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Preface

Although the phenomenon of laser induced gas break-
down has been extensively studied for several years, lit-
tle progress has been made in developing a simple model
which can quickly and accurately predict breakdown at low
values of incident flux. The investigations described in
this thesis represent an attempt to develop such a model.
While success was limited, it is hoped that the informa-
tion presented here might prove to be a valuable starting
point for anyone desiring to continue investigation of
this problem.

I would like to extend my sincere appreciation to my
advisor, Capt. P. E. Nielsen, who suggested this problem
and provided the guidance needed to successfully complete
this project. I would also like to thank Mrs. Mildred C.
Kelley for her aid in the proofreading and preparation of
the final report.

Finally, my deepest appreciation is extended to my
wife, Mary, who was a source of encouragement and inspi-
ration not only during this project, but throughout my
eighteen months of study at AFIT.
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Abstract

An attempt is made to develop a simple yet accu-
rate gas breakdown model which can be easily coupled to
the hydrodynamic equations governing fluid flow in laser-
target interactions. The accuracy of three relatively
simple models is investigated. ZEach is compared with the
more accurate and complex quantum kinetic model, to deter-
mine the conditions under which it maintains reasonable
accuracy. A gas consisting of a single monatomic species
is assumed and attention is restricted to the early por-
tion of the electron cascade. A temperature model is
found to agree reasonably well with the quantum kinetic
model at values of incident laser flux greater than 5 x
107 W/em®. A diffusion model is found to yield similar
results. A two-temperature model, which is derived in
an attempt to extend the range of the temperature model

to lower values of incident flux, is found to be invalid.
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I. Introduction

The breakdown threshold of the atmosphere imposes an
upper limit on the amount of energy which can be propagated
through the atmosphere by a laser. Below this rather well
pronounced threshold intensity, the atmosphere is relative-
ly transparent to the laser beam. However, once the thres-
hold is exceeded cascade ionization ensues. Naturally
occurring electrons are rapidly heated by the laser radi-
ation. Those attaining sufficient energy ionize neutral
species and create more electrons. The net result is the
formation of a highly ionized plasma which severely atten-
uates the beam. Similarly, vapor emerging from a target
irradiated by a laser can break down and shield the tar-
get from further deposition of laser radiation.

Under the sustained action of a laser, several inte-
resting post-breakdown effects will emerge. The newly
formed plasma continues to absorb almost all the energy
incident on it, heating the gas in the absorption region
to very high temperatures. As this relatively small vol-
ume of gas begins to expand, the surrounding air is heated
and becomes ionized. This causes a new layer of gas capa-
ble of absorbing energy to be formed within the beam's
column, and a "laser absorption wave" will propagate to-
wards the laser,decoupling it from the target. At very
high laser intensities, the hot gases will expand so ra-
pidly that a shock wave, capable of interacting with the
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target,will be formed.

If these hydrodynamic phenomena associated with laser-
target interacfion are to be properly analyzed, an accurate
prediction of the breakdown threshold is required. Present
calculations of breakdown phenomena(the quantum kinetic
model) use lengthy computer programs which, even when sim-
plified, require an average of 30 seconds for each run.
These calculations must be repeated at least 300 times for
each centimeter the shock wave travels. Consequently,
there exists a need for a simple yet accurate breakdown
model which could be easily coupled to the equations gov-
erning fluid flow in a laser-target interaction.

In an effort to find such a model, three relatively
simple breakdown models were investigated. The accuracy
of each was determined through a comparison with the more
accurate quantum kinetic model. Primary emphasis was
placed on comparisons involving a temperature model. This
model assumes a maxwellian distribution of free electrons.
The second model compared, a diffusion model, assumes that
electron heating can be represented as a diffusion of free
electrons along the energy axis. Finally, a two-temper-
ature model which assumes a segmented electron distribu-
tion function was developed and its results compared to
those of the quantum kinetic model.

A brief review of the theory involved in laser induced
gas breakdown is presented in Chapter II. Chapter III

provides a discription of both the comparisons made and
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the models compared. Results are presented and discussed
in Chapter IV followed by conclusions and recommendations

in Chapter V.
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II. Backround

Although the breakdown of gases has been studied ex-
tensively for many years, gas breakdown under the action
of radiation at optical frequencies is a more recently ob-
served(1962) phenomenon. Since fluxes intense enough to
produce breakdown at optical frequencies can only be pro-
duced by a laser, it is within this context that the phe-
nomenon is studied. The theory involved has been firmly
established and will be discussed in this chapter. The
first part of this chapter is devoted to a qualitative
discussion of the processes involved, while the remainder
of the chapter will deal with some of the major theories

utilized to explain breakdown.

Breakdown (A Qualitative Discussion)

The breakdown of a gas will occur if, during the time
of the laser pulse, the gas can absorb enough energy to
achieve and maintain a high degree of ionization. Pro-
cesses which could account for this ionization are the ab-
sorption of photons by a neutral atom, inelastic colli-
sions between atoms and electrons, and a combination of
both processes. Those processes which could reduce the
degree of ionization are the recombination of electrons
and ions, and the diffusion of the charged particles from
the volume of the gas upon which the laser radiation is

incident.
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The direct ionization of atoms by laser photons was
studied extensively by Keldysh(Ref 1). Since, in most
cases, the valﬁe of the ionization energy(5-20 eV) is much
greater than the photon energy(0.1-1.5 eV) it is impossi=-
ble for one photon to ionize the atom. However, if I/hw
photons can be absorbed simultaneously by an atomic elect-
ron, ionization would be possible. At atmospheric pres-
sure the laser intensities required to produce breakdown
by this mechanism are much greater than those under which
breakdown is observed experimentally. Thus, the "multi-
quantum photoeffect" is not considered to be a likely
breakdown mechanism.

