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PREFACE -

The effort described in this report is a continuation in kind of that
put forth under Air Force Contract F19628-70-C-0120. That effort was

summarized in a Final Report dated 31 January 1973, titled Numerical and

Data Analysis Techniques Applied to Scientific Research, AFCRL-TR-73-0433.
7~ 7~~c7

The editors and contributors wish to express their thanks to

j Dr. Paul Tsipouras of the Air Force Geophysics Laboratory (APGL) for his
invaluable assistance in the development of solutions to many of the

problems described herein. A similar debt of gratitude is owed to all
problem Initiators from AFGL for providing the detailed background informa-
tion regarding their particular problems .

Finally, our appreciation goes out to the support staff of this

• laboratory for their continual assistance in the program preparation of

these problems and in particular to Miss Mary L. Kelly for typing this
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DM05 ModL6Aca.t~on

Initiator : Mrs . I . Hussey
Problem No: 3018-3 Project No: 0001

I

The purpose of this work was to combine into one program two earlier
versions of DABOS, which is an orb it determination and ephemeris computation
program. From a mathematical point of view, the difference between the two
earlier versions was that one used the Jacchia 1964 atmospheric density model
and the other used the Standard Atmosphere Supplements 1966. These two density
models are rather similar and it was possible to intertwine the forimalae in a
very efficient manner, allowing the user to select which model was to be used
for a particular run.

~ho/c.t-TVun Pow~~ Spe.c.t’ut o~ Th..opo oca.tteic. &4gna.L6

Initiator: Mr. U. Lanuners
Problem No: 3&. 3 Project No: 8682

This prob lem required the analysis of sets of equally spaced data (X(I ) ) .
A program was written which transformed the original input data (X(I))  as -

-

follows: -

Y(I) = 10X (I ) /20

- The resulting Y(I)’s were then Fourier analyzed using a Fast Fourier
Transform and the results graphically displayed for the Initiator. In

• addition, the program was written with the option of analyzing various seg-
ments of the data and producing graphic displays of each segment .

z

1

— —~~~~~~~~~ ~~ • - --~~~
-

~~~~~~~~~~~~~~~~~~~~~~~ zA~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•



- 

- AnaLyo~~ o~ ELec.tn.amagne.tLc Wave4 and Twthule.nce

Initiator: Dr . R. Fante

Problem No: 3026-7 Project No : 5635

This prob lem required the generation of four computer programs , each of $

which studied the behavior of electromagnetic waves in the ionosphere. The
documentation titles for these four programs are:

1. Calculation of the Frequency Spectrum of a Laser Beam Propagating

in Turbulence with a Von Karman ’s Spectrum.

2. The Frequency Spectrum of a Plane Wave Propagating in Turbulence
with Constant Winds.

3. The Frequency Spectrum of a Plane Wave Propagating in Turbulence
with Random Winds , and

4. The Frequency Spectrum of a Flane Wave Propagating in Turbulence
with Random Winds varying along the Propagation Path.

The first program approximated S0(uZ) where:

S(~2) = ~~
. dRo cos((2Ro) (FU (Ro)j

where :

F1J(Ro) = 2S * (SIG*XKO*BLO)2/(41r2) 4’~ 
Ot 4 °° ~C$(X ,Ro,O)

with:

•(X,Ro,O) = X exp { PX2 + *(Ro.X.8)}

*(Ro,X,O) =~~~~~ dy F(y)

2
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F(y) = [1.5Z 2 
- l.86Z~”~ - .254Z ” ~ ] if Z < .7

= 1 + 
.489 

, if .7 < Z < 1.5
-

- (Z) 3 — —

I 
= -l + .994~~~ Z~h e~~~l + - + 

2187Z 3 I j
~ 1.5 <

where

- Z = [Ro2 + 2Xy Ro cosO + X2y2] 
2

SIG = .78 * XKO
2 * CN2 * exp(} Rii(BW))

p = — (S*SIG2/ ( 4rr)) + (—
n-----— + 

S 
* T2

2 4XKO Z*S (41TF 2)

+ SIG * S * T/ (2ITF) ) (XKO*BLO) 2

The integral ~J (Ro ,X,9) was evaluated by finding all the discontinuities in
F(y) and using a Simpson ’s rule type , numerical integration technique , for
each of the continuous line segments in F(y) for o < y < T. The integrals
over 0 and X used the technique described in reference 1. Here the X
integration was performed from ~ to XMAX , where XM~X is an input parameter,

-

- 
just as S, X~O, BLO and CN2.

The integration over Ro was performed from o to N~Ro, where ~Ro and N
are input parameters, where

• I ‘~j 
= 

~~~~~~~ 
for j=0 ,1, • 

NMAX

-• 
U A New Adaptive Simpson Integration Routine, Neil Grossbard, Space Data
Analysis Laboratory, boston ~~llege, Chestnut Hill, Mass. 02167; AFCRL-70-0504 ,
Scientific Report No. 1, September 1970.
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1w~ S0 (~~ ) ‘s we re calculated by using a NMAX long Fast Fourier Transform to

simulate a trapezoidal rule. Here NMAX = 2L (P.. integer) and < 2N ~ NMAX .

The second program approximated S ( ~2) where :

S (s) = ~- f °° du cos(~2u) [eT~~~~
)_ 1 ) ]

where

11/ 3
= 1 + 1.5 r~

2 
- 1.86 - 0.254 if 0 < < .7

.489
= 08 if. 7 < r i < l . S

(~~)

= 994~~fr~~~1/3 e~~ 1 + !_ - + 
175 j

~ r~ >1 .52 9~ 81r12 2l87~~

As in the first program a set of ~j values was obtained by using a Fast
Fourier Transform on ~~. [eT h1)_f ].

The third program approximated S2(~)

S2 (~ ) = du cos(~u)f~ d~ 
~
2/2 

[e
T
~~~~~ - 1]

Here the ~ integration was performed from 0 to TMAX , an input parameter. The
u integration was again performed using a Fast Fourier Transform to get a set
of answers at points cu as in the first problem.

A- The fourth program approximated S3 (cu) where:

du .J (xu 1/2) cxp [-u(1O~~+~ X 2 R)]
S (

~~J = c .~~ dx cos(HX) CXI) — T f  —6 0 (l+u) ’’’6

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —



where J0 is the Bessel Function of zero order . Here the u ingegration was

performed from zero to TMAX , where ThAX = minimum (UMAX, —, if X~I0). Here
x2

UMAX and U are input parameters. U is generally set to be the argument of
the £th zero of the Bessel Function. The value of £ is also read in and the
numerical integration starts with 42.. + 1 equally spaced values so that no
oscillation of the Bessel Function will be missed. The X integration is again

performed using a Fast Fourier Transform to get a set of answers at points

~j as in the first problem.

These programs lead to very fast, fairly accurate answers (at least two

significant figures). The Initiator indicated that these results were helpful

in his analysis of electro-magnetic signals in the ionosphere.

D.~gi.4odvx. Ete.6en.ta.t~on o~ Af lA.LuaL AngLe 06
- lono4ph e/ci..c!. Waue.6onino

Initiator: Dr . W. Pfister
Problem No: 3028-6 Project No: 7663

A technique for measuring drift motion and turbulence characteristics of
various layers of the ionosphere consists of receiving reflected signals from

-

- - the ionosphere at various pulse frequencies in the MHz ranges of closely

spaced antennas and digitally recording the complex ampl itudes of the echo
pulses in the time domain. This is accomplished by use of a Complex Amplitude

Multi-frequency Scanner in conjunction with a digital ionosonde. =

The time domain information can subsequently be spectral analyzed for
power content, and the power per unit area can be presented graphically to
represent characteristic ionospheric fluctuations.

The purpose of this problem is to reconstruct spectral information and
to present a map-like display of reflected waveform axial projections by use
of a digicoder printing device. -

L.
5
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I A digicoder display Consists of a continuous printout containing 4 lines
of data. Each line consists of 256 characters1 allowing a 2-dimensional map

- - of (256 x N) characters to be printed. A unique numerical character set,

- specific to the digicoder , allows 16 values of perceptive weight to be ob-
served, thereby, adding the dimension of color density (white to black) to
the numeric content of each printed character. Thus, the points in a peak
of 2-dimensional data are presented as a darker area relative to background

information, when observing the total map of, say, (128 x 256) points, yet, r
the specific value of each individual point is retained on any given scale
of 16-point resolution.

- 

Input to the computer program consists of Doppler Frequency-related

Power, Coherence , and Phase spectra previously calculated from the Fourier
— Transform of the time domain raw data.

Basically, the phase relations are translated into angles in space, as
functions of the recording hardware operating frequencies and the geometry
of the receiving antenna orientations.

- 
The locations of the reflecting regions are calculated from the cross-

spectral phases between pairs of antennas, at those Doppler shifts characterized

by peaks in the Power spectrum. The cross-spectral phase provides an estimate

of the direction of the reflecting region. A band of width ~~ of the reflect-
ing region is related to the given spectral coherency (COH) according to:

= ± w ( l_ ~/~~ T)

F The intersection of 2 bands from 2 antenna pairs provides a parallelogram
I area :

. 1  - 2
A ~~~~~~ (1- 

~~
/

~~~~~fl (1- q~~fl• /~~~~2 1 2

where A = the transmitter operating wavelength

and a = the length of the antenna pair baseline

6

I
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The power density per unit area is defined as W/A, where W in this program
is the average power from 3 receiving antennas at a particular Doppler
frequency.

From the geometry of the 3 receiving antennas, three such parallelograms
can be constructed , and from each parallelogram, trapezoidal areas can be
projected onto X and Y axes oriented in the N-S and E-W directions. The sum
of the heights of 3 projected trapezoidal areas on a given axis is proportional
to the spectral density, W, and is indicative of the strength of the power
content of the given region . The angular location of the reflecting region
(see mathematics below) is given from the range over which each sumaed
trapezoidal area extends on each projection axis. From the sums of the
trapezoidal projections, then, two intensity modulated l ines can be displayed
on the digicoder, each as a function of Doppler frequency and arrival angle.

It should be noted that the program contains test criteria to avoid
• 

- phase ambiguities in the reflected signals. It was desired that the range
of the display correspond to the principal range of phase bet%.!een 2 antennas,
--it to it radians. The test criteria are dependent upon the antenna pair chosen
for-observation and the projection axis.

Each digicoder output map is specific to a given time of recording, which
is contained in a preface (identification) area preceding each power density

display. In the digicoder printout, 128 points of Doppler frequency are

presented along the vertical (length) of the display and 256 points (128 per
N-S and E-W projection axis) along the horizontal (width). In addition,
markers are presented every 16th character along the horizontal in the preface
area to assist in notation of scale. In the same manner, preface identifica-
tion characters are presented every 16th line along the left side of the
vertical to denote the scale of the Doppler frequency.

Overall , for one subcase of time, four such (128 x 256) point maps are
generated, each corresponding to a given height range gate on the recorder

.7
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The program reads input from a packed magnetic t ape generated at a prior
stage of produc tion processing. This program then generates digicoder
information on packed magnetic tape, to be used at a later stage of data
processing as digicoder input.

Mathematics -

1 Location of reflecting areas on X- and Y-axis:

Antenna Pair X Axis Location Y Axis Location

12 , 23 -• -, +2~/lOO .-.L (~~ + $ )
12 2 3  12 23

23 , 31 + 2cu/l0o 
- —L (2 $ + • )

31 23  31

31 , 12 + 2cu/-lOO ..L 
~~
- $ + 24 )

31 31 12

where •1z’ •23 and •3 1 represent cross-spectral phase from antenna pairs
12, 23, 31.

and cu = Doppler frequency under investigation.

2 Maximum Spectral Intensity projected onto trapezoidal areas along the
E—W (Y) axis. -

Area Reference No. Intensity

2 _ _ _ _ _
~ A $ +  

~~~2 3  
+ I~~ 12 

- 

~~ 2 3 I

3 Q .
21t$ + 2~~~33 

+ I 2~~23  7~$3~I

8
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Area Reference No. 
- - Intensity

- 1 q .

2 3 1  
+ ~~~ + I~~~~ + 3j - 2~, I

W 2rrctwhere

- IV = average power at a particular Doppler frequency

A = operating wavelength (meters) -

a = antenna baseline (meters)

- 3 Maximum Spectral Intensity projected onto trapezoidal areas along the
- N-S (X) axis. -

Area Reference No. Intensity

2 

~ 12 
+ A+

2 3  
+
1

i~, - +23 1

13 ~~~~• 
1

‘~ 2A+

‘ I I

I I

9
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VoppWt SIu 6t/ lono4p he/ii~ Rc4UctA.on

Initiator: Dr. W. Pfister
Problem No: 3028-7 Project No: 8658

This program is part of a data processing project called DAASM (Doppler ‘

Angle of Arrival Spectral Measurement), for detailed study of the ionosphere.

This particular effort involves the estimation of Doppler shift and the ‘ F

combining of three Fourier transforms. Signals generated in this case by a

moving aircraft are reflected by the ionosphere and measured on the ground .
The results are recorded on magnetic tape as a time series of digitized

complex numbers. The computer program reads the magnetic tape, isolates

samples about one minute long, calculates three overlapping Fourier transforms
from each sample, and attempts to determine the Doppler shift of the strongest
frequencies by looking for a consistent phase shift among the three transforms .
Then the three transforms are combined, taking into account the Doppler shift.

The results are written on two magnetic tapes, one in a format suitable for

the Dig icoder plotter , the other for input to other programs .

The raw data input tape is pre-positioned at the desired starting case .
An input card is read specifying the number of consecutive cases to be pro-
cessed. Each case occupies seven physical records on the input tape.

= Each case is then handled as follows :

The first record is skipped. Prefaces are extracted from the remaining

records and printed. Record numbers are checked. If normal sequence is
broken , the program starts again from the current record. Data are packed

into the array BUF . Then, taking one frequency and one antenna at a time,
we obtain three Fourier transforms from the three interlaced complex data

sets. (The three interlaced sets were all sampled the same way; sets 2 and 3
are just B = 6/25 of a step later than sets 1 and 2 respectively, where one

- step is the time between consecutive samples in one set, .25 seconds).

Each Fourier transform contains 256 complex points g~ , m = 1,2,... ,256,

each point representing the summed contributions of a whole family of aliased

10
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frequencies (rn-i + 256 n)/64 Hertz, n = 0 , ±1, ±2 ,... The problem is to
pick the a corresponding to the “best” (usually strongest) frequency in the
original sampled signal. For this purpose we assume that a singlç value
of n accounts for all the aliasing in the neighborhood of the best frequency.

We divide the aliased frequency range into four equal segments and analyze

each segment to see which best fits the model.

A displacement of At seconds in the time series sample causes phase

shifts proportional to frequency in the Fourier transform. If we assume as
above, that entry g

~ in the transform is all due to one frequency, namely
(rn- i + 256 n)/64 Hertz (n is a fixed but unknown integer), then a At displace- 

-

ment will cause a phase difference of At • (rn-i + 256 n)/64 cycles. And, if
the same n applies to a sequence of ga’s, the phase differences between two
interlaced transforms will be a linear function of m.

Let ~~~~ m~l,2,...256} be the transform of the 
kth interlaced time

series, k=l 2,3. The following expression uniquely defines p~~:

= II g~~ II exp (2ir ip~~ ) ,0 < < 1.

We have At = .258 seconds, so, if our model were correct we would have :

~ rn k+l - Pmk) = (B[(m l)/256’n])
-
- ‘ modl modi

or -

def
C~~ ~ m,k+l 

- - B(m_i)/256)modi = ($n ) modl

In other words, the c~~ should all be about the same and will tell us 
—

what n is. —

In each segment of the transform , (m = 1-64 or 65-128 or 129-192 or

193—256), we calculate the weighted average A of unit vectors with argument
2irc~~ on the complex plane. The weighting is with respect to power.

11 
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A 
k=i,2 in ~~~~ 

~~~~~~~~~~~~~~~~~~ 
exp (21ric

~~
))/ (

k~~ ~ ‘~~mk ~~~~~~~~~~~~~~~~~

~ 
IIg,~ 8m,k+1 exp 

[_21TiB(rn_ 1)/2S6]lI)/(
k~~~2 ~ ~~ ~~~~~

I
- - 

- 

We also calculate in each segment an estimate of the scatter of the

= 1_M*
1/ 2

We pick the segment with the smallest scatter. The corresponding value of A

yields our best estimate of n; we pick an ii minimizing:

h A/ h A ll - exp (21ri8n)Ih .

Since B = 6/25 and n is an integer, it suffices to consider n = l 2 ,...,25. 
-

•

With n and the best segment well determined, the three interlaced

transforms may be combined in a meaningful way. Let ~~ be the final subscript

of the best segment. in1, = 64, 128, 192 or 256. The new, combined transform

will cover the frequency range:

(1% - 128 + 256 n)/64 Hertz

to

(~~ + 127 + 256 n)/64 Hertz.

We arbitrarily assume that the phase shift is linear over that ent ire range
and that the ge’s are all aliased from that range. The phase of each g,,~ and
g~3 is modified to align with g~~, and the three are averaged. The results
are plotted and the digicoder with the Cab - 1 + 256 n)/64 Hertz line is in

the middle (i.e., the 128th point).

12
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This method breaks down for cases in which the original signal contains
two good frequencies which cannot without aliasing be included in a single
256 point range. Only one of the peaks will be smoothed correctly.

NOTE : The Fourier transform subroutine used by this program delivers

the usual backward transform. The write-up above, however, is
from the point of view of the usual forward transform, which
gives a larger phase to a signal sampled later. Thus, the

program’s G arrays are the conjugates of the g’s in the write-
up, the original signal also having been conjugated.

In other words, given a time series f
11. . . ,f256, subroutine FORER

calculates g1,...,g256 with 
-

- 

~~+1 = f~41 exp (imj 21r/256)
- -

of

25~~ 

-

- - 
- g~~1 = 

~II ~~~

‘
+~ 

exp (-imj 271/256)

The computer program outputs a heading including the input value of the
maximum number of cases to process.

Then, for records 2-7 of each case, it prints the prefaces. For each of
the two frequencies, first antenna only, these are followed by the segment
number of the best segment, the best value of n in that segment, the point

- 
- number in the original Fourier transfo rm which will appear on the extreme right

when re-arranged for the Digicoder plot, and the number of Hz , module 100,
at the center of the Digicode~ plot. Then come the Bn averages and associated
a estimates for each of the four segments.
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- Input Tape Format

Each case occupies seven physical records. Each physical record is
343-344 words, comprising 3430 to 3440 6-bit bytes. Before the input can be
interpreted, it must be aligned properly. Let k be the minimum integer such
that 250 < k < 323 and such that the kth byte of the rCcord is the beginning
of a 288 x 11 array of bytes with all zeros in the first 18 rows. If there •1is no such k, set k to 271. Slide the entire record so that the kth byte will
be in the 271st position. If k < 271 fill the initial part of the buffer with
zeros. Then the following format applies.

Consider the bytes to be arranged in standard Fortran order in an array
dimensioned (3, 2, 3, 4, 48). (The last few positions of this array will be
unoccupied). Then, for £ = 1, 2, 3, the Ci, j ,  k, £, m)-th byte of the
array is the ith byte of the mth sample from the £th interlaced set from the
kth antenna at the ~th carrier frequency. The three bytes (i = 1,2 ,3) in
each sample are: —

- 
- byte 1: IRe(z) I

byte 2: 1 in the 3rd bit (10 octal) if and only if
Re(z) > 0 pius 1 in the 4th bit (4 octal)
if and only if Im(z) > 0.

byte 3: lIm(z) I

For £ = 4 , m > 3, there is no data. - -

For £ = 4 , m = 1,2 ,3, there are 18 bytes available for each of three
“prefaces”.

Preface 1 - bytes 1-3 Code digits 6, 7, 3

bytes 4-6 Three decimal digits of day of year

~ 
j bytes 7-12 Six decimal digits of hours, minutes,

and seconds.

~; -~~

bytes 13-14 Code

14

~iII.__ i —~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~
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— Preface 1 - bytes 15-16 Two digits containing double the
(Cent.) record number within this case. -

bytes 17-18 Code 
-

Preface 2 - bytes 1-3 Three decimal digits giving frequency
setting of 1st antenna, jst frequency. -

:

bytes 4-6 Same as 1-3 but for 2nd frequency.

- bytes 7-12 Same as 1-6 but for 2nd antenna.

bytes 13-18 Same as 1-6 but for 3rd antenna . -

Preface 3 - bytes 1-18 Same as Preface 2, except 3 digits -

give range setting instead of frequency
setting. -

There is an end-of-file after the last record of the last case. -

If the first byte of a frequency is 0, 1, 6, 7, 10, 11, 12, or 13, the -

corresponding raw sample must be conjugated to compensate for a hardware
difference in the way the data were collected.

Output Digicoder Tape Format

The output tape is formatted for the Digicoder, a machine which produces
shaded plots.

The program writes two fi les, one for each frequency. Each file has a
header record, repeated 3 times, then one data record for each case on the
input tape. The header record contains preface information in various standard -

arrangements.

Each record has 245 words, or 2450 6-bit bytes. The last two bytes are
- -t - - 

- 
zero. The other 2448 are a 408 x 6 array, plotted in six lines. The first
24 bytes of each line are a preface, the same for all six lines, as follows.

15
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Bytes 1-12: Same as corresponding bytes of
Preface 1 of record 2 of this case
from the input tape.

Byte 13: Decimal integer 13

— Byte 14: Decimal integer 15

Bytes 15-16: Hz modulo 100 of center line, point 129.

Bytes 17-18: From input tape.

Bytes 19-21: Frequency bytes of first antenna, from
Preface 2 of record 2 of input tape,
bytes 1-3 or 4-6.

Bytes 22-24: Range bytes of first antenna, from
Preface 3 of input tape.

The remaining 384 bytes in each line contain 256 data values packed into

three bytes for each pair of values.

Byte 1: 1v1 1

- Byte 2: 50 (octal) if and only if v1 > 0 plus 4 - ;
(octal) if and only if v2 > 0.

Byte 3: 1v 2 ( -

Line 1 contains the real parts of the combined antenna 1 transform;

line 1~ the imaginary parts. Lines 3-6 contain the transforms from antennas

2 and 3, with the same Doppler shift.

Combined Aircraf t Data Transform Tape Format

This tape contains one file consisting of two logical records for each

case processed. There is one record for each carrier frequency. Each record

contains 1591 words as follows.

16
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WORDS

1-18 LPX array -of 18 digits from Preface 1
of the first record used in this case.

- 
Integers .

19-36 FREQ array of 18 digits from Preface 2
as above. Integers.

37-54 RNG array of 18 digits from Preface 3
as above. Integers.

55 Hz the number of Hertz at the 129th
member of the following transform. Given
module 100; -6 appears as 94. 

- -

56-1591 Complex array H in normal Fortran order,
dimensioned 256 x 3. H(I,J) = the combined
transform entry for the jth antenna at Hz
+ (1-129)/64 Hertz.

Sky PoI..wr2zcfi.on

Initiator: F. Volz

Problem No: 3034-5 Project No: 7621

— - 

A series of four programs were written to aid in the reduction of
observations )f neutral points of sky polarization in the clear sky during
twilight. The Initiator has data gathered over a three year period, showing
evidence of changes in relation to variations of stratospheric aerosol
content.

The main portion of the effort was directed towards presentation of
the data in a variety of printed, punched, and plotted formats. Certain

corrections and interpolations were performed. In addition, it was necessary
to write a subroutine calculating solar elevation as a fun ction of date,
Universal Time, and station latitude- and longitude.

17
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- Vamp i.ng Func.t-~.on6 In In~ka.M.d 4b4o4pt~on

Initiator: Dr. Bernard Bendow

- Problem No: 3055-3 Proj ect No: 3326

This problem is one of a set of problems directed toward the prediction

of the infrared absorption intensity and line shape as a function of frequency
for various models of ionic crystals and semiconductors . In particular, this
problem continues the work performed under Problem No. 3055-1 for Air Force

contract Fl9628-70-C-0l20.

This problem required the calculation of

1(w) = 

~~ i~4- [~~~+~1 % 
(W ,R ,R’,~~ )

~,R’,R D=O
3

where, refers to a sum over all the latice sites of a unitary cubic

crystal , and where distances are measured from one of the latice sites.

Here :

L 
~~~‘ p (w-w 1) p ( w 1)

