AD=AO034 045 HUMAN RESOURCES RESEARCH ORGANIZATION ALEXANDRIA VA F/6 9/2
BASIC COMPUTER PROGRAMMING: A SELF-INSTRUCTIONAL COURSE.(U)
JUN 67 R J SEIDEL» H & HUNTER » I C ROTBERG DA=44=188=AR0=2

UNCLASSIFIED

S 28
|0 EI=
= uw
—Em

v

er
(3
Fe

FEEE

Ili!.“’.l'_'*r.e'

MICROCOPY RESOLUTION TEST
NATIONAL BUREAU OF STAMDARDS-1

-

Approved for public release;
distribution unlimited

e

— e ;~'<e-1mm«‘?’9‘m.'-

3 TR

S s e R S

T TR T Y T AR S T

e I T T I I I I e R

[oSy
L

ey

BASIC COMPUTER PROGRAMMING:

A Self-Instructional Course

R.J. Seidel

H.G. Hunter

1.C: Rotberg
W.A. Carpenter

June 1967

HumRRO Division No. 1
(System Operations)

The George Washington University
HUMAN RESOURCES RESEARCH OFFICE
300 North Washington Street
Alexandria, Virginia 22314

Approved for pubtit refease;
distribution urdimited

Work Unit METHOD
Sub-Unit t1

SRR s =it b iaritl Nk

ACCESSION for
ms Wite Section 1}'

ooe 2t Soctioa
URRRROUNCED
JUSTIFICATION...

a
a

e R

BB e R
Bisi, Vsl
——

RN TR

BY... 3

T e

DISTRIBATION /Y A3 A%1

t e50ES

“ﬂﬂel o

sECuURITY ¥ THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE ggmm"nwn" g3 'ou po..'
1. REPORT NUMBER [z. COVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
S. e or ;iEPORT & PERIOD COVERED

4. TITLE (end Subtitle)
@ ‘Basic Computer Programming: A Self-Insructiona

Instruction ual

Rk L A B o

Course,
j 6. BER
§ 7. AUTHOR(s) Yy 8. COn 3 UMBER(s)
- (19) R._J3.Aeidel, H. 6. Hunter, I. C./Rotberg | V5 —
& W. A./Carpenter_,,)
9. DERFORMING ORGANIZATION NAME AND ADDRESS - AN , PROJECT, TASK
uman Resources Research Organization (HumRRO) AL ol ,’5 (7=
300 North Washington Street - W
E | : Alexandria, Virginia 22314
E 11, CONTROLLING OFFICE NAME AND ADDRESS EPQ .
: Department of the Army, Office of the Chief o
i Research and Development NUMBER OF PAGES
Washington, D.C. 137
wm«« ditferent from Controlling Oflice) !s.‘s%cum*rv CLASS. (of thia report)

6. DISTRIBUTION STATEMENT (of this Report)

Unclassified
Sa, DECLASSIFICAT! DOWNGRADING
j 7/2f » SCHEDULE L
e b

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dlfferent from Report)

18. SUPPLEMENTARY NOTES
This research was performed by HumRRO Division No. 1 (System Operations)
(now- Eastern Division) under Work Unit METHOD II.

SO

-
R L

5

19. KEY WOROS (Continue on reverse aide if y and identily by block)

Computer Programming
Self-Instructional

\20. ABSTRACT (Continue on reverse eide If neceseary and identify by bdlock number)

The aim of the course is to provide understanding of fundamental computer pro-
gramming concepts, and more important, to develop a proficiency in writing
elementary computer programs. The material was originally drawn from the U.S.
Army's course for the Automatic Data Processing Specialist (ADPS) Programing
Specialist (MOS 745.1). The criterion problems contained in the course were
chosen from actual job situations,but scaled down to fit the instructional

repertoire of the course. The co is self—contained and cgr(égggnag danSj

DD %% 1473 eomomor tuovesisossoLeTE g - Unclassifie*‘*
PR 'secmn-—m@ﬁ.\w
A»-t,/os-’ 260 a

7 -~
R S R R s R S

B C———
S

s o A

o e A I Sy

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

—

20. Continued..‘:f>

instruction booklet and an answer booklet. It is directed toward
the level of high school seniors and first-year college students.
In its various experimental forms it was administered to a total
of nearly 900 high school juniors and seniors, and after final

re:ision. to a small sample of college freshmen and high school
seniors.

Findings from the several experimental administrations of the
course clearly pointed to the desirability of teaching the course
with a variety of kinds of computer problems. Results indicated that
students learned from making errors and thus required hints or
cgrrﬁct :nswers in solving the practice problems only a small part
of the time.

=

% SN Unclassified

§ i

%4
.
1

§

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PP e AR o = ,“.j .
5 \ S—"— NI

o R a4 i R NN A ot s 8 AR R -t W P

L
3 e
f. é 1 ‘
;‘j; FOREWORD
Lo The self-instructional course in Basic Computer programming was
! g prepared by the Human Resources Research Office under Work Unit METHOD,
s Research for Programed Instruction in Military Training. The course ‘
was developed as a vehicle for pursuing the objectives of Sub-Unit i

-

METHOD II—developing guidelines for applying programed instruction to
military tasks requiring the learning of principles and rules. The
task of programming for automatic data processing systems was selected
as the research vehicle both because it typifies the use of principles
and rules and because of the increasing demand for the skills of train-
ing computer programmers. §§

The aim of the course designed by HumRRO is to provide understanding
of fundamental computer programming concepts, and more important, to
develop a proficiency in writing elementary computer programs. The
material was originally drawn from the U.S. Army's course for the
Automatic Data Processing Specialist (ADPS) Programing Specialist {4

" (MOS 745.1). The criterion problems contained in the course were '
chosen from actual job situations, but scaled down to fit the instruc-
tional repertoire of the course.

The course is self-contained and consists of an instruction booklet
and an answer booklet, separated from the main text for pedagogical |
reasons. It is directed toward the level of high school seniors and E
first-year college students. In its various experimental forms it was E
administered to a total of nearly 900 high school juniors and seniors,
and after final revision, to a small sample of college freshmen and .
high school seniors. {8

The rationale for the approach used in developing the experimental
course and the results of its administration are given in "The Applica-
tion of Theoretical Factors in Teaching Problem Solving by Programed
Instruction,”" by Robert J. Seidel and Harold G. Hunter, HumRRO ‘
Technical Report in preparation. i 4

The research for METHOD II was conducted at HumRRO Division No. 1
(System Operations); course development took place during the period
from 1962 to 1965. Dr. Arthur J. Hoehn was Director of Research when |
METHOD II was initiated; Dr. J. Daniel Lyons is the present Director
of Research. Dr. Robert J. Seidel was the Work Unit Leader. HumRRO
staff members who contributed to the research include Dr. Iris C.
Rotberg, in the early stages; Dr. Eugene F. MacCaslin, task analysis;
Dr. Donald Reynolds, Dr. Harold Wagner, and Dr. Richard D. Behringer, 3
data collection; Dr. Harold G. Hunter, course preparation and report ’
preparation. SP 4 Wayne A. Carpenter assisted in course preparation.

R B

The superintendents of the school systems in the metropolitan
Washington, D.C. area, who provided facilities and students for the
administration of the experimental programed instructional course,

3 | i: ; 111 },

e L AR AR SR R DN S I TR R R B R e 2 & AN

i

% ¥ .
)’

&
£

%

g

S ——— 4

were: Dr. J.C. Albohm, Alexandria, Virginia; Dr. H. Wilson, Associate
Superintendent for Instruction, Arlington County, Virginia; Dr. C.F.
Hansen, Washington, D.C.; Mr. E.C. Funderburk, Fairfax County, Virginia;
Dr. H. Elseroad, Montgomery County, Maryland; and Mr. W.S. Schmidt,
Prince Georges County, Maryland.

HumRRO research for the Department of the Army is conducted under
Contract DA 44-188-AR0O-2 and Army Project 2J024701A712 01, Training,
Motivation, Leadership Research.

Meredith P. Crawford
Director
Human Resources Research Office

iv

T —— Bl —— B T ===

[S]
[S B

t'

“ pomm———— P—y - lﬂ«iw;n}
J L | S— L] e
e —————— A ————
o L ot s iton . s enioe o b S e i S e s e

e TR YA

M g et 3 e

i, 42 B A o i WU BN 55505 e, Tt B R Bt s DD s N5 AN 033200 AR5 AL o5

1 1
g :
1
| oy |
; CONTENTS 1
: ' Page
}?;c;'.‘ Introduct’on ° . . L . . L - . L . L 1 ?
' Phiase I: Basic Operations. . . ViS¢ il v vien v s e X a
Part One: Names and P1aces - « « « « « « o « o o o o o o o s« 1 9
"l Part Two: Moving Numbers . ¢« « + ¢ « ¢ ¢ s s o o s ¢« o s0a s s & ,3
2 Part Three: Addition and Subtraction . . « « « « ¢« &+ « « « + . 10 4
Part Four: Address Arithmetic. . « « « « ¢ « « & o s s o+ +» » 16 3
l Part Five: Review and Practice . « « « « + ¢ o ¢ o 4 o s o » 21 3
Phase II: Basic Looping: « ¢« « « « « ¢« ¢ ¢ o ¢ o ¢ ¢ 0 6 s o000 25
§
i~ l Part One: Completing the LOOP: « + + + « ¢« o o s o s o s 2+ o+ 26
5 Part Two: Counting the Loops . + « + + + v ¢ ¢ ¢ o o + o o« o « 32
‘ Part Thraee: Gattiﬂ“ Out Of the Loopn LT T T T TR S B T B BN .} 36
A Part Four: Looping for Simple Additdion . . + + « ¢ o « o « + + @2
' Part Five: Program Preparation . . .« « « « « o+ ¢ ¢« s o« o ¢« « « 30
P Part Six: Review and Practice. . . « « « ¢ o ¢ o o o o o o o 56
l Phase III: Data Processing v v o v oo v v . 63
Part One: Address Modification ¢« ¢« « ¢« ¢ ¢ o ¢ &+ + « « 63
“\ Pﬂrt Two: Sort"and"COUtlt Problems- R S R R SRS e * 4 * e 0 71
g l Part Three: Sorting Techniques . . « « « ¢« « ¢« + « o+ o + « « « 80
2 Part Four: Multiple Address Modification . . « +« « « « + « . « 89
Part Five: Review and Practice . . « « ¢ + ¢ « ¢ o « o o s « « 96
[Phase IV: Advanced Techniques. . . . « . ¢« v ¢« ¢« ¢ o ¢« s o+ o s + » 101
] Part One: Transfer Techniques. . . . + « « « ¢« « ¢ & b e 101
‘; l ’ I Plrt No: Index Regiatera- BT e S SRS G R G B W W LT N 107
y i Part Three: The LOD Command. OGO E (ER P | |
Part Four: The TRX Command . . « « + « « & « ¢ « « & « « + » « 120
i | 5 Part Five: The LDX Command SR e e e ¢
¢ ; Part Six: Review and Practice. . « « « « « ¢ o ¢ o« o o ¢« o« & « 132
,f i- e/
,:"" § I-
; .

|

S St Lt 28

Boanav.. g

P ey

B9 &4 e e ow S BN BN G G oy ow =

Snicion
.

»

*

PREFACE TO THE INSTRUCTOR

The course is directed toward the level of high school seniors and
first-year college students. Its subject matter was originally drawn
from the U.S. Army's course for the Automatic Data Processing Specialist
(ADPS) Programing Specialist (MOS 745.1); the requirement for that course
is a high school education or its equivalent. The aim of the course is
to provide understanding of fundamental computer programming concepts,
but even more important, to develop a proficiency in writing elementary
computer programs. The criterion problems were chosen from actual job
situations, but scaled down to fit the instructional repertoire of
the course.

The structure of the course is linear but non-Skinnerian (e.g., the
frame concept is not applicable). In fact, one of the purposes in
developing the course was to use it as a research vehicle in which the
effectiveness of a number of learning variables could be investigated.
Consequently, the clearest way to describe the organization of the
course 18 in terms of the number of concepts covered, and these are
listed on the Contents page. As it stands, the course is self=-
contained and consists of an introductory settion and about 140 pages
of programed instruction. There is, in addition, an Answer Booklet,
separated from the main body of the text for pedagogical reasons.

Findings from the several experimental administrations of the
course clearly pointed to the desirability of teaching the course
with a variety of kinds of computer problems (e.g., inventory, per=-
sonnel selection, and salary computations). In addition, results
indicated that students learned from making errors and thus required
hints or correct answers in solving the practice problems only a
small part of the time. How much aid is needed by any given student
is undoubtedly a function of the individual's needs and abilities,
and this is a topic for further study. In implementing the course,
we strongly urge that the student be cautioned not to use the eeparate
Answer Booklet for support as he progresses through the material unless
he honestly feels that he must do so.

Development

In one revision or another the course was administered to over
900 students and military personnel. Since facilities were not readily
available at the appropriate Army training installation (U.S. Army
Signal School, Fort Monmouth, N.J.), civilian high school seniors and
Juniors comprised the bulk of the developmental sample. Close agree-
ment was obtained, however, between the selection requirement on the
Army Classification Battery for the ADPS Programing Specialist course
and the scores of the civilian sample. In its final revision the
course was administered successfully (final criterion scores averaged
in the high 80s, with none lower than 77%) to 13 college freshmen and

vii

c——— i ————— e st e —————— e —y

»
d

high school seniors. Median completion time for the college freshmen
was 26 hours, with daily sessions self-paced and lasting from three
to five hours; median course duration for the high school students,
whose scores averaged slightly lower than the college students, was
31 hours. The general attitude of the students toward the course was
favorable, and they felt they had learned something that would be
useful to them.

Content

Before describing the course in detail, it should be emphasized
again that the entire context is oriented towards the writing of com-
puter programs from the very beginning of the course. That is, a
concept is introduced and then a problem incorporating this concept
is presented which the student must program. These problems were
taken from actual computer programming problems encountered on the
job. It is this problem-oriented facet of the course which makes it
rather different from most of the other programed booklets available.

Prior to the introduction of each of the concepts, the student is
given a preview of things to expect. Then, as he is introduced to the
concepts, he is given short completion questions with the answers in
light type on pages opposite to the questions. The problems * »e
programmed appear in a box-like format, and the student is es.ected to
answer the problem whenever possible without looking up the answer
first. At the end of each section of the book the student is given a
review and then led on to the next set of concepts.

Because it was desirable to make the course available for use by
the Army, the repertoire of commands and the symbolic language in
which the computer programs are written have been chosen from material
previously used by the Army to teach students how to program the MOBIDIC
computer. The symbolic language is called FIELDATA Symbolic Language,
which, although it represents a set of symbols interpretable by the
MOBIDIC, is sufficiently general that it largely applies to almost any
other computer and to the English language (the addresses).

An overview of the concepts of computer programming is given in
the Introduction. Specific attention is paid to the concepts of com-
mand, address, the accumulator, memory locations, input and output,
brief description of how a computer functions, and some sample mne-
monics as they are used in computer commands. The coverage of these
topics is interspersed with periodic review and with questions to
which the student provides covert answers. He is instructed to con-
tinue reviewing the material preceding each of the sets of questions
until he can answer the material to his own satisfaction. Finally,

a short sample program is worked through for the student.

The course proper is separated into four phases or levels. In
the first phase, Basic Operations (five parts), the student is intro-
duced to storage locations, the concept of a central work area, the
movement of numbers from place to place, and simple arithmetic opera-
tions. Next, Basic Looping concepts are covered (six parts) including
general transfer commands, counting the loops, leaving the loops, and

viii

R R

program preparation. The third level, Data Processing (five parts)
deals with address modification and address arithmetic (effective
addressing), sorting and counting data into various categories, and
multiple address modification. Finally, Advanced Techniques for
transferring data are given (six parts), including indexing. In
addition to the many computer programs to be written following the]
completion of each phase or level, the student practices on problems '
within each section of the course. In other words, he "learns by
doing" throughout the course.

ik

BN sk AT i

R R R B A R R)

s T e U
ey Py ey ;

R O A AR A St

S AE

LI T e~ o

P

2

=

.

|
. :

ix

-

E TS —

A o - kAR et AN T AT b N N PN 31

INTRODUCTION

The course you are about to begin will provide you with enough
background to enable you to solve problems through the use of computers.
Contrary to what many people may think, computers cannot operate by
themselves. They must have human control to tell them exactly what to
do and when to do it. Once they have been instructed exactly, computers
can automatically perform the necessary operations for problem solution.
The process of preparing the exact step-by-step instructions so that the
computer can carry out the operations for problem solution is called
programmning. The entire series of instructions needed for each problem
solution is called a program. You, as the person who will prepare these
series of instructions or programs, are called a programmer. Typical
problems that a computer deals with are stock control problems and
mathematical formulas.

During the course you will learn a set of commands that will enable
you to instruct a computer. You will become familiar with a number of
terms that are common to the field of computer programming. You will
learn, for example, that every instruction written for a computer con-
sists of two parts: a command, which tells the computer what to do; and
and address, which has information or content and and tells the computer
where specific figures are located.

You will also become familiar with the terms such as accumulator,
memory, input, and output. The accumuluator is a central working area
where numbers are processed. Memory locations are actual, small physi-
cal units in which are kept all the figures you must work with. The
The address portion of each instruction word you write for a computer
directs the computer to the memory location where specific figures are
kept or are to be kept. Input refers to the means by which you can
place your program into the computer. In this course, input refers only
to punched cards; actually, a punched card is only one of the many types
of input that computers can use.

Output is the record of the problem solution that the computer has
accomplished. You will always get the output in some form of a written
copy of the actual processing and the final values of the problem
solution.

It may be helpful for you to think of your job as a programmer {n
terms of a post office employee who has to process mall. You sit at a
central desk (the accumulator arca); you process the mail by sorting it
and weighing it so see if the postage is correct (prepare instructions
on a program for computation and placement of information); each bit of
mail has its own address, therefore, you must place it in the apprapriate
memory location. If the mail consists solely of packages, then you pro-
cess it one way; if it is all first class, you process it another way;
and so on, If the mail 1s mixed, you must consider different processing
for each kind. In the same way, each specific problem you work with as
a programming specialist will involve a particular mixing of kinds of
mail. Consequently, each problem will require a particular type of pro-
cessing or program based upon the complexities of the problem.

Now, on to a General Description of Computer Programming.

.

General Description

Most of us associate the word "computer" with "electronic brain"
because the latter term is most widely used to describe what a computer
is and what it does. However, the term "electronic brain' often creates
misconceptions. Some people believe a computer can perform certain acts
that it really cannot. One misconception is that computers can think
and, therefore, are capable of making dccisions. Actually, a computer
eannot perform by itself. Like any other machine, it must be controlled.
Of coursé, a computer can perform operations automatically~-such as
adding, subtracting, multiplying, and dividing-~-but it will only perform
these functions when you operate the proper controls,

Computer controls are different from controls of other type machines.
For example, to add a column of numbers with an ordinary adding machine,
you have to press certain keys and operate certain levers to insert each
number into the machine. To add the same column of numbers with a com-
puter, all you do is insert a prepunched card (a card containing holes)
into the machine. Then you press a button and the total appears imme-
diately at the output. (You will learn later on that input information
can be in several forms, but assume for now that cards are the only type
of input.)

T ko

0 5 RN

- 3
=y

i |

; Tt |

]

]

\

1

1

)

i
I
I
i
{
v
|
I
I
I
I
[

Review

What you have learned so far is that (1) a computer cannot perform
by itself--it must be told what to do; (2) a computer can perform many
operations automatically--it can add, subtract, etc.; (3) you must
instruct the computer to perform these operations by inserting prepunched
cards into the machine; and (4) tre computer carries out the instruc-
tions almost instantaneously according to your controlled input and the
results appear at the output of the machine.

| -

S

g
L

e

Aty
W)

4 Of course, this explanation is simplified. In actual practice,

: operating the computer is somewhat more involved. The instructions you

3 write for the computer must be carefully planned. In fact, you have to

} plan these instructions in much the same manner as you plan a serles of

g instructions that tell someone step-by-step how to perform a cegtain

- task. Therefore, we will first go over the basic procedures of how to
write instructions for a person. Then we will use these basic procedures
to learn how to write instructions for computers.

The instructions you write for a person to perform a certain task
must be written in easy-to-understand steps and the steps must be in the
same sequence in which they are to be performed. For example, suppose
you write a series of instructions explaining how to calculate the
hourly pay rate for each person in your company. There are two ways to
write these instructions. One way is to write them in detail as shown

From sy
Cerrrmenad
st

iy
L e

below. T
1. Determine (abbreviated GET) the number of hours §§
worked in a day. Y
2. Multiply (abbreviated MLY) number of hours per day gl
by number of days worked per month. i

3. ADD number of weekend KP hours worked.

gy
e

4. Subtract (SUB) number of pass hours received in a

month, -
o
5. Record, or store (STR), the total hours in some con- -
venient place.
'v R
] 6. GET base pay per month. 3
7. ADD allowances. -
8. Subtract (SUB) income tax, social security, and “
so on.
3
{ 9. Divide (DVD) total pay by total hours. 4
E 14
5 iy
Ee -
¢ §§
&
=1
1
-
: " .
g.. ?;
! ".t “
& 4 i‘

.3

¥y R 47t T R T i O R AT R AR

e R SRR R T

oL R e

1

The other way to write instructions is to use key words and abbre-
viations as follows:

B |

Command Information

1. GET DAY HOURS

. MLY MONTH DAYS
. ADD KP HOURS
SUB PASS HOURS
STR TOTAL HOURS
. GET BASE PAY
ADD ALLOWANCES
. SUB DEDUCTIONS
9. DVD : TOTAL HOURS

1

]

3
.

!]) i } ! ;]
® N O Vs LN

i

i
1
!
8
i
X
§
i
i
.
|
[
|
1
L

}

& sk
k]

!

Fasm——,
:

e e dtcis ot S L e e e

QUESTTONS

When you write instructions to have someone perform a task, how
should you arrange these instructions?

e
>

Here are three instructions written in detail. How would these
same instructions appear when key words and abbreviations are
used?

(1) ADD number of weekend KP hours worked.

(2) Subtract (SUB) number of pass hours received
in a month.

= 0 0 0/
" i

(3) Record, or store (STR), the total hours in some
convenient place.

=

gy
AN

e s

g
e 8

[~

=

B o i

=]
' l ¢

_. ..

9

Note that by using keéy words, the abbreviated instructions give
the same information as the detailed instructions. Notice too that
by using key words, each instruction is divided into two parts. Onme
part gives a command, the other part gives information. However, to
solve the problem you need actual figures. That is, to calculate a
person's hourly pay rate, you must know the number of hours he works
in a day, the number of ddys he works in a month, and so on. You have
to consult some record or go to some location to get the specific fig-
ures that pertain to each person's salary and work. For example,
suppose Ed Baker is a supply clerk. To find out how many hours he
works in a day and how many days he works in a month, you have to con-
sult the supply sergeant's duty roster. To find out how many hours of
KP he works, you have to consult the KP roster. To learn how many
pass hours he gets in a ndnth. you have to consult the first sergeant's
leave roster. In other wdrds, the key words in the informalion part
of each instruction repreJent a location where specific information is
stored. Therefore, the idformation part of each instruction is actu-
ally called the ADDRESS. This two part instruction is similar for
computer instructions, as explained in the next paragraph.

o

]

e R A rea g

Fd 9 4 e m w G e an 9 P W o

T e

)
i

hY

!

I

\

]

L S|

?
]

[e

QUESTIONS 113

1. Do key words give 1esa,' the same, or more information than detailed 3 i
instructions? L '

2. How many parts does an instruction have basically? What are they? U

3. Where must you obtain the specific information needed in the var- {1
ious steps of your instructions? i‘

_
A
'Q
1

<

.-
i -
{
|

Computer instructions, like the abbreviated human instructions,
are divided into two parts: the command part and the address part.
Each command, as in the human instructions on Page 5, is a three-letter
word or abbreviation; and each address specifies a location where infor-
mation is stored. However, computer instructions differ slightly from
human instructions. You will learn how they differ by comparing the
two parts of each type instruction as described next.

Computer commands are very like the abbreviated human commands
given on Page 5 except for the command GET. In place of GET, the
MOBIDIC computer (the machines you will work with later on) uses CLA.
These letters are an abbreviation for the command CLear and Add, which
tells the computer to clear from its work area (called the accumulator)
the results of the previous computation and copy into it the informa-
tion from the location specified by the address. The MOBIDIC also
uses several other commands that differ from the commands you may give
a person; you will learn these commands in detail later.

—y— " OO B —

e . T -

QUESTIONS
1. How are computer instructions similar to human instructions?
2. What command does the MOBIDIC computer use instead of GET?

3. How many letters are in a computer command?

10

wal

-

R s v W

-

—

-
* |3
t 3
i
|
1

: ;
!i
13

s —————————

prosca
e

ey @i
L 3

x

T 4

A N At S i it o e i S vy 5

- "

Review

1 ~ Earlier we noted that a computer can perform many operations auto-
} matically if it is given the proper set of instructions, called a
program, by insertion of prepunched cards into the machine. The mate-
i e rial we have just covered defined a proper instruction as consisting of
two parts: a command and an address. The three-letter command tells
the machine what to do, and the address specifies a memory location
‘ where the information to be processed is stored. Recall the similarity
i & to the post office. The commands enable you to process for first class, |
i parcel post, and other kinds of mail while each piece of mail has its |
1 own address and must be placed in a specific memory location.

Bt
)

gy
=

lﬂb‘w“
)

!

-

11

e s o e e e e T T ——

L T PR

ke
.

IR PO ke e

SR AN

=

pRana
’

¥

-
-

Now you will go on to learn how the address part of computer
instructions and human instructions compare. The addreas part of a
computer instruction, like the address part of a human instruction,
specifies a location. Computer locations, however, differ from the
locations in human instructions because a computer location is actu-
ally part of the computer. A human being could either remember all the
information or he could write it on a scratch pad. The computer has a
scratch pad or storage area called the MEMORY. This memory area is
divided into many small units called LOCATIONS, which store information
electrically.

The ihformation you store in the individual memory locations spec~
ified by the address part of each instruction must, of course, be the
exact figures you want the computer to work with. For example, assume
that Ed Baker works eight hours a day, 22 days a month. On the average
he gets a three-day pass each month (24 hours off) and he works 12
hours on KP each month. His base pay is $200 a month and he gets $50
in various types of allowances. He pays $30 for combined income tax
and social security. These figures must be stored in the locations
specified By the address of each instruction, as shown in Table 1 and
in Figure 1 on Page 15.

13

A ki oadn et

S e s 4 AT AP T N TS

e i A ohti .k H i i

QUESTIONS

1. What does the ADDRESS part of a computer instruction specify?

~

What does computer MEMORY mean?

3. What character must the infoisation noted in the ADDRESS have?
(Hint: General or specific?)

i e et

PO

BN

st

s

T AR

R T

A 1 A A o ol

TABLE 1:

Ed Baker's Pay Record

LOCATION

SPECIFIC VALUE STORED

HOURS

DAYS

22

KP

12

PASS

24

BASPAY

200

ALLOW

50

TAX

30

FIGURE 1:

Ed Baker's Pay Record as it might be:

represented in a computer's MEMORY

TOLHRS
)

HOURS
(8)

ALLOW
(50)

TAX
(30)

22 000 g G T LR

)
)
)
(12))
)
)
-

With these figures stored in the proper memory location, the com-
puter can perform the calculations step-by-step, as described in the
instructions. Exactly how the computer executes each instruction is
explained next. Note first that the instructions must also be stored
in memory as shown in Figure 2 below. The imstructions are always
stored in sequence in memory.

The Information As It Instructions As They

Is Stored In Memory Are Stored In Memory
() (Tm(‘;';s) (CLA HOURS | DVD TDI.HRE)
e | T R
S o043 0 ¢ e
W WA R L
5 Susslepet (81T NN
(E;i?) () CLA BASPAY _)
L) () ADD ALLOW j
0 e e

FIGURE 2

To execute each instruction a computer must perform each step or
operation in much the same manner as a person does. For example, to
execute the instructions below, you need a scratch pad and pencil to
keep track of the sequence of calculations and numbers you use in the
calculations. You also need the scratch pad to record the results.

COMMAND LNFORMAT ION
1. GET (for person) DAY HOURS
2. MLY MONTH DAYS
3. ADD KP HOURS
4. SUB PASS HOURS
5. STR TOTAL HOURS
6. GET (for person) BASE PAY
7. ADD ALLOWANCES
8. SUB DEDUCTIONS
9. DVD TOTAL HOURS

17
—y— z

QUESTIONS !

1. How are instructions stored In memory? A ;

2. 1s the execution of computer instructions similar or dissimilar to i |

that of human instructions? 1In what way is it similar or dissimilar? .

o

|| 1

|

i &

%

L
il

it 1

- ."

.

U

-
i.

E | |8

: {

|
L 4'
. {1
1 L)
! 18 -

T S SR A g

A computer must keep track of the numbers it uses in a calculation,
and it must hold the results of that calculation until it receives an
instruction as to what it should do next. In other words, the computer
also must have some sort of scratch pad. The particular device that a
computer actually uses to hold the results of calculation is called the
accumilator, which is simply a temporary storage device similar to an
individual memory location. The number of temporary storage devices
that a particular computer uses depends on the size of the computer.
Some small computers may use only one, whereas large computers may use
seven or more. To get a more complete picture of what the accumulator
does, follow the step-by-step description b:low which explains how a
computer with one temporary storage device executes the instructions
shown here.

