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Preface

Although the phenomenon of laser induced gas break-

down has been extensively studied for several years, lit-

tle progress has been made in developing a simple model

which can quickly and accurately predict breakdown at low

values of incident flux. The investigations described in

this thesis represent an attempt to develop such a model.

While success was limited, it is hoped that the informa-

tion presented here might prove to be a valuable starting

point for anyone desiring to continue investigation of

this problem.

I would like to extend my sincere appreciation to my

advisor, Capt. P. E. Nielsen, who suggested this problem

and provided the guidance needed to successfully complete

this project. I would also like to thank Mrs. Mildred C.

Kelley for her aid in the proofreading and preparation of

the final report.

Finally, my deepest appreciation is extended to my

wife, Mary, who was a source of encouragement and inspi-

ration not only during this project, but throughout my

eighteen months of study at APIT.
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Abstract

An attempt is made to develop a simple yet accu—

rate gas breakdown model which can be easily coupled to

the hydrodynamic equations governing fluid flow in laser—

target interactions. The accuracy of three relatively

simple models is investigated. Each is compared with the

more accurate and complex quantum kinetic model, to deter—

mine the conditions under which it maintains reasonable

accuracy. A gas consisting of a single monatomic species

is assumed and attention is restricted to the early por-

tion of the electron cascade. A temperature model is

found to agree reasonably well with the quantum kinetic

model at values of incident laser flux greater than 5 x

~~ V/cm2. A diffusion model is found to yield similar

results. A two—temperature model, which is derived in

an attempt to extend the range of the temperature model

to lower values oV incident flux, is found to be invalid.
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I. Introduction

The breakdown threshold of the atmosphere imposes an

upper limit on the amount of energy which can be propagated

through the atmosphere by a laser. Below this rather well

pronounced threshold intensity, the atmosphere is relative—

$ ly transparent to the laser beam. However, once the thres-

hold is exceeded cascade ionization ensues. Naturally

occurring electrons are rapidly heated by the laser radi-

ation. Those attaining sufficient energy ionize neutral

species and create more electrons. The net result is the

formation of a highly ionized plasma which severely atten-

uates the beam. Similarly, vapor emerging from a target

irradiated by a laser can break down and shield the tar-

get from further deposition of laser radiation.

Under the sustained action of a laser, several inte-

resting post—breakdown effects will emerge. The newly

formed plasma continues to absorb almost all the energy

incident on it, heating the gas in the absorption region

to very high temperatures. As this relatively small vol—

ume of gas begins to expand , the surrounding air is heated

and becomes ionized. This causes a new layer of gas capa-

ble of absorbing energy to be formed within the beam ’s

column, and a “laser absorption wave ” will propagate to—

wards the laser ,decoupling it from the target. At very

high laser intensities, the hot gases will expand so ra—

pidly that a shock wave , capable of interacting with the

I
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target,will be formed.

If these hydrodyriamic phenomena associated with laser—

target interaction are to be properly analyzed, an accurate

prediction of the breakdown threshold is required. Present

calculations of breakdown phenomena(the quantum kinetic

model) use lengthy computer programs which, even when sim-

plified, require an average of 30 seconds for each run.

These calculations must be repeated at least 300 times for

each centimeter the shock wave travels. Consequently,

there exists a need for a simple yet accurate breakdown

model which could be easily coupled to the equations gov-

erning fluid flow in a laser—target interaction.

In an effort to find such a model, three relatively

simple breakdown models were investigated. The accuracy

of each was determined through a comparison with the more

accurate quantum kinetic model. Primary emphasis was

placed on comparisons involving a temperature model. This

model assumes a maxwellian distribution of free electrons.

The second model compared, a diffusion model, assumes that
• electron heating can be represented as a diffusion of free
• 

electrons along the energy axis. Finally, a two—temper—

• ature model which assumes a segmented electron distribu-

tion function was developed and its results compared to

those of the quantum kinetic model.