The process of electron cascade ionization(Ref 2)
has been accepted as the mechanism most likely involved
in breakdcwn. The cascade can begin with a single "prim-
ing electron". This electron absorbs light quanta during
collisions with atoms. Along with this inverse bremsstrah-
lung absorption of energy by the electrons there occurs a
stimulated bremsstrahlung emission. The absorption, how-
ever, is more likely than emission so that over a period
of time a net absorption of energy occurs. This net ab-
sorption of energy can be thought of as a diffusion of the
electron along a one-dimensional energy axis. If excita-
tional processes are temporarily ignored, the energy of the
electron will continue to increase until it exceeds the
ionization potential of the neutral atoms. It will then

collide ihelastically with one of the atoms and ionize it.
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The result will be two electrons of very low energy re-
placing the one electron with energy slightly greater than
I. These two electrons can now absorb energy and repeat
the process. This cascade will continue until breakdown
is achieved.

Energetic electrons, however, are also capable of
causing excitations. Since excitation requires less en-
ergy than ionization an electron may lose its energy to
excitation many times before acquiring an energy suffi-
cient for an ionization. Under conditions of sufficiently
high flux, atoms excited into higher atomic states can be
rapidly ionized by the absorption of two or three quanta.
In this case an excitation is equivalent to an ionization
and the cascade continues unhindered. At lower fluxes and
photon energies of less than about 1 eV, photoionization
of the excited states becomes unlikely(for the same reason
as multiphoton ionization) and energy going into excita-~
tions slows the development of the cascade. Once an atom
is excited the probability that it will encounter a second
electron and be ionized is extremely small except during
the latter stages of the cascade when the density of elec-
trons and excited atoms is high(Ref 3:658).

The development of the cascade can also be hindered
by diffusion of the free electrons from the region of ac-
tion of the incident radiation. The diffusion losses will .
be smaller at higher pressures and larger beam diameters.

At fluxes of interest(s:>407w/cm2), diffusion losses can

6
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be assumed to be negligible at pressures greater than 1
atm and beam diameters larger than 10'2cm(Ref 2:773).
Another mechanism that will hinder the cascade is three
body recombinations. This mechanism, however, is not con-
sidered significant since losses due to it will only be
observed very late in the cascade.

Since at least one electron must be present for the
cascade to proceed, the question of the origin of the first
electron is often raised. The presence of a small quantity
of easily ionizable impurity atoms is one source. The pro-
duction of the first electron can then occur as a result
of photoionization or collision involving the impurity
atom. Another source of electrons is the atmosphere. Non-
equilibrium atmospheric effects such as cosmic radiation
result in an average free electron density of 100/cm2.
Therefore, under appropriate conditions, the first elec-
tron can be found.

Finally, if R is defined to be the cascade growth

rate then the number of free electrons at any time t can

be expressed by

where ng is the initial free electron density. Now, if
the breakdown criterion is chosen to be the achievement
of a specific electron population n:, then the time re-

quired for breakdown to occur is given by

7
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t, = T1n(n)/nd) ()

where T= 1/R is the cascade time constant. As can be

seen from Eq (2) the occurrence of breakdown is not strong-
ly dependent on the initial electron density. It is, how-
ever, highly dependent on the time constant T which is in
turn a strong function of the laser flux. It is for this
reason that an abrupt breakdown threshold is found to

exist(Ref 3%:657).

The Boltzmann Equation

Early investigations revealed that the problem of
laser induced gas breakdown could be best approached through

the use of the Boltzmann equation

g§-+ V-vof + agf = g%

where f is the electron distribution function, Vv the elec~

(3)
coll

tron velocity, & the electron acceleration, and g%'
coll
represents the change in f due to collisional processes.
Under the assumption of spatial homogeneity of f the se-
cond term in Eq (3) vanishes.
In a manner identical to that used for microwave

breakdown(Ref 4), an electron heating term can be derived.
This term describes the rate at which an electron, acted

upon by a field, gains energy on collision with an atom.
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Under these conditions Newton's equation of motion for the

electrons can be written as(Ref 4:170)
m, §F + MYV = e (4)

where v is the electron-atom collision frequency, e the
electronic charge, and « is the angular frequency of the

applied field, E. Solving Eq (4) for v yields

= Ee-iut
V = %_TTT:TET (5

The third term of Eq (3) can be rewritten as
oo - - f
av f=2a (m¥) g; (6)

so that with a = %E et gng ¥ given by Eq (5), Eq (6)
e

averaged over a period becomes

2
av,f = —= A o (7)
me(V 4w )
This equation can also be derived in a more rigorous man-
ner directly from the Boltzmann equation(Ref 4:46-47,166).
Substituting EQ (7) into Eq (3) yields a final form for

the Boltzmann equation
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where f is defined to be a function of energy and € is
given by

n e2 S v

e
. (9)

]
m,C ¢o(v +w°)

€ =

where the substitution S = (¢°/2)E2c was made in Eq (7}, S
being the laser flux in W/cm2. Included in the collision
term on the right side of Eq (8) are the rates of excita-
tion and ionization as well as the rates of any other sig-

nificant collisional processes.

A Temperature Model

If the collisional terms are written out explicitly

Eq (8) becomes

of(e) . £ of(e)
ot n, oe

. niR’i‘J(c)f(c) +

x
g 15 z;.n.R.J(c + xij)f(e + xij)

i,950 © 7

I I
-~ g;ndnd(c)f(e) ' + g:n.jRJ(‘ + Id)f(C + I;j)

8(€) £ n, JRE(O)f(e)de + R (10)
i b |

where R:d and R§ are the rates for excitation and ioniza-
tion, x;4 and I, represent the excitation and ionization
energies, and the n; are the population densities of the

various atomic levels. The first four terms on the right

10
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side of Eq (10) represent the rate at which electrons of
energy € are either gained or lost to the distribution as
a result of excitation and ionization of atoms. The fifth
term represents the rate at which electrons of zero energy
are created by ionization. The last term, R, represents
all reverse rates(deexcitations, recombinations) and is
assumed to be small during the early stages of breakdown
if most of the atoms are originally assumed to be in a
ground state.