p (w) = C (-~~,w) + C ~~~~~~ ,w) - C (~~-R’,w) - C (~~~ ,w)

and,

F exp (-~~~~ ) (E 3)

where,

L 
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A = a (F~i)
2 + a (I~ I) 2 ; B = ~~•R’; E = (4a a

2
_D2)I’Z

where

—

= 
~~~~ ; 

R1 
= R’+~ ; a = .~.(C (0,O) + C ( 0,0) - C (0,0))

+ Ro2; a 4(C (0,0) + C ( 0,0) — C ( 0 ,0)) + Ro2

where, the vector ~ is an input parameter.

An explanation of the general theory leading to equations of this form

was also presented in the final report for the above mentioned contract.

For this problem two forms of C~3 were tried. These two forms are

- (w-w y)

- - - sin [Ko (1..
~w )y 

I ~I]
C..-(~,w) = i—n ~~m ~ 

1

13 b 2 - 

KoI~ I -

- C
~
Ek 

( w w y )

IJRJ
R~ ~(l~~~)

2 
~e~~-l 

+ 1] for y (A) < (A) <
~~~

C
15(~,

w) e~~ C1.~(~~_w) for -y < w  < yw

C
~~
(
~~~

w) = 0,- otherwise

where

~ 
= 
4n.~m2 

R = ~~~~
2 . R = j~-

2

and y, ~~ m5, Ko, w , m , in , B are input parameters

e
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and

C. .(R,w) nd m~~ 
Cj
Ck sin(Ko~j~1) K 1 

+ 1) for 0 < w < y
11 S 

tJRJ
Rk 2(l-K~ K O I R I  w e~~-1 

—

C~~(~,_w) e~~ for -y < w  < 0  4

C~~(~1w) = 0, otherwise -

where -

for O < w < l  ~~= l-DELTA if w=1;

A :

in m m +m m +nl i i

m ; R — ~~~
2

Ko = (61r2n ) h / 3  and y, 
~b’ m~, 8, ~~

, DELTA , in , m I

are input parameters.

To perform the calculations, a program was written which did the algebraic -

manipulation needed to derive the derivatives of F. This program generated - 
-

card output for insertion in other programs, which do the actual calculations. 
- 

-

Derivatives up to th€~ twelfth order were obtained. This order of differentia- -

tion was found to be appropriate in evaluating 1(w). 
—

The computer program used the trapezoidal rule to approximate the
integration needed to generate 

~n 
from P1 using the recursion relationship . 

—

pn+1(w) = f  dw3p~(w-w ’) p1(w
1) and the knowledge that p~ (t)  = 0 for I t i  > ny.

The program calculated and plotted results of 1(w) versus u for all the values

I
20 
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of the sum, such that, j~I 2 ~ IR ’ 12 < IR (an input parameter) and I~ 3 I < H,

- where P4 equals 1,2,3,..., ISRRT (another input parameter).

MaL~J 4~~ o~ .tk~ Temp e1uvtuM~ G’Lad Lvvt a ~tht Atino4phe ’z

- Initiator: Mr. A. Cole

Problem No: 3065-1 Project No: 8624

The purpose of this problem is to provide an objective method for

obtaining the horizontal temperature gradient between the North Pole and the

equator from observed data at levels between 30 and 90 km. In essence, this
method smooths the observed temperatures and provides interpolated values

A
.- for 15° intervals of latitude. The interpolated temperatures were to be used

L 
- with appropriate atmospheric pressures to construct U.S. Reference Atmospheres,

representing mean monthly conditions at 15, 30, 45, 60, 75 and 90° N. latitude.

For a given month, the Initiator provided 13 sets of data. Each set

representing measurements of temperature versus latitude for a fixed altitude.

The method of least squares is used - to determine the best fit for each data

set by polynomials of order 1 thru 6. The results of this processing were
presented in a tabulated form that facilitates comparison between the order
of polynomials fitted to a particular data set. This comparison is essential

to the Initiator to ascertain his preference that for a specific altitude

and month, a certain polynomial best describes the dependence of temperature
on latitude. This effort utilized the least squares program of the Analysis

and Simulation Branch Computer Library.

-f
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Expo nent ~aL Cwwe. F4..tti.ng Lon. LI V Ab4on.ptAon Pa.ta

Initiator: Mr. L. Weeks
Problem No: 3069 Project No: 6690 ~- -

The purpose of this problem is to analyze ultra-violet absorption data

obtained in the 110 to 220 km. region from rocket-borne photometers. The

results of this analysis are in turn utilized in the determination of the

molecular oxygen number density of this region.

The expected behavior of ultra-violet absorption data (I(h~) is that it

undergoes an exponential variation with respect to altitude. This behavior

requires the determination of the ‘best’ values for the parameters I~, h0, H1
and H2, such that, the measured data I(h~) can be represented by the . expression

1(h1) = I
~ 

exp - fs  exp - (h1-h0)/H + .5 exp - (h1
_h
0)/Hj

where, hi is the independent variable for altitude and ‘best’ values are in
accordance- with the criteria of least squares, i.e., minimize

• = Z (1(h) - Expression)2
i -

Using standard iteration techniques, convergence was not obtained for the
curve fitting in the prescribed form. Also, convergence was not obtained when
a logarithmic transformation was applied to both the data and the prescribed
form of the curve fit.

The ‘best’ estimates for the parameters were successfully obtained when

utilizing the Levenberg Method and simultaneously constraining the parameters
H and H. A full description of this method and its application are presented
in the Final Report, AFCRL-TR-73-0433 mentioned in the introduction of this
report.

The results of this processing were presented at the AGU conference in

San Francisco in December, 1973. - -
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Tnac1.~ng and ~~~~~~~ o~ Va..uabU Low Fnequeiu~y Wave ~onm

- 

- 

Initiator : Capt . McLain
Problem No: 3070-1 Project No: 4603

Program PROG5 was written in support of a study of Variable Low Frequency
Waveform Tracking and Analysis. The purpose of this segment of the study is
to calculate and plot Ionospheric Reflection Coefficients and Group Heights
from VLF ionospheric wavefo rm reflections recorded as a function of time .

Logically, the computer program proceeds in the fol lowing manner :

Sequences of three pulses, identified as groundwave, skywave and rotated
skywave , are unpacked from magnetic tape and Fast Fourier analyzed for frequency
content. Each Fast Fourier spectrum is fitted, according to a third order
polynomial, to a given frequency interval , and the resultant amplitude and
phase values of two predetermined frequencies are selected for use in computa-
tion of reflection heights and coefficients. An amount of averaging of fitted

Fourier data takes place in the time domain according to an averaging time
span specified by the user.

For each given time period to be analyzed, a series of 10 pairs of pen-
and-ink plots are generated, consisting of 8 pairs of families of phase heights
and coefficients, and 2 pairs of group heights and coeff icients, all presented
as functions of time (in hours). All phase heights are plotted over 6 inches

on a linear scale of 0-120 km., and reflection coefficients are plotted over

4 inches on a logarithmic scale encompassing the two decades between 0.01 and

1.0. Each plot is identified according to day, year, time, frequency of
analysis , and rotated or normal skywave reference data.

The user has control over several parameters within the program via input
control cards. Included among these are the number of time series to be analyzed,
the spacing at which the Fast Fourier spectra are to be fitted, a 30 character
plot label array, the amount of time over which fitted Fourier data averaging
is to take place, the starting and ending times over which analysis is to take
place, and the two frequencies selected from the fitted Fourier spectra at
which analysis is to take place.

23
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Mathematics

A quantity of interest is the phase difference between the ground and
skywaves (PHSG).

The mirror height is calculated from PHSG by the following for ila:

HTP4IR = ~- \j [DG+(PHSGC+N*T) * .29979]
2 

-

where

DG a distance bótween transmitter and receiver (KM)
PHSGC PHSG-PH?4+PHGC (~sec)

PHSG a (skywave phase data - groundwave phase data) - (Skywave phase
calibration - grou ndwave phase calibration) .
O(PHSG<T

PHM = Phase shift of the skywave at the ionosphere (~isec)

= JO or T/2 for the normal component
1T/4 or 3T/4 for the rotated component

PHGC = Correction to groundwave phase at frequency F; due to the finite
conductivity of the ground (Ilsec)

N = Number of cycles
0(N<* (Upper boundary , N*, is established when HThIR exceeds 120 KM).

T = 1000./F (T in lisecs , F in kHz)
.29970 = Velocity of Light (KM/psec)

Reflection Coefficients - The reflection coefficient is a ratio of the skywave

to groundwave signal strength with certain corrections. The reflection
coefficient is calculated from:

r
RCOEF = 

ARSG 
—

,2IT*F*AL*cosO., , 2ii~PAL
CO5~ 2 ~ - COS~~

2RAC*AI4GC* — 
9.83571x10 ~.8357lxl0

l. -. cos ( 2~9.83571x10

. 1 - 4

24
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where

ARSG a Skyway. com~~nent signal amplitude
Groundwave signal amplitude

or

= 10 (Skywave amplitude (dB) - Groundwave amp (dB)
20

if the signal amplitudes are given in decibels

MC a Receiver antenna response amplitude correction

RAC a fl. For the normal component
1 Cos8 for the rotated component

AMGC • Correction to the groundwave ampl itude at frequency F due
to the finite conductivity of the ground

AL a Antenna length (KFT)
0 - Skywave angle of incidence

O a T a n (2l~~1IR -

9.83571xl02 a Velocity of Light in KFT/Msec
F a Frequency (kHz)

Reflection heights and cciefficients are calculated for both mirror phase
shifts of both skyway. components at each frequency. These values are computed 

-

for each data record interval and plotted vs. time of day.

‘ I: 
-

- i
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S4iI~boZif.~ Sotu.t-~on o~ a L.~nuk Equa tAon

Initiator: David Anthony
Problem No: 3074-1 Project No: 7600

This problem involved solving for the C in the following equations:

NVA
E a1~ C 2J O~ 

= K 1 for I a 
~~~~~~~~~~~~~ NVA

J—l

where a1j and K1 are polynomials in two variables F and Ml and the solution
is to be in terms of F and Ml.

The method used to solve these equations is to reset the a1~ and K 1 to
new polynomials as follows:

Reset for I = 1 then I = 2 I — NVA

a)K is reset to a11 a)K - a~1 aIK
j � I
K~~~~ I

K
3 

is reset to a11 K3 
- a31 K1

j
~~~

I

a
31 

is reset to 0.

j~~~I

The resulting values of C(21,0) are then

K 1C(2 10) K 1 —

Here K 1 and a11 are polynomials in F and Ml.

These results were then expanded in powers of F so

~, I C(21,0) - _!i) + 
NK~i 

((
:
h

’

_ ] )  ~
)

where each term is a polynomial in Ml.

~~

t .
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PA..~ ocJa.tAon Pn.e.a.owi.e o~ SWcon CCk6A.te

Initiator: Dr. J. Sailtens

Problem No: 3077-01 Project No: 5620

The equilibrium pressure for silicon , carbite, grafite and vapor has been
determined by two groups of investigators. In 1930 in Germany, Grieger
determined it in the range from 760 mm. mercury to 1 mm. mercury. Grievenson

and Alcook determined it at lower temperature in the micropressure range.

According to classical Physical Chemistry, the logarithm of vapor pressure
when plotted vs. reciprocal absolute temperature should give a straight line.

Both investigators have obtained the straight line. However, Grieger’s straight
line has a larger negative slope than Grievenson’s and Alcook’s. A more

careful consideration and recent experimental evidence indicate that Grieger’s

data should depart upward from the Grievenson’s and Alcook’s straight line.

The special condition the parabola should be tangent to the straight line.

A functional description of the required mathematical analysis and computer
progremming is the following:

Calculate the least squares polynomial through the submitted Grievenson
and Alcook ’s data.

Calculate the least square parabola through the submitted Grieger ’s
data.

Solve a system of the submitted two equations with C and X0 unknowns.

Find the real root of the resulting 5th degree polynomial which
satisfies the special condition: the parabola should be tangent to
the straight line.

The solution of the system of the two equations submitted with C and x0
unknowns and with n representing the summing of the data:

( 

-

2 E [)1
n 

- A - Bx~ - C(x~
_2xoxn+x~) ] (x~-2x0x~+x~) = 0

2 £ - A - Bx~ - C(X~
_2X

oXn+X
~)1 
(2x0

_2x~) = 0
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r is a 5th degree polynomial a0 + a x  + a x 2 + a x 3 + .a x ~’ + a x 5 = 0 with

a0 = A6BS + A7B4

a A4B4 - ASB5 + A6B2 - A7B3

a a A781 - A582 - A483 + A3B5 + A2B4 .1_I

a = A7BO + A4B1 + A3B2 - A2B3 - Al853

a A2B1 + A4BO + AOB5 - AOB2
- A

a = -AOB2
- 5

where

A 0 = - n
Al = 4Exn

A 3=6Ex2

A4 ~ 2 (AEx~ - £ x y  + BZx~)

A5=4Ex 3 - 4

A6 = Lx ”

Al = Ex~y~ - AZx~ - BZx~
B0=A0

Bl= 3Ex~

B2 z A2

B3 — 3Ex
~

B4 = Ex~

B 5 = A 4

N~~E: AIBJ (AX) (BJ)

28
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RotoZLona2 Cono-tan.to o~ V~a~tom~~ MoI.ecuLe5

Initiator : Dr. Daniel Katayama
Problem No: 3080-1 Project No: 8627I ,

From the analysis of the band spectra of diatoinic molecules in the vacuum

ultra-violet , the rotational constants of these molecules can be determined
when they are in highly excited states. These constants are determined by

solving a system of simultaneous equations, using matrix and least squares

techniques. Also determined are the variance 62
, and the variance-covariance

matrix (V) described below in the following equations:

X1 = “i~~C’~ 
- A”2

J~ (J’~+1) - A”
2

where J’, J”, A’ and A” are data input numbers .

The system of simultaneous equations:

2
- y = a0 + a ( x ) - a ( x ’) - a (xp + a

~~
(x1 ) 2

= ~~ + atx ’) - a (x’) - a (x”) + a(x”)2

a0 + a (x ’) - a (x~) - a ( x ~ ) + a
~

(x
~
)2

Or, in matrix form :

29
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/y\ 1 (x’) - (x’) - (x”) Cx”) \ - 
a0

I 2
F 

/ 

y 
\ 

1 Cx ’) - (x ’) - Cx”) (x”) a
• l  I

~~3 
a 

.
~~-

- J

I : ! : :  / a

- 
1 (x~) - (xi) - Cx;;) (x~)/

4) 4)
y = U 8

Unknown

Then, in accordance with the method of least square, the required calcu-
lations are :

t -i tB = ( u u) u y

u~ = U transpose

• z 1 t
a = ~.-3-(y -u8) (y- uB)

- t _ 1
V = a2 (u u)

•1
a

30 
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— - Initiator: Rene V. Cormier

- Problem No: 4026-6 Project No: 8624

- 
. 

Research in support of Air Force paradrop operations, investigating
- - the characteristics of vertically integrated boundary layer winds established

a need for the construction of “reasonable” analytic functions (curves) of
wind and temperature versus height from discrete data . These data were obtained
at non-regularly spaced levels ranging in height from the surface to 1500 ft.

and in number from 7 to 12 depending on the tower. The curves had to be capable

of integration and differentiation, and because of the number involved (over

30,000) had to be generated by computer without human intervention.

— A series of computer programs were written in two (2) groups and were

- 
- documented under the name CORM for the SUYA Computer Center Library.

GROUP I GROUP II

1. CORMN 5 . CORMP
- 

-

~ I 2. INTGRLN 6. INTGRLP
3. HERMITN 7. HERMITP
4. CORM4

Programs CORMN, COR?4P perform a polynomial interpolation using HERMITE ’S

I 
interpolation formula, INTGRLN and INTGRLP integrate the area under the curve
between given limits of A and B.

I Programs HERMITN and HERMITP construct the polynomial using the same
- HERMITE’S interpolation formula, and CORM4 performs polynomial interpolation

I 
- using Lagrange’s interi L. ation formula. The difference between the programs

of GROUP I and GROUP II is that:

GROUPI: Constructs a polynomial going through the points having
positive or negative value.

- GROUP II: If the evaluat ion of the constructed polynomial becomes negative
I - (that is unreal for wind speed data) then the programs of
A GROUP II correct the negative values and such that the

polynomial evaluation is always positive.
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To accomplish the tasks outlined, the following mathematical steps have
been taken: 

—

A. !~~pam CORMN and CORMP perform a polynomial interpolation by using
HERMITE’S interpolation formula. Suppose that values of f(x) and f’(x) are
known for x1,. .x~ . A polynomial H(x) can be determined by assuming that it
is expressible in the form:

/

11(x) = 

k=l 
hk (x) f(x k) + 

k=l 
E~(x) f’(xk) (1)

where h1(x) and l~~(x) (i=l 2,. . .,m) are polynomials of maximum degree 2m-l :

h
~
(x) (l_ 2L

~
(x
~
) (x-x1)] [L

~
(x)]

= (x-x 1)[L~(xfl

where

- 

(x_x i ) . . . . ( x~x1 j ) (x_x 1+i ). . . . ( x _ x )~~
L1 — ___________________________________

For two points we have a polynomial of degree three:

H(x) = [f(x 1)V1(x)+f’ (x1)W 1(x)JL 1
2(x)+[f(x2)V2(x)+f’(x2)W2(x)JL2

2(x) (2)

where

x-x2 (x-x 1)w ”(x 1) -
A L1 = x1—x 2 

V1 = 1 — w ’(x 1) = X—X
1

x—x 1 (x— x2)w ”(x2)
L2 = x2-x1 

V2 = 1 - 
~~ f (x2) W2 = x.—x 2

~
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- w(x) = (x-x 1) (x-x2)

w ’ (x) = (x-x 1) + (x—x2) 
-

w ’(x 1) = x1-x2
— w ’(x 2) x2 -x1

B. Programs INTGRLN and INRGRLP integrate the function (2) for any given
limits of A and B under the curve H(x). The following steps have been taken:

ANS ff(x1)V 1(x) L1
2 (x)dx + ff(x2)V 2 (x) L2

2 (x)dx + ff ’ (x 1)W 1(x) L1
2dx (3)

+ ff ’ (x2)w 2 (x) L2
2 (x )dx

where

- Y1 = f(x1) SLZ = f’ (x1) P1 = x1-x2

Y2 = f(x 2) SL2 = f’ (x2) P2 = x2-x1 -

are given. -

By integrating each term of the equation (3) we get

ff(x1)V 1(x) L 1
2 (x)dx = f(x 1)fV1(x) L1

2(x)dx a f(x1)

(x-x1) 2 x-x2 
2 2f(x ~ 2

f(1 — —) ( -
~, 

) dx a — 
.1 f(x.x ,) Cx—x 2) (3sr l P~~1

f(x 1) 2 -

- 

- . d x +  2 f(x-x2) dx
1 - -

33
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2(x-x )
ff(x2)V 2 (x) L2

2 (x) dx = f(x 2)fV2(x) L2
2(x) dx = f(x 2)f( l - -

~
,
2

(3b)
x-x1 2 2f(x ) 2 f(x 2) 2

~~2 ~ dx = - 

~ 
f(x_ x2) (x-x 1) dx + -

~2~ 
f(x-x1) dx

P2 2

2 (x-x2) 2 f ’(x 1) 2ff ’(x1)w 1(x) L 1 (x)dx -
= f’(x)f(x-x1) 2 dx = 2 fi x-x1) (x-x2) dx (3c)

(x-x ) 2 f’ (x )
ff ’(x2)w 2 (x) L1

2 (x)dx = f’ (x2)f(x-x2) ~~- dx = _22_J~
x_x

2)(x_x1)
2dx (3d)

P2 P2

Since :

F = f(x-a) (x-b) 2dx = ~(x-b)
3
(x-a) - ~f(x-b)

3 d(x-b)dx = ~~x-b) 3

(x-a) (x-b)~ F(a ,b,x)

and

G = f( x-a) 2 dx = 
(x-a) 3 

= G(a ,x)

For the given limits a and b of the integration Equation (3) becomes:

• ANS = (Cl+El)*(Fl_F2)+(C2+E2)*(F3_F4)+D1*(Gl_G2)+D2*(G3_G4)

where

Cl = _2 .O*Yl/(Pl**3)
C2 = _2 .0*Y2/(P2**3)
Dl = l.0/(P1*Pl)
D2 = l.0/ (P2*P2)
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El SL1*Dl
E2 SL2*D2

Fl = F(X l,X2 B)
F2 = F (Xl ,X2 ,A)

Gl = G(X2 B)

G2 = G(X2,A)

L - - F3 = F(X2,X1,B)
- 

- 
F4 = P(X2 ,X1,A)
G3 = G(Xl ,B)
G4 = G (Xl ,A)

and

Yl = f(x 1)

Y2 = f(x2)

SL1 = f’(x1)

SL2 = f’(x2)

- P1 = x1-x2

- P2 = x2-x1

C. Program CORM4 performs the Lagrangian interpolation (given N points to

fit exactly by a polynomial of degree n-l) using the formula:

n
E a. y./(x-x.)

* =l 3 1  3
-
• -

- Z . a t(x-x.)
j=l 3

where the given data are (x1,y~), i=1,2 ...,n and

- 
~

- 

a~ = ____________________________

-I 4 
-

. - .

~
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lnvetted Depth ~o To taL Depth

Initiator: Rene V. Cormier

Problem No: 4026-7 Project No: 8624

The purpose of this problem under the title, “Inverted Depth to Total

Depth”, is to study the meteorology of integrated boundary layer winds in J
support of Air Force paradrop operations. Specifically, the effect of atmospheric
stability on integrated boundary layer winds. -

Conventional methods of determining atmospheric stability are inadequate
to define the stability of the atmospheric layers under integration. This

program develops a new stability parameter. It considers the temperature
structure throughout the depth of the layer rather than just top and bottom

— temperatures. It finds the ratio of the depth within which the temperature is

constant or increases with height to the total depth under integration.

The following steps have been taken:

Polynomial interpolation is performed on the input vertical temperature
profile using Hermite’s interpolation formula in order to perform the
integration.

The coefficients of a defining cubic polynomial function are evaluated.

The maxima and minima of the function are then found by considering the
first and second derivatives of the function.

To accomplish the tasks outlined, the following mathematical steps have

been taken:

The polynomial interpolation and integration is done using the method and
procedures described in problem number 4026-6, project 8624 above.

Evaluate the coefficients of the cubic polynomial H(x) = ax3+bx2+cx+d.

a = 
~~~~~~~ 