:
¥
E
|
I
I
I

COMMAND ADDRESS
1. CLA (for computer) HOURS
T 2. MLY DAYS
3. ADD KP
4., sup PASSH
- 5. STR TOLHRS
} 6. CLA (for computer) BASPAY
i 7. ADD ALLOW
8. SUB TAX
- 9. DVD TOLHRS

19

s A sl

g s i)

QUESTIONS

T T SRR

Does a computer keep track of its calculations? How?

1.

e e .Sr.‘.a.&.srrl\ i A oA S om0 T, 3 R A G S 55 s RS 218 i 45k i, 5
. sy
1 4 P - [- e v
— - C—
P TR

e

S——

20

Banegiebee oo o
Poiae. oot g

TEREIE A TR T S

1. CLA HOURS. This instruction tells the computer to clear the &
accumulator; then to to location HOURS and put the number (t finds there
into the accumulator. Table 1 shows that the number 8 is stored in
location HOURS, so the accumulator now contains 8.

2. MLY DAYS. This instruction tells the computer to go to loca- |
tion DAYS and multiply the number it finds in this location by the |
number in the accumulator. Location DAYS contains 22 and the accumula- j
tor contains 8. So the result of this instruction puts 22 times 8, or ;
176, into the accumulator.

3. ADD KP. Add the nuimber you find in location KP to the number
now in the accumulator. So 176 plus 12 from location KP equals 188.
The number 188 now appears ih the accumulator.

4. SUB PASS. Subtract the number in location PASS from the num-
ber in the accumulator; 188 minus 24 equals 164, which is now in the
accumulator.

5. STR TOLHRS. Store the number now in the accumulator into
location TOLHRS. So the number 164 goes into location TOLHRS.

6. CLA BASPAY. Clear the accumulator and add the number you find
in location BASPAY. Locatioh BASPAY contains 200; so the accumulator
now contains 200.

7. ADD ALLOW. Add the number from location ALLOW to the number
in the accumulator. The number 200 now in the accumulator plus 50 from
ALLOW equals 250, the new number appearing in the accumulator.

8. SUB TAX. Subtract the number in location TAX from the number
in the accumulator. So 250 minus 30 equals 220, the number now in the
accumulator.

9. DVD TOLHRS. Divide the number in the accumulator by the num-
ber stored in location TOLHRS. Thus, 200 divided by 164 equals 1.35,
Ed Baker's salary rate per hour, which is now in the accumulator.

- 21

. e

~=

P

g ‘ QUESTIONS

1. What does the accumulator do? : l- g

[e——
| -

oo,

PSS

<
3
3 = ;
4 { 4
4
i b
o "
A

ey

& sty
Swmad

P———

iy

ROB -~ ¢ il

I : 22

Notice how these instructions tell the computer what to do and
when to do it. The entire list of instructions,as noted earlier, ls
like a program of events, explaining what is to take place and when.
& For this reason, a list of computer instructions is actually called a
g program. It follows, then, that the process of writing these instruc-
g tions is called programming and the person who writes the programs 1is
& . called a programmer.

8

£

L

R S TR AR ST TS U S R N SRR A A e

B AP :““

s AR O B b A Rl 5 PSS e s AWt A s e - i,

QUESTIONS 1

44
1. Why is the list of instructions given to the computer called a T} .
program? ¢

2. What is the title of the person who writes the instructions?

g

oz

T

.
4z b

A
gy
“b

: 3

E [

, AU
{

by
ol

A

.

—
i

= gp———

) T —-—

—h

il
S —
St

e o

e

How.
o
-

e R oA i i B

Reviev :
Now to make sure that you do not forget how you program the actions
of a computer, review the important points, as dedcribed below.

Computers are machines; therefore, to make them do work you have to
control their actions. You learned that you control computer actions
with punched cards. In reality, using punched cards is only one way to
control the operations of a computer. There are several other ways,
but you will learn these later.

You arrange the punches on the cards by first writing out a series
of instructions called a program. Each instruction tells the computer
what to do in order to accomplish the objective of the program. The
instructions must be arranged in the sequence that the computer is to
follow. After you write a program, you type each instruction in
sequence on a machine that works like a typewriter. Instead of typing
letters on a page, this machine punches holes in cards.

e/

\

The most.practical type of problem for computers to sclve is the
type that must be solved%)or processed, periodically. Examples are:
payrolls, stock records, and mathematical formulas in engineering. The
reason these problems are practical for computer processing is that the
same calculations and the same sorting process must be repecated many
times. The hourly pay rate problem is a good example because you have
to perform the same calculation for each man. If your company were
very large you would have to repeat the calculations several hundred
times. By processing this problem on a computer you would go through
these steps only once--at the time you write the program. After that,
if you wish to solve this problem, all you do is insert the program
into the computer. During this course you will learn how to write sets
of instructions which will enable you to solve practical problems on a
computer.

27

i
1
§
:

o A SN 1~ . 1. SO G MR B N A Ao R LA e Sl B

AR W 8 AT - S 5l TS

Tl it AR o i

RIS

T TR T Y W

TR TR W N Ty e g

T T T

INSTRUCTIONAL NOTE

If you have completed the introductory material to your satisfac-
tion you are now ready to begin the course.

Remember that this course consists of three different kinds of
materials. You will be given text to read. Secondly, there will be
completion problems, with answers in light type on the pages opposite
to the incomplete sentences. Thirdly, there will be larger problems
given to you in box format, and the answers to these problems are in
the accompanying Answer Booklet. Read the material carefully and try
to answer all problems as best you can before you look up the answer.
Do not look up the answer unless you feel it absolutely necessary to do
so. '

29

PHASE I
BASIC OPERATIONS

Your instruction begins with the basic computer
operations. These include the movement of numbers
from one place to another, and their combination
through addition and subtraction.

The section is divided into five parts:

Part One: Names and Places. This part talks
about the places where numbers are stored in the
computer, where they are acted upon, and the names
for these places.

Part Two: Moving Numbers. Here you will learn
how the computer can be told to move numbers from
one place in the computer to another.

Part Three: Addition and Subtraction. At this
point you will start working problems in simple
arithmetic.

Part Four: Address Arithmetic. Part Four ex-
plains a convenient technique for naming a large
number of storage places.

Part Five: Review and Practice.

PART ONE: NAMES AND PLACES

Numbers can be kept, or stored, at places in the
computer called memory locations, or storage

locations (they both mean the same thing):

Storage Locations

i e b Ut it

|
g

T e

storage,
memory

accumulator

-2-

These memory locations can be given names. For
example, they might be called TOM, DICK, and HARRY:

TOM DICK HARRY

When you start work as a programmer, you will be
able to name storage locations as you choose. Dur-
ing your instruction, however, the names will be
given for you.

Nevertheless, you should know the basic rules
for assigning names, even though you won't use them
until later. A storage location can be given any
name that (1) has no more than six letters and num-
bers altogether, §2) starts with a letter, (3) has
no spaces, and (4) has all letters capitalized.

SIXMEN is permissible, but SIX MEN is not. Why?
JOHN is permissible, but JOHNSON is not. Why? ’
THREE3 is permissible, but 3THREE is not. Why?
NUMBER is permissible, but Number is not. Why?

Which of the following are also not permissible:
P, QXY, Benny, A1965, SYMBOLIC, 34567?

The name given to a storage location is called
its address.

You can think of storage locations as little
houses. Each house has its own address and contains
a number. If you need a certain number, you go to
its address, the place where it is contained.

Programmers also use "address" as a verb. To
address a storage location means using its name in
an instruction to the computer.

Numbers are "remembered" by the computer by stor-
ing them in memory locations, but they are combined
and used in a different place, called the accumulator.

The accumulator is a central work area. Numbers address
are brought out of storage up to the accumulator,
worked on there, and put back into storage.

1 G W a0 0 WA R Bl AV AR 73 RGBS 5 R P ARV A 2 = 13 B o
»

G LRI T T

i o D

R

e e e T L L R

G N En e T M PR By G Gud G e e e e e ey ey

2

Too many
letters

Not capi-
talized

-3 -

Numbers are stored in the memory locations, but
they are acted upon in the accumulator.

Let's say you wanted to add together the numhers
stored in locations TOM and DICK. For this example
we will assume that TOM contains a 4 and DICK con-
tains & 2.

The first instruction to the computer would say,
"Copy the number from TOM into the accumulator."

TOM DICK HARRY
L 2
1st \
. ;
ccumulator Space

The second instruction would say, "Add the num-
ber from DICK to the number already in the

accumlator. " Starts with
& number
TOM DICK HARRY
|"T |"Z_
' Benny,
1st 2nd SYMBOLIC,
34567
h42
Accumulator

The sum of TOM+DICK would now be in the accumulator.

As the example shows, arithmetic operations like
addition and subtraction take place in the accumula-
tor using numbers brought up from the various storage
locations.

To review, numbers are stored at places in the
computer called locations or locations.

Locations can be given individual names. The
name of a location is called its .

The central work area, where computation takes
place, is called the .

s e b oain b et oA e LAkl B

B o T————

tlear

accumulator

W

O

Y BTN PR B Y RS S S RIS M RPS EWA SR T TR WIS MY NI 05 .5y 7 A TR 4 SANPAAT (s 7o TS 07 AP

PART ™WO: MOVING NUMBERS

L
You give commands whenever you say things like
"Pass the salt," "Quit kidding," or "Throw the ball."
The action words are "pass," "quit," and "throw." CLA VALUE

They are command words.

We can give commands to the computer in much the
same way. We can command it to "get," "add," "sub-
tract," "store," and "halt," provided we talk to it
in its own language.

The word for "get" in computer lanpguage is CLA,
which stands for "Clear and Add." You can guess,
therefore, that the CL stands for and the A
stands for .

Next, we have to tell it what to get, that is,
what number to "clear and add."

A1l commands (except the one for "halt") are used
with addresses, so the computer will know what num-
ber to use with the command.

For example, CLA TOM tells the computer, "Get
the number in TOM up to the accumulator.'
TOM contains a T.

' Assume

e~ —

gty M Ul o

CLA TOM
TOM Accumulator
T 7

Recall that the CL in CLA stands for A

This means that the accumulator is cleared before

the new number is copied in. Any previous number
is erased or destroyed and is replaced by the new
number.

Say the accumulator contains the number 6500,
and the location with the address COST has a L.
What is in the accumulator after CLA COST?

CLA COST says to clear the and then copy in
the number from COST.

CLA PRICE would tell the computer to the
accumulator of any number already there and then
in the number from PRICE.

If you wanted to get the number from VALUE up to
the accumulator, you would write Say
the accumulator had a 4 and location VALUE had a 3.
What would be in the accumulator after CLA VALUE--
3; &, on 17

The 4 in the accumulator is erased, or cleared,
and the 3 from VALUE is copied in, as illustrated
below:

Before CLA VALUE

VALUE Accumulator
3 L

After CLA VALUE

VALUE Accumulator
S 3

(The 4 is erased first.)

«clear,

add

e Rl AR O 5 I a5 5N .1 5 AR 10 A s T AR b S M i RIS S A a0

accumulator

e

Say the number from SAM was already in the accu-
mulator when you told the computer to CLA BOB. What
would then be in the accumulator--SAM, BOB, or
SAM+BOB?

CLA erases the accumiletor clear and then copies
in the new number.

There is another feature of the CLA commend that
you should know. It only copies the number from
the storage location, without changing it. CLA
could be read, "Clear and copy."

Say there is a 5 in MEN and a 3 in the accumulator.
What is in MEN after CLA MEN? What is in the
accumulator?

The last example might be diagramed this way:
Before CLA MEN

Accumulator
3

After CLA MEN

Accumulator
e 5

(The 3 is erased.)

After a CLA command, the number in the accumulator
and the number in the location addressed will be the
same.

Questions below are based on the following in-
structions:

CLA THIS
CLA THAT

After these instructions have been performed, what
is in the accumulator--THIS, THAT, or THIS+THAT?

What is in location THAT at the completion of the
two instructions--THIS, THAT, or THIS+THAT?

What is in THIS--the number that was there at
the beginning or a different number?

replace

s
e
g2
3
&
4
4
o
4
9
¥

s

2 |

B

THAT

; the same

number

= e

The CLA command clears out the accumulator and
copies in the number from the location addressed;
CLA clears and copies. For example, CLA COST BOB
clears the accumulator and copies in the number
from COST.

What instruction will copy the number from SUITS
into the accumulator?

Does the number from SUITS add to or replace the
number already in the accumulator?

Is the number in SUITS changed?

\1

Incidentally, an instruction to the computer is
called just that—an instruction. CLA SUITS is an
instruction. Each instruction has a command, such
as CLA, and an address, like SUITS.

A series of instructions is called a program.

So far we have been moving numbers in one direc-
tion only, from storage locations into the accumulator.
To move a number in the other direction, from the
accumulator to a storage location, requires a new
command.

The new commend is STR. What do you guess STR
stands for?

The STR command works in a way that is exactly
the reverse of the CLA command.

With that information, see if you can answer the
following questions by yourself. You will be con-
trasting what happens in the accumulator with what
happens in the storage location addressed.

If CLA COST first clears the accumulator, STR COST
first clears location .

If CLA PRICE copies the number from PRICE into the
accumulator, STR PRICE copies the number from the
accumulator into .

Both CLA and STR only copy numbers, without chang- THAT

ing them. If CLA VALUE copies the number from VALUE,
STR VALUE copies the number from the .

R i e s

PR 7wy AN

eaEa f}jﬁmﬁm E

CLA COST
STR VALUE

CLA HATS
STR GLOVES

R s
n
’

-8 -

Think of it this way: CLA and STR are both clear-
and-copy commands, but they differ in what they
clear and copy, the accumulator or a storage location.

CLA clears the accumlator, while STR clears a
. CLA

CLA copies the number from a storage location,
while STR copies the number from the .

The command can change a number in the
accumulator, while the command can ghapge the
number in a storage location.

The command does not disturb the number ;
in the accumulator, while the command does not {1
disturb the number in the storage location. L

I!i general: i
Location Accumulator §

CLA [unchanged — cleared |
STR [cleared J¢—[unchanged]

For example: it
COST Accumulator &

o begin with ~

CLA COST

STR coST &

¢S

1

-s

Here are a few problems to test whether you under-

stand how the CLA and STR commands work: CLA SUITS fg
STR PANTS i
There is a 6 in the accumulator and & 3 in TUBES. :
What instruction will change the number in TUBES? |
What instruction will change the number in the CLA PAY1 l ;
accumulator? STR PAY2
STR PAYR

R S s

S

PRI AR S

accumulator

CLA TUBES

-9 -

You have a number in the accumulator you need to
leave there for the next instruction. What command
will save that number without disturbing it?

You have & number in the accumulator you would
like to get rid of. What command will do it?

Problems that require a number in one location
to be copied into another location are called
relocation problems, since they relocate numbers.

For example, say that the number in COST is to
be "relocated" in VALUE. This requires two instruc-
tions, one to bring the COST number to the accumulator
and a second instruction to store it in VALUE:

COST VALUE

(ll;-F] (2)

ccumulator

What two instructions will relocate COST into
VALUE?

Here's the answer to the last question, with an
explanation:

CLA COST The accumulator is cleared and the
number from COST is copied in; we
now have COST in the accumulator.

STR VALUE Location VALUE is cleared and the
number from the accumulator, which
is the number from COST, is copied
in.

At this point, the original number from COST is
in all three places—COST, VALUE, and the accumulator.

What two instructions will relocate SUITS into
PANTS?

How would you relocate HATS into GLOVES?

Relocate the number from PAYlL into PAY2, and also
into PAY3.

storage

location
(memory

location)

CLA,
STR

STR TUBES

CLA SHOES
ADD SHOES

twice the
number

accumulator

Incidentelly, don't forget that all letters in
an instruction are capitalized. It would be wise
to get into the habit now.

The commands are all three-letter code words
(with all letters capitalized).

The ADD command does just what it says. It adds
the number in the storage location addressed to the
number already in the accumulator.

If you wanted to add the numbers in COST and
VALUE, the instructions would be:

1. CLA COST
e oot
It makes no difference which number is brought
to the accumulator first. You could just as easily
turn the locations around and write (be careful of
the command you use with the first instruction):

The ADD command does not disturb the number in
the location addressed. ADD changes the number in
the accumulator, but doesn't affect any of the
memory locations.

What other command does not disturb any storage
location?

If you wanted the accumulator to contain a number
twice as big as the number in COUNT, what instruc-
tions would you write?

The ADD command doesn't change the memory location
addressed. The number there can be added into the
accumulator as many times as you like.

&

i

Y

@

5

1

i
f l
l t
P

{
A

CLA VALUE
ADD COST

CLA COUNT
ADD COUNT

-1l -

What instructions will multiply SHOES by 2, giving
SHOES x 2? (Hint: Sx2=8+8

Where will the answer be--in the accumulator or
in SHOES?

Look at the following instructioms carefully:

CLA COUNT
ADD COUNT
STR COURT

What is in location COUNT at the end--the original
number or twice that number?

Here's an explanation of the last problem:

CLA COUNT The number from COUNT is copied into
the accumulator; the number is
copied, not changed, and can be
used again.

ADD COUNT Add the number from COUNT to the
number in the accumulator; a
number equal to COUNT+COURT is
now in the accumulator.

STR COUNT The original number in COUNT is
erased, and the number from the
accumulator is put in; the number
in COUNT is now twice its original
size.

The sort of thing we just did is called a desk
check. It means checking a program on paper to see
that it works properly. Often this is done by assum-
ing different numbers are contained in the various
locations, and tracing out what the program does to
those numbers.

Desk checks are quite useful. We will use them
fairly often. You should get into the habit of run-
ning desk checks on your own.

What instructions will double the number in loca-
tion CAR?

The STR command is the most difficult to under-

stand of all the commands. It has two unique features.

It is the only command that can change the contents
of a memory location, and it is the only command that
does not change the contents of the accumulator.

ADD VALUE

CLA

- 12 -

The first feature allows you to change the number
at the same address many times. For example, vhat
instructions will make PRICE equal to COST?

]
(]

S ——
o s
i -L_‘d.\..,.; N

JPrS———
L

How could you then change PRICE to make it equal
to MAN?

The second feature, that STR does not affect the
accumletor, allows you to store the same number in
as many locations as you like. No matter how many
times you store it, the number is still in the ac-
cumlator. Store THIS into THESE, THOSE, ami THEM.

[

b e

no

The ADD command adds the number in the location
addressed to the number already in the accumulator. :
The number in the storage location is not changed. { _i
ADD MEN adds the number from MEN to the number in 4
the accumilator without changing the mumber in MEN. :

Now you will begin working actual programs. Write -
out the instructions for the following problems on & L
separate piece of paper. Answers sppear in a separate
booklet. Although you are permitted to turn to the
answers at any time, you will do much better on the
course if you do not use the answers unless absolutely
necessary.

o

S

gy
| —

""""""."'."’ \

Problem 3.1. Write a program to add the numbers in
EENY, MEENY, and MINY.

£ £ < £ & £ 27 27 27 £ 27 27 £ £ & 2 2 2 2 ﬂ A'
Problem 3.2. A battalion commender wants to know
the number of men absent from duty last month. The . 1
number wvho were sbsent because they were on leave .]

is in LEAVE, the number sbsent without leave is in
.AWOL » and the number on temporary duty elsewhere is .

in TDY. Write a program to compute the answer, .
wtting it in location ABSENT. v

A e £ <7 £ £ £ 4 2 ¢ 7 7 2 2 & 2 7 & 7 7 STR

\atomtententotentontarnttatntetottormtat ettt

\ Problem 3.3. Double the number in VALUE.)
A

(N J F Py P I

A fourth command—in addition to CLA, ADD, and
STR—1s the SUB command. You can guess that it
stands for .

s T
,

=

ot B

i,

i

[|
L] T

[]
'Y t

[]
L

gl

L

w0k
L |

=

S|

| =

oo

CLA MAN
STR PRICE

subtract

A -

The SUB command works as you would expect it to.
It subtracts the number in the location addressed
from the number already in the accumulator, leaving
the answer in the accumulator. The number in the
storage location is undisturbed. 5%

To subtract DESK from CHAIR, you would write:
CLA CHAIR :

Is the number in DESK different after the instruc-
tion SUB DESK?

The SUB command does not disturb the contents of
the location addressed. For example, it does not
disturb DESK in the instruction SUB DESK. What
other two commands do not disturb the locations used
with them?

Next, we will show you a program using all four
commands, along with & schematic representation of
vhat happens in the &ccumulator and in the various
memory locations. Assume location A contains a 5,
Bal, and C a 3.

Accumilator A B (o]

CLA A
apB [5¥=9 k—1%]
suBCc [9-36] Kl

S S — 1
sms [+—
T e -]

A conmand can change either the accumulator or
a storage location, but not both. Which command
can change the number in a :ttorage location?

Numbers can be added or subtracted in the accu-
mulator by the ADD and SUB commands. The answers
appear in the accunulator. Numbers in the storage
locations are not changed by these commands.

CLA COST
STR PRICE

CLA THIS
STR THESE
STR THOSZ
STR THEM

o e i S IG5, 03 1 e A

L

Write out the following problems on a separate
piece of paper. Answers are in the separate booklet.

ANl £ L £ 2 2 2L 2 2L 2 2L 2L 2L 2L 2 ’ 7 7 & 7

\ Broblem 3.k, Find & man's net pay (NETPAY) by adding \
.his regular pay (REGPAY) to his overtime pay (OVTPAY)

\ 20, mibtracting out soclal sesurity (SOCSEC) and i

income tax deductions (INCTAX). .
C L 2 & 72 & 2 & 72 2 2 2 2 2 2L 2L 2 2 2L 2L\

"""""""' e £ £ 2L 2L LN\
Problem 3.5. Find the cost of a pen (PEN) if it
\

equals the price of one pencil (PENCIL) minus two .
.:rasers (ERASER).

v e L £ 2 < 2 & 7 27 2 27 7 ¢ 7 g 7 7 7 7 F J

The last command you will learn for a while is
HLT. It stands for "halt" and means just what it

says.
To meke the computer stop, simply write .

Notice how the command for "halt" is spelled.
The vowel is dropped out, leaving the three letters

COST+MAN

The HLT command does not require an address to
go with it. It is used by itself at the end of

every program.
Complete the following program:

CLA TREE
ADD LEAF
STR WOOD

The HLT command is written at the end of every
program. It is used by itself and stops the

computer.

Work out the problems which follow, writing out
the instructions on a separate piece of paper.
Answers are in the separate booklet. Don't forget
to HLT each program.

c £ < 2 4 L L 7 £ & g 7 27 2 27 27 27 27 7 7 7

Problem 3.6. "Update" the stock level in a supply
‘depot by adding the amount of stock received (RCVD) to .
.the amount on hand (STOCK), subtracting the amount .

issued (ISSUEl, ISSUE2, and ISSUE3), and storing the ‘

result back in STOCK. Don't forget to stop the computer.
’ 7 7 7 7 7 7 7 2 7 7 7 7 7 7 7 27 7 7 7 2

< o e i Y P At At B M e

R s B A A N AN 3 . R 5613 it AN s

T A ——

'
g
3
I
I
I
I
I
I
I
I
|
1
I
I
I
I
I

HLT

I
=15 .
> 2 7 2 2 2 £ 2 7 7 7 7 ¢ 2 7 2 7 7 7
‘Problqn .T. Compute and store both total pay and ‘
net pay using the following data:
. Regular pay (REGPAY) + overtime pay (OVTPAY) = .
\ total pay (TOTPAY). 4§
‘ Total pay (TOTPAY) - deductions (DEDUCT) = .
net pay (NETPAY). wE

" A S AT A T A S B G B G A S T A M,

Students sometimes cling to the idea that the num-
ber at an address never changes. It can change and
often does. See how PRICE changes below. First it
changes to equal COST, then it becomes equal to
COST+MAN.

1. CLA COST

2. STR PRICE (PRICE = COST)

3. ADD MAN

4, STR PRICE (PRICE = COST+MAN)

Incidentally, notice what is in the accumulator
after each instruction in the last program:

1. Accumulator equals COST.

2. Accumuletor still equals COST.
3. Accumulator = COST-+MAN.

4, Accumulator = .

Write out the following problems separately.
Answers are in the separate booklet.
""""""""""
.Problem 3.8. "Updating" programs changes numbers to.
make them more current. For example, a personnel
‘ office determines daily strength by adding a.rrivals.
. and subtracting departures. Update enlistedewomen .
. strength and enlisted-men strength, given the in- .
formation below:

\ {
. Personnel Current Arrivals Departures ‘
)

Enlisted women EW EWCOME E‘WGO .
L Enlisted men MM EMCOME ‘
""""""""'M

HLT

HLT

R T AT ey

EAPE

|
‘

|
E
I
|
|
|
[

g

.

P TN Y YT T e

PAY+99

. location Z.

Problem ‘3'.2. Relocate RECORD into location X, a

-16 - } 19

number twice the size of RECORD into location Y, '
and a number three times the size of RECORD into v

PART FOUR: ADDRESS ARITHMETIC

Storage locations can be named by calling them ‘é
things like COST, VALUE, and PRICE. These names L
are called "addresses," as you know.

Most problems you will encounter on the job will
deal with a series of related pieces of information,
each stored at a different location. For example,
you may have to compute the total salary paid to all
employees, where each employee's salary is stored in
a different place.

You could make up a different address for each PAY+9
one of these locations, but if there are several PAY+55
hundred, it would be quite a job. PAY+100 BE

The easy way is to choose one basic name and add
a different number for each location.

For example, if three locations are required for :
three different salaries, you could provide individual : !
names like SALARY, PAY, and WAGE; or you could teke | i3
the easy way and call them PAY, PAY+l, and PAY+2. Lo

The latter method, using one basic name with dif- i1 8
ferent numbers, is called address arithmetic. 5

Recall that one of the rules for assigning names i
to memory locations was that the address could have 3
no more than (how many?) letters and numbers combined.

The rule of six letters and numbers, or less, does
not apply to address arithmetic.

- Viei

Only the basic name, before the numbers are added
on, must conform to the rule.

Since address names can include numbers, you could
use names like PAYl, PAY2, and PAY3, vhich is differ-
ent from PAY+l, PAY+2, and PAY+3.

Don't be confused by the word "arithmetic." It
does not mean computation, like addition or sub-
traction. Address arithmetic is simply a convenient
way to assign address names to memory locations.

Notice that the numbering starts with the second
address in the series. If you were naming 100
locations, the first might be PAY, the second PAY+l,
the third PAY+2, and so on. What would be the ad-
dress for the last, or 100th, location? (Be careful;
it is not PAY+100.S

The last address in an address arithmetic series
has a number that is one less then the number of
addresses in the series. The last address in a
series of 100 addresses relative to PAY would be
PAY+99 (99 addresses with numbers, plus the first
one which has no number after it).

The first address is not PAY+l, but simply PAY.
If you have only three addresses in the series—PAY,
PAY+l, and PAY+2—the third is PAY+2. What would
the 10th address be? The 56th address? The 10let?

Now that you are beginning to understand address
arithmetic as a system for numbering a series of
storage locations, we can begin using it in some
problems. Write out the following programs on a
separate piece of paper. Answers are in the separate
booklet.

""’.""""""
‘Problem 4,1. Write a program to compute and store
.net pay using these address locations:

Regular pay----RECORD
Overtime pay---RECORD+1
Deductions--=--- RECORD+2

”"
> 7 7 7 7

(Did you stop the computer?)

> 7 7 7 7 7 27 27 27 27 7 27 27 27 27 2 & 2 4

I
= q8le

o & P . P P P Yy g g

Problem 4.2. Write a program to relocate a company's
.recorda from one month to the next. The number of
.employees is in WORKER, their total salary is in
‘SALARY, and their total tax deductions is in TAXES.

Relocate these figures into the locations for the

next month, which are WORKER+l, SALARY+l, and

TAXES+1.

Ne & 2 7 27 27 27 27 & 7 27 27 ¢ ¢ 27 J 7 27 7 27 N

""')

The use of address arithmetic tells the computer
to reserve adjacent storage locations, or locations
that are beside each other, forming a series in the
computer.

Thus, if RECORD+3 were used in an instruction,
the computer would go to, or "call on," the memory
location three addresses removed from RECORD. Would
RECORD+3 be the third or the fourth address in the
series?

Incidentally, when you hear a programmer talk
about "a series relative to COUNT," he means the
series of addresses: COUNT, COUNT+l, COUNT+2, and
so on, using COUNT as the basic name.

Here are a few more problems using address
arithmetic. Again, the answers are in the separate
booklet.