Now, if the gas is assumed to be made up of atoms
which possess a nucleus and two electronic levels, a ground
state and an excited state, Eq (10) simplifies to

%éc) W F < S
n, o0e€

-n1Rx(¢ )r(e) + n,le( €+ x)f( €+ x)
-nRT(e)r(€) + nR(e+ I €+ I)
+ l(c).}.n,‘RI(c) £(e) ae (11)

At this point, the exact form of the electron distribution
function is unknown. If it is assumed to be maxwellian,

f(e) = 2 -‘;;; o~/

T

(12)

where T is the electron temperature, then a temperature

1M
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model approach towards breakdown will emerge. Taking the
zeroth energy moment of Eq (11) yields an equation for elec=-
tron growth(Apbendix C)

dn
T = B ng, (13)

where (PI), the ionization rate, is a function of temper-
ature, obtained by averaging RI over all energy. Taking
the first energy moment yields an energy balance equation

(Appendix C)

dge Wiphs coREn: X o I
e ng xCR™> 04 IR™ n,
dne
- & T ~(14)

where {€¢) , the average energy in eV, is given by % T.
Eqs (13)-(14) taken together can be used to investigate
and predict many of the phenomena involved in breakdown
and are often referred to as a "temperature model".

The conditions required for breakdown can now be es-
timated using Eqs (13)-(14). Under the assumption that
the average electron energy equilibrates rapidly(te ~.1T)

q
Eq (14) becomes

£

ng

= xRS n, + 1¢RY n, + CORD n, (15)

where Eq (13) was also used. The rates can be expressed

12




as(Ref 5:388-390)

Ry = BX &7X/T (16)
and Y - R e~1/T (17)

where Rg and Rg are slowly varying functions of T which
can be assumed constant. For RgazRg the last two terms on
the right side of Eq (15) can be ignored. Solving Eq (15)

x/T

for e~ yields

5 € -
e x/T e (18)
n n,x Ro

Now, if both sides of Eq (18) are raised to the I/x power
and the results substituted into Eq (17), (RI) becomes

a I/x'

Yy - Rﬁ[ - (19)
n n,x Ro

Solving Eq (13) for ng and applying the breakdown criterion

yields

1,0
1l 2 I
t,‘ e n(ne/ne) [ e“Sv 2] /z ‘ (20)
n,x R )

1 X 2
n,|Ro oleC o(v +w

which is Eq (2) with 7 = 4/n1(RI), and replaced by Eq (9).
Thus, for a given laser intensity S, breakdown will occur

only if the laser pulse length meets the criterion of
Eq (20).

13
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The conditions under which the assumption of a temp-
erature is valid will be discussed later in this report

(Chapter IV.)

The Quantum Kinetic Equation

The classical electron heating rate of Eq (9) was
originally derived for use in microwave breakdown studies
and assumes a continuous absorption of energy by the elec~
tron. At microwave frequencies this assumption is valid
since the energy of each photon is small, and the average
energy per collision absorbed by an electron(as calculated
by EQ 9) is many times the energy of a single photon. At
optical frequencies the energy of a photon becomes appre-
ciable and the average energy per collision absorbed by an
electron is only a small fraction of the energy of a sin-
gle photon. Thus, an electron will experience many colli-
sions which do not involve the absorption of energy and a
quantum mechanical approach should be taken(Ref 3:657).

The heating of electrons by the radiation is the net
result of two competing processes. The first, bremsstrah-
lung absorption, occurs when an electron absorbs a photon
from the radiation field during collisions with atoms or
ions. The second, bremsstrahlung emission, occurs when an
electron is stimulated by the radiation field to emit a
photon upon collision with an atom or ion. A coefficient
of bremsstrahiung absorption can be derived quantum mecha-

nically and is given by(Ref 6:540)

14
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ale) o —i8 [EQ‘* h“’)] ﬁ-‘:h—ﬁ-‘!@l 0 (e+ hw/2) (21)

m
Bmec (ou e

where ¢ is the electron energy, hw is the energy of the
photon absorbed, and % is the momentum transfer cross
section of the electron-atom pair. A coefficient of brem-
sstrahlung emission can be obtained from Eq (21) using mic-

roreversibility (Ref 2:774)

b( e+ hw) = a(‘)[ . ]V2 (22)

e+ hw

Now, if the quantum mechanical rates for bremsstrahlung
emission and absorption are used to replace the microwave
heating term in Eq (10) the resulting quantum kinetic

equation will be
i%%l = Pn_|a(e- ne)f(e- o) = [a(e) + b(e)]£(e)
b(e w)f(e w) - Ry (e)f(e
+ b(e+ Bu)f(e+ Nw)} i,§>ini 13(O£C)

' I
+ i’§>iniR§J(¢+ xi;j)f("" xid) - JszRd(f)f(c)

I
+ I nRi(es I )f(e+ I,)
3 3 J J

I
+ 8(Ce) fnd{ RJ(‘)‘(‘)d‘ (23)

where F is the photon nux(#/cna-sec) and n, is the total

15
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number of atoms. The first term on the right hand side of
Eq (23) is the rate at which electrons of energy e are

gained as a result of bremsstrahlung absorption and emis-~

sion.