+

(x —x ) 2 (x —x ) 3

36
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j  b = 

(x -x ) 2 [y +y -(x +2x )y ’ -(x +2x )y ’] - 

(x -x ) 3

I ((x +2x )y — (x +2x )y ]

= 

(x -x )2 
[2(xy +x y~ - (x2 + 2 x x ) y ’ - (x 2+ 2 x x ) y ’]

- + 
2 [(x 2+2x x )y - (x2 +2x x )y ]

- (x ...x ) 3 2 1 2  1 1 1 2  2
- - 2 1

d = 

(x -x )2 
[x2y+x 2y - x x 2 y ’ - x2 x y ’] + 

(x -x ) 3

- 
- (x2 x y —  x x 2y ]

From the two point Hermite’s interpolation formula:

H(x) = [y v (x) + y’ w Cx) ] L2 (x) + [y v Cx) + y’w (x) ) L2 Cx)

where -

x-x (x-x )w”(x )
L = x — x  v = 1 — w~ ( x )  ~ w a

I t~’ - x—x (x—x )w”(x )
L = x - x  V = - w~t x Y  W a

- : 37
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w(x) = (x-x ) (x-x )

- 
w ’( x) = (x-x ) + (x-x )

w’(x ) = x — x

w’(x) x -x
2 2 1

= 2

Expan6hon o~ GRAPPAC2

Initiator : Mr. R. Gosselin
Problem No: 4040-1 Project No: 0002

CALCOMP plotter simulation capability on CX’s Interactive Graphics
System was made available to all computer users through expansion of the GRAPPAC

system to include all CALCOMP entry points. An instruction booklet, skeleton
deck , and associated permanent files were prepared. As a result, CALCOI4P jobs
can now be debugged quickly and easily without waiting for hard copy test plots

- to be prepared.

In addition , CALCOMP type programs can now be made to accept input from
the graphics console through the addition of a very simple subroutine call.

Selective erasure is available.

1 GRAPPAC: A package of Fortran Subroutines for use with the 6000 Series 274
Interactive Graphic System of the Control Data Corporation, Frona B. Vicksell,
Space Data Analysis Lab., Boston -College, Chestnut Hill, Mass. 02167, APCRL-72-

~~ ~ 
- 0698.

- 
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AnaLy6..o o~ Ob4e ’wed Etectton Ven.6L-ty PJ t06I.Le6

Initiator: Mr. R. Allen

Problem No: 4041-1 Project No: 8666

- -

- 
- Support was provided for study of a set of observed electron density

-~~~ . profiles. The profiles were obtained from Lincoln Laboratory , Bedford , Ma .
Programs were written first to present the data in graphical form for visual
screening, then to perform certain calculations, producing a new data base
for use in future statistical studies. The calculations for each profile
involved integrating the available densities , with extrapolation if needed,

H over the altitude range 200 to 1000 km .,, to obtain total content and slab
thickness. In addition, Chapman functions and parabolas were fitted to the
peak density region to obtain estimates of the density scale height above
the peak, below the peak , and on both sides simultaneously.

ModeLi.~zg Ete~2wn Ven4A.tg P~o~~Le4

Initiator: Mr. R. Allen

Problem No: 4041-2 Project No: 8666

In a study related to account no. 4041-2, statistical and graphical corn-
parisons were made between three diffeqent sets of observed electron density
profiles and a model provided by the Air Weather Service and modified by the
Initiator . The model has a variable scale height Chapman function on the

topside of the F2-region, a fixed scale height for a distance of one scale
height for a distance of one scale height below the P2 peak, then linear inter- -

polation on the logarithms of the densities down to the E-region peak. The
bottom side of the E region is another Chapman function.

Inputs to the model include the peak F2 density and its height, latitude,
• longitude, date , time, and 10.7 cm. solar flux or sunspot number.
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— TItLOM.tJ.C02 Pn.edLcZ~on~ 06 .the ELe.ctiwn D t ’~ bu.tLon
Fww.tAon ut the Ionoop hv&e

Initiator: Dr. J. Jasperse
Problem Nos: 4585, 4688, 4799 Project No: 6688

These problems involved making theoretical predictions of the electron

distribution function in the ionosphere. Over a period of time, the model

considered has been made more and more extensive until the following integral-

differential equation was solved for H(z,E) in the latest computer program.

NJ NS

~~~~~~ 
Y~~~(Z E) E3~’2 

~E ~mjs+ e’ 
y
~~5

(z)

+ K I° (z ,E) 
(Hz~E) 

1

E 

~~ G
3

(z ,E’)

dE ’ 

~~~~ 

:

1

1:

1 
f2  dE’ (E 1)1~”

2 Yrt ,E1) H(z ,E’)

- _j dE’ (E 1))’2 Ytk~~
,E )  0 (E 1_E

tk) H(z ,E’)

dE’ ~~ ~~~~~ E
1+Etk)

1/2 
1tk(z ,E’

~~tk
) H(z ,E’+Etk)

dE ’ ~~ 
M~~~) exp [- K T ( z ) ~ 

(E 1+Etk)
hI’2 

~~~~~~~~~~~ 
H(z ,E’)

40

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 

_



- — -- - —r ---~~.-.- ~--— — - —~- . r  ~~ -.- ~~~~~~~~~ -n~~~~~~~~~ ~~~~~~~~—_..- - 
-~~

~E ~~~~M~Lc)2 
dE 1 

~~~~ 
exp (E1) hs ” 2 

~~~~~~~~ 
ecE ’_E

~k) H(z,E’_Etk)

NJ
- 

~~ 
c~3+:)~ 

YmajCZ~
E) E3~

’2 K T ( z )

NS

~~~~~ ~~is ’ e~ 
‘~~~~(z) K T 1(z)

— 
+ 

~~~~~~ 
[I:(z,E) + J° ( z ,E)] ~~~H(z ,E)

Where :

(z ,E) = ~~~ (z) (CE) h/ 2  Q~ (E)

Y~~5(z) = K N
15Cz)

= N
~5 (z) (cE)~~

A
~2 

~~~~~

N
~t

(z) (CE) h/2 ~~~(E)

E 
-

- I:(z ,E) = f dE 1 (E ’-) 1 ’2 H(z ,E1)

I:(z ,E) = f dE 1 CE ’) 3/2 HCz,E’)
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J° (z ,E) a E~~~ 
1

E
2 

dE’ H(z ,E’) 
-

E

t444J)

G
3

(z,E) = N,,~(z) Qpijm(E+Epij~~ I(ZiE+Epijm)

I(z,E) = I(b,E) exp 
i

-sec x Qpaj(E) f dz 1 N~~(z 1)~

NK~~~ E

GJCz~E’) = K N~~(z) 2EJ dE’’E’’Di .k (E h’,E’) H(z ,E’’)
k=1 E’+Ejjk

- E’ H(z ,E’) E ~~~~~~~~ Qijk(E 1)~

0 X < X ’
0(X-X ’) =

1 X > X ’

q A.. E.. P..
D (fl’’ E’) — 0 ijk 13k 13
ijk — 

2(E1
~
2+Eijk)2 E1

~
’2+Eijk

* ~ °~ [ - 

El/2+eijk
Bi~

kJ 

Nijk

For E ..  < E 11 < E  and 0<E- 1 < E ’~-E.,.i3k—  — 2 — — 13k

Dijk (E ’’~E’) = 0 for all other values of E’ and E’’

~LIC 42
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r!1 t!
~~~~~ 

~~ijk
QiJk (E ’) a J dE ’’

- E
1

• For tal , kal ,7 MX (l)=7

- 

O for E l < E < E
~k

~tk~~ 
= q0 Atk Etk Etk 

Btk Ntk( 2 ) ( -
~
.
~
) O tk [ l _ ( . _

~
_) ]

~~tk

For E < E < Etk— — 2

For t=2 MK(2)=23 -

For t=2, JC=l, 8 Q K(E) is linearly interpolated from a set of Q K (e) versus
E values

For t=2, K=9-23

0 for E < E < E
tk

~tk 
= q0 Atk Etk °tk Etk 

Btk Ntk

E 2~~~ 
( r—~ 

[1 
~~~ ~tk

4 For E < E < Etk— 2

For t=3 MK(3)=l4

For t-3 K=l_4 Q,k (E) is linearly interpolat ed from a set of 
~3k~

’3
~ 

versus
E values

For tz2 K.S-14

1~
- 

~ 

- 
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- 0 For E, < E < Etk

~tk 
Atk 

C
tk)

tk 
(1 - (~~— ) ]  For Etk ~ E E

tk

- 

For t=4 MK(4)=2 - 

-

A

For t=4, K=1 ,2 Qkk (E) is linear ly interpolated from a set of Q,~k(E) versus

E values.

For taS,55 MK(t)=l

For t=5 ,K=l Q (E) is linearly interpolated from a set of Q (E) versus

E values

For t=6-35 K=1

= B [(t-4) (t-3) - (t-6) (t-5)]

and

0 For E,< E < E t,

4•7 * l0~~
7(q)2 (~t:i~~~(2t~9) 

[_
t l]

• For

0 For EC1 < E < E Z

For t=36-55

= B2[(t-34) (t-33) - (t-36) (t-35)J

- -4 . 44
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and

0 For E < E < EI 1 —  — t i

E E  1/2

= 4.7 * l0 ”( q ) 2 
~~~~~ ~~~~ ~ E 1 For E

~ ~ E Ec
- - 

0 For E < E < E
I 

- . C2

Nn (Z) = N~~(z) 
E

5 + 3 exp[-. K T ~ (z)) + exp[- IcT~ (z)]

E
3 exp[- g

N~~(z) = N~~(z) - n

S + 3 exp[- K T ~(zJ~ 
+ exp [...

• Fort=6-35

= B (t-6) (t—5)

and -

(2t-ll) exp[- 
~ 

I
- - 

i 
N
~t

(z) = Nn (Z) 1 fl

I 

(2u_ll) exp[- K 1 (z)1

For t = 36-55

= B (t-36) (t-35)

- - -4
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and

- 
Y

(2t-7l) exp[- K T ( 1j1
— N

~t
(z) = N (z) ‘

(2tJ-7l) exp(- K T ~ (z) 1

- 

N~ = q
2 

Ch/2 [2 dE E ~~ (E) H(z ,E)

+ ( K + K ) N~ + (K +K ) N~ + K y N~~~~’

= [q + K N~ N
~~
] / C

h/2  
.,

~~ E 
dEE QT,(E) H(z ,E)

+ K  N + K  N + K  yN  -1
1 2 ’. ~ 2 1 3 3  ~~3 1’.’. f l3  

-

N. [q + IC N N. + K N N. ]13 3 2 3 3  f l3  12 133  fl 3 l j

/ C
z/ 2  J ’ dE E Q~~(E) H(z ,E) + K N~ + K y Nn (_1

= {[K 21 ’. 
N~ , + 

~23 ’.  
N~3 + K

2’.’. ~ N~ 3 ] N~2

+ ~~~~ + ~~ ~~ ~~~~~~~~~ + [K N~ + K y N~~J ~~~~

)C
1/2 

J

E 
dE E ~~~(E) 1I( z ,E) 1 ’

46

-I. 

~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ 
_____________ 

- --- -- - --



!~ 
~~~~~~~~~~~~~~~~~~~~~~~ - - —

~
_ . -  

~~~~~~~~~ ~~~~~~~~~~~~~~~

- E E
q
2 

= 

2 
dE(G

2
+G~) + J 2 

dE G
i aaa

where

- 

G 2 = N~~ (z) Q .  (~~E . 1 ) I(z
~
E+E

~~,2
)

- 

q
1 

= 

1

E
2 
dE(G +G 1 ) - dE G m 2

q
3 

= f 2 
dE (G +G 1)

- 

Ne(z) =
~~~~

N±&

The program considers the integrals of the form J high dE E Qr& (E) H(z ,E)

- 
to be broken up into a sum of sub-intervals [E10~

= EMID~~~, EMID~~~’~], [B4ID~~~~ , -

I 

Er1ID~
1’ 2

~] ..., [EMID 4 %’)
, E~~~~

’’
~ = Ehigh] and the program has a set of E

value E = EP ,EP ... EP = E where one and only one of these EP. values
- - 

I 1 1 2 NE 2 1

- . occur within each sub-interval. Then

-
-

• J dE E Q~~
(E) H(z ,E)

E?4ID~~
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is approximated as

For £ = 1 = H(Z I EP (~) ) * 2.248. lO 2 0 ( (EMID~~~~~) / 
- (EMID W ) 3/2 )

For £ = 2 = H( z ,EP~~~) * 6.42 612 72 73.l O 16 ( ( ~~ ID o3~~~~) - (EMID~~~) )

For L = 3 = H(z ,EP~~.~) * 3.0336666667l0
16 ( (EMID(~~~~)9 

— (EMID U) ) .9 )

For ~ = 4 = H(Z,EPU) * 4.39l63636364.1O
16 ( (EM I~ 

l))1.1 - (E 4ID~~~)~~’)

where EP (v) is the EP value such that 
-

EMID~~ < E P (~) < EMI D~~~~

1(221 = K211S 1000 2

1(214 = K214S + K2I4SS 1000 2

1(233 = K233S 1000

1000 •‘.
K l33 = K133S

T~ (z) 1 . 6

4 

Kl44 = K144S 
~l0O0 ~

‘ 1
K124S (~~~-~

-) for T~ < 750

1(124 =

T~(z) ~
K124S C- 

~~~ 
) for T~ > 750
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For these calculat ions- we have the following input data

K2llS, K214S, K214SS, K233S, K234, 1(244, K124S, K133S, KI44S,

1(324, 1(344 , GA*IA, Mel K , K , K 3 , K , 1(
5 1 X~ C, a set of EP (~)

values, a set of Z values (Z (i) ) . NJ, M~3
, q0, NK(J) , Ei jkl  Ajj kl

. 

1’ijk’ ijk’ Bj )kl N ijk l  NS, M~5, N~~ (z) , N~~ (z) , N~~ 1( z) ,  NL

- (NL = NS is implicitly assumed) , P444(J) , Epjjml E k, A k, ,k’ B k,
4 

E k, A k, • k’ B k, N k, E k, A Sk, ‘1~3k’ B k, N k, E , E , E , q ,  Eci~
B , q2 , E~~, B

L In addition the program reads the following bar graphs:

Bar graphs

- NI b values of ‘b versus E

NQPAJJ values of 
~paj versus E

- NQPIJKJM values of Su m  versus E

; And finally the program reads the fol lowing graphs which are linearly

interpolated

NTN values of T versus z

NT values of T. versus z 
-

NQMJ values of 
~mj versus z

- 
- Given the preceding data the differential-integral equation for H(z,E)

H is approximated by a difference equation for a particular value of z.

To do this , the equation is evaluated at the points EP
~.