""""""""."
Problem 4.3. Information on an employee's history .
\with a company is stored relative to MAN. The date
he was hired is in MAN, his starting salary is in .
.MAN+1, and his present salary is in MAN+2. Relocate .
the information into the series relative to WORKER.
’ ¢ 7 7 0 27 ¢ 7 7 7 7 29 7 27 7 g 27 27 27 27\

"""""""""’
.Pro‘blem 4.4, The total stock in a supply depot is
computed at the end of each day. The number of items
‘received Monday is in location GET, for Tuesday it .
is in GET+l, and for Wednesday it's in GET42. ‘
.Similarly, the items issued on those days is in the
series relative to ISSUE. Store the stock level at .
.the end of each day in the series relative to STOCK,- .
where STOCK contains the stock level at the start ~

.of Monday. (Hint: Start with STOCK, add GET T, sub- ~

tract ISSUE, and store the result in smcx+1.
P 7 7 7 27 7 7 97 7 9 7 7 7 7 JF 7 7 7 7N\

TR e S G

.o

1

kith

- 19 =

The real advantage of address arithmetic is that
the computer can be given special instructions which
say, "Call on all locutions in such-and-such an
address arithmetic series."

In other words, you can assign address arithmetic
names to an entire series of locations, and then use
Just the one basic name, with instructions, to visit
all other locations in that series.

You can't do that when the addresses represent
different names, like COST1L and COST2, but only when
an address arithmetic series 1s formed by the "+"
sign with a number, such as COST, COST+l, COST+2,
and so on.

You will not learn this special technique until
later in your instruction. For now, simply notice
the difference between using numbers for naming
individual locations (AL2, MAN6T8, TAKE5, and the
like) and using numbers with a + sign for naming
locations in an address arithmetic series (such as
PLACE, PLACE+l, PLACE+2, and so on).

Now try a few more problems. Write them out on
a separate piece of paper.

""""""""""
.Pro'blem Problem 4.5. A company keeps a three-word record

on each employee, stored relative to EMPLOY. This
.means it keeps three types of information, stored
in three consecutive locations in the address arith-
metic series relative to EMPLOY. The "words" are:
marital status, years with the company, and ID
number:
: Marital status EMPLOY
1lst employee Years service FMPLOY+1
ID number EMPLOY+2
Marital status EMPLOY+3
2nd employee Years service EMPLOY+l
; ID number EMPLOY+5

’ £ 7 7 <7 27 7 7 /7 27 7 4

r 7 7

Write a program computing the total years with the
.company served by the first three employees, storing

the answer in LOYAL.
r f 2 2 L 2L 2 <2 2L 2L 2 L 2 2 2 2 L 2L 2L Z LN\

’ 7 7 7 & 7 7 ¢ 7 7 7 7 7 7 ¢ 7 7 7 7 7 4
Problem 4.6. The first employee in the previous problem1
has retired. The employee to replace him has the same
marital status, and will be given the same ID number; .

.but he begins with zero years of service. Make the .

Lumber in EMPLOY+l a zero.

".""""""""’A

AN 0 A 5 R AL B ERERGTTEINS SN v A L .

TRT—

W L) L Al et Me) oL 2oy

- 20 -

Only a few pieces of new information remain to o
be covered. They are all vocabulary words, specif- L5
ically, the notion of different "fields,” and the {1
idea of computer "words" and "records." None of «
this vocabulery is essential to writing programs,
but it helps in talking with other programmers.

So far, all instructions (except HLT) have had
twvo parts—a command and an address. The various n
parts to an instruction are sometimes called
"fields." Commands are written in the "operation i
code field" (abbreviated Op Code), end addresses are .
written in the "address field."

Op Code Field Address Field

CLA CATS
STR DOGS

You can think of a field as a set of spaces in

an instruction. = % ;
Fﬁ Code Address n |1

The Op Code field has three spaces reserved for
the three letters of & command, while the address
field has up to six spaces set aside for the letters
and numbers of an address.

A "word" is a space set aside in memory for a et
specific piece of information, such as a man's age,
a company's income, or whatever.

A "two-word record" means consecutive pairs of
locations in the same address arithmetic series. A
"three-word record" was illustrated in Problem 4.5.

,r

AR
PART FIVE: REVIEW AND PRACTICE
This review-and-practice section consists of some
previous review boxes, along with a few additional
problems.

Names and Places

The computer has two types of locations, the
storage (or memory) locations, where numbers are
stored; and a work area, where they are added and
subtracted. Storage locations can be given names,
like COST, NEWARK, and TYPEL5, which are celled
addresses. The central work area is called the
accumulator.

Moving Numbers

The CLA command clears out the accumulator and
copies in the number from the location addressed.
For example, CLA COST clears the accumulator and
copies in the number from COST.

The STR command works in reverse, clearing out
the location addressed and copying in the number
from the accumulator. For example, STR VALUE copies
the number from the accumulator into location VALUE,

- after erasing its previous contents.

""""""."""'
Problems. Write them out. Answers are in the sepa-

rate booklet.

. Get pay rate per hour (PAYRT) for computeation.

|§:

'\
.
no
.

Gross pay has been computed and left in the
accumulator. Move it to the gross pay word
location (GROPAY).

Relocate an employee's badge number (BADGNO)
to location OUTPUT.

B

Relocate the retirement benefits (RETIRE) to
OVTRET.

=

F 7 J 7 7 7 27 g 27 2 7 7 7 F

7 7
F 7 7 7 27 27 7 7 27 27 27 7 7 7 7 7

.5. Relocate SPACE into LOCl, LOC2, and LOC3.

7 g g g 7 9 g g 7 2 g g 2 9 g 2 J g

\&

- 00 .

Addition and Subtraction

Numbers can be added or subtracted in the accum-
lator by the ADD and SUB commands. The answers
appear in the accumulator. Numbers in the storage
locations are not changed by these commands.

CLA, ADD, and SUB change the accumulator. Only
STR can change a storage location. One command
changes one number in one place, either the accum-
lator or a memory location, but not both.

HLT stops the computer, and goes at the end of
every program.

Problems. Write them out on a separate sheet.

"""""""""""
. 5.6. A personnel officer determines primary MOS's .
from each recruit's total score on an Army
Classification Battery. There are scores on ‘
three tests to be combined for this purpose: .
spatial perception, verbal, and quantitative. ‘
These scores are in SPACE, VERB, and QUANT.

They are weighted when combined to give the \
total score: spatial perception is counted once,~
verbal twice, and quantitative three times. .
Prepare a program to obtain & recruit's total
score and place the result in memory location .

MOSl. Don't forget to stop the computer. !
&""""""""""

¢ ¢ 7 7 27 & 2

A .

t"'."".""""""

.7. Using the following payroll data, find TOTPAY

t and NETPAY, but store NETPAY only: .
. Regular pay (REGPAY) + overtime pay (OVTPAY) .
= total pay (TOTPAY). 0
| Total pay (TOTPAY) - deductions (DEDUCT) = .
, net pay (NETPAY). i)
¢ £ £ & <2 2 2 2 2 7 27 7 7 7 7 7 7 7 7 7 7

"'.""."""""q
‘Z_S.. An employee's present salary (PAY) has been ‘
‘ doubled. Put the new salary into location PAY

and also into location RECORD+18. .

t"”""""."""'j

RIS LIS L AR b, Amtemeraranag

e

- D%

.Address. Arithmetic

F"""""""""

‘Problems. Information for Problems 9-11 follows:

.Words of Employee's Record Location Reserved

Badge number EMPLOY

Withholding tex EMPLOY+1
Bond allotment EMPLOY+2
Hospitalization insurance EMPLOY+3
Social security - EMPLOY+k4
Gross pay EMPLOY+5
Net pay EMPLOY+6

5.9. Relocate badge number, gross pay, and net pay
to locations relative to OUTPUT. (Badge num-
ber goes into OUTPUT, gross pay into OUTPUT+1,
and so on.)

5.10. Determine total deductions and put the result
into location DEDUCT. - .

&3

rF 7 7 7 7 27 2 27 4 g 7 27 7 7 7

.
" L

.2’.1 . Determine net pay (gross pay minus deductions)‘
b and store in the location reserved for it.
¢ 7 27 7 7 7 7 7 7 ¢ 7 7 9 7 7 7 7 &7 4 2

r""""""’."”'«
. Information for Problems 12 and 13 follows:

. EMPLOY employee badge number
. RECTIM regular time
. OVRTIM overtime
BONUS bonus
\ Erom withholding tex

7 7
g
%

bond allotment
EMPLOY+3 hospitalization
EMPLOY+4 social security
EMPLOY+5 net pay

In locations REGTIM, OVRTIM, and BONUS are
the three factors that make up an employee's

gross pay. Compute net pay.

F 7 27 7 7 27 £ £
.
P}
n
.

Write a program to relocate:

badge number to ENNUM.
each gross pay items relative to TOTPAY.
each deduction relative to DEDUCT.

net pay to NETPAY.
A M L S A S SO S, T A AT M G S I D

7 7 7
r 7 7 7 7 7 7 7 7 7 7 27 &g 7 27 &7 7 2

-

c £ & JZ < 27 7 27 7 7 ¢ 7 7 7 7 7 7

R i i 3

-2} -

V'."""""".""4
5.14. A computer for an artillery battalion main-
tains a record of the amount of smmunitionm
on hand. Four types of shells are used:
high explosive, armor piercing, chemical,
and anti-personnel. We know beforehand the
quantity of the emmunition which is issued.
After a mission the batteries report to
Battalion Headquarters the number of each
kind of shell fired. Assume the battalion
has just finished a firing mission and that
the various amounts of each type of shell
used have been reported.

Type of Shell gmtig Issued tity Used

’ 7 7 7 7 7 7 g 7 7 g 7 7 7 27 27 7

v

High explosive AMMD
Armor piercing AMMO+1 APUSED
Chemical AMMO+2
Anti-personnel AMMD+3 PRUSED

e £ 7 7 7 £ ¢ &£ 7 7 J 7 7 7

Prepare a program that will update the amount
of each type of ammunition on hand.
" A . A S A A S A A A A A a.

e —
| —

Pt ertoon

o

II

-25 -
PHASE II
BASIC LOOPING

B F e kB

Everything in this section is aimed at showing
hov instructions can be repeated sutomatically.

Oftcn there will be a set of operations you want
the computer to perform not just once but many times.
For example, you may want to add the pumber from
COST four times. This could be done by writing: {

CLA COST
ADD COST
ADD COST | 3
ADD COST i

v

Baaaaman
! But in this section you will learn special in- | i
structions that can tell the computer, "Add COST | 3
| four times.” This is especially helpful when you
i want to repeat the same instructions a hundred times,
say. Instead of writing the instructions themselves
over and over, you need write them only once, along
l ‘ with some additional instructions that say, "Repeat
these a hundred times."

Each repetition is called & "loop," which is why
this section is entitled "Basic Looping." It is
divided into six parts.

Part One: Completing the Loop. This will explain
how the computer goes back to begin a set of imstruc-
tions again.

Part Two: Counting the Loops. Here you will
learn how the computer keeps track of the loops.

Part Three: Getting Out of the Loop. This part
tells how looping is stopped.

Part Four: Looping for Simple Addition. At this
point you will start working complete looping problems,
beginning with simple addition.

Part Five: Program Preparation. Part Five talks
about instructions which get things ready for looping.

Part Six: Review and Practice.

IR EEIE SRR BN = AL Ay

The TRU Command

The command that is used with the new instruction
is TRU, which stands for "transfer unconditionally."
address We will discuss the TRU command below.

TRU is a command, like CLA, ADD, , and

Commands tell the computer to do something. CLA
says to "clear and add." SUB says to "subtract.”
TRU says to "go to,""skip to,"” or "transfer." The TR
in TRU, therefore, probably stands for .

transfer

11
e

You have just written ADD COST and now want to
transfer (TRU) back to perform the instruction again.
That part of the program should look somewhat as
follows:

ADD COST
TRU to the instruction "ADD COST"

The TRU command can transfer the program back to
an earlier instruction, rather then the next one.
In the example above, it could transfer the computer
back to do ADD COST again.

TRU has nothing to do with memory locations, like
COST or VALUE. It simple tells the computer, "Go to
such-and-such a place for your next instruction.”
TRU says "go to." The name of the place where the
next instruction can be found is indicated by the
symbolic location used with TRU, which we will take
up next.

The new looping instruction uses TRU (transfer
unconditionally) as its command. The TRU command
can transfer the program out of its normal sequence,
sending the computer back to an earlier instruction
rather than the one next in line.

Symbolic Locations

TRU says to transfer, but we have not yet dis-
cussed how the computer is told where it will find
its next instruction. You will now learn that in-
structions can be given names, or symbolic locations.
TRU with a symbolic location tells the computer to
transfer to the instruction named by that symbolic
location.

Memory locations can be referred to by their
nemes, as you know; you learned long ago that the
name of a memory location is called its o

Instructions can also be given names. For
example, the instruction ADD COST can be named.
We'll call it HUBERT. The name of an instruction
is written in front: HUBERT ADD COST.

REPEAT CLA VALUE. What is the name for the in-
struction CLA VALUE?

CLA COST
STR VALUE

LEFT

-28 -

The name of an instruction is called a symbolic

location. To review the three kinds of names, in

REPEAT CLA VALUE, VALUE is the address, CLA is the
, and REPEAT is the name for CLA VALUE. It is
called a i

A symbolic location can be made up of any combina-
tion of letters and numbers, provided the first is TRU REPEAT
a letter, there are no more than six letters and num-
bers altogether, with no spaces, and all letters are
capitalized. Which of the following are not permitted
as symbolic locations: HOUSE, AL4S67, 3MICE, P,
SYMBOL, LOOPING?

Symbolic locations are used with TRU to indicate
vhere the computer should go for its next instruction.

If ADD COST has been named by writing HUBERT in
front of it—HUBERT ADD COST—what instruction is
indicated by TRU HUBERT?

Look at the following:

OVER CLA MICE
STR MEN
TRU OVER

What instruction will be performed after TRU OVER?
The name of an instruction is called a .
TRU stands for " unconditionally."

TRU HUBERT means "transfer unconditionally to the
symbolic location named .

What instruction will be performed after TRU REPEAT
below?
REPEAT CLA VALUE
TRU REPEAT
ADD COST
What will transfer the program back to ADD COST STR VALUE
below?
AGAIN ADD COST

Symbolic locations have no effect on the instruc-
tions they accompany; they act only as names. A com- STR VALUE
puter would read REPEAT CLA VALUE as if REPEAT were
not there; only CLA VALUE would actually be performed.

Y ST

i
1
§
|

oy

o

MICE,
LOOPING

CLA MICE

transfer

CLA VALUE

II
- 00 -~

What are the first two instructions actually per-
formed in the program below?

CLA COST command, 1
REPEAT STR VALUE symbolic lo~ 1

cation |
What instruction would send the computer back to i
do STR VALUE again in the previous example?

In writing down inatructions for your own programs,
the commands (CLA, TRU, etc.) are lined up directly
under one another, but the symbolic locations are
stuck out on the left, as we have been doing. Which :
of the following pairs of instructions are lined up E
correctly, the pair on the left or the pair on the |
right? :

REPEAT CLA VALUE REPEAT CLA VALUE | 4
TRU REPEAT TRU REPEAT
: ADD COST

Instructions can be named by writing & symbolic -
location in front, such as REPEAT in REPEAT ADD
COST. The symbolic location can be used later with
the TRU command to name that instruction as the next
one to perform. TRU REPEAT tells the computer to

| go back and do ADD COST.

gsymbolic lo-
You now have all the basic information on "Completing cation
the Loop." All that remains is to practice, review,
and try some problems on your own. '

Questions below are based on the following:

HUBERT
REPEAT ADD COST
STR VALUE
TRU REPEAT
The first two instructions performed by the computer
are and . &l =y
The instruction performed immediately after TRU
REPEAT is .
TRU AGAIN

Since the computer normelly performs instructions
in order, the instruction after the second ADD COST
would be .

.

e T T TR T

——

= I-‘vwﬂt"‘lﬂ“fv— .
>

accunulator,
CoST

Z RO

- A

TRU REPEAT is next in order after STR VALUE, so
the computer would go back and perform a
third time.

And that's looping. Don't worry ebout how to
stop looping for now. We will discuss that later
on.

Write out the following problems on & separate
piece of paper. Remember, answers are in the separate
booklet. Use them only if you have to.

P"""’."""”"
Problem 1.1. Vrite a program adding the cost of one .

vacuum tube to the cost of all transistors. The
.cost of a vacuum tube is in COST. The cost of a

transistor is in TRANS. Use REPEAT as the symbolic .

location for looping. The program should give the
beum of COST+TRANS+TRANS+TRANS+TRANS+etc. .

"""""""""'A

""""""""""’
Problem 1.2. Vrite a program adding the cost of one

pair of pants to the cost of all suits on hand. The
.cost of one pair of pants is in PANTS. The cost of
a suit is in SUITS. Use REPEAT as the symbolic 10ca-~

Ltion for looping.

. Z £ & £ < £ 2 2 7 2 27 27 £ £ 2 2 2 27 2

Rboatisira. -~ NS A 5 S R 2 L

II

¢vwf;~qr~$m 5
=y oy ‘

-3 -
) - el 2 L L L L L L 2 2 2 2 2 <2 £ L L 2 L
L Problem 1.3. Write a program that will subtract the
3 | number 1 from the number in COUNT, storing the ans- .
. wer back in COUNT. Then have the program loop back ‘
. to repeat the process. The number 1 is in location .
i ONE. Use AGAIN as the symbolic location for looping.
i \ The number in COUNT should be reduced by 1 on each
L loop. .

F 7 2 27 2 2 2 2 27 7 /7 7 7 2 2 2 2 £ 2 2N\

ADD COST

et

\ 2 Z Z 2 Z < < £ 7 27 2 2 2 2 27 < 2 2 £ 4

| \ Problem 1.4, Write & program that will reduce the
number in LOOPS by 1, putting the new number back .
into LOOPS. Have the program loop back to repeat .
the process over and over, using AGAIN as the sym- .
bolic location for looping. The number in LOOPS ‘
8.

should be smaller by 1 on each loop. The number 1

is in location ONE.
P 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2L 2L 2L

Q :

B The CLA ZRO Instruction

g You have been taught to clear the accumletor on
the first instruction of any program by writing CLA
as the first command.

To review, CLA COST erases the number in the
and replaces it with the number from .

If there is a 6 in the accumulator and & b in
COST, the number in the accumulator after CLA COST
will be ____ .

Now let's say you want to add the number from
| COST many times using a looping program. You don't

.- want to repeat CLA COST over and over, since each
CLA erases all previous additions, leaving only one
| ™ COST no matter how many times the instruction is
.] repeated.
' (<2 The instruction you want to repeat is ADD COST,
E 3 but you want to be sure the accumilator is cleared,
E ‘e or zeroed, before you start.
‘ H] The solution is to clear the accumlator by writ-
A ing CLA ZRO as the first instruction.

CLA ZRO says, "Clear the accumulator and copy in
a zero."

Notice how "zero" is spelled in the instruction.

{
I It is CLA _ _ _.
B

i <

R BT mae

i Yelln et I e R B A i A TN — s U —— T

S o

S A
| 12y

rﬁ UN rP

CLA COUNT
SUB ONE

R COUNT

II
o T

The looping program to add the number from COST
many times would be:

- e
REPEAT ADD COST
TRU REPEAT

The accumulator can be zeroed in preparation for
a looping program by writing CLA ZRO.

The following problems test your understanding of
Part One: Completing the Loop. Write them out.

""""""""""
Problem 1.5. Write a program to compute the cost
.of all vacuum tubes in stock. The cost of one tube ‘

Nis in COST. Use REPEAT as the symbolic location | To

for looping.
N\ 7 7 27 27 27 27 27 7 27 2 2 27 £ 2 2 £ £ £ 2

Problem 1.6. Write a program to compute the cost of
all hats in stock. The cost of one hat is in HAT. .

.'Use AGAIN as the symbolic location for looping.
’ 7 2 2 2 2 & 27 2 JZ £ £ & £ £ £ 2 2 Jd

.'"""'."""""' \

""”"”""""’4
Problem 1.7. Write a program to compute the cost .
of all sets of hats, coats, and gloves in stock. The

cost of one of these items is in HAT, COAT,and GLOVE, .

respectively. Use LOOPER for looping. .
Ng 7 7 7 7 7 7 7 7 27 27 7 7 7 27 ¢ 2 2 2 2\

PART TWO: COUNTING THE LOOPS

) A B3 i bl bl e

~whtrantine
subtractin

Do Ll fe B ¢ bl e L

ot paSaed S et s

Rt gt

o s P, D et «
. ‘v‘ ; -

35 Hm 1 ;

i SN A B AN AV s 05 s om0

II
AR

Rockets are counted down to zero: 3-2-1-0. We
will do the same in counting loops; we will count
them down to zero.
ZRO
Say the location containing the number of loops
desired is in COUNT. You can count the loops as
they are performed by "counting down" the number in

To count down means (adding or subtracting?)
a 1 from COUNT each time a loop is completed.

Storage location ONE contains the number 1. What
tvo instructions will subtract a 1 from COUNT?

Recall that addition and subtraction take place
in the accumulator, not in the memory locations.
Is the number in COUNT changed by the instructions
CLA COUNT and SUB ONE?

A third instruction is needed to get the changed
number back into COUNT. What is it?

Here's a desk check of the three counting instructions.
Assume there is a 5 in COUNT.

CLA COUNT The accumulator is cleared and the
5 from COUNT is copied in. It is copied,
not changed.

SUB ONE The number in the accumulator is re-
duced by 1, making it a k.

STR COUNT The 5 already in COUNT is erased and a
4 is copied in. COUNT has now been
changed from 5 to k.

The location containing the number of loops required
is called the loop counter. In previous examples,
the loop counter was location %

If the three counting instructions are made part
of the loop, they will be performed automatically,
and the loops will count themselves, as in the follow-
ing example:
REPEAT CLA COUNT

SUB ONE

STR COUNT

TRU REPEAT

If COUNT contains a 2, it will be "counted down"
to zero after how many loops?

R SRR PR Y

II
- 34 -

COUNT was reduced to .

the number of loops desired.

: In previous examples, the memory location named
was the loop counter, since that location contained

If you only wanted to perform two loops, you
would want the computer to stop wnen the number in

To review, the memory location containing the num-
ber of loops you want completed is called the

In practice, however, the loop counter will be

different for each problem. For example, say you want

Which is the loop counter?

structions work in a looping program.
loop counter) starts with a 2.

First Loop
[REPEAT CLA PASSES Bring up the 2.

E SUB ONE Reduce it to 1l.

3 STR PASSES Erase the 2 ai-
ready in PASSES
and copy in the
1 from the eccu-
mulator.

TRU REPEAT Go back to CLA
PASSES.

to subtract THESE from THEM as many times as THOSE.

The following example shows how the counting in-

PASSES (the

Second ngg

Bring up the 1
now in PASSES.
Reduce it to 0.
Erase the 1 in
PASSES and sub-
stitute the O
from the accu-
mulator.

The loop counter is the name of the location con-

| itself.

taining the number of loops needed, not the number

Bl Snice e STV o

R

b o

loop coun-
ter

II
- 35 -

Write out the following problems on a separate
plece of paper. Answers are in the separate booklet.

Y ¢ £ £ £ g 2 g 27 7 7 7 g 7 27 27 g £ 7 J/
.Problem 2.1. You are working on a long looping
.program where the loop counter is COUNT. Write out
the three counting instructions that you would in- .
sert into this program. .
’F 7 2 7 g 27 27 7 7 F g 9 2F 27 7 7 27 7 J\

N € & & @ & @O F P @ @ 5 Py L. I g P g g
.Pro'blem 2.2. You are working on a long program in
.which you want to complete as many loops as the
number in LOOPER. Write out the loop counting ‘
.:mstructions you would insert into the complete
program. .
[\ """""""""A

Y & L & < <2 ¢ ¢ 7 ¢ g @ 7 g 7 7 & 7 7 4
Problem 2.3. Write a simple looping program that .
will repeat the three counting instructions, using
.CASE as the loop counter and LOWER as the symbolic
wcation for looping.
r @ 27 7 27 7 ¢ 27 ¢ 7 7 7 9 2 7 &F 7 7 7N\
\” 7 7 7 27 ¢ ¢ ¢ ¢ ¢ ¢ ¢ g g g g 7 7 & 7/
.Problem 2.k, Write a program that will repeatedly
add a 1 to CARD and subtract a 1 from FILE, using .

AGAIN as the symbolic location.
’ 7 £ £ 7 27 7 7 & 2 g 27 7 7 F ZF 7 & I\

N 7 7 £ ¢ ¢ ¢ ¢ ¢ 2 & 7 ¢ ¢ 7 ¢ 7 27 27 2
Problem 2.5. Write a program that will subtract .

a 2 from COUNT on each loop. There is a 1 in
ONE. Use REPEAT as the symbolic location for .

. looping.

IV > F P P Iy I F I I PP

Z€eTro

COUNT

ra

STR UNIT,
CLA ONE

11
- 36 -

PART THREE: GETTING OUT OF THE LOOP

The TRZ Command

You will want to stop looping when the number in
the loop counter (the number of loops required)
reaches zero. Thus, you need an instruction that
transfers the program out of the loop when the number
in the accumilator is zero (for example, when COUNT
minus ONE equals zero). The TRZ command is used with
that instruction. You will now learn how it works.

TRZ is another command, like CLA, ADD, SUB, STR,
HLT, and o

TRZ asks whether the number in the accumulator is
a zero. You can guess, therefore, that the TR
stands for and the Z stands for

Notice that TRZ asks its question of the acctnl;ﬁlator
and not of a memory location.

If the number in the accumulator is & zero, the
computer will transfer to the symbolic location HLT
indicated. Here's a trivial example: What will be
performed after TRZ REPEAT below?

REPEAT CLA ZRO
TRZ REPEAT

If the accumulator does not contain a zero, the
computer will not transfer, but will perform the
next instruction in line instead.

o s ———r

> o

transfer,

II
B e

COUNT contains a 1. What instructions will be
performed after TRZ REPEAT below?

REPEAT CLA COUNT
SUB ONE
TRZ REPEAT

Here's a desk check of that problem; COUNT = 1.

REPEAT CLA COUNT Copy & 1 into the accumulator.
SUB ONE 1-1=0. There is a zero in
the accumulator.
TRZ REPEAT The TRZ command asks if there is
a zero in the accumulator. Yes,
there is. So transfer to symbolic
location REPEAT.

With the TRU command, the program always transfers.
But with the TRZ command, the program transfers only
if the accumulator has a zero. That's what TRZ stands
for—transfer if zero.

Look at the difference between the two examples
below: one uses TRZ, the other uses TRU.

REPEAT CLA ONE REPEAT CLA ONE
TRZ REPEAT TRU REPEAT
STR UNIT STR UNIT

What instruction would come after TRZ REPEAT in
the program on the left? After TRU REPEAT on the
right?

If the accumulator does not contain a zero, &s in
the example above, TRZ tells the computer to pass on to
the next instruction, just as if TRZ weren't even there.

If location COUNT contains the number 1,in the
example below, what instruction will be performed
after TRZ STOP-- CLA COUNT or HLT?

MULT CLA COUNT
SUB ONE
STR COUNT
TRZ STOP
TRU MULT
STOP HLT

Gt

TR

SUB ONE

once

.36

Transfer commands—TRU and TRZ-~do not change
numbers. Whatever was in the accumulator Just before
a transfer command will still be there for the next
instruction.

For example: CLA COUNT
SUB ONE
TRZ STOP
STR COUNT

If COUNT = 2, the instructions will be carried
out just as if TRZ STOP were not there. COUNT minus
ONE will be stored back into COUNT.

The TRU command works the same way. What gets
stored in TOTAL below-- COST, VALUE, or TOTAL?

CLA COST
TRU FINAL
CLA VALUE
FINAL STR TOTAL

COST is copied into the accumulator and stays there
during the transfer to symbolic location FINAL. What-
ever is in the accumulator stays there while the pro-
gram transfers.

The TRZ commend transfers the program to the
symbolic location indicated only if the accumulator
contains & zero. Otherwise, the next instruction
is performed. TRZ FINAL says to transfer to FINAL
only if the accumulator is zeroed.

Write out the following problems on & separate
piece of paper. Answers are in the separate booklet.

"u-n‘ruIn-z‘rz-u-u-z4'z'z-m-z‘rz-n-zarz-u-zarzru‘
Problem 3.1. You are working on a long looping program.
vhere the loop counter is COUNT. Write the three

.counting instructions you would use, plus a fourth in- ‘
struction to transfer the program to the symbolic
location named STOP when the loop counter reaches zero.‘.

PP PP PG P P PP g g g g P P &

\ 72 272 27 2 2 2 £ 2 2L £ £ 2L 2 L 2 2 2 £ £ 2 2N\
.Problem 3.2. You are working on a long looping pro- \

gram where the loop counter is LOOPS. Write the three \

counting instructions you would use, plus a fourth .
.1nstmction to transfer the program to STOP when the
loop counter reaches zero. ‘

PP = I PPy y Fy F > 7 7 7

zero

pereey

e <

S IR 05

ASTIREEA g

|

IR R R o R

[~ The TRZ STOP instruction will halt the computer

II
-39 -

Symbolic Location STOP

The symbolic location STOP is used only to stop

-the computer. Thus, when the program transfers to

STOP, it must find a HLT command. Usually, a trans-
fer instruction—TRZ STOP or TRU STOP—will be written
inside the program, with the symbolic location STOP

at the very end naming the instruction HLT.

Questions below are based on the following in-
structions, where location ONE contains a 1l:

CLA ONE
LOOP TRZ STOP

SUB ONE

TRU LOOP
STOP HLT

What will be performed after TRZ STOP on the first
loop--SUB ONE or HLT?