A Diffusion Model

As previously mentioned the heating of the electrons
by a laser can be viewed as a diffusion of electrons along
the energy axis. This approach was originally presented
by Zeldovich and Raizer(Ref 2). Eq (23) can be rewritten

in the form

L) . o, faCe- no)f(e- Bo) = () + BC]£CE)
+ e+ BO)f(e+ Do)} + Q (24)

where Q includes all electron energy gain and loss mecha-
nisms not specifically written out. In the region near
the excitation and ionization energies hw/e¢ is a small
quantity and the bremsstrahlung absorption and emission
terms can be expanded in a Taylor series in powers of

he/¢ . Retaining terms to second order results in

(Ref 2:775)

%‘-l--gg+Q (25)

16




J=-D§—f§l+uf(<) (26)

where D = % Fn (hw)?[aCe) + b(e)] (27)
and u = Fnaﬁm[a(e) - b(!)] - %‘2 (28)

Eqs (25)-(26) represent a diffusion of electrons along the
energy axis. D is the diffusion coefficient, u is the net
velocity of the electrons along the energy axis, and Q re-
presents an electron "source". Egs (27)-(28) can be sim-
plified further by expanding b(e¢) in terms of hw/e
yielding(Ref 2:775)

D e Fna(hu)‘?a(t) (29)
o sl (30)

If Q is assumed to be zero (no sources), Eq (25) can be
multiplied by ¢ and integrated over all energy so that in

the limit as hw /e~ O it becomes(Ref 2:776)

d<e> _ easv (31)

w
mec ‘O

where v was defined to be ngvoe. At optical frequencies
v2<< uz, and Eq (31) agrees with Eq (9) which gives the
classically defined electron heating rate. Thus, it can

be seen that the quantum kinetic model reduces to the

17
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correct classical limit as hw/e—+ 0, and for hw/e small

the classical heating rate, € , can be used to accurately
describe the net bremsstrahlung absorption of laser radia-
tion.

The exact method of solution of Eq (25) is not impor-
tant, but the results does have a natural physical inter-
pertation which should be discussed. Q, in Eq (25), can be
replaced by a boundary condition involving the probability
of ionization. The electrons are then assumed to increase
in energy until they reach Ia’ an energy 1-3 eV greater
than the ionization potential. Having reached this energy
the electrons will lose their energy to ionization with a
probability a and to excitation with a probility 1- a.
Under these conditions Eq (25) can be solved for the cas-

cade time constant(Ref 2:777)

T = ta/a (32)

where t = Ia/3u is the time it takes an electron to grow
in energy from O to Ia’ and 1/a represents the number of
times this cycle must be repeated before an ionization
occurs. Thus, the electron growth rate, R = 1/r, depends
on the laser flux through ta and on the properties of the
gas through a. This is consistent with the results of the

temperature model.

18
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III. Approach

If a comparison of the results of a temperature model
with those of the more accurate quantum kinetic model is
to be valid care must be taken to insure that each model is
solved under similar conditions. The first part of this
chapter discusses the various assumptions made to develop
self consistent models. The remainder of the chapter out-

lines the solution of the models and the comparisons made.

The Model Atom

The gas upon which the laser energy is incident con-
sists of a single atomic species. The atom has a mass of
15 amu and consists of a core and one electron. Three
energy levels are permitted: a ground state at =14 eV, a
first excited state at -3.5 eV, and a second excited state
at -1.54 eV. Ionizations can occur from any state and
transitions are allowed between any two levels. Multiple
ionizations of an atom are ignored. The temperature of
the gas (atoms and ions) is assumed to remain constant
until late in the cascade when heating by the electrons

becomes significant.

Cross Sections and Rates

Cross sections and rates for the various processes
involved in breakdown were either chosen or calculated so

as to insure complete correspondence between the quantum

19




kinetic rate and its temperature model counterpart. The

quantum kinetic rates for ionization and excitation were

determined using analytic formulas

R(e¢) g‘g o(€) (33)
e

whereo(e¢) is the cross section for either ionization or

excitation. Substituting the ionization cross section

into Eq (33) yields(Ref 5:392)

4
I E ne 1 =3/2
R = e —— €~ T. 2T, 4

.‘l(‘) Mg (tureo) IJ“ ( J) g (34)

where R§ is the ionization rate for the jth level and Ij

is the corresponding ionization energy. In a similar man-

ner an excitation rate can be obtained(Ref 5:396)

4
x = we A e, . 2
Rij(‘) %e W xijafij‘ (e xi,j) €2X; 5 (35)

where R?a is the excitation rate from level i to level j,

xiJ is the excitation energy, and fij the oscillator

F strength for absorption. As can be seen from Fig 1 these

analytic rates compare favorably with similar data obtained

experimentally(Ref 7:115).

The corresponding temperature model rates were obtain- -
ed by multiplying the quantum kinetic rates by a Maxwell-
Boltzmann distribution function and integrating over all

PR PR s s o e s

energy. The ionization rate is

20
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3/2, 4
Rg(m) N Gk . I I [e-1/T . E; (-1,/1)] (36)

Vo (4me )T, T

where E; is a tabulated integral defined by
let
E;(x) = [§ at (37)
-00

Similarly, the excitation rate is given by

3/2 = U4
2 Ywe Bfu 1 [e_xij/T
w:(q'"o)zxi,j T

A complete treatment of the above cross sections and rates,
along with a table of numerical formulas, can be found in
Appendicies A and B. Rates for deexcitation and recombi-
nation were not computed since they were ignored in the

solution of the equations.
Finally, a value for the electron-atom momentum trans-

fer cross section, ¢ = 7.1 x 40'160m2, was taken from

Brown(Ref 7:5). This cross section is used to compute the
value of v in Eq (9) and also to compute a(¢) in Eq (21).
A cross section for electron-ion collisions was not cal-

culated since electron-ion collisions were ignored.
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The Quantum Kinetic Model

For the three level model atom assumed the quantum

kinetic equation can be written as
() - Fn,fale- nu)f(e- Bu) = [a(e) + B()]E(e)
a

+ b(e+ Nw)f(e+ ‘hw)} - g é: an.?LCJ( )E(e)

+ L nyRYsCer x;508(e+ x;5) = £ ngRI()E(e)
i, g>i J

I
+ I n.Ri(e+ I.)f(e+ I.)
J Jd J J

+ 8(e >§n nt( )E(e)de (23)

The first term on the right side of Eq (23) represents the
rate at which electrons of energy ¢ are gained as a result
of bremsstrahlung absorption and emission. The coeffi-
cients a and b are given by Eqs (21)-(22); F is the photon
flux(#/cmz-sec) and ng is the total number of atoms
(#/cma). The next two terms of Eq (23), involving jo,
represent the rate at which electrons of energy ¢ are

lost as a result of excitations. The summation over i
goes from 1 to 3 and the le are given by Eq (35). The
fifth and sixth terms of Eq (23) represent the rate at
which electrons of energy ¢ are lost as a result of
ionizations. The summation over j goes from 1 to 3 and

the Rg are given by Eq (34). Finally, the last term of

a3




Eq (23) represents the rate at which electrons with zero
energy are created by ionizations from each of the three
atomic levels.

