel aspects of this
solution method will be discussed further in Section VII and compared
with the new solution technique which is developed using the operator
description of the parameter sensitivities and the Rayleigh-Ritz-Galerkin
method.

We comment that & recognized shortcoming of the original approach of
Mehra (Ref 112) is the use of the weighted trace of the information matrix
as the optimization criterion. Unless the weighting matrix is selected
Judiciously, this optimization criterion can lead to erroneous results and
even to conditions in which the locel information will be singular (the
system will be nonidentifiable). (See,e.g., Reid (Ref 119), Mehra (Ref 11k4),
Zarrop and Goodwin (Ref 122)). Others have suggested that either the trace
of the inverse inf vmation matrix (e.g., Reid (Ref 119), Gupta and Hall

(Ref 108), and Goodwin, et al (Ref 107)) or the determinant of the inverse
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information matrix (e.g., Mehra (Ref 11L4) and Nahi and Napjus (Ref 117)) is a
better criterion for optimization. Through the Cramer-Rac lower bound

the former criterion is directly related to the variasnce of the minimum
estimation error whereas the latter is directly proportional to the volume
of the error ellipsoid of parameter estimation error. (See Nahi and Napjus
(Ref 117) for further detailed discussion of various optimization criteria
useful in the input design problem).

However, through some results recently obtained by Mehra (Ref 113),
both Mehra (Ref 114) and Gupta and Hall (Ref 108) derive iterative algorithms
to successively adjust the weighting matrix in the information matrix
criterion so that the resulting optimal input minimizes either the trace
or the determinant of the inverse of the information matrix. The original
results of Mehra (Ref 112) are, therefore, an integral part of these
iterative algorithms. Indeed, the maximization of the weighted trace of
the information matri; is the most time consuming part of these algorithms.
Therefore, although our approach is closely related to reference 112 in
using the weighted trace of the information matrix, it has application to
other optimization criteria through these more recent results.

2. OBJECTIVES AND ORGANIZATIONS
There are two major objJectives in this research and the presentation
of this report. The first is to demonstrate a general operator framework
for treating parameter sensitivity in linear dynamic systems and to show
the usefulness of this operator formulation for analyzing various sensitivity
related system properties. The second obJective is to utilize this operator
formulation to obtain algorithms and computational techniques which will
be useful to systems engineerc dealing in modeling, identification and

control. In particular, our specific computational results mainly emphasize

16




TR AT T

AFAL-TR-76-118

large scale, linear, multivariable, time-invariant ordinary differential
equation systems.

To help achieve the first objective, concepts are initially developed
in a very general operator framework, and then these basic concepts are
illustrated by specific application to linear ordinary differential equation
systems with emphasis on the time-invariant system. Therefore, Section IT
defines parameter sensitivities for a linear system described in terms of
the sum of bounded linear operators on the Hilbert space of initiel condi-
tions and the Hilbert space of control inputs. Once defining these
sensitivities in terms of the Fréchet partial derivatives of the system
operators, we discuss, in turn, the sensitivity-related system properties
on insensitivity, sensitivity controllability, open-loop minimum sensitivity
control design, parameter identification, identifiability, and sensitivity
design to optimize parameter estimation capability. These system properties
are chosen for discussion not only because of their system importance, but
also because of their direct dependence upon the operator description of
the parameter sensitivities.

Section II establishes the fundamental operator methodology and many
of the basic definitions which are subsequently used to consider parameter
sensitivity in linear ordinary differential equation systems (Section III -
VII). This general operator presentation allows an appealing compactness
of notation in the development concepts, and it is written under the
assumption that the reader has a basic familiarity witn normed linear
spaces and some of the elementary concepts of functional analysis and
linear operator theory. ILuenberger (Ref 20) is an excellent background
reference for nearly all of the material which is discussed. However, the

reader who lacks this mathematical background should not be discouraged

from reviewing Section II, as this section contains much of the physical
17
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and geometric motivation for the properties with which we deal. Rather,
such a reader is encouraged to skim the mathematics lightly while paying
closer attention to the general discussion and definitions.

Section III develops & general operator description of the parameter
sensitivities for linear ordinary differential equation systems. In such
systems the key to making the operator formulation & useable approach lies
in teking the partial derivative of the state transition matrix with
respect to the parameter components. General results are obtajned for
time-varying plant matrices. Then for time-invariant plant matrices a new
algebraic description of these partial derivatives is derived. This
description gives considerable structural insight and produces practical
computational alternatives to conventional "sensitivity system" differential
equation approaches.

In Section IV the geometric aspects of this representation are pursued
by considering the properties of insensitivity, sensitivity controllebility,
and parameter identifiebility. The operator approach of Section III is
utilized, and new general algebraic conditions are obtained for local
and structural identifiability.

The computational aspects of this algebraic representation are
next examined by considering & quasilinearization algorithm for parameter
jdentification (Section V), optimal open-loop control design for minimum
sensitivity (Section VI), and sensitivity design for optimal parameter
identification (Section VII). In each case, detailed algorithms are
presented, and the computational aspects of these methods are compared
with conventional procedures using the sensitivity system and the Maximum
Principle. To help illustrate the computational techniques some simple

examples are presented within the respective sections.
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Section II

LINEAR SYSTEMS ON A HILBERT SPACE

In this section parameter sensitivity operators and their system
properties are considered for a very general linear system, SH' This
system is defined in terms of bounded linear operators on real Hilbert
spaces. For notational convenience and to simplify the discussion, only
the system output and output sensitivity operators are discussed; how-
ever, a similar operator description of the system state and state
sensitivities could also be provided.

The intent of this section is to help motivate the u;e of an oper-
ator representation for the treatment of parameter sensitivity in general
linear systems. This discussion provides the foundation for our later
analysis of parameter sensitivity in linear ordinary differential equation
systems (Sections III - VII)., However, besides providing a unifying
framework for this later discussion, it 1s important to note that this
general treatment should facilitate the extension of these sensitivity
concepts to such linear systems as general hereditary differential systems
and parabolic partial differential equation systems. These systems can be
put in an operator - Hilbert space setting (see, eg, Delfour and Mitter
(Ref 9) (Ref 10) or Baras, et al, (Ref 1)), and such mathematical models
are beginning to play an increasingly important role in applications of
systems theory to chemical, biological, economical, and.other large scale,
complex systems,

The organization of this section is the following: In Section II.l

the Hilbert-space system S, is defined and then in Section II.2 some

H
notational conventions are described. In Sections II,3 and II.4, and
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II.5 the control related properties of insensitivity, sensitivity
controllability, and optimal design for minimum sensitivity, respectively,
are defined and discussed. Finally, in Sections II.6, II,7 and II.8,
identification related sensitivity properties are described., In partic-
ular, these sections discuss general identification algorithms, identifi-
ability, and optimal sensitivity design for improved identification,

respectively.

1. SYSTEM DEFINITION
The real m-dimensional mathematical model output of the system SH is
uniquely defined on the closed interval [to, tf] by the operator expres-

sion
y(t; b, u) = T(t; b)d(b) + W(t; b)u te[to, tf] (8)

where d(b) is the initial state of the system from the Hilbert space D;

ue€ Lz(to, t.; U) is the control function input over the interval [to, tf]

f;
and U is the Hilbert space of controls; T(t; b) € Lc(D, R™) is the
continuous zero-input linear operator; W(t; b) € Lc(Lz(to, t; U), Rm)

is the casual, continuous zero-state linear operator; and b € RP is a
p-dimensional real parameter vector which parameterizes the initial state
and both the zero-input and zero-state system operators. The components

of the parameter vector b are designated b i=1, 2, ...p, and the

i’
nominal a priori value of the b ¢ RP is designated b° ¢ R’. The mathe-
matical model will generally be assumed evaluated at the nominal param-
eter values; therefore, for convenience we will henceforth delete from
the notation the explicit dependency of the output and various system

operators upon bo’ and this dependency will only be shown if b # bo or

i1f it is required for some reason of emphasis.
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At the nominal b° ¢ RP and for each t ¢ [to, tf] it is assumed that
d, T(t) and W(t) are continuously Frechet differential with respect to
each parameter component bi’ i=1, 2, ...p. These partial derivatives
are denoted d(i)’ T(i)(t)’ and w(i)(t). Since these partials are
continuous, the total Frechet differential is (Ref 3: 195)

P
Ab = I d(i)Abi 9)

i=1

G

where Ab = b - b0 and similarly for Tb(t) and Ws(t).
The component sensitivity operators are defined as the Frechet partial

derivatives of the system output with respect to each parameter component,

bi’ v(i)(t; u) = y(i)(t; u). Because of our assumptions these become!

v (es w) = (@ (00 + T gy) + W gy ©u (10)
The total sensitivity operator is denoted by the partitioned operator

V(t; u) = [v(l)(t; u) v(z)(t; u). . v(p)(t; u)]mxp 11)
so that the sensitivity "differential" becomes

P
V(t; u) Ab = I v(i)(t; u) Ab
i=1

1 (12)

As a final comment, since we are dealing with a linear system, we
are assured that we may uniquely decompose the output of the system into
its zero-input, g (t) = T(t)d, and zero-state portion,

Yais (t; u) = W(t)u. (Ref 33) The parameter sensitivigies may be

INotice that this "chain rule" for the derivative applies because the
individual partial derivatives are continuous and because by € R.

(Ref 3: 187-188). If b were assumed to be from a general normed linear
space, then a derivative in this form would not apply.
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similarly decomposed, and we will use such a decomposition frequently
in the discussion and the investigation of the various sensitivity

related system properties.

2. NOTATIONAL CONVENTIONS
We will often be interested in the system output and output sensi-
tivities over the entire time interval [to, tf]. The space of output

functions over this interval will be denoted Y = Lz(to, t Rm). An

£
element from this function space will be represented by y(:) o y. If
the time interval is restricted to [to, t], then the function space will
be denoted Vt. Similar script notations will be utilized for the control
function spaces, U = Lz(co,tf; U) and Ut = L2(t°, t; U).

In the discussion of the sensitivity-related properties the adjoint
operator is frequently encountered. The adjoint of a linear operator
will be denoted by that linear operator with a superscript "*", For
example, the adjoint of T(t) e Lc(D’ Rm) is denoted by T*(t) ¢ Lc(RP,D),

and is defined by the inner product relation
[y (e)/T(e)d] = [T*()y(£)/d) (13)

It will be assumed that the reader has a basic familiarity with the
adjoint operator and its properties, and Luenberger (Ref 20) is recom-
mended as an excellent background reference. However, the following
relationship is used so often that it is stated here for convenience:
LEMMA 1

Let A € Lc(H,K) where H and K are real Hilbert spaces. Then

1) R AN = NAY) (14)
11) RQ@) = (N @a*Nn* 15)
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See Luenberger (Ref 20: 157) for the proof of this lemma. Note
that R(:) and N(:) denote the range and null spaces of the linear operator,
the superscript + is the orthogonal complement space, and the overbar
here denotes ciosure of the subspace. Also note that many of our later
manipulations with the adjoint operator are simplified considerably
because we have assumed the underlying spaces to be real Hilbert spaces,
and such spaces are dual to themselves.

We now proceed with the development of the various sensitivity-
related system properties. In developing these properties the following
first-order Taylor's series equation for the output function y(b° + Ab)

plays a fundamental role:

y(bo + Ab) = y(bo) + V Ab + €

p
-y + = v tb, + ¢ (16)

i=1

1

where
lim e, 11/ 1ab]]| = 0
(lab[] >0 2 /

It will generally be assumed that design is accomplished at a nominal
parameter value, bo € Rp, but that the true parameter value, b ¢ rP

(not necessarily equai to bo), is unknown. The first three system prop-
erties discussed are paramater insensitivity, sensitivity controllability,

and optimal cnen-loop control design for minimum sensitivity. Each of

these is rclated to making the sensitivity operator, V, small, and hence

e i

3
)
¥

all have the general objective of reducing the perturbation in system

response

Lot . b

by = y(bo + 4b) - y(bo) Q7)
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caused by small changes of the system parameter, Ab = b - bo. On the
other hand, the last three properties discussed are system parameter
identification, identifiability and sensitivity design for improved
parameter estimation; here it will generally improve parameter identi-
fication capability if the sensitivity operators are large rather than
small. The Taylor's series relationship is used in developing each of
these sensitivity concepts, and the operator formulation is used as a

unifying foundation for the discussion.

3. PARAMETER INSENSITIVITY

Background literature on parameter insensitivity was discussed in
Section I.l.a. Few specific results can be made at this level of
generality (for the Hilbert space system SH)’ and so the objective here
is merely to establish the definitions which will be used in Section IV
for obtaining algebraic insensitivity conditions in linear time-invariant
ordinary differential equation systems. The main difference between
these definitions and previous ones is the separation between zero-input
and zero-state insensitivity!l:
Definition 1

The system SH is bi —- component zero-input insensitive if

e

p (t) = 0 for all t ¢ [to, tf]. It is totally zero-input insensitive

i 1f this is true for all 1 = 1, 2, ...p.
Definition 2

The system SH is b, -- component zero-state insensitive if

i

Vi‘: (¢ u) = 0 for all t e [t , t ] and all u. It is totally zero-state

insensitive if this is true for all 1 = 1, 2, ...p.

INote that zero-state insensitivity is what Guardabassi, et al, (Ref 61)
refer to as "hypoinsensitivity".
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4., SENSITIVITY CONTROLLABILITY

A central topic of modern system theory is controllability (e.g.,
Kalman, et al, (Ref 17)). Controllability properties of the ''sensitivity
system" in linear time-invariant ordinary differential equation systems
has been an area of considerable research because of the relation to
making the sensitivities identically zero at the terminal time and for
producing minimal order differential equation models of the sensitivities
(see Section I.l.a for a discussion of the relevant background literature).
We treat sensitivity controllability for such systems in Section IV.3.
Therefore, like the previous section, our main purpose here is to estab-
1ish the definitions which will later be used to help obtain practical
computational results in Section IV.3.

To conform with our operator treatment of the output parameter
sensitivities, we define sensitivity controllability in terms of whether
or not the zero-state operators map the control function space U onto the
output space R". (See, e.g., Weiss (Ref 32) or Delfour and Mitter

(Ref 10).) Recall that

v e; vy = v @) + Wegy () u (18)
where

v(i)(t; u) € R"  and w(i)(:) € Lc(ut’ ™.

Therefore, if W (t) maps onto Rm, for any given value of v(i)(t; u) € Rw

)

there exists a control ue U such that

)., R ¢ 5 =
(v (t; u) "z..(‘” w(i)(t) u, (19)

(1)

and so the sensitivity v is termed "controllable" at time t € [to, tf].
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Sensitivity controllability has previously been examined for linear
time-invariant ordinary differential equation systems, and generally it
has been discussed in the context of controllability (or uncontrollability)
of the augmented "sensitivity system", equation (5). Therefore, we define:
Definition 3

The system SH is output sensitivity controllable at time t ¢ [to, tf]
if the "partitioned" operator
Cuee) |

W(t) = W1y (t) (20)

.
.

.w(p) (t).

maps Ut onto the product space RF(P i 1).

Definition 4

The system SH is output sensitivity uncontrollable if there exists
note [to, tf] such that W(t) maps Ut onto Rm(p " 1).

Since the output space is finite dimensional, output sensitivity
controllability may be determined from the m(p + 1) x m(p + 1) symmetric
"sensitivity controllability matrix", ﬁ(t)ﬁ*(t), where
W) et ®PF D, 1 (e ,e50)) 1s the adfotnt of W(E). This well-
known result is reiterated in the following lemma (Ref 10):

Lemma 2
i) sH is output sensitivity controllable at t ¢ [to, tf] if and
only if W(t)W*(t) is invertible.

11i) The sensitivity controllable subspace of Rm(p +1) is

R(W(t)) = R(W(t)W*(t)) (21)
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S. CONTROL DESIGN FOR MINIMUM TRAJECTORY SENSITIVITY

In the previous two sections, the properties of insensitivity
(zero sensitivity) and sensitivity controllability were discussed. If
a systen is sensitivity controllable, then a control law may be deter-
mined such that the parameter sensitivities will all be zero at the
terminal time. (Kalman, et al, (Ref 17).) However, the structural
conditions for insensitivity or sensitivity controllability often cannot
be achieved (see Section IV). An alternate approach for reducing sensi-
tivity is to design an optimal control law which minimizes some measure
of the parameter sensitivities while achieving other system objectives.
This optimal minimum sensitivity control problem is the topic discussed
in this section.

Background literature on the minimum sensitivity control design was
discussed in Section I,1l.b. These approaches hae relied on the augmented
sensitivity system in which the parameter sensitivities are treated as
added "pseudo-state" of the system. For linear systems with a quadratic
cost functional the optimal open-loop minimum sensitivity control may
then be determined explicitly via a Riccati equation technique; however,
the drawback is that there are large numbers of "states" and this can
cause computational problems. (e.g., Kahne (Ref 70).)

In this section, we formulate an operator, gradient approach to
minimum sensitivity control design. By using well-known methods of

functional analysis, the minimum sensitivity control prgblem is trans-

formed into a minimum norm control problem on the control space,

Lz(to, tf;U). This problem may then be solved by standard gradient

AR N s 2.

iteration methods. Such an approach has the potential of reducing the
computational requirements of the open-loop minimum sensitivity control
problem. (See Section VI for application to linear ordinary differential

equation systems.) 27




AFAL-TR-76-118
For simplicity, we assume that we wish to minimize the quadratic

functional

{;“) = [Y(u)/SY(u)] + [u/u)
H

t t
f f
=/ [Y(t;u)/s()Y(t;u)ldt + S [u(t)/u(t)]dt (22)
t t
o o

where Y(u) ¢ Lz(to, tf;Rm(p + 1)) is the augmented output vectoxr function

Sy (u)
) = | v ) (23)

Lv(p)(u)-J

and the matrix S(t) is, assumed to be non-negative definite and symmetric

for each t ¢ [to, tf].

We may write Y(v' ¢ Lz(‘o’ tf;Rm(p + 1)) 4

Y() = Yz + Yz.s.(u) = Yz' + Wu (24)

.i' 1.

where W is defined by equacion (20). Denoting the adjoint operator of W

as W* then the cost functional Js(u) takes the form
H

Jséu) = [u/(W*SW + D)u] + 2 I“/W*Yz.i.] + {Yz.i./Yz'i.] (25)

Since S is assumed positive, the self-adjoint operator
(W*sW + 1) ¢ L, U, u) (26)
is invertible. Therefore, the unique minimizing control is given by

uk = ~(W*sW + I)"1 wy @7

z.4.
28
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(Ref 23). However, it would generally be difficult to obtain the in-
verse of the operator (W SW + 1) directly!, and so for the "open-loop"
problem some iterative solution technique may be applied. The gradient

of Js(u) is
H

Vg (u) = 2(W*SW + I)u + 2W*Y (28)
H z.1.

and so either a gradient or conjugate gradient algorithm might be
utilized to iteratively compute the optimal u*ell. (e.g., Luenbetger
(Ref 20).)

In Section VI, we apply this operator method of solution to linear
ordinary differential equation systems. Computational considerations

as well as some variations of this basic problem will there be discussed.

6. SENSITIVITY OPERATORS IN PARAMETER IDENTIFICATION

The remaining system properties which we investigate are system
parameter identifiability and "input design'" for improved parameter
identification. To motivate these topics this section briefly discusses
the fundamental role which the sensitivity operators play in parameter

identification.

a. Output Error Functional
Consider the system SH and assume that b ¢ RP is an unknown constant

parameter vector which we wish to estimate based upon a measured system

11f the inverse of (W*SW + I) were to be obtained (for example, by Riccati
equation techniques - see Section VI) then expression (27) for u* has the
form, at least, of a '"closed-loop'" control law. However, since the aug-
mented vector Yz.i. is a function of the a priori zero-~input sensitivities

(which are computed under the assumption that the control is "open-loop"),
this minimum sensitivity optimal control cannot be made "closed-loop". This
is a well-known dilemma (e.g., Price and Deyst (Ref 75)), and is discussed
further in Section VI.
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output function which we denote by y ¢ Y. The control input, u, is
assumed to be fixed and completely known. Therefore, to emphasize that
the control is fixed, in this section and in Section II.7, we will delete
the explicit dependency of the system output upon the control, u. We let

30 denote an a priori estimate of b ¢ Rp, and y(so) ¢ Y denotes the

corresponding mathematical model output function. The system sensitiv-

ities, v(i)

, 1=1, 2, ...p, are then assumed to be evaluated along the
mathematical model output, and they are assumed to exist and be continuous
for all % e RP,

The estimation criterion which we adopt is the commonly used (e.g.,

(Ref 80)) output error functional
3, ®) = [y - yb)/y - y®)1 (29)

; The best estimate, %*, is then the b which minimizes Je(g). Note that
other more generalized, cost functionals might be selected in order to
account for measurement noise or system process noise. This generali-
zation is considered in Section II.6.d, and it does not change the basic

approach.

b. Linearized Measurement Equation and Quasilinearization

Since the existence and continuity of the sensitivity operators at
%o are assumed, we may linearize the true system output, y, .about the
nominal output, y(%o), through the generalized Taylor's formula as

follows:

y = y(%o) + Vb + €y

P
- y(%o) + 1 v1), b, +¢ (30)
i=]

where b = b - %o and
30




AFAL-TR-76-118

n |l |l /1lab]] =0 (31)

|18b]] + 0

Defining the output error
gy = y(ll;o) (32)

we obtain the linearized measurement equation

z = Vb + ¢, (33)
If there is additive measurement noise, n € Y, then the linearized
measurement equation becomes

z=VAb + e, +n (34)

1
This equation, although quitce simple, is of fundamental importance to our

later development of identifiability criteria and input design; it is
this equation which clearly demonstrates the importance of the sensitivity
operators in the parameter identification problem. To first order, the
sensitivity operators tell one how much the system output will be perturbed
by small changes in the system parameters. If the sensitivity is high,
then, in some sense, one can more accurately estimate the true parameter
values.

Now assume the error term & (which is of second order in Ab) is
either small or can be compensated for through iterations. Then the out-

put error functional becomes
JLM(Ab) = [z - VAb/z - VAb] (35)

Since ¥ and RP are Hilbert spaces and V ¢ Lc(Rp, Y), the theory of least
squares (see Luenberger (Ref 20: 160)) may be used to give the unique

minimizing solution

sb* = (vrv)~l v (36)

provided that (v*'\l).1 exists. Note that, V*V is the p x p Gram matrix
31
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with 1th row and jth column element

Vv (,9) = v ) (37)
while V*z is the p x 1 vector with :lth element
vz (1) = (vP/2) (38)

Thus it is relatively easy to compute the minimizing solution Ab*.,  Also
since V is a linear continuous mapping from the finite dimensional space,
Rp, its image space must be finite dimensional in Y, and hence must be
closed. Then a necessary and sufficient condition for (V*V)“1 to exist
is that V be a one-to-one mapping (Ref 10). These statements form the
basis of our identifiability discussion of the next section.

The updated parameter estimate is then determined from the equation

~ =l\ *
b1 bo + Ab

= %o + vr) 7L v* (39)

The system cutput may be linearized about b, and Y(Sl)’ and the process

1
of obtaining a new Ab* repeated. Such a procedure is a generalization of
the method of quasilinearization and has found wide-spread application in
system parameter identification (see Section I.l.c).

j The linearized measurement equation (34) and the corresponding least

squares solution, equation (36) provide the greatest motivation for our

subsequent discussion of identifiability and input design; however, it

is instructive to note the role which the sensitivity operators play in

other iterative methods for minimizing the output error functional,

Je(%*), equation (29). In the next section we briefly discuss first and

second order gradient procedures, and compare these algorithms with the
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quasilinearization algorithm. In all three cases, the sensitivity

operators have fundamental importance in the iterations.

c. Gradient Minimization Procedures
Once again consider the general output error functional, Je(g),
equation (29), and assume that both the first order sensitivities
v(i), 1i=1, 2, ...p, and the second order sensitivities
t.9) _ 2%y
v = - s (S Do B T (40)

?biabj

b=5b
o

exist and are continuous for all bo e RP, Then it is straight-forward

to show that the first and second order gradients of JeC%) are
) = -2v*; (41)
2 o *. *
Vi () = 2(VV - ¥ 2) (42)

where V¥*z and V*V are defined by equations (38) and (37), respectively,

and the symmetric p x p matrix V: z has ith row and jth column element

Vi 2@, = vz “3)

Sufficient conditions for %* e RP to be a local minimizing solution
of Je(%) are well-known and are stated in the following lemma:
Lemma 3

Fot‘%* e rRP suppose that VJe(%*) = 0 and that the symmetric p x p
matrix VzJe(%*) is positive definite. Then %* is a local minimum of
Je(b)'

1. Since y(%) may be a general nonlinear function of %, no more

than a local minimizing solution may be guaranteed; that 1s, the output
33
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error functional Je(b) may have more than one local minimum.

2. If z=y ~ y(g) 1is allowed to take on any value, then it is
: necessary that the matrix V*V be positive definite to ensure that
723, (5) 1s positive definite. In Section II.7 we will see that this

5 fact is intimately related to the conditions for local icentifiability.