What number is in the accumulator immediately
after TRU LOOP, before the TRZ STOP instruction is
performed a second time?

How many times will TRU LOOP be performed?

Here's a desk check of that problem:

CLA ONE Copy a 1 into the accumulator.

LOOP TRZ STOP Does the accumulator have & zero?
No, it's a 1. So don't transfer, but

move on. The 1 stays in the accumulator.

SUBONE 1 -1 = 0. The accumulator has & zero
after this instruction.

TRU LOOP Transfer to LOOP. The zero stays in
the accumulator.

LOOP TRZ STOP Starting the loop again. Does the
accumlator have a zero? Yes, then
transfer to STOP; TRZ STOP says,
"Pransfer if zero to STOP."

STOP HLET The command at STOP is HLT, so the com-
puter halts after one TRU LOOP.

by transferring to STOP HLT if the accumulator has
8 zero; otherwise, the program will not transfer,
but will go on to the next instruction. Neither of
the transfer commands—TRZ and TRU=-change numbers
in the accumulator.

! {

COST

o ot 1 ANl A B S T 5 o o L

II

- 40 -

Write out the following problems on a separate
piece of paper. Again, the answers are in the
Answer Booklet.

""""'.""""'q
: ‘Problem Problem 3.3. A supply sergeant is making his a.nnual.
3 . inventory. The number of hats he has left from last
year is in HATS1l. Copy the number into the 1ocation.
I for this year, HATS2, if there are any left. Other-~
U:lse, stop the computer. .

’ 7 2 27 27 27 27 27 2 2 £ 2 2 2 27 27 2 £ 4

Problem 3.4. Write a program to add a 1 to FILE and.

subtrac'b a 1 from CARD, stopping the computer when .
CARD is down to zero. Use REPEAT for looping.

> 7 2 27 27 27 7 27 7 2 2 7 27 27 7 2 27 27 42 4

The Test for Completion

The three instructions for counting the loops can
be put together with the TRZ STOP instruction to
stop looping when the loop counter has been reduced
to zero. The complete block of four instructions is
called the test for completion, since it checks
vhether all the required loops have been made. We
will show how it works below.

Assume COUNT holds the number of loops required;
COUNT, therefore, is the loop counter. When it has
been reduced to zero we will want to stop looping.
This can be guaranteed by adding a TRZ STOP in-

struction.
The complete test for completion would appear as
follows:
; CLA COUNT
E | SUB ONE
3 STR COUNT
2 TRZ STOP

o ST

! We will now make them part of a complete looping
{ program and review how they work.

‘ Assume COUNT contains a 2. That is, we want to
stop looping after two repetitions.

LOOP CLA COUNT Copy the 2 into the accumlator.
SUB ONE Subtract 1, making it 1.
STR COUNT Copy the 1 into COUNT. A 1 remains
in the accumulator.
S TRZ STOP Transfer to STOP if the accumulator
B | has a zero. It does not, so move on.
€ : (continued on next page)

AT TS

A 0 M NI BB AT AR

on

PRET—

ek e

disi.

T

[T

e
'

=

P il

-4 -

TRU LOOP Transfer to LOOP.
STOP HLT The computer has transferred back
up, 8o it will not reach this in-
struction after the first loop.

shay

CLA COUNT The 1 from COUNT is copied in.

SUB ONE l1-1=0,

STR COUNT Copy the zero into COUNT. A zero
remains in the accumulator.

TRZ STOP Does the accumulator have & zero?
Yes, so transfer to STOP after two

Toops.

STOP HLT

If the loop counter contains the number of required
loops, the test for completion will insure that loop-
ing stops after all loops have been made.

The test for completion is & group of four in-
structions that counts the loops and transfers the
program out of the loop when all loops have been
completed. Its basic form is:

1. CLA the loop counter

2. SUB the number 1

3. STR ©back in the loop counter
4, TRZ someplace outside the loop

Write out the following problems on a separate
plece of paper. Answers are in the Answer Booklet.

"""""""""" -~y

Problqn 3.5. Write a looping program to repeat the
test completion, using MANY as the loop counter ‘
and DOWN as the symbolic location for looping. Loca-
tion ONE contains the number 1.

h""""""""”'&

\ oot ’ £ g 7 7 7 JZ 7 7 7 27 <& 7 7 2 2
Pro'blem 3. Write a looping program to repeat the
test for cmpletion, using DECK as the loop counter .

\ond LOVER for looping. Location UNTP contains the |

number 1. “.
NS 27 7 27 7 2 Z 2 2 2 2 Z 2 £ £ 2 2 .7z Jd

AL A o

CcosT

II
- 42 -

PART FOUR

(1]

LOOPING FOR SIMPLE ADDITION

The solution lies in adding the number to the same
location on each loop. The number itself doesn't
change, but the location for the answer keeps increasing.

Incidentally, one completion of a set of looping
instructions is called a "pass through the loop." two
The second time through would be called the second
pass.

Say you want to add the number from COST many times,
storing each increase in TEMP. At the end of looping,
TEMP should equal COST+COST+COST+COST, and so on, for
as many COSTs as are desired.

The heart of the program is as follows:

REPEAT CLA COST
ADD TEMP
STR TEMP
TRU REPEAT

Before we begin the explanation, it's important
to make clear which location contains the number to
be added and which one is used for the answer. COST
is to be added, and TEMP is the answer location.

Look back at the basic program. Notice that the
answer location TEMP is used twices

CLA COST
TEMP
TEMP

s

SO B e T

T Sy e

Fig

II
- 43 -

First, assume TEMP starts with a zero. If so,
vhat is in TEMP after the three instructions below
have been completed--zero or COST?

CLA COST
ADD TEMP (It contains a zero.)
STR TEMP

TEMP would contain COST. The first two instruc-
tions add COST to zero, giving simply COST. The
third instruction, STR TEMP, puts COST into TEMP.

So, after the three instructions have been per-
formed once, one COST is in TEMP.

If the instructions were executed a second time,
TEMP would start with one COST already in it. What
would then be in TEMP at the end of the three instruc-
tions (shown again below)--one COST or two?

CLA COST
ADD TEMP (It contains one COST.)
STR TEMP

TEMP would contain two COSTs. CLA COST puts one
COST in the accumulator. ADD TEMP adds a second COST,
since TEMP already contains one COST. STR TEMP then

puts both COSTs into TEMP.

After the instructions are completed a second time,
TEMP contains two COSTs.

In short, each time the instructions are performed,
another COST goes into TEMP.

This means the contents of TEMP change each time,
increasing by the amount in COST with each pass.

If you want to get the sum of COST+COST+COST, etc.,
into TEMP, this is the way to do it:

e basic format for the adding instructions:

1. clear-and-add the number to be added;
2. add the contents of the answer location;

| 3. erase the answer location and put in the new sum.

SHOE

i i

ZRO

- 44 -

You are probably having a little trouble under-
standing how the three adding instructions work. We {
will try to explain them differently. i

.

If PRICE contains the number to be added re-
peatedly, and you have chosen TOTAL as your answer
location, the diagrams below trace out what happens
on the first two passes. They assume that TOTAL
starts with a zero.

O,
 —

Instruction . PRICE Accumulator TOTAL

CLA PRICE PRICE — 3 PRICE 2 |

ADD TOTAL + 0 ¢——— zero "

STR TOTAL PRICE —) PRICE :
i |

CLA PRICE PRICE — 3 PRICE LACE + b 8

ADD TOTAL +PRICE ¢—— PRICE

STR TOTAL 2 PRICES —3 2 PRICEs

Notice the second pass, particulerly. If there
is one PRICE in TOTAL and two PRICEs in the accum:lator,
how meny PRICEs will be in TOTAL after the instruction
STR TOTAL--one or two? s

There will be two, because the STR command erases i
the location addressed, erasing the one PRICE before (/3
copying in the contents of the accumulator, which is
two PRICEs.

The general rule for repeated addition is: Add
the number to the answer location, putting the sum
back into the answer location.

Now try a few problems. They are designed to give
you experience in distinguishing the number to be
added from the answer location, and writing the three
adding instructions.

~Problem 4.1. You want to increase MANY by an amount .
equal to ONCE on each loop. Write the three adding

. instructions. \
W"""""""""’A

(""""""""".
.Problem 4.2. You want to make location SHOE equal

the sum of LACE+LACE+LACE+LACE, etc. Write the three

adding instructions.
¥V 27 7 27 27 ¢ 7 27 7 7 7 27 7 9 7 7 7 7 27 7 2\ VA LUE

II
™ = [._5 e

3 The adding instructions can be made into a loop-
k. ; ing program very easily. For example, Problem 4.2
1 could be made to loop as follows:

AGAIN CLA LACE
ADD SHOE
o S
TRU AGAIN

The program has a big defect, however. The first
pass should put one LACE into SHOE. That is, SHOE
should egual LACE after the first pass: SHOE = LACE.

However, SHOE will equal LACE only if SHOE con-
tains a zero at the very beginning. What will SHOE
contain after the first pass if it starts with a L;
will SHOE = LACE or will SHOE = LACE + 4?

If the answer location does not start with a zero,
the program will not give the correct answer. It
will give the sum of all additions plus what was in
the answer location before looping began.

Therefore, the answer location must be zeroed at two
3 the start of the program.

The business of zeroing a location is called "clean-
ing out garbage," since it cleans out any previous
material, changing the contents to zero.

If VALUE is chosen as the answer location, the way
to clean out garbage from that location is:

GA -
STR VALUE

' You should start to think of programs in terms of
their component parts rather than in terms of individ-
ual instructions.

i The problems to follow can be broken down into

4 : three parts: zeroing the answer location (2 instructionms),
adding (3 instructions), and a final instruction for
looping, for a total of 6 insttuctions.

Here's an example. A hardware company wants to com-
pute the total value of all hammers in stock. The
price of one hammer is in HAMMER. The total value is
to go into VALUE. LOOPER can be used for looping.

What is the answer location?

e

T

S LB YA A A N O R AU 5 AR P Al B 51 A% AT AL AT A A AT A S) M e A O T

II

- 46 -

What instructions will clean out the garbage
from that location? These instructions make up the
first part of the program. Think of them as &

single block.

The company wants the sum of HAMMER+HAMMER+
HAMMER+HAMMER, and so on, with each increase going
into VALUE. What are the three adding instructions?
They meke up the second block of instructions;
think of them as a unit.

Finally, you will need an instruction to go back
and do another addition. What is that instruction?
Call it the looping instruction and think of it as
the final part of the program.

The complete program will have six instructions
but only three parts:

CLA ZRO Part 1—cleaning out

STR VALUE garbage
LOOPER | CLA HAMMER

ADD VALUE Part 2—adding

STR VALUE

TRU LOOPER Part 3—looping

7 ¢ 2 @ 7 7 2 7 & 7 27 7 g & 27 2 2 27 \|
Problem 4.3. A university needs a program to com-
.pute pute the money spent on athletic scholarships last .
year. Each athlete made the same money, the figure
Nin PAYOFF. Put the answer in TOTAL. Use REPEAT |

cor looping. .
A ’ 7 7 7 27 & 7 27 9 27 7 7 27 7 & 7 & 2 27 \
7 9 7 9 ¢ ¢ 7 7 g 7 2 ¢ 2 & 27 2 7 7
rPro'blem 4.4, Write a program to compute the valueﬂ
.of all suits in stock. The price of one suit is
in SUIT. Put the total in VALUE. Use REPEAT for ~
looping.

’ 7 7 7 7 ¢ 2 < ¢ ¢ 27 27 £ 2 &£ & £ 2 7

Now, to make a complete program you need only
insert a test for completion between the adding and
looping instructions (including a STOP HLT at the
very end).

R W I L1 L NN IR P S | T LN AL T+ WP I L SR A P T T

CLA HAMMER
ADD VALUE

STR VALUE

II

- 47 -

The breekdown of the program by blocks will then
be as follows: CLA ZRO

amn AT TR
STR VALUE

Cleaning out (2 instructions)
garbage

symbolic location

Basic addition | (3 instructions)

Test for (4 instructions)

| "Tooping] (1 instruction)

STOP HLT |4

The test for completion comes after the instruc-
tions for adding in order to check off the addition
Jjust performed. For each addition, the loop counter
comes down one. After the last addition, the loop
counter is down to zero and the TRZ STOP instruction
halts the computer.

Answer the questions on the following example.
You need not write the program itself.

An automobile manufacturer wants to know the total
value of all cars on hand. The cost of one car is
in AUTO. The number of cars on hand is in STOCK.

The total value is to go into TOTAL. REPEAT is to
be used for looping.

First, let's get straight on what is required.

There are a certain number of cars on hand and
each one costs x number of dollars. You want to add
in the cost of one car as many times as there are
cars on hand. That's the essence of the required 13
progl'mno),

We will assume that each car is valued at $4,000.
The heart of the program should do the following,
in the order given:

1. add in $4,000 (the cost of one car),
2. check off one addition,
3. go back and add again.

e

II
- 48 -

Now we will set up the blocks of instructions
that accomplish these functions.

First, the location used for the sum of all addi-
tions must be zeroed out. Otherwise, the answer
will be too big. What is that location?

The first block of instructions should clean out
the garbage from that location. What are those
instructions?

Next, we need the instructions that will add in
the cost of one car to the location for the total
of all additions. Where is the cost of one car?

What are the three basic adding instructions?

Next, we need some instructions that will check
off the fact that an addition has been performed.
How many instructions are required? What location
contains the number to be used for this check?

That location is the loop counter, used in the
test for completion. The test for completion checks
off each addition, just after it has been performed.

What are the four instructions which make up the
test for completion in this example?

Don't forget that the last instruction in the
test for completion uses TRZ, not TRU. TRZ says,
"Pransfer if zero." So the computer will transfer
to STOP when the loop counter is down to zero, indi-
cating no more additions need be done.

Finally, you need an instruction to tell the
computer it's time to repeat the loop. What is that
instruction?

To review, programs for simple addition require
only a few basic blocks of instructions:

1. clean out garbage from the answer location

2. the basic adding instructions

3. the test for completion to count each
addition as it is performed

Lk, a looping instruction to add again

5. STOP HLT

IT
- 49 -

For the sample program you just worked on, the
breakdown by blocks would look as follows:

CLA ZRO

Cleaning out
STR TOTAL garbage

UTO
ADD TOTAL Addition
STR TOTAL

CLA STOCK
SUB ONE Test for
STR STOCK completion
TRZ STOP

TRU REPEAT Looping

STOP HLT

'I""""”"""«
.Problem 4.5. A payroll officer needs a program .
to compute the total amount paid last month to
privates. A private's salary is the number in .
SALARY. The number of privates paid is in MEN.
LStore the answer in TOTAL. Use REPEAT for looping.

F 7 7 7 7 & 7 27 ¢ ¢ 2Z 2 7 2 7 & 7 & 7

\< £ 7 & & < ¢ 7 < 7 < ¢ & & 27 2L 7 7 9
.Problem 4,6. A publishing company wants a program
.to compute the sales of a certain book. The price
of the book is in PRICE. The number of books sold
.is in SALES. Store the answer in GROSS. Use AGAIN

‘for looping. ‘

F 7 7 27 27 ¢ 7 ¢ 2 9 7 27 7 27 27 7 7 J 7 N

It is easy to confuse the loop counter, used in
the test for completion, with the location contain-
ing the number to be used for repeated addition.

Just ask yourself, "What number do I want to add?"
Use that location for the adding instructions.

Then ask yourself, "How many times do I want to
add this number?" Use that location as your loop
counter in the test for completion.

ettt e e

Y g R T £ e T S T PN O O

Piapdery

o s o1

TYPTST
TYPIST

none

. g o . P G . o O
.Pro‘blem 4.7. Write & program to compute the total .
value of all pencils in a warehouse and store the
answer in VALUE. The number of pencils is in .
~PENCIL. All pencils cost the same, the number in ‘
PRICE. Location K1 contains a 1. Use REPEAT as ~
the symbolic location for looping. Ask yourself,
"'Wha.t number do I want to add?" Use that location .

‘m the adding instruction. Then ask, "How meny ‘
times?" Use that location in the test for .
completion.

"""""”"""
.Problem 4.8. A personnel officer wants to figure

the total leave time all men in the battalion will .
have next month. Each man is allotted three days; .
the number 3 is in THREE. The number of men in .
the battalion is in MEN. Put the total leave in ‘
.location ALL. Use MULT for looping. Location UNIT.

contains a 1.
"'.""'.""""d

PART FIVE: PROGRAM PREPARATION

ze

!
il

ro

COUNT
7 STOP

b it 1 RS s e I 0ot A S 5 s P 1 08 ST i LS5 A R b= o

T

- 51 =

AT A

Checking the Loop Counter

Most of the time the programmer does not know
the number of loops that should be performed. He
knows where the number is located (in the loop
counter), but he doesn't know what that number is.
To guard against the possibility that there are no
loops (zero loops) to be performed, he writes as
his first two instructions:

o s Sulidey Lo

Sk

CLA the loop counter
TRZ STOP

gy sy

A company wants to know how much money is paid
annually to its secretaries. All secretaries make
the same wage; that figure is in SALARY. The number
of secretaries is in TYPIST. The program should add
the number in as many times as the number in

« Which is the loop counter? .

gt

e

Assume all secretaries have been fired. The num-
ber in the loop counter would then be .

How many additions would you want to perform?

If there is a zero in the loop counter, there are
no loops at all to do and we may as well stop right
at the very beginning.

Pod b gy

If COUNT is the loop counter, the first two in-
structions in the program should be:

CLA

"If there are no items to count, add, or otherwise
process, there will be a zero in the loop counter.
Thus, the first step in program preparation is to
check the loop counter for zero, transferring the
| program to STOP if it should have & zero.

I
I
I
I

L |
L
1

PTG U TR

SRR " i il i A e i i,

- 52 -
Saving Numbers

The test for completion lowers the loop counter
by 1 for each completed loop. This means the original
number is destroyed. It can be saved during program
preparation by copying it into a temporary location
and using the temporary location in the test for com-
pletion rather than the loop counter itself. This
way the original number can be seaved and used agein:

CLA the loop counter
STR it into & temporary location

If the loop counter is counted down for each com-
pleted loop, what number does it contain when the
TRZ STOP instruction stops the computer?

The entire program is then useless. If you tried
to use it again, the loop counter would start with
a zero and the computer would not know how many
loops to perform; it would start counting down from
zero rather than from the desired number.

This means the loop counter must be saved during
program preparation. This is accomplished by copy-
ing the number into a temporary location and using
that location rather than the loop counter itself

in the test for completion.

If the loop counter is COUNT, and you copied its
contents into TEMP, which location should be used in
the test for completion?

What instructions will copy the loop counter
PASSES into temporary location NUMBER?

We can combine the program preparation steps which
(1) check the loop counter for zero, and (2) save
that number, by recalling that transfer commands do
not change nmumbers in the accumulator.

Look at the following:
CLA COUNT
TRZ STOP
STR TEMP

If COUNT conteins a 5, what is in the accumulator
after TRZ STOP? What is stored in TEMP?

II

-53 -

If COUNT is the loop counter, those three instruc-
tions will check it for zero and save it by copying
it into TEMP.

s

iy

TR

In general, the program preparation instructions
that (1) check the loop counter for zero, and (2)
copy it into a location to be used in the test for
completion will be like the following:

1. clear-and-add the loop counter
2. TRZ STOP (to check for zero)
3. store it in a temporary location

In the following problems, write out only the Zero
three program preparation instructions we have just
learned plus the test for completion. The problems
are designed to give you practice in identifying
the loop counter, checking it for zero, storing it,
and using the temporary location, rather than the
original number, in the test for completion.

""""""""""' S
.Problem 5.1. A furniture company had poor luck selling
a certain type of sofa last year. They carry three
types, whose selling prices are in locations SOFAl,
SOFA2, and SOFA3. The low sales were from the second
.type. Write the program preparation instructions
that will check whether any of that type were sold.
The number of sofas sold for each of the three types
TEMP ‘ot sofa is in SOLDl, SOLD2, and SOLD3, respectively.
.OOUM' is available for temporary storage. Write the
block of instructions making up the test for comple-
‘t:lon for a program computing total sales for the .CLA PASSES

second type of sofa. STR NUMBER
N """""""’."'d ¥

‘."""""""""’4
Problem 5.2. An insurance company sells two kinds
of insurance, accident and life insurance. Yearly
‘premiums on each are in ACC and LIFE. Rumbers of
persons paying preniums for each type last year are
in locations SLIP and AGE, respectively. Temporary
locations for each of these numbers are FALL and OLD.
.Wr:lte the three program preparation instructions for
.a program to compute the total amount of money paid
last year for life insurance. Then write the test

29 2 for completion instructions for the same program.
Y 7 7 7 P 7 g PP I I

T e I iy

»'

J s

II
- 54 -

Cleaning Out Garbage

The final point to cover under program preparation
is something we have already discussed, the business
of cleaning out garbage from answer locations.

If the location where the sum of each addition is L
stored contains anything but a zero before the first
pass, the program will give the wrong answer. It
will give the sum of all desired additions plus what-]
ever was in the answer location at the start. e

We must guarantee that the location used for the i ;
answer has a zero to begin with. <

As you know, this is done as follows:

CLA ZRO
STR in the location for the answer

Incidentally, those two instructions also zero the
accumulator, since the STR command only copies the
number already in the accumulator. Since a zero is i
in the accumulator from CLA ZRO, it stays there for {
the first looping instruction.

This is necessary in those situations (which we

will run into later) where the first instruction in N
the loop uses an ADD commend, rather than CLA. :

Write out programs for the following problems,
including five program preparation instructions.

; The only things new are (1) three new instructions
il to check and save the loop counter, and (2) use of
. the temporary location for the loop counter in the

: test for completion.

B

o E - et

i
E
il
i
I
]
|
i
1
i
i
§
i
!
|
!
I
I

- 55 -
The general format for the programs is:

Checking and
saving the
loop counter
Cleaning out

garbage

symbolic
location | Besic addition

Test for
completion

[Tooping |
STOP HLT

rF 7 7 JZ 7 7 <2 7 27 7 /7 7 7 27 27 2 7 7 7N
Problem 5.3. Write a program to compute the total
value of all 6SNT vacuum tubes in stock, placing
the answer in VALUE. COST contains the value of .
a single tube, ONE contains the number 1, and -
COUNT contains the number of vacuum tubes on hand. .
Use TEMP for temporary storage of COUNT, and
REPEAT as the symbolic location for loglng.

N7 7 7 7 7 7 7 7 7 27 7 ¢ 7 7 2 ’ 7 7 7

r"”"".""""’ \
Problem 5.4. A manufacturer mekes three kinds of
.towels—-face, hand, and bath towels. Their prices
are in FACE, HAND, and BATH, respectively. The
.num'ber sold of each type is in FACE+l, HAND+l,
and BATH+l. Temporary locations for each type
are available in FACE+2, HAND+2, and BATH+2. The
manufacturer wants to know the gross sales of hand
.towels. Put the total sales in HAND+3. Use WASH

for looping. There is a 1 in location KONl.
h”""""""""‘

g
7 7 27 £

-

- 56 -

PART SIX: REVIEW AND PRACTICE

You now have all the basic material to be covered
under Basic Looping. All that remains is to review
the important points and practice putting them
together into complete programs, some of them a little
longer than those you have worked on before.

Completing the Loop

Looping is made possible by an instruction which

uses TRU as its command and a symbolic location,

which names an instruction somewhere outside the

normal order. TRU stands for "transfer unconditionally."
TRU REPEAT says to transfer to the instruction named

by symbolic location REPEAT. If REPEAT had been

placed next to CLA COST—-REPEAT CLA COST—TRU REPEAT
would instruct the computer to perform CLA COST next.

r £ 27 27 2 2 2 2 0 27 7 27 29 7 9 7 &P 7 I
Problem 6.1. Program A below says exactly the same
Thing as one of the other programs—B or C. Which

Program B

ADD CON5
SUB CONS
HLT

HE8 |3
2 |
Q

e £ 7 7 2 ¢ ¢ 27 27 7 7 ¢ 7 97 27 7 27 7 7\

The Test for Completion

The test for completion is a group of four instruc-
tions that counts the loops and transfers the program
out of the loop when all loops have been completed.
Its basic form is:

clear-and-add the number in the loop counter
reduce it by one for the loop just completed
put the lowered number back in the loop counter
transfer out when the number (which is still

in the accumulator) is down to zero, using

TRZ (transfer if zero)

BT T IR TV TS

S

II
- ST -
""""”""7""
.Prdblem 6.2. A publisher of encyclopedias sells
its books in sets of two, the encyclopedia itself ~
.and a separate index. The prices are different .
. since the books are of different sizes. The price .
.of the encyclopedia is in BIG and the price of the
index is in LITTLE. The company has had a good .
.year and they would like to know the total value ‘
. of all sets sold, placing the answer in TOTAL. .
Write a program to compute the value of sets sold.
The number of sets sold is in SOLD. Location ‘
TEMP is available for temporary storage. Use SELL ‘
for looping. Notice that the problem requires .

repeated addition, not just of one number, but two.
b""""""""""

Program Preparation

Program preparation instructions act to check
loop counters for zero and, if they are greater
than zero, save them. Other instructions zero out
answer locations, if this is called for.

Saving the loop counter is basically a matter
of relocating a number (after checking for zero).
Sometimes it is necessary to save other numbers
as well. This is done in the same way, by copying
the number into a temporary location during program
preparation and using the temporary location in
later instructions.

The problem below requires you to save not only
the loop counter but another number as well. Program
preparation will be a little longer. Everything
else is the same as usual.

V'.""""""""'

Problem 6.3. A retail house for musical instru- .
.ments updates its records at the end of each month.

Last month they added a new item, a supply of post .
.horns, valued at a certain amount, which is contained .

in location HORNS. The number of post horns sold .

is in SOLD. The value of one horn is in PRICE.

Write a program to compute the value of post horns .
‘sold, putting the total in HORNS. Save the original .
.number in HORNS by storing it in BLOW. COUNT is .
.availdble for temporary storage of the loop counter. .

Use POST for looping.
""""".""""‘

o A 2 AR L U 3 St A ki AR A AL 1053t AL N SV ¥ o M LAt S

{ II
- 58 -

Simple Addition and Subtraction

The basic format for the adding instructions is
as follows:

l. clear-and-add the number to be added

2. 8add the contents of the answer location

3. erase the answer location and store the
new total from the accumulator

So far, you have been taught to add several
COSTs into TEMP by writing CLA COST, ADD TEMP,
STR TEMP. Of course, the program will work just
as well if you switch the first two addresses,
making it CLA TEMP, ADD COST, STR TEMP. We have
been doing it the first way for a reason you will
appreciate in the next section.

However, if you wanted to subtract COST from
TEMP many times, you would have to reverse the
addresses, making the order similar to the counting
instructions in the test for completion:

1 SUB COST
; STR TEMP

There is no reason why programs must be restricted
to just one set of looping instructions. You may
want to loop for one kind of addition or subtraction,
and then transfer down to start a second set of
loops. In effect, you will have two separate pro-
grams written end to end.

‘ Only one modification is necessary to handle this
type of problem, namely, the TRZ instruction in the
first test for completion should transfer to a sym-

{ bolic location starting the second program rather

i than to STOP:

“g‘p. T v.,w.‘.:-..»,,,:., e

A
7
;

¢ ah

R TR R AR

- 59 -

1st Program:

program
preparation

symbolic loca- add or
tion #1 subtract

count
loops 1lst test for
completion

TRZ symbolic |
location #2

TRU symbolic
location #1

2nd Program:

symbolic loca- progrem
tion 2 preparation

symbolic loca- add or
tion #3 subtract

count
loops 2nd test for
completion

| TRz STOP |

TRU symbolic |
location #3

"""""."""""
. Problem 6.4. A supply sergeant has received a request.
. for a large large order of two types of vacuum tubes.

has neither type in stock and needs a program to com-
.pute the cost of ordering them from a supply house.

. The cost of each type of tube is located relative to

. TUBE. The number of each type requested is located
relative to ASK. Assume that both numbers are greater

~ than zero. Temporary storage for these two numbers

. is availsble relative to COUNT. The total cost of all

. tubes should be stored in TOTAL. Symbolic locations
to be used are: FIRST—to complete the loop in the

. first program; SECOND--to start the second program;

. and THIRD~-for looping in the second program. Loca-

tion CON contains the number 1.
r 7 7 ¢ 7 7 g 7 7 2 g g g 7 g g 7 7 7 F)

7 7 7 7 2 27 & 7 J/

\»

Y R A, R SRS RN

i

II

<60

sergeant depend on money received from Post Finance
nd money spent on meals for visiting dignitaries.
e sergeant starts the month with a given amount,
‘contained in location AVAIL. To this number he
should add the amount received from Finance, which
\is a fixed amount, contained in MEALl, for each man

""""""""""‘
iEroblem 6.5. The total funds available to a mess .

ssigned to his mess hall. The number of men who :
at there regularly is in MEN. This number is
bviously greater than zero and need not be checked. .
It can be stored temporarily in TEMP. The mess ~
sergeant has to pay for meals for visitors out of .
is own funds. Thus, AVAIL should be adjusted to
take these expenses into account. The cost to him .
for each dignitary is in MEAL2. The number of visi- ‘
tors last month is in VIP. There may not have been .
.any visitors, so this number should be checked for
zero. It can be stored in VISIT. Location K contains .
a 1. Use IN as the symbolic location for looping to .
.compute funds received, NEXT to start instructions .
subtracting money spent on visitors, and OUT to loop
for repeated subtractiouns. .
N e

Two final refinements and this section will be
complete. We will treat them both in the same prac-
tice problems.