There are several assumptions implicit in Eq (23)
that should be mentioned. First, the diameter of the
incident laser beam is assumed to be large(~ 1 cm).
Diffusion of electrons from the region of the beam's

6sec) and can be

action will then be minimal(7ﬁ~10'
neglected. During the early portion of the cascade,
electron-ion collisions will be rare and can be neg-
lected. This eliminates the need to consider the
bremsstrahlung heating of electrons by ions, and triple
body recombination resulting from the collision of an
ion and two electrons. For a similar reason, electron-
electron collisions can be ignored. Finally, the deexci-
tation of atoms is neglected. The energy lost to deexci-
tations is very small and the rate of ionization from the
excited states is not strongly affected.

Besides Eq (23), three other equations contribute
to the qQquantum kinetic description of breakdown. These

are the equations governing the change in the popula-
tion of the three atomic levels

g%' . "‘1ne[<R'I|(‘)’ + <R§2(¢)> + <R3|‘3(c)>] (39) -
8o - nngR,()> - nyn[RI(eD + ®E5(e0)] (40)
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3.53 = n,n <R15(¢)> + n2ne<R)2c§(¢)) - n3n3<R§(¢)) (41)

where <R(¢)> is the energy average of the corresponding
rate. These equations together with Eq (23) can now be
solved numerically using methods similar to those of Ref 8
(see Appendix D). It should be noted that a good estimate
of the cascade growth rate can be obtained by solviang Egq
(23) independent of Eqs (39)-(41) using the initial values
of ny, ny, nz. However, Eqs (39)-(41), as well as other
effects, become important if a solution is to be carried

to breakdown.

The Temperature Model

In an effort to insure self-consistency, the temp-
erature model equations are obtained directly from the
quantum kinetic equations. For hw/¢ assumed small, the
bremsstrahlung absorption and emission terms in Eq (23)
can be replaced by the microwave heating term, Eq (9).
The electron distribution function, an unknown in Eq (23),
is assumed to be maxwellian

A .
2(0) = § Sg 1 (42)

If BEq (23), as modified, is integrated over all energy

the zeroth energy moment of the Boltzmann equation will

result
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dng

I
= n_ £ n.(R: (43)
at e 3 Jd  J
where the(R%)are now averages over a maxwellian, and
are a function of temperature. Eq (43) describes the rate
of growth of free electrons. Eq (23) can also be multi-
plied by ¢ and integrated over all energy to obtain the

first energy moment of the Boltzmann equation

dee> _ £ I
N g § nyI KRy

e

dn
- i’§>inixij(R§j) - :%i afg (44)
where <e>= (3/2)T is the average electron energy. Eq (44)
describes the rate of growth of the average free electron
energy. To complete the description of the temperature
model Eqs (39)-(41) must be included with Eqs (43)-(44).
The rates in these equations are all functions of temper-
ature and are the result of averaging over a maxwellian.

A more complete derivation of the temperature model can

be found in appendix C.

The assumptions involved in the temperature model are
identical with those of the quantum kinetic model with two
exceptions. The bremsstrahlung emission and absorption
terms were rep{aced by a microwave heating term. For hw/e
small the two terms will yield the same electron heating

rate so that consistency is maintained. The second excep-
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tion involves electron-electron collisions. If the max-
wellian nature of the electron distribution is to be main-
tained, electron-electron collisions must be at least im-
Plicitly allowed. Since it is the validity of the assump-
tion of a maxwellian that is being tested, this will not
cause a conflict.

The temperature model equations are solved numeri-

cally using a procedure outlined in appendix E.

Solution and Comparison

The two breakdown models have been solved under a
variety of conditions to obtain a comparison of the re-
sults and behavior of each model. Certain initial condi-
tions were imposed and remained fixed for all comparisons.
The laser radiation was assumed to have a wavelength of
10.61 . This fixes the energy of a photon at .12 eV. The
initial density of ground state atoms was assumed to be
2.5x 1019/cm3. The initial temperature of the gas was set
at .1 eV. This condition fixed the initial population den-
sity of the first and second excited states as well as the
total number of atoms initially present. The cascade was
assumed to proceed from an initial free electron density of
100/cm3. Since solution of the quantum kinetic model re-
quires that the energy axis be divided into bins(see ap-
pendix D), a standard of 25-1eV bins was chosen.

Under these conditions the two models were solved
utilizing the rates found in table X(Appendix B). The

27
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cascade growth rates predicted by each model were computed
for a wide range of incident flux densities(5 x 107 - 1012
W/cma) and compared. A study of the apportionment of en-
ergy among the various loss mechanisms suggested that a
comparison of the growth rates predicted by the two models
be performed assuming a two level atom. Finally, the re-
sults of the quantum kinetic model were compared for vari-
ous bin widths.

To determine the effects of manipulation of energy
levels and ionization and excitation rates, comparisons of
the growth rates were made under the following conditions:

1. R§2 increased by a factor of 10.

2. R§2 decreased by .5

I
3. R3

X
4, Ry

increased by a factor of 10.

decreased by .5

5. Ground state energy raised to =13 eV.

6. Ground state energy lowered to =15 eV.

7. 18t excited state energy raised to -2.5 eV.
8. 18t excited state energy lowered to -4.5 eV.
The results of all comparisons performed will be

discussed in Chapter IV.