A brief review of the theory involved in laser induced

gas breakdown is presented in Chapter II. Chapter III

provides a discription of both the comparisons made 
and2
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the models compared. Results are presented and discussed

in Chapter IV followed by conclusions and recommendations

in Chapter V.
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II. Backround

Although the breakdown of gases has been studied ex-

tensively for many years, gas breakdown under the action

of radiation at optical frequencies is a more recently ob—

served(1962) phenomenon. Since fluxes intense enough to

produce breakdown at optical frequencies can only be pro-

duced by a laser, it is within this context that the phe-

nomenon is studied. The theory involved has been firmly

established and will be discussed in this chapter. The

first part of this chapter is devoted to a qualitative

discussion of the processes involved, while the remainder

of the chapter will deal with some of the major theories

utilized to explain breakdown.

Breakdown (A Qualitative Discussion)

The breakdown of a gas will occur if, during the time

of the laser pulse, the gas can absorb enough energy to

achieve and maintain a high degree of ionization. Pro-

cesses which could account for this ionization are the ab-

sorption of photons by a neutral atom, inelastic colli—

sions between atoms and electrons, and a combination of

both processes. Those processes which could reduce the

degree of ionization are the recombination of electrons

and ions, and the diffusion of the charged particles from

the volume of the gas upon which the laser radiation is

incident.

4
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The direct ionization of atoms by laser photons was

studied extensively by Keldysh(Ref 1). Since, in most

cases, the value of the ionization energy(5—20 eV) is much

greater than the photon energy(0.1—I.5 eV) it is impossi-

ble for one photon to ionize the atom. However, if 1/fiw

photons can be absorbed simultaneously by an atomic elect-

ron, ionization would be possible. At atmospheric pres-

sure the laser intensities required to produce breakdown

by this mechanism are much greater than those under which

breakdown is observed experimentally. Thus, the “multi—

quantum photoeffect” is not considered to be a likely

breakdown mechanism.

The process of electron cascade ionization(Ref 2)

has been accepted as the mechanism most likely involved

in breakdown. The cascade can begin with a single “prim-

ing electron”. This electron absorbs light quanta during

collisions with atoms. Along with this inverse bremsstrah—

lung absorption of energy by the electrons there occurs a

stimulated bremsstrahlung emission. The absorption, how-

ever, is more likely than emission so that over a period

of time a net absorption of energy occurs. This net ab-

sorption of energy can be thought of as a diffusion of the

electron along a one—dimensional energy axis. If excita—

tional processes are temporarily ignored, the energy of tne

electron will continue to increase until it exceeds the

ionization potential of the neutral atoms. It will then

collide inelastically with one of the atoms and ionize it.

5
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The result will be two electrons of very low energy re-

placing the one electron with energy slightly greater than

I. These two electrons can now absorb energy and repeat

the process. This cascade will continue until breakdown

is achieved.

Energetic electrons, however , are also capable of

causing excitations. Since excitation requires less en-

ergy than ionization a~i electron may lose its energy to

excitation many times before acquiring an energy suffi-

cient for an ionization. Under conditions of sufficiently

high flux, atoms excited into higher atomic states can be

rapidly ionized by the absorption of two or three quanta.

In this case an excitation is equivalent to an ionization

and the cascade continues unhindered. At lower fluxes and

photon energies of less than about I eV, photoionization

of the excited states becomes unlikely(for the same reason

as mu].tiphoton ionization) and energy going into excita-

tions slows the development of the cascade. Once an atom

is excited the probability that it will encounter a second

electron and be ionized is extremely small except during

the latter stages of the cascade when the density of elec-

trons and excited atoms is high(Ref 3:658).

The development of the cascade can also be hindered

by diffusion of the free electrons from the region of ac-

tion of the incident radiation. The diffusion losses will

be smaller at higher pressures and larger beam diameters.

At fluxes of interest(8>107W/cm2), diffusion losses c
an6



IH
be assumed to be negligible at pressures greater than I

0 atm and beam diameters larger than IO 2cm (Ref 2:773).

Another mechanism that will hinder the cascade is three

body recombinations. This mechanism, however, is not con-

sidered significant since losses due to it will only be

observed very late in the cascade.

Since at least one electron must be present for the

cascade to proceed , the question of the origin of the first

electron is often raised. The presence of a small quantity

of easily ionizable impurity atoms is one source. The pro-

duction of the first electron can then occur as a result

of photoionization or collision involving the impurity

atom. Another source of electrons is the atmosphere. Non—

equilibrium atmospheric effects such as cosmic radiation

result in an average free electron density of 100/cm2.