Say you have two sets of loops to perform and you're
not sure whether either loop counter has anything in
it.

As part of program preparation for the first loop-
ing program, you would clear-and-add the first loop
counter and TRZ to the symbolic location for the
second program, rather than STOP. In other words,
if there are zero items of the first type, you can
skip the entire first program and start the second.
If the second loop counter also has nothing, you can
TRZ to STOP as usual, or to final instructions if
there are any.

Finally, you will often need to combine the results
of both programs by adding the two answers together
or subtracting one from the other. This you can do
in a third little program at the very end. This re-
quires that the symbolic location used with TRZ in
the second test for completion should refer to the
final instructions, rather than STOP.

N e T

eabiaatt nly S B G Lo LD e ik il

e

TIETI

Sl (el

i
i
I
l
|
I
I
|
i
i
|
i
i
i
i
I
i
1

- 61 -

II

These kinds of problems block out as follows:

1st Program:

CLA 1st counter
TRZ symbolic lo-
cation #2
STR temporary

location
Clean garbage

from both

locations

symbolic location 1 Add or subtract

Count loops
TRZ symbolic lo-
cation #2

TRU symbolic lo-
cation #1

symbolic location 2 | CLA 2nd counter
TRZ symbolic lo-
cation #4
STR temporary
location

symbolic location 3 Add or subtract

Count loops
TRZ symbolic lo-
cation #i4

TRU symbolic lo-
cation #3

symbolic location 4 Add or subtract
ansvers
HLT

1st program
preparation

1st test for
completion

2nd program
preparation

2nd test for
completion

AD=AO34 045 HUMAN RESOURCES RESEARCH ORGANIZATION ALEXANDRIA VA F/6é 9/2
BASIC COMPUTER PROGRAMMING: A SELF-INSTRUCTIONAL COURSE., (U)
JUN 67 R J SEIDEL: H & HUNTER » I C ROTBERG DA=44=188~AR0=2
UNCLASSIFIED

R —
e

2

FEEEEER

EF
£
L]

b 25
mn% 1.4 m

ol
4

L
MICROCOPY RESOLUTION TEST CH

: NQT@I“M‘BURUU OF STANDARDS-1963.

gl e e g

SV RO

II

- 62 -

e 2. 2.2 2 2L 2L Ll L L Ll Ll Ll oL o
Problem 6.6. Write a program to compute the total

value of two kinds of typewriter in stock,separately,
and the grand total. Sales have been good, and one
.or both may be sold out. Addresses to be used are:

First Kind Second Kind

Price PRICEl PRICE2
Number left NUM1 NUM2

Storage COUNT1 COUNT2
Answers TOTAL1 TOTAL2

Store the grand total in BIGTOT. Use TYPEl1l for
looping in the first program, NEXT to start the sec-
ond program, TYPE2 for looping in the second program,
and BOTH for final instructions. Location DIGIT
contains the number 1. Hint: we can zero out both
hnswer locations with one block of instructionms.

’ 7 2 7 7 2 7 2 2 2 2 2 2 27 7 2 2 2 g 7

'."""'
7 27 27 27 7 27 7 7 7 7 7

Incidentally, a little program inside a bigger
one is often called a "subroutine."

"""""""""'
Problem 6.7. Write a program to compute:

¥

. ANSWER = (COST x ITEMS) - (A x B)

‘ Don't be frightened. Multiplying one number by
another, such as COST x ITEMS, is exactly the same
thing as adding one number as many times as another.
You have done this by using one number in the add-
ing instructions and the other as the loop counter.
For example, 12 x 3 can be obtained by adding 12
three times, using a 3 in the loop counter. In short,
multiplication is simply a form of repeated additionm.

.Set up your program by getting COST x ITEMS in one
) routine, or set of instructions, using symbolic loca-

.tion LOOP for looping, ITEMS as the loop counter,
and FIRST for the answer. Start the second routine
to get A x B with symbolic location NEXT, using B as
the loop counter, LOOP2 for looping, and SECOND for
the answer. Subtract one answer from the other at
symbolic location LAST, putting the result in ANSWER.
Do not assume that any of the locations--COST, ITEMS,
A, or B~-are greater than zero, but do not bother
to save any of these numbers either. (If either
COST or ITEMS contains a zero, COST x ITEMS = O, you
can skip to the routine computing A x B). Location

KON contains the number 1.
P 2 2227222222 22 222l Ll

’ g7 7 27 7 7 7 7 7 7 27 2

. £

S

A2t aadiai

a2 I e

A B A D T S OO N N T S R M L R

Guud Bd e ed G e Sed e SEn G B e

S b e e e e

- 63 - 111
PHASE III
DATA PROCESSING

This section talks about ways to get information
from many different locations with just a few
instructions. So far, you have had to address each
location individually. Now you will learn how to
tell the computer to call on an entire series of
locations, using a technique called address modi-

fication, which is explained in Part One.

You will also learn ways to sort out the locations
visited into various types, how to count the number
of addresses of each type, add their contents, re-
locate one series into another, or some combination
of the preceding. All of these techniques do some-
thing with, or process, the information, or data,
necessary for an answer. Thus, these techniques are
all related to data processing. They are discussed
in Parts Two through Four. Part Five is devoted to
review and practice.

PART ONE: ADDRESS MODIFICATION

Say you have an address arithmetic series that
starts off this way:

COST OOST+1 COST+2 COST+
/ N 7 10 and 80 on

Notice that each location contains a different
number.

'
1

e ios e Sl e et e it s ce e 0 g et s e et oL

ki

& <

B At fa. smgins ol

o .-v-‘-‘)n.bwmm»»-w’gb&h‘@mum;.l. =

I
- 64 -

Nov let's say you want to add the contents of
the entire series, placing the total in ALL.

The basic looping program you have used before
(shown below without a test for completion) will
do it if we can change the address COST before each
new loop, modifying it to COST+L before the second
loop, to COST+2 before the start of the third loop,
and so on.

CLA ZRO
STR ALL
OVER CLA COST
ADD ALL
STR ALL
TRU OVER

If we can modify that one eddress each time, the
program will add in COST, then COST+l1, then COST+2,
and so on, through the entire address arithmetic
geries.

COST is part of an instruction that had OVER as
its symbolic location. That is, COST appears in the
instruction OVER CLA COST. COST is the address to
be modified and OVER is its symbolic location.

An address can bé modified by working with its
symbolic location.

For example, adding a 1 to a symbolic location
adds & 1 to the address appearing with that gymbolic
location.

Consider OVER CLA COST. The symbolic location
is .

Changing the symbolic location OVER changes the
address .

Adding & 1 to OVER serves to add a 1 to y
changing it to COST+l.

In LOWER STR CASE, the address CASE can be changed
to CASE+2 by adding a to LOWER.

In AFTER SUB COATS, COATS can be modified to
COATS+1 by a to .

I R VS U RN R

B

] III
i =60
£
§: Numbers can be added to symbolic locations in the
£ same way you have added to addresses. Simply write
‘ i the symbolic location in the address field. For
i 3 example, the following instructions add a 1 to the
‘ i symbolic location OVER.
1 CLA OVER
b ADD ONE
STR OVER

Now let's go back to the basic adding program,
this time including a new block of three instructions
to modify COST.

CLA ZRO cleaning out
STR ALL garbage

OVER CLA COST
ADD ALL adding

CLA OVER address
ADD ONE modification
STR OVER

TRU OVER looping

The first adding instructions add the contents of
COST into ALL, as you know. The next three instruc-
tions, for address modification, add a 1 to COST by
adding a 1 to its symbolic location OVER, changing
COST to COSTw1.

As a result, when the computer starts the second
pass, it will CLA COST+l rather than COST. Address OVER
modification has changed the address in the instruc-
tion CLA COST, modifying it to COST41l.

COST
E
Address modification is accomplished with a block COST
: of three instructions that change the address by
;, adding to its symbolic location.

Problem 1.1. You have just written REPEAT ADD PRICE.
Write the three address modification instructions that
will change PRICE to PRICE+l. There is a 1 in loca- ‘ adding, 1,

tion ONE. AFTER
""".""”"""A

) EE e N

G
e
)]
IR IS T Y TR A

300 S MO v LS s s SN 50 o 0 P .

III
- 66 - ‘
s G ot oo oo o oo \ ! p:

Problem 1.2. HUBERT SUB MEN appears earlier in your 3

program. Write the instructions that will modify ~ ~ |3
MEN to MEN+l1,if there is a 1 in DIGIT. il
v 7 7 7 7 /7 7 7 7 7 7 7 27 7 27 27 7 7 JF F J L

("""""""""'
.Problem 1.3. You have instructed the computer to
LOWER STR CHECK earlier in your program, and you .
- want it to perform STR CHECK+2 on the next loop.
¢ .Hr:lte the instructions you would insert to accom- . 2l
j Lplish this. There is a 1 in ONE. . L'l
>\ !

c 27 27 /7 27 27 £ £ 27 7 27 2 27 27 2 7 7 27 7 7

e
| S
yon

\? < &L £ 2 2 2 2 2 2 2 2 2 2 2 2 2L 2 &L JZ .
.Problem 1.k, Write a program to add the contents of

the entire series of locations addressed relative -
to VALUE, storing the total in FINAL. Use REPEAT
for looping. There is a 1 in location K.

The solution requires you to zero out the answer
location, as usual, and write two blocks of instruc-
.tions, one for adding, which you have done before,
and a second block for address modification. Don't
.vorry about the test for completion; we will insert

it later. {

7 7 2 7 27 7 4

""""""""""
Problem 1.5. Write a program to add the contents of .

every other location in the series relative to COST i
\(oos'r, COST+2, COST+k, etc., skipping COST+1, cos'1'+3,.
L etc.). Store the answer in EVERY. The number 2 is e
in location TWO. Use AGAIN for looping. . i
> 2 2 2272 2 272 2 2 2 2 2 2 227 2 2 7 7 7\ « Ji
Address modification changes addresses in an 3 1
address arithmetic series by working with a symbolic &l

location. It has nothing to do with commands.

Here's a program adding the contents of the entire '{
3 address arithmetic series relative to BLOCK, placing g
E the answer in HOUSE.

sl ee i S

E CLA ZRO cleaning out garbage from -
g STR HOUSE the answer location

SYMBOL. CLA BLOCK i |
ADD HOUSE BLOCK is put into HOUSE

STR HOUSE o
CLA SYMBOL BLOCK is changed to BLOCK+1 o
ADD ONE by adding a 1 to its

STR SYMBOL symbolic location ! i
TRU SYMBOL

¥
¥

'
E

8

P e

ot s Rk R 7 30

FIUEBe e Lo

R
K i

R R

III

- 67 =

On the second pass, BLOCK+l is added into HOUSE.
Then BLOCK+l is changed to BLOCK+2 during address
modification. Consequently, the third pass adds in
BLOCK+2. BLOCK+2 is modified to BLOCK+3 during the
remainder of the pass, and BLOCK+3 is added in at
the start of the next pass, and so on.

Up to now the loop counter in the test for comple-
tion has referred to the number of repeated additions
(or subtractions) using the same address.

With address modification, however, the address
is different on each loop. After the first loop,
you are no longer going back to add in COST, for
example, but COST+l1, then COST+2, and so on, adding
in a different location in the series each time.

Therefore, the loop counter in & program with
address modification refers to the number of different
locations to be called on.

In this regard, remember that the number tacked
on behind an address in an address arithmetic series
is one less than its position in that series. For
example, COST+2 is not the second address in the
series, but the third.

If you wanted to add in the contents of locations
PRICE through PRICE+3, the loop counter should con-
tain the number .

To add the contents of every other location in
the series COST through COST+4, the loop counter
should have the number .

If you didn't understand the last question, look
at the complete series:

COST

COST+1
COST+2
COST+3
COST+4

Every other location would take in COST, COST“2,
and COST+4, for a total of three locations, requiring
three loops and therefore a 3 in the loop counter.

III

T b Rt T 2t o g S L o 4 b i yre

ANSWER.

CRAVAT

TUBE+4

STOP

program might look.

- 68 -

symbolic loc:tion

‘The test for completion can be inserted right
after adding, as you have always done, followed by
address modification, like this:

Program
| Prepar. .ion

Add or
Subtyact

Test for
{_Completion

Address
Modification

(Toocping]

STOP HLT

CLA TEN
STR COUNT

CLA ZRO
STR ANSWER

CLA TIE
ADD ANSWER
STR ANSWER

CLA COUNT
SUB ONE
STR COUNT
TRZ STOP

CLA CRAVAT
ADD ONE

STR CRAVAT
TRU CRAVAT *

HLT

Here's an example to demonstrate how a complete
It adds TIE through TIE+9 into

Put a 10 into the loop
counter

Zero out the answer
location

Add in the first address
of the series

Subtract a 1 for the ad-
dition just completed

Modify TIE to TIE+l

Loop back for TIE+l

TUBE+1

B RTINS

I
i
I
i
1
|
|
|
I
1
i
|
I
I
I
|
1
I

III

- 69 -
’ 7 27 £ J £ &£ 2 2 7 7 7 27 £ 27 7 27 7 27 7 Al
Problem 1.6. A soap company records the sales made
by each salesman, stored relative to SALES. That is,~
.the number of sales made by the first salesman is in
.SALES, the number made by the second is in SALES+l, g

and so on. Write a program to compute the total

"l'he company employs 16 salesmen. There is a 16 in
MEN, vhich can be saved by storing it temporarily in
TEMP. There is a 1 in location ONE, Use SELL for

looping (and address modification).
b"""""""""’

sales of all salesmen, placing the answer in TOTAL. .

"""""""""" e
Prcblem 1.7. A large music store sells records of

many different types, such as classical, western,

folk, and so on. The number of different types is

in TYPES. The sales of each type record is stored

in sequence relative to RECORD. Write a program to

compute the total number of records sold, of all

types, placing the answer in SALES. Use POP as stor-
.age for the number of types (for the loop counter),
La.nd HIT for looping. There is a 1 in location Kl. .

> > 7 > I N

g o @ & 0 4

Often several different memory locations, or words,
are reserved for information about just one item. For
example, a warehouse might keep three kinds of infor-
mation on each tube; its size, its cost, and its pres-
ent location.

Bach tube is said to have a "three-word record."
This means three consecutive locations in an address
arithmetic series are set aside for each tube.

For example, assume the series relative to TUBE

is used for storing 3-word records on each tube,
their size, cost, and location:

First Tube Second Tube

Size Cost Location Size Cost Location

TUBE TUBE+l TUBE+2 TUBE+3 TUBE+: TUBE+5

The cost of the first tube is in TUBE+l. The cost
of the second tube is in .

If you were going through the series to pick wp
the total cost of all tubes, you would start with

Laage il it P Gt o g i Seto i ond

I
- T0 -
To get from TUBE+l to TUBE+4, you would need to
add the number to the appropriate symbolic

location during address modification.

’ That is, you want to add in the contents of every
9 third location, starting with TUBE+l. This means a
‘ constant of 3 must be added to the symbolic location
during address modification.

1 Try another example. A publishing company main-

; tains a 3-word record on each of its books, stored

: relative to BOOK. The words are date of publication,
3 retail price, and number of sales. What location
contains the number of sales of the first book in the
series?

Where would you go to get the number of sgles of
the second book?

What number should be added during address modifi-
cation to call on the locations containing the number
of sales of all books?

two
l

{ Y 2 2 2 2 &£ £ 2L £ 2 2 2 & 2 £ 7 L 2 2 2 O
.Problem 1.8. Each vacuum tube in st ck has informa-
‘ | tion in its record in the following order of words:
{ brand name, date last used, place last used, and
hours used. These words are stored relative to TUBE.
The total number of tubes in stock is in ITEMS., Use
HOLD as temporary storage. Write a program to com-
. pute the total number of hours all tubes have been
used and store this value in HOURS. There is a con-
stant of 1 in ONE and a 4 in FOUR. Use REPEAT for

looping.

N 72 7 7 7 ¢ 7 7 7 27 27 27 ¢ 2 2 27 £ & 2 & 4

r 7 7 7
rF 7 2 7 27 27 7 2

b

I
I
[
i
f

BOOK+2

III
« | e
F 0 7 7 7 7 g 7 £ 7 2 J 2 g 2 ¢ 7 7 7 7
Problem 1.9. The pay record for each man in a business .
firm has information in the following order of words: 3
badge number, shift worked, regular pay, and overtime .
pay. These words are stored relative to RECORD. .
.total number of employees is in HELP. Compute the .
total regular pay for all employees, placing the amount
in REGPAY. There is a 1 in CONl and a 4 in CON4. Use ‘

TEMP for temporary storage and TOTAL for looping. .
7\

’ 72 7 2 g 27 27 2 27 7 7 g 7 9 g 7 7 7 F 7 7

PART TWO: SORT-AND-COUNT PROBLEMS

BOOK+5

Shown below are the first five locations in the
series relative to MAN. Each location represents a
different driver and contains the number of accidents
that man has had. The first man has had none, the
second has had 4, and so on.

MAN MAN+1 MAN+2 MAN+ MAN+4

YR A S L e D B BT e Fa oy

The Registry of Motor Vehicles wants to know how
mny drivers in this series have had at least one
accident. How many have?

Since we can't look inside the computer to count
the offenders ourselves, we need a program to get the
information out.

We can count the numbers greater than zero by
copying the contents of each location into the ac-
cumulator and asking, "Is this number a zero?" But
if the answer is no, the number must be greater
than zero, and we can count it by adding a 1 to the
counter set aside for traffic offenders.

il bt i catibbbacs

A g2 s
et Nty

;

III
W5

What instruction will copy the contents of the
first location into the accumulator?

What command asks whether the number in the o
accumulator is a zero?

Now let's back up for a moment to fill in the rest
of the program before returning to the sort-and-count
portion. There are five locations to be processed,
so we need a test for completion that has the number

in its loop counter. Assume COUNT has that
number.

Then we will need some address modification instruc-
tions to tell the computer to visit a different loca-
tion on each pass through the loop. The complete g
program, minus sort-and-count instructions (and program K 4
preparation) is shown below. 3

REPEAT CLA MAN
sort-and
count g
instructions {
TEST CLA COUNT \
SUB ONE the test for
STR COUNT completion
TRZ STOP

CLA REPEAT address
ADD ONE modification
STR REPEAT

TRU REPEAT
STOP HLT

If the number in MAN is a zero, we can forget about
it and skip directly to the test for completion to
finish out the loop. What instruction wiil transfer
the program to the test for completion if MAN has a
zero?

If MAN does not have a zero, the driver must have
had at least one accident. Will the program transfer
if MAN does not have a zero?

Assume you are counting accident violators in
location BANG. What instructions will add a 1 to
that location?

;_
e
i 111
_ - 73 -
. » 3
In short, the data processing instructions for this i
s sort-and-count problem are: SRR |
3 CLA MAN Copy in the number from MAN.
3 TRZ TRZ TEST If it's a zero, skip to the test for comple-
CLA BANG tion. If it's not a zero, it must be greater,
ADD ONE identifying an accident violator. Count him v
STR BANG by adding a 1 to BANG. '
i Look at it in terms of a block diagram. You are
counting offenders in location BANG. But you want to é
add a 1 to that location only if the driver being checked *
has not had zero accidents. If he has had any at all, :
the number will not be zero. |
‘ 3 Copy in a :
& man's accidents ;
.%
4 & No, it isn't.
3 He's a violator; i
count him here. :
Test for ¢ ;
completion
Address
modification
_ Compare-the diagram with the complete program:
: PEAT CLA MAN Copy in accidents. :
E | [z TRZ TEST Is it zero? »
3 ye W no
i CLA BANG
(. ADD ONE Count violators i
4 STR_BANG |
4 L i
B TEST CLA COUNT
s ‘ SUB ONE Test for completion
¥ : STR COUNT
TRZ STOP N
CLA REPEAT -
ADD ONE Address modification ;
i A CLA BANG STR REPEAT
} ADD ONE
STR BANG ~———————— TRU REPEAT
N ! STOP HLT

i e o — =

:
e

£3

s gt

o e
y

fa e e

III
e TR

To count the number of locations that do not con-
tain zeroes, copy in the contents of each location
and TRZ to the test for completion, counting the loca-
tions that are not eliminated right after the TRZ
instruction:

1. Clear-and-add a number to be checked.

2, TRZ to the test for completion.

3. Add a 1 to a counter; these instructions
will be performed only if the computer has
not skipped past them on the TRZ instruction.

""”'.""""""4‘
Problem 2.1. A manufacturer records the number of

sales made | by each salesman, storing the information
in the series relative to PUSH. He wants to know the
.number of men who have made at least one sale, giving

him the answer in BONUS. There is a'1l in UNIT. MEN
contains the number of salesmen. It does not need to
be saved. Symbolic locations are CHECK, for sorting,

and TEST, for the test for completion.
""""""""""

"
¢ 7 7 £ 7 7 2

\ 7 2 2 2 2 2 2 2 2 2 £ £ 2 2 g 2Z 2 £ 2 £ 2
Problem 2.2. A clinic records the number of house

. calls made by each of its doctors, storing the infor-
mation relative to DOCTOR. It wants to know the number
of doctors who have made at least one house call, giv-

. ing the answer in CALLS. There is a 1 in ONE. MEDICS

. contains the number of doctors working out of the
clinic. This number should not be destroyed; it can
be saved in TEMP. Symbolic locations to be used are
AGAIN,for looping, and OUT, for the test for completion.

Assume at least one doctor.
P 2Ll 227 222 L2l L L)

C J 2 J 7 &

Now turn the question around. Assume you want to
count the number of locations that do contain a zero.
Here's the diagram:

it ki

-

III
-5 -

P e e

program
preparation

AT

Yes, it is.

il b Lo

s

test for
completion

el aly amad s oFa aten)

ey
L 4

“

address
modification

looping

~

counting

TRU to test

For example: A supply sergeant codes new tubes with
a 1 and old tubes with a 0, storing the information rel-
ative to TUBE. The number of tubes on hand is in TOTAL.
The program below counts the number of old tubes, plac-
ing the answer in OLD. Compare it with the diagram.

oy g e

"

,n s

CLA ZRO
STR OLD

SORT CLA TUBE
TRZ COUNT

Py

TEST | CLA TOTAL
SUB ONE
STR TOTAL
TRZ STOP

DT A A A BT Sl TACS AN ¥

CLA SORT
ADD ONE
STR SORT

crer xmmcoes we.

TRU_SORT

COUNT | CLA OLD
ADD ONE €«
STR OLD

TRU_TEST
STOP HLT

SN SR e el e ey e

CLA CUT

no,
yes

S .

:

III
o TP e

Notice that the computer transfers outside the
loop (when it detects a zero) to do the counting.
The TRZ COUNT instruction sends it all the way down
to the bottom of the program whenever there is a
zero in the accumulator.

Having transferred out of the loop, it is neces-
sary to get back in after counting, to perform the
test for completion and address modification. This
is the reason for the TRU TEST instruction after
counting.

[;: If you transfer out of the lcop with TRZ, you must
e

t back in with TRU, to finish it.

Notice, too, that although the counting instructions
are written at the bottom, they are actually performed
before the test for completion, because of the transfer
commands.

All locations must be processed, so all loops must
end with a test for completion and address modification.
The TRZ instruction interrupts the loop momentarily to
increase a counter whenever a loop starts with zero in
the accumulator.

Questions below are based on the following program:

program
preparation

AGAIN CLA TREE
TRZ CHOP

END test for

_completion |
address
modification
looping

CHOP CLA CUT
ADD ONE
STR CUT
TRU END

STOP HLT
A logging company codes the record of each tree to

be cut down with a zero. This program tells them how
many trees are marked for cutting.

after

all trees

Prem—

pom——

e e Tt

R N R

e e]

III
o

Assume TREE has a zero. What instruction is per-
formed after TRZ CHOP?

If TREE has a zero, is the test for completion per-
formed before or after the counting instructions
starting at symbolic location CHOP?

If TREE does not have a zero, will it be counted
in location CUT? Will a test for completion be
performed?

Do you want to run a test for completion and address i
modification on all trees, or just those which are to
be counted?

AR € s ¥k 28
Lo At e bl e its An il S b et

To count locations with zeroes, copy the contents
of each location into the accumulator, TRZ to the end
of the program for counting, and TRU after counting
back to the test for completion.

7 P2 P2 2 22 2 222222 22°2LL2 Ll LN
Problem 2.3. A branch office of the Internal Revenue

.records whether each citizen has paid his taxes by coding.

AT A A N RS R VA3 VA1, 4 A A o S

T
-
a 1 in the series relative to TAXES if he has paid, and
a 0 if he has not. Complete the program below to count .
I the number. of persons who have not yet paid their taxes, . 3
~storing the count in NOTYET. There is a 1 in Kl. . é
I ; B \ |
I = REPEAY . Lo g ’
. TEST test for ‘
l . completion . f'
. address : E;
! : modification .
{ i e)
l: : GETHIM __ g
| ' = \
. i iiciios
l: !-u-rz-n-rz-nazﬁEB:z4rJ22;ru-n-u-za-u-zAUu-n‘-uIna-ulr!

=

rF g ry Iy oy y oy y I I I |
Problem 2.4. An Army battalion maintains a four-word

record on each man, stored relative to NUMBER. The .

words are: serial number, unit, rank, and MOS. PERSON

contains the number of men on record. Use FILE to store .

the number of men temporarily. Rank is indicated by a 1 , A
for officer and a 0 for enlisted personnel. The battalion g
wants a program to determine the number of enlisted per- L
sonnel, storing the answer in EM. Location K1 contains . ;
a l and K4 has a 4. Symbolic locations to be used are . roi

’ Z 2 2 2 4

REPEAT, for sorting; FINAL, for the test for completion;

and ENLIST, for counting the number of enlisted Lersonnel.
yF > 7 I F T F T I T

P 2 2 2 2 2 2 22 2222222222222
Problem 2.5. A business firm maintains a six-word record

on each employee, relative to WORKER. They are: assigned
branch, specialty, salary, marital status, number of
children, and years of service. FIRM contains the number
of personnel in the firm. Use SAVE to store the number

of employees temporarily. Marital status is indicated

by a 1 for married and a 0 for single. The firm wants a
program to determine the number of single employees.

The information can be stored in SINGLE. Location ONE
contains a 1 and location SIX has a 6. Symbolic loca-
.tions are FREE, for counting; CYCLE, for looping; and

DONE, for the test for completion.
b"""""""""""

. J
. P P P P P

Counting both kinds of locations, those containing it i‘
a zero and those that do not, requires both sets of count- —~ |4
ing instructions, the block right after sorting (for { | ’
locations without zeroes) and the block at the end (for e
locations with zeroes).

Nothing new. Just a longer program. But don't forget
to zero out both answer' locations as part of program :
preparation. f 3

The following example checks the series relative to
COFFEE, counting locations with zero in CREAM at the
bottom, and locations without zero in SUGAR right after
sorting. Both kinds of counting are followed by the L
test for completion. The number of locations in the
series is in NUMBER (the loop counter), which is stored
temporarily in SAVE.

h"
|

s s

III
- 00

CLA NUMBER
TRZ STOP
STR SAVE
CLA ZRO
STR CREAM Zero both answer locations
STR SUGAR

SORT | CLA COFFEE
TRZ MILK

CLA SUGAR
ADD ONE Count locations without O here
STR SUGAR

TEST CLA SAVE ¢—
SUB ONE
STR SAVE
TRZ STOP

CLA SORT
ADD ONE
STR SORT

TRU SORT

—> MILK | CLA CREAM
ADD ONE Count locations with 0 here
STR CREAM

TRU TEST Finish loop with the test for

completion

STOP HLT

ke
k.
i
g

e s e, S5 G Y
b .

., . ’ . Sy - S N B U 3 T RIS Tt LT e ey
: B R S SRS A el e R T NG

et o

CETIVEY Y]

III

- 80 -
> 2 2 2 2222222222220 222 2N
Problem 2.6. An airline maintains a five-word record
on each of its flights, stored relative to FLIGHT.
The words are: flight number, flight date, departure
time, arrival time, and whether it was late arriving.
The number of flights scheduled each month is in
PLANES. The airline needs to know how many flights
arrived on time last month and how many were late.
That word is coded with a 1 if it was on time and a

.0 if it was late. Store the answers in ONTIME and
LATE. Location FLY is available for temporary storage.
Locations ONE and FIVE contain the numbers indicated
by their addresses. Symbolic locations to be used are
CHECK, for sorting; TEST, for the test for completion;

.and GOOF, for counting late flights. Assume at least

one flight.
F /7 27 7 ¢ ¢ 2 J 7 27 g 7 27 7 7 7 2 27 27 & 4

""’.""’)

Nt Z 27 < 2 £ 2 g ¢ 7 7 £ 2 2 27 27 £ 2 2 2 A\
Problem 2.7. A paint company keeps a four-word record

.on each of its paints, stored relative to PAINT. The .

words are: color, price, solvency, and recommended

use. The number of different paints is in TYPES. .

.Assume at least one type. The company wants to know .