A first order gradient algorithm to find the minimizing b may now

be defined by the sequence of steps (see, for example, Luenberger

] (Ref 20: 283 - 287))

b 3 -myr @

n+l n " 2 e(bn)

=b +s V2 (44)
n n

The gradient, 2V*z, is evaluated at %n’ and the scalar step size s, is

chosen to minimize Je(bn + 8, v* z). Through the first order lineari-

zation

yb +s V" 2) 23k ) +s W 2 45)
we see that

3 (b + s V* 2) % [2/2] - 2s[2/WW* 2] + s?[W* 2/WW* 2] (46)
Thus, the approximate minimizing = is given by

(v* z/v* 2]
g* = 47)
Tv* 2/ (VR 2]

provided that the denominator is non-zero. For arbitrary V*z # 0
(recall that z = y - y(bn)) a sufficient condition for the denominator
to be non-zero is that the symmetric p x p matrix, V*V, (evaluated at %n)

be positive definite. The gradient steps are then repeated until the

~

34




AFAL-TR-76-118
gradient vector V*z, has a norm less than some preselected small positive

value. Using the step size s:, the method is known as steepest descent

(Luenberger (Ref 20: 286)).
Similarly, the Newton-Raphson algorithm may be used to iteratively
compute the minimizing b* ¢ Rp, (see, for example, Luenberger (Ref 20:

284)). Such a procedure is defined by the sequence of steps

A -A i 2 A -1 A
bn+1 bn o Je(bn)) VJe(bn)

-" *_*"1*
bn + (V'V Vb z) =V oz (48)

provided that the indicated inverse exists. Again, for arbitrary V: z,
a necessary condition for the second order gradient matrix, VZJ(Sn), to
be positive definite is that the symmetric p x p matrix vy (evaluated at
%n) be positive definite. Once again the sensitivity operators play a
fundamental role in the iterationms.

Now compare the first order gradient, the quasilinearization, and
the Newton-Raphson algorithms. All three have the same form:

b

WO MR (49)

For the first order gradient algorithm, the weighting matrix Kn is the

scalar step size s which may be selected according to equation (47).
For quasilinearization, Kn is the symmetric p x p matrix, (va)-l. and
for the Newton-Raphson algorithm it is the second order, symmetric,

p x p, gradient matrix (V*v - V; z)’l. As stated previously, we are

primarily interested in the linearized measurement equation (34) and

the associated quasilinearization algorithm, but it is interesting to i
note the similarities between the quasilinearization method and these
other procedures. In all three cases, the sensitivity operators play

a key role in the iterations.
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It is also instructive to note the appearance in all three algo-

rithms of the symmetric, p x p, positive matrix, V*V. Suppose thar we
use the approximate optimal s: as given by equation (47) in the first
order gradient algorithm. Then in each of the three algorithms we re-
quire V'V to be positive definite in order that we may ensure a priori
a local solution to each iterative st;p (considering z ¢ Y to take on
any value). In Section II.7 the matrix V*V is shown to be of basic
importance to the question of local identifiability of the system

parameters. Hence, we term this p x p symmetric matrix the "local

identifiability matrix'" and give it the symbol
~ *A AN
M) = V(b V() (50)
The dependency upon %o is shown explicitly here for emphasis.

d. Generalized Norm and Measurement Noise
In this section the results of Sections II.6.b and II.6.c are con-

sidered for the minimization of the more general output error functional

3® =[G - yGN/Al - yb))]

t e 5
- {o [y(t) - y(t;b)/Q(t) (y(t) - y(t;b))] dt (51)
For each t ¢ [to, tf] the m x m matrix Q(t) € R™" * ™ 45 assumed to be
symmetric and uniformly bounded and positive definite!. Such an ontput
error functional would generally find application in maximum likelihood
identification when there 1s zero-mean additive white Gaussian measure-

ment noise, n ¢ ¥, with covariance

IThat is, there exists positive constants, ¢, and c,, such that

1 2

e [+/+1 2 [+/Q(t) ] < cyl+/-] ;:r all t e [t , t.].
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E(n(t)n’ (1)) = Q L(£)8(t - 1) (52)

(see, e.g., (Ref 85)). In the notation above, E(*) 1is the expectation
operator, the superscript "T" is the transpose, and §(-) is the unit -
sampling function defined by 48(t) = O for t ¥ 0, and

€
J 8(t)g(t)de = g(0) (53)
-€

for any arbitrary function g.
Using the assumptions concerning Q and introducing the Q-inner

product defined by!l:

Iy/y]Q = [y/Qy] (54)

foryeVY = Lz(to, t RP), it is straight-forward to show that the Hilbert

f;
space {V,[-/-]1} is isometrically isomorphic to the Q-Hilbert space
{V,[-/°]Q} (Ref 27: 84 - 85), and so the two may be treated interchange-
ably. In terms of the Q-Hilbert space, the output error functional

JQ(Q) takes the form
JQ<?>) = [y - y(®)/y - y(%nQ (55)

Thus, our previous results concerning Je(%) can be readily transferred
to this more general case.

To illustrate, consider the adjoint of V mapping from the Hilbert
space {RP,[+/+]} into the Hilbert space {V,[-/-]Q}. Suppose that V* is

defined by
[y/Vb] = [V*y/b) (56)

for y ¢ ¥, b ¢ RP. Then

lnner products not subscripted are assumed to be the natural inner product.
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[y/Vb], = [y/Qvb) = [v*qy/b]. (57)

Therefore, V*Q is the adjoint of V mapping between {RP,[+/+1)} and
(V,[-I-]Q}. Thus, while the matrix V*V was of fundamental importance in

minimizing Je(g), we see that the counterpart matrix

t
vrv = £ (v® eyzae)v @ o) 1ae (58)
t

[}

is basic to minimizing J.(b). If Q has the physical meaning destribed in

Q
the first paragraph of this section, then this matrix is termed the
"information matrix" (Ref 31). It has general importance in estimation

theory because the covariance of estimation error for any unbiased

estimator is limited by the Cramer-Rao lower bound (Ref 31):
EC - 3o - BT > e (59)

where b ¢ RP is the true parameter value.
With this short introduction into the relationship between parameter
sensitivity and system identification, we now discuss the related topics

of identifiability and sensitivity design for optimal identification.

7. SYSTEM PARAMETER IDENTIFIABILITY

In this section we discuss parameter identifiability. Background
literature on this topic was presented in Section I.1l.d. Like the scc-
tions on insensitivity and controllability our primary purpose here is
to establish the definitions and an operator methodology for treating
identifiability. In Section IV this approach will be applied to linear
time-invariant ordinary differential equation systems to yield algebraic
conditions for identifiability.

Roughly stated, parameter identifiability is the question of

determining a priori system conditions which ensure that a unique best
38
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estimate of the unknown parameters may be obtained from the observable

output. Such a concept of identifiability was introduced by Lee (Ref 19).
As noted in Section I.l.d various other probabilistic interpretations of
identifiability have been utilized; however, uniqueness of solution is
most consistent with our deterministic approach to parameter identifica-
tion, and it is the concept of identifiability which has been used by
quite a number of other researchers in the determination of structural
properties of identifiability. (See Section I.1.d for discussipn.)

To motivate the definition of local identifiability which we adopt,

again consider the linearized measurement equation
z=y- y(bo) = VAb + € + n (60)

The bias 21 is of second order in Ab and the measurement noise process
n € ¥ is immaterial for our deterministic, '"least squares' approach.
(See Section II.6.d.) Then for values of b which are local to bo

equation (34) becomes approximately
z = VAb. (61)

For a given measurement error process z ¢ Y, it is well-known that the
above equation has a unique solution for Ab if and only if the operator

V is one-to-one. Therefore, we define:

Definition 5
The system S, is locally identifiable at b e RP 4f v e LC(RP,V) is

one-to-one.

Definition 6
The locally non-identifiable subspace at bo e RP 1s the null space
of V while the locally identifiable subspace is the orthogonal comple-

ment of the non-identifiable subspace M(bo) = N(V)f
39
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|
i
? i The non-identifiable subspace is closely related to the concepts of
" } insensitivity. In words, the non-identifiable subspace is the subspace
in which parameter perturbations will cause no first order change in the
observable output. This relationship between system parameter insensi~
tivity and system non-identifiability has been recognized previously and
is discussed further in Section IV. (See, for example, Bonivento (Ref 55).)
V is bounded linear operator from the finite dimensional space RP
to the function space Y and so must have a finite dimensional mange space.
Thus R(V) must be closed in Y, and so we may immediately obtain the

following lemma:

Lemma 4
' The system S, is locally identifiable at b_ ¢ RP 1f and only if the

P x p dimensioned symmetric "identifiability matrix"
M(b,) = vkv (62)
has an inverse., Further, the non-identifiable subspace 1is

NG )) CRP (63)

while the identifiable subspace 1is
Mb,) = ROI(b ))CRP (64)

Proof
The first two parts of the theorem follow directly from Definitions
5 and 6 and standard results from functional analysis (see, e.g., Taylor
(Ref 27: 250 - 251)). The last part of the theorem follows from the
fact that M(bo) is a symmetric matrix and property 2 of Lemma 1.
Q.E.D.
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From Lemma 4 and the results of Section II.6.b (see equation (36))
we see that system SH is locally identifiable if and only if we may
obtain a unique solution of linearized measurement equation error func-
tional, JLM(Ab), equation (35). Thus we see the relationship between
the definition for local identifiability and the ability to obtain,
locally, a unique minimum norm estimate of b. Indeed, Lemma II.5 could
be taken as the definition of local identifiability and definitions 5
and 6 then derived as lemmas to this alternate definition. Thi's is the
approach which several others have taken (e.g., Martenson (Ref 96),
Glover and Willems (Ref 93)), but either approach is equivalent. Also,
in the comments of Section II.6.c we noted that the local information
matrix must be positive definite to ensure the existence of local
steps in the steepest descent and Newton-Raphson iterations, as well.

Since the self-adjoint operator Q of our generalized norm func-

tional, equation (51), is assumed invertible, it is easy to show that
* *
a. R(VQV) = R(V*V) (65)
b. N@*QV) = N(V*V) (66)
* Ay —1 %oy =1
c. (V*QV) ~ exists if and only if (V'V) = exists.

Thus the local information matrix, MQ(bo) = V*QV, may be substituted
for the identifiability matrix, M(bo), in Lemma 4, and the conclusions
remain the same. With this substitution, Lemma 4 1is a gestatement of
the well-known result that the system is locally identifiable if and
only 1f the local information matrix, MQ(bo), is positive definite.
(See, for example, Tse (Ref 102).)

In Section IV we apply these results to obtain local identifiability

conditions for linear ordinary differential equation systems. For time
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varying systems, Lemma 4 and the "identifiability matrix" may be used

to test for local identifiability; however, for time-invariant systems
an algebraic description of the sensitivity operators allows us to use
Definitions 5 and 6 directly and thereby obtain algebraic criteria for
local identifiability. Using these algebraic conditions we will see
that we may not only test for local identifiability at the nominal

bo € Rp, but we may treat b ¢ RP as a variable and test for identifia-
bility as a function of b. Such a concept was introduced by Gupta and
Hall (Ref 108) in consideration of "structural" controllability of the
sensitivity operators of linear time-invariant ordinary differential

equation systems. Therefore, we define:

Definition 7

The system S, is structurally identifiable if V(b) ¢ LC(RP,V) is
one-to-one for almost all b ¢ RP.

Such a structural concept is particularly significant for
identifiability because one wishes to ensure that the system will be
"locally" identifiable along the entire sequence of possible parameter
estimates. _

Finally not only may it be important to know whether the param-
eters of a linear system are locally identifiable from the total system
output, but it may be equally important to know whether the.parameters
are locally identifiable from the zero-input response alone or from the
zero-state response alone or from both. For example, such information
might be important in the design of experiments for parameter identifica-
tion (see Section II.8). This information is easily obtained by con-
sidering whether or not the zero-input and zero-state sensitivity

operators are one-to-one, respectively. Therefore, definitions parallel

to Definitions 5 and 6 can be made for zero-input and zero-state local
42
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identifiability, and Lemma 4 may be given appropriate corollaries for
the "zero-input" and "zero-state" local identifiability matrices. Also,
just as the case for parameter insensitivity, we will find that it is
more convenient to obtain separate conditions for zero-input and zero-
state local identifiability rather than obtaining joint conditions (see
Section IV). The following lemma relates the separate zero-input and
zero-state locally identifiable subspaces to the total locally identi-

fiable subspace:

Lemma 5

Let and Vz ” be the zero-input and zero-state sensitivity

vz.i.
operators for the system sn evaluated at the nominal bo ¢ RP, Suppose

that V b # -V b for all
z.d. z.8

i

be (NOV, , N CRP, b # 0. (67)
Then the total system non-identifiable subspace is

NV) = NV, IONE, ) (68)

and the total identifiable subspace is

M(bo) 5 Mz.;.(bo) i Mz.s.(bo) (69)
Proof

Since V = vz.i. + vz.s. it is clear that

NV, YONGY, ) CNEY). (70)

Suppose b € N(V) and b ¥ 0. Then

Ve g V2V 000 (1)
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and so either b € N(Vz 1 ) or b e (N(V

& v
z.i.)) . But 1f b ¢ (N(vz.i.))
this would contradict the assumption (67). Hence b € N(Vz 1 ). This

along with equation (71) implies that b ¢ N'(Vz % ). Thus

N(V>CN(vz.i.)nN(vz.s ) (72)

and the assertion (68) is proved.
Finally, since N(V)C:Rp, equation (69) is obtained by taking the
orthogonal complement of both sides of equation (68). (See, for example,
- '

Nering, Theorem 4.4 (Ref 21: 140).)
Q.E.D.

In this section we have considered the binary question of whether or
not. the parameters of a linear system are locally identifiable at an
a priori parameter value b° ¢ RP. We have not discussed the "quality"
of the identification (estimation) capability. This important experi-

mental design question is discussed in the next section.

8. SENSITIVITY OPERATOR DESIGN FOR OPTIMAL PARAMETER IDENTIFICATION

In Section II.6 we discussed the fact that the "quality" of param-
eter identification capability is strongly dependent upon the parameter
sensitivity operators. Heuristically, if we consider the linearized
measurement equation (34) of Section II.6.a with process noise n e Y

and a priori parameter value bo € RP,

z=VAb + e, +n (34)

1

then the sensitivity operator V may be likened to the signal strength
in a communication channel. For improved identification, one would
like to maximize the "signal-to-noise" ratio. If Q—l is the covariance

matrix of the zero-mean Gaussian white noise process (see Section II.6.d)
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then the local information matrix, MQ = V*Qu may be viewed as the
"signal-to-noise" ratio for the multi~channel, multi-parameter, estima-
tion problem, equation (34). Also, we commented in Section II.6.d the
information matrix evaluated at the true system parameter value, b,
provides a lower bound for the estimation error covariance matrix of
any unbiased estimate through the Cramer-Rao inequality (59). Since
we do not know the true parameter value, b, we can only approximate
this lower bound through the use of the local information matri*, MQ'
Therefore, based upon the preceding discussion, we will use some
measure on the local information matrix as a criterion of optimality to
"design" system nominal sensitivity operators for improved parameter
identification. Indeed, for just these same reasons the local informa-
tion matrix has been used as a design criterion for improved parameter
identification by quite a number of previous researchers (see Section
I.1l.e for a discussion of the relevant literature on input design).
Since an optimization criterion generally requires a scalar quantity,
some suitable scalar measure on the p x p information matrix must be
obtained. This question is discussed briefly in the next subsection.
If we assume that both the initial condition vector, 4 € D, and
the control input u e U, are independent of the unknown parameter

vector, b ¢ Rp, and that they may be selected arbitrarily, then the

nominal sensitivity operators are functions of both of these quanti-
ties. To be more explicit, the zero-input sensitivities are linear

operators on d € D

(1) &
v, 3. @ (T)(i)d (73)

while the zero-state sensitivities are linear operators on the control

uel
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v (u) = (W),,\u (74)
(1)

i=1, 2, ...p. Therefore, both d and u may be selected to optimize some
measure of the local information matrix. This optimization could be
accomplished concurrently; however, it is computationally more convenient
to consider the separate selection of the initial condition vector which
optimizes the "zero-input" local information matrix on the one hand and
the control function which optimizes the "zero-state" local information

matrix on the other. These computational advantages will be understood

more clearly when this topic is discussed for linear time-invariant ordinary

differential equation systems in Section VII. Also, this separate design
of the initial condition vector and the control input based upon the zero-
input and zero-state responses, respectively, is related to the previous
section concerning the separate determination of the zero~input and zero-
state identifiable subspaces. Indeed, certain parameter components may
be identifiable from one response while not from the other. Thus, from
a practical point-of-view, it may be desirable to design separate experi-
ments with zero initial conditions in one case and zero control inputs in
the other.

Finally, we comment that the approach taken in this section is
motivated by the work of Mehra (Ref 112). Mehra considers the problem
of control input design for optimal parameter identification in linear
time-invariant ordinary differential equation systems. For the special
case of zero initial conditions, he obtains an operator formulation of
the optimization problem and shows that the optimal control is the eigen-
function corresponding to the maximal eigenvalue of a positive, self-
adjoint operator. The approach taken here 1s a generalization of Mehra's
work, and conceptually there is very little difference. However, it

should be mentioned that the concept of formally optimizing the initial
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condition vector to provide optimal parameter identification capability
in the transient response is a new concept to the current theoretical
literature on parameter identification. On the other hand, the manipu-
lation of the initial condition vector to provide improved identifica~-
tion is a well-known, and often very important, ad-hoc procedure for
providing parameter identification capability in practical applicatioms.
(See, for example, (Ref 85) in which initial platform orientation plays
an essential role in the identification of inertial platform parameters.)
The capability to determine ontimal initial conditions for identification
purposes might be particularly important in cases in which it is either
impossible or very costly to provide a control input in order to identify

system parameters.

a. Optimization Criterion

Because the information matrix is dimension p x p, some suitable
scalar measure must be chosen as an optimization criterion. This
problem has been discussed by a number of researchers, and Section I.l.e
reviews the literature on this subject.

From an information theory viewpoint, either a linear functional of
the dispersion matrix (inverse of the local information matrix) or the
determinant of the dispersion matrix are the most appropriate criterion.
From the Cramer-Rao lower bound we know that the dispersion matrix is a
lower bound for the covariance matrix of the parameter estimation error,
and so a linear functional of the dispersion matrix (ususally a weighted
trace) is directly related to the variance of estimation error. On the
other hand, the determinant of the dispersion matrix is physically

appealing because it is proportional to the volume of the error-ellipsoid

in p-dimensional parameter space.
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However, the direct use of either of these criteria leads to diffi-
cult computational problems in an optimization algorithm. Therefore, a
criterion used most frequently because of the convenient quadratic func-
tional which it provides is a linear functional on the information matrix
itself. For this reason we choose a weighted trace of the information

matrix

3@ = & kyy vy (75)
1,3=1

as our optimization criterion. It is fairly well-known (e.g. (Ref 114),
(Ref 119), and (Ref 122)) that such a criterion can lead to identifi-
ability problems and poor estimates of the parameters if the weighting
constants kij are not selected judiciously. However, Nahi and Napjus
(Ref 117), Mehra (Ref 114) and (Ref 115), and Gupta and Hall (Ref 108)
develop iterative algorithms to adjust the weightings kij’ 15 4=y 2 T Ds
so that the resulting maximum of JK will minimize either a linear func-
tional on the dispersion matrix or the determinant of the dispersion
matrix. The maximization of JK is a basic and most time~consuming part

of each of these icerative techniques, and so it is quite apropos to

utilize JK as our optimization criterion.

b. Selection of Initial Conditions

In this section we assume that the system S, has zero control input

H
and that we wish to select an initial condition vector, d* ¢ D, which
optimizes parameter identification capability from the zero-input response.

The optimization functional takes the form

48




AFAL-TR-76-118

P (1) €))
Je  @= T ok lv.n) @/, (@)

i3
z.1. 1,3=1

i :
‘: m R kij[T(i)d/QT(j)d] (76)

i,3=1

If we let T*( € Lc(V,D) denote the adjoint of T € LC(D,V) then

i) (1)

J (d) takes the form
Kz.i.

I @ =laA, al 7
Zols z.1.

where AK € Lc(D,D) is the positive, bounded self-adjoint operator
Zodie
g IR (78)
g 13" w%a
s i,3=1

For linear ordinary differential equation systems, D is the finite dimen-

sional space Rn, and so AK is a positive, symmetric n x n matrix.
z.1.
Thus JK (d) is a quadratic form in d. Now in order to obtain a
z.1.

unique maximum of this functional, some auxiliary constraint must be
placed upon the initial condition vector, d € D. It is convenient to

assume that d must satisfy the "energy" constraint!

[d/d] < 1. (79)

INote that there is no loss in generality by this assumption; for, suppose
we wish to satisfy the more general constraint [d*/Ed*] < 1, where E 1is a
strictly positive, self-adjoint operator. Defining the E-inner product

[-/.]E = [-/E.]
it is easily shown that the Hilbert space {D,[./.].} is isometrically
isomorphic to the natural Hilbert space {D,(:/+]}. Therefore, the con-

straint which we have assumed may easily be extended to this more general
case.

49
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Then it is well known (e.g., Blum (Ref 3: 601)) that the d* ¢ D which

maximizes JK (d) and satisfies the constraint (79), 1s the eigen-

z.1.

vector of AK which corresponds to the largest eigenvalue of the
e

self-adjoint operator hy In such a case, [d*/d*] = 1, and the

2.1,

eigenvector need not be unique. If the operator AK € Lc(D,D) is

compact (which it will be if D = Rn), then we are a:;:;ed that a
maximizing eigenvector, d* ¢ D, does exist. (See, for example, Blum
(Ref 3: 601).)

In Section VII we consider this problem formulation for linear
time-invariant ordinary differential equation systems, and the positive,
symmetric n x n matrix, AKz . is easily computed. Obtaining the optimal

initial condition vector is then merely a matter of determining the

maximizing eigenvector of AK
z.1,

c. Selection of Control Input
In this section we assume that the system SH has zero initial condi~
tions and that we wish to select a control input, u* ¢ U, which optimizes

parameter identification capability from the zero-state response. Thus

the optimization functional takes the form

P
c @) )
JKz.s.(u) : ;‘ : kij[vz's.(u)/sz.s.(u)]

P
= I kij["(i)“/qw(j)u] (80)
i,3=1

This problem is a complete parallel of the zero-input design problem of
the previous section. Let W*(i) € LC(V,U) denote the adjoint operator

of W € Lc(U,V). Then

(1)

Ie (u) = [u/ltD u) (81)
Z.8. Z.8. 50
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where AK € LC(U,U) is the positive, bounded, self-adjoint operator
Z.8.

g w* QW (82)
i 5" %)
(X -X) 1’3.1
Again we assume a control "energy" constraint!
[u/u] < 1. (83)
Thea the u* ¢ U which maximizes JK (u) and satisfies the constraint

z.s.
(83), is the eigenfunction corresponding to the largest eigenvalue of

the positive, self-adjoint operator AK Again, it will be true that
zls.
[u*/u*] = 1, and the maximizing eigenfunction need not be unique. Also,

if is compact, we are assured the existence of the maximizing
z.s.
eigenfunction. (See, Blum, (Ref 3: 601).) The operator AK s equa-
z‘s‘
tion (82), will be compact if each of the partials W(i), 1w 120 e P

are compact (products 'of bounded linear operators and compact operators
are compact, and linear combinations of compact operators are compact
(Ref 27: 274)). For our later application to linear ordinary differen-

tial equation systems, the operators W( are Fredholm integral equations

1)
on the compact interval [to, tf] and have continuous kernels, and so they
will indeed be compact (see Liusternik and Sobolev (Ref 19: 129)).

The above presentation is a generalization of the results of Mehra
(Ref 112) to control input design for the Hilbert space system SH. Mehra
suggests various computational methods of solution for ghis problem, but

INote that there is no loss in generality by this assumption; for, suppose
we wish to satisfy the more general constraint [u*/Eu*] < 1, where E 1is a
strictly positive, self-adjoint operator. Defining the E-inner product

[+/:1g = [+/E.]

it is easily shown that the Hilbert space {U,{[:/-:]_.} is isometrically
isomorphic to the natural Hilbert space {U,[./:]}.  Therefore, the con-
straint which we have assumed may easily be extended to this more general
case.
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we will not discuss these until Section VII. There we will examine
computational techniques associated with input design for linear time-

invariant ordinary differential equation systems.

9. SUMMARY
This concludes our treatment of parameter sensitivities for the

Hilbert space linear system, S Some known concepts have been extended

HO
to this Hilbert space setting (e.g., parameter insensitivity, sensitivity

controllability, parameter identification techniques, local parameter

identifiability, and input design for improved identification), and some

new techniques have been suggested (e.g., an operator approacn to minimum
sensitivity control design and selection of an initial condition vector
to optimize identification capability from the zero-input response).

But the primary contribution of this section has been to present a uni-

fied operator approach for treating parameter sensitivity and various

sensitivity-related system properties.
4 : This section lays the groundwork for our application to linear
‘ ordinary differential equation systems considered in the subsequent
sections. We concentrate on time-invariant systems because it is here
that a new algebraic description of the parameter sensitivities pro-
vides convenient geometric and computational tools for treating the
system properties. This algebraic description of the parameter

sensitivity operators is developed in the next section.

|
|
|
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Section III

SENSITIVITY OPERATORS FOR LINEAR ORDINARY DIFFERENTIAL EQUATION SYSTEMS

In this section operator expressions are derived for parameter

sensitivity of continuous linear ordinary differential equation systems.

