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PREFACE

3 The effort described in this report is a continuation in kind of that
put forth under Air Force Contract F19628-70-C-0120. That effort was
summarized in a Final Report dated 31 January 1973, titled Numerical and

Data Analysis Techniques Applied to Scientific Research, AFCRL-TB-73-0433.
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DABOS Modigication

Initiator: Mrs. I. Hussey
Problem No: 3018-3 Project No: 0001

The purpose of this work was to combine into one program two earlier
versions of DABOS, which is an orbit determination and ephemeris computation
program. From a mathematical point of view, the difference between the two
i earlier versions was that one used the Jacchia 1964 atmospheric density model ]
' and the other used the Standard Atmosphere Supplements 1966. These two density ;
models are rather similar and it was possible to intertwine the formulae in a
very efficient manner, allowing the user to select which model was to be used
for a particular run.

it e i i

; Shont-Texm Power Spectra of Troposcatien Signals

Initiator: Mr. U. Lammers
Problem No: 3C. 3 Project No: 8682

e R

This problem required the analysis of sets of equally spaced data (X(I)).
A program was written which transformed the original input data (X(I)) as
follows:

b Y(1), = 10%(1)/20 :
| §

The resulting Y(I)'s were then Fourier analyzed using a Fast Fourier
Transform and the results graphically displayed for the Initiator. In
addition, the program was written with the option of analyzing various seg-
ments of the data and producing graphic displays of each segment.
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Analysis of Electromagnetic Waves and Turbulence

Initiator: Dr, R. Fante
Problem No: 3026-7 Project No: 5635

e

This problem required the generation of four computer programs, each of
which studied the behavior of electromagnetic waves in the ionosphere. The
documentation titles for these four programs are:

i

1. Calculation of the Frequency Spectrum of a Laser Beam Propagating |
in Turbulence with a Von Karman's Spectrum,

e eyt wade - et

2. The Frequency Spectrum of a Plane Wave Propagating in Turbulence
with Constant Winds.

3. The Frequency Spectrum of a Plane Wave Propagating in Turbulence I
with Random Winds, and

4. The Frequency Spectrum of a Flane Wave Propagating in Turbulence
with Random Winds varying along the Propagation Path.

The first program approximated §,(R) where:

5,@) = = £ dRo cos(@Ro) [FU(Ro)]

where:
FU(RO) = 25 * (su;*xxo*m.O)’/(4w*),c't e§ £ &Xo(X,Ro,6)
‘ with:
= 6(X,R0,8) = X exp{ PX? w(no.x,a)}
k| ; W(Ro,X,0) = £ dy F(y)
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81z2 218728

¢ . R 1/2
Z = [Ro® + 2Xy Ro cosf + X?y?]

SIG = .78 * XKO? * CN2 * exp(3 fn (BLO))

P = - (S*SIGX/(4M) + (—IEae s —S ) « T2
2 4XK0O%*S  (47F?)

+ SIG * S * T/(2nF)) (XKO*BLO)?

The integral Y(Ro,X,0) was evaluated by finding all the discontinuities in

' F(y) and using a Simpson's rule type, numerical integration technique, for
each of the continuous line segments in F(y) for o <y < T. The integrals
over 0 and X used the technique described in reference 1. llere the X
integration was performed from ¢ to XMAX, where XMAX is an input parameter,
just as S, XKO, BLO and CN2.

The integration over Ro was performed from o to NARo, where ARo and N
are input parameters, where :

LT 3 NMAX
Qj = mim for J-O,l, ceey -—2-'

A New Adaptive Simpson Integration Routine, Neil Grossbard, Space Data

Analysis Laboratory, Boston College, Chestnut Hill, Mass. 02167; AFCRL-70-0504,
Scientific Report No. 1, September 1970.




L e &W?““-. s
f 3
e BN ik oo g oA

Ine So(uj)'s were calculated by using a NMAX long Fast Fourier ‘I'ransform to

simulate a trapczoidal rule. (lere NMAX = 21 (% integer) and 21'1 < 2N < NMAX.

The second program approximated S1 () where:

s @ = % 4” du cos(fu) [eT(¢(u)-1)]

where

11/3
5(m) =1+ 1.5n% - 1.86 0% - 0.254 " ifo0<n<.7

S B TR IR

(n)O.B

=.994\/§n‘/3e’”31+§-- NG N T SR
N gin?2 218713

As in the first program a set of {j values was obtained by using a Fast
Fourier Transform on % [eT(¢u)°1)].

The third program approximated S, (5)

-T
S, () = 8l ,gn du cos(Qu) j:o dg e'[';z/2 [eTq>(§u) &1

T VZTT

Hlere the § integration was performed from 0 to TMAX, an input parameter. The
u integration was again performed using a Fast Fourier Transform to get a set
of answers at points Qj as in the first problem.

The fourth program approximated S,(R) where:

/

/ =gl yo
w du J_(xu'’?) exp [-u(10 6*6 X?R)]

PO . 5
S () = dx cos =~ T
S_’( ) = e 4; X cos(§X) exp 5 jo' (1+u)“/°
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where Jo is the Bessel Function of zero order. Here the u ingegration was

2
performed from zero to TMAX, where TMAX = minimum (UMAX, le. if X#0). Here
X

UMAX and T2 are input parameters. T2 is generally set to be the argument of
the 2th zero of the Bessel Function. The value of % is also read in and the
numerical integration starts with 42 + 1 equally spaced values so that no
oscillation of the Bessel Function will be missed. The X integration is again
performed using a Fast Fourier Transform to get a set of answers at points

j as in the first problem.

These programs lead to very fast, fairly accurate answers (at least two
significant figures). The Initiator indicated that these results were helpful
in his analysis of electro-magnetic signals in the ionosphere.

waodu Presentation of Auvival Angle of
Ionoaphem&c Wave§orms

Initiator: Dr, W. Pfister
Problem No: 3028-6 Project No: 7663

A technique for measuring drift motion and turbulence characteristics of
various layers of the ionosphere consists of receiving reflected signals from
the ionosphere at various pulse frequencies in the MHz ranges of closely
spaced antennas and digitally recording the complex amplitudes of the echo
pulses in the time domain. This is accomplished by use of a Complex Amplitude

Multifrequency Scanner in conjunction with a digital ionosonde.

The time domain information can subsequently be spectral analyzed for
power content, and the power per unit area can be presented graphically to
represent characteristic ionospheric fluctuations.

The purpose of this problem is to reconstruct spectral information and
to present a map-like display of reflected waveform axial projections by use
of a digicoder printing device.

DO < R SR e TR Tl g A T
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A digicoder display consists of a continuous printout containing 4 lines
of data., Each line consists of 256 characters, allowing a 2-dimensional map |
of (256 x N) characters to be printed. A unique numerical character set,
specific to the digicoder, allows 16 values of perceptive weight to be ob-

s

served, thereby, adding the dimension of color density (white to black) to

~

Tty e ey

the numeric content of each printed character. Thus, the points in a peak

of 2-dimensional data are presented as a darker area relative to background

information, when observing the total map of, say, (128 x 256) points, yet, i
the specific value of each individual point is retained on any given scale
of 16-point resolution. i

Input to the computer program consists of Doppler Frequency-related

{ Power, Coherence, and Phase spectra previously calculated from the Fourier
Transform of the time domain raw data,

Basically, the phase relations are translated into angles in space, as
functions of the recording hardware operating frequencies and the geometry
of the receiving antenna orientations.

The locations of the reflecting regions are calculated from the cross-
spectral phases between pairs of antennas, at those Doppler shifts characterized

TR T

by peaks in the Power spectrum. The cross-spectral phase provides an estimate
of the direction of the reflecting region. A band of width A¢ of the reflect-

ing region is related to the given spectral coherency (COH) according to:

A = + w(1-+/COH)

The intersection of 2 bands from 2 antenna pairs provides a parallelogram

area:

A i
A—-J_;az(l\/CWl)(I\/(TG}:)

where A = the transmitter operating wavelength
and o = the length of the antenna pair baseline
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The power density per unit area is defined as W/A, where W in this program
is the average power from 3 receiving antennas at a particular Doppler
frequency.

From the geometry of the 3 receiving antennas, three such parallelograms
can be constructed, and from each parallelogram, trapezoidal areas can be
projected onto X and Y axes oriented in the N-S and E-W directions. The sum
of the heights of 3 projected trapezoidal areas on a given axis is proportional
to the spectral density, W, and is indicative of the strength of the power
content of the given region. The angular location of the reflecting region
(see mathematics below) is given from the range over which each summed
trapezoidal area extends on each projection axis. From the sums of the
trapezoidal projections, then, two intensity modulated lines can be displayed
on the digicoder, each as a function of Doppler frequency and arrival angle.

It should be noted that the program contains test criteria to avoid

- phase ambiguities in the reflected signals. It was desired that the range

of the display correspond to the principal range of phase between 2 antennas,
-m to T radians. The test criteria are dependent upon the antenna pair chosen
for observation and the projection axis.

Each digicoder output map is specific to a given time of recording, which
is contained in a preface (identification) area preceding each power density
display. In the digicoder printout, 128 points of Doppler frequency are
presented along the vertical (length) of the display and 256 points (128 per
N-S and E-W projection axis) along the horizontal (width). In addition, |
markers are presented every 16th character along the horizontal in the preface '
area to assist in notation of scale. In the same manner, preface identifica-
tion characters are presented every 16th line along the left side of the
vertical to denote the scale of the Doppler frequency.

Overall, for one subcase of time, four such (128 x 256) point maps are ]
generated, each corresponding to a given height range gate on the recorder.




The program reads input from a packed magnetic tape generated at a prior
stage of production processing. This program then generates digicoder
information on packed magnetic tape, to be used at a later stage of data
processing as digicoder input.

Mathematics

1 Location of reflecting areas on X- and Y-axis:

Antenna Pair X Axis Location Y Axis Location

12 523 - ¢12 - ¢23 + 2Q/100

23 , 31 ¢31 + 2Q/100

3t ;12 ¢31 + 2Q/100

where $,2, 9,, and ¢,, represent cross-spectral phase from antenna pairs
12, 23, 2.

and Q = Doppler frequency under investigation.

2  Maximum Spectral Intensity projected onto trapezoidal areas along the
E-W (Y) axis.

Area Reference No. Intensitz

. V3
: A¢12+ RZS 4 IM12 7 MZS'

Q- 3
200+ JZ§:A

23 2




Area Reference No. ' ‘Intens itx

1 V3
Q » 7
Mal ? ZMM o l——f A¢;1 s 2A¢xz|

oIS

where Q = %%ﬁ

W = average power at a particular Doppler frequency

A = operating wavelength (meters)

a = antenna baseline (meters)

Maximum Spectral Intensity projected onto trapezoidal areas along the

'N-S (X) axis.

Area Reference No. ! Intensity
2 Q:* 1 A
sz % A¢za # |A¢1z :; A¢za|
1
1.3 Q [ .-
2A¢31
9




Doppler Shift/lonospheric Reglection

3 Initiator: Dr. W. Pfister
4 Problem No: 3028-7 Project No: 8658

This program is part of a data processing project called DAASM (Doppler
Angle of Arrival Spectral Measurement), for detailed study of the ionosphere.
This particular effort involves the estimation of Doppler shift and the
combining of three Fourier transforms. Signals generated in this case by a
moving aircraft are reflected by the ionosphere and measured on the ground.
The results are recorded on magnetic tape as a time series of digitized
.complex numbers. The computer program reads the magnetic tape, isolates
samples about one minute long, calculates three overlapping Fourier transforms
from each sample, and attempts to determine the Doppler shift of the strongest
frequencies by looking for a consistent phase shift among the three transforms.
Then the three transforms are combined, taking into account the Doppler shift.
The results are written on two magnetic tapes, one in a format suitable for
the Digicoder plotter, the other for input to other programs.

The raw data input tape is pre-positioned at the desired starting case.
An input card is read specifying the number of consecutive cases to be pro-

cessed. Each case occupies seven physical records on the input tape.

Each case is then handled as follows:

The first record is skipped. Prefaces are extracted from the remaining
records and printed. Record numbers are checked. If normal sequence is
broken, the program starts again from the current record. Data are packed
into the array BUF. Then, taking one frequency and one antenna at a time,

( we obtain three Fourier transforms from the three interlaced complex data b
sets. (The three interlaced sets were all sampled the same way; sets 2 and 3 i
are just B = 6/25 of a step later than sets 1 and 2 respectively, where one

? _step is the time between consecutive samples in one set, .25 seconds).

|

Each Fourier transform contains 256 complex points g, , m = 1,2,...,256, b
each point representing the summed contributions of a whole family of aliased
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frequencies (m-1 + 256 n)/64 Hertz, n = 0, t1, +2,,,. The problem is to
pick the n corrcsponding to the "best" (usually strongest) frequency in the
original sampled signal. For this purpose we assume that a single value

of n accounts for all the aliasing in the neighborhood of the best frequency.
We divide the aliased frequency range into four equal segments and analyze
each segment to see which best fits the model.

A displacement of At seconds in the time series sample causes phase
shifts proportional to frequency in the Fourier transform., If we assume as
above, that entry g, in the transform is all due to one frequency, namely
(m-1 + 256 n)/64 Hertz (n is a fixed but unknown integer), then a At displace-
ment will cause a phase difference of At * (m-1 + 256 n)/64 cycles. And, if
the same n applies to a sequence of gp's, the phase differences between two
interlaced transforms will be a linear function of m.

Let {Emk- m-1,2,...256} be the transform of the kth interlaced time
series, k=1,2,3. The following expression uniquely defines Pmk *

8o = |lgpll exp (2mip 1),0 < py < 1.
We have At = ,258 seconds, so, if our model were correct we would have:

®,. - P..) = (B[(m-1)/256+n])
kel TR ) mod1

or

def
Cak = Ppe1 * Pk - B-1)/256) g = (BN o)

In other words, the cpy should all be about the same and will tell us
what n is.

In each segment of the transform, (m = 1-64 or 65-128 or 129-192 or
193-256), we calculate the weighted average A of unit vectors with argument
2Tcpx on the complex plane.' The weighting is with respect to power,

11




P oxp (2nie. N/ £ I ilg )
k-1,z..”““g‘~‘“1“ 4p = k-1g.||""g'-“*1||

’

- (ksf,z : | enk 8n,ke1 P [-ZﬂiB(l.-l)/2561|I)/(kgf'z ' Hew 8n, kel

We also calculate in each segment an estimate of the scatter of the Cmk » ;

1,2 |
o= (1-aa") 7
We pick the segment with the smallest scatter. The corresponding value of A
yields our best estimate of n; we pick an n minimizing:
[|AZ[|Al] - exp (2miBn)|| .
Since B = 6/25 and n is an integer, it suffices to comsider n = 1,2,...,25.
With n and the best segment well determined, the three interlaced
transforms may be combined in a meaningful way. Let m, be the final subscript
of the best segment. my = 64, 128, 192 or 256. The new, combined transform
will cover the frequency range:
3
(mb - 128 + 256 n)/64 Hert:z i
to
(m, + 127 + 256 n)/64 Hertz. 51

We arbitrarily assume that the phase shift is linear over that entire range
and that the g 's are all aliased from that range. The phase of each g, and
gn3 is modified to align with gg5, and the three are averaged. The results 3
are plotted and the digicoder with the (mp - 1 + 256 n)/64 Hertz line is in
the middle (i.e., the 128th point).

12




This method breaks down for cases in which the original signal contains
two good frequencies which cannot without aliasing be included in a single
256 point range. Only one of the peaks will be smoothed correctly.

NOTE: The Fourier transform subroutine used by this program delivers ;
the usual backward transform. The write-up above, however, is 3
from the point of view of the usual forward transform, which

| gives a larger phase to a signal sampled later. Thus, the
4 ; program's G arrays are the conjugates of the g's in the write-
; up, the original signal also having been conjugated. g

In other words, given a time series fl""’f256’ subroutine FORER

calculates 81s-++»8p5¢ With

it ™ E f5+1 exp (imj 2m/256)
J=

of

S

* *
Enel = ), En
J=

exp (-imj 2m/256) .

b o

The computer program outputs a heading including the input value of the
maximum number of cases to process.

( { Then, for records 2-7 of each case, it prints the prefaces. For each of

oy .

, the two frequencies, first antenna only, these are followed by the segment
( | number of the best segment, the best value of n in that segment, the point 3

number in the original Fourier transform which will appear on the extreme right
when re-arranged for the Digécoder plot, and the number of Hz, module 100,

at the center of the Digicoder plot. Then come the Bn averages and associated
o estimates for each of the fbﬁr segments.
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Each case occupies seven physical records. Each physical record is
343-344 words, comprising 3430 to 3440 6-bit bytes. Before the input can be
interpreted, it must be aligned properly. Let k be the minimum integer such
that 250 < k < 323 and such that the kth byte of the record is the beginning
of a 288 x 11 array of bytes with all zeros in the first 18 rows. If there
is no such k, set k to 271. Slide the entire record so that the kth byte will ‘
be in the 2715t position. If k < 271 fill the initial part of the buffer with :
zeros. Then the following format applies.

Consider the bytes to be arranged in standard Fortran order in an array
dimensioned (3, 2, 3, 4, 48). (The last few positions of this array will be
unoccupied). Then, for £ =1, 2, 3, the (i, j, k, 2, m)-th byte of the
array is the ith byte of the mth sample from the %th interlaced set from the
kth antenna at the jth carrier frequency. The three bytes (i = 1,2,3) in
each sample are:

byte 1: |Re(2)|

byte 2: 1 in the 3Td bit (10 octal) if and only if
E Re(z) > 0, plus 1 in the 4th pijt (4 octal)
if and only if Im(z) > 0.

byte 3: |Im(z)]| .

4
For £ = 4, m > 3, there is no data.
E . For £ = 4, m = 1,2,3, there are 18 bytes available for each of three
| "prefaces". :

Preface 1 - bytes 1-3 Code digits 6, 7, 3
bytes 4-6 Three decimal digits of day of year

bytes 7-12  Six decimal digits of hours, minutes, !
and seconds. ;

bytes 13-14 Code

e eden G
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Preface 1 - bytes 15-16 Two digits containing double the
(Cont.) record number within this case.

bytes 17-18 Code
Preface 2 - bytes 1-3 Three decimal digits giving frequency
setting of 15t antenna, 15t frequency.
bytes 4-6 Same as 1-3 but for 2nd frequency.
bytes 7-12  Same as 1-6 but for 2nd antenna.

bytes 13-18 Same as 1-6 but for 3Td antenna.