.how many of its paints are solvent in water, and how .
many are not. The word for solvency is coded with a
1 if it is solvent in water, and a 0 if it is not. .
The answers are to go in YES and NO. Location COUNT .
can be used for temporary storage. Locations CONl1l and .
CON4 contain the numbers 1 and 4, respectively. Sym-
bolic locations are LOOP, for sorting; LAST, for the .

test for completion; and NOSOL, for counting.
\ I TP G F PP TP P PP P

PART THREE: SORTING TECHNIQUES

R T % 5 TR A IR, S AN WA A € NS S T s

»
d

B K39
oy

e A

b g

et B, 151

,

GE) GE UED GED GEN GED OGN OND O Oun O Bed Gee B e B e B9

III

Sorting by Subtraction

Say you have a problem asking how many locations
contain the number 5 and how many do not. The solution
is simple. Bring the contents of each location to the
accumulator and subtract a 5. If the number was a 5,
it is now a zero, and can be identified using TRZ, as
before.

Thus, the solution involves only one additional
instruction, inserted into the block for sorting:

1. CLA the address

2. SUB a constant equal to the number you
want to identify

3. TRZ to the counting instructions

If you want to count the number of locations contain-
ing the number 8, what would you subtract before using
a TRZ instruction?

Assume COST contains an 8, and you want to count 8's.
CLA COST copies the 8 into the accumulator, and SUB EIGHT
changes the number there to a zero. (The number in COST
is not changed; it is still 8.) TRZ can then transfer
the program to the counting instructions.

In short, you can identify a location with an 8 by
copying its contents into the accumulator, subtracting 8,
and using TRZ.

A supply sergeant maintains information on each pair
of pants in stock, including waist size. Pants with a
28-inch waist are coded with a 28, 30-inch pants are coded
30, and so on. What instruction should you insert before
using TRZ to identify all the 32-inch pants, if locations
K28, K30, and K32 contain the numbers 28, 30, and 327

i

E‘
;
g

2 i

STR THERE

SUB K3

TRN COUNT

III

- 82 -

The problem asks for the number of locations con-
taining a 32. The solution is to copy the contents
of each location into the accumulator and subtract 32.
If the location has a 28, the number in the accumulator
after subtraction will be -4 and TRZ will not pick it
up. If it is 30, TRZ still will not detect it. But
if it is 32 in the location, it will be zero in the
accumulator, and TRZ will transfer the program to the
counting instructions.

In general, to identify a particular number, copy
the contents of each location into the accumulator
and subtract the number you want to pick out. Then
use TRZ as usual.

F 7 7 7 7 g 7 g 7 7 27 7 27 7 27 J 7 27 7 7 7 I\
Problem 3.1. A bra manufacturer records the size of

each bra in stock in the series relative to BRA. A-cup

bras are coded with a 1, B-cup with a 2, C with a 3,

and D with a 4. The total number of bras in stock is

in TOTAL. The manufacturer wants to know how many B-cup

bras he has on hand. Write a program to compute the
‘answer and place it in MEDIUM. NUMBER is available for
.storage. ONE and TWO contain the numbers 1 and 2. Use

REPEAT for looping, LAST for the test for completion,

and COUNT for counting.
7 7 7 ¢ ¢ 27 7 ¢ <7 7 ¢ < &£ 27 27 7 7 2 7 27 7

2 72 2 2 2 2 2L 4

rF o > >y rry > FF I F I
Problem 3.2. A company maintains a five-word record

on each employee, stored relative to WORKER. The words

are: salary, position, years employed, marital status,

and social security number. The company hands out
'service watches after 20 years of employment. Write

a program to count the number of employees who are eligible
.for their watch this year, storing the answer in LOYAL.

The total number of employees is in TOTAL, which can be
‘saved by storing it temporarily in TEMP. Locations ONE,

K5, and K20 contain the numbers 1, 5, and 20, respectively.

Use CHECK for sorting, OVER for the test for completion,

and TWENTY for counting. Assume at least one e%oyee.
P~ TP =F=F= F= - F~F PG Py =P =y

"""'.

Sorting with TRN

Numbers less than zero are called negative numbers,
as you may know. For example, 6 minus 8 results in a
negative number, minus two (-2).

STR THAT
STR THAT

P

i

{

i
-

III
HEYY,

The computer can sense a negative number with the
TRN command, which stands for "transfer if negative."

PSP T PSR IRV

: Thus, if the number in the accumulator is less than
5 zero, the program will transfer on TRN,

What instruction will be performed after TRN COUNT
below, if THIS contains a 5 and SIX has a 67

| =z |

CLA THIS
SUB SIX
TRN COUNT
STR THAT
COUNT STR THERE

¢

s ." pe

THIS - SIX = 5 - 6 = -1, which is a negative number.

[]
.

What will be performed above if THIS starts with a 6?
With a 7?

IRN will cause a transfer only if the number in the
accumulator is negative. If it is zero or positive,
the program will not transfer but will move directly
to the next instruction.

Gy gy

e

The TRN command can be used in sorting to pick up
any number less than zero. The TRZ command is limited
i to only one number, the number zero, while TRN can detect
| : an entire range of numbers.

$q

]

TRN with a sorting problem usually requires subtrac-
tion first.

A dental office records the number of visits made
by each patient, stored relative to TOOTH. What two
instructions should you write after CLA TOOTH to pick
out patients making less than three visits, counting :
them at symbolic location COUNT, if locations K1, K2, 1
and K3 contain the numbers 1, 2, and 3, respectively?

= =

In the previous example, you were interested in
counting 2's, 1's, and 0's, the numbers less than 3.
If the number was originally a 2, subtracting 3 makes
it the number , subtracting 3 from 1 gives ¥
and 3 from O is , all negative numbers.

w.,.._..,,‘.w‘.,vv
— -

What number should be subtracted to pick up just
the 1's and 0's?

&
PE

S ki S

TRN, TRZ

III

e T

"""'."""""'.’
.Ptoblem 3.3. The First Sergeant has decided to assign

weekend passes on the basis of the last inspection. .

All enlisted personnel have a five-word record stored ~
‘relative to EM. The words are: squad number, rank, ‘
.years of service, number of gigs (deficiencies) on the ‘

last inspection, and date of rank. The total number

of enlisted personnel is in LIST. Write a program to .

determine how many men got less than 3 gigs on the last .

inspection, storing the result in PASSES. Locations

ONE, TWO, THREE, FOUR, and FIVE contain the numbers .
.suggested by their addresses. Use MEN as temporary .

storage for the loop counter, CYCLE for looping, END .
.for the test for completion, and DETAIL for. counting. ~

Assume at least one man.
"'.".""""""

Nttt adodenondld £ L L L £ < £ £ 2 2 JL
.Problem 3.4. The Division Training Center maintains

.a four-word record on each soldier who went on maneuvers,
stored relative to TRAIN. The words are: numbers of
.aggressors he "killed," his squad leader's rating,

number of times he got lost, and his score on debriefing.
.The total number of men who went on maneuvers is in

FIGHT, which can be stored temporarily in FIGURE. Write
a program to count the number of men who got lost more
‘than twice, storing the answer in LOST. There is a
.constant of 1 in CON1, a 2 in CON2, a 3 in CON3, and

a 4 in CON4. Symbolic locations are MORE, for looping,

and DONE, for the test for completion. (Counting occurs

tright after sorting.)
222222222222 222 2 2l

-
7 7 7 JZ 7 7 & 7 Z

-

Multiple Sorting

TRN by itself can sort locations into those containing
negative numbers and those that do not. TRZ by itself can
sort on the basis of zero and not-zero. Together, they can
divide the range of numbers into three categories:

negative (TRN), zero (TRZ), and positive (whatever is left).

In brief: CLA address
TRN to count negative numbers
TRZ to count zeroes
Count positive numbers here, after
negative and zero numbers have been
eliminated

G s

B et

TR

*a

I1I

et o ap i Bt

o

REF P

Usually, some number must be subtracted before
TRN and TRZ can be used. When sorting into three
categories, subtract a number that will make the
"middle" number a zero.

sasis

P R S T

For example, in sorting for 1's, 2's, and 3's, first
subtract the number , to change them to -1, 0, and
+1.

In sorting for 3's, 7's, and 8's, first subtract |
the number

Then TR__ to count the 3's, and TR__ to count the
1's.

Of course, if there are three answer locations,
all three must be zeroed out as part of program prep
aration and any time you transfer out of the loop to
count, you must get back in to run the test for com-
pletion and address modification.

Previously, you have transferred out to count one |
kind of number. Now you will transfer out to count two :
types. Just remember that each time you go outside the]
loop, you need a TRU instruction that will return you :
to the test for completion.

l program
preparation

TRZ out / TRN out

count count
zero positive
numbers numbers

TRU back 454 TRU back AAJ

count
negative
numbers

test for
completion

address
modification

I
I
I
i
I

E D
1
1
1
1
1
; ‘
I
1
1

sigel

Here's an example of a complete program. It's long,
but still manageable if you think in terms of blocks. e

An airline company codes the time of day each flight S
leaves,with a 1 for morning, 2 for afternoon, and 3 for
evening. The information is stored relative to FLIGHT.
The number of flights is in FLY, which can be saved by
storing it in TEMP. (There are obviously more than
zero flights.) Write a program to count the number
of morning, afternoon, and evening flights, placing the
answers in MORN, NOON, and NIGHT. Use WHEN for looping,
TEST for the test for completion, AM to count morning
flights, and PM to count afternoon flights. Locations
K1 and K2 contain a 1 and 2.

CLA FLY Save the loop counter without
STR TEMP checking
CLA ZRO
STR MORN Zero out all three answer
STR NOON locations
STR NIGHT
WHEN CLA FLIGHT
SUB K2
TRN AM 1-2= -1; these are morning flights
_TRZ PM _ _ _ 2-2= 0; these are afternoon flights
CLA NIGHT

ADD K1 Anything left started off as a 3,
STR NIGHT indicating an evening flight

SUB K1 Test for completion

ADD K1 Address modification

TRU WHEN Looping

ADD K1 Count the morning flights and
STR MORN transfer back to the test for
_TRU_TEST _ _ completion to finish the loop

ADD K1 Count the afternoon flights and
STR NOON transfer to the test for completion
TRU TEST to finish the loop

)

g5

>
-
s
%

B

-
:3

O3 WA i NS Y 5 i

III
= L
O AT B S N T S T A N G G S A W S
Problem 3.5. An electronics warehouse wants a program
.to count the number of tubes used in January and the
number in February, placing the answers in JAN and FEB.
The words for each tube are in memory starting at loca-
tion VACUUM. The words are: part number, date received,
.shipment number, manufacturer, number used, and place
used. The month is coded by number, with a 1 for January
a 2 for February, and so on. Locations ONE, TWO, and SIX
.contain the numbers 1, 2, and 6, respectively. Use HOLD
as teumporary storage for TUBES, which contains the num-
ber of tubes in the warehouse. Symbolic locations are
COMPUT, for sorting; LAST, for the test for completion;
MONTH1, to count January tubes; and MONTH2, to count

‘Eebruary tubes.
’ 7 27 7 27 27 2 £ 2 2 7 g 7 27 27 7 7 7 27 F 7 4N

Annaru-zdhnarz-z-u-nai

F 7 7

vu-rzlru-rulru-rz-n4-n-vu-74-na-u-n-rz-na-m-u-vu-ru-rz-zz-n‘
Problem 3.6. A shirt manufacturer stores information ~

on the size of each shirt relative to SHIRT, with a 2

for small, a 4 for medium, and a 6 for large. Write

a program to count the number of small and large sized ‘
.shirts, placing the answers in SMALL and LARGE. The

total number of shirts is in TOTAL, which can be stored .

in NUMBER. Location KON1 has a 1, and KON4 has a 4. Use.

symbolic location SORT for sorting, END for the test for

completion, and COUNT for counting. .
P P PRty L PP PEPEPEIE I

TRN picks out any number that is negative, while TRZ
picks out only one number, a zero. Thus, if you want to
count specific numbers, it is easiest to use TRZ. For
example, to pick out 3's, 7's, and 8's in the series
relative to COST:

Original Number
3

CLA COST 7 8
SUB THREE -3 -3 -3
TRZ to count 3's 0 4 5
SUB FOUR -4 -4
TRZ to count 7's 0 1
SUB ONE -1
TRZ to count 8's 0

In other words, subtract the number you want to identify
from itself, making it zero so you can TRZ to pick it out
and transfer to count it.

i DA S BN i

e e NI W B

U b S b AN SN

P

o AR D £ SEALG

————

vy
C ;L

s

ITI
- Bf =

N ¢ ¢ 7 <2 7 7 /JZ 7 7 & 2 < < £ < JZ 2 2 2 g J Y
Problem 3.7. Officer candidates are given a test with

a maximum of 10 points. Scores from O to 7 are flunking,

.an 8 is provisional acceptance, and a 9 or 10 means
unqualified acceptance. The testing center maintains a
four-word record on each candidate—serial number, test
score, age, and parent organizatiomstored relative to
OFFCAN. Write a program counting the number of students
scoring in each category, storing the counts in FLUNK,
MARGIN, and ACCEPT. The number of candidates is in
PUPIL. This number is greater than zero and can be

.stored in MEN. Locations ONE and FOUR contain the
numbers 1 and 4. These are the only constants available.
Symbolic locations to be used are LOOPER,for sorting;
LAST, for the test for completion; OUT, for counting

flunks; and MAYBE, for counting marginal candidates.
PP PP F P Py F 7) F I I P TS

’F £ £ 7 4 27 7 2 & 7 7

’ 7 2 J 2 2 £ 7 2 2 2 2 & &g & 2 7 7Z 2 7 7 7N\
.Problem 3.8. A warehouse records the number of months

each vacuum tube has been in use, storing the information

relative to TUBE. If a tube has been used more than

6 months, it should be checked; if it has been used more .

than 12 months, it should be replaced. Write a program .k
.to count the number of tubes in each category, placing .

the answers in CHECK and REMOVE. The total number of

tubes is in TOTAL, which can be saved in COUNT. Locations.

ONE and SIX contain a 1 and a 6. Symbolic locations .
.are SORT, for sorting; TEST, for the test for completion; .

and LOOK, to count tubes to be checked.
A Al'ul'u-'zIZ4In‘IOl'uIIIIn‘Ih‘IHl.hl'ul'&l.&l'ul'ul'!.ﬂ"ﬂdl’l

S g st e Ll i i B S

it

III

-89 -

PART FOUR: MULTIPLE ADDRESS MODIFICATION

Multiple Relocation

What two instructions relocate HATS into GLOVES?

Assume you need to relocate not just HATS but the
entire series relative to HATS, putting it in the
series relative to GLOVES. In other words:

HATS — GLOVES
HATS+1 — GLOVES+1
HATS+2 — GLOVES+2
HATS+3 — GLOVES+3
and so on.

The data processing portion of a looping program
might be:
REPEAT CLA HATS
STR GLOVES

But what instructions do you want performed on the
second loop? :

What addresses must be modified before the second
loop begins—HATS, GLOVES, or both?

In brief, you want:

REPEAT CLA HATS
STR GLOVES
test for
completion
modify
HATS
modify
GLOVES
TRU REPEAT

III
- 90 ~

You can modify HATS by working with its symbolic
location .

Can you modify GLOVES the way the program is
blocked out?

If not, give it a symbolic location so it can be
modified. We will use MODIFY.

If the series relative to HATS has as many locations
as the number in COUNT, location COUNT can be used as the
loop counter and the program (without program preparation)
would look as follows:

REPEAT CLA HATS Relocate HATS, copying it into
MODIFY STR GLOVES GLOVES

CLA COUNT

SUB ONE Check off the relocation just

STR COUNT completed

TRZ STOP

CLA REPEAT

ADD ONE Change HATS to HATS+1

STR REPEAT

CLA MODIFY

ADD ONE Modify GLOVES to GLOVES+1

STR MODIFY

TRU REPEAT Go back and relocate HATS+1

into GLOVES+1
STOP HLT

A comment on cleaning out garbage from answer locations:

When a number is added to an answer location, that
answer location must start with a zero. 1In adding COST
into VALUE, for example:

CLA COST
ADD VALUE
STR VALUE

VALUE must start with a zero.

However, when a location is first used with the STR
command, it need not be zeroed during program preparation.
This is because the STR command automatically clears, or
zeroes, the location before copying in the number from
the accumulator.

ITI
e

You may remember an earlier problem where one number
was repeatedly added into BIG, another number was re- REPEAT
peatedly added into LITTLE, and then BIG and LITTLE were
added together and stored in TOTAL with the instructions:

S S 1 N

i e Sen e e o OGN G G0 &0

2y

no
CLA BIG
ADD LITTLE
STR TOTAL

Answer locations BIG and LITTLE had to be zeroed dur-
ing program preparation because they were first used
with the ADD command, but not TOTAL since STR automatically ¢
zeroes it before copying in BIG+LITTLE. :

Relocation problems present a similar situation,
since all answer locations first appear in the program
with the STR command.

\Z £ £ 2 2 2 £ £ 2 £ £ £ £ £ 2 2 g 7 27 7 27 2N
Problem 4.1. Relocate the contents of the series COST

.through COST+99 into the series COST+100 through cosr+199.|
Locations K1 and K100 contain a 1 and a 100, respectively..

Use FIRST and SECOND as symbolic locations.
P = EPPP J= PP PR == = P P PP P

Problem 4.2. Relocate the series COST through COST+99 ‘ :

into even-numbered locations of the series relative to
‘VALUE, zeroing out odd-numbered locations. CON1l, CON2,

and CON100 contain 1, 2, and 100. Use FIRST, SECOND, and
‘THIRD as symbolic locations. What you want is:

$om g

A B S A B

COST — VALUE
VALUE+1 é— ZRO
COST+1 —> VALUE+2
VALUE+3 «— ZRO
and so on.

- So you would put COST into VALUE and zero into VALUE+1l,
‘changing COST to COST+1, VALUE to VALUE+2, and VALUE+1l to

r VALUE+3.
] > 2 27 27 272 2 2 2 27 27 2 2 272 7 2 27 27 7 2 7 2 2

L8 |
7 2 27 7 4
S A

e

Y

- 92 -

Multiple-Word Processing

A record, you may recall, is a series of numbers
stored in consecutive locations of an address arith-
metic series. For example, you have become accustomed
to such phrases as "A warehouse maintains a five-word
record on each vacuum tube in stock, stored relative
to TUBE."

So far, you have worked only with one word of a
record, such as TUBE+2. Now, however, you will work
with more than one word, say TUBE+2 and TUBE+3. This
means that both will have to be changed during address 1
modification, making it another type of multiple ad- et |
dress modification. |

For example, a university maintains a three-word L
record on each student, stored relative to PUPIL:
sex, class, and admissions score. Sex is coded by a
1l for male and a 0 for female. The university wants
the total of all admissions scores for male students
only.

How many words of the three-word record are needed . 1
to get the answer?

You will need the first word (PUPIL) to eliminate { }
the females, and also the third word (PUPIL+2) to ‘
add up the admissions scores of the males, or the
students who are left after sorting.

In brief, the problem requires you to sort,using
the first word, and add, using the third word.

If TEST is the symbolic location for the test for
completion, what are the sorting instructions? | 3

Having eliminated the females, you then want to
add the admissions scores of students that are left,
the males. If TOTAL is the location for the sum, what
are the adding instructions?

You have used two addresses, one to sort and one for
adding, so both must be modified. What are the two
addresses to be modified?

> 34 g 3 T " : OB i e i T i

ITI
- @Y =

TS W«gﬂ-mﬂ

Here's the complete program, minus program preparation.
ALL contains the total enrollment. THREE contains a 3.

LOOPER CLA PUPIL Sorting eliminates girls (the 0's)
TRZ TEST by skipping directly to the test
for completion
MODIFY CLA PUPIL+2

ADD TOTAL Total up the admissions scores of
STR TOTAL students left, the males

TEST CLA ALL
SUB ONE The test for completion, which
STR ALL counts down total enrollment
TRZ STOP
CLA LOOPER
ADD THREE Get the first word cf the second
STR LOOPER student
CLA MODIFY
ADD THREE Get the third word of the second
STR MODIFY student

TRU LOOPER Go back and process the second
student two
STOP HLT

Assume that the first student in the problem above was
a girl in the sophomore class with a score of 78, and
the second student was a senior male with an admissions
score of 95. Here are their records and what the program
does with them:

Information Data Processing TOTAL
E | PUP
A 5 i IL 0 A male? No. Check the
F ﬁgﬁ ;Zi;L PUPIL+1 2 next student.
E O e PUPIL+2 78 0
PUPIL+3 1 A male? Yes. Add in the
E PUPIL+4 4 admissions score and CLA PUPIL+2
‘ PUPIL+5 95 check the next student 95 A;D mbfﬂi o

; : STR TOTAL

{ PUPIL & Generally, the best place to start working on a

E PUPIL+2 problem is the data processing portion. Above, we

sorted using the first word and added the third word
of records not eliminated. With this figured out,
the rest of the programrprogram preparation, the test
for completion, and address modificatiomfell into

| place fairly easily.

:
4
7

III
By B

focmaaa

We can't acquaint you with all the different types
of problems requiring multiple-word processing, but
we can give you several examples.

For example, a battle group codes men present for
duty with a 1 and men absent with a 0, storing the
information relative to MAN. Write a program to
(1) count the men present for duty, placing the ans-
wer in READY; and (2) relocate these addresses in the
series relative to DUTY. ;

o

Here's the sort of relocation you want:

MAN 0 DUTY o
MAN+1 1 DUTY+1

MAN+2 1 DUTY+2 i
MAN+3 0 DUTY+3 L
MAN+4 1 DUTY+4

If MAN has a 0, go right to the test for completion {
and then get MAN+1 and DUTY+l ready for the next loop. 5
However, if MAN has a 1, copy it into DUTY before
running the rest of the loop. i

If the test for completion starts at symbolic

location FINAL, what are the sorting instructions? B f
CLA PLAYER |

If the program does not transfer, there must be a ADD ERROR
1 in the accumulator. What instruction will copy this 77 ERROR
i 1 into DUTY?
PLAYER+1 What addresses must be modified before looping?

Y 7 JZ 4 7 JZ v 7 2 27 27 7 27 27 & ¢ 7 27 £ &£ 9
Problem 4.3. A library maintains a daily record of

whether or not each of its books is checked out. The
information is coded by a 1 if it is checked out or a
0 if it is not, stored relative to BOOK. The total
number of books in the library is in VOLUMS. CHECK is
to be used as the loop counter. Write a program that
'will count the number of books checked out, placing the
total in OUT, and relocate the books checked out rela-
tive to FINE. Assume at least one book in the library.
Location K1 contains a 1. Use READER for looping, MARK
.for address modification, and DONE for the test for

completion.
Ry Yy Y P

"""'J

L’

s N

4

{
4 -
|
4

~'~‘

ATt A

ey SR

.
s

STR DUTY

III
- 08 &

Here's a slightly different type of problem. A
baseball statistician keeps a three-word record on each
professional baseball player—league, errors, and batting
average—stored relative to PLAYER. League is coded by
a 1 for American League, 2 for National League, and 3
for minor league. He wants a program to compute total
errors made by all major -league (American and National)
players, storing the total in ERROR. OUT1l and OUT3
hold a 1 and a 3; SHOWER starts the test for completion.

You want to eliminate minor league players. Since
minor league is coded with a 3, sorting should result
in an immediate transfer to the test for completion if
the first word (PLAYER) has a 3. What are the sorting
instructions?

Here's how they work:

CLA PLAYER Copy in a 1, 2, or 3.

SUB OUT3 Make it a -2, -1, or O.

TRZ SHOWER Skip the rest of data processing
if it's a 0, since that indi-
cates a minor league player.

Now you are ready to add up the errors, since only

major league players are left. What are the adding CLA MAN
instructions? TRZ FINAL

Notice from the answer that adding uses a different
word from the one used for sorting. What addresses
must be modified before starting another pass?

MAN & DUTY

Get the data processing portions of the program
straightened out and the remaining blocks of instruc-
tions will usually fall into place.

Problem 4.4. A supply depot maintains a two-word

record for each vacuum tube in stock—cost and locationm—

stored relative to TUBE. The depot has decided the
‘information on location of each tube is not necessary
and wants to eliminate it, converting to a one-word
record instead. TOTAL contains the number of tubes
in stock. COUNT is available for storage. Locations
ONE and TWO contain a 1 and a 2, respectively. FIRST and
SECOND can be used for address modification. Assume at

least one tube.
P L 22 L2l Ll Ll L Ll el

e

.
"IIH‘IK‘IZ‘IZ‘IH‘IH‘-’

T

III

.ok

The result should be a series of locations half
as long as the original, with each location contain-
ing the cost of a different tube.

’ 7 2 2 7 2 2 2 £ £ £ 2 & & g 7 2 27 9 9 & 9
Problem 4.5. The Safety Officer maintains a three-word

.record for each officer on post. The words are: rank,
number of tickets, and license number, stored relative
to DRIVER. Rank is coded by a 1 for company grade,
.2 for field grade, and 3 for general grade. Write a
.program to compute the total number of tickets issued
to officers of company grade, storing the result in FINE;
and the tctal number of tickets issued to field grade
.officers, storing the result in WARN. Assume at least
one officer on post, the number in TOTAL. Location
HOLD can be used for storage. Locations K1, K2, and
K3 hold the numbers 1, 2, and 3, respectively. Symbolic
locations are: TICKET, for looping; OVER, for the test
for completion; BAR, for company grade officers; and

LEAF, for field grade officers.
[P P PG S-S PEPE PP P T PP P P PP P

"',

Y e a -

PART FIVE: REVIEW AND PRACTICE

Address Modification

Addresses can be changed by working with their
symbolic locations. The format is:

clear-and-add the symbolic location

add the number necessary to get to the
next desired address

store back in the same symbolic location

If the cost of a tube is the second of five words
in a five-word record relative to TUBE and the total
cost of all tubes was needed, you would start with TUBE+l
(the second word) and add 5 to its symbolic location
during address modification, to get to TUBE+6 for the
cost of the next tube.

F 7 7 7y >y Iy I II I I P g
Problem 5.1. Write a program to clean out garbage from .

all memory locations from TRASH through TRASH+80. Use
.SAVE for temporary storage of the total number of loca-
tions to be zeroed. KON contains a constant of 1. ITEM

‘Sontains the number 81. Use NEXT for address modification.
B L G T T A A A L A D

—

f
.
|
f
|

2
 §
&
¥
¥
7

III
AR
2 2 222 2 2222227727000 FJ
Problem 5.2. The precedure for computing the primary
.MOS involves getting a score (X) and then applying the
formula MOS = X + 1. Compute X + 1 for each of 11 men.
.'The X scores for each man are stored in locations rela-
tive to MAN. Store answers in TEMP to TEMP+10. NUM
has a 12 and ONE has a 1. HOLD can be used for temporary
storage. Use FIRST for looping and TOTAL for address

modification. Be careful how you load the loop counter.
> 7P I I I I I I g g I g T g 7 F 7 P N\

-
"'.”

Sorting Techniques

Sorting is performed with TkZ, TRN, or both. The
trick to sorting is making the number to be identified
negative or zero so TRN or TRZ can pick it up, transfer-
ring outside the loop for further processing, if necessary.
Locations not causing a transfer can be processed immediately
after sorting instructions.

"z L L £ 2 £ £ Z 2 2 2 £ 7 2 2 2 2 27 27 2 27 7
Problem 5.3. Find how many locations from SORT to SORT+75

.contain positive numbers, storing the count in ANSWER.
.KON contains a 1 and TOTAL contains a 76. Use LAST for the‘

‘:%letion test and ITEM for address modification.

r”’.""”""""""\
Problem 5.4. An electronics depot maintains a six-word

record on each vacuum tube in stock, starting at location
SUPPLY. The words are: tube function, part number, stock
level, original cost, present cost, and storage location.
ITEMS contains the number of tubes in the depot. TEMP
is a temporary storage location for the number of tubes.
The stock level word is coded with a 1 if the tube should
be reordered, a 2 if the stock level is satisfactory, and
a 3 if the amount on hand exceeds requirements. The depot
wants a program that will determine the number of tubes
in the excess category and the number in the shortage
.category, storing the counts in NEED and EXCESS. Do not
assume at least one item is in stock. Location KONl has
a 1, KON2 has a 2, and KON6 has a 6. Use COMPUT to allow
modification of stock level word, DONE for the test for

lFompletion, and ORDER for counting.
r 7 7 7 7 7 7 27 7 7 27 7 /7 27 27 27 7 27 27 /7 27 27 |\

. £ £ & £ < £ 2 7 7 2 7 7 27 ¢ 7 27 27 27 7 7

7 £ 7
’ £ 7 7 £ 27 7 7

7 7 7

N e a S EAGES N

e —

oS

B

III
- 98 -

e < £ £ 2 2 £ o 2 g 2 27 2 27 7 2 27 7 g 27 27 27 J

Problem 5.5. The drinking age in a town is 21. The
.Alcoholic Beverages Commission wants to know how many

people in the town are of drinking age now and how many
.will be of drinking age next year so they can estimate
.ftom potential income tax how much raise to give the

Commissioners. The town has a population of 1,000,

which is the number in TOWN. The ages of the 1,000
.people are stored in sequential locations starting at

location DATA. Store the number of people who are of
.drinking age now in location NOW, and the number who

will be of drinking age next year in LATER. CON1l contains

a 1 and CONST has a 21. Use COMPUT for modifying ad-

dresses containing ages, TEST for the completion test,

‘pnd NEXTYR to check for persons who will be 21 next year.
c £ £ £ & 2 £ £ 2 2 27 27 27 2 27 27 27 27 & 27 27 27 27 7

V' 7 7 7 7 27 7 7 7 7 4

Multiple-Word Processing

Sometimes more than one word of a record is needed.
Items may be sorted on the basis of one word (TUBE+2,
for example) and the cost of those falling into one pile
computed using a different word (such as TUBE+4). No
matter what the problem, it is always best to start work-
ing on the data processing portion first.

el ol el 22 2 2 2 2 2 2 2 2 2 ¢
.Problem 5.6. Some enlisted men have taken screening

‘tests in application for OCS. The information is stored
in memory relative to APPLY. There is a five-word record
for each man giving the following information: serial
number, rank, date of application, test score, and ac-

.ceptance or rejection (a 1 for acceptance and a 2 for
rejection). Write a program to determine the number who
were accepted, and the total points for those who were
.accepted, storing the answers in PLUS and VALUE, respectively.
Location OFFCAN contains the total number of applicants.
Use MEN as temporary storage for this number. KON contains
a 1l, KON2 a 2, and KON5 a 5. Use DATA for modifying
~addresses containing test status, ACCEPT for modifying
addresses containing test scores of those accepted, and
LAST for the completion test. Use the TRN command for

.sorting.