Both time-varying and time-invariant systems are considered. These

results i1llustrate the operator representation of the parameter sensiti-

vities which was presented in Section II for the Hilbert space linear

system SH' Furthermore, these results form the foundation for our sub- i
sequent discussion of the sensitivity-related system properties in
Sections IV - VII.

The organization of this section is the following: in Section III.1
operator expressions are defived for the parameter sensitivities in time-
varying linear systems. The key to this operator representation is to
obtain the partial derivatives of the state transition matrix with
respect to the parameter components. A general theorem concerning these
partial derivatives is proved; however, for systems with a time-varying
plant matrix the computational aspects of the operator representation
are less desirable than those for computing the sensitivities from
sensitivity system differential equation techniques. 1In Section III.2
operator expressions are derived for the parameter sensitivigties in
linear time~invariant systems. Again the key factor in this representa-
tion is taking the partial derivatives of the state transition matrix,
eAt. General polynomial expressions for these partial derivatives are
obtained and useful relationships to eigenvalue sensitivities are shown.

eAt

This polynomial description of the partial derivatives of is

used to provide a fundamental matrix-operator representation of the

\ i’
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parameter sensitivities in linear time-invariant systems. This form
proves to be computationally useful and also provides considerable
geometric insight for the study of various sensitivity related gystem
properties. These computational and geometric features are examined

in Sections IV - VII.

1. TIME-VARYING SYSTEMS

In this section we derive operator expressions for the parameter

sensitivities of the time-varying linear system, sTv:
x(tsu) = A(E)x(t;u) + B(t)u(t) (84)
x(to) =d te [to, te] (85)
x(t;u) ¢ R u(e) € Lz(to, tf;Rp) (86)
with observable output
y(t;u) = C(t)x(t;u) (87)
y(tsu) € R" € el gl (88)

where the matrices A, B, C and the initial condition vector d are assumed
to be real and parameterized by the real p-dimensioned parameter vector b
with nominal value bo € Rp. Again we will observe the convention of not
showing the explicit dependency upon b unless it is required for clarity
and it will always be assumed that quantities are evaluated at b° unless
indicated otherwise. For all t ¢ [to, tf] and at bo it is assumed that
A(t), B(t), C(t), and d, are each continuously differentiable with
respect to every parameter component, bi’ i=1, 2, ...p. Furthermore,

for all b ¢ R® within some neighborhood of b, € RP, it is assumed that
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A(.;b), B(.;b), and C(.;b) and all p of their partial derivatives are

uniformly bounded and piecewise continuous on the finite interval
[to, tf].
Under these assumptions (Ref 29) the sensitivities satisfy the

following linear "sensitivity system':

X(t;u) = A(t)X(t;u) + B(t)u(t)

X(t_su) =d teflt.cl
Y(t;u) = C(t)X(t;u)
where
-x(t;u) 1 -y(t;u) ]
x(esw) = | 6D (g5 ¥(tsu) = | v (es0)
bg(p)(t;u)- LV(p)(t o)
[ ace) T ;(c) i
Ar) = [Any () ACE) B(t) = [Byy(t)
LA(p)(t) 0 A(t) B(p)(t)_

~C(t) 0 w10

c(t) = C(1) (t) c(t)

(89)

(90)

(91)

(92)

(93)
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and E(i)(t;u) and v(i)(t;u). i=1, 2, ...p, are the state and output

sensitivities respectively. Therefore, the solution of the sensitivity

system requires solving n(p + 1) coupled linear differential equations.
However, we wish to obtain an operator solution of the parameter

sensitivities as described in Section II.1l. Therefore, consider the

operator solution of the system STV:
x(t;u) = @(t,to)d % 5 ¢(t,s)B(s)u(s)ds (95)
o
y(t;u) = C(t) x(t;u)
= T(t)d + W(t)u (96)

where ¢(t,t°) is the state transition matrix of A(.) and the zero-input
and zero-state operators T(t) ¢ Lc(Rn,Rm) and W(t) ¢ Lz(Lc(to,t;Rr),Rm)

are defined by

T(t) = C(t)¢(t,t°) (97)
w(e) = S5 c(e)e(t,s)B(s) (+)ds (98)
t

o
respectively. For discussion we will deal almost exclusively with the

output sensitivity operators, and these are given by the operator

expressions
v (0 = 1y (0)d + Ty, 99)
v:f:'(t;u) = W(i)(t)u (100)

To compute the partial derivatives of T(t) and W(t) requires that
the partial derivatives of the state transition matrix, ¢(t,s), be ob-

tained. The next theorem establishes the existence and continuity cf
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these partial derivatives. We comment that this theorem is a well-known
result for the case in which A(:) is time-invariant (Bellman (Ref 2));
however, our proof for this time-varying case is different than the one

used by Bellman, and so the proof is instructive in its own right.

Theorem 1

Suppose for all t ¢ [to, tf] at the nominal parameter value,
bo € Rp, A(t) € i is continously differentiable with respect, to each
parameter component, bi’ 1i=1, 2, ...p; and for all b ¢ RP in a
neighborhood of bo’ A(t;b) and all p of its partial derivatives are
uniformly bounded and piecewise continuous in t. Next, suppose ¢(t,s)
is the state transition matrix of A(t); that is, for all t, s E'[to’ tf]

¢(t,s) is the unique solution of the matrix differential equation
& 4(t,s) = A(E)o(t,s)
dt ’ b}

¢(s,s) = I
Then for each t, s ¢ [to, tf] the partial derivatives ¢(i)(t,s),
i=1, 2, ...p, may be obtained either from the integral equation

¢(i)(t’s) = ¢(t,s) ﬁt q’(s’C)A(i)(C)‘b(C;S)dC

or the matrix differential equation

d
'a—t q’(i)(tos) - A(t)‘p(i)(t,S) + A(i)(t)¢(t;s)

with boundary condition ¢(i)(s,s) = 0. Furthermore, these partial

derivatives are continuous in b.

Proof

Let AA (t) denote A(t;bo + Abiei) where e, is the ith Euclidean

i
i
basis vector and ¢A (t,s) denote the unique solution of the linear
i
matrix differential equation
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d

=— & (t,s8) =A, (t)?, (t,s) (105)

dt A1 A1 A1

°A (s,s) = I (106)
i

Assuming that bo + Abie is contained in the neighborhood in which

i
A(t;b) is uniformly bounded and piecewise continuous, then both ¢(t,s)

and QA (t,s) will be uniformly bounded for all t, s € [to, tf]. The

i
differential equation for OA (t,s) may be written as
i
4o (t,8) = A(t)0, (t,8) + (A, (t) - A(t))®, (t,s) (107)
dt A1 Ai A1 A1

which has the unique solution

8, (t,8) = 8(t,s) + o(t,s) /So(s,0)(A, (2) - A(D))®, (z,8)dz  (108)
b 8 8 &

Using the Bounded Convergence Theoren (Ref 25: 81) and the fact that
A(.;b) is continuous in b at bo’ the limit of both sides of equation

(108) gives

1lim @A (t,s) = &(€,s) (109)
|A61| R

Hence, ¢(t,s) is also continuous in b at bo’
Since the partial derivatives of A(t;b) are uniformly bounded in a
neighborhood by bo, we may use equation (106) and again apply the

Bounded Convergence Theorem to the definition of the partial derivative

to obtain
o, (t,8) - 0(t,s)
- i
0(1)(t,8) Z 1lim Abi
IAbil +0
= 0(t,8) J50(s,0)A () (2)0(5,8)de (110)
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Since A(i)(-) is assumed continuous in b, all the factors on the right
hand side of equation (110) are continuous in b. Thus 0(1)(t,a) is also
continuous in b at bo’

Finally, the differential equation representation of ¢ )(t,s)

(1
follows by application of Leibnitz Rule to equation (103).
Q.E.D.
Because of the uniform bounds assumed on the partial derivatives of
A(*) and B(:), the partial derivative may also be brought inside the
integral in equation (98). Therefere, the partial derivatives of the
operators T(t) and W(t), equations (97) and (98), may be described in
terms of the partial derivatives of C(t), B(t), and ¢(t,to) where the
latter partial derivative is computed from Theorem 1. These may then
be used in equations (99) and (100) to give an operator expression for
the zero-input and zero-state sensitivities. However, because of the
convolution in equation (98), this is not a particularly practical way
for computing the parameter sensitivities for this time-varying plant
matrix case. For the time-invariant system considered in the next sec-
tion, these undesirable convolutions may be transformed into computa-

tionally efficient quadratures.

2. TIME-INVARIANT SYSTEMS
In this section we assume that the A, B, and C matrices in equa-

tions (84) and (87) are time-invariant. Also, without loss in generality

we will assume that to = 0. This time-invariant ordinary differential

equation system will be denoted sL Like the time-varring system of

c’

the previous subsection, the key to obtaining a practical operator form

s B GRAES . &y awiin

of the parameter sensitivities will be an efficient way to compute the
partial derivatives of the state transition matrix, ¢(t) = eAt. Theorem 1
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could be utilized; however, for the time-invariant A matrix we are able
to obtain far more fundamental and useful forms of these partial

derivatives.

At
a. Mathematical Description of 1) 0(1)(t)
Consider the system matrix A € R™™ at the a priori parameter value
bo ¢ RP. The following notation will be used throughout this section.

Suppcse that A has characteristic polynomial

p
A(qQ) =det (qI - A) = T (q - qk)nk (111)
k=1
th
and 1 order minimal polynomial
P u
V@ = T (a-g) " a12)

k=1

where qk, k=1, 2, ...p, are the distinct eigenvalues of A;

o2y > 1 are the multiplicities of q in the characteristic and minimal

P P
polynomials respectively; and p = I M and n= I -
k=1 k=1

The system state transition matrix may then be represented as

P oyl
ey s ™ w3 3

k=1 3=0

Z, ~te (113)

where the n x n matrices Z are termed the components of A. (Ref 33:

k, ]
604). An equivalent representation is (Ref 33: 609)

u —
e g a0t ay (t) (114)
J=1
where the real, scalar, linearly independent functions, uj(-),

j=1, 2, ...y, are uniquely determined from the u linear equations
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qQt I # B =]
dq U
?2(t)
au(t)
- -

k=1, 2, «c0p

j.o’ 1, otouk-l

We shall presently determine representations for the partial derivative
e?i) which are equivalent to each of the above forms.

Now consider the 1th augmented "sensitivity system":

S e A 0 x(t;u) B :
- + u(t) (116)
+ (1), . @,,.
bE (t’“) A(i) A .E (t,ll) B(i)
[x(0) d i
= ’ 117
Do) [,
The augmented matrix
] A 0
A= (118)
A(i) A

is of fundamental importance in describing the operator solution of this

ith

sensitivity system, (116), and we shall obtain several wseful
properties concerning parameter sensitivity, in general, by considera-
tion of this augmented matrix. Indeed, the first theorem provides the

foundation for all of our remaining results on parameter sensitivity for

the linear time-invariant system, SLC'

Theorem 2

Suppose A ¢ R™ 1 continuously differentiable with respect to
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b1 at bo. Then

= eAc 0
‘Agt T
eAt eAt
(1)
Proof

(119)

The state transition matrix for Ai may be uniquely determined from

Partitioning e 1 into four n x n blocks

eAit- on(c) °1z(")

01 (8) 9y (8)
it is easy to use (120) to show that

d d d .
F Y oll(t) = Ez»ozzft) = Ez-o(t) = Ad(t) ¢(0) = I;

Olz(t) = 0 for all t ¢ [O, tf];
and

d
T3 on(t) - Mn(t) + Amqs(t) 021(0) = 0,

Then from Theorem 1, Ozl(t) = 0(1)(t), and the proof is complete.

Q.E.D.

(120)

(121)

(122)

(123)

(124)

Theorem 2 establishes the basic relationship from which we obtain

various representations for the partial derivatives, e?:). It shows the

fundamental importance of the augmented matrix ;1 in the determination

of the ith partial derivative of eAt. Examining this augmented matrix

we see that its characteristic polynomial is
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~ ql - A 0
Ai(Q) = det
“Hesy M= A
P 2
- Az(q) = I (q- qk) " (125)

k=1

Thus the eigenvalues of A1 are the same as those of A and this is true
for each parameter component bi’ i=1, 2, ...p. Of course the minimal
polynomials of the ;i's may be different for each parameter component,

bi’ and so let us suppose that Ai has a My - order minimal polynomial

¥
-~ <]
"’1(“) = 1 (q- qk) " (126)
k=1

-

We shall investigate the eigenvalue multiplicities, uik’ kul, 2. ce:Ds
further, but for now the above notation is used to give the following

result:

Corollary 2.1 g

1)
% RER

q, t
e‘:i)- B tde ¥ (127)
k=1 4=0 »3
where
Vv, =[I 0] z 0 (128)
ik,j n x 2n ik,J [ ]
I
2n X n
and Z are the components of A ‘
1,9 -
Proof

This is an immediate consequence of Theorem 2.
QCE.D.
Corollary 2.1 is the primary representation which will be used in

our computational applications, and6gppend1x A discusses some computa-
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tional techniques for determining the matrices ;

However, for

.9

investigation of some of the geometric properties of the sensitivity

operators, the next corollary will find principle application.

Corollary 2.2
2n

HAte 1 A2 ay(t) (129)
=1

and for all 1 = 1, 2, ...p

2n
A j-1
‘(1) jtl (A )(1)aj(t) (130)

where the scalar functions aj(-). =1, 2, ...2n, are determined from

3%t a 2n-1 -
t'e =n=—101 q ... q ] i a, (t) (131)
clqJ =9 r i

'Zn(t)

— -

k = 1. 2, cesp

j=o0,1, ...Zuk -1

Proof

The corollary follows immediately from Theorem 2 upon using the

well-known result that (e.g., (Ref 51))

b
A 0 Al 0

s B p (132)
o S Ay A

Q.B.D.
Before considering the application of Corollary 2.2 to the defining

relations for the sensitivity operators, some fundamental information
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concerning the partial derivatives eﬁ) can be gained by examining the

minimal polynomials of Ai'

b. The Minimal Polynomial of ;1 - General Case

The following lemma summarizes a useful way to determine the minimal
polynomial of ;1. Notice that the only assumption on the A matrix for
this lemma is that the partial derivative A(i) exist. Indeed, one could
substitute the matrix A 1) with any n x n matrix and the conclusions of

the lemma would still remain valid.

Lemma 6

Let A(q) and V¥(q) be the characteristic and minimal polynomials,
respectively, of A as defined by equations (111) and (112).

i) Suppose that g(q) is the polynomial such that A(q) = y(q)g(q),

and define the reduced adjunct matrix!
adj [ql - A) = adj [qI - A)/g(q) (133)

Let gi(q) be the largest common factor of both adj(ql - A]A(i);EZTqI - A]
and the minimal polynomial ¢(q). Then wi(q) = wz(q)/gi(q) is the minimal
polynomial of ;1, equation (118).

11) The order of ii(q) is between the bounds t
WS uy < 2u (134)
and each eigenvalue multiplicity has similar bounds

< 2y . (135)

1Pollowing Nering (Ref 21: 95) we term the "adjunct matrix" of A as the

matrix adj (A) = (Aij)T where Agy 1s the cofactor of the element a;, of A,

The adjunct matrix is also commonly referred to as the "adjoint" maétix,

and we use this terminology to avoid confusion with the adjoint operator. .
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Proof

Part 1) 1is derived by considering the 2n x 2n partitioned adjunct

matrix
qI - A 0 d, . d
adj [ ] - [ = 21] (136)
"Regy IR wh dip 4y
Using the fact that for q ¥ 9 (Ref 21: 96)

[qI - A] ad)j [qI - A] = A(qQ)I (137)

one may form a set of four linear equations from

at-A O TOM I o0
S L
Ay W -A) L4, dy 0 I

and show that

QI"A 0.
adj [ ]-
-A qIl - A

(1)

8(q) ad) [qI - A) 0

adj [ql - A] A, adj [qI - A] 4(q) adj [qI - A]

(139)

Now g(q) is the largest common factor of every term of adj [qI - A]
(Ref 21: 101), and so the largest common factor of adj [qI -« Ail will
be 32(Q)Si(q) where gi(q) is as described in the lemma. Then the

minimal polynomial of ;1 is
z 2 2 2
vy (@) = 87(q)/g"(9)g, (a) = ¥"(a)/g, (q) (140)

Part 11) of the lemma then follows immediately from equation (140)
and the definition of gi(q).
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The minimal polynomial of the augmented matrix Ai has been considered
previously by Guardabassi, Locatelli, and Rinaldi (Ref 51). By examining
the Jordan canonical form of Ai they obtain similar bounds on the order and
multiplicities of the minimal polynomiall. They obtain slightly tighter

bounds on the multiplicities of the eigenvalues (they conclude that
Bo<2u -1+38
k1 k l,uk k

61 W is the Kronecker delta); however, the results of Lemma 6 are completely
’

general requiring no assumptions concerning the parameters in A other than

where u,_ is the eigenvalue multiplicity qf 9 and

the existence of the partial derivatives, whereas Guardabassi, et al, place
the restriction on the structure of A that the dimension of its Jordan
blocks and number of distinct eigenvalues are invariant in a neighborhood

of the nominal parameter value, bo. 'The following simple example illustrates
how Lemma 6 might be utilized and shows that the restrictions assumed by
Guardabassi, et al, are indeed necessary in order to obtain their slightly
tighter bounds. Also, this example will provide insight into our next
subsection in which we consider a special case similar to the one which

Guardabassi, et al, considered.

Example
Suppose that A(b) is the 4 x 4 matrix

o o

A(b) = (141)

laoctually reference 51 considers the minimal polynomial of 2, equation (6);
however, Lemma 6 is easily extended to this case and part ii) of the lemma
remains true regardless.
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where the nominal values of b 2

1 and b, are zero,

Then 4(q) = (q - 1)4

and ¥{(q) = (q - 1)2. The adjunct matrix of [qI - A] is readily computed

to be
2 [
adj [qI - A] = (q - 1) g-1) 1
0 (q - 1)
0 0
0 0
The partial derivatives of A are
r0 0 0. 0 rO 0
1t 7080 0 o
A = A =
(13 gt glavge op R
[ SR Tl Rl 0" -0
and so
e AT -
adj [qI - AJA(l)adj [qI -~ A]l = | (¢ - 1)
(q - 1)2
0
0
adj [qI - A]A(z)EEI 7 N, N O
g & o
0 0 0
9. 0 D

0
0
(q - 1)
0
0 0
0 0
0 1
0 0
o
1
(q - 1)
0
0
0
]
(q - l)2
0

Therefore, by Lemma 6 the minimal polynomial of Al is

- 4
b (@) = 2 (/1 = (q -~ 1)*

68
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and of A2 is

v,@ = ¥*@/@- D% = @ - D= . (147)

Thus, this example has the two extremes in which wl(q) = wz(q) and

wz(q) = ¢(q). Notice that any value of b, other than zero produces the

1
characteristic polynomial

8, @ = @- D@ -2q+1-b) (148) |
1
and minimal polynomial
¥, (@ = (-1 ~2g+1-b) (149)
1

whereas a perturbation of b, has no effect on the minimal polynomial of A.

2

c. Special Case - Invariance of the Minimal Polynomial of A

Assume that A has the property that the structure of its minimal
polynomial is invariant for all parameter component perturbations in a
neighborhood of the nominal bo' There is little loss in generality in
this case from that of the previous section, as it happens very seldom in
practice that a local parameter perturbation will change the structure of
the minimal polynomial. Also, this case is slightly more general than
the case considered by Guardabassi, et al, (Ref 51), as the structure of
the Jordan blocks of a matrix can change without affecting the minimal
polynomial but not vice versa. The following theorem summaries a funda-

mental relationship between the minimal polynomial of A, and the bi—

i

eigenvalue sensitivities for this special case:

Theorem 3
Suppose that A has uth—order minimal polynomial, y¢(q), equation (112);

A 1s continuously differentfable with respect to bi at bo; and for all
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lAbiI £€,0A = A(bo + Abiei) has minimal polynomial

75,
p A, u
¥y (=1 (q- qki) E (150)
i k=1

A
where qki > q, as lAbil -0, k=1, 2, ...P.

Then:
p q t
At k
1 %Gy F g e
k=1
P u-l
+ I l; {z, ) + 2z (q,) }tzjeqkt

| k’j (i) k’j-l k (i)
! k=1 j=1
i (] uk q, t
-: k
3 + I zk’uk_lqu) Wt © (151)
; k=1
i
{
; where Z

K,y 2re the components of A and (Zk,j)(i) and (qk)(i) are the

component and eigenvalue sensitivities (partial derivatives) with respect

to bi’ These partial derivatives exist and are continuous.

11) The minimal polynomial of the augmented matrix Ai is

P 1Y)
wi(q) = 0 (q- qk) " (152)
k=1
where
u 1 () ¢4y = 0
‘.‘1 = (153)

k m + 1 1if (qk)(i) #0

111) The order of the minimal polynomial of ; is u + B, where

i i

81 is the number of eigenvalues of A which have a non-zero b, eigenvalue

i
sensitivity.
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Proof

From the component representation of eAt we have

T §
() k q.t
At _ k-3
e I I Zk.je £
k=1 j=0

Similarly, by the assumption on AA it is true that

A" (T § Ai :

Ai (] k Ai 9 t 1
e = I )R t (155)
k,J
k=1 j=0
by
where Zk 1 are the component matrices of AA . Then by the definition of
’
i
the partial derivative, we obtain:
b
) A, q,t q, t
At (o] Vg 3 zkti? B Zklje k
e(i) = I £ 1lim Abi tJ (156)

k=1 3=0 IAbi| +0

Since A is continuously differentiable with respect to bi’ by Theorem 1
it is true that e?z) exists and is continuous. Thus the limits on the
right hand side of equation (156) must also exist and be continuous,

By proper manipulation expression (151) readily follows. Then since
the compone :s Zk’ .1 camnot be zero by definition of the minimal

"
k
polynomial, parts ii) and 1ii) follow immediately from 1i).

Q.E.D.

The conclusions of Theorem 3 are an extension to those of Guardabassi,

et al (Ref 51) (Ref 52). In (Ref 51) upper bounds on the multiplicities
of the eigenvalues of the augmented matrix A, equation £7), are obtained
(see the comment following Lemma 6). Then in (Ref 52) the special case

in which there is no repeated eigenvalues in the A matrix is analyzed in
detail. The detailed structure of the Jordan canonical form of A is

given, and the structure of these blocks is dependent upon the eigenvalue

sensitivities. In both papers the conclusions are reached through an
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analysis of the Jordan canonical form of A. Thus, Theorem 3 extends the
conclusions of these previous papers by obtaining definitive relation-
ships between the eigenvalue sensitivities and the minimal polynomial of
" the augmented matrix ;1 (the extension to the minimal polynomial of A

is straight-forward - see Corollary 3.1), and this is accomplished for
the more general case (repeated eigenvalues). Also, it is significant
to note that the approach taken in deriving Theorem 3 1is considerably
different from that of Refa2rences 51 and 52, in that a direct differentia-
tion of eAt is utilized rather than the Jordan canonical form analysis
used by Guardabassi, et al.

; Comparing equation (127) of Corollary 2.1 with equation (151) of

Theorem 3 we see that
Vik = Zk —l(qk)(i)' (157)

Since the n x n matrices Vik and Zk S may be determined independ-
’
k

:uk

ently from the components of the matrices A, and A, respectively, the rela-

i
tion (165) provides a very general and straight-forward means for deter-

mining the eigenvalue sensitivity (qk) itself. Most of the existing

1’
literature on eigenvalue sensitivity has concentrated on the special case
in which A has distinct eigenvalues or the parameter appears linearly in
one or more elements of the A matrix (Ref 43) (Ref 44). Th;_relation
(157) places only the restrictions assumed by Theorem 3, - We note that
Guardabassi, et al, also derive a general expression for computing the
eigenvalue sensitivities based upon the Jordan blocks of the canonical

form of A.

| Next, if the conditions of Theorem 3 are satisfied for all

bi’ i=1, 2, ...p, and 1f we let 8 < p be the number of ecigenvalues
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of A which have a non-zero sensitivity for at least one bi’ 1=, 2, 5+iD3
then for all 4 = 1, 2, ...p it is possible to represent e?i) by a (p + 8)

order polynomial as given by the next corollary:

Corollary 2.3

Assume the conditions of Theorem 3 are true for all parameter

components, bi’ i=1, 2, ...p. Let B be the number of eigenvalues which

have at least one non-zero parameter sensitivity for bi’ i= l% N,

Then:
! 1) The minimal polynomial of the n(p + 1) x n(p + 1) augmented

matrix A (defined in equation (7)) is

gt o
y(q) = N (q - qk) (158) |
k=1 |

i where

= = 2
M e (qk)(i) Oifor all i = 12 8, Sip

=
i}

My +1 if (qk)(i) # 0 for at least one i = 1, 2, ...p

L The order of'ﬁ(q) is u + R E.E.