Preface 3 - bytes 1-18 Same as Preface 2, except 3 digits

give range setting instead of frequency
setting.

There is an end-of-file after the last record of the last case.

If the first byte of a frequency is 0, 1, 6, 7, 10, 11, 12, or 13, the
corresponding raw sample must be conjugated to compensate for a hardware
difference in the way the data were collected.

Output Digicoder Tape Format

The output tape is formatted for the Digicoder, a machine which produces
shaded plots.

The program writes two files, one for each frequency. Each file has a
header record, repeated 3 times, then one data record for each case on the

input tape. The header record contains preface information in various standard
arrangements.

Each record has 245 words, or 2450 6-bit bytes. The last two bytes are
zero. The other 2448 are a 408 x 6 array, plotted in six lines. The first
24 bytes of each line are a preface, the same for all six lines, as follows.

15
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Bytes 1-12:

Byte 13:

Byte 14:

Bytes 15-16:
Bytes 17-18:

Bytes 19-21:
Bytes 22-24:

The remaining 384 bytes in each line contain 256 data values packed into
three bytes for each pair of values.

Byte 1:

Byte 2:

Byte 3:

Line 1 contains the real parts of the combined antenna 1 transform;
line 2, the imaginary parts. Lines 3-6 contain the transforms from antennas 3
2 and 3, with the same Doppler shift. ‘

Combined Aircraft Data Transform Tape Format

Same as corresponding bytes of

Preface 1 of record 2 of this case

from the input tape.

Decimal integer 13

Decimal integer 15

Hz modulo 100 of center line, point 129.
From input tape.

Frequency bytes of first antenna, from
Preface 2 of record 2 of input tape,

bytes 1-3 or 4-6.

Range bytes of first antenna, from
Preface 3 of input tape.

IV]_I

50 (octal) if and only if v; > 0 plus 4 ?
(octal) if and only if v; > 0.

lvz(

This tape contains one file consisting of two logical records for each
case processed. There is one record for each carrier frequency. Each record
‘' contains 1591 words as follows.




LPX array of 18 digits from Preface 1
of the first record used in this case.
Integers.

FREQ array of 18 digits from Preface 2
as above. Integers.

RNG array of 18 digits from Preface 3
as above. Integers.

Hz the number of Hertz at the 129th
member of the following transtorm. Given
module 100; -6 appears as 94,

56-1591 Complex array H in normal Fortran order,
dimensioned 256 x 3. H(I,J) = the combined
transform entry for the Jth antenna at Hz
+ (I-129)/64 Hertz.

Sky Polarization

Initiator: F. Volz
Problem No: 3034-5 Project No: 7621

A series of four programs were written to aid in the reduction of
observations >f neutral points of sky polarization in the clear sky during
twilight. The Initiator has data gathered over a three year period, showing
evidence of changes in relation to variations of stratospheric aerosol
content.

The main portion of the effort was directed towards presentation of
the data in a variety of printed, punched, and plotted formats. Certain
corrections and interpolations were performed. In addition, it was necessary
to write a subroutine calculating solar elevation as a function of date,

Universal Time, and station latitude and longitude.




Damping Functions In Ingrared Absorpiion

Initiator: Dr. Bernard Bendow
Problem No: 3055-3 Project No: 3326

This problem is one of a set of problems directed toward the prediction
of the infrared absorption intensity and line shape as a function of frequency
for various models of ionic crystals and semiconductors. In particular, this
problem continues the work performed under Problem No. 3055-1 for Air Force
contract F19628-70-C-0120.

This problem required the calculation of

E LAl Tl
I(w) = : ==l p. (W,R,R',R)
g = aD
3

—_ n . 3
R,R!, D=0

where, Z refers to a sum over all the latice sites of a unitary cubic
- —

R,R‘,R3

crystal, and where distances are measured from one of the latice sites.

Here:

Preg @) = L dw? P (-01) p (wh)

p, (W) c“(.lt:,m) + czz(Rl_ﬁ‘.ﬁ’a,w) - ¢, (KR 0) - cn(ﬁ.k3,m)




, ' 2 e 2 =2, -..._1. i 2.1/2
A=a ([RD® + a,(IR)?; B = RR'; E = (4a a -D%)

where

g > — -
{ e = AR > l . s
1 R=Rel; R' =R'4T; @ = 5(C (0,0) +C, (0,0) -C (0,0) .g

2. e 2 il 2
+ Ro*; a = =(C (0,0) +C, (0,0) - C (0,0)) +Ro

| where, the vector ?1‘ is an input parameter. 3

An explanation of the general theory leading to equations of this form
~  was also presented in the final report for the above mentioned contract.

For this problem two forms of Cjj were tried. These two forms are

f
| (w-w Y)

i sin [Ko C ﬁ

| G D s
l C;;(Rw) = Z-ny Zm ™

| Y Ko|R|

|

| €.€ W wa) 1

[ +1] foryw <w<Yy
VR R w(1-u )® s 1

Cij (ﬁ,w) = e&” ci‘j (ﬁ,w) for -y <w < wa

Cij (ﬁl ,w) = 0, otherwise

where

ey

ks — .

m m m +m m +m
e = 2 H e S - 1 R = 1 2 R = .—‘—-—2-
1 m +m 2 m +m 1 2 m
1 1 2 2 1

and v, n, mg, Ko, w ml, mz, B are input parameters

i
g




and

€.€ G =
Cii(R"”) = l—nd’/2 ms'l 1x sm(koﬂﬁl) ('3('( S 1) for 0 <w<y
! Y KR 200 Ko|R| B
> Bw
€ R,w) = Ci;(R,w) ™ for -y <w <0
-
Cij(R,w) = 0, otherwise .
where
K=1- 1-% for 0 <w <1 K= 1-DELTA if w=l;
mz l'll:l m +m2 ml"'llﬂ2
S 4Ynm 5 T Yawm R; " m : R2 " ;
2 1 2 2 1

" A . :
Ko = (6ﬂvnc) and v, n, mg, B8, n., DELTA, m,m

are input parameters.

To perform the calculations, a program was written which did the algebraic
manipulation needed to derive the derivatives of F. This program generated
card output for insertion in other programs, which do the actual calculations.
Derivatives up to the twelfth order were obtained. This order of differentia-

tion was found to be appropriate in evaluating Ion).

The computer program used the trapezoidal rule to approximate the
integration needed to generate p, from pj using the recursion relationship
pns1(w) = S dw'pp(w-w') pj(w') and the knowledge that pp(t) = 0 for |t| > ny.

The program calculated and plotted results of I(w) versus w for all the values
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of the sum, such that, |R|? + |R![? < IR (an input parameter) and IRZI <M,

where M equals 1,2,3,..., ISRRT (another input parameter).

Analysis of the Temperature Gradient in the Atmosphere

Initiator: Mr. A. Cole ‘
Problem No: 3065-1 Project No: 8624 |

The purpose of this problem is to provide an objective method for
obtaining the horizontal temperature gradient between the North Pole and the
equator from observed data at levels between 30 and 90 km. In essence, this
method smooths the observed temperatures and provides interpolated values
for 15° intervals of latitude. The interpolated temperatures were to be used
with appropriate atmospheric pressures to construct U.S. Reference Atmospheres,
representing mean monthly conditions at 15, 30, 45, 60, 75 and 90° N. latitude.

For a given month, the Initiator provided 13 sets of data, Each set

Ak o

representing measurements of temperature versus latitude for a fixed altitude.
The method of least squares is used to determine the best fit for each data i
set by polynomials of order 1 thru 6. The results of this processing were
presented in a tabulated form that facilitates comparison between the order
of polynomials fitted to a particular data set. This comparison is essential

to the Initiator to ascertain his preference that for a specific altitude
and month, a certain polynomial best describes the dependence of temperature
on latitude. This effort utilized the least squares program of the Analysis T

and Simulation Branch Computer Library.

bl il i
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Exponential Curve Fitting fon UV Absonption Data ‘1

Initiator: Mr. L. Weeks Z
Problem No: 3069 Project No: 6690 :

The purpose of this problem is to analyze ultra-violet absorption data
obtained in the 110 to 220 km. region from rocket-borne photometers. The
results of this analysis are in turn utilized in the determination of the

molecular oxygen number density of this region.

RISy O Spaney

b b PR o

The expected behavior of ultra-violet absorption data (I(h;) is that it
undergoes an exponential variation with respect to altitude. This behavior

requires the determination of the 'best' values for the parameters I,, hy, H,
and H,, such that, the measured data I(h;) can be represented by the expression i

I(hy) = I exp - {.5 exp - (h;-h )/H + .5 exp - (hi-ho)/Hz}

where, hj is the independent variable for altitude and 'best' values are in

accordance with the criteria of least squares, i.e., minimize

¢ =X (I(hy) - Expression)? :
i ; :

Using standard iteration techniques, convergence was not obtained for the ,
curve fitting in the prescribed form. Also, convergence was not obtained when
a logarithmic transformation was applied to both the data and the prescribed

( form of the curve fit.

ﬁ ( The 'best' estimates for the parameters were successfully obtained when
utilizing the Levenberg Method and simultaneously constraining the parameters
Hl and Hz. A full description of this method and its application are presented
in the Final Report, AFCRL-TR-73-0433 mentioned in the introduction of this

.

report.

The results of this processing were presented at the AGU conference in

San Francisco in December, 1973.
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Tracking and Analysis of Variable Low Frequency Wavegform

Initiator: Capt. Mclain
Problem No: 3070-1 Project No: 4603

Program PROGS was written in support of a study of Variable Low Frequency
Waveform Tracking and Analysis. The purpose of this segment of the study is
to calculate and plot Ionospheric Reflection Coefficients and Group Heights
from VLF ionospheric waveform reflections recorded as a function of time.

Logically, the computer program proceeds in the following manner:

Sequences of three pulses, identified as groundwave, skywave and rotated
skywave, are unpacked from magnetic tape and Fast Fourier analyzed for frequency
content. Each Fast Fourier spectrum is fitted, according to a third order
polynomial, to a given frequency interval, and the resultant amplitude and
phase values of two predetermined frequencies are selected for use in computa-
tion of reflection heights and coefficients. An amount of averaging of fitted
Fourier data takes place in the time domain according to an averaging time
span specified by the user.

For each given time period to be analyzed, a series of 10 pairs of pen-
and-ink plots are generated, consisting of 8 pairs of families of phase heights
and coefficients, and 2 pairs of group heights and coefficients, all presented
as functions of time (in hours). All phase heights are plotted over 6 inches
on a linear scale of 0-120 km., and reflection coefficients are plotted over
4 inches on a logarithmic scale encompassing the two decades between 0.01 and
1.0. Each plot is identified according to day, year, time, frequency of
analysis, and rotated or normal skywave reference data,

The user has control over several parameters yithin the program via input
control cards. Included among these are the number of time series to be analyzed,
the spacing at which the Fast Fourier spectra are td be fitted, a 30 character
plot label array, the amount of time over which fitted Fourier data averaging
is to take place, the starting and ending times over which analysis is to take

place, and the two frequencies selected from the fitted Fourier spectra at

which analysis is to take place.

LR e S n S e ot




where

PHSGC

PHM

PHGC

T
.29970

Reflection

Mathematics

A quantity of interest is the phase difference between the ground and
skywaves (PHSG).

The mirror height is calculated from PHSG by the following formula:

HTMIR = 3 V[DG+(PHSGCN*T) * .29979]° - DG*

distance between transmitter and receiver (KM)
PHSG-PHM+PHGC (usec)

(skywave phase data - groundwave phase data) - (Skywave phase
calibration - groundwave phase calibration).

O0<PHSG<T
Phase shift of the skywave at the ionosphere (usec)

0 or T/2 for the normal component
T/4 or 3T/4 for the rotated component

Correction to groundwave phase at frequency F; due to the finite
conductivity of the ground (usec)

Number of cycles

O0<N<* (Upper boundary, N*, is established when HTMIR exceeds 120 KM).
A P

1000./F (T in usecs, F in kHz)
Velocity of Light (KM/usec)

Coefficients - The reflection coefficient is a ratio of the skywave

to groundwave signal strength with certain corrections.

RCOEF =

The reflection

coefficient is calculated from:

ARSG
*R* *
cos(Z“ F*AL*cos0

9.83571x10
1. - cos (

2n*F*AL

9.83571x10
2T*F*AL )

PR |
9.83571x10

) - cos(
2RAC*AMGC*
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- Skywave component signal amplitude
roundwave signal amplitude

= 10 (Skywave amplitude (dB) - Groundwave amp (dB)
20

if the signal amplitudes are given in decitels

= Recéiver antenna response amplitude correction

RAC
Rac =81 For the normal component
Cosf for the rotated component
AMGC

= Correction to the groundwave amplitude at frequency F due
to the finite conductivity of the ground

Antenna length (KFT)
Skywave angle of incidence

Tan™" Crare)
Velocity of Light in KFT/usec
F = Frequency (kHz)

9.83571x10%

Reflection heights and coefficients are calculated for both mirror phase
shifts of both skywave components at each frequency. These values are computed
for each data record interval and plotted vs. time of day.
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Symbolic Solution of a Linear Equation

Initiator: David Anthony
Problem No: 3074-1 Project No: 7600

This problem involved solving for the C in the following equations:

NVA

Jfl ary c(ZJ,O) = KI for I =1,..., NVA

where ap; and K; are polynomials in two variables F and Ml and the solution
is to be in terms of F and M1,

The method used to solve these equations is to reset the ary and KI to

new polynomials as follows:

Reset for I =1 then I =2 ...... I = NVA
is reset to a

3K II 35K - 31 21k
i#1
K#1
Kj is reset to aII Kj - ajI KI
i1
ajI is reset to 0,
413
The resulting values of C(2I,0) are then
C K =—Ki
(21,0) 1 ary

Here KI and a;; are polynomials in F and Ml.

These results were then expanded in powers of F so

K
h, K1
Ky NK-1 ° (—an)
Ce21,0) - 5‘" g S e woges R F)
Blag o BN A

where each term is a polynomial in M1,
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VDissociation Pressure of Silicon Conbite

Initiator: Dr., J. Smiltens
Problem No: 3077-01 Project No: 5620

b cdacaies. Toivy S

The equilibrium pressure for silicon, carbite, grafite and vapor has been
determined by two groups of investigators. In 1930 in Germany, Grieger
determined it in the range from 760 mm. mercury to 1 mm. mercury. Grievenson
and Alcook determined it at lower temperature in the micropressure range.
According to classical Physical Chemistry, the logarithm of vapor pressure
when plotted vs. reciprocal absolute temperature should give a straight line.
Both investigators have obtained the straight line. However, Grieger's straight
line has a larger negative slope than Grievenson's and Alcook's. A more
careful consideration and recent experimental evidence indicate that Grieger's
data should depart upward from the Grievenson's and Alcook's straight line.
The special condition the parabola should be tangent to the straight line.

A functional description of the required mathematical analysis and computer
programming is the following:

Calculate the least squares polynomial through the submitted Grievenson
and Alcook's data.

Calculate the least square parabola through the submitted Grieger's
data.

Solve a system of the submitted two equations with C and X, unknowns.
Find the real root of the resulting 5th degree polynomial which

satisfies the special condition: the parabola should be tangent to
the straight line.

The solution of the system of the two equations submitted with C and x,
unknowns and with n representing the summing of the data:

2 2 2 $~ o
2z [yn - A - an - C(xo-Zxoxn+xn)] (xo-Zxoxn+xn) 0

2 2 €
21z [yn “A-bx - C(xo-zxoxn+xn)] (2x,-2x ) =0




' !
|

is a Sth degree polynomial a_ + ax+ azxz + a,x" + .a“x“ + asx’ = 0 with }
a, = A6BS + A7B4 %
a = AMB4 - ASBS + AGB2 - A7B3 '4
a = A7BL - ASB2 - A4B3 + A3BS + A2B4
a, = A7B0 + MBIl + A3B2 - A2B3 - ALBS
a = A2Bl * A4BO + AOBS5 - AOB2 (,;
as = -A0OB2
3
where i
A0 = .-n
Al = 4Zx
A2=£yn-nA-Ban
A3 = 6Ix?
M = 2(AIx - Ix )y, + BZx:) : ; :P
AS = 4zx} il \
A6 = Ix"

A R 372 3
A7 = anyn Aan Ban
BO = A0

Bl = San

NOTE: AIBJ = (AI) (BJ) o




Rototional Constants of Diatomic MolLecules

Initiator: Dr. Daniel Katayama A
Problem No: 3080-1 Project No: 8627 i

From the analysis of the band spectra of diatomic molecules in the vacuum
ultra-violet, the rotational constants of these molecules can be determined
when they are in highly excited states. These constants are determined by

solving a system of simultaneous equations, using matrix and least squares
techniques. Also determined are the variance 62, and the variance-covariance
matrix (V) described below in the following equations:

= _|2
Xi Ji(Ji+1) A"

- 2
Xy = JYy(Iys1) - AV
where J', J", A' and A" are data input numbers.

The system of simultaneous equations:

a + al(x;) - az(xl')2 - as(xg) + a“(x'l')2

.y1 =
4
$
. 2 2 2 ]
= 0y - ' B " "
y2 a, + al(xz) az(sz aa(xz) + a“(xz)
> " '2
= S ] - " P .
Y =8, * al(xﬁ) az(xn) aa(xn) + a (x1) ]

Or, in matrix form:

|




i .
1 ') - ' =

1 (x}) - (x}) (x';)

i 2
L 1 1) - ' - "

(xz) (x)) .(xz)

‘ i ) ]
4 s (¢
i i /4
i; . . i
| \L (k) - (xp) - (xp) |
i
v i
| y = u

Then, in accordance with the method of least square, the required calcu-
B
lations are:
4
I £ T g .'i

i : B=(uu) wuvy
B t ;
£ u = u transpose ,
£ TR 1 t : ’
0% = —¢(y-uB) (y-uB)
i
V = 02 (utu) ;

E |

( ¥
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Construction of "Reasonable”, Analytic
Curves of Wind Vs, Height grom Discrete Data

Initiator: Rene V. Cormier
Problem No: 4026-6 Project No: 8624

: Research in support of Air Force paradrop operations, investigating

[ R the characteristics of vertically integrated boundary layer winds established

. | a need for the construction of '"reasonable" analytic functions (curves) of

; wind and temperature versus height from discrete data. These data were obtained
at non-regularly spaced levels ranging in height from the surface to 1500 ft.