49
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The integral part of the equation is usually approximated by assuming

H(z ,E) is a bar graph with values H(zE
~
) covering intervals [EMID~~~,

EMID ’~~]. Exceptions to this rule are for fdEEQ1.~ 
H( z ,E) and

fdE ’ ~~~ G3
(z ,E1) which are handled as previously described (for IdE L

H(z ,E)). Another exception is that above a read-in value for E the terms

- ~ E2 dE ’ (E l ) il~ Ytk z ,E~~ O(E ’_E
tk) H(z ,E ’)

-~ 

- 
+ /2 dE~ 

~~ N~~~) (E 1+Etk
)1/2 ytk(z ,E1+E

tk) H(z ,E’+Etk)

and

- 

- 

- /2 dE 1 ~~~ M~~~~~~) 

exp [- 
~~T~(z) J (E1 +Etk

) h / 2  
k (z ,E’+ E )  H(z ,E1)

+ f

E2 
dE1~~~ 

~~~~~~~~~ 

exp [- K T ( 1 ) ~ 
(E 1)~~

’2 Ytkcz ,E ’ 6(E1 _E
tk) H(z ,E’_Etk)

are approximated by

~~~~ Etk ~ E
2

) Ttk~~,E2) H(z ,E )  — (E)~ ’2 
~tk~~’~~ 

H(z ,E)j

and by

50
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55 MK t)
- Etk exp [- 

c :z ) i ((E +Etk)
1h/2 Ytk(1,E+E tk) H(z ,E )

- (E+Etk ) h 12 
~

4-
t k ’ ~~~ tk~ 

H(z ,E)] 
-

f(E ) - f(E-E k~ ______Respectively where we have used the approximation E 
t 

— 
d ~~E)

tk -

The derivative part of the equation is found at the values EP (v) in terms

of central differences generally a seven point rule is used (a smaller odd

point rule can be read in as this input parameter) except near EP ( )  and

• EP (NE) . Thus , EP ( )  and EP (NE..2) use five point rules , EP ( )  and EP (NE...)
use three point rules and -

9 H(z ,E) 
— 

H(z I EP (NE) — H(z~EP (NE_ ,) )
9 E EP~~~ - 

~~(NE ,) 
-

The equation at EP ( )  is replaced by the equation

1 = dE (E) i4~2 H(z ,E) /Ne(z) so

a H(z ,E) is never approximated.

E ZE P ( )

Using the logic specified above, the problem was reduced to the solution

of NE non-linear equations , one for each EP (~) value for the values of

51 
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H(zIEP (v) ) for a specified z value. This set of equations was solved for

H(Z~EP(~)) using a modified Newton-Raphson method. Thus , if IAH(Z I EP (v) )

is the correction calculated by applying the N ewton-Raphson method to the

NE equations . Then the corrected H(Z I EP (v) ) = the old H(Z I EP (v) )

2~L 
~
H(Z1EPv) where L is the smallest integer which reduces the value of

NE
ET$T. Where ET$T = SCA(*EREEQ(l))2 -I. (EREEQ(i)) 2 . Where EREEQ(J ) is

1=

the amount by which the ~th equation is not satisfied when the guessed 
- 

~
• 

-

values of H(z.EP (v)) are tried. The program continues to correct H(z)EP (v))

until a “solut ion” is found.

In addition to the above solution the program calculates and plots the

following ~uantities when asked by the input data. -

Oxygen Excitat ion Cross-section (versus Energy)

— 

= Q K(E) + Q
’.1

(E) + Q
’.2

(E) + Q (E)

Oxygen Ionization Cross-section (versus Energy)

-

=

4- N Rotational Cross-section (versus Energy)

= Qt,(~~

I

52 
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N Excitation Cross-section (versus Energy)

a

- 
- N Ion izati on Cross-section (versus Energy)

- 
• 

4 a

-~ 

- 
02 Rotational Cross-section (versus Energy)

=
~~~~~

Qt CE)

- - - 02 Excitation Cross-section (versus 
Energy)

• ~~~~ Q 3K ~~~

0 Ionization Cross-section (versus Energy)
I 2

~

- After each iteration of H(zlEP(~)) the program calculates and points

-
~~ 

the following quantities :
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~1
j  2 dE F( z ,E))

= N (z) where F(z ,E) = 
~~~ 

H(z ,E)

- T = 773:.666667 (f2 E*F(z E) dE)/N (i)

N (z) = N~

Integral of G’ = dE ~~~~GJ (z ,E)

E
and each integral of G~ = f  2 dE G~ (z ,E) for J = 1,2,3

E
1

When the program finds a solution for H(Z I EP (v) )l  the program also

calculates and prints (plots)

F1 (z,E) = 
~~~~~~~~~ (1 - CX~~(•~ K_lPr 

~~~~~~ 
Etk ~tk~~’~~ 

O(E_Etk)

~Z Ec +:
) Y~,~ (z 1E) +~~~~~~~~~_!__ ç . )~~ y~~5(z)

+ ._
~~~~~ V~~

1 (z) + 1(
5 

E 1~~2 ~~~~N~~~) 
Ejjk N~3

(z) O(E_ E Ijk ) Qijk (E)~~
1

~ 
,,E 

dE ’ ~~~~G~ (z~E 1)

I 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Check for G 1 a ~~~ N~~~) 
N~~(z) 

Ei;k 

4E’ B’ QLJk c~’) H(z ,E’)

- 
conductivity a

= 
2 

~ (2 dE E3/2  
~~ (H(z ,E))/ (~~~ Y~,,~ (z 1E) + E

S E1

2Z ~~~~~~~~~

I H
H approximate conductivity a

~ç, cz) app rox

a 1 (  1
E
2~~ F(z,E) - .

- 
~ B (

~ 
~~~~(E 1z) + E h/2~~~~ Y~~~Cz))

Average Ionization Collision Frequency = V1(z)

- a cN:~
;)

~ ~~~
N .(z) ~~~~ /2 dE i (E1)il2 Q ( E ’) F(z ,E’)

- 

- 

Alternate calculation for Electron Concentration = 
-

-  - 55 
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F 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _N~~=f  

1

t~2~~~~~
f iL (z) arL (z)

) 
- - - - -

[4 
~~~

flL Z U L(Z) (2 dE’ ~~~ G
3

(z ,E’) ~ V~(z) ] +

for L = 1,2,3 and 4 -

1/2
= 

N t :Z) f2  dE E QrL (E) H(z ,E)

Approximate Average Ion Collision Frequency =

NJ NK(J)
V~ (z) = 

N (z) ENn3
(z) 

~~ 
/2 dE 1 (E 1)1h’2 Qijk(E’) F’Cz,E’)

jl K l  ij

Approximation for the Electron Concentration Using V~Cz) a

N~ = 

~2 
L=1 ~~~~~ 

&rL (Z) ~~~~~ ~iLW &rL(Z)

j

E

2 

~~~~~ 

G~ (z 1E l ) + V2 (z)] I~

Maxwellian Approximation to F = Fm(Z E) =

E l/a 1 3 /2  E4ff N (Z) C 2 ~ ~ff K T ( Z ) 1 exp(_ K T ( z J~
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Early in the program the program can read in guesses for N.(z),  N1 ,

N~~, N1 , N1 and Te(Z) and use (FM(zIEPCV)) + F1(z,EP(V))/(EPIV))
l
~
’2 as

the initial guess for H(ZIEPCv)) to start the iteration procedure.

Finally, for a given z value the program calculates

55 MK(t)
E
~ 

= 

CE 1I2 E (1 - exp(- ) ~~~ ytk~~,E) O(E_E tk )
tal k=l i n

NJ NS
+ EE cni +:e) Y~ ,~ (z~E) + 

~~~ E)”~ ~ ife~~~~~ 
-

NJ NK(J)
+ 

112 Y~e
(Z) + K E~~2E  E E ~J 

N~~ (z) 9(E-E~~1) 
~~~~~~C j al k=l

This program will be submitted to the SUYA computer program library -

upon completion of problem 4799. The Initiator intends to further refine

the equations for H(z,E). in any case, a separate program has been . written

which uses the calculated H(z,E) functions to calculate

SF(z,E) = 4.72. 106 E H(z ,E)

SF’(z,E) a 4.72 106 E H’(z ,E)

E
q~~ (z) = 5.93.10’ N0(z) j exa dE %(E) E H(z ,E)

ex~

57
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q~~~(z) = 5.93.10’ N0(z) 
fexz UE %(E) (E) h / 2  F’(z ,E)

ex1

and -

= f
10

(z) 4 .l0~~2 
~T(z)~ 

[Ne (Z) ] 2 -

where N0(z), f10
(z) , T(z) , Ne(1)i Eex l Bex are input parameters and %(E)

is an input function .

The results of the program seem to agree with experiments for low values

of altitude, up to about 200 kilometers. In fact, they predict fine structure

which the instruments which have been used to measure electrons in the

ionosphere were too coarse to find. Above about 200 kilometers the model

needs improvement . The initiator hopes to refine the model even further

and explain the electron distribution above 200 kilometers.

:1
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S.tv4y 06 Sow~ce Loc.at2on by CompwWi. S~ôiv2a.tLon

Initiator: Dr. K. Toman
Problem No: 4620 Project No: 5631

Locating sources of radiation , finding radar targets, and determining
— . one ’s own position are requirements in radio surveillance, detection, and

navigation respectively. There also exists in the environmental sciences the
need for determining, for example , the location of the origin of natural or
man-made atmospheric or seismological disturbances .

In the following treatise we have restricted ourselves to study, on a
computer , the problem of locating sources from time-of-arrival measurements
made at four locations . We developed and tested an error analysis to determine
how errors in time differences reveal themselves as errors in source location

and signal velocity. Furthermore, we ascertained how these errors change with
range , azimuth , signal velocity, and network configuration. The results ,
subj ect to certain assumptions , can be used for existing or planned time-of-
arrival measurement networks. These assumptions are: (a) source and synchronized
receiving stations are located at the surface of a spherical - earth along which

the signal propagates, (b) the velocity of the signal is uniform along the

great-circle paths from source to receiving stations, Cc) the signal is not
bandwidth limited nor is it dispersed in frequency, and Cd) individual errors

are normally distributed and uncorrelated1. Assumption (a) can be broadened -

- to include , in an idealized form, the case of remote sensing of atmospheric-
waves by ionospheric sounding techniques . Assumption (b) can be broadened to
include rectilinear propagation and reflection of a radio signal from a mirror- -

like ionosphere of known height.

The locations of- the source S and of the receiving stations A, B, C, and
‘ I D on the surface of the earth of radius R = 6378 km are expressed in geographical

coordinates 0 (longitude) and 
~ 
(latitude). Using’differences At of the arrival

times for the propagating signal at the synchronized stations, the location of

the source (0~, $~~
) and the signal velocity (v) can be determined from the

fol lowing equations :

I - 

1 Cooper, D.C. and Laite, P.J. (1969) Statistical ~.nalysis of Position Fixingin Three Dimensions, Proc. lEE 116 (No. 9):l505-l508~ê I
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vAt
__4 A = COS [sln A Si.fl~~ + CO5

~~A 
cosq 5 cos(O S

_O
A)]

- LOS 
~~~~~ 

Sj fl4~5 
+ cos~~ COS~~~ cos(Gs

_Og)]

vAt
C-B 

= ~~~~ [sin
~c 

sin4
~s 

+ cos~~ cos~~ coscOs
_O
c)]

- cos 1 [sinq~ ~~~~ + cos4~8 CO5~~5 
cos(05

_e
8)]

vAtD-B 
= ~~~~ [sin4D Sifl4~s 

+ CO s
~~D 

cos4~5 cos(Os OD)]

- cos~~ [sin4B S1fl~~ + CO54~B cosq~ cos(OS
_O
B)] . (1)

In the method used for obtaining the solutions 0~, ~ 
and v from the time differ-

ences AtAB , AtCB , and AtD B  of known arrival times tAs tEl t~, and tD of the
signal relative to a common time reference, two of the equations in Eq.(l) were
combined, a speed v1 was assumed, and 0s.. 4s~ 

were determined. These “initial”
source coordinates were entered into the third equation to determine a speed
Vc which was compared with If v1 < Vc then v~ was increased and vice versa.
This iteration, which employed the False Position Method2, was continued until

the difference between v1 and v~ was negligibly small (for example ,

~V•  V~~~
1
~~ l I < l0 _ 6

). The initial assumption for v1 was thereby only limited by

considerations of minimizing computer search time. The iteration procedure was

used in the neighborhood of v=l8000 rn/mm . For a given source location, arrival

times at the four stations and their time differences were computed using this

speed. For performing the inverse task, these time differences were used to

redetermine the source location and velocity prior to assuming that the former

• - are subject to errors . In order to determine the effect of these time-
difference errors on errors in source location and signal velocity an error
analysis was developed. Errors were imposed upon time differences At by
assuming that they represent standard deviations of a normal distribution. The

resulting errors in source location and signal velocity were viewed in terms

of probability bounds. -

2 Scarborough , J .B. (1966) Numerical Mathematical An4ysis, John Hopkins Press,
Baltimore , 6th ed., p. 197 .
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In this error analysis it was assumed that the errors of the independent
variables AtA B ,  AtC_B , and AtD B  of Eq.(l) are small and uncorrelated. Based
on these assumptions the formula for the propagation of the mean-square error3

could be used to estimate the mean-square errors a~~, ~~ and a~ of the
dependent variables °S~ ~~ and v as follows:

= 

~~~ 
a~~ 

B) 
+ 

(~~~~B 
aAtC_B) 

+ 
(a~~~8 

a
A t )  

-

. 
- 

(2)

a2 = (Replace O~ in the above with$5

a
2 = (Replace O~ in the above with v) ,

where 0At ~~~~~~~~ etc., represent the standard deviations from the mean assumed
A-B

for the time-of-arrival -differences between selected station pairs. As seen

from Eq.(l), explicit expressions for O~, •~
, and v were not available. The

evaluation of their partial derivatives aoS/3AtA..B,... etc. [Eq.(2)] required
the use of a special property of the Jacobian matrix and its inverse4.

~
AtA B  aAtA B  ~

AtA B  
-l 

~~~~~~~~~ 
ao5 ~~ 

- -

- 
- 

~~s 
av 3AtA B  3AtC B  ~~

tD_B

9AtC B  ~
AtC B  aAtC B  ______ 

a,s 
______- av = 3AtA B  ~

Atc B  aAtD B  
(3)

3AtD B  3AtD_B ~~
tD_B av ~v av 4

~~s ~~s 
- 3v 

~
AtA B  9AtC B  ~~ c_Bj

whereby the partial derivatives aAtA B/aO ,... etc., were obtained from Eq.(l).
Using this approach, the mean-square errors in O~, ~~ 

and v were computed

Denting, W.E. (1964), Statistical Adjustment of Data, Dover Publications,
New York, p. 39.

I . Irving, J., and Mullineaux, N. (1959), Mathematics in Phypics and Engineer,~~~
Academic Press, New York, p. 800. 

-
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by means of Eq.(2) from the errors assumed for the time differences. The

results of these computations were used as error bounds (error boxes) centered
on true source locations. These error bounds were tested by generating a

sequence of independent errors in time-of-arrival differences, using distribu-

tions for means and variances that were derived from available random number
routines. Although these bounds were found to contain the appropriate number

of “false” source locations, it was noted that their distribution seemed to

fill these error boxes only partially, due to an elongated scatter of points
in a direction toward the network with relatively little scatter in azimith.
It was also noted that the inherent nonuniformity of the geographic coordinate

system would give the appearance of large errors in terms of °O~
, when the

source is near a geographic pole, and the appearance of small errors when it

is near the equator. For these reasons it was decided to describe the “pr’bable

location of the source” not only in terms of longitude and latitude, but also
with respect to distance and azimuth. This made it necessary to choose a

reference point relative to which distance and azimuth are defined. Although

any point on the surface of the earth could be chosen, one of the stations, B,
— of a network was usually designated the reference point.

Equations were obtained that relate the coordinates of a source in latitude
($

~~
) and longitude (Os) i~o range (Dist) and azimuth (Az) for a reference

station B @B 1 0B~
V

= sin~
1 
{
sin 

~B 
• cos(Dist/R) + cos •B 

• sin(Dist/R) cos Az}
- 

(4)

= 0B - sin~’{sin(Dist/R) • sin Az/cos $~ } .

From these equations the partial derivatives 3$5/aAz , ~~s1
’a1)

~
5t, 30

5
/3Az ,

- ; - - ae~Ia Dist were determined and related to the partials of the time differences
-
, At with respect to azimuth and distance by
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•1

~1 ___ - aAt 30S aAt a+s -

aAz - + BAz
-~~ 

- (5)

aAt 
— 

oAt ~~ OAt 
_______

0 Dist — 

0 Dist + 
0 Dist ‘

- where OAt/aOs and aAt/0$5, as well as OLit/Ov were obtained from Eq.(l). The
partial derivatives of azimuth, distance, and velocity with respect to the time
differences that were to provide distance and azimuth error boxes analogous to
Eq.(2) were obtained from the partial derivatives of the time differences with

respect to azimuth and distance [obtained from Eqs.(4) and (5)] as well as
velocity (obtained from Eq.(l)] by utilizing, as before , the Jacobian inverse
property. 

- 
-

1OAtA B  ~~
tA_B 1

~
AtA_B OAz OAz OAz

ODist OAtA B  OAtC B  
- OAt D B

aAtC B  ~~
tC_B ~~

tC_B 
- 

ODist ODist ODist (6)Ma aDist Wv — - 

~~
tA B  ~

AtC B  OAtD_ B

OAtD B  Ot$tD B  OAtD B  Ov Ov Ov
aAz ODist OA

~
tA B  aAtC B  B

~
tD B

The above equations were used to evaluate the errors of source location

($~, O~, or Dist, Az) and signal velocity v from given errors in the time
differences and to appraise the effects of different network configurations on

estimates of the errors involved in locating a radiating source.

The results of the error analysis were tested by using statistical distri-
butions of time-differences (At A B ) i , . ..,  etc., that in turn yielded a

- distribution of source location- coordinates and signal velocity 
~~~~~ 

8~~ v)~ .
For given means and variances of the time differences their normal (Gaussian)

4 — distributions were obtained by taking finite-sample means from random numbers

for which routines were available at AFGL’s CDC 6600 digital computer. For
certain purposes , rectangular distributions were also used.
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In order to il lustrate the resu lts of the error analysis and the above
tests, coordinate-transformation and plotting programs were developed,
furthering the purpose of providing a clear visualization of network performance
and testing procedure. The initial source location S ($~, 

~~ 
was placed at

the center of a grid system whose elements were made to represent latitude and
longitude error boxes expressed by ~~~ a0 .  These displays , which comprise
10 X 10 standard deviations and thus exaggerate the smaller error, were obtained

by rectilinear projection from their positions on the curved surface of the

earth onto a plane tangent to 5, such that great-circle paths through S would

appear as straight lines.