41) ¥or all & = ], 2; s..p

g s
1) T (A )(1) uj(t) (159) |
i=1 v

where the real scalar functions uj(-), f T (- .e.l, are determined

from

d .U."l S, '
- = [1 A i
[ (1 q q ]ngk a, (t) (160)

o
el

=0, 1, ...v ~ 1 n ()
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Proof

Extending Theorem 2 it can readily be shown that

- -
o g kLl
At At At
= 5 alis 161
e €1) e 0 (161)
At At
e( ) 0 Sa e
¥ Jutp + Dx np + 1)
If A has the minimal polynomial
it p Y
¥@ = 1 (q-gq) (162)
k=1
then eAt has the unique component representation
= p ;k-l
qt _
st Pt (163)
; k, 3
k=1 3j=0
where the component matrices 2 are partitioned so that the relationship

k,]J
(161) is satisfied. But by this relationship and the assumptions of the

corollary it must be true that for any particular eigenvalue, Qs
k=1, 2, ...p, the highest power of t in the expression (163) will be
either i 1 1f (qk)(i) =0 for all 1 = 1, 2, ...p or it will be u
otherwise. Thus the conclusions of part i) readily follow. ~

Part 11i) is then merely an application of the conclusions of 1).

Q.E.D.

Thus Corollary 2.3 may be used in lieu of Corollary 2.2, and

the number of linear equations which need to be solved (to determine the

scalar functions aj(') in the former case and the functions aj

latter) will be reduced from 2n to p. If there are many repeated eigen-

(*) in the
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values, then the difference could be significant, particularly since
solving the set of required linear equations will generally involve the
inversion of a generalized Vandermonde matrix of the corresponding
dimension. However, the use of Corollary 2.3 requires considerably more
structural knowledge than Corollary 2.2 and this structural knowledge
probably far outweighs the benefits of the reduced order Vandermonde
matrix.

We conclude this subsection with a simple example to help motivate

and clarify the concepts which have been discussed.

Example

Consider the 2 x 2 matrix

b b, 1 2
A(b) = A(b ) = (164)
sinb, b & 0 o

and so the nominal eigenvalues of A are q; = 0.and q, = 1. Applying

Corollary 2.2 we have the set of linear equations in Vandermonde matrix

form
e 190 0.0 8, (£)
t ¢ 1 0.0 az(t)
¢ = (165)
e h R (R SR | aa(t)
t
t O 2d t
® i J - - u..al‘( ).J
Then it is fairly easy to show
a,(8) =1  ay(t) =t a(t) = -3 - 2t + 3e" - re (166)
t t
‘4(t) =24+ t-2e +te (167)

Then using Corollary 2.2, combining like functions of t, one can represent
75
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the partial derivatives in the form of Corollary 2.1 as follows:

] 0 -2 309
~ it . 210 * 250 et - [ + ] o (168)
E 0 o0 0o 0
eﬁ) = 61 + ;’1 t + ;,l et + {71 tet
1,0 1,1 2,0 2,1
0 2 o -2] &ttt :
= + e + te (169)
0 o 0 0 0 ©
g - - g g t
e =V +V t+V e +V te
@ 2,4 233, 2 251
Yo - SR
- & e 170)
0 o 0 0
At e : = = | =
e =YV + V. t+V e +V te
| B h e Bt b 3.1
| 2 s Uy 0 2 2 6|, (2 4f | :
= + t + e + te (171)
-1 =2 o =1 12 0o o |

Then using equation (157) to give the expressions that
= @)y %1,0 .

we see that the eigenvalue sensitivities are given by
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(ql)(l) =0 (ql) 2) =0 (ql)(3) - -1 (174)
@) ¢y = 1 (@) 5 = O (a) () = 2 (175)

Then since both 9 and , have a non-zero sensitivity for at least one
parameter component, bl’ bz, or b3, the minimal polynomial of A is given

by

)1+l 1+1

¥ = q -0 g-0"e gl -0t (176)

Thus the order of the minimal polynomial of Adspu=u+2=4,

d. Parameter Sensitivity Operators for System SLc

In the previous sections a number of basic mathematical representa-
tions of the partial derivatives e?;) were ceveloped. These will now be
used to provide a ccnvenient operator description of the sensitivities

for the system SL In particular, by directly utilizing equations (96)

c
(100) and Corollary Z.é we obtain the fundamental algebraic description

of these parameter sensitivity operatorsl:

Theorem 4
For the system SLC at the a priori parameter value bo e RP it is
true that
2n §=1
1) y, (&)= L cA daj(C) Qa7
i=1
Zn ' 3-1, ¢
yz...(,t;u)-j!:1 CA BIO aj(t - s)u(s)ds (178)
y(t;u)-yz.i.(t) * yz.s.(t;u) (179)

INote that Corollary 2.4 or any of the other equivalent polynomial
representations of e?i) could likewise be utilized here.
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4 ¢y o -1
| 11) v‘.i.(t) I (CA d)(i)
§ 5.1

a (t) (180)

2n
S CEEE I C e T o 8yCt = 8)u(s)ds (181)

b
=1

v 5w (0 + v (50 (182)

1- 1’ 2, seeP

where the scalar functions, aj(t), j=1, 2, ...2n, are uniquely deter-

mined by the 2n linear equations (131).

Proof
The theorem is a direct application of Corollary 2.2 to the
defining equations (96) - (110).
Q.E.D.
Theorem 4 provides a useful representation of the parameter

sensitivity operators for the linear time-invariant system S The

LCc’
geometric aspects of this description are examined in the next section
in conjunction with the systems properties of insensitivity, sensiti-
vity controllability, and identifiability. Theorem 4 is also a
convenient form for digital computer applications; and some of the
computational aspects of this description are examined in Appendix A.
Note that the entire set of first order sensitivities may be obtained
with at most 2nr ordinary integrals (Appendix A describes how the
convolutions indicated in equations (178) and (181) may be transformed
into time varying combinations of quadrature integrals). The computa-

tional utility of this representation will be seen even more clearly

when it 1is used to form the basis of algorithms for quasilinearization
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parameter identification (Section V), minimum sensitivity control design

(Section VI), and optimal sensitivity design for improved identification
(Section VII). Finally, we note that a similar polynomial description
for the second and higher order sensitivities may easily be obtained,

and a discussion of this is presented in Appendix B.

3. SUMMARY

In this section we have used an operator description of the system
output to obtain the sensitivity operators for linear ordinary differential
equations systems - both time~varying and time-invariant ones. These
results illustrate the operator approach used in Section II for the Hilbert

space system S The key to making the operator approach practical is

"
obtaining the partial derivatives of the state transition matrix with
respect to the parameter components. Expressions for these partial
derivatives are derived for the time-varying system STv (Theorem 1);
however, for merely computing the output sensitivity operators their use
is probablv less desirable than computing the sensitivity operators from
the "sensitivity system" differential equations.

For the time-~invariant system sLc this is not at all the case.
Here polynomial expressions for the partial derivatives of eAt are
derived enabling both geometric insights and practical computational
techniques to be obtained. The complete system output and all p output
parameter sensitivity operators can thus be obtained through matrix
manipulations and the solution of 2nr quadrature integrals vhere n is
the state dimension and r is the control dimension. If mild structural
restrictions on the minimal polynomial of A are assumed in a neighbor-
hood of the nominal parameter vector, then explicit relationships

between the modes of the sensitivity operators and the eigenvalue

sensitivities are obtained. These expressions also result in a new
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3 general method for computing the eigenvalue sensitivities themselves.

| These structural properties of the sensitivity operators are extensions
of those obtained previously through Jordan canonical form analysis
(Ref 51) (Ref 52).

In the next four sections we use the approach of Section II to

examine the sensitivity-related system properties of insensitivity,

sensitivity controllability, and identifiability (Section IV) and to

develop computational algorithms for quasilinearization (Sectiop V),

mininum sensitivity control design (Section VI), and optimal design

of the sensitivity operators to enhance parameter identification
(Section VII). We concentrate on the linear time--invariant system and '

the application of the algebraic representation obtained in Section III.Z.
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Section IV |

INSENSITIVITY, SENSITIVITY CONTROLLABILITY, AND IDENTIFIABILITY

FOR LINEAR TIME-INVARIANT SYSTEMS, ch
In this section the sensitivity-related system properties of param-
eter insensitivity, sensitivity controllability and system parameter
identifiability are considered. The basic concepts for these properties
were discussed in Sections II.3, IIL.4, and II.7 for the Hilbert space

system, S Here we concentrate on the constant coefficient system, S

H' Lc’
Our reason for grouping these three properties in this section is based

upon their direct geometric reliance on the algebraic description of the
sensitivity operators given by Theorem 4. Also, all three of these sys-

tem properties are intimately related to each other, and these relation-

ships are made more evident by the algebraic conditions which are obtained.

1. NOTATIONAL CONVENTIONS

The representation of Theorem 4 may be written in the matrix-vector

form:
yz.i.(t) = E(o)a(t) Yz_s.(t;u) - G(o)g(t;u) (183)
i@ = M) v @ = cPyein) (184)
where
! e 7 o
Ay e a, (t)u(t) |
a(t) - ﬂz(t) l(t)*u(t) - az(t)u(t) (185) If
a, (t) a, (t)u(t)
‘ L2 ) 2am b &0 = 2nrxl
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g(tiu) = /5 a(t-s)*u(s)ds
0

£ caf caaf .. .| CAzn-ld]mxzn

i ! 2n-1
AN (COPAN U TP SRS B C L PR

2n-1

c© - [cB can} . . oca

B]

mx2nr

2n-1

i
G( ’ B)(i)]menr

(@) gy | €Ay | - -] oA

Then we may write the "total" semnsitivity operators as

V0@ = 08 @v @ Ol
- 2Pa) EPar). . EPae)
= E*a(t)
and
v () | D . T el
e 16Wg(esw). . Pg(esw)]
= G*g(t;u)
where

ge (V@ . 'E(p)]mm2np

G = [c(l)c(z’. 5 'G(p)]menrp

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

(194)

In order to discuss some of the relationships between insensitivity,

sensitivity controllability, and identifiability, it will be helpful to
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consider these properties with respect to individual component outputs,

’j(') € Lz(o.:f;n). j=1, 2, ...m. We use the notation

£8) poin s .
vy (t;u) vy (t;u) (1) (195)
viﬂ_j(c) - ePae) (196)
v:fz_j(c;u) - o{Mg(esw) (297)
where E(i) and G(i) are the jth row vectors of E(i) and G(i), respectively.

] ]
Additionally, we will deal with the m(p + 1) dimensioned augmented

vector
Ty(t;u)
vesu) = | v (esu) (198)
LV(P) (t.;u)

This may be written as

Y(t5u) = Yz.i.(t) 24 Yz.s.(t;u)

=E a(t) + c g(t;u) (199)
where
e r-
20 5 |
T« |e® = |c® (200)
(») (p)
LE Jm(p+l)x2n* LG J m(p+l)x2nr
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As a final comment, notice that we have not shown the explicit de-

pendency of any of the sensitivity operators or matrices upon the param-
eter vector b ¢ RP. Naturally, if these matrices and sensitivities are

to be computed, they must be evaluated.at some nominal bo € RP. However,
in this section one may be equally concerned with the system properties

of insensitivity, controllability, or identifiability for just one partic-
ular value b° ¢ RP (a local condition) or for nearly all b ¢ RP (a 'btruc-
tural" conditionl). Because we obtain algebraic conditions for each of
these three system properties, these conditions may be made local by
evaluation at one particular bo e RP or they may be made "structural" by
leaving the appropriate matrices as functions of b ¢ RP, Therefore, we
adopt the con§ention that theorems and definitions will all be stated
without regard to whether they are local or structural; it the conditions
are met for just one bo e RP the property is local, but 1if it is true for
almost all b ¢ RP then it is structural. The later simple examples of this

section will better illustrate this concept.

2. PARAMETER INSENSITIVITY

Using the previous notation and the fact that the scalar functions
aj('), =1, 2, ...2n are linearly independent on every interval of
finite length (and hence non-zero almost everywhere) the following condi-

tions for insensitivity can be immediately obtained.

-

Theorem 5

The system S. ., is zero-input b, -component parameter insensitive

1)

2.1,

LC 1

relative to the jth output (that is, v (*) = 0) if and only if
Bgi) = 0. It is totally zero-input insensitive (Vz N (:) = 0) if

and only 1if E = 0.

lGupta and Hall (Ref 108) introduce such a "structural" concept in
their discussion of sensitivity controllability.
84




AFAL-TR-76-118

? Theorem 6

The system S_ . 1s zero-state bi-compouent parameter insensitive

LC

relative to the jth output (that is, viiz (+3u) = 0 for all

u(*) € Lz(O,thRt)) if and only 1if G}i) = 0. It is totally zero-state
insensitive if and only if G = 0.

There has been a significant amount of research into the conditioms
for parameter insensitivity in the linear time-invariant system ch‘
(See Section I.l.a.) Indeed, the essential results of Theorem 5 and 6
have been derived previously by "canonical form - minimal order sensitiv-
ity system" analysis. (e.g., (Ref 61)) They are stated here mainly to

11lustrate how Theorem 4 can be used to give immediate geometric condi-

tions for which fairly complicated analysis were required in previous

derivations. However, the results of Theorems 5 and o are new in that

they treat zero-input and zero-state insensitivity separately rather than

jointlyl, and they add the generality of allowing the initial condition
vector to be dependent’ upon the unknown parameter vector, b ¢ RP,

| If d is not dependent upon bi’ then Theorem 5 provides the means to
determine the largest subspace of R" from which an initial condition

1)

vector may be selected in order to ensure that Ve & () = 03 %
. .j {

Corollary 5.1

If d (1) = ( ’ then Vz(fi.j (- ) = if and only if d € Zj(i) where
1 7D a Nicc.AKY) 3 i
1 3 s a

k=1

To i1llustrate the application of Corollary 5.1, one might utilize

: INote that "zero-state fnsensitivity" is what Guardabassi, et al (Ref 61)
E define as "hypo-insensitivity"
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it in the design of "transient response" experiments for parameter
identification. One of the problems frequently encountered in param-
eter estimation is that there are too many unknown parameters to effec-
tively estimate all of them in any one experiment (see, for example,
(1), 1= 1. 2, 5.4D>

]
j=1, 2, ...m, the possibility exists to select an initial condition

(Ref 85)). However, by constructing the subspaces Z

vector which will zero the "influence" of some parameters while maximizing
the "influence" of the remaining parameters. Such a procedure might be a
possible way to reduce the number of "exciting" parameters in a parameter
identification experiment. An example of this technique is given at the

end of this section. Also, this example shows that the zeroing subspaces

)
o

identifiability for both the zero-input and zero-state responses. This

provide fundamental information concerning insensitivity and

18 an 1llustration of just one of the many ways in which the properties
of insensitivity and identification can be related. The relationship
between insensitivity and identifiability is examined further in Section

IV.4.

Example
Suppose that C is the 2 x 2 identity matrix and that

b, 0
As (202)
b, b,
Then
b2 0 b3 0
2 1 3 1
byb, + byb, b bib, + bbb, + bybs b3

and subspaces 2;1), j=1, 2, 1 =1, 2, 3, may be determined from
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zj‘” -N -(cjr) “,1 c &’ (204)
€4 gy
(chz)(i)
e,

Computing these we see that!

T o0 o]
(1) .
2P =N 1 o0 le,) (205)
g
A
e = @]
, (1) 5 |
0 =N]o o {e,}- b, #0 (206)
b2 0 {elez} b2 = 0
L. 0
o ﬂ
zf” - N{” = |o of = fege,) (207)
0 0
o0 o0
4 NE1 o le,} (208)
e
AL i
- -

170 simplify the notation we will use a " " in places in which there is
tedusdant information. Also e; and e denote the Euclidean basis vectors
and {.} denotes the span of the vectors within the brackets.
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o o
z;” =Njo 1| Yioraen, b0 (209)
Sk {e,) 1£ b, = 0
L. o e

We may interpret these zeroing subspaces in the following way: the
output ’j is insensitive to tne parameter component b:l. wnenever the state

z ¢ 2% is in the subspace 21}, 1f the initial condaition ¢ ¢ 27, and

b b
if there is no control input, then the output y f will never be influenced

by the parameter component b Notice that we have determined these sub-

1!
spaces on a "structural” basire; that is, the subspaces have been deter-
mined as functions of the parameter values, b 1 and the subspaces change

for particular values of the parameters (for example, when b, = 0).

2
As we commented, these subspaces :y be used to help design experi-

ments which will systematically reduce the number of influencing components

on each experiment. For example, for this simple second order system, the

output y, is never influenced by bz or b3 (since 2{2) = 2{3) = Rz), and so

the output y, can be used to isolate bl. Also, if we select

de Zzu)ﬁ Z;z) - {ez} then the output v, is only influenced by bys and

80 we may uniquely estimate b3 from the output Yo Then once estimating

b, and b,, we may then select d ¢ {el} and use the output ¥y, to estimate

bz. For this simple example, these conclusions could easily be made by

direct examination of the system, but this illustrates the procedure for

application to more complex systems. Finally, we comment that a more

complex system may prevent a "structural" examination of the various sub-

spaces; however, for particular values of the parameters the matrices and

subspaces are easily determined on the digital computer.

3. SENSITIVITY CONTROLLABILITY

In this section we discuss aen;ie.tivity controllability for the
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} system ch. The approach is based upon the definitions and results of
Section II.4 for the Hilbert space system su. Since the "sensitivity sys-
ten" for Syc (see equation ( 6 ) - ( 7)) 1s a linear time-invariant
ordinary differential equation system, controllability properties of this
system may be determined from the n(p + 1) x n(p + 1)r dimensioned

"controllability matrix" (Ref 33)
BI88 |25 ... | el (210)

Indeed, this is the approach taken by Gupta and Hall (Ref 108) and Gupta
and Mehra (Ref 84) in order to reduce the required number of differential
equations for calculating the sensitivities when there are zero initial
conditions. They examine linear independence of the column vectors of

the matrix (210) and conclude that there are never more than nr independent
columns.

We use the algebraic description of the sensitivities, Theorem 4, to
obtain a matrix test for sensitivity controllability which is equivalent
to the matrix (210). For consistency, we consider output sensitivity
controllability and use the operator definitions presented in Section II.4
(Definitions 4 and 5). As in the previous section, the main intention
here is to demonstrate how the description of Section III can be conven-
iently utilized to determine controllability properties of the sensitiv-

ity operators. The central result is given in the following theorem:

Theorem 7

The system SLc is output sensitivity controllable if and only if the
rank of the m(p + 1) x 2nr dimensioned matrix G, equation (200) is
m(p + 1). The output sensitivity controllable subspace of Rm(p+1) is

the range space of G whereas the uncontrollable subspace 1is the null

space of ET.
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Proof
From equation (199) we have

!'...(t.u) = Gg(t;u) (211)

Then since the 2n scalar functions aj(-), which comprise the vector func-
tion a(:) are linearly independent on every interval of finite length, it

is easily shown that the operator
g(tse) = r; a(t - 8)(-)ds (212)

maps L (0,t;R") onto R2nr. (Luenberger (Ref 20: 56)) Thus the range
2

space (controllable subspace - see Definition 4) of the operator
W(t)(+) = Cg(t;-) (213)

is the range space of the matrix G. By Definition 4 and 5 the remaining
conclusions of the theorem follow immediately.
Q.E.D.

Controllability properties of the "sensitivity system" for the system
ch are quite important for several reasons. As mentioned, Gupta and Hall
(Ref 108) and Gupta and Mehra (Ref 84) use controllability properties of
the matrix pair (A,B) to reduce the number of differential equations for
computing the sensitivities for linear time-invariant systems with zero
initial conditions. Their method may be extended to systems with non-zero
initial conditions by the addition of suitable "pseudo" control inputs.
This method of reduction results in the minimum number of required differ-
ential equations and eliminates some of the computational problems which

can be associated with the use of special canonical form reduction tech-

niques. (Ref 45) (Ref 47)
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In a similar manner, we may use the sensitivity controllabiliity
properties to reduce computational requirements associated with the oper-
ator description of the sensitivities. To be more explicit, suppose that
the rank of the m(p + 1)x2nr matrix G is y. Then y is the dimension of
the output sensitivity controllable subspace, and there are but y linearly
independent functions from the m(p + 1) functions
{y'_‘.(‘).v:f:.(°). 1i=1, 2, ...p}. Therefore, the remaining m(p + 1) - v
functions may be determined as linear combinations of the y independent
functions. Indeed, there exists a non-unique transformation matrix K such

that the macrix product KG has the partitioned form

KG = -GS (214)

0

m(p+l)x2nr

where E; has dimension yx nr and rank y. (Ref 21: 54) Then the first y

elements of the transformed vector function

YZ... (.;u) 5 nz.s.(';“) (215)

will be linearly independent combinations of the 2nr functions of
te lo,tfl

t
Io aj(t - s)uk(s)ds (216)

j=1,2, ...2n
k=l 2, «.ccts

The remaining m(p + 1) - y elements of Yz s (+;u) are then identically

zero. This fact shows the relationship between sensitivity controllability

properties and zero-state insensitivity; the m(p + 1) - y elements of
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!"..(-;u) are zero-state insensitive (i.e., ideantically zero) for all
possible control inputs.

Another important aspect of the controllability properties of the
sensitivity system is associated with making Y(tf:u) identically zero at
the terminal time. (Kalman, et al (Ref 17)) This aspect of controllability
of the sensitivity system has been examined by a number of researchers
(e.g., Guardabassi, et al, (Ref 52)), and, in particular, sufficiency con-
ditions for uncontrollability of the sensitivity system have bgen an area
of considarable investigation, (e.g., (Refs 48 - 53)). Guardsbassi, et al,
(Ref 52) present the most comprehensive results on uncontrollability of
the sensitivity system, and a general statement of their results 1s that
the sensitivity system is always uncontrollable if the parameter dimension
P exceeds the control dimension r.

We may use the controllability proverties of the sensitivity system
along with our matrix-operator description to give the following result
concerning necessary and sufficifent conditions in making the sensitivity

vector, Y(tf;u). identically zero at the terminal time tes

Corollary 7.1

For the system sLC there exists a control u*:Lz(O.tf;Rr) suci *hrt

!(tf; *) = 0 4f and only if the rank of [E G] is equal to the rank of G.