; ? ~ and in number from 7 to 12 depending on the tower. The curves had to be capable

of integration and differentiation, and because of the number involved (over

30,000) had to be generated by computer without human intervention.

A series of computer programs were written in two (2) groups and were
documented under the name CORM for the SUYA Computer Center Library.

GROUP I GROUP II
‘ . CORMN 5. CORMP
bk 2. INTGRLN 6. INTGRLP
3. HERMITN 7. HERMITP
4. CORM4

Programs CORMN, CORMP perform a polynomial interpolation using HERMITE'S
interpolation formula, INTGRLN and INTGRLP integrate the area under the curve

between given limits of A and B.

! 7 Programs HERMITN and HERMITP construct the polynomial using the same
HERMITE'S interpolation formula, and CORM4 performs polynomial interpolation
using Lagrange's interp..ation formula. The difference between the programs

of GROUP I and GROUP II is that:

GROUPI: Constructs a polynomial going through the points having
positive or negative value,

i GROUP II: If the evaluation of the constructed polynomial becomes negative
(that is unreal for wind speed data) then the programs of

| GROUP II correct the negative values and such that the

! polynomial evaluation is always positive.
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To accomplish the tasks outlined, the following mathematical steps have
been taken:

A. Program CORMN and CORMP perform a polynomial interpolation by using
HERMITE'S interpolation formula. Suppose that values of f(x) and f'(x) are
known for XpseooXo. A polynomial H(x) can be determined by assuming that it
is expressible in the form:

m m
H(x) = kzl hk(x) f(xk) + kzl Ek(x) f'(xk) : : (1)

‘where hi(x) and E;(x) (i=1,2,...,m) are polynomials of maximum degree 2m-1:

2
hy (x) = [1-2L; (x;) (x-x) ] [L; (x)]

2
() = (x-x;) [L; ()]
where

(x-xl)....(x-xi_l)(x—xi+1)....(x-xn)

L; = (xi-xl)....Tki-xi_l)(xi-xi+i)...Ifki-i;)

For two points we have a polynomial of degree three:
HOO = [£0x)V; +£" (x) )W, (1L 2 (1) + [E(x )V, (x)+£7 (x,) Wy (x) 1L, () @

where

X=X, (X-xl)w"(xl) i

L, = V=1--———-|-——T-W-X-X
1 ) 1 w (x1 1 1

X=X; (x-xz)w"(xz)

L, = V.= 1 W, = x=x
2 X,~X; 2 w'ixzi & 2
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w(x) = (x-xl) (x-x,)

w'(x) = (x-x;1) + (x-x,)

w'(xl) = X)X,

w'(xz) Xy-Xy

w' =2

B. Programs INTGRLN and INRGRLP integrate the function (2) for any given
limits of A and B under the curve H(x). The following steps have been taken:

ANS = SE(x)V, (x) le(x)dx + SE(x,)V, (0L, (x)dx + S (x))W, (x) le,dx

+ SE (x,) W, (x) 1.22 (x)dx

where

Y1l = f(le SL1 = f'(xlj Pl = x| =X,

P2 = x,-x

Y2 = f(xz) SL2 = f'(xz) 27X,

o

are given.

By integraiing each term of the equation (3):we get
2 : ;
SE(x IV L2 x)dx = £V, (0L 2 dx = £(x))

%) xex, 2 2£(x,) 2
Sa -t (D ax s - — Sl (o)

£(x)) 2
dx + ——P-T-f(x-xz) dx :
1

SO VI O B o T T e L
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ety 1

s e £ s A S A B (8 g0 Sl e b

(x' 2)
SJE(x,)V,(x)L, ?(x)dx = £(x,)SV, (X)L, 2(x)dx = £(x,)Q - —p-—--)

x-X; 2 2f(x ) £(x,)
(-T,—z—) dx = - 3 JS(x- -x,) (x- xl) 2ix + —Tf(x-x 2 ax
2
2 - (X'Xz) f'(x )
ff'(xl)ﬂl(x)hl (x)dx = £'(x)f(x- x;) --2—— —T—ﬂx- 1) (x- xz) dx

2
(x-x,) f'(x,)

£1(x,) f(x~x,) ——p— dx = —fix-x,) (x-%)) 2dx

0 i

SE (x,)W, () le (x)dx

Since:

(x-b)>(x-2) - fix-b)* d(x-b)dx = 1x-0)*

W=

= S(x-a) (x-b)2dx =

4

(x-a) - X2 < F(a,b,x)

and

. 3
G = f(x-a)% dx = i"—;ﬂ— = G(a,x)

For the given limits a and b of the integration Equation (3) becomes:

ANS = (C1+E1)*(F1-F2)+(C2+E2)* (F3-F4)+D1*(G1-G2)+D2* (G3-G4)

where
Cl = -2,0*Y1/(P1**3)
C2 = -2,0*Y2/(P2**3)
D1 = 1.0/(P1*Pl1)
D2 = 1.0/(P2*P2)
\
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El = SL1*D1
E2 = SL2*D2

! _ : Fl = F(X1,X2,B)
F2 = F(X1,X2,A)

Gl = G(X2,B)
G2 = G(X2,A)

l

P. ' : F3 = F(X2,X1,B)
‘ : : F4 = F(X2,X1,A)
| 63 = G(XI,B)

| G4 = G(X1,A)

and

{ Y1 = f(xl)
~ Y2 = f(xz)
| ; SLl = f'(xl)

; SL2 = f'(xz)
’ P1 = xl-xz
] ¥

| . P2 = x,-x,

C. Program CORM4 performs the Lagrangian interpolation (given N points to
fit exactly by a polynomial of degree n-1) using the formula:

n

. I a, yi/(x-x.)
i tn j
T R a0 Y(x) = 3oL

n o3

‘ | - : _ai/(x-xj)

s i 1

1

E i where the given data are (xi,yi), i%] 2 . 1t and

1

- (RN CF 0 PR CH PR | DRI CHE )

3
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Inverted Depth to Total Depth

Initiator: Rene V. Cormier
Problem No: 4026-7 Project No: 8624

The purpose of this problem under the title, '"Inverted Depth to Total
Depth", is to study the meteorology of integrated boundary layer winds in
1 support of Air Force paradrop operations. Specifically, the effect of atmospheric
5 stability on integrated boundary layer winds.

Conventional methods of determining atmospheric stability are inédeﬁuate
1 to define the stability of the atmospheric layers under integration. This

program develops a new stability parameter. It considers the temperature
structure throughout the depth of the layer rather than just top and bottom
temperatures. It finds the ratio of the depth within which the temperature is
constant or increases with height to the total depth under integration.

The following steps have been taken:

Polynomial interpolation is performed on the input vertical temperature
profile using Hermite's interpolation formula in order to perform the
integration.

The coefficients of a defining cubic polynomial function are evaluated.

f. The maxima and minima of the function are then found by considering the
9 first and second derivatives of the function.

To accomplish the tasks outlined, the following mathematical steps have
been taken:

The polynomial interpolation and integration is done using the method and
( procedures described in problem number 4026-6, project 8624 above.

Evaluate the coefficients of the cubic polynomial H(x) = ax’+bx?+cx+d.

4 -:{\is. -

Ly Yty 5 2(y,-y,) |
2 3 :

(xz-xl) (xz-xl) £ 1

1

o

36

BT IR () A g MY Tt B0 DAIYCIAR )Y o D, IROMRT Y



2

=._‘__L_.._ N | y ' $s
b [yl*yz (x +2x )y! (x2+2xl)yz} -
. (xz-xl)

2
(xz-xl)

[(xl+2xz)yx - (xz+2xl)yzl

1 iy 2 2
2 - 2 . G []
i [ (xly2+x2yl) (xl+ xlxz)y2 (x2+2xlxz)y1]
2 i

2 2 2
; e <k 3 [(X2+2xlx2)yl i (xl+2x1x2)y2]
t S

1 2

3
(xz~xl)

d = x%y +x%y - x x%y' - x*x y'] +
[ zyl lyz 1 zyl 1 2)'2]

3 = 2
.(xz xl)

2 2
XX - X X
[ 1 2y2 1 2y1]

From the two point Hermite's interpolation formula:

HEX) = [y v(x) + y!w (0] Lf(x) * v, () + yiv ()] L:(x)

(x-x )W"(xl)
e "x = x-xl
1
(x-xz)w"(xz)

1 - = X=X
WIIXI, wz - 2
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and

w(x) = (X-xl) (x-x))

w'(x) = (x-xl) + (x-xz)

w'(x = X =X

( 1) 1 2

w'(x ) = x -x

( z) 2 1
w' = 2

Expansion of GRAPPAC?

Initiator: Mr. R. Gosselin
Problem No: 4040-1 Project No: 0002

CALCOMP plotter simulation capability on CDC's Interactive Graphics
System was made available to all computer users through expansion of the GRAPPAC
system to include all CALCOMP entry points. An instruction booklet, skeleton
deck, and associated permanent files were prepared. As a result, CALCOMP jobs
can now be debugged quickly and easily without waiting for hard copy test plots
to be prepared.

In addition, CALCOMP type programs can now be made to accept input from -
the graphics console through the addition of a very simple subroutine call.

Selective erasure is available.

. GRAPPAC: A package of Fortran Subroutines for use with the 6000 Series 274
Interactive Graphic System of the Control Data Corporation, Frona B. Vicksell,
Space Data Analysis Lab., Boston College, Chestnut Hill, Mass. 02167, AFCRL-72-
0698.
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Analysis of Observed Efectron Density Progiles

Initiator: Mr., R. Allen
Problem No: 4041-1 Project No: 8666

Support was provided for study of a set of observed electron density
profiles. The profiles were obtained from Lincoln Laboratory, Bedford, Ma.
Programs were written first to present the data in graphical form for visual
screening, then to perform certain calculations, producing a new data base
for use in future statistical studies. The calculations for each profile
involved integrating the available densities, with extrapolation if needed,
over the altitude range 200 to 1000 km., to obtain total content and slab
thickness. In addition, Chapman functions and parabolas were fitted to the
peak density region to obtain estimates of the density scale height above
the peak, below the peak, and on both sides simultaneously.

Modeling Electrnon Density Profiles

Initiator: Mr. R. Allen
Problem No: 4041-2 Project No: 8666

In a study related to account no. 4041-2, statistical and graphical com-
parisons were made between three diffeqent sets of observed electron density
profiles and a model provided by the Air Weather Service and modified by the
Initiator. The model has a variable scale height Chapman function on the
topside of the F2-region, a fixed scale height for a distance of one scale
height for a distance of one scale height below the F2 peak, then linear inter- i
polation on the logarithms of the densities down to the E-region peak. The
bottom side of the E region is another Chapman function.

Inputs to the model include the peak F2 density and its height, latitude,
longitude, date, time, and 10.7 cm. solar flux or sunspot number. 4

)
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Theoretical Predictions of the EfLectron Distribution
Function 4in the Ionosphere

Initiator: Dr, J. Jasperse
Problem Nos: 4585, 4688, 4799 Project No: 6688

These problems involved making theoretical predictions of the electron
distribution function in the ionosphere. Over a period of time, the model
considered has been made more and more extensive until the following integral-

differential equation was solved for H(z,E) in the latest computer program.

= 2m / NS 2m
e
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L,

Qijk(El) -

For t=1, k=1,7 MK(1)=7

Qx(E) =
tk

For E

tk

For t=2 MK(2)=23

9% Atk Etk
(—E;—-J (-E—) 0. [1 - ('E-9 ]

11 1
dE Dijk(E ’

0 for El <Ec< Etk

Btk N

Eek tk

<E<E
- =2

For t=2, K=1, 8 Q2K(E) is linearly interpolated from a set of QzK(e) versus

E values

For t=2, K=9-23

0 for E <E<E
1 - t

Qr =1 9% Ay

(_..._._

2
Eex

For t=3 MK(3)=14

k
B % Evx Bex Nex
) (3 0 - =
< E < E
= R

For t=3 K=1-4 Q,k(E) is linearly interpolated from a set of Q,k(E) versus

E values

For t=2 K=5-14
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0 For E1 <E< Etk

= A E,, Ok E,, B, N
Qi 9 Aek, Fex t tk, tk Ntk 5
(.E__E_.).(_E_) [1-(._5_) ] For Etkih;Ez
tk

For t=4 MK(4)=2

For t=4, K=1,2 Q“k(E) is linearly interpolated from a set of Q“k(E) versus

E values.

For t=5,55 MK(t)=1

For t=5,K=1 Q51(E) is linearly interpolated from a set of QSI(E) versus

E values

For t=6-35 K=1
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The program considers the integrals of the form _Q high dE E QrR,(E) H(z,E) ‘ i
low E

to be broken up into a sum of sub-intervals By ow™ EMID(L), EMID(L”)], [EMID(L*‘)., ]
+V V+1
p(l#V) | p(Lever)

2 ,
es1p (1*2) J vess [EME E i gh] and the program has a set of E

NE

occur within each sub-interval. Then

value Ex = EPI,EPz vuv BPoo = !E2 where one and only one of these l-:Pi values

emip (I +1)

dE E Q. (E) H(z,E)
emip )
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is approximated as

For £ = 1 = H(z,EP ) * 2.248.10720 (MU * 1) 7% _ (eup(3)y3/2)

(

For £ = 2 = H(z,EP(v)) * 6.426727273.10'“‘((EMIDU'”))I'l - (Eulu(j))l'l)
For & = 3 = H(z,EP ) * 3.0336666667107 16 ((EMID Y *1)) - - (emin0)y-9)
For £ = 4 = H(z,EP ) * 4.39163636364.107¢ ((eMrp U *1)y1-1 _ (gup(i)y1-1y

where EP(V) is the EP value such that

() (3+1)
EMID®’ < EP . < EMID

«2
K221 = K211S (%9%254
n

ol «2
K214 = K214S (%9%274 + K214sS (%9%259
n n

«8
K233 = K233S (%9%2))
n

1000 "
K133 = K133S (; )
T;TZT

T, (2) e
K144 = K144S (_IW)

750
K124S (—TFT) for Tn 3 759
K124 =
Tp(2) 2 A
K124S ( 750 ) for Tn 2 750
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For these calculations' we have the following input data

s TS

K211S, K214S, K214SS, K233S, k234, K244, K124S, K133S, Kl144S,

: I K324, K344, GAVMA, M., K , K, K, K, K, X, C, a set of EP ;)
‘ values, a set of Z values (Z(i)), NJ, Mnj’ 5, NK(J), Eijk’ Aijk'
: ' Piske O35k Bijke Nijke NS» Mygs Ny (2), N (2), N, (2), NL
(NL = NS is implicitly assumed), MM(J), Epijm’ E;k’ A;k’ ¢xk' Blk’

G E
j Ezk’ Azk’ ¢zk’ sz’ Nzk’ Esk’ Ask’ ¢sk’ Bsk’ Nsk’ Ebl’ Ebz’ Esl’ e e
Bx’ 9, Ecz’ Bz

In addition the program reads the following bar graphs:
Bar graphs
NIb values of Ib versus E
NQPAJJ values of Qpaj versus E

NQPIJKJM values of Qpijm versus E )

And finally the program reads the following graphs which are linearly

interpolated

{ 1 NTN values of Tn versus z

NT values of Ti versus z

“ % quJ values of ij ve;sus z

1 Given the preceding data the differential-integral equation for H(z,E)

i b i i

is approximated by a difference equation for a particular value of z.

To do this, the equation is evaluated at the points EPi.

i
1

T

o
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The integral part of the equation is usually approximated by assuming

H(z,E) is a bar graph with values H(z,Ev) covering intervals [EMID(L),

L A
EMID( +l)]. Exceptions to this rule are for deEQre H(z,E) and

de1 : Gj (z,E') which are handled as previously described (for de E Q.
J=

H(z,E)). Another exception is that above a read-in value for E the terms

t)
L {Ez dE! f; S : (e‘)‘/2 Ytk(z,E‘) e(s‘-stk) H(z,E!)
t= =

. sz P e, u (EN+E, )12y (2,E'+E_,) H(z,EM+E..)
E = = tk tk*"’ tk 2 tk

and

2 sz dE? i Mﬁ) exp [- -K—EEI-E—)-] (B'+E, )12 y L (ZEME L) H(z,E)
E & - ng z t t t

2 E 55
1 E : tk 1y1/2 £ a1 1 1
+ JE‘ dE exp [- W] (E®) Ytk(Z,E ) G(E —Etk) H(Z,E -Etk)

are approximated by

55 t)

Ege [E)Y2 Y (B HZ,E ) - BV v, (2.E) H(z,E)]
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55 MK(t E
tk 1/2
> Etk exp [' Wﬁ] [(Ez*Etk) Ytk(z’Ez"Etk) H(Z,Ez)
t= = J

- (B+Eyy )2 vy (2,E4E,) H(z,B)]

f(E) - £f(E-E_,)
Respectively where we have used the approximation 3 & . 4L .
tk :

The derivative part of the equation is found at the values BP(V) in terms
of central differences generally a seven point rule is used (a smaller odd
point rule can be read in as this input parameter) except near EP(I) and

Thus, EP and EP(NE-z) use five point rules, EP(z) and EP

B (e)* (s)
use three point rules and

(NE-1)

2 H(z,E) H(z,EPqp) - HZ,EP g ))
TE EPove - EPne-y) '
E = EP(NE)

The equation at EP(:) is replaced by the equation

1= fz dE(E)Y2 H(z,E)/Ne(2) %0

1

LR ;'E is never approximated.

B EP(x)

Using the logic specified above, the problem was reduced to the solution

of NE non-linear equations, one for each EP(V) value for the values of

51




H(z,EP(v)) for a specified z value. This set of equations was solved for ?

H(z,EP(v)) using a modified Newton-Raphson pethod. Thus, if AH(z,EP(v))

is the correction calculated by applying the Newton-Raphson method to the

NE equations. Then the corrected H(z,EP .) = the old H(z,EP

) w)*

Z'L AH(z,EPV) where L is the smallest integer which reduces the value of

NE :
ET¢T. Where ET¢T = SCA(*EREEQ(1))? + Z; (EREEQ(i))?. Where EREEQ(j) is
1=

h

the amount by which the jt equation is not satisfied when the guessed

values of H(z,EP(V)) are tried. The program continues to correct H(z,EP

(V))

until a "solution'" is found.