An Improved Diffusion Model

In an attempt to find a breakdown model applicable
over a wider range of incident fluxes, the improved dif=-
fusion model of Vyskrebentsev and Raizer(Ref 9) was stu-
died. Unlike the old model of Zeldovich and Raizer,
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excitations are treated specifically rather than being
lumped into a generalized term, Q. Assuming a two level

atom, Eq (25) can be modified to(Ref 9:33)
BLe) . - 3 n(Or(e)ve (45)

0 for €<x,
where h(e) = (46)
1 for xaf“Ia

The energy Xg is defined to be approximately 1eV greater
than the excitation energy, x, while Ia is 1eV greater
than the ionization energy, I. In the interval from Xg
to Ia’ the average excitation rate, v*, is assumed con-
stant.

Eq (45) can be solved with the aid of several bound-
ary conditions. At € = xg, £(¢) and df(¢)/de are assumed
to be continuous. All electrons reaching Ia are assumed to
lose their energy to ionization with a probability g and
to excitation with a probability (1-8) so that f(Ia) = 0.
Finally, the rate at which electrons appear with energy
zero equals the rate of excitation in the interval x§:¢<Ia,
plus twice the rate of ionization(this accounts for newly
born electrons). Under these conditions Eq (45) yields a

transcendental equation for the cascade growth rate, vi(Ref

933“')0
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e(a=1)y [cosh(%) + 2 sinh(%)]- e~ (a=1)y [cosh(%)

-z sinh(%)] - 2a(1+B)y - 2(1—z-2){y cosh [(a—’l)y]

+ sinh[(a-1)y] - ay} = © (47)
where y = v6(v; + v¥)x_/(¢/n_) (48)
z = VT + V/v, (49)
a = VI /x_ (50)

Before Eq (47) can be solved g, v*, and € must be evaluated.

The value of B is obtained from

I
R1(Ia)

= (51)
E;(Ia) + Ry,(I,)

and is found to be .09 . The rates in Eq (51) were calcu-
lated using table X(Appendix . ). The value v* is defined

by(Ref 9:33)
v* = na?‘i" (52)

where V* and o* are mean values of the electron velocity
and excitation cross section in the interval x

determined by

€<
& <1q
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Ia
g{ (1/2f(¢)d¢
v = e‘ja (53)
[ £
a
) 1/2
B \%xf; T /RY ()
o* = gy, e, (54)
a a

for n, = 2.5 x 1019/cm5 Eqs (52)-(54) yield a value for v*
of 8.5 x 1O1ﬂ/sec. The quantity & is evaluated over a

range of fluxes using Eq (9). Eq (47) can then be solved
numerically and the growth rates compared with correspon-

ding quantum kinetic rates.

A Two-Temperature Model

Apalysis of the results of the comparisons between
the temperature model and the Quantum kinetic model(Chap-
ter IV) suggested that modification of the temperature
model distributioq.function might lead to a more accurate
prediction of the growth rate. The most encouraging ap-~
proach appeared to be one in which the electron distribu-
tion function was broken into two sections, each described
by a different temperature.

The problem is first simplified by considering a two

level atom. The two-temperature electron distribution

‘function is then defined as
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Cq¢1/2e-‘/T1 for Osesx

£(e) = (55)

C, ¢1/2e— (/T2 for xse< »

where x is the excitation energy of the model atom. This
distribution function is assumed to be continuous at the

boundary of the two regions

qu-x/T1 = Cae-x/TZ (56)

A second condition requires that the distribution function

be normalized
< :
C4 6‘1/23- YT de + €y Je/Pe™ T2 g0 2 1 (57)
b'd

The energy balance equation of the old temperature model

is also needed

3 dn
e e

It should be noted that the average energy and the rates
in this equation must be reevaluated using the modified
distribution function defined in Eq (55). Assuming a
rapid equilibration of the average electron energy and
substituting for dn,/dt using Eq (13) the energy balance

equation becomes
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£ . xn,l<Rx> - (I + <e>)n <RI> =0 (58)
ng 1

Eqs (56)-(58) form a set of three equations in four
unknowns. A fourth condition on the unknowns can be ob-
tained by taking the second energy moment of the Boltzmann
equation(Appendix F). This will yield an equation for the

time rate of change of <e2>

d<e> _ & 2 x 2 I
Sy - 2'r§<‘> + X n,I<R >+ I n1<R >
2_ dn
X i, x> 8
~ 2xn,<¢R"> = 2In <¢R™> = S—= == (59)

where the averages must be taken over the distribution
function defined by Eq (55). Again, assuming a rapid

equilibration of <¢®> and using Eq (13) yields

2L ce> + x°n,<RX> + (I2 - <¢2>)n <rl>
ng 1 1

-2xn,|<oRx> - 2In1<¢RI> =0 (60)

The two-temperature model consisting of Egqs (56)-(58)
and (60) can now be solved. The initial conditions used
were identical to those used in solving the quantum kine-
tic model. To obtain a solution the constants C, and C,
are first eliminated from Eqs (58) and (60) using Eqs (56)
and (57). Egqs (58) and (60) must then be solved numeri-
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cally for the values of T, and T2. The two constants can
then be determined by substituting for T1 and T2 in Eqgs
(56) and (57). The cascade growth rate, n1<RI>, is calcu-
lated using

n1<RI> = n,C, f¢1/2RI(¢)e- YTH de (61)
: I

énd compared with the corresponding quantum kinetic rate.
Comparisons were made under two sets of conditionms.

First, Eqs (59) and (60) were solved approximately by as-
suning that most of the energy went into excitations. The
third term in Eq (58) and the third and fifth terms in Eq
(60) could then be neglected. Also, <e>was assumed to be
(5/2)T4. The equations were then resolved without any ap-
proximations(Appendix G). Results of the comparisons

will be discussed in Chapter IV.




IV. Analysis and Discussion

The results of each of the comparisons will be pre-
sented and discussed in this chapter. All compérisons
were made during the early portion of the electron cas-
cade, shortly after a steady state had been established.
The first portion of the chapter discusses the results of
the temperature model comparisons. The remainer of the
chapter will deal with the comparisons involving the im-

proved diffusion model and the two temperature model.