Proof
For sufficiency, suppose that the rank of [E G) and G are both Yy

Then there exists a non-singular transformation matrix, Kl' such that

K(E G = 1 (217)

where the rank of [El

61] 1s v,, (Nering (Ref 21: 54)). Define the
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2nrx2nr positive definite, partitioned matrix H: in which each partition
is dimension r x r, and the {, jth partitioned element is given by

t
w(1,9) = fof a (tg - Day (e, - )3 I (218)

Then since the rank G = rank Gl

invertible. Next define the r x 2nr dimensioned matrix fuuction

=Yy the v, x v, matrix (Glﬂzaz) is

al(t) 0 « +°0 az(t) . .0 o A ‘Zn(t)' e
a*() =] o a, (t) . ; "
-0 o t6l e al(t) 0 s s az(t) o s e 0 . "2n(t:
(219)

Then it is straight-forward to show that the controll

= el .
u*(e) = 2%, - _c)a'{mln:a‘{wz g ) (220)

where
Yz.i.(tf) = Ela(tf) (221)
will satisfy

Y(tf;u*) ot x;I(Yz.i.(tf) > Yz.l.(tf;“*))

e » L t
- ‘11(",.1. (tp) + Glfof alt, - £)*u*(e)dt)

g =0 (222)

i
|
|
|

l1ndeed, by the results of Kalman, et al (Ref 17) it may be shown that u*
has norm strictly less than any other control for which the relaticn (222)
is true.
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Now for necessity, suppose that the rank of ﬁE iﬁ is Y1 and the rank
of G is Y, <Y, Furthermore, let K, Ei. and Ei be the same matrices as
defined above. Then since ranklai = rank G = Yy < Yqo there exists a

transformation matrix K2 such that

T 5 % (223)
G = -
rgen| M -,
0

where the rank of G2 is Y, Then since the rank of [E Eﬁ is Yy > Yoy We

are assured that

| DS

T SCREL Gz
K2K1 [E G] = Ez : 3 (224)

o o

where the rank of Eé is Yqe Hence there is no control which will bring
the system to zero conditions in a finite interval of time.
Q.E.D.
Lastly, assume for the moment that the C matrix is the identity matrix

and independent of the parameter vector b so that
Y(t;u) = X(t;u). (225)

Then we may use the non-unique transformation matrix, Kl’ déscribed in the
proof of Corollary 7.1 to transform the "sensitivity system" into a set of
Y, non-zero differential equations. In particular, we define the new

"state"
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X (t) = K x(t)

-xlt‘z‘ G) a(t)
g(t;u)

= xl(t) (226)

where xl(t, is dimension v,. Then from equation ( 89)
X (t) = xle;*x (t) +x1§u(c) (227)
X (0) = K@ t e [0, t] (228)

But from equation (226) we are assured that only the first Y1 elements of
the differential equation (227) will be non-zero. Therefore, we may
generate X(t) with only y, linear differential equations. Furthermore,

if Yy = rank [f G)] and if the separate control inputs are linearly
independent functions, then this is the absolute minimum number of
differential equations which will generate the complete sensitivity sys-
tem. Notice that this result is an extension of the conclusions of Gupta,
et al, (Ref 84) (Ref 108) from the case of zero initial conditions to the
case in which the initial conditions are arbitrary and may, in fact, be a
function of the parameter vector b. Also, we emphasize the fact that the
K1 transformation matrix always exists regardless of conditions on the A
matrix, and it is non-unique. One convenient way to determine a transforma-
tion matrix Kl is to determine the first set of linearly independent rows

of [E G], and then determine the matrix K, which leaves these independent

rows unaltered and zeros the remaining dependent rows.
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Example
To i1llustrate the results on sensitivity controllability, consider

the second order system:

™. = e -1

xl(t;u) 0 1 xl(t;u) 0
. - + u(t) (229)
xz(t;u) bl b2 x, (t;u) b3

- J - —

_yl(t;u)— 1 o x, (t5u)

- (230)
¥, (t;u) [ | X, (t;u)
2 - k. L 2
The matrix G is
r -
G(O)
| T=|c®
% @
L | Cond
: 0 b bb b.b, + b2b i
5 3 273 173 273
2 3
b3 b2b3 b1b3 + b2b3 2b]b,_b3 + bzb3
0 0 0 b3 (231)
0 0 b3 2b2b3
0 0 b3 2b2b3
0Ly by 2b.b, + 3b2b,
g e b b, + b2
2 1 2
2 3
1 bz b1 + bz 2b1b2 + b2
e -
Notice that 1if b3 is zero, then only v(s) is controllable, Otherwise,
there will be four linearly independent rows of the matrix G. and so
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four elements of the zero-state sensitivity system can be computed as
3 | linear combinations of the four "controllable" ones. For instance,

suppose that b1 = -2, b2 = -3, and b3 = 1. Then

Sy T

a |

Lk o

o1
GefE =3 7 s (232)
R R R
0 0 1 -6
p RO R T
& 0 1 -6 23
: g. 1. 3 7
% R Tl SR 1
and the transformation matrix
| = ; -
I )
AP SR e e ey (233)
<1 0 3.3 :
-1 0 @ @ :
Baeeo : s
(234)
(235)
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Notice that K 1s selected here to leave the first four rows of G
unaltered while zeroing the last four. Therefore, if the system has
zero initial conditions then the entire set of sensitivities can be
generated from the four differential equations for x(t) and E(J‘) (t).
Next, suppose that the example system has initial conditions

dr = [1 0]. Using the nominal parameter values b1 -2, l:2 = -3, and

ba = ] it is easily shown that

—1 0 -2 6 0o 1 =3 7 g
0 -2 6 -4 1 -3 7 -15
0 o 1 -3 0 O 0 1

[E Gl=]0 1 =3 5 o o 1 -6 (236)

0 O 0 -2 0o o0 1 -6
0 O -2 12 0 1 -6 23
0 0 0 0 0 1 -3 7
0 0 ' 0 0 15 =3 7 -15

which has the rank of six. Then the transformation matrix

Ke=]I 1 0 (237)

8x8

lesves all of the rows of [E G] the same except zeroing tne last two rows.
Thus the sensitivities with respect to the parameter bs’my be determined
as linear combinations of x(t;u), 5(1) (t;u), and 5(2) (t;u), and six
differential equations are now required to compute the complete sensitiv-
ity system. Finally, by Corollary 7.1 there exists no control which will

completely zero X(t;u) in a finite interval of time.
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4. PARAMETER IDENTIFIABILITY

The final topic considered in this section is identifiability of the
unknown parameters in the system SLC' One could specialize Lemma 4 and test

the singularity of the p x p local identifiability matrix:
e @) ()
M= fo [v*/(t3u)/v/(t;u)]dt (238)

Identifiability would then be determined according to whether or not M
has rank p. Such an approach is appropriate for the time-varying linear
system, STV’ and 1s the method commonly known in the literature (e.g.,
(Ref 102)). However, for the time-varying system, S.cr the definition
of identifiability itself (namely, V mapping RP fnto the output space

y -L2(0.t;RP) is one-to-one -- see Definition 5) may be used to obtain
direct algebraic conditions for identifiability (both local and struc-
tural).

As discussed in Section II.7, the conditions for zero-input and zero-
state identifiability are studied separately. This separate analysis
allows one to determine whether a parameter is identifiable from either
the transient response alone or the forced response alone or from both.
Lemma 5 then concludes that the combined identifiable subspace is just
the sum of the zero-input and zero-state identifiable subspaces.

Finally, we note the approach taken here in treating identifiability
and the results obtained are new. Background literature on identifi-
ability for the system SLc was discussed in Section I.l.d. Although
there have been previous structural and algebraic conditions for identi-
fiability these previous approaches generally rely upon special canonical

form representations of the system S As done throughout this research,

LC’
we do not make any assumptions (except differentiability) concerning the
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system matrices, and so the results may be applied either with or without

-

such canonical forms.

a. Zero-Input Identifiability

To discuss zero-input identifiability it is convenient to rearrange

equation (191) into the form

] 1xp

= aT(t)B;

sz'i'l(tﬂ

(t)

va . :l'.u

= al(t)*E*

where we define

T T
oo e . ) g

g § e
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Using this notation and the definitions of identifiatility (Defini-
tions 5, 6, and 7) we may directly obtain algebraic conditions for zero-

input identifiability. We define the following zero~-input identifiable

subspaces:
Mz 4. I zero-input identifiable subspace with
*®*§ respect to the output component S
L] .j
Mz 1 = zero-input identifiable subspace

Using this notation we obtain the following central theorem:

Theorem 9
For the system SLc it is true that:

D oM. R(E;T) (243)
ey

N RE*T) : (244)

i111) The system SLc is zero-input identifiable if and only if the

rank of E* 1s P.

Proof
By Definition 5, the zero-input non-identifiable subspace relative
to the output component (¢) 1s the null space of

3

V,, () =a (e (245)
z.1. b
]
But since the scalar functions aj(') are linearly independent (and hence
non-zero almost everywhere), the null space of Vz 1 (*) is just the null
L] ‘j

space of E;. The identifiable subspace is the orthogonal complement of
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the non-identifiable subspace, which, by Lemma 1 is the range space of

B;T. Then SLc is zero-input identifiable relative to Y4 if and only
. .j
if the rank of E* is p.

B
From equation (140), the conclusions of part 1i) and 1ii) follow in

a manner similar to that above.
Q.E.D.

Theorem 9 provides the central algebraic results on zero-input
identifiability. The results are only dependent on the structure of the
system matrices and initial condition vector; they are completely general;
and no integrals are required to obtain the zero-input identifiability
matrix. Notice the connection between this theorem on local identifi-
ability and zerc-input insensitivity; the matrix E* used here has the same
elements as the E matrix which was used in Theorem 5 in connection with
zero-input insensitivity. If the system is totally zero-input insensitive
(t.e., E* = 0), then the non-identifiable subspace is all of Rp and there
is no information with which to identify any of the parameters from the
transient response. Such a connection between insensitivity and non-
identifiability was noted by Bonivento (Ref 55), but no specific results
on identifiability were obtained.

As would be expected, this theorem on zero-input identifiability
reduces to previously known results concerning system observability
(e.g., Ref 33)) for the special case in which d(b) = b is tire only unknown

system parameter vector:

Corollary 4.4.1

If d(b) = b 1s the only unknown system parameter vector, then SLC
is "observable" if and only if the rank of the n x mn matrix
T 1 T | n=-1,T
(e | ... @€ ] (246)
is n. 102




Cdedrl s SE s

T TR T E T

e A i

AFAL-TR-76-118

Proof

Since d(b) = b is the only unknown parameter, it is true that

(1) 2n -1
E - [(Cjei). . c(ch e

s 1 (247)

where e, is the ith Euclidean basis vector. Then
C
]
E*=| cA 248
3 ] (248)
cJA2n-1
L _] 2nxn

Using the Cayley-Hamilton theorem (Ref 33) it is easily shown that the

rank of '
* i
El {
E* = E} (249)
. |
En
| _]2nmxn

st oo

is equal to the rank of the matrix (246).

Q.E,D.

Finally, we note that if the system SLC has eigenvalues with strictly
aegative real parts (SLc is asymptotically stable), or ff it has a single
zero eigenvalue with zero sensitivities with respect to that eigenvalue,
then all of the sensitivity operators will be asymptoticrlly stable in the

first case or marginally stable in the second. (See (Ref 52) or Corollary

2.4) Then although the scalar functions a
103
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linearly independent and hence non-zero almost evervwhere, after a few
aystem time constants they will be so near to zero that there is very
little "signal strength" remaining in the sensitivities. Therefore, for
all practical purposes, the zero-input response will no longer be

identifiable in the steady-state.

b. Zero-State Identifiability

The question of zero-state identifiability is somewhat more complex
than zero-input identifiability because the input function,
u(-) € LZ(O,tf;Rr), can also affect identification capability. Certainly
if u(:) = 0, then yz.s_(~;u) = 0 and there is no information whatsoever
from the zero-state response. The question of input design for the pur-
pose of optimal parameter identification was discussed in Section II.8
and computational algorithms to calculate the optimal input are con-
sidered in Section VII. Here we derive necessary conditions for zero-
state identifiability;* sufficiency conditions are dependent upon the
control input which one selects.

Like the previous section, it is helpful to rearrange equation (192)

into the form

v, &= D .. vz(pl (t3u)]
b ] ] 1xp
T *
=g (t:;u)Gj (250)
p— -1 [~ > T
Vzoa‘l(t;u) g (t;u)G;
Vz..'(t;u) 5 s 3 &
. T . *
Vz_..m(t,u) g (t.u)Gm
- -l e wl
T *
= g (t;u)*C (251)
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where we define

 JEP T
¢t = ¢V @, P

(252)
b k| h| 1 o
and
n-G* -
1
¢t=1. (253)
G*
m
L_ al 2nrmxp

Then defining the following zero-state identifiable subspaces:

Mz % (u) = zero-state identifiable subspace relative
ey to the output component . (+3u)s

.B-j

Mz - (u) = zero-state identifiable subspace;

we may use the above notation to obtain the central result on zero-state

identifiability:

Theorem 10

For the system SLc it 1s true that

*T
L)ML&fQCij) (254)
1) M @C R(c*T) (255)

111) ch is zero-state identtfiable only if the rank of G* 1s p.

Proof

For part 1), the non-identifiable subspace with respect to the out-
put component y (+;u) is the null space of V (*3u). From equa-
z.8 I 105 z.s.j
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tion (250) we see that

N CN(v, . (5u) (256)

3 3

Hence

Mo ) =NV, (u)”

z‘..j zl’.j
CN(c;)* - R(G;T) (257)

where the last step follows from Lemma 1.

Part 11) is obtained in a similar manner. Then the system SLc is
zero-state identifiable if and only if Mz.s.(“) = RP which can be true
only 1f rank G* is p.

Q.E.D.

The conditions of Theorem 10 can be made sufficient as well as

necessary (l.e., the subspace relations are replaced by equalities)

provided that the 2nr scalar functions of t ¢ [O,tf]

f:') a,(t -y (s k=1,2 w5 3 =1, 2 .0 (258)

are linearly independent. This condition may be tested by considering
whether or not the 2nr x 2nr Gram matrix (see equations (185) - (186))

t

is non-singular. Since the scalar functions aj(-), 3 =1 25 coidtly

are linearly independent on every interval of finite length, the condi-

JO‘ g(t;u)gT (t;u)dt (259)

tion of linear independence of the functions (258) is not too severe from

a pure mathematical point of view. However, from a practical point of

view, if the system has stable eigenvalues then the scalar functions aj

all tend to zero in the steady state. This is easily seen by recalling
106
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that the functions aj(t) are linearly independent combinations of the
functions tjeh‘-t (see Appendix A). Therefore, in the steady state the
potential for "structural" zero-state identifiability can only be
realized if the control input is selected to "excite" the modes of the
system to a sufficient degree to maintain linear independence of the
functions (258). This is the problem referred to by Astr;m and Eykhoff
(Ref 80) as the requirement for "persistent excitation". For the class
of sinusoidal inputs this problem has been studied by Mehra (Ref 98),
Kim and Lindorff (Ref 95), Hoberock and Stewart (Ref 94), and others

to determine sufficient numbers of input frequencies to ensure steady-
state identifiability.

Finally, we comment that the results of Theorem 10 may be applied
to one column vector of B at a time. and thereby we may obtain the
zero-state identifiable subspace relative to each control input component,
uk('), k=1, 2, ...r. Then by selecting all of the controls to be
1dentiéa11y zero except W the parameter components which lie in the non-
identifiable subspace of this input will not, to first order, influence
the observed output. Again this may be a possible systematic way tc
reduce the number of influencing parameters in a series of parameter
identification experiments. Indeed, the non-zero input component, Yo
may even be selected to optimize the estimation capability for those

parameters which 1fe in its identifiable subspace. (See Section VII)

c. Summary of Identifiability Conditions for ch
In the previous two subsections the zero-input and zero-state local

identifiable subspaces, Mz 1 and Mz 6.* have been determined. By using

the operator definitions of local identifiability (Definition 5) and the

algebraic representation of the sensitivity operators for the system ch'
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(Theorem 4), both of these subspaces may be obtained through purely
algebraic means which involve neither thé determination of the sensitiv-
ity operators themselves nor integration for determininpg the local

identifiability matrices

t
Mo S @l e (260
t
- £ oAy . ) ..
L fo v, g (E5u)/v,~ o (t3u)]dt (261)

These results and the approach taken are new and should offer useful
information for practioners of system identification

Finally, Lemma 8 says that the total identififable subspace is

M=M +M (262)

Z.1s  iz.8.

while the total non-identifiable subspace is

4 4 4
. Mz.i.r‘ Mz.s. (263)

M

The syster S, is then identifiable if and only if M = RP,

Example

Again consider the second order system introduced in the example
of Section IV.3, equations (229) (230). For simplicity we will examine
only zero-state identifiability (we will assume the system (229) (230)

has zero initial conditions). Using equation (231) we obtain:
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T T T
* (1) (2) (3)
6, = [6 N 6" 1

1
:
0 o 0 y
0 o 1
z (264)
i b, |
2 |
5, By 5 F R
and
T T T
L) Y )
i cy = I[6, G, 6, ]
r-o 0 1
0 b b
, - - s (265)
1 b, 2b,b, b, + b,
B 3
; 2byby  2bby + 3bjb,  2bb, + b
3 [ —

Hence 1if b3 is non-zero, then the system (229) - (230) 1is zero-state
identifiable from either the output ¥, of the output Yy (since the rank
of GI and G; are both 3). However, if b3 is zero, then only b3 is zero-
state identifiable from either output.

5. SUMMARY
In this section the geometric properties of Theorem 4 have provided
- algebraic conditions for insensitivity, sensitivity controllability, and

identifiability for the time-invariant system S Somé of these condi-

Lc
tions are restatements or extensions of previously known results (e.g.,

conditions ror zero-input and zero-state insensitivity (Theorems 5 and 6),
general algebraic conditions for sensitivity controllability, (Theorem 7),

and definitive algebraic conditions for zero terminal sensitivity
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(Corollary 7.1)). However, in other cases the conclusions and the
approach taken are new (general algebraic conditions for local and
structural identifiability (Theorems 9 and 10), and a systematic way

to reduce the number of influencing components in a series of identifi-
cation experiments (Corollary 5.1)). In all cases the operator approach
of Section II provides a straight-forward means to derive the results,
and no transformation of the system to a suitable canonical form is re-
quired for the analysis. A simple second-order system was used to
11lustrate the various algebraic conditions and to demonstrate the way
in which these algebraic conditions can be used to provide structural as
well as local information.

In the next three sections we concentrate on the computational as-
pects of Theorem 4 by considering parameter identification algorithms,
control design for minimum sensitivity, and sensitivity operator design
for improved parameter identification. Once again the operator approach

of Section II is used as the basis for this discussion.
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Section V ;

: QUASILINEARIZATION PARAMETER IDENTIFICATION FOR 1
; LINEAR TIME-INVARIANT SYSTEMS, S, .

The previous section investigated geometrical properties of the
matrix-operator representation for parameter sensitivities in the linear

time-invariant system, SLC’ (see Theorem 4). In this section the

et

computational aspects of this representation are considered by using it

as the basis of a quasilinearization algorithm for the identification

Le* Quasilinearization is a well- |

j known method for the estimation of parameters in such systems (e.g.,

of unknown parameters in the system S

Kumar and Sridhar (Ref 86)), and so the unique element of this section
is to illustrate how the results of Theorem 4 and Appendix A may be
used as an alternative to differential equation computation of the param-
eter sensitivities.

The quasilinearization algorithm utilized is based upon the dis-
g cussion of Section II.6. We noted in that section that the computational
‘ requirements of quasilinearization are fairly representative of gradient

and Newton-Raphson algorithms as well. However, the Newton-Raphson

wethod requires one to compute the second order as well as the first order

i parameter sensitivities. Appendix B presents a matrix-operator form of

the second order sensitivities which is equivalent to the one developed

in Section III and used here for the first order parameter sensitivities.

1. QUASILINEARIZATION ALGORITHM
The measured system output is denoted, y(t), t ¢ [0,t.], and the

model system output at the initial guess of the parameter vector,
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So € RP, is designated y(c;ﬂo), t e [O,tfl. The output error cost func-

tional which we wish to minimize is (see Section II.6.d):
~ tf ~ ~
JQ(b) =7y [(y(t) = y(t;5b))/Q(t) (y(t) - y(e;b))]de (266)

where the Q(t) ¢ R {s assumed to be symmetric and uniformly positive
definite for all t € [O,tf]. From Section II.6.b and 1I.6.d the quasi-
; f linearization algorithm to minimize this cost functional is obtained

from the sequence of steps:

-1
Ab. = (V* *
bj (v QV)j v sz (267)
b,., = b, + b
‘ 341 bj j (268)
f whe. e (V*QV)S1 is the p x p local "information" matrix!
* fe (), .2 P
v QV):l = !0 [v (t;bj)/Q(t)v (t;bj)]dt : (269)
V*sz is one-half the negative gradient of JQ(sj)
* P C L ~
Vez, = g v (t;bj)/Q(t)z(t;bj)]dt ; (270)
and z(t;gj) z y(t) - y(t;sj) 1s the output error at the current estimate
Sj ¢ RP. Recall from Section TI.7 that the local information matrix,
(V*QV)j, possesses a bounded inverse if the system is locally identifiable
' at 8 ¢ RP. We will assume that the system is locally identifiable along

t 1

INote that 1f the output is only sampled at discrete points, then the
integrals in equations (269) and (270) would be replaced by summations
over these discrete time points.
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the sequence of estimates, gj’ and hence cthat these inverses do indeed
exist.

Notice that if a direct "sensitivity system" differential equation
approach were used in determining the output, y(t;ﬁj), and sensitivities
v(i)(:;%j). i=1, 2, ...p, then each iteration would require the solu-
tion of possibly n(p + 1) coupled linear differential equations! in addi-
tion to the (p2 + 3p)/2 quadrature integrals required for computing

(V*QV) and V*Qz This number of differential equations and integrals
]

It
may, of course, be reduced if the controllability properties of the
gsensitivity system are taken into account (see Section IV.3), and Gupta
and Mehra (Ref 84) present the details of this as applied to parameter
identification algorithms. However, as a computational alternative, we
apply the results of Section III and Appendix A, thereby replacing the
solution of the differential equations with the determination of the

eigenvalues of A(% ) and the solution of, at most, 2nr quadrature integrals

]

for computing the parameter sensitivitiesl.

The computational details of this method are presented in the sub-
sequent algorithm. The notation used is based upon the development of
Appendix A in which the matrix-operator representation of the parameter

sensitivities is factored directly into "component" form utilizing the

q.t g, t
tde ¥ J k

basis functions,

, for real eigenvalue 9 (or t
1 ak:
te

coswkt and
sinmkt for complex eigenvalues) rather than the linear combinations

of the scalar functions, a,(t) (see Theorem 4). In particular, the sys-

]

tem nominal output and output sensitivities are computed from the relations

y(c;ﬁj) - FOgeey + H(o)f; £(t - 8)*u(s)ds (271)

lRecall that r is the control dimension, n is the state dimension, and p
is the parameter dimension. 113
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v“’(:;ﬁj) - Py + g 15 £(t - s)*u(s)ds (272)
i=1, 2, ...p

where f£(-) is a 2n-dimensioned vector function defined in Appendix A and
q,.t

which has elements of the form tJe k A F(o), F(i), H(o), and H(i),

1{=1,2, ...py, are m X 2n and m x 2nr dimensioned matrices and are

computed as described in Appendix A; and we define the special product

p

fl(t s)u(s) .1

f(t - s)*u(s) = fz(c

s)u(s) (273)

£,_(t - 8s)u(s)
iz » _J2nrx1

This form is used for computation rather than the one used in Theorem 4
and Section IV because the convolutions of equations (271) - (272) may
be directly transformed into the time-varying linear combination of

quadrature integrals through relations such as

q, (t - 8) q.t -q, 8 q.t =-q.8
K R e oS e

(t - 8)e e  se (274)

However, either form is equivalent and the differences are merely a matter
of bookkeeping on the digital conputer. The form (271) - (272) will also
be utilized in the computational applications of Sections VI and VII.

The algorithm for quasilinearization parameter identification is now

stated:

Quasilinearization Algorithm to Identify

the Parameters in the System ch
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A

1) Based upon the current estimate of the unknown parameters, bj € RP,
determine the distinct eigenvalues of A(%j). 9 k=1, 2, ...p, and
tneir multiplicity, L in the characteristic polynomial of A(gj). Note
that if the eigenvalues of A(%j_l) have been computed, then iterative
techniques for computing the eigenvalues of A(ﬁj)vmight be useful.
(e.g., (Ref 11: 455 - 495)). Indeed, by using the expression (157)
suggested in Section III for computing the eigenvalues sensitivities, a
first guess of the new eigenvalues might be computed from the Taylor's

series relation

P
w R 2] _21-1
G =q + T (q)q,y0y-b;7) (275)
i=1
where the superscripts "j" and "j-1" refer to the jth and j—lth iterations,
respectively. (See the example of Section V.2 for illustration.)

2) Using the eigenvalues of A(b,), invert the 2n x 2n Vandermonde matrix,

]
A. (See Appendix A.) Then using the elements of A-l, and the input
quantities A, B, C, d, A(i)’ B(i)’ C(i), and d(i)’ i=1, 2, ...p, compute

the matrices

— -
@ g<®
Faelr® = |a® (276)
(») (»)
L? J m(p+l)x2n Ln m(p+l)x2nr

(See Appendix A for the definition and computation of the above quanti-

ties.)
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3) Compute and place in temporary storage the (p + 1) m-dimensional
vector functions of t € [0,tf], y(tgsj), vci)(t;sj). i=1, 2, ...p.
(See equations (271) - (272).)

4) Compute

- -1 ,
&b, (V"‘QV)J vhez, @17)

using equations (269) - (270). Note that the "controllability" properties

of the sensitivities may be used to reduce the number of integrals

(summations) required in computing the matrix (V*QV)j and the vector

\
-,

mp x 2n(l + r) dimensioned matrix

(see Section IV.3). In particular, if v is the dimension of the

LD
(r 6] =| F® @ (278)
) c®

then there are only v linearly independent functions from the mp func-
tions {v(i)(-;sj); i=1, 2, ...p}. Therefore, there will only be

(v + 1)v/2 integrals (summations) required to compute the symmetric
matrix (V*QV)1 and v to compute the vector v*sz.
5) Set

bj.'_1 = 1:j + Abj : (279)

and either return to 1) or stop when ||y - y(sj)ll 18 less than some
specified small value.

Stop.
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2. EXAMPLE
Once again consider the second order system introduced in the

examples of Sections IV.2 -~ IV.4:

-il(t)- o= 1 x, (t) 0
. - + u(t) te [O,tfl (280"
xz(c) L?l b2 xz(t) b3

— -

y@w] [ o] [x® x, (0) 1
b - ’ 3 - (281)
yz(t) L.0 1 xz(t) 22(0) 0

The nominal value of b € R3 is again assumed to be So = [-2 -3 I]T,
and so the nominal A matrix has eigenvalues q, = -1 and q, = -2,

To use the algorithm of the previous subsection, we must first
determine the matrices F(O), F(l). K(o), H(i), i=1, 2, 3, as described

in Appendix A. To do so requires that we invert the Vandermonde matrix |

- |4
1 q qi qi i 1
Aeflo0 1 2q 3q§ ’
1 49, q qg
o I 2q2 3q§
— pu—
-1 -1 1 -1
=0 1 -2 3 (282)
1 -2 4 -8
0.1 =4 12
— -

This inverse is easily shown to be

\\\\\ 117
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Y A R T
-1 -12 8 12 5
A" - (283)
-9 5 9 4
EZ 1.2 1
Then since there is a single control input we may determine F and H
from the equations
— T - -
() (®
& | R
Fe = EA H= = GA (284)
) 2@
&) e
s - S -~

where E and G are given by expression (236) of Section IV.3. Thus, for

these nominal parameter values, the matrices F and H become

—~ - —
2 0 :1 0 1l 0 -1 0
-2 0 2 0 -1 0 2 0
-3 2 3 1 -2 1 2 1
3 S -2 -5 =2 SR T
F= H= (285)
4 -2 -4 =2 3 -1 =3 -2
-6 2 6 4 -4 1 4 4
SR e £ oy e
0 0 0 0 -1 0 2 q
oo o — st

Then the output and output sensitivities are computed from the expressions

(271) and (272) where
£(e) = [e"8 et o2 po24yT (286)

Notice that the integral f;f(: - g)u(s)ds may be obtained as time-varying
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combinations of the four quadrature integrals:
I:e.u(s)ds; f;se'u(a)ds; f;ezsu(e)ds} f;sezsu(e)ds (287)
Hence, there are only four integrals required to compute the complete
set of parameter sensitivities for each iteration of the quasilineariza-
tion algorithm. It is interesting to note that if a sensitivity system
differential equation approach were utilized in computing the sensitivities,
there would be either eight differentia’. equaticns for a direct solutionm,
or a minimum of six if reduction techniques were applied (see the example
of Section IV.3). Thus, in either case the number of required differential
equations would be greater than the number of required quadratures by the
operator method.
Once the new estimate 31 has been computed from equation (279), to

perform another iteration of the algorithm requires a recomputation of the

AR T L A A < =

eigenvalues of A(bl). A first guess of the new eigenvalues can be ob-
tained by using the eigenvalue sensitivities computed from a Taylor's

series expansion about bo' For this example, the new guess would be

o 0 o o
q *q; * (ql)(l) Ab1 + (ql)(z)Ab2 (288)

- O (] o
qz *q, + (qz) (I)Abl + (q2) (2)Ab2 (289)

where the superscript "o" here denotes the eigenvalue and parameter com-
ponents at the initial guess %o' The eigenvalue sensitivities may be
computed on the basis of equation (157) of Section III. In fact, since 3
the C matrix is independent of any of the parameter components which

appear in the A matrix, we may use the column vectors of F to determine

these eigeuvalue sensitivities (the column vectors of H could alternately
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be utilized since the parameters of A do not appear in the B matrix

either). Partitioning'F into the form

F= : 4 (290)
(3) 3)
_r @) B 02 T P ) x4

we may compute these eigenvalue sensitivities from the relationmb:

M@ = (7P (251)

rP @ = (g, F P @ (292)
Hence

(a) gy = -1 (@) gy = -1 (@) 3 = O (293)

(g) gy = -1 @) gy = 2 @) (3 = O (294)

Thus the eigenvalue sensitivities may be obtained in a natural way from
the other computations which take place in computing the parameter

sensitivities via the operator method.