In addition to the above solution the program calculates and plots the

following quantities when asked by the input data. 4

Oxygen Excitation Cross-secfion (versus Energy)
- 2: QKE) +Q (B +Q () +Q (E)

; | Oxygen Ionization Cross-section (versus Energy) '
l ! Z.; %,k (B ,
N2 Rotational Cross-section (versus Energy)

- 2: Q, (B)

T

4 §
i i
i i
3 i
4 i

!
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Nz Excitation Cross-section (versus Energy)

. 2«2“(5)

Nz Ionization Cross-section (versus Energy)

- z; Q,(B)

0z Rotational Cross-section (versus Energy)

- iQtl(E)

02 Excitation Cross-sectipn (versus Energy)

. ﬁ 0, (®)

Oz Ionization Cross-section (versus Energy)

' 2: Q (B

After each iteration of H(z,EP(v)) the program calculates and points

the following quantities:
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E
f; 2 dE F(z,E))

& —d D) where F(z,E) = vE H(z,E)
e :

Te = 7736.666667 (.£EZE*F(z,E) dE)/Ne(z)

1

A

Integral of G! = sz dE 5 G; (z,E)
. El =

E
and each integral of G} = J2ae G} (z,E) for J = 1,2,3

E
1

When the program finds a solution for H(z,EP )), the program also

(v

calculates and prints (plots)

t)
F!(2,E) = *i ﬁ [1 - exp(- E;:t;km'” Bk Yek(2:E) O(E-Egy)
t=1 k=
2 me
| +i E(mnjﬂne mnj o ﬁ (m +m mls(z)
Jz
ok i g e RN (z) O(E-E,.,) Q. (B)]
VE ee 5 1Jk nJ ijk? “ijk
| E
; x j;z dE! gcj(z,a‘)
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Check for G! = K ﬁ; ﬁf Nnj(z) f’ dg! E! Qlj,‘(a‘) H(z,E!)

ijk

conductivity =

: G" 2 §.K~ jE‘Ez dE E'/z g‘E '(H(Z'E))/(i; Yonj (25E) + 5'1/22 Y pis2))
=1 5=

approximate conductivity =g (2) approx.

ot | 2“ Yanj (E+2) + g/ ?2 Ynij ()

Average Ionization Collision Frequency = Vi(z)

- KS \ N 3 N sz dE? E! 1/2 EY) F E!
GEP Q@ FEDY? (B Fz,EY)

o1 k=1 Eij

Alternate calculation for Electron Concentration =

S5




i ARG < i e

ND = :

e
2 ﬁ; £:,,() o (2)

N N
(4 me(z) T (2) fE dE! EGJ (2,E)) + P2(2)] + T, (2)
L=1 l

ErL(z) for L=1,2,3 and 4

cx/z

fE dE E QrL(E) H(z,E)

Approximate Average Ion Collision Frequency =

NK(J)

V@) = ZN o Yy f 4B (E')V/2 qy, (B') F(z,BY)

K=1 i. j

Approximation for the Electron Concentration Using Vp(z) =

N =[5 (2) a_ (2)
g L=1 11.(2) “L(z) ; g“l s

E :
{1 2cual i GJ. (z,E') + V;(z)] + Vp(z){
)=

Maxwellian Approximation to F = Fm(z,E) =

a/2
4m N_(2) ( ) [FK:%;TETJ exp(- K—T"TETJ
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Early in the program the program can read in guesses for N (z), N .

N. , N,

is N. and T,(z) and use (FM(z,EP(v)) + F! (z,EP(v))/(EPIV))’/z

is® i
the initial guess for H(z,EP(v)) to start the iteration procedure.

Finaliy, for a given z value the program calculates

55 MK(t) E
B s == D D0 [ - el popny) By Yoy (0B 0(E-Eyy)
CB" =21 = R
NS
ZE (m } Yy .51 ¢ Z 7z (n +n ) Tnis ()
e =y}
NJ NK(J)
E;Jﬂzv (@ + K B2 D BN () 0By Qi (B)
j=1 k=1

This program will be submitted to the SUYA computer program library
upon completion of problem 4799, The Initiator intends to further refine
the equations for H(z,E). In any case, a separate program has been written

which uses the calculated H(z,E) functions to calculate
SF(z,E) = 4.72-10° E H(z,E)

SF!(z,E) = 4,72:10° E H!(z,E)

E
(2) = 5.93:10" N_(2) ]; hasel Q,(E) E H(z,E)
ex)

qex

= e




q;x(z) = 5.93.107 N, (2) ‘{:e"z dE Q, (E) (e)'/2 F!(z,E)
ex)

and

o7
(z) = £, (2) 4.10712 (ﬂ"’%q) [Nem]2

q!‘O

where No(z), fio(z), T(z), Ne(z), Eexz' Eex; are input parameters and QO(E)

is an input function.

The results of the program seem to agree with experiments for low values
of altitude, up to about 200 kilometers. In fact, they predict fine structure
which the instruments which have been used to measure electrons in the
ionosphere were too coarse to find. Above about 200 kilometers the model

needs improvement. The initiator hopes to refine the model even further

and explain the electron distribution above 200 kilometers.
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Study of Source Location by Computer Simulation

Initiator: Dr. K. Toman
Problem No: 4620 Project No: 5631

Locating sources of radiation, finding radar targets, and determining
one's own position are requirements in radio surveillance, detection, and
navigation respectively. There also exists in the environmental sciences the

need for determining, for example, the location of the origin of natural or
man-made atmospheric or seismological disturbances.

In the following treatise we have restricted ourselves to study, on a
computer, the problem of locating sources from time-of-arrival measurements
made at four locations. We developed and tested an error analysis to determine
how errors in time differences reveal themselves as errors in source location
and signal velocity. Furthermore, we ascertained how these errors change with
range, azimuth, signal velocity, and network configuration. The results,
subject to certain assumptions, can be used for existing or planned time-of-
arrival measurement networks. These assumptions are: (a) source and synchronized
receiving stations are located at the surface of a spherical earth along which
the signal propagates, (b) the velocity of the signal is uniform along the
great-circle paths from source to receiving stations, (c¢) the signal is not
bandwidth limited nor is it dispersed in frequency, and (d) individual errors
are normally distributed and uncorrelatedl. Assumption (a) can be broadened

 to include, in an idealized form, the case of remote sensing of atmospheric

waves by ionospheric sounding techniques. Assumption (b) can be broadened to

include rectilinear propagation and reflection of a radio signal from a mirror-
like ionosphere of known height.

The locations of the source S and of the receiving stations A, B, C, and
D on the surface of the earth of radius R = 6378 km are expressed in geographical
coordinates 6 (longitude) and ¢ (latitude). Using'differences At of the arrival
times for the propagating signal at the synchronized stations, the location of

the source (GS, ¢s) and the signal velocity (v) can be determined from the
following equations:

A Cooper, D.C. and Laite, P.J. (1969) Statistical Rnalysis of Position Fixing
in Three Dimensions, Proc. IEE llg (No. 9):1505-1508.
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" cos™! [sing, singg + cosd, coso cos(64-6,)]

s e e v
- cos [51n¢B 51n¢s + cos¢B cos¢S cos(GS-BB)] -

VAtC-B b
R - cos [sm¢C s1n¢s + cos¢C cos¢S cos(es-ec)]

- cos™} [singg singg + cos¢, cos¢s cos(85-65)] .

vAtD_B 2t
R = ¢os [s1n¢D 51n¢s + cos¢D cos¢s cos(es-eD)]

-1 . -

- cos [s1n¢B 51n¢s + cos¢B cos¢s cos(es-GB)] . ¢9)
In the method used for obtaining the solutions 8 and v from the time differ-
A tpe oo and tp of the
signal relative to a common time reference, two of the equations in Eq.(l) were

Sl ¢S’
ences AtA-B’ Atc_B, and AtD-B of known arrival times t

combined, a speed v, was assumed, and esi, ¢Si were determined. These "initial"
source coordinates were entered into the third equation to determine a speed

L7 which was compared with V. 1f Ve Suny then v; was increased and vice versa.
This iteration, which employed the False Position Methodz, was continued until
the difference between vy and v, was negligibly small (for example,

vy vc"- 1I<10'5). The initial assumption for v; was thereby only limited by
considerations of minimizing computer search time. The iteration procedure was
used in the neighborhood of v=18000 m/min. For a given source location, arrival
times at the four stations and their time differences were computed using this
speed. For performing the inverse task, these time differences were used to
redetermine the source location and velocity prior to assuming that the former
are subject to errors. In order to determine the effect of these time-
difference errors on errors in source location andisignal velocity an error
analysis was developed. Errors were imposed upon time differences At by
assuming that they represent standard deviations of a normal distribution. The
resulting errors in source location and signal velocity were viewed in terms

of probability bounds.

Z»Scarborough, J.B. (1966) Numerical Mathematical Analysis, John Hopkins Press,
Baltimore, 6th ed., p. 197,
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In this error analysis it was assumed that the errors of the independent
variables AtA-B’ AtC-B' and AtD_B of Eq.(1) are small and uncorrelated. Based
on these assumptions the formula for the propagation of the mean-square error?

could be used to estimate the mean-square errors ogs, ogs, and 03 of the
dependent variables es, ¢S’ and v as follows:

( a6 2 phe A .
= o o+ (0 + g .
9Bty Stpp (sxtc-a Atc-B) (%Ktn-s Ato;n) ,

(Replace es in the above with ¢S) 5

(Replace BS in the above with v) ,

where 05y ,... etc., represent the standard deviations from the mean assumed
A-B
for the time-of-arrival differences between selected station pairs. As seen

from Eq. (1), explicit expressions for BS, ¢S’ and v were not available. The
evaluation of their partial derivatives aes/aAtA_B,... etc. [Eq.(2)] required
the use of a special property of the Jacobian matrix and its inverse?.
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whereby the partial derivatives 8AtA_B/86 etc., were obtained from Eq.(1).

gree
Using this approach, the mean-square errors in 65, ¢S’ and v were computed

S Deming, W.E. (1964), Statistical Adjustment of Data, Dover Publications,
New York, p. 39.

4

Irving, J., and Mullineaux, N. (1959), Mathematics in Physics and Engineering,
Academic Press, New York, p. 800.
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by means of Eq.(2) from the errors assumed for the time differences. The
results of these computations were used as error bounds (error boxes) centered
on true source locations. These error bounds were tested by generating a
sequence of independent errors in time-of-arrival differences, using distribu-
tions for means and variances that were derived from available random number
routines. Although these bounds were found to contain the appropriate number
of "false" source locations, it was noted that their distribution seemed to
fill these error boxes only partially, due to an elongated scatter of points
in a direction toward the network with relatively little scatter in azimuth,
It was also noted that the inherent nonuniformity of the geographic coordinate
system would give the appearance of large errors in terms of Ogg» when the
source is near a geographic pole, and the appearance of small errors when it
is near the equator. For these reasons it was decided to describe the "prebable
location of the source'" not only in terms of iongitude and latitude, but also
with respect to distance and azimuth. This made it necessary to choose a
reference point relative to which distance and azimuth are defined. Although
any point on the surface of the earth could be chosen, one of the stations, B,
of a network was usually designated the reference point.

Equations were obtained that relate the coordinates of a source in latitude

(¢S) and longitude (es) to range (Dist) and azimuth (Az) for a reference
station B (¢B, GB).

¢S = sin'l‘{sin ¢B * cos(Dist/R) + cos ¢B e sin(Dist/R) °* cos Az}

4)
0 = 0 - sin-l{sin(Dist/R) v sin Ar/cos ¢S}.

From these equations the partial derivatives 8¢s/8Az, 3¢S/3Dist, BOS/BAz,
868/8 Dist were determined and related to the partials of the time differences
At with respect to azimuth and distance by
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. where aAt/aes and 8At/8¢s, as well as 0At/dv were obtained from Eq.(1). The

partial derivatives of azimuth, distance, and velocity with respect to the time
differences that were to provide distance and azimuth error boxes analogous to
Eq.(2) were obtained from the partial derivatives of the time differences with
respect to azimuth and distance [obtained from Eqs.(4) and (5)] as well as
velocity [obtained from Eq.(1)] by utilizing, as before, the Jacobian inverse
property.

B -+1 == -
ot s Wt a N, 3Az 9Az 9Az
dAz oDist -9V aAtA_B 5KtC_B aAtD_B
Wtcp 9tcp Mo gl . | apist  apist  PDist
Z ist oV T |9At, oAt oAt
oA oDis A-B C-B D-B
Ot p Mgy % av av av
oAz oDist oV 3AtA_B EEiC_B Bﬂfb_B
— . p—

The above equations were used to evaluate the errors of source location
(¢S, es, or Dist, Az) and signal velocity v from given errors in the time
differences and to appraise the effects of different network configurations on

estimates of the errors involved in locating a radiating source.

The results of the error analysis were tested by using statistical distri-

butions of time-differences (At , etc., that in turn yielded a

A-Blire

_distribution of source location coordinates and signal velocity (¢S, GS, V)i'

For given means and variances of the time differences their normal (Gaussian)
distributions were obtained by taking finite-sample means from random numbers
for which routines were available at AFGL's CDC 6600 digital computer. For

certain purposes, rectangular distributions were also used.

b . e

(5)

(6)
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In order to illustrate the results of the error analysis and the above
tests, coordinate-transformation and plotting programs were developed,
furthering the purpose of providing a clear visualization of network performance
and testing procedure. The initial source location S (¢S, es) was placed at
the center of a grid system whose elements were made to represent latitude and
longitu§e error boxes expressed by °¢S’ oes. These displays, which comprise
10 x 10 standard deviations and thus exaggerate the smaller error, were obtained
by rectilinear projection from their positions on the curved surface of the
earth orto a plane tangent to S, such that great-circle paths through S would
appear as straight lines.

The results of this study were presented to Commission VI of V.R.S.I.
during the 1973 International IEEE/G-AP Symposium and V.S.N.C. /V R.S.I. Meeting
in Boulder, Colorado.
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Eigenvalue-Eigenvecton Determination

Initiator: Mr. G. Borgiotti
Problem No: 4721 Project No: 4600

This problem involved finding the eigenvalues and eigenvectors of the
problem:

X=-

. L 1 sin cfx-E)

The Initiator wanted accurate values for the largest eigenvalues and their
associated eigenfunctions. Towards this end the function wi(x) was represented
by a large number (N up to 2001) of equally spaced points and the largest
eigenvalues, eigenfunctions were determined as follows:

1. Set up an equally spaced grid of X values x.

2. For the 1St, 3rd . (2n+l)th eigenfunctions (j) make an initial guess
of a constant for the values of ¥;i(Xi). For the 2nd, 4th, _ (2n)th (J)
eigenfunction make an initial guess Vi (Xi) =Xy

E

3. For every eigenfunction except the first, reset

3-1 L1 ;00 v () & ..
b = WO - T vy o :

whereJ[i wj(E) wL(g) df is approximated using a trapazoidal rule
4, Store wj(xi) in Yg(X;) :

5. Calculate and reset wj(xi) through

1 1 sin c(x -£) 5
wj(xi) = I ——1—-5———‘1’ () d& |

again using a trapazoidal rule approximation

65




6. Repeat step 3.

7. Using the trapazoidal rule approximation calculate

N LT 900 b dx

FKK1 7

|Z

2 .4
Rz = 52 ;X)) dx #o8 |

FK21

N-1 1 2
= L) W (X)" dx

" 8. Check if |1 - FKKI) | < ERR where ERR is an input parameter when

. this condition is satlsfzed A -%%%L— and w (X) is finally reset to

Vi V7

If condition 8 is satisfied increment j and go to step 2.
If condition 8 is not satisfied go to step 4.

The results of this analysis were reasonably accurate, since the eigen-
values checked with eigenvalues found by an independent method. The program
did have problems when c=8 since as c gets larger A and A4 have eigenvalues
{ which are nearly equal. This prevents the procedure used from separating the
2nd and the 4th eigenfunction, Consider the following:

: [ ]
Let F_(X) be the nth guess of wj(X). Then F_(X) = I a, w (X) where if ~
=1 .
j is odd a2=a4=...=a2n=...=0 since Fn(X) is even and if j is even aj=az=...=

an+1=...= 0 since Fn(x) is odd. Further the procedure reset Fn(X) so that

a)=az=...ay ;= 0. With this knowledge the function Fp4](X), to the accuracy
of the integration satisfies the formula.



P = K 8y 3, 9,00)

where K is a constant, If Aj >> Aj+2 the iterations quickly lead to

FN(X) s Kl wj(x)

where Kl'is a constant but if Aj ~ Aj+2 then the iteration leads to

VFN(X) o Kz(ajwj(x) + aj+2 Wj;z(x))

where Kz is a constant.

 The initial guess for Fl(x) was good enough so that a, > 100 a, so the
problem was not as serious as might otherwise have been the case.

This program has been run with c=4 and c=8 for the first 5 and 8 eigen-

values, eigenfunctions, respectively.

Coupled Mode Propagation of Hydromagnetic Waves

Initiator: Dr. H. Radoski
f Problem No: 4729 Project No: 7601

f There are two fundamental hydromagnetic modes called the poloidal or

} isotropic and toroidal or guided modes. In an inhomogeneous medium, such as
! the earth's magnetosphere, these modes must always be coupled, Simple geometric j
‘ models of the magnetosphere have been developed to study such coupled mode

; propagation. The case to be treated is the cylindrical model. No analytic

i : solutions to the wave equations have been discovered. It is felt that numerical
f solutions should afford valuable insight into the development in time and space
|

|

of the electric and magnetic fields.
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The purpose of this problem is to perform the required numerical analysis
and computer programming necessary to calculate and plot P(x,t), T(x,t) as
functions of x between x = 0 and x = X, for a set of values of t between t = 0
and t = tMAX’ P(x,t), T(x,t) as functions of t between t = 0 and t = tMAx for

a set of values of x between x = 0 and x = X such that the following partial
differential equations are satisfied:

(3%/3t? + n?x”% + m?) T(x,t) = m(3/3x) P(x,t)
[9%/3t% + n2x™% - x7!(3/9x) x(3/3x)] P(x,t) = -mx '(3/9x) xT(x,t)

A sample case with the values used as input parameters and the boundary
conditions that were satisfied is presented below:

m=1,n=1, X, = 1.k 20

mxﬂ
T(x,t = 0) = (9/0t) P(x,t = 0) = (9/9t) T(x,t = 0) =0
P(x,t =0) = Jl(wx), where Jl(w) =0

T(x = o,t) = P(x = o,t) = P(x = xo,t) =0

The resulting calculations are then to be checked by the following
associated conservation theorem:

X

j; ” ¢xdx = constant
=G+ 1

G = T(x,t) + (BZ)2

I =P(x,t)2 + (BR)2 + (BF)2

®2) = (/x) L° T(x,t) dt .