The results of this study were presented to Commission VI of V.R.S.I.
during the 1973 International IEEE/G-AP Symposium and V.S.N.C./V.R.S.I. Meeting
in Boulder, Colorado. -
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Ei..genva ut-E 7c~geJlvec.to4 De~teitmAna2Lon

Initiator: Mr. G. Borgiotti

Problem No: 4721 Proj ect No: 4600

This problem involved finding the eigenvalues and eigenvectors of the
problem:

A
3 ~ (x) 

~~ ~l sin c~x-~) ;p~ (~~ ) 
d~

The Initiator wanted accurate values for the largest eigenvalues and their

— 
associated eigenfunctions. Towards this end the function ~~(x) was represented
by a large number (N up to 2001) of equally spaced points and the largest
eigenvalues, eigenfunctions were determined as follows:

1. Set up an equally spaced grid of X values X1

2 . For the J St , 3rd ,~~~ (2n+ 1)th eigenfunctions (j )  make an initial guess 
-

of a constant for the values of ~P~(Xi). For the 2nd, 4th,••• (2n)th (j )
eigenfunction make an initial guess ~P3 (X~)=X~

3. For every eigenfunction except the first , reset

i-’ f_ 1 i~~~
. ( )

~~~~ 

~~~~ 
dF~

= ~P~(X1) - 

L=l ~
‘L~~i~ 

(

where f~ ~I
3

(~ ) t~
I L (~ ) d~ is approximated using a trapazoidal rule

4. Store ~~
(X i) in

5. Calculate and reset 
~~

(X
~

) through

1 1 sin c(X .-)~~
= 

~~~ £1 — x~
_
~
’ *j~~ 

d~

again using a trapazoidal rule approximation
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6. Repeat step 3.

7. Using the trapazoidal rule approximation calculate

FKK1 = !~j!. £~ ~3
(X) ~5(X) dx

and

FK2 = ~~! 
£~ (*~

(X) )2 dx ,

and

FK21 = ~j! i~ (4 5 (X) ) 2 dx

2
8. Check if I i  - I < ERR where ERR is an input parameter when

- this condition is satisfied = FK2~1.~ 
and *~(X) is finally reset to

jX.(N-l)

FK2~4

If condition 8 is satisfied increment j and go to step 2.
If condition 8 is not satisfied go to step 4.

The results of this analysis were reasonably accurate , since the eigen-
values checked with eigenvalues found by an independent method. The program

did have problems when c=8 since as c gets larger A~ and A4 have eigenvalues
which are nearly equal. This prevents the procedure used from separating the
2nd and the 4th eigenfunction . Consider the following:

— a

Let F - ( X )  be the ~th guess of p-. (X) . Then F CX) = E a $. (X) where ifn n ~~1 e j
j is odd a2=a4=.. .=a2n=.. .=0 since F~ (X) is even and if j is even a1=a3= . . . =
a2n+l=...= 0 since Fn(X) is odd. Further the procedure reset F~ (X) so that

a1=a2= ...a3 1 = 0. With this knowledge the function Fn+1(X), to the accuracy

:1 of the integration satisfies the formula.

66 

~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~ 



__________-- _____ - -  ______________________

F~~1(X) — K a~ “e *~(X)

where K is a constant. If A
3 

>> 1j+2 the iterations quickly lead to

FN(X) - K1 *3
(X) -

where K1 is a constant but if A~ — A3,2  then the iteration leads to

- 

FN(X) — JC2(a~*J
(x) + aJ+2 *3~ 2 Cx) )

where K
2 
is a constant.

The initial guess for F1 (x) was good enough so that a2 > 100 a4 so the
problem was not as serious as might otherwise have been the case.

This program has been run with c=4 and c=8 for the first 5 and 8 eigen-

values, eigenfunctions, respectively. -

Cou�ed Mode P wpa~a~ti.on o~ H~d com~gne2~~ Waue.4

Initiator : Dr. H. Radoski -

Problem No: 4729 Project No: 7601

There are two fundamental hydromagnetic modes called the poloidal or

isotropic and toroidal or guided modes. In an inhomogeneous medium, such as
the earth’s magnetosphere these modes must always be coupled. Simple geometric

models of the magnetosphere have been developed to study such coupled mode
propagation. The case to be treated is the cylindrical model. No analytic

solutions to the wave equations have been discovered. It is felt that numerical

solutions should afford valuable insight into the development in time and space

• - of the electric and magnetic fields. 
-
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The purpose of this problem is to perform the required numerical analysis
and computer programMing necessary to calculate and plot P(x ,t), T(x,t) as
functions of x between x = 0 and x - x for a set of values of t between t = 0
and t = ~~~~ P(x , t) ,  T(x ,t) as functions of t between t — 0 and t - t~~~ for
a set of values of x between x = 0 and x = x0, such that the following partial
differential equations are satisfied : -

- (02/0t2 + n2x~
2 

+ m2) T(x ,t) = m(O/Ox) P(x ,t)

[02/0t2 + n 2x 2 
- x ’(O/Ox) x(0/Ox) ] P(x ,t) = —mx 1 (3/Ox) xT(x ,t)

A sample case with the values used as input parameters and the boundary
- 

- conditions that were satisfied is presented below:

m = 1, n = 1, x0 = 1, tM~( 
= 20

T(x,t = 0) = (0/Ot) P(x,t = 0) = (3/Ot) T(x ,t a 0) = 0

P(x ,t = o) a J 1 (wx) , where J 1(w) = 0

T(x=o ,t) = P(x = o ,t) = P(x — x 01t)=o -

The resulting calculations are then to be checked by the following

associated conservation theorem :
x
° $xdx = constant

$ = G + I

r G = T(x,t)- + (BZ)2

I = P(x ,t)2 + (BR) 2 + (BF) 2

~~ ~
- ---

~ (BZ) = (m/x) 
~~ 

T(x ,t) dt
.1

4 ~ (BR) (m/x) f t P(x ,t) dt
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xo I x dx

Difference methods were applied to the coupled partial differential
equations such that the error term was of the order 6” , where 6 repre sents the
difference in the independent variable between two adjac ent grid points. This
approach was unstable in that the calculated solutions became divergent at the
boundary xui0. Analysis of the coupled equations and intermed iate calculations
seem to at tribute this divergence to the term (1/x) (3/Ox) P(x ,t) .  This
approach was then modified by re-evaluating the solutions (P,T) at a particular
time Ct) for distances x=6,26,...,i6 from a polynomial, with no linear term,
fitted to the above solutions at distances x—0, (1+1)6, (i+2)6,... this
modification was successful in preventing the divergence and yielding possibly
acceptable results . However , this later procedure was discontinued in preference
to finding a method for calculating the solutions at all points and without
such smoothing, nevertheless, it was encouraging to find such simplification
so helpful .

It was next decided to utilize a predictor/corrector method (1) based on
the following correction formula: 

-

P(x ,t1) = (P(x,t1~1) + 6P(x ,t11 ) - 4P(x,t12) + P(x , t 1_3 ))/ 4

T(x ,t
~

) = (T(x ,t 1~1) + 6T(x,ti 1) — 4T(x ,t~_2 ) + T(x ,t13 ))/4

This formula was derived by equating difference approximations for the
second order partial with respect to time at the t1_1 increment in time. It
has an associated error term of the order 6” . The procedure followed was to

I 
calculate values for P and T at t1,1, use the above formulas to correct the
values at t~, recalculate the values at t1.,1, compare the later two predicted

_ _ _ _ _ _ _ _ _ _ _

Numerical Methods for Scientists and Engineers, R.W. Ha ing, McGraw-Hill,
1962, p. -186—210.
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values at t1,1, and should the comparison be adequate, proceed to the t1.,2
evaluation, else perform the iteration of correcting the values at t1, etc.

The choice of correcting the t1 points rather than the t~,1 points was made
in view of having two successive points for adjustment. In addition, it was

preferred to provide the iteration option than resort to a variable time step.

The validity of resulting calculations of P and T were supported by

both their satisfying the conservation theorem and their repeatability with a
change in the grid size (6) . During the processing for various combinations
of the parameters and initial conditions , it was noted that as the parameter
related to faster damping of the P wave amplitude approaches 10, the solutions

diverged at the boundary x=l, for the grid size 6 = .001 in both space and
time dimensions as time Ct) approached 10.

The computer core and/or time requirements seem to preclude any further

significant reduction in 6 or extended use of the iteration method . And so,
in order to meaningfully extend the range of processing, it seems a variable
grid size should be used in the spacial dimension, especially near the boundaries
and a re.analysis of these coupled partial differential equations is required

in order to find a more suitable correction formula.

As can be readily appreciated, a significant computer programming effort
was required to develop a structure which could efficiently store and retrieve
data for both calculation and presentation purposes. In particular, to provide
the options for selecting when (time t0) and where (distance x0) the solutions
P and T are to be outputted in plotted form .

@vIZ., letting i (upper) and j be indices respectively referring to time
and space increm.nting in the difference grid; then, excluding points near a

boundary the predicting formula used for P(x ,t) is the following:

P’

~

1 
= 2P~ - P~~

1 
- 6t2 ~(n2/x~) I 

~~~~~~ 
+ 8P~~1 - 8P~~1 + P~~2)/

i i 1 2 7
(l26x x

3
) - (P~~1 — 2P~ + P. 1)/6x

+ m[(-T~~2 + 8T~~1 - 8T~~1 + T~ 2)/ l 2óx + T~/x~]
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- Powe.k Spee*iw2 An4.~y64.6 06 Tide Pa.tti

Initiator: Mr. David Anthony
- 

Problem No: 4754 Project No: 8607

- 
This problem involved the Power Spectral Analysis (P.S.D.) of tide data

presented as a function of time. The data was initially presented to us on

- 
paper tape but was first copied onto magnetic tape before beginning any

— 
analysis. The Maximum Entropy Method was used to determine the P.S.D.’s and
the foLlowing is the procedure used:

Initially, the data was read from the magnetic tape and edited. This
involved determining “bad” or missing data points and linearly interpolting

to supply “corrected” points. Occasionally, the editing detected large gaps

— in the data, in which case the data was processed as if each group of data
- came from a separate paper tape. The edited data was then placed on what was

called the “first master” data tape. It should be noted that the tide data

was edited and stored on this “first master” in increasing time order.

The edited data was then re-read and an interpolation performed between

the sets of data. The interpolation was performed by modifying a theoretical
tide subroutine supplied by the problem initiator. Letting T(t) represent

the tide value associated with time t, then, this program determines values

I for A, B and ~~ such that A+B*T(t+~t) is a “best fit” in a least squares sense
of the data on either side of the gap in the data. The program then finds

~• 
( values of A’ and B’ such that A’+B l*T(t+At) touches the data point immediately

preceding the data gap and touches the data point immediately following the
4 dat a gap . The values of the function A’+B’*T(V+~t) at the times at which data
-~ 

points are missing are the interpolated data values.

I This data set is now stored on the “second master” tape, from which a low- 
-

- - pass numerical filter’ is applied to the data. The pass-band was set less than

1 
- 

- 
~~~~~~~~~ where, Ny is the original Nyquist Frequency of the data and NDEC is a
decimation factor, which is an input parameter to this program.

I 
- 

K.W. Báhannon and N.F. Ness, “The Design of Numerical Filters for Geomagnetic -

rf. Data Analysis”, NASA -Technic al Note ,- NSDS-ThD -33411.
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The data is then decimated by NDEC, and *1 coefficients (t14 is pre-
determined prior to execution) determined from the maximum entropy method

(MEM) are applied to the decimated data. (A similar approach is used in
the solution of Problem No. 4810 , described later) . A Fast Fourier Transform
is now used to determine 16385 P .S.D. values at equally spaced frequencies ,
spaced between zero and the new Nyquist Frequency .

The maximums found above are then analyzed by finding the “exact” frequency
of the maximum (i.e., the peak power point) . This is accomplished by a search
in the region of the maximum until P > .99 * P < P where, P is theM-l — m —  m+l in
power at the peak power point, and 

~m-l 
U’m+i) is the power at the next lower

(higher) frequency studied. In addition , the area (energy) in the vicinity -

of the peak is calculated. This area is between points at half the peak power
or a minimum of a power versus frequency curve, whichever definition defines
a smaller integral .

The results showed that the high frequencies agreed with theoretical values
to within .1% but the low frequencies were inaccurate. The energy under the

peak also followed the expected pattern. We expect to improve the accuracy of

results with an improved MEM.

A La4e/i. Beam SLeLuôtg Tiuwagh a TUAbUZen.t Med7üim

Initiator: Dr. R. Fante

Problem No: 4756 Project No: 2153

When a laser beam is slewed through a turbulent medium the spectrum of
the intensity and phase fluctuations are affected. The purpose of this problem

is to evaluate the integral equations which describe the frequency spectra of
:1~ the log-amplitude and phase fluctuations. For a beam slewing at an angular

rate the frequency spectra of the log-amplitude Q~ and phase fluctuation
j  is known to be
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I

— t ( l— ~ )2 
( ~~ )

~~~~~~ (t+F) u1~’16 (t(l+y 4l2 ) 1h 
$~fl a (t(1~~) 

(

(l+yF )2

cos2 ~t( 1_ F) ( l+a~~))2 l+a2

where Q = ~~~ w = radian fluctuation frequency, ‘
~~ 4~~~ 

= ambient atmospheric
wind speed, L = path length in turbulence, k = signal wavenumber , y = w5L/r0,
F — L/ (kL~). L0 a outer scale size of the turbulent eddies.

It is readily noted -that there is a singularity at the lower limit of the
t integral.- That is, at -

=

• 

-

~ Analysis of the integrand reveals it is of the form IL)!. Hence, it was found
acceptable to increment this limit by adding

11/16
• ~~~~~~~~~ ( ç~~

2 

+ F~ 
- (RF) 

-

\1+y~)
2 

/

with RF representing an assumed insignificant fraction of the integration.

The infinity at the upper limit of the t integration was replaced by

~l+a2’ 
/  

~l ~~‘ ‘ log (a. —

~~~ 
(RP) I

! I a(l_~)
2 \(1+a2) /

This was determined by noting that the exponential term of the integrand
eventually becomes dominant.

These double integrations were satisfactorily evaluated using the Adaptive
- Simpson Rule1’ technique developed by this laboratory .

—4- - -  --- — -- -

1 A New Adaptive Simpson Integration Routine, Neil Grossbard , Space Data
Analysis Laboratory, Boston Coflege, chestnut ~1Iii, Mass. 02167; APCRL-70-0504 ,
Scientific Report No. 1, September 1970.
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A Fuj ’tc2LonaL Ve te~.m.àia.t& ’n LolL F~~t&ig Roen.tgen Me m.~men.to

Initiator: Mr. R. Frederickson

Problem No: 4766 Project No: 5621

The purpose of this problem is to determine a functional curve fit to
data which represents the dependence to exposure readings in Roentgens/
minute (Ro) on the radial distance from the collimator center line to the ion
probe center .

The given raw data, Ro, is first corrected by the factor R/R’ which is
defined as follows :

1.25
R = E N(E) ji (E) dE

1.25
R’ = 11 S(E) E N(E) ~(E) dE

N(E) = nIe~~ (.l<E<l .25)

N(E) = e~~ (E=l.25)

(n is an input parameter)

I = 1.25 [sin(l.37(E— .l))]”~

M (E) = 4.505 x l0~~ - 2.325 X lO 2 E + l.344*l0 ZE2

_3.728*l0~~E
3 

- 3.64*l0 3E~~ + l.66*l0 ’~E
2

S(E) = 8.733*10 ’ + 4 .999*lO 2 E + 8.234*l0 2E2

j _3.l78*l0 ZE3 + 3.053*l0 2E~~ - 9.856*l0~~E
2
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Notice that N(E) has a “delta function” contribution at E—1. 25 . Analysis of
the above integrals reveal that it is satisfactory to utilize Sini~son ’s Rule
for their numerical evaluation using the continuous form for N(E ) and adding

(i) 1.25 p( 1.25) exp(.N) to R.

(ii) 1.25 S(l.25) ii(l.25) exp ( —N) to R’.

. The procedure chosen to determine the f~nctional curve fit to the data is
to minimize the least square expression

M 2
• = ~ (R (t )  - F(t ,a .))

m=l 0 m in

where, M equals the number of data points, tm is the independent variable (radial
distance) , F the mathematical model function, and a~ the parameters in that
function . A rather remarkable curve-fit to this data is obtained upon using
the fol lowing mathematical model

- F(t,a~) = a + a exp(a exp(a ta”))

A computer program incorporating the Space Data Analysis Laboratory version
of applying the Method of Levenberg to certain nonlinear problems readily
determines appropriate values for the parameters a) . Included in the output
of this program are the description of the fitting expression , the estimated
values for the parameters , the input data, the fitted evaluations, the cor-
responding differences, the associated variances, the standard deviation and
plotting. -

‘S
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EvaLua.t~on and PLot2~ng oL Se~o oL Voubte lr tg,nats
Initiator: Dr. G. Borgiotti

Problem No: 4773 Project No : 4600

This problem involves the evaluation and plotting of sets of double
integrals. The plots are generally of g(IJS Isinoo) versus US whe e

1 j (IJS1)X 1
g(US jsinOo) = 

~~l 
f(X JsinOo) e dx

with - 

- -

/

-jS K I sin20 
- 

7

f(x lsin0o) = 

~~ 
exp sinO ~ l + 

a (~
2-2pX~~~) 

r

+ ~~~sin~O 

] 
~ 

dp + 1/2 exp(j(p+4) ~~~ - 
SiROO~~ d~

4- 
given j = - J T  , ~z=6..25 , sinOa=l/2, Ka=3l4.l6 and sin e= .08 and the values Of S ,
dp+l/2 are input parameters. 

-
-

In order to calculate f(x JsinOo) the value of the real and imag inary
parts of f(x Isinoo), fr(X i J 5 1n00)~ 

f1(x Jsin0o) are calculated separately.
Thus, let -

S K a I [  . 2
ARG1 = si~i0a 

+ 
sin Oa 

(~~~ 
- 2~.t x~~~)

~~~~~~+~~L sin 2
Qa] and

Let ARG~ = (p4) ¶(~ - SinOO)
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Then -

3
- f R (X Isineo) = sin(ARG1) E dp4 sin(ARG )

1 p—-4 p

- 1
+ cos (ARG1) E dp+-~- cos (ARG )  ~

L p=_4 p

‘ and

f1(X lsinOo) = cos(ARG1) E d p4 

- 

-

• - 
- sin(ARG1) ~ dp+.~. cos (ARG

p=-4 p

The integrals for fR (X
1
IsinOo) and f1(X fsin8o) are approximated by an

adaptive Simpson Rule1 technique developed by this Laboratory.

Values of f(X Isinoo) are calculated for a given value of sinGo X = -1,
-l+~X; -l+2~X,... 0, ~X ... 1 where ~X -= ~~

., N set through an input parameter.
These values of f(X lsin0o) are then - multiplied by weights, as if , to approximate

1 -

f(X Isin~o) dX
1

_____ _ 1  
-

by Simpson’s Rule. The first N+l of these weighted f(X Isineo) (X varies from
1 1

-l to 0) are placed in the first N+l locations of a complex array f*~ The last I -

N values of the weighted f(X lsinOo) (X varies from t~X to 1) are placed in
4 location 4097-N through 4096 of f*• Locations N+2 through 4096-N of f* are

set to zero and a 4096 point Fast Fourier Transform (F.F.T.) is applied to f*•j The resultant answers contain g(US IsineO) for values of US 4O~~~*~~t J  where
L varies between -2048 and 2048.

New Adaptive Simpson Integration Routine, Neil Grossbard, Space Data
Analysis Laboratory, Boston College , Chestnut Hill, Mass. 02167; AFCRL-70-0504,
Scientific Report No. 1, September 1970 . 

-

1~~~~~~~ . -
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The method used to calculate g(US j sinOo) is a general method which
can be used to get sets of integrals of the general form

X(s) = f  y(t) e3t5 dt
- 

- 
a

The results of this problem were accurate plots of g (US~~sinOo). One plot

for each of a set of values of S and Go.

AnaL y4A4 oL Mt~ tL-Exp one.ivt~aZ Lw e6c~nJ Ve.ca.~tj  Ra.te.~
Initiator: Mr. R. O’Neil

Problem No: 4789 Project No: 8658/CDNA

When optical radiation at a given wavelength may be the result of one

or more specific atomic or molecular transitions, the magnitude of the various

contributing enitters may be established by analysis of the time dependent
optic~a1 rad4ation. The analysis is simplified if the number of contributing

radiating states is known and/or if the transition probabilities are appreciably

different. Recovery of the number and magnitude of the luminescent decays as

well as the. exponential term coefficients will then be further analyzed as a

function of molecular collision frequency to provide reaction rate coefficients

for various processes.

The purpose of this problem is to determine the number and magnitude of

luminescent decay rates in oxygen and oxygen-nitrogen gas mixtures for the

case where the- decay may be described by either one, two or three exponential

rates. This requires developing or applying existing programs to various 
. 

-

experimental data to solve an expression of the form:

-xt -x t  -xt
I = I e + I e  2 + I e  + 1

1 2 3 I.

* - 

/ 
- 

- 
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where I is given for various values of t , and the I3~ X) and their standard
deviations are to be determined.

The data was presented in two forms : (i) tabulated, (ii) a data tape
representing an analog/digital conversion. The first form could be readily
processed; whereas, the second, which was output by the AFGL ac/dc facility,
required both unpacking and sorting. The unpacking was done by programs
obtained from the Boston College SDAL Satellite Group. The resulting data
tape was processed such that the data representing the magnitude of -the lumines-
cent decay is sorted in terms of time identifying the beam status on/off and

- then placed Onto another tape.

Data sets selected from this later tape were then curve fitted by the
exponential programs developed by the Boston College SDAL Numerical Analysis
Section . For each data set , the curve fitting was for all the data , some of
the data as “averaged data” and inc1udi~ig or excluding constraints on the param-
eter, in particular, the parameter representing the background level.

— 

The output of this rather substantial processing was provided in both
printed and plotted form. In addition to plotting on a linear or regular scale,
an option was also included for displaying the results using logarithmic scaling.
This was accomplished by taking the logarithm of the difference between the
data and the background level and selecting .proper intercepts, such that the

- 
decay rates could be interpreted as the slopes of straight lines which correspond
to the so-called best fittings. A composite plot was also generated which

showed the dependency of the slow decay rate on the omission of data pertaining
to a fast decay rate as a function of time.

The results of this effort were presented at the meeting of the American
Geophysical Union in December, 1975, at San Francisco, California. It is also
intended that these results be published in an AFGL, Scientific Report.
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E~cJ .’wn-lon Ma.~t1~ema.t-Lca.L ModeLUng ~n -the~ Iono6ph elLe.

Initiator: Dr. John Jasperse

Problem No: 4799 Project No: 8627

The purpose of this problem is to find a mathematical model to explain the

behavior of electrons and ions in the ionosphere. Towards this end many models

were investigated.

The first model tried assumes the ionosphere contains monoenergetic photo-
electrons. This model calculates the normalized electron velocity distribution

- function (Fnorm (X)) and the electron temperature compared to the photo-
electron temperature ((Te/Tpe) (y)). The equations used are the following:

F (X) - 2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 

-‘ norm - 

,15~7 I + (V1/V) ~~~ e (v~~-l)

M - 
—

{ 6 (X-Xo) + Z B 6 (X-(Xo-m) J }
m= 1

M-l
— CT /T )  (y) = + Z C (>~) 

(l-mXo ~ - 1~. 
+ C~(>’~) [l-M X0 ’]e pe 

~ + 
~
, m=l 1 + y (Xo -m)~

where B ~ r [Xo - (2_l)1 ½ ] andin 2=1 1~ V /V 1 + [Xo - (2_l)]½

C (y) = 11 ( x 0 - (Z 1)]½ 

½ )m 2.=1 
~~~~~~ 

+ - (~-1)1

Here V = a n with a the recombination coefficient andr e
the recombination frequency.