3. SUMMARY

In this section we have used the representation of Section III to
obtain a uew computational algorithm for quasilinearization parameter
identification in linear time-invariant ordinary differential equation
systems. This is one of the more direct computational applications and

it shows how the sensitivity system differential equations may be re-

placed by the solution of a relatively low number of quadrature integrals.
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Furthermore, the methods for computing the eigenvalue sensitivities from
this form (expression (157), Section III) apd the use of the "controlla-
bility" properties (Section IV.3) have been discussed in relation to
reducing the total computational requirements for this approach.

In Sections VI and VII we consider further computational applications
by applying the results of Section III to minimum sensitivity control
design and sensitivity operator design for optimal pa'rameter identifica-

tion.
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Section VI
MINIMUM SENSITIVITY CONTROL DESIGN FOR

THE LINEAR TIME-INVARIANT SYSTEM ch

In Section II.6 a gradient method for open-loop minimum sensitivity
control design was developed for the Hilbert space linear system Sn. In

this section we apply this method to the linear time-invariant ordinary

differential equation system, SLC’ and consider this as a computational
alternative to previously employed Riccati equation techniques (e.g.,
Kahne (Ref 70)). Like the previous section, this illustrates the computa-
tional features of the matrix-operator form of the parameter sensitivities

which is presented in Section III and Appendix A.

1. GRADIENT METHOD OF SOLUTION
To illustrate some important computational aspects, the cost func-
tional of Section II.5 is generalized slightly to consider minimization

of

Jgu) = [¥(tg;u)/SeY(te5u)]

t
+ 7 [Y(e;u)/5()Y(t;u)]dE
0

t
+£‘[uumamanu

where Y(t;u) ¢ Rm(p+1) is the augmented vector

B 3

y(t;u)
v(l)(t;u)

.

V(P) (t;u)
- -
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The real matrices Sf and S(t) are assumed to be nonnegative definite and
symmetric, and the real matrix O(t) is assumed to be symmetric and uni-
formly positive definite. The latter assumption is required to ensure
existence of a unique minimizing control. We note that the cost func-
tional Js(u) is quite general as it weights the sensitivities along the
nominal trajectory as well as at the terminal time te. Such a cost func-
tional has been used by a number of other researchers in the minimum
sensitivity control design problem (e.g., Kahne (Ref 70)), and the weight-
ing matrices may be manipulated to achieve various design objectives.
Following the approach of Section II.5, we may separate Y(t;u) into
its zero-input portion, Yz.i.(t)’ and zero-state portion, Yz.s.(t;u).
Then using the notation of the previous section which is defined in de-

tail in Appendix A, these may be computed from the matrix-operator

relations
Y, . (@)= F £(t) (297)
- tf
Y (tju) =G S =~ £(t - s)u(s)ds. (298)
Z.8. o

For notational simplicity we will assume in this Section that

us) € Lz(O,tf;R) is a single control input (that is, r = 1). The
results are easily extended to the multi-input case. By substituting
equations (297) - (298) into (295) and performing an interchange of the
order of integration, the cost functional Js(u), equation (295), may be
put into the form

t
Igl) =k + / £ fuce)/znce) + p(e)ulae (299)

where
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t
k= (Y, (€)/SY | (el +/ £ [¥, , (©)/S)Y, , ()]de  (300)

f 0

| h(t) = f"(:f - :)i"’sfvzz_ )
; t
| +2 L g8 - )T S()Y, , (s)ds (301)
1 t . .

P(t)u = O(t)u(t) + fT(tf - t)ﬁ’r Ssz.s.(tf;u)

t
Y
t

£ ¢T(s - )T S(s)Y, _ (s;u)ds (302)

The quadratic cost functional Js(u) may then be minimized by gradient

(or conjugate gradient) iterations where the gradient of Js(u) is
VJs(t;u) = 2(h(t) + P(t)u) (303)

te [O,tfl

(See, e.g., Luenberger (Ref 20).)

For such gradient minimization techniques, tne gradient function must
be computed for each new guess of the optimal control. Therefore, a major
element of the computat”sn time for such an approach will be the computa-
tion of the gradient function itself, equation (303). Therefore, we dis-
cuss the computational features associated with computing this gradient

é function from equations (301) - (303).

i The function h(:) must be computed once and stored. The terminal

| sensitivity term (the first term of equation (301)) involves no integrals
but merely matrix manipulations and the determination of the 2n-dimensioned
vector function f(:) from the eigenvalues of A (see Appendix A for details).

The trajectory sensitivity term (the second term of (301)) requires 2n
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integrals for each separate control input. It is most important to point
out that these indicated convolutions may be transformed into quadratures
by the methods discussed in Section V (see equation (274)).

Next, the function P(-)u must be recomputed for each new guess of
the control input. An inherent part of the computation is obtaining
Yz...(-;u) from equation (298). As discussed in Section V, this also re-
quires the solution of 2n quadrature integrals for each separate control
input. Once computing Yz.s.(';u) the terminal sensitivity term of P(*)u
(the second term of (302)) requires only matrix operations and no addi-
tional integrals. However, the trajectory sensitivity term (the third
term of (302)) again requires the solution of 2n integrals for each con-
trol input. Again it is significant to note that the indicated convolu-
tions may be transformed into quadratures.

To summarize, the computational requirements for computing the
gradient function, equation (303), are quite minimal and increase only
linearly with state dimension n and control dimension r; the computational
requirements are virtually independent of the parameter dimension p. It
i1s also significant to point out that the terminal sensitivity terms
inherently do not require any convolutions to be solved; therefore, if
the trajectory sensitivity weighting, S(:), is identically zero, then
the gradient function requires no convolutions to be obtained and the
gradient method may readily be applied to other more general linear sys-
tems (say, e.g., the linear time~varying system of Section III.l where
Theorem 1 is used to compute the partial derivatives of the state transi-~
tion matrix). However, if S(-) is ncn-zero then the gradient function
VJs(°;u) requires convolutions to be computed (see the second and third

terms respectively of equations (301) and (302)), and, except for the
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case of the linear time-invariant plant matrix, these convolutions cannot
generally be transformed into the far more desirable quadrature integral
form. Therefore, for the general case with this operator-gradient approach
the computational differences between the terminal sensitivity problem and
the trajectory sensitivity problem are quite large. This is not true of
the Riccati equation exact method of solution examined in the next section,
for there the computational requirements are virtually the same for both
the trajectory sensitivity and terminal sensitivity cases.

Another important tactor in the computational requirements of the
gradient method of solution is the accuracy of an initial guess of an

optimal control. The initial guess

u () = =07 (E)h(e) . (304)
might be selected for this control minimizes the functional

[u(t)/2n(t) + 0(tu(t)] (305)

and this is an approximation to the sensitivity cost functional Js(u),
equation (299). However, if the optimal control for one set of condi~
tions has been obtained and these conditions are perturbed slightly (say,
for example, if a new set of initfal conditions are selected or if
linearization about a new nominal trajectory in a quasilinearization
nonlinear system optimization is desired), then the old optfhmal control
may be used as the first guess with the new conditions., Since the quad-
ratic functional Js(u) is continuous, if the new conditions are not
perturbed greatly from the old, the new optimal control will be "close"
to the old optimal and convergence should be quite rapid. In general,

this is an advantage of iterative solution techniques over exact methods
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of solution in that prior information such as this may be utilized to

reduce computational requirements.

Finally, we comment that the gradient type approach may be conven-
iently applied to a number of variations to the basic quadratic minimum
sensitivity control problem which has been considered here. For instance,
if it is required that the system output at the terminal, y(tf;u). meet

a terminal equality constraint!
t
vt osu) = POfce) + 6@ £ £(e, - ouerar
£ f 0 £

- e (306)

and 1if G(o) has rank m (i.e., the system is output controllable), then the
gradient projection method of Rosen (Ref 24) may be easily applied to
solve the terminal equality constraint minimum sensitivity control prob-
lem. (See Luenberger (Ref 20: 297 - 299) for the computational details
of this method.) Since the projection operator

-1
T T t

me1-f£(t, - £)6(® (c(°’ncc(°’ y ¢/t £t - )(-)at (307
0

W=t e, - 0, - Ot (308)
< 0 f f
used in this method is easily calculated, there is very little computa-

tional increase for solving this terminal equality constraint problem.

3. RICCATI EQUATION SOLUTION

In the previous section a gradient approach to minimizing the quad-

1gee Appendix A for the definition of the m x 2n and m x 2nr dimensioned
matrices F(0) and G(0),
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ratic sensitivity cost functional, Js(u). equation (295), was examined.
The results of Section III and Appendix A were applied and some highly
efficient computational features were obtained for the time-invariant
system SLC' However, often an explicit solution to the open-loop minimum
sensitivity control problem would be desired rather than the iterative
methods of the previous section. In such a case a Riccati equation method
of solution is a well-known technique for calculating the open-loop
minimum sensitivity control law in linear systems. (See, e.g., Kahne

(Ref 70).) We emphasize the fact that the control law determined in

this manner is only the open-loop solution and cannot be made closed-loop
(except by approximation - see, e.g., Lamont and Kahne (Ref 72)) as is the
case for a Riccati equation solution when sensitivity is not included in
the cost functional. This fact is well-known (e.g., Price and Deyst

(Ref 75)) and stems from the fact that the optimal control is computed
from a linear combination of both the optimal nominal state and state
sensitivities (see equation (312)). However, the sensitivities are
computed under the assumption that the control is open-loop, and so the
form becomes mathematically incorrect when used in a closed-loop (feed-
back) manner.

Using the time-invariant sensitivity system of Section III
X(t;u) = AX(t;u) + B u(t) X(0) = d (309)
Y(t;u) = CX(t;u) t e [0,t,] (310)

(see equations (92) - (94)), the cost functional Js(u), equation (295),

may be written as
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J(u) = [X(tg3u)/CTS,CX(tgi0)]
te S
+ / ° [X(t;u)/C S(t)CX(t;u)]ldt
0
e
+ / ° [u(t)/o(t)u(t)]dt (311)
0

In this form the minimum sensitivity control problem is a standard linear
system quadratic cost functional optimal control problem which has the

well-known solution given by (e.g., Bryson and Ho (Ref 5)):
u*(t) = -(0(t)) BR(e)X*(t) (312)

where R(t), t € [O,tf] is obtained via the unique solution of the

n(p + 1) x n(p + 1) matrix Riccati differential equation

R(t) = -R(t)A - AT R(t) + R(£)B 0 1 (£)BT R(t) - C'S(t)T (313)
with terminal boundary condition

o s,C. (314)

R(t,) = £

The n(p + 1) augmented vector function x*(-) is computed by integrating
forward the sensitivity system differential equations (309) using the
optimal control computed from (312).

Now let us review the computational requirements of this Riccati
equation method of solution. Without reducing the dimemsion of X(-;u)
(see Section IV.3) the symmetric Riccati matrix, R(*), will have dimen-
sion n(p + 1) x n(p + 1) and so the number of differential equations
increases in rough proportion to the square of n and the squ:are of P.
However, if the methods of Section IV.3 (or other approaches to minimal
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order sensitivity models -- see (Refs 34 - 42)) are applied, then the
dimension of X(-;u) may be reduced toy, < 2n(r + 1) (see equations (226) -~
(228)). Therefore, for linear time-invariant systems the computations
for the Riccati equation approach can be made to increase only with the
squares of n and r and be independent of the parameter dimension p. This
is in contrast to the gradient method of solution where the amount of
computation increases only linearly with n and r and is also independent
of the parameter dimension p. Thus for systems with large stabte dimen-
sion, n, the gradient approach offers the potential of considerable
computational reduction.

Finally, we note that the Riccati method of solution may also be
utilized in cases in which a terminal output condition y(tf;u) = Y¢
must be achieved (see, e.g., Bryson and Ho (Ref 5: 158 - 163)).
Bryson and Ho describe the method in considerable detail; therefore, we
do not repeat these details here, but merely comment that an additional
linear matrix differential equation of dimension n(p + 1) x n (equation
(5.3.35)(Ref 5: 161)) must be solved in using such a technique.

In the next subsection we consider a simple second order example
to help illustrate the computational features of the operator-gradient
method and also point out the computational differences between iterative

gradient method and the Riccati equation exact method of solution.

3. EXAMPLE
Unce again we consider the second order system
il(t;u) 0 1 xl(t;u) 0

£ - + u(t) (315)
xz(t;u) bl b2 xz(t;u) b
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- - -
:I(O;u) 1
- t e [0, 1] (316)
xz(o;u) (v}
= = L
e b .
y, (t;u) 1 0 x, (t;u)
1 . ! (317)
Y, (t5u) 0 1 x, (t;u)
J». i 4

with nominal parameter vector bo = [-2 <3 I]T. Since this example

was considered in Sectiomns IV.2, IV.3, IV.4, and V.2, we will use many
of the results from those sections to shorten the discussion here.
As described in Section V.2 we may write the zero-input and zero-

state augmented response in the form

Y, (t) =F £(t) Y (t;u) = H /88(t - s)u(s)ds (318)
z.1. Z.8. 0
where F, H, and f£(t) are given by equations (285) - (286). Note that only
four quadrature integrals, equation (287), are required in computing
Yz..'(t;u), t € [0, 1].

We will consider minimizing both a terminal sensitivity .cost func-

tional

3, = A weeyae + &, [Y(L;u) /Y (150)] (319)
0

and the trajectory sensitivi*y cost functional

3,0 = 3, @) + ¢, Y e u) /Y () 1de (320)
0

where the scalar constants < and ¢, may be assigned various weighting
values. The gradient of the terminal sensitivity cost functional may

then be computed by
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le(i;u) = 2(h (t) + P, ()u) (321)
where

hy(6) = e (L= O Y, (D) (322)

B, (0)u = u(t) + ¢, £*(1 - OF ¥__ (Lw) (323)

fa-n= [T  aneft S5Y gttty (324)

Notice that the only integrals required to compute the Pl(t)u term are
the four quadratures required in computing Yz % (tf;u) from equation (318).
Next consider the gradient of the trajectory sensitivity cost func-

tional, equation (320). This may be computed from

VJz(t;u) = 2(hz(t) + Pz(t)u) (325)
where

hy(t) = hy(£) + ¢, {1 £ (s - t)E Y, (s)ds (326)

P,(t)u = B (t)u + ¢, il (s - )R Y, (s3u)ds (327)

Note that we may work with fT(s - t) in the factored form
T - - - - - -
f(s-t)= [ete §  ef(se™®-te™®) o e2t(se 25_ce 28)] (328)

in order to transform the four convolutions of equations (326) and (327)
into four quadratures each. Thus, for this trajectory sensitivity gradient
there are a total of four quadratures to compute the invariant term h2(-).

and there are a total of eight to compute the term P2(~)u. Notice that
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this number of integrals is only dependent upon the dimension of £(-)
and is independent of the number of parameter components or upon any
special "controllable" form of Yz.s.(t;“) (see Section IV.3).

To use a gradient method in computing the optimal control for
minimizing either Jl(u) or Jz(u) requires that we start with an initial
guess of the optimai control (see, e.g., Luenberger (Ref 20: 285)). We

choose the initial guess suggested in Section VI.1 as follows:

uo(t) = -hi(t), i=1o0r 2 (329)
for, this is the control which is the unique minimum of the approximate
cost functional

b ) + b e)unae (330)

0

Then we may use, for example, a standard steepest descent algorithm
(e.g., Luenberger (Ref' 20: 285)) to give the sequence of optimal control

estimates
uj+1(t) = uj(t) + kjrj(t) (331)

where rj(') is one-half the negative gradientc

Ty (t) = =(h(t) + P(t)uj) (332)
and
e, ), (e)de
0o J ]
by (333)
% J7r, (t)P(t)r, dt
0o ]

The sequence is stopped when the norm of rj(-) is sufficiently small or

vhen there is no longer any appreciable decrease in the cost functional.
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Notice that for each step of iterations (except the first) we must

use the subroutine P(t)u just one time since we may write P(t)uj+1 as

= P(t)u, + k,P(t)r (334)

AL g+ B Riele,

Y41

and both P(t)u, and P(t)r, have been determined from the previous uj

“ |
step. Thus, in this example, for each new iteration of the control there
would be four quadrature integrals required if the cost functional is
Jl(u) or there would be eight if the cost functional is Jz(u).

The above mentioned steepest descent algorithm was programmed on
the CDC 6600 digital computer. Using trapezoidal integration with a step
size of .002 on the interval [0, 1], the optimal minimum sensitivity con-
trol law was computed. The step size requirement is a function of the
accuracy desired, the time constants of the system (the magnitude of
the eigenvalues), and the accuracy of the integration scheme selected.
The step size of .002 was chosen in order to give reasonable accuracy
between the sensitivities computed using the operator form with trape-
zoidal integration and those computed using the sensitivity system
differential equations with a fourth order Runge Kutta integration.
However, far more accurate integration techniques then trapezoidal
could be utilized and the .002 interval could then, no doubt, be
lengthened.

To 1llustrate the influence of the cost functional upon the speed
of convergence, the scalar constants c, and ¢, were assigned values of
(10, 1) and (100, 10). The optimal control for both the cost functionals
Jl(u), equation (318), and Jz(u). equation (319), were computed. The
results of the iterations are shown in Tables 1 and 2. Notice that for

the set of constants (10, 1) the initial guess uo(t) = -hi(t)’ i=1,2, is
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fairly close to the optimal solution, and the optimal control is reached

in just three to four steps. For the more heavily weighted constants of
(100, 10), the initial guess uo(t) - -hi(t), {=1, 2, is further away
from the optimal solution and the gradient method takes longer to reach
convergence. Notice that for the set of weighting constants selected
here, the speed of convergence for both the "terminal" sensitivity prob-
lems, Jl(u), or the "trajectory” sensitivity problems, Jz(u), are roughly
the same. .

Next consider the solution of this example by the Riccati equation
technique described in Section VI.2. For this example, the C matrix is
the identity matrix and so Y(t;u) = X(t;u). Also, recall from the
analysis of this same example in Section IV.3, that the rank of the
matrix [E E] is 6= 6; therefore, the eight elements of the sensitivity
system, X(*;u), may be calculated from a minimum of six differential equa-
tions rather than eight. Indeed, from the results of the example of

Section IV.3 we have

I

o[BS s i JRRE < e | Xc(t;u)

X(t;u)

00 ol =02 =210 8x6

KX (t;u) (335)
[

where
xr(t;u)
xz(t;u)

6{1)(t;u)
Xc(t;u) = Eél)(t;u) (336)

E{z)(t;u)

(2),,.
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~

COMPUTATIONAL RESULTS OF GRADIENT METHOD

Iteratior

Start

2

2
3
4

Table 1: ¢, = 10, <,

Iteration Jl

Start 6049.7
1 727.8
117.7
47.73
39.71
38.79
38.68
38.67

|ea, 1|

.1614 x 102

.3897

.3736 x 1071

.9017 x 107>

.8646 x 10™°

o3, [}
.1614 x 10
.6552 x 10
.2122 x 10

.8612 x 102

.2790 x 102
.1135 x 10
.3719

.1716 x 107}

)

10.860
6.322
6.121
6.112

6.112

=1

2

6582.1
708.9
115.5

57.75
51.78
51.21
51.13

51.13

[93, ]

.1801 x 102

<4127

.3385 x 10+

7776 x 107>

.6421 x 1072

Hea 1l

1801 x 10
.6911 x 10
.1776 x 10
.6831 x 10
1771 x 102
.7577

.3056

.7329 x 107}

Table 2: ¢. = 100, ¢, = 10
i 2
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Now in terms of xc(c;u) the cost functionals Jl(u) and Jz(u) may be

written as

3, = {)1 uZ(t)dt + cllxc(l;u)/KT!O(c(l;u)]

3,(0) = 3 (@) +c, (I,llxc(t;u)/KTKxc(t;u)]dt

The six elements of the "state" Xc(t;u) are then determined from,

ic(t;u) - chc(c;u) + icu(:)

xc(O;u) = dc
where

0 1 0 0
-2 =3 0 o

L 0 0 0 1

A =

¢ 1 % eaiag
0 0 0 0
0 1 0 0
.

0
0
0
0
o

-2

t e [0, 1]

w|

0

S8

(337)

(338)

(339

(340)

(341)

Then the optimal control, u;(') € L2(0, 1;R), which minimizes Jz(u)

is uniquely specified by the equation

uy(e) = BT Ry (e)xt(t5u})

where ii(t) is obtained by integrating backwards in time the 6 x 6

t e [0, 1]

dimensioned matrix Riccati differential equation

A

nz(t) - -Rz(t)Ac *

Rz(t) + Rz(t)Bc

137
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with terminal boundary condition
s T
R,(1) = 5)K'K (344)

The optimal "state" trajectory, x:(-;u;) is obtained by integrating for-
ward in time the equation (339) with the control (342). The optimal
control which minimizes Jl(u) is obtained in a similar manner except the
differential equation for ii(t), equation (343), no longer has the last
term, CZK?K. Notice that in either case there are 21 nonlinear' differen-
tial equations to determine the symmetric E;(-) matrix plus an additional
six linear differential equations to determine the optimal trajectory
x:(°;u:). Additionally, six function elements of il(°) must be stored in
order to compute the optimal control from equation (342). Finally, the
amount of computations are virtually the same regardless of whether the
cost functional is Jl(u) or Jz(u). This 1s in contrast to the gradient
method in which the amount of computation was doubled for the trajectory
sensitivity cost functional Jz(u) (eight quadratures per iteration versus

four for the terminal sensitivity cost functional Jl(u)).

3. SUMMARY
In this section we have examined computational techniques for obtain-
ing the open-loop minimum sensitivity control law for the linear time-

invariant system, S Using the matrix-operator form of the parameter

LC*
sensitivities the gradient approach developed in Section II.5 was applied.
This proved to be an efficient method of solution in which the amount of
computation (number of quadrature integrals) grew only linearly with the
state dimension n and the control dimension r. A simple second order

example system showed that the computations were quite straight-forward

to apply and that convergence on the digital computer could be quite rapid.
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Next, this operator-gradient method of solution was compared with
well-known Riccati equation solution methods. By applying sensitivity
system reduction techniques (Section IV.3) the amount of computations
could be reduced substantially. However, the amount of computation
(number of nonlinear differential equations for solution of the matrix
Riccati differential equation) still grew in proportion to the square of
n and r as opposed to linearly with the n and r for the gradient method
of solution. Thus, even with sensitivity system reduction methods, the
gradient solution offers a practical alternative to computing the open-
loop minimum sensitivity control law.

In the next section we consider our final computational application
of the matrix-operator representation of the parameter sensitivities in
linear time-invariant ordinary differential equation. systems. There we
examine optimal design of the sensitivities to enhance parameter identi-
fication capability, and once again the matrix-operator form provides a

useful alternative to differential Riccati equation solution techniques.
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Section VII

SENSITIVITY DESIGN FOR OPTIMAL IDENTIFICATION IN LINEAR
TIME-INVARTANT ORDINARY DIFFERENTIAL EQUATION SYSTEMS, SLC

In this section we consider the computation of the initial condition
vector and control input which optimizes parameter identification capa-
bility from the zero-input and zero-state responses, respectively. The
methods presented are based upon the discussion of Section II.8, and like
the previous two sections we apply the matrix-operator form for the param-
eter sensitivities in linear time-invariant ordinary differential equation
systems (Section III and Appendix A) in order to obtain efficient computa-
tional techniques for solution.