"

@R = (/x) L5 P(x,t) dt



®F) = £ [3/3x P(x,t) - uT(x,t)]dt
EG = fo"o Gx dx
EI = fo"o Ix dx

Difference ncthods. were applied to the coupled partial differential
equations such that the error term was of the order 8, where & represents the
E difference in the independent variable between two adjacent grid points. This
approach was unstable in that the calculated solutions became divergent at the
boundary x=0. Analysis of the coupled equations and intermediate calculations
seem to attribute this divergence to the term (1/x) (9/9x) P(x,t). This
approach was then modified by re-evaluating the solutions (P,T) at a particular
E’ time (t) for distances x=§,26,...,i6 from a polynomial, with no linear term,

: | fitted to the above solutions at distances x=0, (i+1)8, (i+2)6,... this
modification was successful in preventing the divergence and yielding possibly
acceptable results. However, this later procedure was discontinued in preference
to finding a method for calculating the solutions at all points and without

‘ such smoothing, nevertheless, it was encouraging to find such simplification
i so helpful.

_ It was next decided to utilize a predictor/corrector mgthod (1) based on
the following correction formula:

# i P(x,t;) = (P(x,t;,;) + 6P(x,t; 1) - 4P(x,t; ,) + P(x,t; ;))/4

| T(X,ti) ’ (T(x:ti+1) ¥ 6T(x,ti_1) - 4T(X,ti_2) * T(x’ti-s))/4

This formula was derived by equating difference approximations for the

second order partial with respect to time at the tia increment in time. It
has an associated error term of the order §*. The procedure followed was to
calculate values for P and T at ti+1’ use the above formulas to correct the

values at tss recalculate the values at t;,1» compare the later two predicted

By | —

‘ ; ! Numerical Methods for Scientists and‘Engineers, R.W. Hamming, McGraw-Hill,
o 4 ! 1962, p. -186-210.
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values at ti+1’ and should the comparison be adequate, proceed to the tioz
evaluation, else perform the iteration of correcting the values at ti’ etc.
The choice of correcting the ts points rather than the tia points was made
in view of having two successive points for adjustment., In addition, it was

preferred to provide the iteration option than resort to a variable time step.

The validity of resulting calculations of P and T were supported by
both their satisfying the conservation theorem and their repeatability with a
change in the grid size (8). During the processing for various combinations
of the parameters and initial conditions, it was noted that as the parameter
related to faster damping of the P wave amplitude approaches 10, the solutions
diverged at the boundary x=1, for the grid size § = ,001 in both space and
time dimensions as time (t) approached 10.

The computer core and/or time requirements seem to preclude any further
significant reduction in 6 or extended use of the iteration method. And so,

in order to meaningfully extend the range of processing, it seems a variable

grid size should be used in the spacial dimension, especially near the boundaries

and a ree-analysis of these coupled partial differential equations is required
in order to find a more suitable correction formula.

As can be readily appreciated, a significant computer programming effort
was required to develop a structure which could efficiently store and retrieve
data for both calculation and presentation purposes. In particular, to provide
the options for selecting when (time to) and where (distance xo) the solutions
P and T are to be outputted in plotted form.

@VIZ., letting i (upper) and j be indices respectively referring to time
and space incrementing in the difference grid; then, excluding points near a
boundary the predicting formula used for P(x,t) is the following:

i+l

P
J

RN SR, - T P T i ; i i
= 2P - PyT0 - 8T {(n%/x5) Py - 6Py, ¢ 89541 - 85y * Py )/

(126x x,) - e 29? . p;_l)/sxz

j+l
i i i i i
+ m[(-Tj+2 + 8Tj+1 - 8Tj_1 + Tj_z)/126x + Tj/xj]
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Power Spectrnal Analysis of Tide Data

Initiator: Mr. David Anthony
Problem No: 4754 Project No: 8607

This problem involved the Power Spectral Analysis (P.S.D.) of tide data
presented as a function of time. The data was initially presented to us on
paper tape but was first copied onto magnetic tape before beginning any
analysis. The Maximum Entropy Method was used to determine the P.S.D.'s and
the following is the procedure used:

- Initially, the data was read from the magnetic tape and edited. This
involved determining "bad" or missing data points and linearly interpolting
to supply "corrected" points. Occasionally, the editing detected large gaps
in the data, in which case the data was processed as if each group of data
came from a separate paper tape. The edited data was then placed on what was
called the "first master' data tape. It should be noted that the tide data
was edited and stored on this ""first master” in increasing time order.

The edited data was then re-read and an interpolation performed between
the sets of data. The interpolation was performed by modifying a theoretical
tide subroutine supplied by the problem initiator. Letting T(t) represent
the tide value associated with time t, then, this program determines values
for A, B and At such that A+B*T(t+At) is a "best fit" in a least squares sense
of the data on either side of the gap in the data. The program then finds
values of A! and B! such that A'+B'*T(t+At) touches the data point immediately
preceding the data gap and touches the data point immediately following the
data gap. The values of the function Al+B'*T(g+At) at the times at which data 1
points are missing are the interpolated data values.

This data set is now stored on the '"second master" tape, from which a low-

pass numerical filter1 is applied to the data. The pass-band was set less than
isa&f where, Ny is the original Nyquist Frequency of the data and NDEC is a
decimation factor, which is an input parameter to this program.

1 ¢.W. Béhannon and N.F. Ness, "The Design of Numerical Filters for Geomagnetic
Data Analysis', NASA Technical Note, NSDS-TND-33411.
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The data is then decimated by NDEC, and MM coefficients (MM is pre- :
determined prior to execution) determined from the maximum entropy method E
(MEM) are applied to the decimated data, (A similar approach is used in
the solution of Problem No. 4810, described later). A Fast Fourier Transform
is now used to determine 16385 P.S.D. values at equally spaced frequencies,
spaced between zero and the new Nyquist Frequency.

The maximums found above are then analyzed by finding the "exact" frequency
of the maximum (i.e., the peak power point). This is accomplished by a search
in the region of the maximum until PM~1 > .99 * Pm E_Pm+1 where, Pm is the
power at the peak power point, and Pm-l (Pm+1) is the power at the next lower
(higher) frequency studied. In addition, the area (energy) in the vicinity
of the peak is calculated. This area is between points at half the peak power

or a minimum of a power versus frequency curve, whichever definition defines
a smaller integral.

The results showed that the high frequencies agreed with theoretical values
to within .1% but the low frequencies were inaccurate. The energy under the !

peak also followed the expected pattern. We expect to improve the accuracy of
results with an improved MEM.

A Lasern Beam Stewing Through a Turbulent Medium

Initiator: Dr. R. Fante 1
l Problem No: 4756 Project No: 2153 13

When a laser beam is slewed through a turbulent medium the spectrum of '3

; the intensity and phase fluctuations are affected. The purpose of this problem '3
is to evaluate the integral equations which describe the frequency spectra of i

the log-amplitude and phase fluctuations. For a beam slewing at an angular

rate m% the frequency spectra of the log-amplitude Qx and phase fluctuation Qs
is known to be !

R

i
i
¥
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-t(1-§)? (—)

1+a?

2
Q = fdg fat . in? (2U-8) (1+a’f
Qx( ) (t*F)llflG(t(1+Y£)2_92)l/E o ( 2 l*az))
0 Q?
(1+vE)?
2
Qy (@) cos? (RLE) (12§,

1+a

where Q = J—QE’ w = radian fluctuation frequency,\/a = anbient atmospheric
()

wind speed, L = path length in turbulence, k = signal wavenumber, y = wsL/ro,
F = L/(kLg), Lo = outer scale size of the turbulent eddies,.

It is readily noted that there is a singularity at the lower limit of the
t integral. That is, at

t = Q%/(1+vE)?

Analysis of the integrand reveals it is of the form 14/K. Hence, it was found
acceptable to increment this limit by adding

k ; 3 11/1s
L.??Q_.(_il__.+ F| P
1+Y§)?
with RF representing an assumed insignificant fraction of the integration.
The infinity at the upper limit of the t integration was replaced by
5 2 52
-(1+a%) log (%Ll.él..(gpi)

a(1-£)?2 (1+a?)

This was determined by noting that the exponential term of the integrand
eventually becomes dominant.

These double integrations were satisfactorily evaluated using the Adaptive

:Simpson Rulel‘technique developed by this laboratory.

: A New Adaptive Simggpn Integration Routine, Neil Grossbard, Space Data
Analysis Laboratory, Boston College, Chestnut Hill, Mass. 02167; AFCRL-70-0504,

Scientific Report No. 1, September 1970.
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A Functional Determination fon Fitting Roentgen Measurements

Initiator: Mr. R. Frederickson

~ Problem No: 4766 Project No: 5621

The purpose of this problem is to determine a functional curve fit to
data which represents the dependence to exposure readings in Roentgens/

minute (Ro) on the radial distance from the collimator center line to the ion
probe center.

The given raw data, Ro, is first corrected by the factor R/R! which is
defined as follows:

1.25
R = _fl E N(E) u(E) dE

1.25
R = fl S(E) E N(E) u(E) dE

N(E) = nle™"  (.1<E<1.25)

N(E) = e (E=1.25)
(n is an input parameter)

I=1.25 [sin(l.37(E-.1))]/?

H(E) = 4.505 x 1072 - 2.325 x 10"2E + 1.344*10 22

-3.728*107%E® - 3.64*107°E™! + 1.66*107“E"2

S(E) = 8.733*10 ! + 4.999*107%E + 8.234*1072E?

-3,178*10"2E® + 3.053*10"2E”! - 9,856*10 “E"2
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Notice that N(E) has a '"delta function" contribution at E=1.25. Analysis of
the above integrals reveal that it is satisfactory to utilize Simwson's Rule
for their numerical evaluation using the continuous form for N(E) and adding

(i) 1.25 u(1.25) exp(-N) to R.

(ii) 1.25 S(1.25) u(1.25) exp(-N) to R!,

The procedure chosen to determine the functional curve fit to the data is
to minimize the least square expression

M 2
$= IR - Pt )

where, M equals the number of data points, L is the independent variable (radial
distance), F the mathematical model function, and aj the parameters in that
function. A rather remarkable curve-fit to this data is obtained upon using

the following mathematical model

= L
F(t,aj) a8 ¥ a exp(a2 exp(aata ))

A computer program incorporating the Space Data Analysis Laboratory version
of applying the Method of Levenberg to certain nonlinear problems readily
determines appropriate values for the parameters aj. Included in the output
of this program are the description of the fitting expression, the estimated
values for the parameters, the input data, the fitted evaluations, the cor-
~ responding differences, the associated variances, the standard deviation and
plotting.




Evaluation and PLotting of Sets of Double Integrals

Initiator: Dr. G. Borgiotti

Problem No: 4773 Project No: 4600

This problem involves the evaluation and plotting of sets of double
integrals. The plots are generally of g(US |sinfo) versus US1 where
1 Q

g(USllsineo) ol f(xllsineo) e dx1

with

3 -38 K, sin’8 4 o
f(xl|51n60) ~£l exp _3335; 1+ = (EI-ZuXIEI) .

-7
g 3 oo,
. iy gl _ sinbo
'Jl * Fsm 5, P=§4’ dp + 1/2 exp(j (p*3) ¥ ste) 95,

given j =+/-1 , u=6.25, sinfa=1/2, Ka=314.16 and sin €=.08 and the values of Sl,"

dp+1/2 are input parameters.

In order to calculate f(x |sinfo) the value of the real and imaginary

parts of f(x1|sineo), fr(x1|sineo), fI(xllsineo) are calculated separately.
Thus, let

S1Ka J sin%fa 2
TR TSR N R0, Sl
EZ
- Y1+ —i—sinzea and

u

i 1 sinfo
Let ARGP = (p+§) ﬂ(€1 - =)

sine
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Then
3 1
£.(X |sinGo) = sin(ARGl) I dp+= sin(ARG )
R 1 p8-4 2 p
3 1
+ cos (ARG1) L dp+= cos(ARG )" 3
2 P
p=-4
- and
L
£,(X |sinBo) = cos(ARGl) I dp+> sin(ARG )
© p=-4 Py

3
- sin(ARG1l) £
p=-4

1
dp+3-cos(ARGp)
The integrals for fR(xllsinSO) and fI(x1|sin60) are approximated by an { 13

adaptive Simpson Rule1 technique developed by this Laboratory. i

Values of f(X |sinfo) are calculated for a given value of sin6o x1 = -1,
1
-1+AX; -1+2AX,... 0, AX,... 1 where AX = ﬁq N set through an input parameter.
These values of f(xllsineo) are then multiplied by weights, as if, to approximate

1
[ s, |singo) ax,

| by Simpson's Rule. The first N+1 of these weighted f(xllsineo) (X1 varies from
; -1 to 0) are placed in the first N+1 locations of a complex array f*., The last
i N values of the weighted f(Xllsineo) (Xl varies from AX to 1) are placed in

I location 4097-N through 4096 of f*. Locations N+2 through 4096-N of f* are

i set to zero and a 4096 point Fast Fourier Transform (F.F.T.) is applied to f*,
i! Th? resultant answers contain g(USllsinOO) for values of US1 g'?ﬁ§é‘ﬁ€“ where

| L varies between -2048 and 2048, :

RaR 28 oy s o n
—

RS g gl

AR

35
e I—A New Adaptive Simpson Integration Routine, Neil Grossbard, Space Data

Scientific Report No. 1, September 1970.

‘%‘ : Analysis Laboratory, Boston College, Chestnut Hill, Mass. 02167; AFCRL-70-0504,
S L
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The method used to calculate g(USllsineo) is a general method which
can be used to get sets of integrals of the general form

b

x(s) = [ y) &% ar .
a

The results of this problem were accurate plots of g(USllsineo). One plot
for each of a set of values of Sl and fo.

-~

Ana,eyu';s 0§ Multi-Exponential Luminescent Decay Rates

Initiator: Mr. R. O'Neil
Problem No: 4789 Project No: 8658/CDNA

When optical radiation at a given wavelength may be the result of one
or more specific atomic or molecular transitions, the magqitude of the various
contributing emitters may be established by analysis of the time dependent
optical radiation. The analysis is simplifiéd if the number of contributing
radiating states is known and/or if the transition probabilities are appreciably
different. Recovery of the number and magnitude of the luminescent decays as
well as the exponential term coefficients will then be further analyzed as a
function of molecular collision frequency to provide reaction rate coefficients

for various processes.

The purpose of this problem is to determine the number and magnitude of
luminescent decay rates in oxygen and oxygen-nitrogen gas mixtures for the
case where the decay may be described by either one, two or three exponential

rates. This requires developing or applying existing programs to various

experimental data to solve an expression of the form:
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where I is given for various values of t, and the Ii, Xj and their standard
deviations are to be determined.

The data was presented in two forms: (i) tabulated, (ii) a data tape
representing an analog/digital conversion. The first form could be readily
processed; whereas, the second, which was output by the AFGL ac/dc facility,
required both unpacking and sorting. The unpacking was done by programs
obtained from the Boston College SDAL Satellite Group. The resulting data
tape was processed such that the data representing the magnitude of the lumines-
cent decay is sorted in terms of time identifying the beam status on/off and
then placed onto another tape.

Data sets selected from this later tape were then curve fitted by the
exponential programs developed by the Boston College SDAL Numerical Analysis
Section. For each data set, the curve fitting was for all the data, some of
the data as "averaged data'" and including or excluding constraints on the param-
eter, in particular, the parameter representing the background level.

The output of this rather substantial processing was provided in both
printed and plotted form. In addition to plotting on a linear or regular scale,
an option was also included for displaying the results using logarithmic scaling.
This was accomplished by taking the logarithm of the difference between the
data and the background level and selecting proper intercepts, such that the

~decay rates could be interpreted as the slopes of straight lines which correspond

to the so-called best fittings. A composite plot was also generated which
showed the dependency of the slow decay rate on the omission of data pertaining
to a fast decay rate as a function of time.

The results of this effort were presented at the meeting of the American
Geophysical Union in December, 1975, at San Francisco, California. It is also
intended that these results be published in an AFGL, Scientific Report.
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ELectron-lon Mathematical Modelling in the lonosphere

Initiator:‘ Dr. John Jasperse
Problem No: 4799 Project No: 8627

The purpose of this problem is to find a mathematical model to explain the
behavior of electrons and ions in the ionosphere. Towards this end many models
were investigated.

The first model tried assumes the ionosphere contains monoenergetic photo-
electrons. This model calculates the normalized electron velocity distribution

. function (Fnorm (X)) and the electron temperature compared to the photo-
electron temperature ((Te/Tpe) (y)). The equations used are the following:

- x) = 2 VX
JrsTem X 1 o+ (vy/v) /X8 (X-1)
M ;
{6 (X-X¢) + Z B & (X-(Xg-m)] }
p ;
M-1 -1 ;
1 : [I-MXQ ] -1
(F /T ) (y) = —=—ee w3 o Ky) + C,(y) [1-M Xo 7] ;
4 bl 1+y/Xo mn=1 ™ 1 + vy ()(o-m);5 " *
m £
where B =1 [ [Xo - (2-1)] ]and
m = V.V, o+ X - (2-D)] ; x

N b G

( Xo - (8-1)]7 :
=1 " y! o+ [Xo - (2-1]

=3

‘ Here Vr =ang with o the recombination coefficient and

n, the recombination frequency.

( Vi = VX1/L; with X; the threshhold velocity squared and
L; the mean free path.

Xo is the photo:electron velocity squared

M is an arbitrary input parameter




i

s s

In addifion to the above,

1 = 1
I = + I B . ;5 + Bm
Lo MV X m=l M1 e (V) (Xeem)

is calculated. I should equal one, if the equality stands up.

The second model tried assumes the ionosphere contains exponentially
distributed energies of photo-electrons.