Vi = v’~T/Li with Xi the threshhold velocity squared and

Li the mean free path.

Xo is the photo-electron velocity squared

M is an arbitrary input parameter

4 - --
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In addition to the above ,

M- 1

1 + i/Vr) 
+ B 

1 + (V 1/ V )  (Xo~m)½ 
+ Bm -

• is calculated. I should equal- one, if the equality stands up.

The second model tried assumes the ionosphere contains exponentially
distributed energies of photo-electrons.

The solution of this model is approached as n goes to infinity of the
yelocity distribution function.

(X) 
~ 

2 _______________
norm 

i~~7~ x0 Ll + (V1/V) ,‘r 0 (yr -1)

(1 - exp (-Xo~~))~~ exp (-X /Xo) B (N) 
CX)

and the electron temperature compared to the photo-electron temperature

T (N) /T = ‘
~

‘

~~~~ f  dx “~~~

4 - 4 -  

F (N) —

e pe 2 norm

Where 0 (X) = 1 if X > 0; = 0 otherwise 
-

B (N) 
(X) = (1 - exp (-X 0 ’)] + exp (-NX0 ’) CN (X)

N-i
+ [1 - exp (-X0 ’)] E exp (-nX 0 ’) C~ CX)

n=1

D r  ( +~~~~~C ( X ) = f l I  ‘ /  

½
— 

I m= i L V/V 1 + (X+in)

the input data is the same as the f irst model , with b the upper limit
of the ratio of Vi/VT.
The integral is calculated as the sum of

fix !X ~(N) 
+ !~~~I 

/~x ~~~ F~~~~

with each integral evaluated using a trapazoidal rule.
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In addition the following- quantities are calculated:

- 1(N) 
f
dx ~~~~~~~ F(N) (X) where this check should

~~ 
2Tr - norm

approach one as N approaches infinity

(X) = )  [ + j [i 
- exp (-Xo ’)]~~

exp (-X/X o)

1(0) 
fi~ “

~~~~ ~~~~ CX)

T 
= 

~ 

2ff 

4_ F~°~ (X)

and the electron source function

(V Gnorm) (X) = (2
~
fle/(XoI

/
~
T) )  vT~ exp (—X/X 0)

The third model calculates the photo-electron source function

So (z) = %L1 n1
(z) Tbl exp [A 1(z)] where n1 (z) = T3al exp ((a-z)/h 1]

and A 1 (z) = h 1 Qpal l
sec x~ [n 1(b) - n1(z)].

We also calculate the spherical electron flux

r 1 ½ 1~~ 1
p -(z) = I I I I [So(Z) — — S2 (z)] ande 

L~’r 
F . 0~ (z) j Ly(z) j  2

calculate the electron density fl e
(2)  = (.iL. ..)½ y(z) 

~e’~~ 
and calculate the

r
the electron temperature Te(Z) = 3.2991 (l0 12) ~~ LLy (z )
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Here a is the base height of the ionosphere
b is the base height of the exosphere

%L1 is the photo-electron ionization cross-section

~pai is the photo-electron absorption cross-section
is the neutral particle density at a -

is the scale height -

4- 

is the photo-electron flux at b
x is the zenith angle
Ur is the recombination coefficient
F~0~(z) is the value of the fractional ion concentration at the heigh.t z.
S 2 ( z ) = O
y(z) is the electron velocity at the height z.
y(z) is either a set of input parameters or if the temperature
is calculated then : -

M—1 - — ‘
— ....L + ~ ~ C C )) [1-is Xo 1

y(z) yo 1 + X(z) v~X~ m=l m I + X( z) cxo..:;E~½

+ C~ (X( z)) ( 1— P4 X o 1] }½

where X( z) • V’ L’ kZ)/~x F
~0~

(z) n5(z) and

L ’(z) • Q’ n ’(a) exp ((a—z)1h 1) 
-

and C~ (X(z)) * fl 
~~

_ [Xi - (t_ l) ]½

t.1 X(z) 1 • [Xi - (&_ 1)]
¼

here Y0 is the photo-electron temperature
Q’ is the inelastic scattering cross-section
n ’(a) is the neutral particle density at a
V’ is the threshhold velocity
Xo is the square of the photo-electron velocity
M is an input parameter (P4 + CD)
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The fourth model solves the following integral equation

= I~ + K~1 ~~~ 
+ F11 ~~~~ 

+ F12 ~~~~~~~
F b 

-

[ where 1(11 = 
! j ’ dz ’ E1~—~~ e4 - Z

~
1
~ _e

4-
~~”()

- - is the exponential integral of the first kind

= 1 (in) exp [- ~~~ (exp(- 
~~ )-  exp (-

- 
L~~0L e~ h n

- 
Ill = So (z’) — !_ S2(z’)

— V . 2 y2(z’)
F11 = fL~~ (z ’) + (S— l) L 1 (z ’) e 1 (1 + V~~ y (z) 2)

F12 = -(~~~~~~~~) y2(z ’) F
~0~ 

(z ’)

- further L~~ (z ’) = exp (- ~~!

- h

— L 1 (z ’) = exp C- —
~~ 

)

h -

= 

~et exp (
~~

— )

1 = Q. n(a) exp(--— )1 
Ii

Here ~~~~ is the incident flux at b
- - 1-b is the cosine of the angle of the incident flux

f is an additive fraction in the equation
h is a scale height

n(a) is the neutral particle density at a

- 

- 
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- is the elastic cross-section
V1 is the ionization threshhold velocity

S is the mean number of electrons per ionizing collision - 
-

To solve this integral equation we consider a monotonically increasing

• set of NVAL zk va lues starting at a and ending at b. K11 is then approximated ,

~

‘ except at Z = Z ’ , by - -

K
11 

• 

NVAL 1 (E 1 
~~ •

.e/ h -e~~~”1~ ~
K.l 2 Let

with zo .z i a  and z
~~AL = z NVALTI = b  -

A ( z k)=!_ (zk+l
_ z

k l ) atz. = z k —

the term in the sum is approximated, using a taylor series expansion , by 
-

1.. 
~ i ~~~ 

~-z/h _e_Zk/hI) A (zk) as z + zk
: 2 L t -

+ 1. E1 c~~— I e~~~ ~e-~~/h I ) A (zk)2 Let

+ E (~~~
. ~~~~ =e~~~

”I) A (z )
2 1 L h

et

where E 1 (2~!. I ~~~~ _e 1
~~

h I ) A. (Zk) (i=f or h)L t 
1

h (-
~~~~~ 

- Ln (!!~~~) ! 
~ 

£ 2 

e~~~ ’ (2 - e~~~2 
- e~~~~

2 )
Let 2 2

- E (exP (-2n z/h) 
- (l-e~~~~

2) (1 + 
l~e U2)

fl=l 2n (2n) I

4 
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C . 2  -

+ (1 - e
Cj/2) (1 + 

1 - e 1/

2

- 
_exp (-(2n?1)Z/h )  

~~ - (1 + 
i_e~~~

/2

n=2 (2n-1) (2n-1)! 2

+ (1 - e~~
/2) ( ~ + ) )  + 2 E (1 - e~~~

”2)
2 n=l ñ Z -

here Af (Zk) = ! (Z
k+l 

- zk)

A.,, (z
k) = 

— (zk - zk_l)

A.
1

1 - -

h

— Error bounds were found for truncating the above infinite sums and tile
above term was evaluated to a fractional accuracy of .0001.

With this approx imation for K11 NVAL equations were formed, one for
each value of 2k• This set up NVAL equations in NVAL unknowns. We solved
this equation as follows : -

After setting up the equation NVAL initial guesses for tile values
of 

~‘e~~k~ 
are made. These initial guesses are either input data or

/4 (So (z ) - 5/2 S2 (z ) )
Pe(Zk) = / 

k k 
A “better” guess

ai r  F. 0 (zk)

is then calculated as described belos~
For each equation find the amount (E(z)) for which the equation is

not satisfied. Then calculate all the possible derivatives

~E(z)  .Then form NVAL equations; one for each z value considered. - 
—aP( zk).

NVAL -
Z A ~E (z) - = -E (z)
k=l k 

~ (Zk)
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and solve the NVAL linear equation in NVAL Azk unkowns for
the AZI

k s. Then form new p(z~~ values

~NEW (Zk) = Pe(1k) + a AZ- and calculate the new E(zk) ’ s

(ENEW (zk)). Here a is initially one but is halved until

NVAL
2 NVAL

ksl NEW Zk < E (E (zk)) 2 This is the “beter” guess for

p(z). This process is repeated until , judging by the amount of error
and the changes in p(z) the process appears to have converged. As in the

third model y(z) is either an input parameter or is calculated as indicated

in equation (1) . In addition to Pe(Z) and y(z) the program also calculates
- - ½

the electron concentration ne(z) = ( 2L.) y (z) Pe (Z) i and the electron temperature
- 4

12 -

Te (z) = 3.2991 l0 /(y (z))2. If y(z) is changed the program does each

correction of Pe(Zk) after changing y(z) .

The fifth model solves the following integral equations

~~ 
(z) = I~ + K 11 (I ll + F11 ~~~~~~

+ K 12 (121 + F2l Pe(Z) J(z) ~ P22 ~~~~~~ 
-

• and J(z)  = 12 + K21 (I ll + F11 p( z) + F12 (p (z)) 2) (2)

- 

+ K22 ~
‘21 + P21 p(z) + F22 J (z) )

• where K12 = !_ ~ dz ’ E2 ~~~~~~~ ~~~~~ -e~~”I ) sign (i-i ’);
2 a Let

K21 = -~~ 
J~

dz ’ E2 (-
~~~
. Ie

_z/h 
e-Z’/hI) sign (z-z’);

K22 = ~~~ dz ’ E3 c~1i Ie~~
” e

_Z’/h I) - 
-
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where sign (X) = I for X > 0 and -1 for X ~ 0 and where is

the exponential integral of the nth kind

Further 12 = 1(in) ~ exp - (exp (- !) - exp (- 
~~~

) )  ;

L~~
0 L et h h J

2cz
F21 = — 

r 
~ y

2 (z ’) F10~ (z ’);

F22 = -(1-f) L~~ (z ’) - E L ~’ (z ’)f4 CVky(z’)

—Li’ (z ’) f4 (V~y(z’)) ;

- where f4 (x) = — ‘i [X ’ e~~
2 

+ x e~~
2 

+ (l-erf CX))]
3,/~~ 2 4

L ’ (z’) = L ’ z’ -k k exp (- --— )
h

L = 
~k n(a) exp (~~~ for K = 1, 2 , N

h

Here N is the numt,er of inelastic cross-sections used in the analysis
is the Kth 4- inelastic Cross-section -

Vk is the Kth threshhold velocity

This set of integral equations is solved exactly analogous to the
fourth method but 2NVAL equations in 2NVAL unknQwns are formed. The additional

unknowns are the J(zk) ’ s and the additional equations come from solving (2).
If J(z k ) is to be initialized it is calculated from the initialized
values as the approximation of

J(zk) = 12 
+ K21 (Ill + F11 PeCZ) + F12 (p (z) ) 2) + K22 ~21
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I
After “solving” for Pe(Zk) and the particle current density

J(zk) we calculate

~ 
½ J(zQ

~~
i. 
(z~) ~~ ~ ~~~~ the electron drift velocity U(zk)

and Te(Zk) a 3.2991 iO /(y(Zk)

From the mathematics supplied by the Initiator, the following equation

serves as a check:

- ira
J(b) — J(a) = f1’dz~ {So (z ’) — (__Z ) F

~0~ 
(z ’) y2(z’) .p2(z ’)

a 4

V2 y(z ’)2
+ (S-i) ~~ (z ’) e (1 + V~ y

2 (z ’)) p (z ’) }

This equation has been checked with the integrals calculated
• using a trapazoidal rule.

Another set of equations derived from the supplied mathematics should
also check :

ira
— J(z) = So(z) - (~.—L ) F . 0~ (z) y

2 (z-) p2 (z) (3)
4

+ (S-i) ~~~ (z) (1 + ~ ~2 (z)) e 
yt(z) 

p (z)

for all z values. This equation is checked for the NVAL Zk
values considered. For the purpose

1. J(zk) for K p~ or NVAL is approx imated by fitting a parabola through

• the points Zk_l, Zk and 1k+l and then f inding the derivative of the parabola
at the point Zk . The derivative at z1 and is approximated as

a J(z 2) — J(z 1)
and

Z
2~~~~~

Z
1
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a J(z
~~AL) - J(z~~AL ..l)

• 
Z NVAL - NVAL-l

• The program may reset y(z) as in the third model or by finding
y(z) values which satisfy (3). When equation (3) is used, equation (5)

• is not used for checking. In any case the program now solves for the electron
temperature Te(Zk) = 3.299l~ lO~~

2/(y (Zk)) 2.

The sixth model solves the following integral equations in a
manner exactly comparable to that used in the fourth and fifth models.

= - L. J2 (z) /p (z) + I
~ 

+ K11 I~~ + 
~l2 ~2l + 

~l3 
131

+ 

~~ 
F11 Pe(Z’) + K11 F 12 ~~~ 

(z ’) + 
~j 2 ~2l ~~~~~ 

J(z ’)

+ 
~l2 F22 J(z ’) + (K 11 F13 + K13 F31) J2 (z ’)

+ C
~1l F 14 + K13 F32) J2 (Z’)/P (Z’)

J(z) = 12 + K21 ~~ 
+ K22 121 + K23 131

+ K21 F11 ‘~e~~
’
~ 

+ 

~21 
F12 p ( z ’) + 1(22 F21 ~~~~~ 

J(z ’)

+ 

~22 F22 J(z ’) + 

~~2l 
F13 + 

~23 F31) J~ (z ’)

+ 

~~2I F14 + 

~23 
F32) J2(Z’)/Pe (~~

where K13 = dz ’ £3 e~~”~
’ _e

_Z’~
’h
1).

4 k  - L t

• ~! dz ’ £4 (f!1 1 e~~’1’ _e
_Z t

~~ J);

Further 
~2l 

= S1 (z ’) = 0

~31 
S2 (z ’) = 0
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F13 — ar y
2 (z ’) Fi0~ 

(z ’) Fion (z ’)

F14 - (
~~ ) { (4-3f) L~~ (z ’) + E u  (z ’) •

-V~~y2 (z ’)

—V2 y2 (-z’)
• (2 + 2V~ y

2 (z ’) + V~ y’ (z ’)J + L ’ (z’) e

• [S + 3 + (S + 3) V~ yt (z ’) + 25 V’~ y” (z ’)] }

• F31 a ~~r y2 (z’) ~~~

32 N -V~ y2 
~z ’)

• F32 • -(— ) {l-f) “et (a ’) + l~ ç’ (z ’) e
1511 k 1

• • —V2 •y 2 (z ’)
• (1. + V~ y2 (a ’) + 1 v.” y” (z ’)) + L 1 (z ’) e

• 2

(1 + V~ y2 (a ’) + I v~ ? (z ’)) }
2

• After “solving” for p~ (1k) and the particle current density

J(zk) we calculate -

1~
Ne (zk)I1 (L) ~~~~~~~~~

U (Zk) — ~ (zk)/N. (1k) ~

Te (2k) 3.2991 • 10 12 / (y (1k)) 2

- 
• • •

~ 

• and the spherical electron flux
p~ (Zk) 

a p (1k) { 1 + (_.± ) J2 (l
k)/P

2 (1k) 
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The integral’ and derivative checks explained in model five
also are used in model six as may be the change in y(Zk) from equations (1)
or (3).

• When y(z~) is incremented from (3) then the derivative check is
• not used. Further when y(z,,) is increment then I (a ) ,  N (z~) and U( z )e k  ~~~~ k

are recalculated after the changes bef ore a new iteration on 
~~~~~ 

and
J(zk) is begun .

The final model tried is the same as model six except Pe(Zk) is
not calculated and the change in y(z~) which occurs is the implementation of
the following equation. This equation is approximated using methods previously

• discussed.

~ 
= 13 + 

~3l N 11 + 
~32 N21 + 1(33 N31

+ K31 1H11 y
2 (z ’) + E [14~ V~ y

4 (z’) + H~2 V~ y
2 (z’) + H13]

k—i

. 2 2  , _ 2 2 ,
- e + [H 11 V~ y~ (z ’) + 

~l2 V1 y
2.(z’) + H13]e

— • 2 y2
+ K32 (1121 y

2 (z ’) + E (H21 V1~ y
3 (z’) + 1422 Vk y (z’))ek= I

(1 -  erf (V~~y ((z ’))J + (H~1 V~~y~ (z ’) + i42 v
~~

y (z’))

exp (-Vi y2 (z’)) + H~3 (1 - erf (V~ y (z ’))) }

1 N
+ 1(53 ~ ~~~~~ 

y2 (z ’) + E [H~~ V~ y~ •
(z’) + H~2 V~ y

2 (a ’)
k= 1

• ~V
2 y 2 (z ’) .

• • + H~~ ] e IC 
• + v~ y” (z ’) + H~2.V~ y

2 (z’) + 43)

• —V~~y
2 (z ’)

e 1
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where K31 — 11
b 

~! £3 C— I •
-z/ h _~~ z ’/h 1)

- I E 1 ~!!i c
_I/h _e Z’sIh l)];

2 L .
• 

~32 
= 

J [ ~ ~!!i Ie
_ Z

~
’h _e _ Z ’~

I
~I ) 1 E2 (

~~~
I e~~

’1
~ _e

_Z t
hitI)]

sign (z—z ’)

K = !.[
b
dz t ( .  E5 e_2Th _e

_Z’
~~I)

• - I E
3 

(~!i I e 1
~
% _0 2 ’m1)]

2 Let

and I 3 I 1~~~ (!~~~~_~~_ ) e x p [_ ~~~. (exp (~~.).. exp (~.))]2 2 Let h h

• N11 = So (z ’) - ~- S
2 

(a ’) + f L L  (a ’) p(z’) + ~~~~~. L~~ (z’)(4-3f)

J2 ~z’)/ p (a ’)

N21 
a S i (z ’) - (1 - f) L~~~ (a ’) J (z ’)

- N31 = • S
2 (a ’) - (!L) (1 - f) L~~~~(z ’) J 2 (z ’)/p (z’)

a — (-—-Z ) Fi on (a ’) p2 (z ’) + ur F~~0i~ (a’) j2 (z’)

H21 - -(
~~~~

) F1~~ (z’) p (a ’) J(z ’)

H31 
a _

~__Z 
~ F

~~om (a ’) J 2 (a ’)

) L~ (z ’)/ p ~z’)3ir
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H~~2 
= (~~

) ~~ (z ’) J 2 
~z ’) /p (z ’)

• H~3 — (‘~~~ 
) L~~’ (z ’) J2 (z ’)/p (a’)

= (~~~
- ) L 1 (a ’) J2 

~z ’) /p (z ’)
3w 1

I

H~2 = 
4~~~3) L ’ (z ’) J2 ~z’)/p (a’) + (S—i) L ’ (a ’) p (a’)

• ~• 

• H~~3 
= 
4(S+3) L ’ (z ’) J2 (z ’)/p (z’) + (S—i) L:’ ~z’) p (a’)

$ •~ 3w 1

= _ ( 4 ) c1 (z ’) J ( z ’)

Hk 
— 

2 -~~

22 — - k (a ’) J (a ’)

= _Lj ’ (z ’) J ( z ’)

H~1 = -(
~~~~~

-- ) L ’ (z ’) J (z ’)

= - (_.!_ ) L 1 (a ’) J (z ’)

H~3 = -L ’ (a ’) J (z ’)

H~1 = ( 16 ) c’ h z ’) J2 (z ’) /p ~z ’) 
•

= -(~i~ ) 
~~~

‘ ~z ’) J2 (z ’)/p (z ’)
• iSir
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a _ (�~. ) L~~
’ (a ’) J2 (z ’)/p (a’)

1 Sw

= — C . ! — )  Lr’ (z ’)  J2 (z ’)/p (z ’)
15w 1

142 = ...~~�!_ ) L ’ ~z’) J2 (z ’)/p (a’)
iSir

H~3 — 
15ir 

~ 
L ’ (z ’) J2 (a ’)/p iz ’)

The results of the methods discussed varied from case to case. The

two methods , model 5 and model 6, judged to be the closest approximations
to the actual ionosphere were close approximations of each other. For this

• reason the investigator judged that the particular approach which was

programmed , has been pushed as far as reasonable at the present time . The

fina l result, model 6, did not conform to the experimental results in the

ionosphere. The investigator thinks this is because the magnetic field

was not incorporated in his model. The investigator intends to add
the magnetic field and return for programing services for the improved

model.
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1. BACKGROUND

This request for numerical analysis and scientific computer programming

• support involves the derivation and application of certain product, reciprocal

and natural logarithm algorithms to the exact evaluations of derivatives of
• 

- • 
given functions.