The concept of obtaining an optimal initial condition vector 1s new;
however, the approach for obtaining the optimal input function are based
upon the work of Mehra (see Section I.l.e and Section II.8 for discussion).
Mehra suggests solving the optimal control input design problem via a
Rayleigh-Ritz-Galerkin algorithm, and that is the method which we employ
here for our operator approach. Therefore, like Section V the contribu-
tion here is to demonstrate how the matrix-operator form of the parameter
sensitivities can provide a useful computational alternative to previously
employed two-point boundary value/Riccati equation methods of solution
(e.g., Stepner and Mehra (Ref 120) and Gupta and Hall (Ref 108)). The
computational utility of the matrix-operator form is further enhanced
through the use of Walsh functions as the orthogonal set of basis func-
tions in the Rayleigh-Ritz-Galerkin algorithm, The special properties
of the Walsh functions allow us to substantially reduce the number of

inte2grals required for solution. This method of reduction with the Walsh
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functions should have useful applications to other aspects of linear
system simulation and control design.

Again the simple second order linear system examined in Sections Iv\r
VI will be used here to illustrate the computational implications of the

operator algorithms.

1. OPTIMIZATION OF THE ZERG-INPUT SENSITIVITIES
For the system ch the zero-input cost functional (see Section II.S8.b)

takes the form

P t
R @= Tk, i) @nevd) @l

K 13 °0 "'z,
z.1. 1,§=1
P Ke T
- I kijfo [d/(ce(t)) (1)Q(t) (co(t)) ( )d]dt (345)
i,i=1

The m x m matrix, Q(t), is assumed to be symmetric, positive definite, and
uniformly bounded for t ¢ [0,tf]. It may be assumed that Q-l(t) is the
covariance matrix of a Gaussian white noise measurement process (see Sec~-
tion II.6.d).

Using Theorem 4 and defining the n x n positive, symmetric matrix

i DN S x-1,T ¢ 2-1
AKz.i. z ‘:1 zfl {1 :_1k15(cA )(1) é aK(t)Q(t)az(g)dt(CA )(j)}
(346)
we may write JK (d) as
z.1.
sz.i.(d) = [d,AKh.i.d] (347)
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Computing the symmetric matrix AK involves merely matrix manipula-
z.1.
tions and solving the quadrature integrals

s

1 t
; ! far(t)Q(t)al(t)dt (348)
0

: k=1, 2, ...2n

L £ = 2n, 2n-1, ...x

,
S ——— P

Also, after solution of these integrals one time, iterative adfhstment

# to the weighting constants, kij’ i,j=1, 2, ...p, becomes a simple process E
[
{

since these integrals do not change.  Therefore, the constants kij may
readily be adjusted to satisfy various optimization criterion (see Section
1I1.8.a).

According to the development of Section II.8.b, we place the auxiliary

constraint on the initial condition vector
[d/d] <1 (349)

We may interpret this constraint as providing the unit vector initial
"direction" of maximum information. Then the d* ¢ R which maximizes

JK (d) 1s the eigenvector corresponding to the maximum eigenvalue of
z.4.

the positive, symmetric matrix, AK , and normalized so that
z.1.

[d*/d*] = 1. (350)

| §
|
{
|
|

Since Ax is positive and symmetric, rapid compyter techniques
z.1.

exist for obtaining the maximal eigenvalue and corresponding eigenvector.

(See, e.g., Fadeev and Fadeeva, (Ref 11: 406 - 454).) Also, it may be
desirable to have an optimization algorithm which will maximize the

functional (345) over any given subspace R". For example, the Rayleigh-
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Ritz-Galerkin algorithm described in detail in the next section has this
particular oroperty, and it is easily modified to solve this finite
dimensional, matrix eigenvector problem. Then, when implementing a
procedure such as suggested in Section IV.2 for reducing the number of
influencing parameter components (see the discussion following Corollary
5.1), one may not only select an initial condition vector which is from
the insensitive subspace of one group of parameter components, but he may
also select the initial condition vector which is optimum with respect to
identifying the remaining parameter components.

In conclusion, the method of Section II.8 is well suited for deter-
mining an optimal initial condition vector for the system SLC' Indeed,
with very little additional computations, the method may be applied to
find the optimal initial condition vector for the time-varying linear
system, sTV' Such techniques should be valuable when the system designe:
has the freedom to select the initial condition vector, and he is
attempting to obtain the greatest "information" for identifying the sys-

tem parameters from the transient response.

Example

Consider the second order homogeneous linear system

il(t) 0 1 xl(t)
. . t ¢ [0, 1] (351)
xz(t) bl b2 xz(t)

with the single observable output

()
y(t) = [1 0] i (352)

xz(t)

The nominal parameter values are b1 = -2 and bz = ~3; thus the nominal A
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matrix is the same as the examples of Sections IV. V, and VI and so we

will use some of the previous results to shorten the discussion here.

We may then compute

0 0
©% 4, = %,
), = o0

%)

Rl o
gy =113 1

S gy = 9
©% = [0 1]

3
(cA )(2) = [-2 -6]

Assuming Q(t) = 1 for all t € [0,1] and that

{1 i=3
k =
B Vo 143

we then obtain
4

Ay - I

z.1. ki1 {,

2
r (cA

3=1

k=1,T

2-1
ayioe )

@

51 s (t)a, (£)dt

1
5 a3(t)a3(t)dt

-1 1
f"a,(t)a, (t)dt
ar) e 2

1
6 ‘a(t)’a(t)dt
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From the inverted Vandermonde matrix of the example in Section V, equation

(283), we may determine the scalar functicas 33(') and a4(°) to be

2 2t

a,(t) = -9e7t + ste”t + 9e7%t + 4te” (358)

a‘(t) - -Ze-t + te-t + Ze-Zt + te-zt (359)
Then

1t a (0)ay () = .02 (360)

0

1t e (t)a, (e) = 0026 (361)

0

* &, (t)a, (t) = .0003. (362)
Using these values gives the approximate value

.010 O
< (363)
AKz.i. 0 .002

Thus 9y = .01 1s the largest eigenvalue of AK » and the eigenvector
z.1.

corresponding to this eigenvalue 1is BM = [1 0] T, Hence the optimal

initial condition vector for identifying the parameters in the system

(351) - (352) is one selected in the direction BM.

2. OPTIMIZATION OF THE ZERO-STATE SENSITIVITIES

For simplicity, in this section we will assume a single control input
(that i{s, r = 1) and that the weighting matrix Q is time-invariant. The
extensions to the more general cases are easily made. Then for the sys-
tem ch' the zero-state input design cost functional (see Section II.8.c)
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takes the form
3 i R E R (364)
r @ 13 by o (i) Qv me (Cin
T8, 1.3-1 0

Using the results of Section III and Appendix A, the zero-state sensitiv-

jties may be computed from the relations

vf’l tsu) = BD) fE g0t - s)uls)ds ‘ (365)
L] L] o

#here £(°) is a 2n-dimensioned vector function defined in Appendix A and
which has elements of the form tjeqkt for real eigenvalue of A, 93 and
B(i), i=1, 2, ...p, are m x 2n dimensioned matrices computed as des-
cribed in Appendix A. Using this relationship (365) and interchanging
the order of integration, we may put the cost functional (364) into the

form

t
@ =rf ey @ (366)

2.8, Z.8.

where we define the positive self-adjoint operator

P t T
@u= I ks -en® a®

e (/° £(s ~ D)u(z)dr)ds (367)
0

Assume that the control must satisfy the "energy" comstraint!

1gee footnote of Section I1I.8.c, page 51.
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£f lu) )l < 1. (368)

0
Then this problem is a complete parallel to that of Section VII.1l. There-
fore, the optimal input function which maximizes the cost functional (366)
subject to the constraint (368) is the eigenfhnction of the positive, self-
adjoint, compact operator, AK , which corresponds to its maximal eigen-
value. o

This conclusion is a restatement of the results of Mehra (Ref 112),
and the motivation for our approach, both in this section and the previous
one, is based entirely upon that work. However, the contribution which we
wish to make here is to use the new matrix-operator representation of the
parameter sensitivities, equation (365), to form an efficient computational
algorithm for computing the optimal input function. This algorithm is

developed in the next subsection, and then it is compared with previously

employed Riccati equation techniques in the Subsection VII.2.b.

a. Rayleigh-Ritz-Galerkin Algorithm for Computing the Maximal
Eigenfunction

Mehra (Ref 112) suggests solving the optimal input-maximal eigenfunc-
tion problem by means of a Rayleigh-Ritz-Galerkin method of solution;
however, he does not presernt the computational details for this method.
The Rayleigh-Ritz-Galerkin method is the solution technigue which we elect
to adopt using the matrix-operator form of the parameter semnsitivities,
equation (365). This method has the desirable property that one may
select "basis" functions which are easy to implement once the optimal
control function is determined as linear combinations basis functions.
For example, either sinusoids or Walsh functions (Ref 126) might be

utilized as the orthogonal set of basis functions and a linear combination
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of either of these might be easy to implement in a physical control sys-
tem. On the other hand, if the optimal input, u*, is determined as an
arbitrary element of LZ(O,tf;R), it may be difficult to implement without
approximation. Also in using the Rayleigh-Ritz-Galerkin method, the sys-
tem designer has the freedom to select any level of complexity (and
accuracy) of the optimal input by choosing the number of basis functions
over which he optimizes.

The details of the Rayleigh-~Ritz-Galerkin method of solution are now
stated. Notice that in using this technique, we utilize equation (364)
rather than (366), as this form proves to be less sensitive to numerical
errors, has slightly less total number of integrals, and may easily be
extended to gime-varying linear systems by computation of the parameter

sensitivities from the "sensitivity system".

Rayleigh-Ritz—~Galerkin Algorithm
1) Given the nominal A matrix, compute its distinct eigenvalues
9 k=1, 2, ...p, and the multiplicities, o, of each eigenvalue in
the characteristic polynomial of A.
2) Using the eigenvalues of A, form and invert the 2n x 2n
Vandermonde matrix A as defined in Appendix A. Using the elements of
A" and the quantities A, B, C, Ay, Byy, and Cyy 121, 2, .oup,

compute the p m x 2n dimensioned matrices!

B - (B,  cam) oy oo @) 17 (369)

INote that this equation holds because r = 1; if r were greater than one
(more than one control input) then a similar equation would apply to each
column vector of B. 148
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3) For the set of weighting constants ki 5 i, =1, 2, ...p, and
’
the m x m positive-definite symmetric matrix Q, compute the 2n x 2n

dimensioned matrix

P T
5 1) ()
QH L ki,j H QH (370)
i1,3=1

4) For an arbitrary input function, u € Lz(o,tf;R), form a subroutine

to compute the 2n-dimensioned vector functions of t ¢ [O,tf]

o(t;u) = S/C £(t - s)u(s)ds 371)
0

where the 2n-dimensioned vector functions are defined in Appendix A and
q,.t

have elements of the form tje -

3 Okt 1 Okt

t'e c08mkt and t-e sinmk; for complex eigenvalues 9y = O I_mk/:i).

for real eigenvalue 9 of A (or

It 1s important to point out that the indicated 2n convolution integrals
of equation (371) may be computed from 2n quadratures through the rela-
tions such as
q, (t-s) qt -qs qt -qs

(t - s)e k = te k e B e K se k (372)
Comment

At this point we are prepared to begin the actual Rayleigh-Ritz-
Galerkin optimization. It is assumed that a set of n, basis functions,
uj(t), i=1, 2, ooy, t e [O,tf] are prespecified. For computational

simplicity it is assumed that these basis functions are selected

mutually orthogonal; that is, it is assumed that

1w ) e
u, (t)u (t)dt = (373)
g 4 n 0 J4k
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5) Compute and store the n, xn real symmetric matrix, V., with

th th

k- row and £ column element given by

t
I f

.. . (1)
% (v (t5u ) /Qv =" (t5u,) ]dt

P
VQ(K,l) Pt S
1,3=1

t
! flocesu /oo cesu)lae (374)

6) Compute the maximal eigenvalue, Gy and its associated®normalized

eigenvector BM for the positive symmetric matrix Vq. Letting BM(j) denote

the jth component of BM’ the optimizing control input is then given by

nb
u'(t) = I BM(J)uj(t) (375)

=1

and the optimal value of the cost functional, JK (u), equation (364), is

Z.8.
given by
W
T @H =z gAYA.9) (376)
Z.8.
i=1
Stop. E

Comment 1 Computational Aspects

The preceding algorithm is well suited to digital computer applica-
tions. In fact, for a single control input (r » 1), the total number of
integrals to be computed are, at most:

1) 2nnb to compute the n, vector functions

O(t;uj)a j=1, 2, ---nbo te lootfl

e
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(see equation (371)). Note that depending upon the basis functioms, u,,
these integrals may in fact be computed analytically.

11) nb(nb + 1)/2 to compute the symmetric matrix vq (see equation
(374)).
The remaining computations of the algorithm are straight-forward matrix
operations. Also, in the example of Section VII.2.c we will see that the
special properties of Walsh basis functions allows us to reduce the number
of required integrals in computing the functions ¢(-;uj), j= 1‘ 2, seeBys
from Znnb to 2n. If oy is large then this is a significant reduction in

the amount of computation and storage.

Comment 2 Change of WVeighting Constants, k:lj

In Section II.8.a we discussed the fact that it is often important
to iteratively adjust the weighting constants, kij’ so that the optimal
input maximizing the weighted trace cost functional, sz...(u), equation
(364), more closely approximates minimization of either the determinant
or trace of the inverse information matrix. (See, e.g., Mehra (Ref 114)
(Ref 115) or Gupta and Hall (Ref 108).) Therefore, it is important to

point out that once the 2nnb integrals

J‘t f(t - s)uj (s)ds 377)
0

i=1, 2, cooly te [O,tfl

of equation (371) have been computed, they are not affected by adjustment
of the k“ constants. Therefore, after the first iteration the amount of

computations are significantly reduced for subsequent adjustments of the

weighting constants, kij'




AFAL-TR-76-118

Comment 3 Time-Varying Matrices

The algorithm is easily modified if.either the output C matrix or
input B matrix are time-varying; the computations are essentially the
same except that the indicated integrals must include the time-varying
elements of these matrices. However, if the system plant matrix, A, 1is
time-varying then the convenient matrix-operator form (equation (365)) no
longer applies. In this case Theorem 1 could be utilized, but it is prob-

ably computationally more efficient to compute the parameter sensitivities,

v(i) (t

gy ;“j)’ required in equation (374), from the sensitivity-system

differential equations (89) - (91). indeed, this approach could also
be applied for the time-invariant system SLC’ and controllability properties
of the sensitivity system (see Section IV.3) could then be used to reduce

the required number of differential equationms.

b. Solution via the Maximum Principle

As previously stated the theory of the input design problem discussed
in Section VII.2 was developed by Mehra (Ref 112). In that paper he
reformulates the operator/eigenfunction problem into a differential equa-
tion two-point boundary value problem through the use of the "sensitivity
system" and the Maximum Principle (Ref 22). For the control constraint
[u,u] < 1, he shows that the optimal input satisfies the two-point

boundary value problem

d X(t;u) FK -aﬁ‘r X(t;u)
dt |5 ce) T ® A A(t)
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X(03u) = 0 {ftf) =0 (379)

u*(t) = -a*BLA(t) (380)

where A(-) is an n(p + 1) dimensioned Lagrange multiplier function; qQ is

given by
-Q Qo 0.T
0 Q
Q=] . : (381)

- m(p+1)am(p+1)

and X(t;u), K; B, and C are defined by expressions (92) - (94) of Section
III. The smallest value of constant o for a nontrivial solution to (378) -
(380) gives the optimal control input computed from equation (380). Mehra
also shows that the optimum a* is inversely proportional to the optimum
value of the cost functional (trace of the weighted local information
matrix).

Mehra (Ref 112) suggests solving this two-point boundary value prob-
lem by means or a Riccati equation method, and in Reference 120 Stepner
and Mehra present a detailed computational algorithm using this technique.
However, like the Riccati equation method used in Section VI.3 for minimum
sensitivity control design, this approach requires the precise integration
of the nonlinear matrix Riccati equation of order n(p + 1) x n(p + 1).
This, coupled with other computational problems, makes the Stepner and
Mehra algorithm somewhat less than satisfactory, (Ref 108). In more recent
work Gupta and Hall (Ref 108) have used an eigenvalue-eigenvector decomposi-

tion of the Hamiltonian matrix, H, to solve the two-point boundary value
153
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problem, and thereby they avoid integration of the nonlinear Riccati
differential equations. This technique, coupled with taking the controll-
ability properties into account to eliminate redundant calculations in the
sensitivity system (see Section IV.3) makes the total computational require-
ments of the Gupta and Hall algorithm roughly equivalent to those of the
algorithm of Section VII.2.a. However, there are some other important
differences between the two methods of solution.

The first difference is that instead of specifying the time interval
of observation [0, tf] (as is the case in our algorithm), the two-point
boundary value method specifies the constant value a*. In essence, this
specifies the optimal value of the cost functional (trace of the weighted
information matrix), and the resulting optimal control and time interval
of observation [0, t;] are computed from this constant value o*, If this
is not the desired time interval, then a* must be adjusted and the problem
recomputed. In certain cases it may be convenient to specify the level of
the "information" required from an experiment and the time interval of
obgservation fixed according to this level; however, in other cases the
time interval of observation must be fixed and one must use whatever informa-
tion 1s obtainable on this interval. In the first instance the algorithm
of Gupta and Hall might be the more direct while in the latter case the
algorithm of Section VI.2.a might be more straight-forward to utilize;
however, in either case the dependent parameter may be adjusted by suit-
able iteration of the independent parameter.

The second difference is simply one of implementing an exact optimal
control function as obtained by the Gupta and Hall method versus the
implementation of control law which is formed by the optimal linear

combination of preselected basis functions. It was mentioned previously
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that the basis functions used in the Rayleigh-Ritz-Galerkin algorithm
might be selected with some physical constraints or other considerations
in mind, and this might facilitate the actual implementation of the con-
trol law. Again this difference is not of major importance because the
"exact" optimal control may be approximated on the one hand, and any level
of "optimality" may be achieved, on the other hand, simply by increasing
the number of basis functions over which the optimization is performed.
The final major difference is in the amount of computations required

to recompute a new optimal input once the weighting constants k e

14 ar
adjusted. In the Gupta and Hall algorithm the amount of computation
remains the same for each new set of weightings, whereas the amount of
computation via the algoritim of Section VII.2.a is significantly reduced
once the first optimal value has been obtained (see Comment 2 of Section
VII.2.a). Since it is often quite important to make such adjustments to
the weighting constants (see, e.g., Mehra (Ref 114) (Ref 115) or Gupta
and Hall (Ref 108)), this is a significant difference between the two

algorithms.

c. Example
To illustrate the use of the Rayleigh-Ritz-Galerkin algorithm of

Section VII.2.a, we once again consider the second order time-invariant

system:
x| [o 1 7 x, (£5u) 0
. - + u(t) (382)
xz(t;u) b1 bz xz(t;u) b3
L - L izl
e | 107 [xyesw
- t e [0, 8] (383)
yz(t;u) 0 1 xz(t;u)
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with zero initial conditions. Also, in order to illustrate one time the
computational features associated with complex eigenvalues, we will here
assume that the nominal parameter vector is bo - [-3 =2 1]T. There~

fore, the nominal eigenvalues are

q =0 +0/~1 =-1+/2 /-1 (384)
qz-o-u/-'-]_.--l-/z_v’-_l' (385)

Then the generalized Vandermonde matrix, A, described in Appendix A

becomes
@ =]
l o 02 - uz 03 - 3cw2
0 w 20w 3czw - m3
A=
0 1 2 3(0? - )
0 0 2w 6ow

- (386)
0o 1 -2 -3

Lo 0 2/2 -6/2

and the vector function f(t) is

fl(t)T et cos 2t
fz(t) e.t sin /2 ¢
f(t) = - 2 (387)
£4(t) te -~ cos V2 t
£,(t) te t sin /2 ¢t
Bk SO A :
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Since there is a single control input, the matrices H(i). i=1, 2, 3,

are computed from the expression
(1) _ 2 3 -1
B = [(CB) gy (CAB) () (CAB) 4y (CAB) )] A (388)

Then assuming that Q is the identity matrix and that

i gle 4
s { an
1 0 143

The matrix QB becomes

3
1,§=1
3 T
S n(i) H(1) (390)
i=1

This matrix was computed on the digital computer to be

1 0 0 0

0 .8125 .1326 O
(391)

0 .1326 .1875 .1768

o o .1768 .25
&

With these preliminaries we are ready to begin the Rayleigh-Ritz-
Galerkin optimization. To do so requires that we select a set of orthogonal
basis functions, {uj(-) € L2(0.8;R); =1, 2, ...nb}, over which we desire
to optimize. For example, sinusoids could be selected and such functions

have found frequent application in parameter identification problems.

However, it will be particularly illuminating to select an orthogonal set

of Walsh functions (Ref 126)) as our optimization set. We will see that
157
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the special properties of the Walsh functions enables us to reduce the
overall computational requirements substantially. Indeed, the method by
which we reduce the computations is useful in its own right, and should
contribute to already existing methods for utilizing Walsh functions in
system simulation and control function design. (See, e.g., Chen and
Hsiao (Ref 123) (Ref 124) and Corrington (Ref 125) where Walsh functions
are used to approximate the solution of differential equation representa-
tions of dynamic systems.)

Therefore, we choose as our basis set the first sixteen Walsh func-
tions. These may be defined by the following 16 x 16 dimensioned

symmetric matrix:

L)
[
[
ol

Ve e e S R o 1
I 2% 3 1 1 3 1SS el =) siiw) <l =
Rk Ve WSS T DX i WA (PR SR i WS G WL
O W G e R R DR i o R
1 1 =1 =1 -1 <1 1 1 1 -1 <1 =1 -1 1 1
R W G P SR L REE e B L G (R SR ) T |
T et ALY f ol ef ApeE % ulosl st 01 4
SRR G T (R G R SO o SR O e R e G e |
L Eagd b R RN RS T I e
1 -1 21 1 o ol 1 41 T A1 3 -
1 -1 -1 -1 R T R 1 1 51 =1 1
g =t =) i Foe) B3 el 1 e S101 &1 3 % =i
1 -1 1 -1 -1 ORIDE LI R T [P (T I (R S
2 =1 3.1 #1 3 =1 % o1 1 -1 1 1 <1 1<
B W B S S T T R G PR TR N VR |
FRCEC W N T O N L SRR S e

-
(392)
Each of the column vectors of this 16 x 16 matrix corresponds to one

Walsh function, and each row corresponds to the function values on the

corresponding one-half second interval of time.
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wj(Z) aioe wj(IG)]T be the jth column vector of

V;, and define the 16 x 1 dimensioned vectors

Now let u3 = [wj(l)

(-s)ds)" .

o, = (/12 £ (-8)ds s =a)ds ? £
i MR 28 X

15/2
k=1, 2, 3, 4 (393)

where fk(')’ k=1, 2, 3, 4, are the four elements of £(*), equation (387).
Notice that each of the integrals in ek may be computed analytically. In
order to compute the optimal solution via the Rayleigh-Ritz-Galerkin

method of solution, we must compute the vector functions of t € [0, 8]

oCt;u,) = SC £Ct - 8)u, (s)ds (394)
gtTe 3

where “j(') € Lz(O. 8 R), J=1, 2, ...16, are the sixteen Walsh basis

functions. Using the relation
i g
cos/2t sin/2 t (] 0 e® cos’2 s

sin/2 t ~cos2 t 0 0 e® sin/2 s
f(t-8)

tcos/2t tein/2t cos/2t sin/2 t -8 e® cos/? s

tsin/?7t -t cos/2t sin/2 t -cos/Z t -s e® sin/2 s

s o L =

¥Y(t)f(-s) (395)

we may then compute the vector functions ¢(-ju,) € Lz(o.'B; R‘),

3

=1, 2, ...16, from the relations
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o(tsu,) = i+ £(t ~ 8)u,(s)ds
3 0 h |
-y(e) St £(-s)u, (s)ds (396)
0

waere the kth element of this integral 1s computed from

L
£ fk(-s)u (s)ds = I w, (2 + l)ek(l. +1) +vw (L +1) £ fk(-s)ds
0 i o i i L/2

(397)

Therefore, to compute all n, = 16 vector functions ¢(t;uj), t ¢ (0, 8],

it now only requires the 2n = 4 integrals over the interval [0, 8]:

#* £, (-8)ds t e [L/2, L/2 + 1/2]
L/2
LB 3,018

k=1, 2, 3, 4 (398)

That is, because we are dealing with Walsh functions (functions which are
either +1 or -1 over finite intervals), and because we are able to write
£(t - 8) 1in the factored form Y(t)f(-s), the integrals in computing the
functions o(t;uj), j=1, 2, ...16, are independent of specific “j‘
Furthermore, the integrals (398) may all be computed analytically. Thus
while there would normally be 2nnb = 64 integrals required to compute the
16 individual vector functions Q(t;uj). there are now only 2n = 4 integrals’
required and these may all be computed analytically. This is quite a sub-
stantial reduction in computation and storage which is 4ssociated with the
use of Walsh functions in the Rayleigh-Ritz-Galerkin optimal input design
algorithm. We also comment that this same operator technique could be

applied to other simulation and control design problems which are associated
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with the use of Walsh functions with linear time-invariant systems.