The solution of this model is approached as n goes to infinity of the
velocity distribution function. '

p (N ) = ( 2 ) X
R 7, il " 1+ (vy/v) /X 8 (/X -1)

(1 - exp (-Xo™'))7! exp (-X/Xo) BN (x)

and the electron temperature compared to the photo-electron temperature

N) Ei R e
Te /Tpe' = [ dx - F

norm

Where 6 (X) =1 if X > 0; = 0 otherwise
B(N) (X) = [1-exp (-Xo"})] + exp (-NXo ') Cy (X)

N-1
+ [1 -exp (-Xo™!)] T exp (-nXg™}) ¢, ()
n

=1

n 3
C (X) =T [ (223) T
" m=1‘_ V.V, o+ (Xem)

the input data is the same as the first model, with b the upper limit
of the ratio of Vl/vr‘
The integral is calculated as the sum of

B
M fh K, & ﬁ FL o e
Xo 0 2 Xo 2

norm norm

with each integral evaluated using a trapazoidal rule.
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In addition the following quantities are calculated:

b X
' I(N) = j:ix i e Y : Fglm (X) where this check should
o 2/ X

.approach one as N approaches infinity

p0 ey a2 X_

) [1-exp (-Xo 1]}
norm VET Xo 1+ (V) /X 8 (X -1) g

exp (-X/Xo)
b
103 W X1 (0)
I N ‘{:ix———l—— Fnorm (X
/X
S /X
e

Xy b
: — [o & 5, o
pe ke

and the electron source function

2
(V6 ) A), = (zane/(xo/)G) ) VX exp (-X/Xo)
The third model calculates the photo-electron source function

So (2) = Qle nl(z) Ibl exp [Al(z)] where n (z) = n., exp [(a-z)/hl]

and Ay (z) = h1 Qpallsec xl [nl(b) - nl(z)].

We also calculate the spherical electron flux :

r 3
b (2) = |———— L lise() - 2 52 (2] and
me Fion (2) y(z) 2

calculate the electron density ne(z) = (-"—);5 y(z) pe(z) and calculate the
4

2
the electron temperature T (z) = 3.2991 (10713 [——1——]
y(2)




here

a is the base height of the ionosphere
b is the base height of the exosphere

Qle is'the photo-electron ionization cross-section
Qpal is the photo-electron absorption cross-section

na is the neutral particle density at a .
h1 is the scale height

I, is the photo-electron flux at b

X is the zenith angle

a. is the recombination coefficient

Fion
S2 (z) =0

y(z) is the electron velocity at the height z.

(z) is the value of the fractional ion concentration at the height z.

y(z) is either a set of input parameters or if the temperature

is calculated then:

= { + I Co (X(2)
y(z) Yo 1 + X(z2) /Xo m=1

e g, (X(2)) [1-MXe7Y) )

where X(z) = V' L'"Xz)/a_ F;  (z) n(z) and

ion

L7'(2) = Q' n'(a) exp ((a-2)/h))

%
and C_ (X(2)) . (—IXo - (2-1)] )

2=l X(z)™' + [Xo - (£-1)]%
Yo is the photo-electron temperature
Q' is the inelastic scattering cross-section
n'(a) is the neutral particle density at a
V' is the threshhold velocity
Xo is the square of the photo-electron velocity
M is an input parameter (M + =)

[1-m Xo~!]

1 + X(z) (Xo-m)®




Here

The fourth model solves the following integral equation

, ; : o
pe(z) o Il E Kll (Ill * Fll pe(z) + Flz (pe(z) ))

b o

where K = .1_ f dz!' E ( fh e-Z/h _e-z '/h )

11 2 B e
! Lel

E; is the exponential integral of the first kind

=1 el LBt 2 ep (- By
UoLez h n

z 5
R e
% -v.% y?(z")
Fjp = flgg () + (s-1) Li‘(z') RO ¢ vi2 y (2)%)
mxr s
Fio= -(—=) y2(z") B 21

4

g - - L L}
further L_g (2') = Log eXp (- — )

h

=) - 123 -
L (2*) = L] exp (- =)
with L;i = Q, n(a) exp (i— )

-1
Li = Qi n(a) eprf%)

101 i the incident flux at b

Mo is the cosine of the angle of the incident flux
f is an additive fraction in the equation

h is a scale height

n(a) is the neutral particle density at a
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Qe!. is the elastic cross-section
VI is the ionization threshhold velocity
S is the mean number of electrons per ionizing collision

To solve this integral equation we consider a monotonically increasing
set of NVAL 2y values staz;ting at a and ending at b. Kll is then approximated,
except at z = z', by

NVAL 1
K,, = £ — (E

- . fh | e-¢/h _e-zk/hl) A (zk)
K=1

with z9 = z;, = a and ZaVAL b

= ZNvALTI T

A (zk) = ;— (zk+1 - zk-l) at z.= 2y

the term in the sum is approximated, using a taylor series expansion, by

— | e'z/b Bt 1 (z) as z + z,

I e-z/h _e-zk/hl) Af (zk)

I e-z/h -e-Zk/hl) Ah (zk)

| e72/M e"2/h|y 5. (z) (i=f or b)

€’ h €72 “tis2
= h (-€, -e.zn(ﬂ'-)-l(—lye'z/ (oo R U3y
i Sl e
e
“€i/2
i/2) (1+1-e2 )

(-2nz/h) "

_; (&P Yo (l;e-
n=1 2n (2n) |




€. i/2
c-e¥H e —1—:;9-—-—-))
® -(2n-1)z/h €, =i
.5 —=xp ( Loty ca M eyl B0y
n=2 (2n-1) (2n-1)! 2
€,
£. i/2 © - ;
. Cia 1/2) tlia oo ) + 2% 1__(1 3 e-M€1/2)
2 n=1 n

1
here Af (zk) = ;— (zk+1 - zk)

1
b (30 =Ly -z p

Error bounds were found for truncating the above infinite sums and the
above term was evaluated to a fractional accuracy of .0001.

With this approximation for Kll NVAL equations were formed, one for
each value of Zy e This set up NVAL equations in NVAL unknowns. We solved
this equation as follows:

After setting up the equation NVAL.initial guesses for the values

of pe(zk) are made. These initial guesses are either input data or

4 (So () - 5/2 Sz (z))
.pe(zk) = . A "better" guess

TR Mea )

is then calculated as described below
For each equation find the amount (E(z)) for which the equation is
not satisfied. Then calculate all the possible derivatives

9E(2)

3 Then form NVAL equations; one for each z value considered.
p(zk)’

NVAL .
ooa el SRARL LS LR ity
k=1 ap (zk)

o7

e b e - .o

i
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and solve the NVAL linear equation in NVAL Az,  unkowns for
the Az'k s. Then form new p(zkg values

pNEW (zk) = pe(zk) + a Az and calculate the new E(zk)'s :

(Eygw (%)) Here a is initially one but is halved until

NVAL
DBy B0 ¢ 3 e ()
k=1 k=1 k’’/ . This is the "beter" guess for

p(z). This process is repeated until, judging by the amount of error

and the changes in p(z) the process appears to have converged. As in the
third model y(z) is either an input parameter or is calculated as indicated
in equation (1). In addition to Pe (z) and y(z) the program also calculates

the electron concentration n (z) (——9 y (2) Pe (z), and the electron temperature
; 4

Ll
le . '»v
T, (z) = 3.2991 107 /(y (z2))%. 1If y(z) is changed the program does each
correct1on of p (zk) after changing y(z).

The fifth model solves the following 1ntegra1 eguations
S o : 2
pe (Z) N Il 2 Kll (Ill + Fll pe(z)) )
K12 (I21 + F21 pe(Z) J(z) + Fyy J(z))

and J(z) = I, + Ky (I}, «Fppe(z) + Fpy (0(2))%) €

+ K22 (I21 + F21 p(z) + F22 J (2))

where Kip = & JP dz!' E, (fh t -z/h -e'z'/hl) sign (z-z2');
2 a Lez
K21 < l_J/b;z, E (fh | -z2/h e-z'/hl) sign (z-2');
2 va Le2

3 fh -2z/h _-2'/h
= dz' E, (— |e -e )
2“b =5 | |




where sign (X) = 1 for X > 0 and -1 for X < 0 and where i is

the exponential integral of the nth kind

Here

Further I, = -I(in) Ho exp |- £h

(exp (- 2) - exp (- 2));
Ho Lel h h

Zar

3
N
27 0D 1 @) - LY e e

7 PG B

Lt (2') £, (Vyy(2'));

-X* 3":— (l-exf (X))]

2
where £, (x) = 4 5 i g +
VT 2

L' (z") =

=1
K S T
h

1
L, =Q n(a) exp 3 forK=1, 2, ...., N
k k .

N is the number of inelastic cross-sections used in the analysis
Qk is the Kth'inelastic cross-section
Vk is the Kth threshhold velocity

This set of integral equations is solved exactly analogous to the

fourth method but 2NVAL equations in 2NVAL unkngwns are formed. The additional

unknowns are the J(zk)'s and the additional equations come from solving (2).

If J(zk) is to be initialized it is calculated from the initialized pe(z

)

values as the approximation of

- &
J(2) = I, ¢ Ky (Igy *+Fiy 0g(2) + Fra(p(2))%) + Ky 1y,
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.J(zk) we calculate

After "solving" for_pe(zk) and the particle current density

i, 0 ‘ Jl(z)
a (z}) = (=) vfz,) ofz,) the electron drift velocity U(zk) = ;
4 ¥ § » :
ne () f

]
.

and T (z,) = 3.2991 10‘12/(y(zk)2

PoF - B N S s e 1o

From the mathematics supplied by the Initiator, the following equation

serves as a check:

; . o
J®) - 3@ = SPd2 {Se (2') - (=5) By (2" yi(2") 0P(2Y)
a g

| V2 y(z")? | j
¢ s-DLP @D e (1 o+ VEyR() o) ) “-i;
This eqﬁation has been checkad with the integrals calculated

using a trapazoidal rule.

Another set of equétions derived from the supplied mathematics should
also check: .

. : b 2 2
;;-J(z) = So(2) - (—;r ) Fion (2 ¥° (2) 07 (2)

aany i ' Vi YD)
FEDR s gt p(2)

for all z values. This equation is checked for the NVAL z,

values considered. For the purpose

£

2 J(zk) for K # or NVAL is approximated by fitting a parabola through i

92

the points z, ,, zk'and 2141 and then finding the derivative of the parabola
at the point z,. The derivative at Z; and 2\ VAL is approximated as

J(z,) - J(z,)
I(z)) = - 1 and

galw

o St |




Rt

9 J(

9z J(ZNVAL) z -2
NVAL NVAL-1

The program may reset y(z) as in the third model or by finding

) - J(z

NVAL-1

ZNVAL

y(z) values which satisfy (3). When equation (3) is used, equation (3)

is not used for checking.

temperature Te(zk) = 3.2991° 10'12/(y (zk))z.

The sixth model solves the following integral equations in a

manner exactly comparable to that used in the fourth and fifth models.

4 2 '
Pe(2) = - — J2(2)/p (2) + I; + K30, + Kply ¢ Kglg

3
+ Ky Fpp pe(2) + Ky Fopopg (1) ¢ Ky By o (2') I(2")
¢ Ky Byp J(2') + (K Fro + Ko Fy) J%(z")

+ Ky Fyy v Kyg Fg) 3% (2')/pg(2")

deel wdy b o Fay by YooK by v Ry by

+ Ky Fpp 0g(2') % Ky Fpp 05(2") + Ky Fy) pg(2') 3(2")
+ Ky Fpp J(2") + (Kyy Fig + Kyg Fgy) J%(2")

+ Ky Fyy + Ky3 Fyp) J2(2')/pg @1

15 fh | e-z/h 8

where K., = == [b dz' E, (—
13 a e,
4 Lez

-zlv/hl).

Gy 15 g2 a5, (| & B,
A 4
4 Lel

Further I,, = Sl (z') =0

21

I5, =5, (z') = 0

In any case the program now solves for the electron

"-L...‘-...*




13" % y*(z") Fion (2') Fyg (29

N -1 2 2
4 - Vi y® (2')
F,,=(—){ (4-35) L} (2') + £ a (z') e 'k

4 o (1) k=1 Ly

Vi y* (2")

2 + 2v y? (z') « vy y* (2] + L7 (") e

[ + 3 + (8§ + 3) v; y? (z') + 2§ v; v @@M] )
Fag ¥ - -5— T L T O T
P = -2 (10 1} () - g-lL;l oy TR
I+ My G+ .i'.Vi Y (z') ¢ L] (2" Sy
A e 2 vyt G )

~ After "solving" for Pe (zk) and the particle current density
J(zk) we calculate

T s a
N (7)) = (:) y (z) p (2))5
U (z) =J (z)/N, (2})
T, (z;) = 3.2991 * 10722/ (y (zk))z

and the spherical electron flux :
Pe (z) =0 (2) {1 (;‘-) I (5)/0% ()
m
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The integral and derivative checks explained in model five
also are used in model six as may be the change in y(zk) from equations (1)
or (3).

When y(zk) is incremented from (3) then the derivative check is
not used. Further when y(zk) is increment then Te(zk), Ne(zk) and U(zk)

are recalculated after the changes before a new iterétion on pe(zk) and
J(zk) is begun.

The final model tried is the same as model six except pe(zk) is
not calculated and the change in y(zk) which occurs is the implementation of

the foilowing equation. This equation is approximated using methods previously
discussed. ;

‘ 2
( 32 ) Je(2) .
157 p(2)

= I3 + K., N + K,, N + K,, N

5 Tiha Ny 0 Bielie
P | G s g g T L L B R L CTD WP il
B Lg R PR Te 12 Yk ¥ 13

Lyl 2 2 =2
P Sad V2 y? (2')

i
o WEVEYN (20 ¢ H, VEyt(s') ¢ Higle t

K --V;.y%(z‘)

: N
k
Kzp {Hy ¥y* (2') + §=1[H21 Vg P (2") ¢ Hy Yy (2'))e

s Hy (1-erf (V y ()] + (Hy v}y (') + HL, V. y (2')

exp (V3 y? (2')) + Hyy (1-erf (V,y (2)) }

N

2 k kK 2 2
+ Kgg {ngy y* (2') + §=1 (Hg, Vi y* (z') + Hgpy v y* (2")
: -V, 2 y3(2') ; ;
+Hizle © R CO R S CORRI &

-V; yz (z')}
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I = -e
Ko dz[-z'- E (—fn Ie'z/h
32 2 a 2 4 L
el

sign (z-2')

/h _e-z'/h|)

_e-l'/hl

ey 15[?1'[ A

4 L el
the, @ M0y
2 L

el

and 1, = 10M &

l‘ez

fhl -z2/h -z'/h')]

-E( -e
2

Lez

Yo - 33 exp [-& (exp ("2) - exp 25
2 h h

Njp = So (2") -% S, (z') + flgy (2') o(2") +"-;3- Loy (2') (4-3£)

2 2"/ (2")

=
L]

21 =5 (2 - (-9 Ly (2)J (2"

Ny =5, (2 - ) -9 Log(z) 3% (z")/p (2")

157

'm:
Hy, = -(-T) Fion (2') p? (2') +

ZGr
21 7 <5 Fyg (21) 0 (21 321

20,
iy ® -C ) Bige =1 £ 480

8 =3
Hy, = (=) L (2")/p 2")
11 3 k
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1

4

k
Hy2

Hk

13

16 -1 2
= (—) (z') J% 2")/p (2'
3n Lk ! o

16
3

= (=) Lt ) 3 (2)/e (2Y)

(%i ) L] (29 32 /e ()
m

= 2462 11 (2 32 @ /p (21)
3

- 4(5+3) L' (2') 32 (2")/p (') +
3n

4
W

(=) L' (2) I (2"

S A g ®
=) o aysey

= -l ' (2") J (2")

4
W

m

= -(

) Lt (2" J (2"

= - (;%: ) LY (z) 3 (2"

= 7L;‘ (z") J (z")

16
157

= ~(

) L'z 3 (2')/e 2"

32 -
= o (2= Pty gt ' '
Ve ) L 2') J° (2")/p (2Y)

(s-1) L' (2") o (2"

(s-1) L' 2" o (2)

P P T g s
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k 32 -1 2
Hy, = =(==) Lt (z') J* (z')/p (2')
33 15m. X

Hi o= oAy L 2 9% 2")/e 21
31 157 i

HE = o3y 1 a2 32 @)/e (2Y)
§ T

Hgs . ) L' (2) 32 (2")/p \2")
isw

The results of the methods discussed varied from case to case. The
two methods, model 5 and model 6, judged to be the closest appro;imations
to the actual ionosphere were close approximations of each other. For this
reason the investigator judged that the particular approach which was
programmed, has been pushed as far as reasonable at the present time. The
final result, model 6, did not conform to the experimental results in the
ionosphere. The investigator thinks this is because the magnetic field
was not incorporated in his model. The investigator intends to add
the magnetic field and return for programing services for the improved
model.
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1. BACKGROUND

This request for numerical analysis and scientific computer programming
support involves the derivation and application of certain product, reciprocal
and natural logarithm algorithms to the exact evaluations of derivatives of
given functions.

JyéaB

The primary function, (see mathematics, J function), is defined

and used by JaSperse1 in the calculation of Atomic Coulomb Integrals (ACI),
YSaB

Ln'"on"on'ono
ozone, an important constituent of the earth's atmosphere.

. These integrals arise in studying the physical properties of

In the original analysis/programming support request, the J function was
specified by the Initiator as a function of 4 variables, (a, B, Y, ), where
the computétional requirement was to calculate "high order' derivatives of a
function of four variables. Certain derivatives of the J function subsequently
would be applied to computations of L integrals. However, preliminary inspec-
tion of the J function showed that it was necessary to treat four dummy
constants, (a,b,c,d), as variables when taking partial derivatives. Therefore,
the problem was immediately expanded to . requirement for evaluations of high
order derivatives of a function of eight variables, a considerably more com-
plex undertaking. ' |

A

It should be noted that the J function contains logarithmic terms, an
additional problem to be dealt with.

It should further be noted that previous attempts by the Initiator to
compute ACI (to which the J function is applied) by direct integration techniques ;
had met with limited success; low order computations had been generated on a
computer, but the higher order calculations were beyond the scope of the
techniques and equipment available at that time. These low order calculations
were presented to be used in a study of accuracy at the time when the evaluated

J function would be applied to ACI calculations,




2. PROCEDURE

The synoptic approach taken to the problem is outlined below. Some of
the steps included were not known at'the onset of the effort, but were made
necessary by difficulties encountered as the analytical investigation proceeded.
Obviously, most of the effort outlined below progressed in a parallel fashion
rather than in specifically sequential steps.