- The primary function , JY6a~ (see mathematics, J function) , is defined
and used by Jasperse1 in the calculation of Atomic Coulomb Integrals (Ad ),

• 
~~~~~~~~~~~ 

These integrals arise in studying the physical properties of
• ozone, an important constituent of the earth’s atmosphere.

• In the original analysis/programming support request, the J function was
• specified by the Initiator as a function of 4 variables, Cu , ~~, 

y, 6), where

- the computational requirement was to calculate “high order” derivatives of a

~ •f function of four variables. Certain derivatives of the J function subsequently
would be applied to computations of L integrals. However, preliminary inspec-
tion of the J function showed that it was necessary to treat four dummy

I constants, ( a b ,c,d), as variables when t~’king partial derivatives. Therefore,
the problem was immediately expanded to - requirement for evaluations of high

• order derivatives of a function of eight variables, a considerably more com-
plex undertaking.

• It should be noted that the J function contaifls logarithmic terms, an
additional problem to be dealt with.

It should further be noted that previous attempts by the Initiator to
I compute ACI (to which the J function is applied) by direct integration techniques

had met with limited success; low order computations had been generated on a

computer, but the higher order calculations were beyond the scope of the

techniques and equipment available at that time . These low order calculations
were presented to be used in a study of accuracy at the time when the evaluated

• 
J function would be applied to ACI calculations.

‘
I
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2. PROCEDURE

The synoptic approach taken to the problem is outlined below. Some of
the steps included were not known at the onset of the effort, but were made
necessary by difficulties encountered as the analytical investigation proceeded.

Obviously, most of the effort outlined below progressed in a parallel fashion C
rather than in specifically sequential steps .

Evaluations of J Function Derivatives and Application to Calculations
of L Integrals.

1. Define a basic method of evaluation of J function derivatives by

applying product and reciprocal forms of algorithms.

2. Expand existing algorithms2 (Product, reciprocal) from functions of
1 variable to functions of 8 variables.

3. Prove the validity of the above.

4. Determine suitable approximations for terms such as

U~ ~~~~~~ ~~ 
which can reasonab ly be evaluated on

• the computer by the methods product and reciprocal a] gorithms .

- 
5. Apply evaluated J function to computations of certain low order

AC!. It is necessary to have prepared compatible programs or sub-

routines to evaluate Coulomb integrals, Sturmian functions and
Gegenbauer Polynomials. Generate study of accuracy of results
compared to previous calculations by direct integration technique.

6. Determine an efficient computer index storage scheme- to allow

evaluation of large numbers of partial derivatives of high order
J functions.

7. Derive algorithm for exact evaluation of derivatives of terms such

a u.i r Polyflomial 1(8 Variables)1S, Lpo~ynom1a~1 ~~8 Varxables)~~

• 8. Prove validity of the above.

9. Apply logarithmic derivative algorithm to appropriate portion of J
function; compare accuracy of results to approxiamtion techniques.

98
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10. Apply logarithmic derivative algorithm to low order ACI calculations;

compare accuracy of results to previous study.

- 11. Compute high order AC!.

3. MAThEMATICS

3.1 The following function (J Function) is given by the Initiato,?

(p. 17, Eq. 19]:

n2

2(fga2b2c2tSt-ega2b2d2y2_fb2c2d2ct2+ea2c2d2132)
-

• 

~ £ 
kfabc6÷abdy+acdB) (gabc6+bcdu+eacd8)

:

• 

( y 6 ~~~1~i) (gabdy+acd~+fbcda)

where a , 13, y, 6 are expansion parameters; e,f are particle mass ratios;
a, b c, d are dummy variables introduced in a derivative substitution

technique.

13.2 The Atomic Coulomb Integral (L integral) iS given [p. 17, Eq. 20]:

iY 6 a 
= N1 N6 Na N 13 

X’D~ 
6 a 13 jY6U8ka b 4 = 1“n”on”on’ono n”o n”o n ’o no 

~ 
n”n”n’n f ‘

• 
• 

- ! where N are normalization factors of the Sturmian function .

3.3 The differential operator , D , is defined [p. 17, Eq. 21]:

n”-P P
• 

D1 6 a 13 = 
n ’-l 1 1

• n” n” ~~‘ ~ 
— 

~~~~~ 
n”o(~7

)

n —P p ‘ n’ —p —i Pn —l 6P 2 
~ — l aPx ~ s ,,~ C—) C—) E ~~~ (—) (—) n’

P =0 ~ ° ~d
2 P =0 aa2 aa2

2 3

‘
I
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3.4 Derivative Algorithms for Numerical Evaluation

The method taken to evaluate partial derivatives of the J function with

respect to (a,B,y ,6,a,b,c,d) consists of being able to define evaluations of

partial derivatives (to as high an order as required by the full evaluation)
of each component term of the overall expression, and then being able to
algebraically combine the partial derivatives of those terms in a manner
which forms the evaluation of the partial derivatives of the sum , product ,
reciprocal or natural logarithm of the given component terms . By defining all
partial derivatives of all component terms of the J function , and by using
a high speed computer to evaluate the expressions and manipulate the combining
of the expressions, the evaluations of the partial derivatives of the full J
function can eventually be obtained. -

Obviously, algorithms are required, based principally upon Leibniz’s
Rule , to form the evaluations of partial derivatives of Products of terms of
polynomial functions of eight variables, reciprocal of such a term and the
natural logarithm of such a term.

The algorithms used to perform these operations are given below.

3.4.1 Derivatives of a Product of Functions of More Than 1 Variable

I ,I ... Ii ‘a .../i \/i \... i ,i
D 1 2 (f(x)g(x) ) = E E ( 1~~ 2 1  1 2 (f (x ) ) .
X~~X ... isO ~~~~O ...\i~/\i?/... 

Dx , x

I —i ,I —i
• ( ~ 

(g(x) )

- -~;

where D~ (f(x)) represents the Nth derivative of f(x) with respect to variable X1.

I
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3.4.2 Derivatives of a Reciprocal of a Function of More than 1 Variable

I ,I ... 1- 1 1
2
_i ...

f . Dx
’
x
2 ... (l/ f(x) ) = — 

•
E E ( 1~~~ 2

1 2 1 0  ... \~j\~ 
...

~~
-
‘ 

- 

I -1,1 -l
(l/ f(x) ) Dx’ x

2 (f (x) )/ f (x)
• • 1 ‘ 2 ~~~~

1 3.4.3 Derivatives of the Natural Logarithm of a Function of More Than 1

- 
• 

• 
variable •

• I I I 1— 1• 1 ,1 ,1 ‘N 1 2 3 ... n
Dx
’ ~~2 

x
3 

~ ~Ln (f(x)) I  = E E E -E ( 1~~( 2
~~( 9

1~~~ 2 ’ 3 “ N i = o  i=o i=o i=o

DX
1
~ x

2 ;
X

3 l l/ f ( x)I

I— i l —i l — i ...I— i
~~~l 1 2  2 3  3 N N Jfx x x  x I x

1’ 2 ’ 3 ~~~~~~ N

a

3.5 The expression selected to approximate £n(x) terms in the initial

evaluations of the J function consisted of:3

tn x = 2 ~~ + 4(. ) + 1(x-l)- + • . . j  (x>o)

Derivatives of this expression were initially obtained using the product

and reciprocal algorithms defined above.
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3.6 An example of introducing substitute derivative expressions with d u y
variables to evaluate an integral expression is given below.

Given -

Find

b( 
x2e

_X 2dx =

- Introduce dummy variable a

• ~~~~ 
e~~~dx =

-
~ • 

Take of each side -

a ,~ ~~~~~~~~~ a i  fir
- 

e d x = r~~~
_

Rewrite

G ~~~~ e~~X dx = - 
~ 3/2

a -Take r

I ..ç x2e~~X2
dx = - 

4 cs3~’2

• Evaluating at a=l
I -

C x2e i)x
2 

= 
~~~~~~~~ 

= 
4
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3.7 Derivative Variable Transformations

Derivatives were evaluated with respect to first order variables but were

required in the differential operator D, with respect to second order variables. 
-

- Therefore, the following relations were applied to each term-of the Differential

operator:

- 

1 a ‘ _ i a

• ;
-• 2 2 -

I ax2 4X2 ax2 X ax1

3.8 First Order Derivative Expressions

Expressions for certain first-order derivatives of the J function were

derived and are presented- below:

Given :

- 
~2 1 ~

- ~~~ fg6~ egy 2 + e132 - fa2 (ey+ö+cs)(gY+B+fcl)

Rewrite:

• ~~-J ~6a13 
= (fg62_egyZ+e132_fc*Z) [Ln(f6+y+B) + £n(g6+a+eB)

£n(ey+6+a) + ~n(gy+$ i-fa) ]

- 

I 
- 3.8.1

-1 ~~~~ = [(_l)(fg62_egY2+e132_&tZ) (2fg6))[In ( ) + £n( ) - Ln( ) - Ln( )]

+ (f g62_egyZ+e131_fal) tf5+y+13 
+ 

g6+c~+e13 
- 
(ey+6+aJ~

• 103
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3.8.2

~
- 
~~ 

5 t(-l)(-2)(2fg6)(fgó2-egy2+e82—fa2) (-2egy)](~n + £n - £n — Rn]

+ [(~l) (2fg6) (fg62~egy2+eB2_fa2) 
~~fo~j+~ 

- ey+5+a - y+~+fcx~

• [ ( - l) ( f gö 2 -egy 2 +e02-fa2) (_ 2 Og T) J[ f~~~~ + 
~~+~+e~

+ ((fg6 2 — egy 2 +e82 ..fu 2 ) ~~ 
(-l) f - (-l)e

(fâ+y+8) 2 (ey+6+a) 2

3.8.3

2 a a a aJ - (24.l6)e2f2g2a8yó £n
~~~~ ~~ 

- 
ie~r+o+u cgy+~+±~&

+ [48e
2fg21316

] i 
______ - _______

D” ~g6+a+e$ 
- ey+6+a g1I8’t~

4Sef2g2uóy i 
+ _______ 

1- ~ D~ 
g~”a+e$ - gy~8~fa

+ r48ef2~ 1136 1 e g
L 

~~ 
1
~ f6+y+13~ ey+ö+ci - gy+~+fa

- ~~~~~~~~~~~~~~~~~ 
~ g ’ ~~~~ 

- e~á~~~
1

+ [8efg y6 1[ e - £
(g6+a+eB)2 (g-y+8+fct)2

- 
+ [

8efg8y][ e 
+

D3 (ey+6+a)2 
•

~ 
- -~

+ (Be g8y] ~ 
g 1 —]

D 3 (g6+ct+eB) 2 (ey+6+a) 2
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~~ (gy+B+fa) 2 (f6+y+6) 2

- [8efgay][ eg 
+ 

f
0’ (g6+cz+e13)2 (f6+i~+B) Z

- [8efa~][ e - f 
—]

D 3 (ey+6+a)2

+ (
~~~

.] (___
~!L..._..] + ~2egy

1 ~ 
2eg

• 02 (gy+B+fa) 3 D2 (g6+a+eB) ’

:

1 

+ [~.!~.]( 
2e 

—] + ~!~H— 2f

02 (ey+6+a) 3 D2 (f6+y+8) 3

where D = fg62 -egy2+e62 -fct 2

4 . VERIFICATiON OF SUBROUTINES PRODUCT, RECIPROCAL

Suitable polynomial functions were selected which allowed evaluation of

derivatives of their products and reciprocals by analytical methods . As it is

unrealistic to analytically evaluate derivatives of products or reciprocals
of expressions of functions of eight variables, functions of three variables
were used. This was felt to be sufficient to show that some method for dealing

with more than one variable is either valid or not valid. The algorithm derived-

should later be able to be expanded by symmetry to include any number of subse- -

quent variables. In addition, the particular computer software, CX 6600
FTN 3.4.3, was found to be bounded in subscripting capability to three indices.

As a minimum of time was desired to be spent on the programming of supportive

test functions for numerical evaluations, this factor was taken into account

when initially deciding to limit the testing effort to functions of three
variables .

Computational results showed that the derived product and reciprocal

algorithms for functions of three variables were valid when compared to analyti

105
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evaluations involving the same processes . As an additional test use was made
of the property that -

~~ 0 where IC is any constant . Considering that any
indexing scheme for control of storage of large altidimensional arrays can
readily become complex, it was felt that a proof based upon this property

would lend considerable confidence to the validity of the computer programming
of the algorithms into general storage subroutine form. As a guide to the

Scientific Programmer , it should be noted that , with respect to all of the
derived algorithms, the value of the differential is stored in an array whose
indices can lead to the order of differentiation.

Therefore, the following test was devised :

Given : f = f(x y,z), g = g(x ,y,z) and all derivatives of f and g through

ax’~ay”az~’

1. Evaluate all f and g at some (x01y 0,z0), and store in imiltidimensional
- arrays F ,G

2. Form array P = F•G using product algorithm subroutine

3. Form array R = using reciprocal algorithm subroutine

4. Form array Z = R•P using product algorithm subroutine

The contents of array Z will then be

Z(l ,1,l) = 1.
— •

all other Z(i , j , k) = 0.

This test not only indicates validity of the algorithm and computer sub-
routines , but also indicates any level of roundoff which can be attributed to
the methods (in conjunction with the specific functions and data values selected)

- • for the steps outlined. 
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5. PROGRAM

Functional Description

The logical computational procedure for the action taken by the computer
• program can be broken into a series of sequential steps. Consider that the

function to be evaluated ,J, can be simplified to the following expression:

A = Q4:) tn(Y) = Q4.) £n(~~~.)

where A,X,Y ,M,N ,O,P are polynomial functions of eight variables,

and Q is a real constant .

• Then the program logical procedure for numerical evaluations of the J
function and application to ACI can consist of the following:

1. Cal culate and load into arrays : d”(O) , d”(P)

2. Calcul~te derivatives of product : d~ (O1~P)

3. Calculate derivatives of reciprocal : d”(o4p~

4. Calculate and load into array : d”(M)

5. Calculate derivatives of product : d~ [(~~~) CM) ]

6. Calculate and load into array : dn (N)

7. Calculate derivatives of product : d”{[(~~~
) (M) ] ’N

8. Calculate and load into array : dn (X)

9. Calculate derivatives of recirprocal : d~4~)

10. Define constant Q

107
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11. Calculate derivatives of reciprocal : d”4.)

12. Calculate derivatives of tn term : d’1(&n(Y) ]

• 
• 13. *iltiply derivative array by constant Q

14. Calculate derivatives of product : d~ ((Q) £n(Y) . (~J ]  = d~ (A)

15. Select derivative terms to apply to Ad calculations, and generate

family of integrals.

In addition to several test sequences of certain variables which demonstrated
characteristic properties of the J function, two specific data sets were applied
to the finished program, and are given below as a matter of reference.

VAR SET1 SET2 -

- • • a 2.31 2.31
8 2.31 1.14

— 
- y 2.54555 2.54555

• 6 .7093 2.54555
a 1. - L -

b 1. 1.
C 1. 1.
d 1. 1.
e .000136 .999864
f .000136 5

Computational Results printed by the program include a list of the input data

parameters , a list of all partial derivatives of the numerically evaluated
diff erential operator , and a list of values of the associated family of Atomic
Coulomb Integrals.

6. VERIFICATION OF J DERIVATIVE EVALUATIONS

To test the evaluations of the J function, certain low order terms were
determined analytically and hand evaluated at selective data points. These
included :