".’A

F 7 27 7 27 2 27 4

L

VN 77 7 7 27 7 7 27 7 7 7 7 27 7 7 27 9 7 7 7 7 7 7

A

T

ITI

- 99 -

2
L ’

PRy T W

-
E A4

il i el <00 B4

¥
sasy .IJQYEE.LLE?‘.&". i, 7 o A

B
2
3

i

e el e e B B Bl e e e B B e i el e e

e —

- 101 -

PHASE IV

ADVANCED TECHNIQUES

This section deals with advanced transfer techniques
in computer programming. These are: new methods of
address arithmetic; the use of index registers; and the
use of three new commands--LOD, TRX, LDX.

You will iearn to transfer by use of a symbolic
location word plus address arithmetic. For instance:
TRU TOTAL +2, which would say to the computer to go to
the second step after the symbolic location word TOTAL.
The other method you will learn is the use of the
asterisk (*) for transferring. This method also uses
address arithmetic. For example: TRU *-1, which says
to transfer from this step (TRU *-1) back one step, or
go to the step just before the present one.

In this section you will learn to use index registers
as places for temporary storage of numbers. The index
registers are used in the test for completion and in
address modification to save the original address for use
later.

The new commands--LOD, TRX, LDX--are simply methods
to shorten a program. They can, as you will find later,
do several instructions at the same time. The LOD com-
mand will load numbers into index registers. The TRX
command will modify two index registers at the same time,
increasing the one used for address modification and
decreasing the one used in the completion test. The
LDX command allows you to load two index registers at
the same time, but it has one limitation. You must know
the exact number of "loops'" or "passes'" needed for a
computation before using LDX.

PART ONE: TRANSFER TECHNIQUES

R b e 54 o ML B T T

gy —»-«rv—w-v,-—qmr-.uvtv—,w., i

e AR T 1 T YAV BB O T TR AT AR R T A RS OB N BRI VRN A e s

v
- 102 - i

The Asterisk with Address Arithmetic

Let's say you have a program whose last three in-
structions are:
TRZ STOP
TRU REPEAT
STOP HLT

The HLT command is how many instructions ahead of the
TRZ STOP instruction?

Symbolic location STOP can be eliminated completely
by substituting an asterisk with a +2, to indicate the
instruction two places ahead. The program would then
look like this:

TRZ *
TRU REPEAT
HLT

The asterisk is used to refer to an entire instruction
and not just an address.

The asterisk with address arithmetic is also useful in
address modification. Modify COST in the sequence below
to COST+1, assuming there is a 1 in location ONE.

CLA*
ADD ONE

STR *___
CLA COST

Notice that the numbers change as the program steps
forward, from +3 to +1.

(Rewrite the following program in your head, using
the asterisk. Instructions that should be changed are
numbered. Answers are on the opposite margin.

REPEAT CLA COST
ADD VALUE
r STR VALUE
‘ CLA COUNT
SUB ONE
STR COUNT
1. TRZ STOP
2. CLA REPEAT
CLA THIS ADD ONE
3. STR REPEAT
4. TRU REPEAT
STOP HLT

0 R SIS TN T NGB By OO BT MSAADINGAS 5 BN A omalaT 504 i o s

s

ed Sl e S et S Sk 9 N B N E N N S0 B0 aE e

+1

v
- 103 -

N M S 7 S L L L L L L L L L
‘ Problem 1.1. There are two kinds of vacuum tubes in an
inventory, inventory, 6SN7 tubes and 6AQ6 tubes. Write a program .

. to compute the total value of both kinds, placing the
. answer in TOTAL. The number of 6SN7 tubes is in STOCK1. .
. The number of 6AQ6 tubes is in STOCK2. Temporary stor- .
age will be TEMP and TEMP+l. The cost of a 6SN7 is in ‘

. VALUE and the cost of a 6AQ6 is in VALUE+l. Store the
. total worth of 6SN7 tubes in VALSTK and the total worth '
~of 6AQ6 tubes in VALSTK+l. Assume at least one tube of . 2
each type. There is a 1 in KON. If you have t to, use .

. COMPUT as symbolic location for the first looping pro-
. gram, NEXT for the second, and SUM to get the total of :

both. Use asterisks wherever possible.
P Pl 27 7 2l el Lol Ll

g 7 7 27 2 2 2 £ 2°f 2 2 £ JZ < 2 g 27 27 7 7 7
Problem 1.2. This problem is like the preceding one,

~except that the number of each type of tube is not known.
.Instead, each tube has information on its type stored
relative to TUBE. Each location in the series has either
alor a 0--a 1l to indicate a 6SN7 tube, and a 0 to mean
.a 6AQ6 tube. The total number of all tubes is in STOCK,
which can be saved in TEMP. Assume at least one tube.
Use NEXT for sorting, LAST for the test for completion,
and COMPUT for computation outside the loop. Use aster-
isks wherever possible. VALSTK and VALSTK+l1l will not be
'needed. You can add VALUE into TOTAL in one subroutine

and VALUE+1 into TOTAL in another.
V' 77 P 7 P 2P Ll Ll Ll Ll Ll LLL L

A

+3

’ 7 7 7 7 7 £ 7 7

Symbolic Locations with Address Arithmetic

Tracing out a program that uses asterisks becomes a
little difficult, especially for someone else, when
the skips are much greater than 9 instructions. 1In
these situations, you are better off using a symbolic
location with address arithmetic.

TRU DONE+2 means, 'Transfer to the instruction two
steps after symbolic location DONE."

What instruction would be performed after TRU OK-1
below?
CLA THIS dv . XS
OK STR THERE a :
TRU OK-1

4 7 A ARG it G TN 4 RPN T2 AL O P, BRI LN BTN Tyt A T NG 7w

v ‘ }
= A0k -

 S——

The placement of the symbolic locations is entirely
up to you. The two routines below say exactly the 8
same thing; both modify COST. |

CLA MODIFY CLA MODIFY+2 i

ADD ONE MODIFY ADD ONE | {1

STR MODIFY STR MODIFY+2 L

MODIFY CLA COST CLA COST ;
{

Problem Problem 1.3. The base electronics warehouse wants a
program that will count the number of vacuum tubes
that have been requested by each of the two requisi-
tioning units on base, and the number that have not
been requested by any. The words are in this order
in memory for each tube: part number, date received,
.shipment number, manufacturer, date used, and request-
ing unit. These records start at location INFO. NUM
.contains the number of vacuum tubes in the warehouse.
.Units are designated by number: 1 for base head-
.quarters (count to be stored in HDQTS), 2 for mainte-
nance section (to be stored in MS), and 3 for those
.not requested by any unit (to be stored in NOTREQ).
.Do not destroy any of the record in memory. Use COUNT
for storage of NUM. K1 = 1, K2 = 2, and K6 = 6. Use
.both TRZ and TRN for sorting. Write the program with
symbolic locations and address arithmetic, using the
‘partial program below as a guide:

(cont.)

A

HDQTOT

MASEC

INFO+5

STOP

e £ 7 Z 2 27 7 27 7 7 7 4
g1

-

CLA COUNT

e £ £ <7 £ 27 7 27 7 ¢ ¢ 7 /7 27 27 7 7 27 27 7 7 7 7 7 9 7 7 7 7 7 g 4

(""’

7 7 7 7 ¢ 27 £ 7 27 4 7 27 g & 7 7 7 7 7 7\

P S P W T VO T B VT i S O T e T

Iv
- 105 -

Use as few symbolic locations as possible in the
following problems by (1) using the * for transfer of
9 steps or less, and (2) address arithmetic relative
to a symbolic location for transfers of more steps.

\Z £ £ £ 2 £ 2 2 £ & 27 27 2 7 2 2 7 2 2 7 7
Problem 1.4. There is information about the ages and

.ranks of enlisted men and officers starting at loca-
tion INFO, in the following three-word format: enlisted
man or officer, age, and rank. The first word is coded
with a + to indicate an officer, or a - to indicate an

‘enlisted personnel. Count the number of enlisted per-
sonnel in location TOTEM. The total number of personnel
is in location MEN. A constant of 1 is in K1 and a con-
stant of 3 is in K3. Use EM as symbolic location for
counting. Use DATA to modify the record to be processed.

(The + and - signs can be considered the same as posi-

tive and n ative numbers.)
"' ' ’ JZ 2 2 JZ JZ & 2 2 & £ 2 JZ £ J

A L S T S S G .

A

’ 2 2 2 2 2 2 JZ £ £ 2 2 £ & 2 2 2 & 2 JZ g 7
.Problem 1.5. Headquarters wants to know the number of

second lieutenants eligible for promotion to First
Lieutenant at the end of this month. Eighteen months
.active duty in grade are required for promotion from
Second Lieutenant to First Lieutenant. The data for
.officets are stored in 5-word records as follows:. rank,
serial number, months in grade on active duty, MOS, and
.assigned unit. Ranks for officers are coded by 1 for
Second Lieutenant, 2 for First Lieutenant, and so on.
The records are kept relative to RATING. PERSON contains
the number of personnel. This number is not to be
destroyed. Store it temporarily in HOLD. Assume at
least one officer. An 18 is in TIME, a 1 is in KON, and
a S is in K5. Store the number of eligible officers in
UP. Use RANK to modify addresses referring to rank,
.LAST for the completion test, and SECOND for instructions
referring to time in grade if the officer is a Second

Lieutenant.
N\’ /7 7 7 7 7 7 7 Z Z £ 2 £ £ £ £ £ £ 7 2 7 J

-
’ g 27 2 7 7 7 2 27 27 £ 2

S

2 Ak 16

A i W) Wi P

B R Epm—————

oo s bl s el e

T RNy v o I TE NS TP = 7 S

TRy Yy

TRTOT

T

'

TR TR v G, bm’? -
he 7

TR2

v
- 106 -

oy F Iy FF I > I I
Problem 1.6. As a programmer in the logistical account-

. ing office of Base Headquarters, you are given an assign~
ment to write a program to provide the Management Branch
with a Statistical Summary Report covering their weekly

‘activities, which consist of keeping Memos for the Record,

Requisitions, Advances, etc. The program is to obtain

separate totals for the amount of each kind of activity

per week. These amounts will vary from week to week.

The information is stored relative to memory location

STAT. When the end of an activity has been reached,

there will be simply a negative, or minus sign, in the

memory location addressed. This will mean that the pre-

vious accumulated amcunt represents a total for an activity.

Store all totals relative to TOT. The number of totals to

be produced for this week's report is in COUNT. There may

not be any totals this week. A constant of 1 is in KI1.

Use NEXTOT and AGAIN to modify addresses.

’ 7 7 7 7 7 7

’ 7 7 7 27 7 27 4
F Z 7 7 7 7

G ottt atetribatentartatratate |

~Prob1em 1.7. An insurance company's policy records of

50 men are stored in consecutive 3-word groups, starting

at location RECORD. Each man's record contains the fol-

lowing items: policy number, total annual premium, and
.premiums paid to date this year. Form a fourth record

word for each man and relocate the 50 4-word records

relative to UPDATE. The fourth word is to contain the

amount of premium remaining to be paid. The number 50

is in COMPY, which should be stored temporarily in HOLD.

Use all three constants: Kl = 1, K3 = 3, and K4 = 4,
~0LD is the symbolic location for modifying addresses in
expanding and relocating the record. After completing
the above, write a second program to compute the total
amount to be collected for the remainder of the year and
store the amount in TOTAL. Remember that the &4-word
records are now stored relative to UPDATE. Use NUM as
.temporary storage for COMPY, and SUM for address modi-

fication in obtaining the total remaining to be collected.

.Only two constants are required: K1 and K4.
NP P FEPRP=FF = F PP I N

7 7 7 7 2 & 7 7

A A
' £ 7 £ 7

arin

AR L L U e o e

o)

o S ey e N BN TN e

$
]

-
.

IV
- 107 -

PART TWO: INDEX REGISTERS

Introduction to Indexing

The special temporary locations used for this new
type of address modification are called index registers.
The procedure for using them is called indexing. Only
one new type of instruction is involved in indexing.

The basic form of that instruction is shown below:

ADD DATA,IR2

The new parts are the comma after DATA (,) and the
address for the index register number (IR2). All that
remains is to explain what the instruction does and
where to use it.

Say that you are adding all information stored rela-
tive to DATA (DATA, DATA+l, etc.). You have added the
contents of DATA on the first pass and want to add the
contents of DATA+1l on the next pass. If there is the
number 1 located in IR2, the following instruction will
do it:

ADD DATA,

RN R R

e S e S A

- 108 -

In effect, ADD DATA,IR2 says to copy DATA into a

special temporary location (IR2) and there add to it

CLA, STR, ADD, the contents of that location (IR2). As IR2 contains
SUB --- TRZ, the number 1, DATA+l results. Thus, the complete
TRN, TRU instruction says the same thing as: ADD DATA+l.

g g 7 F I g g g I g g L & L L £ £ &£ &
‘;roblen 2.1. Write an instruction that says the sane~

thing as SUB COST+1l. Index Register 3 contains the

number 1.
’ 2 2 2 2L 2 2 2 2 2 2 2 & 2 2L L L 2 2 2

o2 2 2 222222 22 2 2 272 2 7 7 7 -
.Problen 2.2. Write an instruction that says the same
.thing as STR BOOK+2. Index Register 1 contains the .

number 2.
’ 2 2 2 2 2 2 2 2 2 2 2 L 2 L £ £ &L 2 O

Why the comma?

It is needed to separate two address fields, the
one that we have been using all along and a new one
that is used in indexing.

Up to now, you have been working with symbolic loca-
tion fields, operational codes (the commands), and a
single address field. For example:

Symbolic Location Op. Code Address Field

STR DATA+4 REPEAT ADD COST

The address field you have been using is called the
First Address Field. All addresses that we have used
previously appeared in the First Address Field.

Indexing uses another address field, known as the
Second Address Field. And, thus, the comma. Anytime
more then one address field is used, a comma is re-
quired to keep them separated. Hence the comma:

ADD DATA,IR2

What is the address field for DATA in the instruction
above? 1IR2?

TSR T

v

- 109 -

Any command (operational code) used up to now, except
HLT, can be used with indexing. These commands, by way
of review, are: - . . , and the
transfer commands s - . Since these com-
mands--and only these commands--are used in indexing,
they are called indexable commands.

Which of the following are not indexable commands?

TRU STR HLT TRZ
ADD SUB TRN CLA

For completeness, you should know that index registers
do not have a plus or minus sign, as the accumulator
and standard memory locations do. Also, if you haven't
already guessed, they can modify only when written in
the Second Field. Then they change what appears beside
them in the First Address Field. In other words, you
would never write anything like IR3,COST. An instruction
like that would always be written the other way, as
COST,IR3 -- with the index register always appearing in
the Second Address Field.

Now let's see what type of instructions are used and
what they do.

STR DATA,IR2

The instruction copies DATA into a temporary location
(IR2) and there adds the contents of Index Register 2.
Then whatever is in the accumulator is stored (STR) at
the modified address. If IR2 contains the number 4, for
example, the instruction indicates .

To say the same thing in more precise language, the
first address (DATA) is increased by the amount in the
second address (IR2). The number in the accumulator
is then stored (STR) in the modified first address.

All of this modification takes place at a temporary loca-
tion so that the original address (DATA) is not destroyed.

TRU TUBE,IR4

In the instruction, TRU is an indexable command.
TUBE is written in the First Address Field and IR4 in
the Second Address Field. The entire instruction says
to branch unconditionally (TRU) to the location indicated
by the sum of the First and Second Address Fields, but
not to modify or change the first address TUBE in any way.

First,
Second

S T B

T P ———

D S —

. i

K e

e N T ML P] T

T r—

ADD COST,IR1

Iv
- 110 -

Now let's take the block of instructions which
modify an address and see how we use the index register
to simplify the job of modification. As you will
remember, we modified an address by using the block of
four instructions below (using REPEAT as the symbolic
location and COST as the address):

CLA REPEAT

—

This procedure added a one to the address, giving
COST+1 on the next pass through the program. However,
by the use of index register we save the address COST
by using the temporary storage: the index register.

The first step is to zero the index register that
we are going to use. This is done easily enough by:

CLA ZRO
STR IR1

Now suppose we want to add the contents of COST,
COST+1, COST+2, etc., into TOTAL.

The IRl already has a zero. So to ADD COST and to
modify our address to pick up a new number each pass
we use the following instructionms:

REPEAT ADD COST,IR1
STR TOTAL

Since IRl contains a zero, the instruction says to
CLA COST+0, or simply CLA COST. Now we want to modify
COST so that on the next pass the computer will pick
up COST+1l. This is done by the block of instructions
that follow:

CLA IRl
ADD ONE
STR IR1
TRU REPEAT

Since the _ndex register (IRl) had a zero, our add-
ing one to it gives it a total of one, so that when we
transfer (TRU) back through (REPEAT ADD COST,IR1l) we
have added COST to the contents of IRl (a "1"), giving
us COST+1; the next time COST+2, and so on each pass.
This will bring up the contents of COST, COST+1, etc.,
each time, leaving the original location intact.

OB Ted il G T BN T . L NRR L y A A B VTP Nt 1 s S

e O ST T S TAL Rl Y

CLA
ADD

STR

IR1
ONE
IR1

R et e Lo

e -

IRTaTe e

& IS ARG ,’q

u—qmmmmmnm—-—m—-—-—-i

TR

A N T i o

v

- 111 -

F Iy Iy r Iy I II I I I
Problem 2.3. You have just written REPEAT ADD PRICE,IR1.
Write the three address modification instructions that .

‘will change PRICE to PRICE+l. There is a 1 in location ‘

ONE.
> 7 7 r >y >y r I I I I I

Tagging ADD ORE
STR REPEAT
When an index register is stuck on after a first ad- TRU REPEAT
dress (CLA COST,IR1l), as IRl here, it is often called a
tag. With index registers 'tagged" on behind, as they
are, the whole process of indexing is often referred to

as tagging.

e ik g i,

Now we are ready to use indexing ia a complete program.
Find the total of the numbers in COS"' through COST+9,
placing it in TOTAL. COUNT contains a 10.

An explanation of the new program follows on the next
page. Try to understand it on your own before turning to
the explanation.

01d Program New Program
CLA ZRO CLA ZRO
STR IRl
REPEAT ADD COST REPEAT
STR TOTAL STR TOTAL
CLA COUNT CLA COUNT
SUB ONE SUB ONE
STR COUNT STR COUNT
TRZ STOP TRZ STOP
CLA REPEAT
ADD ONE
STR REPEAT
CLA TOTAL CLA TOTAL
TRU REPEAT TRU REPEAT
STOP HLT STOP HLT

!
!
i

T

D i i

- 112 -

Now, check your understanding of the new program
with the following explanation:

CLA ZRO First we zero IRl so that

STR IR1 the first address of any in-
struction '"tagged" by the
index register will not be
increased on the first pass
through the loop.

REPEAT ADD COST,IR1 Since IR1 contains a zero, the
instruction says to CLA COSTH0,
or simply CLA COST, Said a
little differently, the first
address is tagged with a zero,

CLA COUNT This is the old familiar test
SUB ONE for completion,

STR COUNT

TRZ STOP

CLA IRl Instead of modifying the first
ADD ONE address in the processing in-
STR IR1 struction (CLA COST,IRl), we

add a 1 to the index register
each time. This keeps the first
address COST from being changed,

CLA TOTAL Pick up the running sub-total
TRU REPEAT and branch back to the top of the
loop.
STOP HLT

Check this over a few times. Practice problems ap-
pear on the next few pages.

Indexing and the Test for Completion

Index registers can also be used as temporary storage
locations in the test for completion., The number to

be used in the loop counter is copied into the index
register as part of program preparation, just as you
have done before.

P

i,

v

——a—

s

e, i

IV
- 113 -

However, rather than check for zero items in program
preparation, we will add the check down in the test for
completion instead. This is a little different from
what you are used to, so examine the new program closely.
It will be useful in more advanced program writing.

NPT TR Aty

Bl Bl e e Geed B B B B G G ey ey B e e e ey
g
g
t=1

‘

0ld Program New Program
CLA COUNT CLA COUNT
: STR TEMP [T 1R2]
CLA ZRO CLA ZRO
STR IRl
a AGAIN ADD TUBE AGAIN ADD TUBE,IRL
[STR TOTVAL STR TOTVAL
f CLA COUNT CLA IR2
- SUB ONE SUB ONE
STR COUNT STR IR2
TRZ STOP TRZ STOP
CLA AGAIN CLA IR1
ADD ONE
STR AGAIN STR IR1
CLA TOTVAL CLA TOTVAL
TRU AGAIN TRU AGAIN
STOP HLT STOP HLT

Now turn to the next page for a desk check of the
complete program.

[X8

- 124 -

DESK CHECK OF COMPLETE PROGRAM

% Assume that COUNT contains the number 2.
CLA COUNT Since COUNT contains a 2, stor-
STR IR2 ing it in IR2 gives IR2 a 2 also. 4
CLA ZRO Zero IR1,
STR IRl "

AGAIN ADD TUBE,IR1 Add the cost of the first tube
STR TOTVAL (TUBE+0). Store it in TOTVAL,
making TOTVAL equal to TUBE.

VI VT ST

CLA IR2 Test IR2 for a zero. Since
TRZ STOP it has a 2, the program con-

E tinues on to the next step.

f SUB ONE Decrease the counter (IR2) by

1 STR IR2 one for this pass. IR2 now

i TRZ STOP equals 1. Test for zero again.

Since IR2 contains a 1, the pro-
f gram continues on to the next

instruction.
E | CLA IR1 Add a 1 to IRl, changing it
] ADD ONE from zero to 1.
STR IR1
CLA TOTVAL Pick up the running subtotal,
g TRU AGAIN TOTVAL, and go back for another
loop.

AGAIN ADD TUBE,IR1 As we begin the loop for the
second time, the accumulator has
| the contents of TOTVAL (which is
equal to TUBE on the first pass).
Since IRl has been changed from
zero to 1, TUBE+l is now added in.

i STR TOTVAL TOTVAL now equals the contents of
TUBE plus TUBE+l.

CLA IR2 Since IR2 now contains a 1, the
TRZ STOP TRZ command does not result in a
SUB ONE transfer. Subtracting 1, however,
STR IR2 now reduces IR2 to zero, so that
TRZ STOP the TRZ STOP instruction now halts
the program.

'%g; STOP HLT
2 .

i

|

T —

|
1
b *
|
)

..ﬁ\.f.ﬂxm 3 4

=t e e e e e PN G BN e Sem A e B T B A &

Iv
- 115 -

"""""""""""
Problem 2.4. A soap company records the sales made by

each salesman, stored relative to SALES. That is, the .
.number of sales made by the first salesman is in SALES, ‘
the number made by the second is in SALES+l, and so.on. .
Write a program to compute the total sales of all sales- ‘
men, placing the answer in TOTAL. The company employs
16 salesmen. There is a 16 in MEN, which can be saved .
by storing it temporarily in TEMP. There is a 1 in
.location ONE. Use SELL as symbolic location for looping.
For address modification, index register #2 (IR2) is

available.
(V= -y F Py PPy I N

’ Z JZ 7

"""""""""""
Problem 2.5. A large music store sells records of many .

different types, such as classical, western, folk, and
so on. The number of different types is in TYPES. The .
‘sales of each type record is stored in sequence relative ‘
to RECORD. Write a program to compute the total number
.of records sold of all types, placing the answer in SALES..
Use POP as storage for the number of types (for the loop
counter) and HIT as the symbolic location for looping. .
There is a 1 in location Kl. Use index register #1 (IR1)

for address modification.
\ L L LA

| efrtoiertrafarsletantentrtrrtatortiut ottt
Problem 2.6. The pay record for each man in a business

firm has information in the following order of words:
.badge number, shift worked, regular pay, and overtime

pay. These words are stored relative to RECORD. The

total number of employees is in HELP. Compute the total
.regular pay for all employees, placing the amount in

REGPAY. There is a 1 in CON1l and a 4 in CON4. Use

IR4 for temporary storage and TOTAL as symbolic loca-
.tion for looping. For address modification, use index

register #3 (IR3).
[N P P PGP PRPEPEPE PP PEFEPE PP TP P PPN

F @ 7 7 7 7 7 7

Iv :
- 116 -

PART THREE: THE LOD COMMAND ; a

LOD VALUE, ,IR4

Third) 1
]
i
2
Now you will learn the use of the new command LOD.
which, with one instruction, permits the loading of an
index register. The instruction is of the following
4,4 form: ;
. LOD COST,,IR2 ;
\
The new parts are the command itself (LOD) and the
(two commas (,,).
. To understand what LOD command does and how it works, 3
5 we will have to expand the address field. In addition i
3 | to the first and second fields, there is a third field. i
First Second Third 5 i
- LOD COST o IR2

el b b el e B e e e e B By

;}‘
4
i

By By G G e e

v

- 117 -

The LOD command can be used to load an index register.
When it is used this way, the location containing the
number to be loaded is written in the first field, and
the index register in the third field.

Since the Second Address Field has not been used
at all, the omission is indicated by the double comma.
(1f the fields were side by side, only one comma would
be needed.)

The LOD command copies the contents of the memory
location (COST) into an index register (IR2).

Write an instruction to copy the contents of VALUE
into IR4: . IR4 is in the
Address Field. Memory locations such as COST and
VALUE are never written in the third field.

The LOD command works like a STR command. That is,
the number that is copied, the number in the location
indicated by the first address, is not changed or
destroyed. But anything in the index register speci-
fied by the third address is destroyed and replaced by
the number from the first address.

Say that HOUSE contains the number 2 and IR4 contains
a zero. After the instruction LOD HOUSE,,IR4 -- HOUSE
will contain a _ , because that number is merely
copied, not destroyed. But IR4 will now contain a
rather than a zero.

Try this: AUTO contains a 4 and IR2 a 6. What will
be in AUTO and IR2 after the instruction LOD AUTO,,IR2?

The LOD command is an indexable command because it
involves index registers in the modification of addresses.
An example of how it is used is shown below.

Without the LOD Command With the LOD Command
CLA COUNT LOD COUNT,,IR2
STR IR2

Without the LOD command, two instructions are required
to copy the contents of COUNT into IR2. With the LOD
command, only one instruction is required.

TR e v Pt g A

AR R

g S35

S AN PR g

>.1«&“&“&»&&“MMWN‘-Mﬂ‘-%‘—»ﬂm’&~W&-&:MMWP iy (Pl lecutniainite o Yo i e G .

-

Iv
- 118 -

The LOD command can also be used to zero index
registers. What would the instruction be if you
wanted to zero (ZRO) IR3 with the LOD command?

Note that we could not zero a memory location
this way because memory locations cannot be written
in the third field. For example, you could not write
an instruction such as LOD ZRO,,TOTAL.

For present purposes, only index registers can
be addressed in the third field. Try a few instruc-
tions for practice, using the LOD command.

‘roblem 3.1. Place a zero in IR1l.

"""""""'A

"""""""""

Problem 3.2. Copy the contents of MAN into IR2. ~

\ A S A A

& 2 ¢ &g g QO g @ g g g g g g P g
Problem 3.3. Replace the number in IR3 with the .

number in COUNT.

b"""""”"""

Now we will rewrite some program preparation in-
structions using the LOD command:

0ld Way New Way

CLA ZRO LOD ZRO,,IR1
STR IRl LOD COUNT, ,IR2
CLA COUNT CLA ZRO

STR IR2

With the LOD command we load index registers with-
out disturbing the contents of the accumulator. So
why is CLA ZRO the last instruction under the 'mnew way"?
If we use the LOD command to load IRl and IR2, we
still need to zero the accumulator before the program
carries out the next instruction in sequence.

R I LA P S8 A G S A Rl T < I SN . at e

IV

Using the new command, LOD, we need a new address
field, the third. There are two commas in an instruction
using LOD to show the omission of the second field.

I
;l; - 119 -
l

LOD ZRO, ,IR3

The LOD command, such as:

Lol

LOD COST,,IR2
says to load the contents of the first address, COST,
into the third address, IR2. The use of LOD is a
shorter, more efficient way of programming.