Evaluations of J Function Derivatives and Application to Calculations
of L Integrals.

1. Define a basic method of evaluation of J function derivatives by
applying product and reciprocal forms of algorithms.

2. Expand existing algorithms2 (Product, reciprocal) from functions of
1 variable to functions of 8 variables.

3. Prove the validity of the above.

4. Determine suitable approximations for terms such as
IN [Pol omial 1(8 Variables)
Polynomia ariables

the computer by the methods product and reciprocal algorithms.

] which can reasonably be evaluated on

5. Apply evaluated J function to computations of certain low order
ACI. It is necessary to have prepared compatible programs or sub-
routines to evaluate Coulomb integrals, Sturmian functions and
Gegenbauer Polynomials., Generate study of accuracy of results

compared to previous calculations by direct integration technique.

6. Determine an efficient computer index storage scheme: to allow
evaluation of large numbers of partial derivatives of high order
J functions,
7. Derive algorithm for exact evaluation of derivatives of terms such
as: IN [Pol omial 1(8 Variables)
e olynomia ariables):*

8. Prove validity of the above.

9. Apply logarithmic derivative algorithm to appropriate portion of J
function; compare accuracy of results to approxiamtion techniques.
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10. Apply logarithmic derivative algorithm to low order ACI calculations;
compare accuracy of results to previous study.

11. Compute high order ACI.
3. MATHEMATICS

3.1 The following function (J Function) is given by the Initiagor1
[p. 17, Eq. 19]:

JYSa8 _ m2
2(fga®b?c?8%-ega’b2d?y2-fb’c?d?a?+ea2c2d?p?)

X fn fabcd+abdy+acdB) (gabcS+beda+eacdB)
Eea537+a5c8:5c3a5[ga537+ac33+!5c3a5

where a, B, Y, § are expansion parameters; e,f are particle mass ratios;

a, b, ¢, d are dummy variables introduced in a derivative substitution
technique.

3.2 The Atomic Coulomb Integral (L integral) is givenl[p. 17, Eq. 20]:

8 § S a Sau
Ln"'on"og'onoB = NI'"O Nn"o Nz|o Nso x{DZ'"n"n'!Bl JY B}a’b’cld & 1

1 where N are normalization factors of the Sturmian function.

3.3 The differential operator, D, is definedl[p. 17, EBq. 21]:

n'_p P
i, SRR s, oy
n''' n" n' n A P1=O n"'o ayz acz
" n =P p, ! n'-P -1 P
n -1 T 2 n-1 4 ok 3
x £ st ) oS X
P =0 il 342 P =0 da? da?
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3.4 Derivative Algorithms for Numerical Evaluation

The method taken to evaluate partial derivatives of the J function with
respect to (a,B,Y,6,a,b,c,d) consists of being able to define evaluations of d
partial derivatives (to as high an order as required by the full evaluation) '
of each component term of the overall expression, and then being able to
algebraically combine the partial derivatives of those terms in a manner
which forms the evaluation »f the partial derivatives of the sum, product,
reciprocal or natural logarithm of the given component terms. By defining all
partial derivatives of all component terms of the J function, and by using
a high speed computer to evaluate the expressions and manipulate the combining
of the expressions, the evaluations of the partial derivatives of the full J
function can eventually be obtained.

Obviously, algorithms are required, based principally upon Leibniz's
Rule, to form the evaluations of partial derivatives of Products of terms of
polynomial functions of eight variables, reciprocal of such a term and the

natural logarithm of such a term.

The algorithms used to perform these operations are given below.
3.4.1 Derivatives of a Product of Functions of More Than 1 Variable

bl s Lo B MY ) R
? 1 2 1’ 2

Dxl xz (f(x)g(x)) = I I (£(x)).
l, 2 i i =6 iz=° e e i i e e Dxl.x e e

1
2

Il-il,lz-iz e
Dy X .. (8(9)

where Dg (f(x)) represents the Nth derivative of f(x) with respect to variable xi.
1
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3.4.2 Derivatives of a Reciprocal of a Function of More than 1 Variable

I-1

LR L
Bt (1/£(x) = -
l‘ 2 e il=° .

™ -

£ i T T _
1/£(x)) Dxl ’ o (f(x))/£(x)

X
. ke

3.4.3 Derivatives of the Natural nggrithm of a Function of More Than 1

Variable -
II’I ,Ia s e e IN Il Iz 13 eeoe In-l I I
By' o5y . fmEE)E = I z z z 1)( "2
e T SR i=o i=o i=0 """ i=o \i/J\i,/\i
1 2 3 n
I.-1 i
N Fatigttl N
= Det o e R
. XX X
iy R N

I-=1 T =il =i o
D1 2 3

I -1

N °N {
£(x)}

X oX X ... Xy

3.5 The expression selected to approximate 2n(x) terms in the initial
evaluations of the J function consisted of:3

T U S BT
n x = 2 [2;-“7 + -3-[‘)':_*.—1) + 'g'(%q) + ...] (x>0)

Derivatives of this expression were initially obtained using the product

and reciprocal algorithms defined above.
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3.6 An example of introducing substitute derivative expressions with dummy
variables to evaluate an integral expression is given below.

Given

2
T =V%r

o~

Find
2
L xte ™ dx =

Introduce dummy variable o

2
J; ® o™ gx

e
a1

Take 3% of each side

° o
Rewrite
'I:o 2 e'axzdx i A NE
k1) 4 a372
3
Take -5-&

Evaluating at a=1

-()x* 1 RV
S° x2e-(1)X° _Ag_ =
(o 4 J3/2 asl 4
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3.7 Derivative Variable Transformations

Derivatives were evaluated with respect to first order variables but were
required in the differential operator, D, with respect to second order variables.
Therefore, the following relations were applied to each term of the Differential

Operator:
3.5 1)
T T T B
ax? x ax!
3.° 1 3?2 S
v WeR GG B _
ax2 a2 axz X oaxt :

3.8 First Order Derivative Expressions

Expressions for certain first-order derivatives of the J function were

derived and are presented below:

Given:

yéaB _ w2 1 £6+y+B) (gd+areB
5 T 7 ™ [eysea) %zwﬁ'«fa%]

£g62 - egy® + ep? - fa

Rewrite: ]

-1
%JY‘S“B it (ngz—ngz*'eBz-sz) [&n(£6+y+B) + &n(gé+a+eB) -
T tn(ey+8+a) + 2.n(g‘Y+B+fG)]

3.8.1 : J
]

- ‘

-'f' %—f;é- [(-1) (£g62-egy®+eB?-fa?)  (2£g8)][«n( ) + &n( ) - &n( ) - &n( )]

" .

iy :

|
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3.8.2

3;- 5%- §§-= [(-1) (-2) (2£g5) (£g6%-egy?+eB?-£a?)  (-2egy)][%n + fn - fn - %a]

|

+ [(-1) (2£g8) (fgb2-egy®+eB?-fa?) ][;3%-7-;5 . W:E;E 3 g—y';hi] ]

-2 .
* [(-1) (£g82-egy*veB?-fo%)  (~2eg0)]lggiveg * crrire ~ syeova)

+ [(£g62-egy?+eB?-fa?) ][ CLE s ol
(£6+y+B)?  (ey+8+a)?

3.8.3

L1
3

2o
Heo
eq"e.

[ (24 16)e2£2_§2u876, 1 [%n £8+y+8) ( 6+a+e6)]
D% 53743-&(;) (gY+B+fa)

48e? f;LBYG 1
6, D* [gsmuiﬁ T ey+S+a gy+B+Ta]

=

48ef2g2ady 1
- B v * awE -

+

48ef?gaBs. . 1 e
[ D* ][f6+y+3 T ey+S+a g'y+E+fa] 1

48¢% fgoBy
- L_Ji:fEL_4[ e .1TJ;;ﬂ; )
gefg’ys e o
+ [ P ][ — ]
D (g8+a+eB)?  (gy+B+fa)?
. | engI][ e . fg 1 g

p3 (ey+6+a)? (g‘y+B+fa)2‘

+

Lo - TR SR SRS .
p? (gS+a+eB)? (ey+6+a)2
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5 [in£2§4[ A5E = 1 |
D3 (gy+B+fa)?  (£8+y+B)? ‘

[8efgay][ eg f ] |
D} (g8+a+eB)?  (£6+y+B)?

8efaf, e £ |
= e [ - ] |
D (ev+8+a)?  (£6+v+B)* ~

[ngG][ 2fg ] + lzegx][ 2eg ]
2 3 2
D (gy+B+fa) D (g6+a+eB)?

+

2081[ 2e £ an,[ 2f

&) ] ] ]
D?  (ey+é+a)’ D?  (£8+y+B)°

where D = fgé?.egy?+ep?-fa?

s b

4, VERIFICATION OF SUBROUTINES PRODUCT, RECIPROCAL

Suitable polynomial functions were selected which allowed evaluation of
derivatives of their products and reciprocals by analytical methods. As it is
unrealistic to analytically evaluate derivatives of products or reciprocals

:
4

of expressions of functions of eight variables, functions of three variables
were used. This was felt to be sufficient to show that some method for dealing :
with more than one variable is either valid or not valid. The algorithm derived
should later be able to be expanded by symmetry to include any number of subse- l
quent variables. In addition, the particular computer softﬁare, CDC 6600 ]
FTN 3.4.3, was found to be bounded in subscripting capability to three indices.
As a minimum of time was desired to be spent on the programming of supportive
test functions for numerical evaluations, this factor was taken into account

when initially deciding to limit the testing effort to functions of three

variables.

Computational results showed that the derived product and reciprocal
algorithms for functions of three variables were valid when compared to analytic
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evaluations involving the same processes. As an additional test, use was made -

of the property that 2%§l

+ 0 where K is any constant. Considering that any
1nde£ing scheme for control of storage of large multidimensional arrays can
readily become complex, it was felt that a proof based upon this property
would lend considerable confidence to the validity of the computer programming
of the algorithms into general storage subroutine form. As a guide to the
Scientific Programmer, it should be noted that, with respect to all of the
derived algorithms, the value of the differential is stored in an array whose

indices ean lead to the order of differentiation.
Therefore, the following test was devised:
Given: f = f(x,y,z), g = g(x,y,z) and all derivatives of f and g through

on
3xn8ynazn

1. Evaluate all f and g at some (xo,yo,zo), and store in multidimensional
arrays F,G

2. Form array P = FeG using product algorithm subroutine

3. Form array R %-using reciprocal algorithm subroutine

4. Form array Z = ReP using product algorithm subroutine

The contents of array Z will then be
Z(1,1,1) = 1.

all other Z(i,j,k) = 0.

This test not only indicates validity of the algorithm and computer sub-
routines, but also indicates any level of roundoff which can be attributed to

the methods (in conjunction with the specific functions and data values selected)

for the steps outlined.
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S. PROGRAM ;

Functional Description

1.

10.

The logical computational procedure for the action taken by the computer
program can be broken into a series of sequential steps. Consider that the
function to be evaluated,J, can be simplified to the following expression:

where A,X,Y,M,N,0,P are polynomial functions of eight variables,

and Q is a real constant.

B Then the program logical procedure for numerical evaluations of the J
function and application to ACI can consist of the following:

A= QR () = AP WGy

Calculate and load into arrays .+ d"(0), dn(P)
Calculite derivatives of product : dn(o-P)
Calculate derivatives of reciprocal : dn(G%pJ
Calculate and load into array : dn(M)
Calculate derivatives of product : dn[cﬁépa M] ]
Calculate and load into array ()

Calculate derivatives of product : dn{[(G%FJ (M)]*N

Calculate and load into array dn(XJ

Calculate derivatives of recirprocal : d"(%;

Define constant Q




13,
14,

15,

A o T = T e e & b
Calculate derivatives of reciprocal ; d (3

Calculate derivatives of &n term : dnlln(Y)]

Multiply derivative array by constant Q
Calculate derivatives of product  : d® [(Q) fa(Y) (-lx.)] = d"(A)

Select derivative terms to apply to ACI calculations, and generate
family of integrals.

In addition to several test sequences of certain variables which deﬁgpstrated

characteristic properties of the J function, two specific data sets were applied

to the -finished program, and are given below as a matter of reference.

VAR SETL SET2
o 2.31 2.31
B 2.31 1.14
Y 2.54555 2,54555
) .7093 2.54555
a 1s ; 1.
b 1. 1,
c 1. 1.
d 1. 1.
e .000136 .999864
f .000136 .5

Computational Results printed by the program include a list of the input data

parameters, a list of all partial derivatives of the numerically evaluated

differential operator, and a list of values of the associated family of Atomic

Coulomb Integrals.

6. VERIFICATION OF J DERIVATIVE EVALUATIONS

To test the evaluations of the J function, certain low order terms were

determined analytically and hand evaluated at selective data points. These

included:
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Jooab

a_ 3
. OF

3.2 3 _ooaB

G2 87

2
w7
3 2 2
6o Gp 17
evaluated at the points a=b=c=d=1

e=f=]

v=6=0

a=1.0

B=1.01

In addition, the analytical expressions for the first order derivatives of the
J function up to %E' %E ~%7 '%K-JYGQB were determined and coded as a supplementary 1
computer program. This was extremely useful in debugging the initial stages

of the prinéipal program to evaluate the general J expression, in that computa-
tions were compared for validity and degree of accuracy. Also, insight as to

the behavior of the component terms of the derivatives of the J function was

gained at this time, which was to prove valuable at a later time, during the

study of computational accuracy of higher order ACI.

Other analytical studies focused upon the probable cancellation of terms
in the denominator of the J function, under certain conditions of equality of
pairs of terms, as suggested by the initiator on the basis of known physical
relationships of the parameters. These include (at‘a=b=c=d=1) a=B and y=6.
While certain terms dropped out, no obviously significant pattern of cancela-
tion was observed. This study became more significant during the study of the

A\

accuracy of the ACI evaluations.

7. COMPUTER CORE STORAGE

In programming the initial studies of the J function it became obvious that o

the two-ssandard principal computer difficulties to be overcome (central




i
i

processing time/core storage) one, C.P. time, would be of considerably less
I impedance. This was due primarily to the ease and speed of computation that
E the product and (most particularly) the reciprocal algorithms allowed. Even
when extrapolated from functions of 3 variables to functions of 8 variables,
it was obvious that although still large compared to other major efforts
typically submitted to the machine, the C.P, time would still be within some
realistically manageable range.

e RS RN R

T O

polory

et LR

The core storage problem, however, when dealing with the derivatives of
a function of eight variables, immediately attracts one's attention. The
: following chart may help to explain why. Consider that one has only a function
E of two variables. Then, letting F = f(x,y) the storage required to hold all
of the evaluations of partial derivatives to a given order, N, can be graphically

presented as:

)
d > 0 1 2 ; N
dy
i oF 32F 2"F
| 0 F o . s
, X ax? ax"
E
E 1 oF 3_ OF I
. W 5-'): 5; -5-)7 axz s
3%F | 3%F OF 3%F 3%F
x i b e fear
3y )% dy? ox
P
ay" " ax"
r -
r.
. Figure 1 - Partial Derivative Storage Format
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Notice that the location containing any E-E' 3—§-holds the value of the
dy X
derivative evaluated at some given (x,y). One sees readily that the space

required for a complete order of partial derivatives can be determined by:

Storage = (order of derivative + 1) (No. of variables)

A storage requirement chart can quickly show the limitations imposed upon an

array size in terms of number of variables and order of derivative.

NO.

OF ORDER 2 3 4 5 6

VAR.
1 3 4 5 6 7
2 9 16 25 36 49
3 27 64 125 216 343
4 81 256 625 1296 2401
5 243 1024 3125 7776 16807
6 729 4096 15625 46656 117649
: 2187 | 16284 78125 279936 823543
8 6561 | 65536 { 390625 1679616 | 5764801

Figure 2 - Core Storage Requirements -
No. of Variables Vs. Order of Derivative

When dealing with a function of eight derivatives, one sees immediately
that direct core is no longer available certainly by the 3rd order derivative,
even on larger machines. One should also bear in mind that the storage
requirements given above refer only to one array. Analysis of various means
of evaluating the given J function showed that a minimum of 4 such arrays would
be necessary. This meant that the analysis of L integrals would be limited to
approximately (n'''=n''=n'=n=2) if the entire J function would be calculated

with the contents kept in core.
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Otherwise, several options are open to the programmer/analyst:

1. Investigate and apply external core storage capability, such as
magnetic tape or disk. (Virtual Memory)

2. Break analysis into smaller steps keeping only results required by
further analysis. .

3. Determine those specific parts of the J function required for evalua-
ting the L integral (mot all partial derivative components of the
J function are used by the differential operator, D), and find a
means to limit the calculations to those levels.

4. Continue to solve the J function analytically, such that when
eventually applying the product and reciprocal subroutines the numeri-
cal analysis starts at a higher level.

5. Transform the J function to allow derivatives with respect to a?, B2,
y¥2, 82, rather than o, B8, v, 6.

6. Solve the J function (or the L integral, since that is the function
to which the J function is eventually to be applied) analytically,
either in terms of some variable or, preferably, variables, thereby
significantly reducing the overall number of variables to be kept
in storage when evaluating derivative expressions.

8. ATOMIC COULOMB INTEGRAL CALCULATIONS

As shown in the mathematics section of this report, an Atomic Coulomb
Integral (L integral) can be calculated by applying the differential operator,
D, to the derivatives of the J function, in conjunction with the appropriate

normalization factors of the Sturmian functions, N. -

Those ACI which could be calculated without requiring extensive external
computer memory subroutines were programmed to allow evaluation of the overall

procedure and to test those routines required for storage of derivatives of

functions of eight variables.

Under these conditions, all ACI from order L1111 to order L2222 were
successfully calculated. Comparison of some of the lower order integrals to
results previously calculated b~ other techniques indicated that the accuracy
of the newer calculations was improved. To show this effect more clearly,
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and to indicate the overall degree of accuracy of the derivative technique,
an additional version of the program was generated using double precision
computation, thereby allowing the accuracy of each term of the L integral to
be defined when compared to the single precision computations.