108
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a a ooa8

a 2 a ooa8
(~~~) ~~.J

• a a 2
~~ooa8

(3 
~~~~ 

jOOUB 
-

• evaluated at the points a=b=c-d=l
e=f= l
y— 6—O
-ct—i .0
8=1.01

In addition, the analytical expressions for the first order derivatives of the

J function up to ~~ ~~. J~
6
~~ were determined and coded as a supplementary

computer program. This was extremely useful in debugging the initial stages
of the principal program to evaluate the general J expression, in that computa-

tions were compared for validity and degree of accuracy. Also , insight as to
the behavior of the component terms of the derivatives of the J function was
gained at this t ime, which was to prove valuable at a later time, during the
study of computational accuracy of higher order A d .

~

• 
Other analytical studies focused upon the probable cancellation of terms -:

in the denominator of the J function , under certain conditions of equality of
• pairs of terms , as suggested by the initiator on the basis of known physical

relationships of the parameters . These include (at a=b=c=d=1) ct=8 and y=6 .
While certain terms dropped out, no obviously significant pattern of cancela-
tion was observed. This study became more significant during the study of the
accuracy of the ACI evaluations . -

7. COMPUTER CORE STORAGE

In programming the initial studies of the J function it became obvious that o
the tw.~standard principal computer difficulties to be overcome (central
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processing time/core storage) one , C. P. time, would be of considerably less
impedance. This was due primarily to the ease and speed of computation that
the product and (most particularly) the reciprocal algorithms allowed. Even
when extrapolated from functions of 3 variables to functions of 8 variables,
it was obvious that although still large compared to other major efforts

typically submitted to the machine , the C. P. time would still be within some
realistically manageable range.

The core storage problem, however , when dealing with the derivatives of
a function of eight variables , immediately attracts one ’s attention. The

following chart may help to explain why. Consider that one has only a function
of two variables. Then, letting F = f(x y) the storage required to hold all

of the evaluations of partial derivatives to a given order, N, can be graphically
presented as: 

-

0 1 2 ... N

- aF a2P
0 F ~~- —

ax2 3xn -

a a~ a a2~1 v —

2 ~~ 32F a~ a2F a2F

- 
ay2 ay2 ~~ 3y2 3x2

N 
a~
’ ñ~

~yn ax~

Figure 1 - Partial Derivative Storage Format
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holds the value of the
ay ax

derivative evaluated at some given (x ,y) . One sees readily that the space
required for a complete order of partial derivatives can be determined by:

• Storage = (order of derivative + 1) (No. of variables)

A storage requirement chart can quickly show the limitations imposed upon an
array size in terms of number of variables and order of derivative.

N0\
OF \ORDER 2 3 4 5 6
VAR. 

\

1 3 4 5 6 7
2 9 16 25 36 49

3 27 64 125 216 343
4 81 256 625 1296 2401
5 243 - 1024 3125 7776 16807
6 729 4096 15625 46656 117649
7 

• 

2187 16284 78125 279936 823543

8 6561 65536 390625 1679616 5764801

Figure 2 - Core Storage Requirements -
No. of Variables Vs. Order of Derivative

When dealing with a function of eight derivatives, one sees immediately
that direct core is no longer available certainly by the 3~~ order derivative,
even on larger machines. One should also bear in ~ind that the storage
requirements given above refer only to one array. Analysis of various means

•

- 

of evaluating the given J function showed that a minimum of 4 such arrays would
be necessary. This-meant that the analysis of L integrals would be limited to

• . 
approximately (n’’’=n”=n’=n=2) if the entire J function would be calculated
with the contents kept in core. -
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Otherwise, several options are open to the programmer/analyst:

1. Investigate and apply external core storage capability, such as
magnetic t ape or disk. (Virtual Memory)

2. Break analysis into smaller steps keeping only results required by
further analysis.

f 3. Determine those specific parts of the J function required for evalua-
ting the L integral (not all partial derivative components of the
J function are used by the differential operator, D), and find a
means to limit the calculations to those levels.

4. Continue to solve the J function analytically, such that when
eventually applying the product and reciprocal subroutines the numeri-
cal analysis starts at a higher level.

5. Transform the J function to allow derivatives with respect to a
2, 82

yZ, 62, rather than a, 8,- y , 6.

6. Solve the J function (or the L integral, since that is the function
to which the J function is eventually to be applied) analytically,
either in terms of some variable or , preferably, variables, thereby
significantly reducing the overall number of variables to be kept
in storage when evaluating derivative expressions.

8. ATOMIC COULOMB INTE GRAL CALCULATIONS

As shown in the mathematics section of this report, an Atomic Coulomb
Integral (L integral) can be calculated by applying the differential operator,

D, to the derivatives of the J function, in conjunctiOn with the appropriate

normalization factors of the Sturmian functions , N.

( Those ACI which could be calculated without requiring extensive external

computer memory subroutines were programmed to allow evaluation of the overall

procedure and to test those routines required for storage of derivatives of - •

functions of eight variables.

Under these conditions, all ACI from order L to order L were
1 1 1 1  2 2 2 2

successfully calculated. Comparison of some of the lower order integrals to

results previously calculated 1~ other techniques indicated that the accuracy

of the newer calculations was improved. To show this effect more clearly,
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and to indicate the overall degree of accuracy of the derivative technique,

an additional version of the program was generated using double precision

computation , thereby allowing the accuracy of each term of the L integral to
be defined when compared to the single precision computations .

• In this study of accuracy, a pattern of decreasing precision was obsv~4-.’~d
which eventually limits the evaluation of the L ingegral. To ensure that
such loss of precision was not a result of programming errors, a reundoff
error analysis was applied to both the single and double precision versions of

I the program. The minimum detectable delta was applied to each input parameter
to allow observation of the effect of a small change in input with respect
to computational output over the full range of evaluations. The results of

- 

- this test supported the conclusions that the overall precision of higher order
-

- Ad computation is eventually limited. Whether this is an inherent charac-
teristic of the expression being evaluated or a function of the applied derivative
technique was not determine at this time.

9. CONCLUSIONS

In reviewing the results of the application of derivative algorithms to
a high speed computer to allow evaluations of partial derivatives of the J
function and the numerical computations of certain Ad , it is seen that

eventually other techniques are required to evaluate higher order ACI. As

noted in the study of computer core storage requirements, the applications of

several other methods of combinations of numerical . analysis/scientific pro-

gramming techniques could be investigated. In addition, the specific reason

for the eventual loss of precision in this analysis should be determined.

Of the options available from the above methods, that most likely to yield
accurate results in the evaluations of significantly higher Ad would appear
to be of some form involving item 6; that is, an analysis which reduces the
number of variables involved in the evaluation of the J function or the 1.
integral, yet which retains a format whereby the power of the derivative

algorithms derived herein can still be realistically applied to the computer
-

• to allow numerical solutions to the problem .
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Under this consideration, a method outlined by Calabi4 has been briefly
• reviewed, where an outline is fornvlated which shows that Ad can be solved

in closed form according to evaluations of sums of derivatives of functions
from which selective poles are removed, as typically resulting from Cauchy’s

Residue Theorem as applied to closed loop integration. It would be necessary

to investigate whether such residues could be evaluated by use of the deriva- *

tive algorithms already derived and applied to the J function of this problem.

In addition, it would probably be necessary to derive a new algorithm, com-
patible with those already applied, which would allow evaluation of derivatives

of certain functions of the form: • 
-

ai a~
ax ay 1

One advantage of being able to apply these derivative techniques to the

Residue Theorem lies in the fact that the number of variables over which

differentiation takes place can be reduced from eight to possibly two, thereby

exponentially reducing the amount of core required and immediately allowing

evaluations of much higher A d .

An additional advantage would appear to be that the ACI analysis can be

carried out in its general form, -that is , not subj ected to certain constraints
(subscripts 9.,1,’ = 0) imposed by application of the J function. • •

On the surface, it appears that these results could be accomplished,
thereby allowing the initiator to calculate full families of ACI which could

then be applied to the solutions of higher order problems, such- as the application

of a matrix of ACI in the determination of the bound energy states of certain

molecules.

~ I
.

_
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- Fow~A.e4 Anal yao o~ Wàtd Seatoo’i Va.t~
Initiator: Dr . E. Dowan

Problem No: 4806 - Project No: 6687

— This problem involved Fourier Analyses of wind sensor data. The process
:1 used in this analysis is to find the average Power Spectral Densities (P.S.D.)

- of many consecutive (8192 points) sets of input data. The averaging procedure

should improve the stability of the results.

- 

In order to improve the results of the analysis, the data is pre-
whitened before finding its P.S.D. and then post-darkened after the P.S.D.

I is calculated. Pre-whitening is useful in order to minimize leakage of Fourier

I power from the very large low frequency power to the smaller high frequency

F power. The pre-whitening used is to analyze first differences of the data. The
effect of using the first differences is to multiply the original P.S.D. by

Fir . . .2-2 cos where F is the frequency in cycles per time unit and Ny is the

nyquist frequency. Post-darkening is accomplished by dividing the resultant
P.S.D. by 2~2 cos (f4~

) to remove the effects of pre-whitening.
The results of this problem is a P.S.D. which decreases rapidly with

increasing frequency until about 2/3 the nyquist frequency and then begins to
level off with frequency. These results were not unexplainable and have been

used by the investigator.
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Fotm2it Analyoc4 o~ Voppte/t Data

Initiator: Dr. Kurt Toman

Problem No: 4810 Project No: 5631

This problem involved Fourier analyzing Doppler and various control

data. The Initiator wished to study how the Power Spectral Density (P.S.D.)

of his data varied with time. Towards this end short segments of the data

were analyzed for their (P.S.D.). The data segments analyzed were for a

• particular time duration (T). Generally, all data segments for which the

time duration (T) of the data was available were analyzed and the resultant

P.S.D. versus freouency was plotted for each possible starting time. This
set of plots will be referred to as the isometric plots. -

Originally, linear methods of Fourier analysis were used to analyze
the data; but in this most recent problem, a method known as the “maxima

entropy method” (M.E.M.) has been used. M.E.M. was originally suggested

by Burg (1967). In the analysis for this problem the method used is that

described by N. Andersen1. Recently, it has been suggested that the

algorithm used by Andersen is inaccurate (Dr. Paul F. Fougere of AFCRL

private communication) and a “new” algorithm is to be tried. However, under our
- • 
existing contract (Fl9628-73-C-0l36) the Andersen algorithm has already
been explored. The Andersen algorithm was independently derived and pro-

grammed by Dr. Rajan Varad2 of this laboratory and his subroutine was

modified and used in the studies. The flow chart derived by Andersen

follows : - -

• 1 -‘

1 On the Calculation of Filter -Coefficients for Maximum Spectral Analyses by
• N. Andersen in Geophysics Vol. 39, No. 1 (February 1972) p. 69-72.

2 Data Processing With Different Techniques for Cross-Power Spectra by
W. Pfister, G.S. Sales and R. Varad. Environmental Research Papers 506 AFCRL

- -
. Report PR 75-0194. -
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t a 1 j 4 — l  -

u(t) — a(t)
a 1,N—M

___________ 

bl (t) a bl (t) - aa(m_l)*b2(t)
b2(t ) — b2(t .’l) - aa(m-l) b1(t.l)

~~~~START J nom a d e n a p
t a 1 ,N-M

p a 0 nom • nom + bl(t)*b2(t) _____
a 1,N den a den + bl(t)**2 + b2 (t) **2

P - p+X(t)**2 a(a) = 2 nou/den
P(o) S P/N p(a) p(a_l)*(l_a(m)**2)

bl(l) a X(l )
b2 (N-l) X(N) Yes
t — 2 ,N-l

• 
• 

bl(t) — b2(t—1) — X(t ) 
No

t—l ,m-l
a(t) = aa(t) - a (m) *aa(m_t)

Yes m=M No

From a set of N equally spaced values (x(t)), this algorithm finds M
coefficients (am) and the square residuals of the linear filter (PM) such
that for a time spacing t~t the P.S.D. for any frequency P(f) between 0 and

the nyquist frequency is.

P(f) M

- 

- 

Ii - ~~ ame
2mu *f*m*AtI2

In the program, written for this problem, P(f) is initially calculated
for a grid of f values 

~~~ 
This grid is usually made up of equally spaced

f values. The equal spacing is modified, however, to assure plotting at

• frequencies specified by the Initiator. The results are modified whenever
a maximum is found in the P(fj) values and the maximum P(f3) occurs where( 3 < j < N-2. In this case, the values of P(f~..2). P(f~_1)~ P(f~)~ P(f1~1)
P(f

3~2
) are modified by using the average values found by applying a trap.-

zoidal rule to the P(f) between f~~2 < f c ~~~~ Thus, let
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P(f , 2
) a PffJ ; fj _ , f (3-2) (j -1)

4.

_ _ _  _ _  
f + f

P(f
3 1
) — P(f’)- ~ 2 

~~
- 

< 
3-1 j

~

- f +f f + f
P(f

3)  = P (f) ; 5-f 5- 2 
3+1

_ _ _ _  _ _  
f1 + f 1 f + f

P(~~~~) P(f) ; J J~ l < f ~( :1 +2 
-

— I’(f) + 

2 
+ 

< ~ < f3+2

and then P(f ~) is reset to

P(f ) — 
“~~j -2~ ~~J -2  - 

~~:~~ _
+
f

3_ 2) (f3_ 1 - f3_ 2)

P(f
3_ 1 ) ~‘~~‘

j4)

P(f
3

) — P(f
3
)

P(f3~ 1) —

P(f ) — 
P(f 34 2) (f .~~3 - ~~,2) + P ( f ~,2) 

~~j+2 — 
f
3)~~~~

3+3 3+1

where f O a f l and fN.l a f N

a This correction is necessary because the maxim~a .ntropy method makes
the P.S.D. very peaked, such that the amplitude of the peak is not a “good”

L • 
measure and that is what the correction attempts to si*alsts. This idea was
gl.smed from reference (3) below .

A Comparison of Pow r Spectral Estimates and Applications of th• I4sxiaia
Entropy Method by Henry ft. Radoski, Paul P. Pouger. and Edward J. Zawalick
in Journal of Geophysics Research Vol. 80, No. 4, February 1, 1975, p. 619-625.

119
4 

- - - -  

~~~~

- -  --

~~
- • • -

~~~

.-—- -- - - - -—- •
~~~ 



- 

- - -  

~ ~

_-__

~

_

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-.—--——-- -- — - -

~~~~

-‘ ___ __
—••v ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

“,-., -- v-v-- 
~~~~~~~~~~~~~~~~~~~~ 

- 

-

The actual program , which will be submitted to the SUYA computer : -

program libra ry upon completion of this problem proceeds as follows :

a. Linearly interpolate the input data to assure eaually spaced data.

b. Take a first difference of the input data. The program processes

these fir st differences . This procedure has been found ,
empirically, to filter out a red-noise behavior of the initia l F
data.

c. Find a set of coefficients from the M.E.M. for the entire data
set. Calculate the P.S.D. and bar-graph the logarithm of the

- P.S.D. at a set of frequencies g
~
. The gj’s are usually equally

spaced with a spacing equal to a fraction (input data) of the
resolution frequency found for a linear Fourier Analysis of the
data. The spacing of the g1’s are varied to have the plotting
frequencies specified by the Initiator.

d. Calculate and plot the “isometric” plots P(f1) described above.

e. Repeat c.

f. Calculate and plot the results of a Kolmogoroff-S.irnov Test on
the results of c. This shows whether the data could be explained
as due to random noise.

From the results of parts c. and f. above, it has been assiaed that

the procedure using the entire data set gives very stable, and probably
accurate P.S.D.’s. The results of d. are more suspect but do seem to allow

identification of the presence of power at particular frequencies and how

the P.S.D.’s behave as a function of time.

To test the results of the program, several test runs were made. These

runs were made on data consisting of one or more frequencies plus some
random noise. The random noise was necessary because the f4.E.M. breaks down

when the noise level is zero. The test results show that the !4.E.M. is

- .i.
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b tter than a linear Fouriir Analysis in predicting the frequency of an

input signal. The M.E.M., however, did show so.. error in the frequency

found and some double peaks where single peaks should exist. It is hoped
that the “correction” suggested by Dr. Paul Pougere will provide more

- accurate answers. Towards this end, a prOgram is being written to test
Dr. Fougere’s “correction”. -

I

-

-
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AnaZyo~c.6 o~ Va ~xw t  T~a.~L Da.tg Fwm PIto.tog’tapho

Initiator: Gordon Best
Problem No: 4818 Project No: .7635

• . H
This -problem involved the analysis of photographic data representing a

vapour trail released by a rocket. The task was to determine how the vapour
trail behaved with time and thereby infer the velocity versus altitude profile.
The difficulty arose from the fact that the altitude of the portions of the
vapour trail seen in the photographs were unknown.

Attempts were made to fit the data to velocity versus altitude models
with unknown parameters. These attempts were unsuccessful as the results
indicated that a very “good” guess to the solution was necessary before the

• parameters could be determined. A more successfu l procedure eventually was
instituted.

The method tried, under an earlier problem, involved finding a wind
velocity versus altitude curve for each azimuth and elevation reading determined
from the photographs. These wind velocity versus altitude curves are the locus
of points which would lead to the particular azimuth and elevation reading.

Thus let V1 ~(A) be the wind velocity of the 1th photograph, taken at
tne Jth site (assuming altitude A) [There are three sites (J values)]; then,
for a particular azimuth and elevation reading say VL M (A) the program searches
for the minimum of mm IV L M (A) - V1 ~(A)~ where M~J and with this restriction,
we search over all possible values of I, J and A. The program indicates the

values of I~ J, A and VL,N(A) determined by this procedure. The point VL,M(A), A
may be one point of the desired velocity versus altitude profile. The results

of this analysis gave a rough indication of the actual wind velocity as a
function of altitude.

H.
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The procedure here was refi ned as follows:

To find a minimum of mm ((V L M(A) - V1 ~(A) )2 + 

~~~ 14(A) - V
5 t

(A) )2

+ (V 1~~ (A) - V5~~(A) )2). Where M~iJ , Mp~t and ~~~ thus we consider one point
from each site. Again, with these restrictions we search over all possible

values of I, J s, t and A. After finding I, J, s, t and A by this procedure

the value of

VL,M(A) + V1,~(A) + V5t (A) 
-

is considered to be a possible value of the wind velocity at altitude A. This
- - procedure leads to a more refined estimate of the wind velocity as a function

of altitude.

At the present time, the preceding method is being refined to interpolate

between azimuth and elevation points. We hope to further refine the wind

velocity profile.

in order to implement the following procedure, we need to find VL M (A).

Thus, let Xr be the position of the rocket at time tR• Also let AZ, EL, t be

the azimuth,elevation and time of the reading L 14. Further, let A be the

altitude of the rocket at time tR. Then if L M  is due to a vapour trail at

• altitude A, its coordinates (in.rectangular coordinates) are calculated as

follows:

Let •. -be the geodetic latitude of the site
- A be the longitude of the site.

Then from (page ),~ 
a rectangular coordinate system of this site can be

4 
expressed as

~ Application of Vector and Matrix Methods to Triangulation of Chemical
- - Releases in the Upper Atmosphere by Antonio F. -Quesada, APCRL Environmental

Research Paper No.: 351.
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- +h l co$$ cosA
L~JiI_ c2 sin2$ j

-: 
+ [ a 

—. + hi cos$ -sinA

-
• L~Jl - ~~2 

~~~ ~

+ 
~ [ 

a(l-c2) - 
+ hi sin$

L~d1 _ a 2 sin$ J

where if the shape of the earth is assumed to be an ellipse

a is the semi-major axis (equatorial radius)
b is the polar radius
a is the eccentricity
h is th. altitude of the site

and therefore

- I __________ + hi sin$ cosA + aE:2 
1 $ sin$ cos

2$ cosA
L~

n i _
a2sin2, J (l-ctsin2$)

• 

- - 
________  

cosQ sinA

~~.=sin ~~cosA

— - a 
+ hi si.ii~ sinA + 

ac2 
1 5 cos2

~ ~~~ sinA
[~~~~~a52~i~ J (1-c2sin2$)

= + 
h] 

cos~ cosA ~

~~-=co s$ sinA

124

.-



r —
~ 

— — —

- 

~~~~
‘ •i a(1e2) • _ _ _ _ _

i-c’si$

dl
- - 

-

.

~~~Ss iR. - - -

£ -rsa~1ag of AZJL dsfiass a victor is the dtzictiss

s k (si*(BL))

• ‘ (cos(AZ) cos(IL))
- 

- 

•A (.sis(AZ) cos(IL))
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~~ ~~ * * ~~
N~i trusfor tiics of ~~~~ -A into X, Y, Z (vectors of ~~it length)
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- -

• sia(Bl.) ~~~~ (cos(AZ) cos(IL)) (-sia(AZ) cic(IL))

• ais(BL) (cos(AZ) cos(EI.)) (~sis(AZ) coe(U))

- 
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Therefore, we can calculate the position of the site (X5, Y~, Z5) and
the possible points at which an azimuth, elevation reading point

X X + BX (Ia)

- 

(ib)

Zp ~ 
+BZ (IC)

where B is a parameter.

- • Next we consider what value of B would explain an altitude A for the
- vapour trail. If the. vapo~ar trail is released at altitude A, it is assumed
to be blown- by constant winds (for the time interval considered) such that it
itays at the same altitude above the earth. Thus, the position of the vapour

- trail is on an elipse- which can be described as

- 4. 
A A

- r = Z b r s i n s + X C +
~~
D (2a)

with. -

C2 + D2 = COS2 ( S )  (2b)

where ar = a+A2, br = b+A and s is arbitrary. Then -we must 
- 

have from (1) and
(2)

br sin(s ) = Z~ + 8Z~ (3)

and - 
- - 

-
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~; cos2 ( s)  • (Y + BY~) 2 + (Z + BZ~)
2 - (4)

Assume we guess s.s* B~B* 
- -

— 
- Then 

- 
- 

-

B b~ sin(s~) - Zs - B\ (3a)

B
2 

— 4 c052 (S*) -- (X5 + B*XR~
a - (Y + B*YR) 2 (4a)

- 

— b
r 
cos(s*)

- 

aE -

- —~-—- zR 
-

-.4 a -24 sin(s) cos(s)

—4 -2 XR(XS + a*X~) - 2 1’R~~5 + 8
~~R~

and using Newton-Riphson’s method we can converge to a solution for B and s~.

We also know the original position of the rocket 50 s • tan ’

tan ~~ where is the latitude of the rocket at altitude A.

Then assu.. constant latitudinal winds K (A) at altitude A or

K (A) ~i;;~ sin2s + b~ cos2s

:~~~
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a> K (A) (t_t ft) a 

~~~~~ 

ar il’ + ~~~ 

.~4.) 
CO52 (I) ds

and since br ar

IC (A) (t_t
R) /2 ar(l + 

1 b~_4 cos2 (s) ) ds 
-

1 ar

or

and 

K (A) (t-t~) - a~ ::[
~~~ 

+ 
1 b~-4 (s + sin(s) cos(S)]

— (t_t
RJ

ar[sa 
- + 

~~~2 
- + sin(o ) cog(s )

— sin(o ) cos(o)]

Then since we assume the longitudinal winds are constant K (A) at altitude A

- 

~~ 
b sin $ = K (A) -

or froa -

dA d A d t 
-
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K (A) 
~/4 sin2(s) +b 2 cos2(s)

- - K (A~~b sin ~

dA br K CA) 
- $4/i~. + b 2 

CO (S) ds

Using

- 4 — 4 sin2(s) + 4 cos2 (s) -

•> 
a~ a a2 

+ a2 cos2(s)
sin2(s) r r sin2 (s) -

dA a 
br~

K:(A) sin(s) + 
~b~

_a
~ cos2s 

ds

a K (A) b2 -at 
-

dA br K (AJ sin(S) C]. + .~(r r ) cos2s) ds

Now since 
-

$ 
= ln (tan(~.)) + Constant

and

fCos
2s ds 

.i f~~~~ $ 
_ fsin s ds a log (tan()) + COS $ + Constant

This yields

.
~~-y j
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K (A) ~ b2—a2 b’—a 2
- 

b~ K (A) [io~
(tJn(;~ (1 + 

i 
+ 

1~ r
) costs)]

where A~1 Ar is the longitude of the vapour trail at time t, rocket at time tR
with

y +BY
= tan ’ 

~ + BXR
)- 

-

Let-

s s b2 —a 2
S = (log(tan (.~ _ )) - log(tan(—~))) (1 + I r )

I - 

- 

+ 
~~~~~~~~~~~~~~~~~~~ 

(cos(s ) -

Then finally

b (A -A ) K (A)r~~p r ~
z ar s

using this analysis many velocity versus altitude curves were calculated,

plotted and compared. The results for one group of data lead to an estimate 
—

of a wind velocity versus altitude profile. The results of another set of

data seem to indicate some inconsistency in the data.

This work is continuing.
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