The Temperature Model

The comparisons between the temperature model and the
quantum kinetic model were made at several values of inci-
dent laser flux ranging from 5 x 107-1012W/cm2. The re-~
sults of these comparisons are presented in figs. 2 - 4
and table I. Fig. 2 is a plot of the cascade growth rate
as a function of flux for both the quantum kinetic and tem-
perature models. Figs. 3 and 4 are plots of the electron
distribution functions predicted by both models at 5 x 108
H/cm2 and 1011W/cm2 respectively. Table I summarizes the
apportionment of energy among the various loss mechanisms
for several values of incident flux.

A comparison of the growth rates predicted by each of
the models can be made from fig. 2. At higher fluxes,
those above 5 x 1O9W/cm2, the rates predicted by the tem-

perature model agree rather well with the quantum kinetic
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rates. Below 5 x 1O9W/cm2 the predictions of the two
models begin to diverge, disagreeing by more than four
orders of magnitude at 5 x 109W/cm2. The rates predicted
by the temperature model are much too large. This sug-
gests that at lower fluxes a maxwellian distribution func-
tion permits too many electrons of higher energy to exist.
This can be confirmed using fig. 3 which plots the two dis-
tribution functions for an incident flux of 5 x 1OSW/cm2.
At energies above 14 eV, the ionization energy of the
ground state, the quantum kinetic distribution function
predicts an electron density significantly smaller than
that of the temperature model. Fewer electrons are there-
fore available for ionizations and a lower growth rate re-
sults. In the region between 10.5 eV, the ground state
excitation threshold, and 14 eV the situation is reversed.
The electron density of the quantum kinetic model is now
greater than that of the temperature model. Thus, not
only does the temperature model predict an excessively
high growth rate, but it also permits fewer excitations
than the quantum kinétic model. Finally, below approxi-
mately 1.5 x 108W/cm2 the quantum kinetic growth rate be-
comes small enough that many of the neglected processes
become important. If these are taken into account, the
quantum kinetic growth rate would be reduced and break;
down might not occur. However, the temperature model rate
would remain unaffected and erroneously predict breakdown
at fluxes well below the breakdown threshold.

37




SO

N e e 1

1og( ~122(¢)) (ev=3/2)

Electron Energy (eV)
FPig. 3 Electron Distribution at 5x108vlcm2




L T e,

Focusing attention on the high fluxes, it can be seen
that the quantum kinetic curve of fig. 2 begins to diverge
from the temperature model curve above 1011W/cm2. Closer
study revealed that this divergence was artificially cre-
ated by the conditions under which the quantum kinetic model
was solved. At sufficiently high values of incident flux
a sizable number of electron will possess energies in ex-
cess of 25 eV; however, the procedure used to obtain a
numerical solution limits electrons to a maximum energy of
25 eV. Solution of the quantum kinetic model using 30, 40,
and 50 1-eV bins produced improved rates. As the number
of bins was increased, the quantum kinetic rates approach-
ed those of the temperature model. The effects of bin
size on the quantum kinetic rates was also investigated.

An increase to 2 eV and 3 eV bins resulted in a signifi-
cant increase in the growth rates while reducing the bin
size to .75 eV and .5 eV had little effect on the rates.
Therefore, the choice of 1 eV bin size appears to be
Justified.

An analysis of the energy gain and loss mechanisms
can be made using table I. The rate (eV/sec) at which an
electron absorbs energy from the radiation field is given
by €. The losses due to the different mechanisms are
given as a percentage of the energy gained. Losses which
result from ionization out of the second and third levels,
and excitations between these levels are not included

since these losses are 10 - 15 orders of magnitude smaller
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than the others and need not be considered.

The energy gain rates predicted by the two models
agree reasonably well over the entire range of incident
fluxes. This is to be expected since the classical micro-
wave heating rate used in the temperature model was de-
rived directly from the quantum kinetic rate for net brem-
sstrahlung absorption(Appendix C). Although the two rates
are independent of their respective distribution functions,
the small difference in the rates can be attributed to the
different average energies predicted by the two models(see

table II).

Table II
Average Electron Energy (eV)

Flux (W/cme) <€>
™ QK
5 x 107 1.65  2.84
108 1.80  2.93
5x108  2.25  3.29
107 2.45  3.53
5 x 10° 3.26  4.34
1010 3.81  4.86
5x100  6.30 6.90
10" 8.84  9.41
41




At fluxes above 5 x 109W/cm2 the two models agree
rather well in their predictions of energy lost to ground
state ionization, R%. However, at fluxes below 5 x 109

W/cm2

the predictions of the two models begin to diverge,
with the temperature model predicting a significantly larg-
er loss to ionization than the quantum kinetic model. This
supports an earlier conclusion, made on the basis of fig.
3, that at lower fluxes the temperature model allows too
many electrons of higher energy to exist. Additional sup-
port can be found by analyzing € the energy required to
bring newly born electrons into the distribution at the
average energy. At lower fluxes the larger temperature
model growth rate requires a much larger € than does the
quantum kinetic rate. This in spite of the fact that the
average quantum kinetic energy is larger than the average
temperature model energy(see table II).

It can be seen I{rom table I that relatively little
energy is lost to excitations between the first and third
atomic levels, R:B' This suggests that the third atomic
level might be eliminated with negligible effect on the
growth rate. Table III sumharizes the cascade growth rates
predicted for both a two level and three level atom. The
growth rates for the two level atom were obtained under
the same conditions as those for the three level atom.