(See, e.g., Chen and Hsiao (Ref 123) (Ref 124) and Corrington (Ref 125)).
To complete the Ravleigh-Ritz-Galerkin.algorithm requires that we

compute the symmetric 16 x 16 dimensioned matrix, Vq, equation (374), with

th

1™ row and jth column element

8
vQ(i.j) = g [o(t;ui)/QH¢(t;uj)ldt (399)

This requires nb(nb + 1)/2 = 136 integrals which cannot be reduced. Once
computing this matrix, we then determine its maximal eigenvalue and
corresponding normalized eigenvector, BH € R16. The optimal input is
then computed to be

16
o) = & g@u ), e l0, 8 (400)

=1

and will have norm equal to 8. This problem was mechanized on the
CDC 6600 digital computer, and the resulting computed optimal input is

shown in Figure 1.

3. SUMMARY

In this section we have applied the algebraic representation of the
sensitivity operators for the system SLc (Theorem 4 and Appendix A) to
the determination of the optimal initial condition vector and control
input function for improved parameter identification. The methods used
are based upon the discussion of Section II.S for the Hilbert space sys-
tem SH' Like the previous Section VI, the results are an excellent

illustration of the computational utility of the operator representation
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and approach. For optimal control input design the Rayleigh-Ritz-Galerkin
method is the selected computational procedure, and this is shown to be a
viable alternative to previously employed Riccati equation techniques.
Finally, if Walsh functions are selected as the set of basis functions for
4 the Rayleigh-Ritz-Galerkin optimization, then considerable computational
reductions are derived. These reduction methods should also have general
application to the use of Walsh functions for system simulation and control

design in linear time-invariant systems.




[ < HELS

AFAL-TR-76-118
Section VIII

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK
In this section we review the major objectives and contributions of

this research, and then discuss some potential areas of extension and

future research.

| 1. OBJECTIVES AND CONTRIBUTIONS

There were two major objectives in this research and presentation.
The first was to demonstrate the useful way in which an operator approach
could help understand and investigate system properties of parameter

sensitivity in linear dynamic systems. The sensitivities themselves are

linear operators (Fréchet derivatives) and so this is a natural way in
which to treat them. In Section II the tools of functional analysis
were applied to investigate many of thei: system properties for a general

Hilbert space linear system. Of particular prominence in this analysis

was the adjoint operator of the sensitivity operators; the adjoint
operator played a major role in every aspect of sensitivity theory which
| was discussed in Section II. Section II, then, laid the ground work for
this operator approach to treating the parameter sensitivities and estab-
lished important methodology for application to linear ordinary differen-
tial equation systems in Sections III - VII.

The second objective was to use this operator approach in the

development of practical computational algorithms for application to
simulation, analysis, identification, and control of linear ordinary
differential equation systems. It is felt that the new matrix-operator

description of the parameter sensitivities in linear time-invariant sys-
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tems (Theorems 2 - 4) developed in Section III contributed to realizing
this secona objective. This form provided extensions to existing struc-
tural information concerning the sensitivity system (Guardabassi, et al
(Ref 51) (Ref 52)) and to obtain a new and completely general method for
computing the eigenvalue sensitivities (Section III.2).

Further geometrical properties of this matrix-operator form of the
parameter sensitivities were then studied in Section IV. Some previously
known results concerning insensitivity (Theorems 5 and 6) and sensitivity
controllability (Theorem 7) were derived in a more direct fashion by
using this form. Discussing the relationship between insensitivity and
identifiability, a systematic way of designing identification experiments
which would reduce the number of "influencing" parameter components was
discussed (Corollary 5.1). A new result concerning necessary and
sufficient conditions for zero terminal sensitivity was derived (Corollary
7.1), and the relationship between insensitivity and sensitivity controll-
ability was discussed. Next, new local and structural conditions for
zero-input and zero-state identifiability were obtainea (Theorems 8 and
9). These conditions were completely general, were only dependent upon
the structure of the system matrices, and required no integrals to compute.
Finally, the relationship between the control input and steady-state
identifiability was discussed and given new insight from the matrix-
operator form of the parameter sensitivities.

The computational applications of this matrix-operator form were
next considered. In Section V this form was used in a quasilinearization
algorithm for parameter identification in linear time-invariant systems.
Each iteration of the algorithm required that the new eigenvalues of the

A matrix be computed and, for state dimension n and control dimension r,
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theype were but 2nr quadrature integrals required to compute the complete
set of parameter sensitivities. Based upon equation (157) of Section III
it was shown how the eigenvalue sensitivities could be obtained directly
from the matrix description of the output parameter sensitivities and thes
eigenvalue sensitivities could then be used to help iteratively compute
the new eigenvalues. Also, based upon methods presented in Section IV.3,
linear dependency of row vectors in the matrices of the operater descrip-
tion could be used to reduce the number of integrals required to compute
the local information matrix and local gradient function for each iteration
of the quasilinearization algorithm., These reduction techniques were
similar in approach to methods applied by Gupta and Mehra (Ref 84) for
reducing computations in differential equation descriptions of the
parameter sensitivity system.

Next the matrix-operator form of the parameter sensitivities in
linear time-invariant ordinary differential equation systems was used
as the basis of a gradient method for computing the optimal open-loop
minimum sensitivity control law (Section VI). This gradient method of
solution was developed in Section II.5. By using the matrix-operator
description of the parameter sensitivities obtained in Section III, the
computational requirements of this method proved to be quite efficient
and the computations increased only linearly with state dimension p.
This was in contrast to previously employed Riccati equation methods of
solution (e.g., Kahne (Ref 70)) in which, even with the use of minimal
order sensitivity models, the amount of computation increases with the
square of n and square of r.

The final application of this matrix operstor form was in the

computation of the optimal initial condition vector and optimal control
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input to improve parameter identification from the zero-input and zero-
state responses, respectively. The theory of the methods was based

upon results of Mehra (Ref 112) for optimal input design from the zero-
state response, and so the main contribution here was to show the computa-
tional utility of the matrix-operator form of the parameter sensitivities.
For the optimal input design problem, a Rayleigh-Ritz-Galerkin optimiza-
tion method was selected. Using the matrix-operator form of the parameter
sensitivities, this optimization yielded a highly efficient and. computa-
tionally straight-forward method of solution. Additionally, if Walsh
functions were selected as the set of basis functions for the Rayleigh-
Ritz-Galerkin procedure, then the computational requirements could be
reduced still further. An example illustrating the method was presented,
and the technique for reducing the computations with the use of Walsh
functions should have further applications to system simulation and
control design in linear time-invariant ordinary differential equation
systems.

In all of these applications to linear time-invariant ordinary dif-
ferential equation systems in Sections III -VII, the operator methodology
was used as an underlying foundation. It is hoped that the methods and
results presented here will be computationally useful and will spur new
resear.i into this type of an approach for treating parameter sensitiv-
ity in linear dynamic systems. Just a very few of the unanswered ques-
tions and potential avenues for further research are touched upon in

the following supsection.

2. EXTENSIONS AND FUTURE RESEARCH
Although the sensitivity-related system properties developed in
Section II were done for a very general Hilbert space linear system,

they were applied only to linear ordinary differential equation systems
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in Sections III - VII. Therefore, it would be quite desirable to apply
these methods to linear hereditary and partial differential equation
systems as well. (See., for example, (Ref 1).) Of particular signifi-
cance in this regard might be the_éeuign of a control input to optimize
parameter identification capability in such systems; the Rayleigh-Ritz-
Galerkin algorithm could readily be applied as a solution method for
such systems. The gradient approach to minimum sensitivity control
design might also be easily applied, particularly for the minimum "termi~
nal" sensitivity problem. Indeed, in Section VI.1l the point was made
that the minimum terminal sensitivity control problem inherently involves
no convolution integrals. This is particularly important for such
general systems because, like the case for a time-varying plant matrix,
such convolutions probably cannot be transformed into the far more
desirable quadrature integral form as was done with the time-invariant
system ch‘
The next major area of extension would be to consider minimum sensitiv-

ity control design when the control law is closed-loop or possesses feed-

e g ——— g ———

back. This subject has been treated extensively through "sensitivity
system" differential equation approaches (see, for example, (Ref 69)

(Ref 72) or (Ref 75)), and the operator philosophy and the algebraic
representation of the sensitivity operators for linear time-invariant
systems may yield new approaches and attractive computational techniques.
We have carefully restricted our attention to "open-loop" control design,
as the closed-loop questions are rich in both theoretic4l and practical
considerations and to delve into them in any depth would have expanded
our scope considerably.

A topic area similar to closed-loop minimum sensitivity control
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design in that it is abundant with theoretical considerations is the
theory of dual control first introduced by Fel'dbaum (Ref 12). Under-
lying the concept of dual control is the fact that the control law which
optimizes some particular control objective may not be optimal with
respect to estimation of the system characteristics, parameters, or
states. Indeed, this fact is emphasized by the conflicting goals of
having the sensitivity operators '"large" for improved identification

but "small" for minimum trajectory perturbations. Since the knowledge
of the system parameters and state inherently affects the ability to
achieve the control objective, a truly optimal control must be one which
takes both the control and estimation objectives into account. The
optimal formulation of dual control results in an infinite dimensional
problem and even approximate methods of solution present severe computa-
tion burdens. (See, e.g., (Ref 30).) However, parameter sensitivity is
inherently related to both the identification of parameters and the
design of control laws which are "forgiving" to uncertainty in the exact
knowledge of the parameter values. Therefore, techniques designed around
the use of the matrix-operator representation of the parameter sensitiv-
ities in linear time-invariant systems might yield adaptive control laws
having approximately optimal dual control characteristics and which are
also easy to compute.

Another area which appears to be quite fruitful for further research
is a frequency domain description of the parameter sensitivities and an
analysis of their system properties in the frequency domain. The oper-
ator time-domain approach for treating the sensitivities is closely akin
to a frequency domain method, and the algebraic representation which we

have obtained for the parameter sensitivities of the time-invariant sys-
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tem ch (Section III) can also be derived in the frequency domain through
partial fraction expansion methods. Frequency domain methods have been
very effective for the analysis and design of feedback control laws for
minimum sensitivity (e.g., Horowitz (Ref 14) and Horowitz and Shaked
(Ref 15)). Additionally, Mehra (Ref 114) (Ref 116) has used frequency
domain methods quite beneficially in the design of control laws to opti-
mize parameter identification capability. Further work relating the time-
domain and frequency-domain approaches would be most beneficia%.

The final, and perhaps most important area of extension would be
to use the methods and computational techniques of Sections III - VII to
solve practical problems in simulation, identification, and control -
particularly in large scale systems where the state dimension n and param-
eter dimension p are large. Really, it is here in such large scale sys-
tems where the algorithms and results obtained should have their most
beneficial payoff. In Section IV the properties of insensitivity and
identifiability were related, and techniques were suggested for the
design of parameter identification experiments which might reduce the
number of "influencing" parameters in each experiment. Such methods
would be particularly significant in large dimension systems and practical
examples demonstrating the concepts are most important in establishing
the theory. Also, in each of the operator algorithms for identification
and control suggested in Sections V -~ VII, a large number of differential
equations by conventional techniques were replaced by a comparatively
small number of quadrature integrals. Since obtaining such practical
algorithms is a major aim of this research, it is hoped that these
results will indeed prove to be useful tools for practical applications

in systems theory.
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Appendix A

COMPUTATIONAL DETAILS FOR OBTAINING PARAMETER
SENSITIVITIES FOR THE SYSTEM Sw

Let the real n x n matrix A have the characteristic polynomial |

(]
A(Q) = 1 (q - qk)nk (401)

k=1

where the eigenvalues 9y 9 o9, are real and the 9 " % + ukv’;T
and q, = 0, - "k',-_l for k=t+1, t+ 3, ...p-1. Define the generalized
Vandermonde matrix, A, with row entries

J
d—j- 1 q q2 ces q2n-1] ~ (402)
dq Y
f“ k= 1. 2’ eseTy j - o’ 1. 0002%‘1 and dOub]O row entries
] o
M(ijll a o ... ¥ o)
dq =9
(403)

Inag C5[1 q & Yy

fct k = T 4 1. T+ 3| 0009-1, J = °’ 1. see znk-lo Next defhc th‘ 2n [ :

dimensioned vector functions

ale) = [a,(t)  a,() ... .h(:)]" (404)
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£(t) = (405)

Then we may determine the scalar functions, ‘j(')' of Theorem 4 from the

equation
at) = AL £(e) (406)

However, in computational applications we will genernl%? not use
Theorem 4 and the scalar functions aj(-). Rather we will use a "component"
representation of the parameter sensitivities, as such & form allows us to
directly convert convolution integrals into quadrature integrals. To
this end, define the 2n(p + 1) m-dimens{onal vectors

2n
rQay = ¢ @l tanty,w (407)
=1
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2n ‘
j-1 -1 ‘
I (cA )“)A 4,k (408)

3=1

and the 2n(p + 1) m x r-dimensioned matrices

2n

8@ = ¢ @ty (409) |
31 '
7 ARG G S |
M@ = 1 @ 1 ae (410) i
3=1 |

183, 2, Jespy Em1l 2, soi2n

Note that the partial derivatives may be computed recursively on the

digital computer by realizing that

wltt A (411)

f iy
gy = AW 4y * Ay,

Next we define the matrices

s W) Dy Py, (412,
a® = mPay Py ... a® ) (413)
i = 0, 1. seeP
(0] 1O |
| e
| 7 e 0 414
ﬁ 2 :
(») (p)
! P m(p+1)x2n B | ncp+1)x2ar
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the augmented vector

T T T
Y = [yheesw) v ) . v® eu)) (415)

and the special product

- -
fl(t)u(t)

f2 (t)u(t)

£(t)*u(t) = (416)

£, (t)u(t)
2n J20r1

Then in terms of these quantities we may rewrite Theorem 4 in the compact

matrix-operator form:

Theorem A.1l

For the system sm
Y(t;u) = FE(e) + H SC £(t - 8)*u(s)ds (417)
& T

This form is entirely equivalent to Theorem 4 but is most convenient
for digital computer computation because the elements of the vector func-
tion f(t) are the individual modal functioms, tjcht (or cosines and sines
for those eigenvalues which are complex conjugate conjugate -pairs). This
fact allows us to directly transform the convolutions of equation (417)
into quadratures through use nf relationships such as

q, (t-8) q,t -q.8 q.t -q.8
(t-l)!k _“k.k_.k“k (418)
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This is an extremely important fa:t and we cannot overstate the computa-
tional significance of this simple relationship.

From Theorem A.l we see that the entire sensitivity system may be
generated with at most 2nr quadrature integrals. This number of integrals
may be reduced to a minimum by elimination of column vectors of H which

are identically zero. In fact, we are assured that the column "matrix"

.
FQ ®

H(k) = (419)

n(P) (k)

b ot

n(p+l)xr

will be identically zero if k corresponds to a multiplicity of one of the
eigenvalues which is greater than that eigenvalue s multiplicity in the

minimal polynomial of * 4

|

m
~
-
~

(420)

A 0 o ¢ w B
@) JneH)mpr1)

s Sacion iy & sutaiiniing

In fact, letting ¥ be the order of the minimal polynomial of -A', we are

SRR

assured at least 2n - y of these columns, H(k), will be identically zero
(or approximately so when considering numerical errors on the digital
computer). Therefore, the sensitivity Y(t;u) may be computed with only

ur quadratures instead of 2nr quadratures.
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Appendix B

SECOND ORDER SENSITIVITY OPERATORS FOR THE LINEAR

TIME-INVARIANT SYSTEM Snc

In a parallel, but somewhat abbreviated, manner to Section III we will

develop operator expressions for the second-order sensitivities

S gy - 2yCeib)

3b13bj

b-bo

y(i,J)(t) (421)

'ging the second order Taylor's series approximation, it is seen that such
second order sensitivity operators provide a more accurate prediction of

the output perturbation caused by small parameter variations:

p P P
y(e:b) = y(tsb) + I v ®)8b, +1/2 I I v“'“(:)zmim,.1
ge1 fe1 jel

+ cz(t) (422)

where ) is of third order in Ab. Also, in Section II.6.c the second

order sensitivity operators were required for the Newton-Raphson param-

eter identification algorithm.
If it is assumed that the second partial derivatives of A, B, and

C exist and are contlnuous at bo. then the second order sensitivities

may be obtained from the "sensitivity system" differential equations
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E(i'j)(t) - AE(i'j)(t) + A (j)(g) + A (1)(t) + A x(t)

" " (1,9)

+ 3(1.3)u(t) (423)

;(1’3)(0) -d (424)

1,3

(1,1) oooulisg) @) (1)
v (t) = C¢ (t) + C(i)v (t) + C(J)v (t) + C(i.j)x(f)
’ ' (425)

The solution of these equations together with the solution of the n(p + .)
differential equations to obtain x and E(i)(t), i=1, 2, ...p, requires
a total of at most n(p + 1 + p !) coupled linear differential equations.
“Minimal-order" models of the second oraer sensitivities have been ob-
tained (Bingulac (Ref 34) Varshney (Ref 40)), but by and large there has
been relatively little investigation of the second order sensitivities.
Here we show that results parallel to Section III can be used to compute
the first and second order sensitivities with at most 3nr quadrature
integrals.

As in Section III the first step in obtaining an operator expression
for the second order sensitivities is the determination of the second
partial derivatives of the state transition matrix, 0(1.1)(t7 = e?i,j)

The following theorem is the counterpart to Theorem 1:

Theorem B.1l

! Assume A(i 1 exists and is continuous at bo. Then for each
! ’
te [O,tf]. the second partial derivative 0(1 j)(t) is given by the
»

integral equation

177
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Y
®u, e " é ot - 8){Agy)0.y,(8) + Aegy®y (@ *+ “(1,5)'('”"
(426)

or as the unique solution to the matrix differential equation

05,5y (8) = A0y 4y (6] + A0 00y (8) + A0y (8) + Acy 4y8(E)

(427)
0(1’1)(0) =0 (428)
Proof
Let 0(1)(:) be the unique solution of
0(1)(t) = Ao(i)(t) + A(1)0(t) 0(1)(0) =0 (429)
and ¢ (t) denote the unique solution of
(1)A

]

0(1)1\ (t) = A w(i)A (t) + A“)A °A (t) O“)A @ =20 (430)

a
1 Iy ; 3 1

where A, = A(bo +e Abj). etc. Equation (430) may be written as

Aj 3
owA (t) = ”(1)4 (t) + AmO(t) + (AAj - A)om‘5 (t)
b ]
+ “(i)“Aj (t) - o(t)) + (A“)A - A(””Aj () (431)
3
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which has unique solution

t
©) = 15 00 = Mgy 80) + 4y - W0, ©

®
@)
4 j

3

+ A“)(OAJ(.) - ¢(s)) + “(‘)A - ‘(ﬂ”Aj('”d' (432)
h |

Using the above expression and the definition of the second partial

derivative

'ahf”"aﬂu

)(t) z 1im I (433)

®
1,3
|aby] = 0 3

expression (426) of Theorem B.l.readily follows (see proof of Theorem 1).
Equation (427) then follows as a straight-forward application of Leibnitz
rule.
Q.E.D.
Like the essential role which the augmented matrix A, plays in the

i
definition of the first order partial derivatives, e?:), the augmented

‘% matrix
. 4 »
A 0 0 0
A A 0 0
R i (434)
A(j) 0 A 0
2 oy . %o

plays an essential role in the definition of the second partial derivatives,

At
®1,3)
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Theorem B.2

K 0 0 0 1
A, .t eAt eAt 0 0
e 3 oD (435)
.At 0 ‘At 0
1)
dAt eAt eAt eAt
¥ 1,3} @) (1)
Proof
Using the relation
A, .t A, t A, 0
[ 8 ™% S 1,3 % il
T Ai.je e I (436)

and Theorem 2 and Theorem B.1l, it is straight-forward to obtain equation
(435) of Theorem B.2. (See proof of Theorem 2.)
Q.E.D,

Like Theorem 2, Theorem B.2 can be used to give fundamental algebraic
relations for the second partial derivatives, e?i,j)' However, before
stating such representations, the following general result concerning
the minimal polynomial of Ai will be useful. The notation used in Sec-

3
tion III concerning the minimal polynomial of A will be maintained here.

Lemma B.1l

Suppose that the y-order minimal polynomial of A is

P u
b= 1 @-g) " 37)
k=1

. .Then the minimal polynomial of Ai1 is
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']

- (-] “k
] by @ = 1 Q- (438)
3 k=1
and has order ;11 where
"i;u53“ (439)

and the multiplicities have similar bounds

%i%éah i

Proof

To simplify the notation let D = adj [qI - A]: let A be the

characteristic polynomial of A; and let the unknown matrix components

of adj [qI - ;ij] be designated

ad -
By g .y Ry
. B, b, b, b
siflal = Al =] F CE 3R (441)
ij c c (3 c
§ Mg Ny
i Gy Gy W
ki =
Then it is true that (Ref 21)
. 4
[qI - Aij] adj [qI - Aij] = AT (442)

which can be used to form a set of 16 linear equations in terms of the
16 unknown matrix elements of adj[qI - ;111. Then using, the relation
that

[qI - A]D = AL (443)
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it is straight-forward, but algebraically somewhat tedious, to show that:

'2"3"4'1’3"’4"4'0 (444)

8 =b,=c,=d, =2t (445)

b, = d, = AZDA(i)D (446)

e, =d, = AznAmn (447)

a = AZDA(i.j)D + ADA()DA (D + DA, DA 4D (448)
Now suppose that g(q) is the polynomial such that

g8(q) = A(q)/v(q). (449)

Then g(q) is the largest common factor of every term of D (Ref 21), and
so the polynomial A(q)ga(q) is a common factor of every term of

adj[qI - A The minimal polynomial of Aij is given by

1J]'

vy @ = 84 @7y @ (450)

where gij(q) is the largest common factor of every term of adj[qI - Rij]‘
From the discussion above, A(q)ga(q) is a factor of 313 (q), and so the
results of the Lemma follow.

QsE.D.

Notice that like Lemma 6, explicit expressions for the minimal poly-
nomial of Rij could be provided by examining common factors of equations
(443) - (447). Also, if structural constraints on the minimal polynomial
of A are assumed in a neighborhood of bo € RP, then stronger conclusions
concerning the relationship between the minimal polynomial of Ai.j and
the eigenvalue sensitivities can be made. However, these stronger resul:s
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are notationally cumbersome and have little apparent practical value,
and so they are not included here.

Lemma B.l is now used in combination with Theorem B.2 to give the

basic algebraic description of second partial derivatives of c‘t:

Corollary B.2.1

3n
Mez A ie) (451)
k=1
3n
At k-1
0(1) = 7 (¢ )(1)‘k(t) (452)
k=1
3n
At k-1 -
e(i,j) kZ (A )(1.1)‘k(t) (453)
=1

for all 1, j = 1, 2, ...p where the 3n scalar functions ak(°) are uniquely

determined from the 3n’ equations

3 %t o 3n-1 R
t'e == 101 q...q y o &, (t) (454)
dqj q qk 1
k=1, 2, «cop :
1=0,1, ...3n-1 ian(c)
s -
Proof
It 1s straight-forward to show that
A¥ 0 0 g
k k
(A™) A (1] 0
“L o x (433)
(Ak) ) 0 i A k ok
L9 M By By &
183




AFAL-TR-76-118

Then using Theorem B.2 it is easy to see where a polynomial representation
of order 4n could be obtained. However, using Lemma B.1l, this polynomial
representation may be reduced to 3n.

Q.E.D.

This is the central result from which convenient algebraic descrip-

tion of the second order sensitivity operators can be obtained.

Theorem B.3
For the linear time-~invariant system sx.c it is true that:
3n
; 0oy, ®=1 @i e 436)
4 k=1
3n e t
E ¥, (50 = T (CA'B) /¥ & (¢ - suls)ds (457)
k=1 0
n
1) v @ -5 @ @i (® (458)
k=1
v® (esu) = - cA¥ 1By .. 1% & (¢ - s)u(s)d 459
Z.8. " (1) R u(s)ds (459)
kel 0
(1.3) 3n k‘l ol
111) 50 (t) = £ (CA d)(i.j) ak(t) (460)
k=1
v“'”(t* %a k-1 t A
Moy ;ju) = I (CA B)(i,j) 6 nk(t - g)u(s)ds (461)
for all 1, § = 1, 2, ...p, and where the 3n scalar functions are deter-
mined from equation (454).
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Proof

The proof is a straight-forward application of Corollary B.2.1 to |
the definition of the first and second order sensitivity operators.

Q.E.D. :

The computational considerations of Theorem B.3 are very similar to :
those of Theorem 4. Notice that the technique of Appendix A can be used |
to convert the indicated convolution integrals into a total of at most
3nr quadrature integrals. Also recall from Appendix A that the number |
of quadrature integrals will automatically be reduced to the minimum
number as unnecessary "modes" will be multiplied by zero "component" ‘
matrices in the component representation of ct:. 1) and so these
unnecessary modes can be eliminated. Finally, we comment that tech- [
niques similar to those discussed in Section IV.3 may be applied here

to yield a minimal dimension differential equation description of the

i second order sensitivity system. Such an approach would be an alterna-
- tive to minimal-order sensitivity models of Bingulac (Ref 34) and
Varshney (Ref 40), and would yield the absolute minimum number of

differential equations.

Wedsto

e SRR

|
|
|
E
|
|
i
0
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