Py

L 2L L Ll L’ Ll Ll 22l 222 2 2 L
Problem 3.4. A publishing company maintains a 3-word

record on each of its books, stored relative to BOOK. .
‘The words are: date of publication, retail price, ~
and number of sales. The number of books is in TOTAL. .
A

=4

Using IRl for looping and IR2 for address modification,
‘write only the program preparation for this problem,

using the LOD command.
7 7 Z 7 7 7 7 7 7 7 27 7 27 & 2 27 27 7 2 4

\-za-n4-n4-n-n-ru-ri-z4-aa-n4-n4-u-a-u-a-u-zann-m-rz-z'
Problem 3.5. You have 10 items stored relative to .

Ly e

‘TIE. The total number of items (10) is in TEN. Write
a program to add TIE through TIE+9, placing the ans-
wer in ANSWER. Use IRl for temporary storage in the
test for completion, and IR3 for address modification.
‘Use CRAVAT as symbolic location for looping. Location
ONE contains a 1.
b"’."""”""""
’ 7 7 £ 7 7 7 £ 2 7 7/ g 27 ¢ 27 7 7 7 7 7
Problem 3.6. Each vacuum tube in stock has informa-
tion in its record in the following order of words: . 1
brand name, date last used, place last used, and]
hours used. These words are stored relative to TUBE.
The total number of tubes in stock is in ITEMS. Use
IR1 as temporary storage for this total. Write a
.program to compute the total number of hours all
tubes have been used and store this value in HOURS.
There is a constant of 1 in ONE and a 4 in FOUR.
Use IR2 for address modification and REPEAT as sym-

bolic location for 10021n .
\F= Ty 7 7 7 g W P P .

L"""

e e e e e T T T R

M“mmmx‘hhrﬁ e

- 120 -

PART FOUR: THE TRX COMMAND

Introduction to TRX

The TRX command acts on the contents of an index
register instead of on the contents of the accumulator.
TRX stands for TRansfer on indeX. That is, the program |
will transfer depending on what is in an index register 1
‘ rather than what is in the accumulator. Note that this ()
command does not disturb the accumulator. TRX is a
conditional transfer command. So you must remember
that a conditional transfer command will first check to
see if a specified condition exists before the program
transfers.

The TRX command uses the Op Code and all three address 'fé
fields. The command also links, or pairs, successive i
index registers. 3

b, fa e

S T A e B A R SR GBI 'W‘»«u»gy, AL NG e G NS € Sdim npcAd

SR
A

e
T

-3
g
3
8
&
&

i
1
I
i
i
|
I
i
i
§
i
i
i

S 8 N o m

v
- 121 -

Using the TRX Command

The basic form of a TRX instruction is as follows:
TRX *-1,IR2,1

First you will learn what such an instruction does.
Then we will fit it into a program to show where and
how it is used.

When the computer reaches a TRX instruction, such
as the one shown above, the following things happen:

First, the next numbered index register following
the one listed in the second field is called up. This
is the paired index register. Since IR2 appears in
the instruction, the next numbered index register
would be IR3.

Remember, the TRX command pairs index registers;
always the IR given in the instruction is paired with
the next numbered IR: IRl with IR2, IR2 with IR3,
IR3 with IR4, and IR4 with . Also, for present
purposes, we are only using four index registers; so
the highest, IR4, when listed in the Second Address
Field, is paired with the lowest, IR1.

Second, after the next numbered, or paired, index
register is addressed (IR3 in the example), it is
tested for completion; that is, it is tested for zero.
Next, it is decreased by one and then retested for
zero. Remember, in our example the index register
tested would be IR3.

Finally, if on the second test for zero the paired
IR is not zero, the number in the Third Address Field
(in our example a 1) is added to the contents of the
IR in the Second Address Field (IR2) and the problem
transfers to the address given in the first address
(*-1). So in our example, the one (in the third field)
is added to the IR2 (in the second field) and the pro-
gram transfers to the preceding instruction, *-1,
shown in the first field.

If either test for zero finds a zero in the paired
index register, the program does not transfer, but
continues on to the next instruction.

- 122 -

The rest of this section merely gives an example
for the material presented in this part.

To desk check a complete program, let us assume
location COUNT contains the number 3 and locations ;
VALUE, VALUE+1, and VALUE+2 contain $200, $300, and {

$400, respectively. So our program is:)

LOD COUNT, ,IR2 (IR2, the loop counter) ;
LOD ZRO,,IR1 (IR1l, the address modifier) 1 18
CLA ZRO Y 1
ADD VALUE,IR1

TRX *-1,IR1,1

STR VALSTK

HLT

Desk check:

LOD COUNT,,IR2 The LOD COUNT,,IR2 instruction will

LOD ZRO,,IR1 copy the number 3 from COUNT into IR2.

CLA ZRO LOD ZRO,,IR1 will zero IR1l. CLA ZRO

ADD VALUE,IR1 will zero the accumulator. When the
ADD VALUE,IR1l instruction is carried /
out, the address VALUE is augmented by 'S
the contents of IRl. Because IRl is

] zero, the contents of location VALUE

is added to the accumulator, giving

‘ a sum of $200--the accumulator was zero

y before VALUE was added to it.

TRX *-1,IR1,1 The program now steps to the next in-
struction, TRX *-1,IR1,1. When this
instruction is carried out, IRl auto-
matically is paired with IR2; then IR2
is tested for zero. IR2 contains the

‘ number 3. Since it is not zero, it is
decreased by one (for this pass through

the program), leaving a remainder of 2.

IR2 is again tested for zero and because

3 it is not zero the number in the third

: address (a 1) is added to IR1l. IRl now

contains a 1.

The TRX command now causes the program F
to transfer to the location specified j
in the first address, *-1. Remember
that the asterisk (*) can be read as
"this location..." So the program
transfers to the preceding instruction,
ADD VALUE,IR1.

v
- 123 ~

Notice that the accumulator was not
affected while the TRX instruction was
being carried out. Thus, it still con-
tains $200 (the contents of VALUE) from
our first computational pass.

Next, the program will again carry out
the ADD VALUE,IR1l instruction. This time
when the first address is augmented by
the contents of IR1l, which is a 1, the
actual address of the instruction is
VALUE+1l. Thus, the contents of VALUE+1l
($300) is added to the accumulator, which
already contains $200, giving a sum of
$500--the sum of the contents of loca-
tions VALUE and VALUE+l.

Now the TRX instruction is carried out

a second time. (Note that the TRX com-
mand will not disturb the accumulator.)
The first test for zero finds a 2 in IR2,
so IR2 is decreased by one, leaving a 1

in IR2. Again, IR2 is tested for zero;
because it is not zero, the number in the
third address is added to IR1. Now IRl
contains a 2. The program again transfers
to *-1, the address specified in the first
field. For the third time the instruction
ADD VALUE,IR1 is augmented by the contents
of IRl--this time a 2. Thus, the actual
address of the ADD instruction is VALUE+2.
The $400 from location VALUE+2 is added

to the contents of the accumulator, which
is already $500. Thus, the accumulator
now holds $900--the sum of VALUE, VALUE+1,
and VALUE+2.

Again, the TRX instruction is carried out.
This time on the first test for zero, IR2
contains a 1. Because it is not zero, it
is decreased by one, then retested for
zero. On the second test for zero, IRl
contains a zero, so the program continues
in sequence to the STR VALSTK instruction.
This instruction puts the contents of the
accumulator ($900) into location VALSTK.
The program steps to the HLT command and
the computer stops.

e —-w«—m:-—vvww Do Sk o L)

Iv

i oo .

- 124 - ‘ ;

Our program works when we assume location COUNT
contains a 3; therefore, we know it will work for
any number of items in stock.

Let's compare our stock program written two _
ways: .
Program Using Only LOD Program Using LOD
Command and TRX Commands
LOD COUNT, ,IR2 LOD COUNT, ,IR2
LOD ZRO,,IR1 LOD ZRO,,IR1
CLA ZRO CLA ZRO :
COMPUT ADD VALUE,IR1 ADD VALUE,IR1 i
STR VALSTK TRX #*-1,IR1,1]
CLA IR2 STR VALSTK L
TRZ STOP HLT
SUB K1
STR IR2
TRZ STOP ‘
CLA IR1 . E
ADD K1 _ | a
; STR IRl - 13
g CLA VALSTK 1
4 TRU COMPUT 1
STOP HLT
You can see that by using the TRX command you

can save writing instructions in this simple
program. This saving alone makes the TRX command
extremely valuable in program writing. Although
the command is somewhat complex, it greatly reduces
the labor involved in constructing program loops

‘ and, because it takes fewer instructions, it will
reduce the chances for errors in a program.

Eomad 2k

el s

i
i
i
[
i
[

.? et |

v
- 125 -

Because the TRX command is complex, let's review it
again--this time using a flow chart to show its sequence
of operation:

Start of

Instruction
The IR specified by]
the second address k
is paired with the
next successive IR,
which is called the %

paired IR. The first
<L s paized :) oo The paired IR is

decision is, "Is the

2::::g IR equal to IR = 0? equal to zero, so

the program goes to

the next instruction

No

in sequence.
The paired IR is Reduce ?
not zero; reduce paired IR
it by 1. by 1
Again, the decision Is paired Go to next
is: "Is the paired IR = 0? Yes instruction | The paired
IR equal to zero?" |in sequence | IR is equal

to zero, so

the program

No goes to the
' next instruc-
tion in se-

quence.

The paired IR is Increase IR
not zero, so the IR given, by the
specified by the number in the
second address is third address

increased by the
number in the third
address.

Transfer to
location
specified by
the third address

-

Av-ww——v._Av_ — e
. " ~
4

- 126 -

Problems

N O 7 7 7 B 7 TV L L L L L L L
.Problem 4.1. A manufacturer records the number of

sales made by each salesman, storing the informa-

tion relative to PUSH. He wants to know the total
.sales made. Store the answer in BONUS. MEN con- .

tains the number of salesmen. Write the program
.using the TRX command. Use IRl for address modi- .

fication and IR2 for the cogz}gtion test.
\ PP PR PP = PP P = F Gy = Y Y)

7 2 2 222222 220222202l 20 O
Problem 4.2. A clinic records the number of ‘1

house calls made by each of its doctors, storing

the information relative to DOCTOR. MEDICS contains

the number of doctors working out of the clinic.
.Write a program to compute the total number of

house calls for the past month, storing the answer

in CALLS. Use TRX. Use IR2 and IR3 for address

modification and for the completion test,

respectively.
F Iy I I T I TN

£ £ 27 2 £ 4

N A M7 B 7 7 M L L L L L M B L
.Problem 4.3. An airline company stores the number

of passengers on each of its flights. They store
the number of in-passengers relative to IN and the
number of out-passengers relative to OUT. Assum-
ing the number of flights arriving each day is in
ARRIVE and the number leaving each day is in LEAVE,
compute the total number of passengers carried by
.the company's planes the past month, putting the
answer in TOTAL. IRl and IR2 are available for
.address modification and the completion test, re-
spectively, in processing the arrivals. IR3 and
IR4 are available for address modification and the
completion test, respectively, for processing

departures.
7> > >y r I I T P

l""

s,

BT TR e S

Iv
--127 -

PART FIVE: THE LDX COMMAND

Now let's see how LDX works. Suppose we have the
following five factors that make up one man's gross
pay: regular pay, proficiency pay, overseas pay, haz-
ardous duty pay, and clothing allowance. The amount
he earns for each factor is stored in memory relative
to the location PAY, Using address arithmetic, put
the total in location GROSS.

Sbl Ll Ny ol

- 128 -

To solve the problem, we will first load two index
registers with 5 and 0, by using the LDX command.
Because there are only 5 factors, we know that our
loop counter will be 5. So, using the pair of index
registers IR3 and IR4, our first instruction is:

Op Code First Second Third
LDX 5 s IR3 ® 0

The LDX command, like the TRX command, automatically
pairs two successive index registers. Thus, the IR3
given in the second address is paired with IR4, the
next highest IR.

When the program encounters the instruction:
LDX 5,IR3,0

the number in the third address is loadad into the
index register specified in the second address (the
address modifier), and the number in the first address
is loaded into the paired index register (the loop
counter). Thus, the O in the third address is loaded
into IR3, and the 5 in the first address is loaded into
IR4 (the paired index register).

Now that we have loaded the index registers, we must
zero the accumulator.

What is the instruction for this?

Next, we add the first factor of the man's pay. Be-
cause this is the ADD instruction we will later modify
in order to loop back, we will tag this instruction with
IR3. So what does our program up to now look like?

Now we can use a TRX instruction to test for comple-
tion and to modify IR3 by 1:

TRX *-1,IR3,1

We finish our program by putting the sum in location
GROSS and halting the computer:

STR GROSS
HLT

A B A e e . s A e AP A . Sk

o

e

3

v

- 129 -

Now let's desk check our problem. Remember, we
know that the 5 factors are stored in memory relative
to location PAY. Let's assume that regular pay (PAY)
equals $200, proficiency pay (PAY+l) equals $60, over-
seas pay (PAY+2) equals $20, hazardous duty pay (PAY+3)
equals $55, and clothing allowance (PAY+4) equals $5.
We will use index registers IRl and IR2.

So our program is:

LDX 5,IR1,0
CLA ZRO

ADD PAY,IR1
TRX *-1,IR1,1
STR GROSS
HLT

i
i
!
t
!
i
t
|
|
i
i3
]

Now let's see if it works.

LDX 5,IR1,0 When the LDX instruction is carried
out, IRl and IR2 are automatically
paired. IRl is loaded with the 0
from the Third Address Field, and
IR2-~the paired IR--is loaded with
the 5 from the First Address Field.

CLA ZRO The accumulator is zeroed to prepare
for addition.

Gt 3% pes S Gew GWe TN B TN =N

R T ALV T T S T 4 T ST T WY,

ADD PAY,IR1 The ADD instruction will add the con-
tents of the address specified in the LA ZRO
first field as augmented by IRl. Be-
cause IRl contains only zero, the
contents of PAY are added to the accu-
mulator, giving the sum of $200.

St

@ TRX *-1,IR1,1 The TRX instruction pairs IR1 and IR2;

4 LDX 5,IR3,0 then IR2 is tested for zero. 1IR2 con-
CLA ZRO tains a five on this first test, so it
® ADD PAY,IRS3 it decreased by one (for the first

pass through the loop), then retested 3
for zer1>. Since the contents of IR2

» now equals four, the constant from the
v Third Address Field (a 1) is loaded
o into IRl (IRl now contains a 1) and

the program transfers to the address
specified in the first field, *-1 --

i that is, the ADD PAY,IR1 instruction.
The ADD instruction is carried out
" again. This time, because IRl contains

{ a 1, the effective address is PAY+l.
So the accumulator now contains $260,
the sum of PAY and PAY+l. Again, the

Iv

STR GROSS

HLT

- 130 -

TRX instruction is carried out. IR2

is tested for zero; since it contains

a 4, it is decreased by 1 for the
second pass and retested for zero.

Now IR2 holds a 3, so IRl is increased
once more by the constant in the Third
Address Field. Now IRl contains a 2.
The program transfers to *-l--the

ADD PAY,IR1 instruction--and the con-
tents of PAY+2 is added to the accumu-
lator, giving the sum of $280. For the
third time the TRX instruction is car-
ried out and the program loops back to
the ADD PAY,IR1l instruction. The loop-
ing cycle continues until all 5 factors
have been added to the accumulator,
giving the gross pay of $340. When the
program has completed the ADD PAY+4

instruction, the TRX test for zero finds
a zero in IR2 (which is the loop counter),
so the program steps to the next instruc-

tion in the sequence.

The gross pay is stored in location
GROSS ($340).

Stops the computer.

Just for practice, using the LDX command, write the

instruction which would load IR3 with a 3 and IR2 with a

0. (IR2 is the address modifier and IR3 is used in the

completion test.) The command would be:

Now, back to the original program: We can make one

more refinement to the program that uses the LDX command.

Let's rewrite our program like this:

LDX 4,IR1,0
CLA PAY

ADD PAY+1,IR1l
TRX *-1,IR1,1
STR GROSS

HLT

%
1
|
a
b

e A RS

el A

A e

“«k.-‘&.a‘r.-...;;...'
a"

£

o A R

gy b

R T T e

Iv
- 131 -

Notice that we put a 4 in the First Address Field
of the LDX instruction instead of a 5. This means
that we will loop through the program only four times.
We can do this and still get gross pay, including
all five factors, because we have changed the CLA ZRO
instruction to CLA PAY.

So our program now loads IRl and IR2 with 0 and 4,
respectively; then it clears and adds PAY to the ac-
cumulator. Now we need only to add the other four
factors of the man's gross pay.

When we did not know the number to load in the index
register that was to be the loop counter, we could not
use this procedure, or the LDX command. When it is
possible to use this procedure, it should be used be-
cause it eliminates one pass through the loop. In
long complex problems the advantage in efficiency is
desirable. But remember, you have to know the exact
number of passes to be made before you can use the
LDX command.

2 2 2 2 2 2 22 2 2 222 2 272 277 07 7
Problem 5.1. A large music store sells records of

many different types, such as classical, western, folk, .

and so on. The number of each type is stored relative

to TYPE; i.e., classical in TYPE, western in TYPE+1, .
.etc There is a 6 in TUNES, which is the number of .
.different types of records they have. Using LDX, write .
.a program to count the total number of records they have

on hand at present. Put the answer in TOTAL. Use .

index registers IR1 and IR2 for address modification .

and the completion test, respectively. .

. 7 7 7 7 7 ¢ 7 ¢ 7 7 /7 2 2 27 2 27 & 2 2 <) NNy

e < < o o L 2 2 7 <7 £ & 2 £ & £ ¢ 2 4 2 4
Problem 5.2. A company keeps records on each man's

gross pay stored relative to PAY. The factors which ‘
.make up each man's gross pay are: regular pay, over- .
time pay, vacation pay, and his bonus. Write a
.program to compute the man's gross pay for the year, .
storing the answer in GROSS. Use LDX, and use IR2 .

for address modification and IR3 for the completion .
»te'St'.".""”"""""k

r < ¢ ¢ ¢ 7 <7 ¢ 7 27 7 g 27 27 2 < & £ & 7 2
Problem 5.3. Now do Problem 5.2 using the second
method shown in this section. Remember, by this ‘
.method you only have to loop through the program three .

times instead of four times.
N\ PP TP F F P PP Py PP PP T)

A S b R A o A

FRRE P~ S TR %, s v e e+ =

Nt T Aok i A St 4

gy

.
4
e
.
4
1

b
K"

- 132 -

PART SIX: REVIEW AND PRACTICE

We have now learned three different techniques for
address modification. The first uses only a symbolic
location name in the program:

REPEAT CLA PAY

TRU REPEAT

The second method uses symbolic location plus ad-
dress arithmetic:

CLA BOOK
ADD PAGE
STR BOOK
BIND CLA TEMP

STR BIND-3

o L 1y Ry P N L A L

A iR et ek,

P g

¥
i o
&

!
i

b S ke L

TR A o

IV
- 133 -

Our third method uses the asterisk (*) plus address
arithmetic:

TRZ *+5
CLA PAY
ADD ONE '
STR PAY !
TRU COMP

HLT

Each of these techniques causes the program to look
back through a set of instructions, after the address
field of an instruction word has been changed.

’ £ £ 2 7 2 27 & 2 7 7 7 7 ¢ 7 7 g g 7 7N\
Problem 6.1. Rewrite the following program using sym-

bolic location plus address arithmetic.

Using only symbolic location:

CLA STOCK
STR TEMP
CLA ZRO
STR VALSTK
COMPUT CLA VALSTK
SUM ADD VALUE
STR VALSTK
CLA TEMP
SUB ONE
STR TEMP
TRZ STOP
CLA SUM
ADD ONE
STR SUM
TRU COMPUT

STOP HLT
S PR P I= Y PSP PPy

e 27 7 2 £ 2 27 2 27 g 27 2 7 7

A
""""""")

"'."""""""'ﬁ
Problem 6.2. Now then, rewrite Problem 6.1 using the

asterisk plus address arithmetic. . {
F 7 7 7 7 7 7 7 7 7 7 7 27 27 27 7 7 7 7 7 _\

Index registers are used as special temporary loca-
tions into which numbers can be copied to save the
original contents of an address. IRs use two address
fields, the first and the second, which must be separated
by a comma. In effect, an instruction which uses an
index register says to take the contents of the first
address and carry out the operation STR, ADD, etc., on
the contents of the second address.

AR B S ST B B

&

e £ 1S "

-

i

5

%
! E‘
- o BEY
£ "
4

G S

v

- 134 -

VLl £k 2 2 2 22 2Ll L
. Problem 6.3. Write an instruction that says the ~

same thin as: ADD PAY+3. 1IR3 contains a 3.
"""""""""'A

v £ L £ 2 JZ < £ £ 2 2 2 2 2 27 2 2 2 & 4
Problem 6.4. Write an instruction that will say: ‘

STR COST+4, if IR2 contains a 4.
Fo T T T F TP Y P P P P P P

We used IRs for temporary storage of the loop
counter and also for address modification.

The LOD command allows us to load an index register
without using the accumulator and without two in-
structions:

CLA ZRO
STR IRl

The First and Third Address Fields are used with the
LOD command and must be separated by two commas.

’ 7 27 27 ¢ ¢ 7 7 7 7 27 7 27 2 7 7 7 7 7 9
Problem 6.5. Write an instruction to copy the con- .

tents of VALUE into IR4.
1\ F 7 7 7 7 g 7 ¢ 7 7 2 7 2 9 2 2 27 7 7 4

The LOD command works like a STR command in that
the number that is copied, the number in the loca-
tion indicated by the first address, is not destroyed
or changed. But anything in the index register
specified by the third address is destroyed.

g JZ 2 7 £ 2 2 7 7 27 7 7 2 27 7 7 7 7 7
.Problem 6.6. A supply depot maintains a 3-word

record for each vacuum tube in stock. The words are:
size, cost, and location--stored relative to TUBE. ‘
Using LOD, write a program to compute the total cost
of tubes in stock. The number of tubes in stock is
in TOTUBE. Use IRl and IR2 respectively for address

.modification and the completion test, and store the

~answer in VALUE. Location KONl contains a 1 and KON3

a Use REPEAT as symbolic location for looping .
l4-n-ru-n‘-u-ru-n‘-u-na-u-u-navu.za-u-za-n-r

. 7 /7 7 7

s

-

4 ren
~ i

e

B T —— .._...__u-.w-&

o

Vol R R e

SRR

R

g SN

RN s T

v
- 135 -

| et rtreuiratuntenttar ettt
Problem 6.7. An electronics warehouse wants a program
that will count the total number of vacuum tubes that
they have ordered for the past month. Information
concerning the vacuum tubes is stored relative to INFO.
This information is: Part number, date ordered, ship-
ment number, and number ordered. Use the LOD command
and write a program to compute the total number ordered,

~stor1ng the answer in TOTAL. The number of days in the
month is in DAY. Use AGAIN as symbolic location for

.looping, IR1 for address modification, IR2 for the com-

pletion test. ONE contains a 1 and FOUR contains a 4.
N\ ¢ 27 7 7 g 27 29 7 7 7 7 7 7 27 7 9 F 7 7

b

7 & 7 7 7 & 7

The TRX command will modify two index registers at
the same time, increasing one for address modification
and decreasing the other for the completion test. The
TRX command acts on the contents of an index register
rather than the contents of the accumulator. This com-
mand uses all three address fields (First, Second, and
Third):

TRX *-1,IR2,1

It also pairs, or links, successive IRs: IRl and
IR2, IR2 and IR3, etc.

2 2 2 2 72 7 7 77 P I Y PP P PP PP
Problem 6.8. A music store sells records of different

types, ‘types, such as classical, western, folk, and so on.

The number of each is stored relative to TYPE; i.e.,
.classical in TYPE, western in TYPE+l, and so on. The

number of different types is in TUNE. Using TRX, write
.a program to compute the total number of records on

hand at present. Put the answer in ANSWER; use IR2 for

‘address modification and IR3 for the completion test.
"""""""”'d

’ 7 7 27 7 7

v""""""""""q
Problem 6.9. An apartment building stores all the ‘

.revenue for the month from its apartments relative to
INCOME. Write a program, using the TRX command, to .
get the total income for the month. Use IR3 and IR4 .
respectively for address modification and the comple- .
tion test. Their total number of apartments is in .

RENT. Store the answer in ALL.
PPyt P PR\

- 136 -

The LDX command allows us to load two index regis-
ters at the same time; but it has one limitation: We
must know the exact number of "loops) or 'passes,"
needed for a particular problem. The LDX command will

load the number of loops required for our computation.

Like the TRX command, LDX uses all three address
fields and links successive IRs.

The LDX command loads two index registers at the
same time.

LDX 5,IR1,0

This loads a 5 into the paired IR, or IR2, and loads
a 0 into IR1.

A T B AR A S S S S S T S S A S I S
Problem 6.10. A large business firm keeps the pay .
.tecords for each employee. The salary of the first
man is in PAY, the second man's pay is in PAY+l, etc.; .
.i.e., the pay records are stored relative to PAY, .
There are 70 men employed by the company; this num- .
ber is stored in MEN. Use the LDX command and write
.a program to compute the total pay of all employees, .
storing the total in TOTSAL. IR4 and IRl are avail- ‘
able respectively for address modification and the com- .
pletion test.
\F~ 7> 7 7 7 7 7 7> ry > J >y F PP
'u-ru-a-a‘-n-n-ru-vu-za-n4-n4-n4-aa-n-n-vu-ru-zanzann‘-a-'
Problem 6.11. There are 20 different uniform parts
in stock. The cost of the first part is in PRICE, the
second part in PRICE+l, and so on. TOTAL contains a
20. Using LDX, write a program to add the total cost
of all the parts, storing the answer in ALL. IRl and
.IRZ are available respectively for address modification

and the completion test.
N 7 P F-F - -y T F TP PP P

’ g7 27 £ 7

b

g P P P P P TP P P P P PR PR P PR P PR PR P
Problem 6.12. There are two kinds of vacuum tubes in

an inventory, 6SN7 tubes and 6AQ6 tubes. Each tube has
information on its type stored relative to TUBE. Each
location in the series has either a 2 to indicate a
6SN7 tube or a 1 to indicate a 6AQ6 tube. The total
number of all tubes is in STOCK. The cost of a 6SN7
tube is in VALUE and the cost of a 6AQ6 tube is in
VALUE+l. Write a program, using the TRX command, to
‘compute the total value of tubes in inventory, storing
the total in TOT. Index registers One and Two are avail-
.able respectively for address modification and the com-

pletion test. KON contains a 2. Use the TRN command.
L"""’.""""""’

".""')

Vo

e ———

TN

R s e IS

|
I
l
1
I
|
i
|
l
I
?
I
i
I
£
i
I
i

AN 3 v 07

LA AR,
b
5
m"lﬁﬁ R tecs o St SR SR SR

v
- 137 -

Nl 2 2 L2 22 22 2 2220 222202222 207c
Problem 6.13. Headquarters wants to know the number

of second lieutenants eligible for promotion to First
Lieutenant at the end of this month. Eighteen months
active duty in grade are required for promotion from
Second to First Lieutenant. The data for officers are
stored in 5-word records as €ollows: rank, service
number, months in grade on active duty, MOS, and assigned
unit. These records are kept relative to RATING. Rank
for officers is coded by a 1 for Second Lieutenant, 2
for First Lieutenant, and so on. PERSON contains the
number of officers. TIME contains a 17. Store the
~number of eligible officers in UP. Use the TRX command.
.IR3 and IR4 are available respectively for address

modification and the completion test. KON contains a 1.
Ao v A A T L ET A

’? 2 27 2 27 2 2 2 2 2L)

_ 2 £ < o2 £ £ £ & 2 2 2 £ 27 £ 27 £ 2 4 2 4 < 2]
Problem 6.14. There are two types of uniforms in an

inventory, listed as big and small. Each uniform has
.information on its type stored relative to UNI. Each
location in the series has either a 1 to indicate a big
‘uniform or a 0 to indicate a small uniform. The total
number of all uniforms in stock is 90. The cost of a
big uniform is in VALUE, and the cost of a small uniform
is in VALUE+l. Write a program, using the TRX and the
LDX commands, to compute the total value of uniforms
in inventory, storing the total amount in INV. Index
Registers Two and Three are available respectively for

address modification and the completion test.
. ’ J 7 7 <7 27 ¢ 7 7 7 7 7 7 7 27 g 7 7 7 7 7 J

L""""

Y Z < 2 g £ 27 £ < < 27 £ 27 2 ¢ 2 7 27 2 27 2 7 4
Problem 6.15. A large music store sells records of 1

many different types, such as classical, western, folk, ~
~and so on. The numberof each type is stored relative to ~

TYPE; i.e., classical in TYPE, western in TYPE+l, etc.

There is a 6 in TUNES, which is the number of different .

types of records they have. The cost of each record is .

the same, the amount stored in COST. Write a program .

to compute the total number of records on hand, storing

the answer in TOTAL, and also the total cost of the .

records, storing this in VALUE. Use IRl and IR2 in com- ‘

putation of the total number, and IR3 and IR4 in computation\

of total cost. Use TRX and LDX whenever possible.
»"""""""""""