The results indicate an increase in the growth rates as
might be expected. However, the increases are small enough

that the third level can be neglected in most calculations.
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Table III

Cascade Growth Rates for

Two and Three Level Atoms
Flux ™ QK

2 3 2 3

10 4.65x10°  4.46x10° 2.94x10°  2.51%10°
5108  4.37%107  4.14x107  1.66x10°  1.44x10°
5107  1.11x107  1.02x10°  7.76x108  6.86x10°
51070 2.98x101° 19
10" 8.32x10"°

8

2.70x101°

010

2.68x101°  2.94x10
2.40x101° 5.91%x107° 5.36x1

Referring again to table I, the energy loss to exci-
tations between the ground state and second atomic level,
sz, can be analyzed. At the higher fluxes the two quels
once again predict similar losses. However, at lower
fluxes the temperature model predicts a smaller excitation
loss than the quantum kinetic model. In both models, ex-
citations are the principal loss mechanism and account for
up to 90 - 100% of the energy loss at lower fluxes. Thus,
the lower excitation losses predicted by the temperature
model allow much more energy to be available for ioniza-
tions and increased growth rates result.

Finally, the energy balance equation can be rewritten

X
1 X
R = Ee%; - -I%<R‘12)n'| (62)

43

AR Y A SBED A RS IINIOr  7




l‘ e o S s RS S SO

where a two level atom was assumed and R is the cascade
growth rate. From Eq (62) it can be seen that as long as
the energy lost to excitations is significant the growth
rate will depend strongly on the distribution function
through <R¥2>. Therefore if the growth rates predicted
by the two models are to agree, their distribution func-
tions must be similar. At ’IOMW/cm2 fig. 4 shows the dis-
tribution functions of the two models to be quite similar
and fig. 2 indicates that the predicted growth rates are

almost identical. Conversely, at 5 x ’IOBW/cm2

fig. 3 re-
veals two significantly different distribution functions
and fig. 2 confirms an order of magnitude difference in
the growth rates.

The results of the comparisons obtained through the
manipulation of the rates and energy levels will now be

discussed. Eq (19), the ground state ionization rate pre-

dicted by the temperature model, can be rewritten as

. n'ﬂ%[n né xRx]I/x (63)
e 1 o
where R is the cascade growth rate and a two level atom is
assumed. Using Eq (63), the effect of the manipulations
on the growth rate can be predicted in most cases. How-
ever, since Eq (63) was obtained using the temperature
model, it cannot be expected to accurately predict quantum
kinetic model results.

Table IV presents the results of comparisons made by
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manipulating the excitation rate, Rfe. Eq (63) predicts
that the growth rate should increase as R¥2 decreases and
decrease as R¥2 increases. Table IV confirms this at all
values of flux for both the temperature and quantum kinetic
models. Eq (63) also accurately predicts the new values of
the temperature model rates. A closer comparison of the
rates in table IV reveals that for .5 R¥2 the predictions
of the two models agree at fluxes as low as 108W/cm2, while
for 10 Rfa the rates of the two models show increased dis-
agreement. This is not unexpected and can be explained
using energy considerations. Since at lower fluxes almost
all the energy is lost to excitations, a decrease of 50%
in the excitation cross section will shift considerable
energy into ionization. Thus, the energy balance will be
similar to that which exists at higher fluxes and the
growth rates, as predicted by Eq (62), will no longer be

as strongly affected by small differences between the two
distribution functions. At 10 R§2 the reverse will be
true. More energy will be forced into excitations and the
growth rates of the two models will now disagree at fluxes
up to 5 x 107W/cn?.

The results of the comparisons involving the ioniza=-
tion rate, R}, are found in table V. For .5 R; the growth
rates decrease as expected and the temperature model rates
are close to the values predicted by Eq (63). For 10 Rﬁ
the growth rates increase, but the temperature model rates

do not increase to the extent predicted by Eq (63). This
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happens because the increased ionization cross section
permits more ionizations at lower energies and causes a
corresponding decrease in the electron temperature. Since
<RI> is given approximately by Rie'I/T, the decrease in T
will offset part of the increase in Rg. A comparison of
the growth rates predicted by the two models reveals lit-
tle change. At low fluxes the temperature model still
predicts a considerably higher growth rate. This is to be
expected since the change in the ionization cross section
has little effect on the amount of energy going into exci-
tations. At high fluxes, the agreement between the rates
predicted by the two models is maintained with one excep-
tion: the quantum kinetic growth rate for .5 R% at 1011
W/cm2 is too low. Reducing the ionization cross section
by 50% increases the number of electrons which possess
energy above 14 eV. To properly account for this larger
number of "high energy electrons" the quantum kinetic
equation must be solved using an increased number of bins.
If this is done the quantum kinetic growth rate for .5 R%
at ‘loﬂw/cm2 will approsch the higher temperature model
rate.

A change in the ground state energy of the atom will
affect the cascade growth rate through changes in both the
ionization energy of the ground state and the excitation
energy between the ground state and the first excited
state. Table VI lists the growth rates which result when

the ground state energy is changed. Eq (63) correctly
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predicts the new values of the temperature model rates.

An increase in the ground state energy(I1 = 13) produces

a smaller growth rate while a decrease in the ground state
energy(I1 = 15) yields a larger rate. However, Eq (63)
predicts the wrong trend for the quantum kinetic rates at
5x 1010 and 1Oq1W/cm2. At these fluxes table VI shows
that an increase in the ground state energy raises the
growth rate rather than lowering it as predicted by Eq
(63). Similarly, a decrease in the ground state energy
produces a lower growth rate. At these fluxes, a signi-
ficant amount of energy is lost to ionization and the as-
sumptions which were made in deriving Eq (63) lose their
validity. The change in the growth rate becomes a strong-
er function of I, and can be better predicted from Eq
(62). At the lower fluxes Eq (63) is valid and predicts
the correct trend of the quantum kinetic rates. Comparing
the quantum kinetic and temperature model growth rates, a
slight improvement in the agreement of the two models is
noted for I,=15. Conversely, setting 11-13 produces a
slightly greater disagreement between the rates of the two
models. This can be explained by assuming that for a con-
stant € the electrons diffuse along the energy axis at a
constant velocity. Let tr be the time required for an
electron to attain sufficient energy(I1) to cause an ion-
ization; then (1-x1/I1)tI is the fraction of t; during
which excitations can occur without competition from
ionization. Thus, a smaller valug of (1=-x9/I4)tp will
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