In this study of accuracy, a pattern of decreasing precision was obscived
which eventually limits the evaluation of the L ingegral. To ensure that
such loss of precision was not a result of programming errors, a roundoff
error analysis was applied to both the single and double precision versions of
. the program.' The minimum detectable delta was applied to each input parameter
to allow observation of the effect of a small change in input with respect

VNIRRT R L A P e

to computational output over the full range of evaluations. The results of
this test supported the conclusions that the overall precision of higher order
ACI computation is eventually limited. Whether this is an inherent charac-
teristic of the expression being evaluated or a function of the applied derivative
technique was not determine at this time.

9. CONCLUSIONS

In reviewing the results of the application of derivative algorithms to
a high speed computer to allow evzluations of partial derivatives of the J
function and the numerical computations of certain ACI, it is seen that

eventually other techniques are required to evaluate higher order ACI. As
noted in the study of computer core storage requirements, the applications of
several other methods of combinations of numerical analysis/scientific pro-
gramming techniques could be investigated. In addition, the specific reason
for the eventual loss of precision in this analysi; should be determined.

Of the options available from the above methods, that most likely to yield
accurate results in the evaluations of significantly higher ACI would appear

" to be of some form involving item 6; that is, an analysis which reduces the

number of variables involved in the evaluation of the J function or the L
integral, yet which retains a format whereby the power of the derivative
algorithms derived herein can still be realistically applied to the computer
to allow numerical solutions to the problem.
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Under this consideration, a method outlined by Calabi’ has been briefly
reviewed, where an outline is formulated which shows that ACI can be solved
in closed form according to evaluations of sums of derivatives of functions

- from which selective poles are removed, as typically resulting from Cauchy's
Residue Theorem as applied to closed loop integration. It would be necessary
to investigate whether such residues could be evaluated by use of the deriva-
tive algorithms already derived and applied to the J function of this problem.
In addition, it would probably be necessary to derive a new algorithm, com- .
patible with those already applied, which would allow evaluation of derivatives :
of certain functions of the form:

. L
: 2 B {fun) v = 600] x = x,

ax 3yJ

Gag i

One advantagé of being able to apply these derivative techniques to the
Residue Theorem lies in the fact that the number of variables over which

differentiation takes place can be reduced from eight to possibly two, thereby

: * exponentially reducing the amount of core required and immediately allowing |

; evaluations of much higher ACI.

é ! An additional advantage would appear to be that the ACI analysis can be ;

F carried out in its general form, that is, not subjected to certain constraints ;
(subscripts £,2! = 0) imposed by application of the J function. : ;

On the surface, it appears that these results could be accomplished,
thereby allowing the initiator to calculate full families of ACI which could
then be applied to the solutions of higher order problems, such as the application
of a matrix of ACI in the determination of the bound energy states of certain
molecules. }
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Fouwrien Analysis of Wind Senson Data

Initiator: Dr. E. Dewan
Problem No: 4806 . Project No: 6687

This problem involved Fourier Analyses of wind sensor data. The process
used in this analysis is to find the average Power Spectral Densities (P.S.D.)
of many consecutive (8192 points) sets of input data. The averaging procedure
should improve the stability of the results.

In order to improve the results of the analysis, the data is pre-
whitened before finding its P.S.D. and then post-darkened after the P.S.D.
is calculated. Pre-whitening is useful in order to minimize leakage of Fourier
power from the very large low frequency power to the smaller high frequency
power. The pre-whitening used is to analyze first differences of the data. The
effect of using the first differences is to multiply the original P.S.D. by
2-2 cos (%;9 where F is the frequency in cycles per time unit and Ny is the
nyquist frequency. Post-darkening is accomplished by dividing the resultant
P.S.D. by 2-2 cos (%;9 to remove the effects of pre-whitening.

The results of this problem is a P.S.D. which decreases rapidly with
increasing frequency until about 2/3 the nyquist frequency and then begins to
level off with frequency. These results were not unexplainable and have been

used by the investigator.
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Fournier Analysis of Doppler Data

Initiator: Dr. Kurt Toman
Problem No: 4810 Project No: 5631 ]

This problem involved Fourier analyzing Doppler and various control
data. The Initiator wished to study how the Power Spectral Density (P.S.D.)
of his data varied with time. Towards this end short segments of the data
were analyzed for their (P.S.D.). The data segments analyzed were for a
particular time duration (T). Generally, all data segments for which the
time duration (T) of the data was available were analyzed and the resultant
P.S.D. versus freauency was plotted for each possible starting time. This

set of plots will be referred to as the isometric plots.

Originally, linear methods of Fourier analysis were used to analyze
the data; but in this most recent problem, a method known as the "maximum
entropy method" (M.E.M.) has been used. M.E.M. was originally suggested
by Burg (1967). In the analysis for this problem the method used is that
described by N. Andersenl. Recently, it has been suggested that the

algorithm used by Andersen is inaccurate (Dr. Paul F. Fougere of AFCRL

private communication) and a "new" algorithm is to be tried, However, under our
existing contract (F19628-73-C-0136) the Andersen algorithm has already

been explored. The Andersen algorithm was independently derived and pro-
grammed by Dr. Rajan V'arad2 of this laboratory and his subroutine was

modified and used in the studies. The flow chart de;ived by Andersen

follows:

. On the Calculation of Filter Coefficients for Maximum Spectral Analyses by
N. Andersen in Geophysics Vol, 39, No. 1 (February 1972) p. 69-72.

‘ Data Processing With Different Techniques for Cross-Power Spectra by
W. Pfister, G.S. Sales and R. Varad. Environmental Research Papers 506 AFCRL
Report PR 75-0194, :
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t=1,M1 :
aa(t) = a(t)
t = 1,N-M
bl(t) = bl(t) - aa(m-1)*b2(t)

m b2(t) = b2(tj) - aa(m-1)*bl(t+1)
nom = den = 0

t = 1,N-M
p=0 ‘-—-———-—-44 nom = nom + bl(t)*b2(t)

t=1,N den = den + bl(t)**2 + b2(t)**2| |m=m+1
P = peX(t)**2 a(m) = 2*nom/den

P(o)l- P/N p(m) = p(m-1)*(1-a(m)**2)

m=

bi1(1) = X(1)

No

b2(N-1) = X(N) 0 Yes
t = 2,N-1
bI(t) = b2(t-1) = X(t)

t=1,m-1
a(t) = aa(t) - a(m)*aa(m-t)

From a set of N equally spaced values (x(t)), this algorithm finds M
coefficients (ap) and the square residuals of the linear filter (Py) such
that for a time spacing At the P.S.D. for any frequency P(f) between 0 and
the nyquist frequency is.

PM*At

i ® 2
Il 3 }g:a.e 2mi* f*m*At
m=

In the program, written for this problem, P(f) is initially calculated
for a grid of f values (fi)° This grid is usually made up of equally spaced
f values. The equal spacing is modified, however, to assure plotting at
frequencies specified by the Initiator. The results are modified whenever
a maximum is found in the P(f;) values and the maximum P(f&) occurs where
3 < j <N-2. In this case, the values of P(fj-z)’ P(fj_l), P(fj), P(f‘*l)
P(f3+2) are modified by using the average values found by applying a trape-

zoidal rule to the P(f) between fj_2 <f f.fj+2' Thus, let

P(f) =
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and then P(f i) is reset to

P(5.0) (f5, - ;).3) $PE P (5, - 50

P(E; ) =
j-2 i1 - 53

1
P(f5 ) = P D

; ' P'(fj) = Fifjs

P(£;,)) = PUE, T

{ P(f

. P(fj+2) (1-‘:“3 - ?qz) + FIFJ’ZS (542 - qu)
j+2 “je3 -Tj*l

where fo = fl and fN»l = fN

* ‘ ] This correction is necessary because the maximum entropy method makes
the P.S.D. very peaked, such that the amplitude of the peak is not a "good"
measure and that is what the correction attempts to simulate. This idea was
gleamed from reference (3) below.

5a Comparison of Power Spectral Estimates and Applications of the Maximum i
Entropy Method by Henry R. Radoski, Paul F. Fougere and Edward J. Zawalick
in Journal of Geophysics Research Vol. 80, No., 4, February 1, 1975, p. 619-625.
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The actual program, which will be submitted to the SUYA computer
program library upon co-pietion of this problem proceeds as follows:

a. Linearly interpolate the input data td assure equally spaced data.

b. Take a first difference of the input data. The program processes
these first differences. This procedure has been found,
empirically, to filter out a red-noise behavior of the initial
data.

c¢. Find a set of coefficients from the M.E.M. for the entire data
set. Calculate the P.S.D. and bar-graph the logarithm of the
P.S.D. at a set of frequencies g;- The gi's are usually equally
spaced with a spacing equal to a fraction (input data) of the
resolution frequency found for a linear Fourier Analysis of the
data. The spacing of the gi's are varied to have the plotting
frequencies specified by the Initiator.

d. Calculate and plot the "isometric" plots P(fi) described above.
e. Repeat c.

f. Calculate and plot the results of a Kolnogoroff-siirnov Test on
the results of c. This shows whether the data could be explained
as due to random noise.

From the results of parts c. and f. above, it has been assumed that
the procedure using the entire data set gives very stable, and probably
accurate P,.S.D.'s. The results of d. are more suspect but do seem to allow
identification of the presence of power at particular frequencies and how
the P.S.D.'s behave as a function of time.

To test the results of the program, several test runs were made. These
runs were made on data consisting of one or more frequencies plus some
random noise. The random noise was necessary because the M.E.M. breaks down
when the noise level is zero. The test results show that the M.E.M. is
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better than a linear Fourier Analysis in predicting the frequencv of an
input signal. The M.E.M., however, did show some error in the frequency
found and some double peaks where single peaks should exist. It is hoped
that the "correction" suggested by Dr. Paul Fougere will provide more

accurate answers. Towards this end, a program is being written to test
Dr. Fougere's "correction",
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Analysis of Vapour Trail Data From Photographs

Initiator: Gordon Best ,
Problem No: 4818 Project No: .7635 }

This problem involved the analysis of photographic data representing a
vapour trail released by a rocket. The task was to determine how the vapour
trail behaved with time and thereby infer the velocity versus altitude profile.
The difficulty arose from the fact that the altitude of the portions of the il
vapour trail seen in the photographs were unknown.

Attempts were made to fit the data to velocity versus altitude models
with unknown parameters. These attempts were unsuccessful as the results
indicated that a very '"good" guess to the solution was necessary before the
parameters could be determined. A more successful procedure eventually was
instituted.

The method tried, under an earlier problem, involved finding a wind

velocity versus altitude curve for each azimuth and elevation reading determined
from the photographs. These wind velocity versus altitude curves are the locus
of points which would lead to the particular azimuth and elevation reading.

Thus let Vi,g(A) be the wind velocity of the Ith photograph, taken at |
the Jth site (assuming altitude A) [There are three sites (J values)]; then, %
for a particular azimuth and elevation reading say VL,M(A) the program searches !
for the minimum of min IVL,M(A) - VI,J(A)I where M#J and with this restriction,
we search over all possible values of I, J and A. The program indicates the
values of I, J, A and VL,N(A) determined by this procedure. The point VL,M(A)’ A
may be one point of the desired velocity versus altitude profile. The results
of this analysis gave a rough indication of the actual wind velocity as a
function of altitude.
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The procedure here was refined as follows:

To find a minimum of min ((VL,M(A) - VI'J(A_))2 + (VL,M(A) - Vs,t(A))2
* OV 0 - Vs’t(A))Z). Where MgJ, M#t and Jft, thus we consider one point
from each site. Again, with these restrictions we search over all possible
values of I, J, s, t and A, After finding I, J, s, t and A by this procedure
the value of

VA V) 2V )
-5

is considered to be a possible value of the wind velocity at altitude A. This
procedure leads to a more refined estimate of the wind velocity as a function
of altitude.

At the present time, the preceding method is being refined to interpolate
petween azimuth and elevation points. We hope to further refine the wind
velocity profile.

In o:ﬁer to implement the following procedure, we need to find VL,M(A)’
Thus, let xr be the position of the rocket at time ta- Also let AZ, EL, t be
the azimuth,elevation and time of the reading L,M. Further, let A be the
altitude of the rocket at time tp- Then if L,M is due to a vapour trail at
altitude A, its coordinates (in rectangular coordinates) are calculated as

follows:

ik

Let ¢.be the geodetic latitude of the site
A be the longitude of the site,

Then from (page ).1 a rectangular coordinate system of this site can be

expressed as

. Application of Vector and Matrix Methods to Triangulation of Chemical
Releases in the Upper Atmosphere by Antonio F. Quesada, AFCRL Environmental
Research Paper No.: 351.
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p=X [ - + h] cos$ cosA :

\/1 - €2 sin% ; i

+ ; [ : + h] cos$ sinA

\h - €% sin%}

‘2z [ a(l-e?) + h] sin¢ ‘

\h - €2 sin¢

where if the shape of the earth is assumed to be an ellipse

a is the semi-major axis (equatorial radius)
b is the polar radius

4 e S e A 5 ot S s

€ is the eccentricity

h is the altitude of the site
and therefore
- z 3
g% ” - 2 + h| sing cosA + L3 T sing cos?¢ cosA
1-¢?sin¢ (1-e%sin%¢)"*
dx — K
ax

] cos¢ sinA

Baind
| V1-€“sin®¢

-g% = sind cos\ £ |

2

% = - [_____a___ + h] sin¢ sin) + gt T cos?¢ sing sind

V1-e2sin2¢ (1-e*sin’¢)

%= ——2 4 h| cos¢ cosA | ’
Vi-e2sin2¢

% = cos¢ sinA ‘
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d. gimp

A veading of AZ,EL defines a vector in the divection (pA'.)

- h(staBL)
o8 (cos(AZ) cos(BL))
oA (-sin(AZ) cos(EL))

Pa8

mn;. ;.aqdimnctmo!uu length.

Now transformatioms of ;,,;, i into i. §. i (vectors of umit leagth)

coordinates is

%, * s1n(El) & ¢ (cos(A2) cos(ar)) F ¢ (-staca)) coscan)

e snew o coon2) o) F o (staian) o)

M..h'm.gtuxuyor:.nuoun

,1;“
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T e ML) I ¢ (cosAD) cosaty) ¢ (-stnaD) csncw) §
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' da
da db

-’ da,? ;a ., da.z
' V[(gx’ @ T

Therefore, we can calculate the position of the site (xs, Ys’ Zs) and

the possiBle points at which an azimuth, elevation reading point ; 1
xp = xs + er (la)
Yp = Ys + BYr (1b)
i Z, +'BZ (1c)
where B is a parameter.
Next we consider what value of B would explain an altitude A for the
vapour trail. If the vapour trail is released at altitude A, it is assumed
to be blown by constant winds (for the time interval considered) such that it
stays at the same altitude above the earth. Thus, the position of the vapour
trail is on an elipse which can be described as
T=12 b, sin's + XC + yD (2a)
1
with
c? + D? = a2 cos?(s ) (2b)
r 2 *
where 8, = a+A2, br = b+A and s is arbitrary. Then we must have from (1) and
(2) ]
b, sin(sz) =2+ BZ 3) \ ;
and y ! 4 S -
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a, cos (sz) (Ys + BYR) + (Zs + BZRD
Assume we guess sz-s* B=B*
Then

Beh e il e
; % sm(sz) e oL zk

R = a: cos? (s:) - (X + I!")(R)z - (Y, + B'Yk)z (4a)

3.‘3l Lt
-;s-; = br cos(sz)
3!!1
= -7
.
oE
i iaat * »
& - 2ar sin(sz] ;os(sz)
aaz . . .
-a—;;l -Z.XR(xs + B XR) -2 chxs + B_YR)

and usixig Newton-Raphson's method we can converge to a solution for B and S,
N

We also know the original position of the rocket so s = tan™!

, R ) !
{ [—‘-1-'- tan ¢s) where ¢s is the latitude of the rocket at altitude A.
T

& o Then .assume constant latitudinal winds xl(A) at altitude A or

e ' o wiat gt 2 .oe2¢ 98
'z i : Kl(A) ‘I;rsins+brcoss 3




" s v 2
, => ltl (A) (t‘tk) = {1 a, 1 ’. = cos“(s) ds
.. P T
f and since b, -~ ar
: s b2-a2
3 K (A) (t-tp) ~ L2 arq + %(—"_-E) cos?(s)) ds
3 1 at-" .
: r
i or
% 1 br-2r
Kn (A) (t-tp) ~ a; s + < ) (s + sin(s) cos(s)
s °r
] 1
and
: b2-a?
1 ) B i %
Kl(A) ~ 9 e a,r[sz - s1 + T( v ) (sz - sl + sm(oz) cos(sz)
T
- sin(ol) cos(ol)]
' Then since we assume the longitudinal winds are constant l(2 (A) at altitude A
4 : d\ PR
4 , : d_s'br sin s = Kz(A)
{ i or from
]
| dA _ dA dt
ds  dt ds
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K, (A) a:, sin(s) + bf_ cos?(s)

dA _
ds K (A) b_ sin s
1 r
(A) :
bz cOoS (s) ds
E “ ® T sin? (s)
Using
3 ot 2 2 2
a, =a, sin“(s) + a_ cos (s)
o 2
=> —,—-l.'_..- = az + az _C_O_s_ﬂ
sin?(s) T T sin?(s)
2.2 2
(A) a, (br-ar) cos®s -
—rcx)—m'm 22
T
a, K (A) bz--a2 ;
dX~——-m-ﬁ-(;T(1 —( az) cos S) ds
T
Now since
;g—:—-g = In (tan(%)) + Constant
and

fco:Zs :s 3 fsds - - fsin s ds = log (tan(%)) + cos s + Constant

This yields
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a_ K (A 5,

r o2 T gy P A o
(AP-AT) ~ m loL(t.m(z)) (1 + 5 e 1 ] cos(s) i
¥ s 3 : &
1
where Ap’ Ar is the longitude of the vapour trail at time t, rocket at time tp R
with
+ BY \
= =1
p tan (x = BXR
Let:.
. : p br-ag
S = (log(tan(zh)) - log(tan(-3)) (1 + 3 ——)
a
T

b2 a
%{ : ) (cos(sz) - cos(sl))
Then finally
b_(A_-2) K (A)
: Topir
K (A) ~ as 1

Using this analysis many velocity versus altitude curves were calculated,

plotted and compared. The results for one group of data lead to an estimate
{ of a wind velocity versus altitude profile. The results of another set of

data seem to indicate some inconsistency in the data,

This work is continuing.