Therefore, under appropriate conditions, the first elec-

tron can be found.

Finally, il R is defined to be the cascade growth

rate then the number of free electrons at any time t can

be expressed by

(I)

where n is the initial free electron density. Now , if

• the breakdown criterion is chosen to be the achievement

of a epecific electron population n , then the time re—

quired for breakdown to occur is given by

7



t1 = rln(n~/n) (2)

where r= h R  is the cascade time constant. As can be

seen from Eq (2) the occurrence of breakdown is not strong-

ly dependent on the initial electron density. It is, how—

ever , highly dependent on the time constant r which is in

turn a strong function of the laser flux. it is for this

reason that an abrupt breakdown threshold is found to

exist (Ref 3:657).

The Boltzmann Equation

Early investigations revealed that the problem of

• laser induced gas breakdown could be best approached through

the use of the Boitzmann equation

• ~~~~~~~~~~~~~~~~~ (3)
V coil

where f is the electron distribution function , ~ the elec-

tron velocity , ~ the electron acceleration , and
• coil

represent s the change in f due to collisional processes.

• Under the assumption of spatial homogeneity of f the se-

cond term in Eq (3) vanishes.

In a manner identical to that used for microwave

bx eakdown(Ref 4), an electron heating term can be derived.

This term describes the rate at which an electron , acted

upon by a field, gains energy on collision with an atom.

8
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Under these conditions Newton’s equation of motion for the

electrons can be written as(Ref 4:170)

+ = e~ ~~~~ (4.)

where v is the electron—atom collision frequency, e the

electronic charge, and w is the angular frequency of the

applied field, ~~. Solving Eq (4) for ~ yields

—iwt
V = lfle(• v

_iw) (5)

The third term of Eq (3) can be rewritten as

~ (mi ) ~~ (6)

so that with ~~ = ~~ e~~
’
~ and ~ given by Eq (5), Eq (6)

averaged over a period becomes

v~f 
me(:

2+~
2)

This equation can also be derived in a more rigorous man—

• ner directly from the Boltzmann equation(Ref 4:46-47,166).

Substituting Eq (7) into Eq (3) yields a final form for

the Boltzmann equation

8~~
) 

+ ~~_. 8 (i) 
COil 

(8)

9
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where f is defined to be a function of energy and ~ is

given by

ne e2 S v

2 2 (9)
+w )

where the substitution S = (E0/2)E
2c was made in Eq (‘7), S

• being the laser flux in W/cm2. Included in the collision

term on the right side of Eq (8) are the rates of excita-

tion and ionization as well as the rates of any other sig-

nificant collisional processes.

A Temperature Model

It the collisional terms are written out explicitly

Eq (8) becomes

~f(e) t ôf(~) -at + 

~e ~~ 
-

£ fl~R~ (c)f(~~) + £ n~R~ (~~ + x. )f ( t  + x.
i,j)i ii ij

— Z n  R’(~)f(~) + ~ n R1( i  + I ) t ( i + I )
• i i i  j j j  j  3

• + 1(’) £ n (R~(t)f(~~dE + (10)

where and are the rates for excitation and ioniza—

tioii, Xj j  end I~ represent the excitation and ionization

•n.rgiee, end the are the population densit ies of the

various atomic levels. The first four terms on the right

10



side of Eq (10) represent the rate at which electrons of

energy E are either gained or lost to the distribution as

a result of excitation and ionization of atoms. The fifth

term represents the rate at which electrons of zero energy

are created by ionization. The last term, ~~, represents

all reverse rates(deexcitations, recombinations) and is

assumed to be small during the early stages of breakdown

if most of the atoms are originally assumed to be in a

ground state.

Now, if the gas is assumed to be made up of atoms

which possess a nucleus and two electronic levels, a ground

state and an excited state , Eq (10) simplifies to

Of(i) ~~ 
or( ) 

—+ 
‘~e ~~ 

-

• _n1RX (E ) f (E)  + n1R~~ E + x)f (E+ x)

—n R1( f ) f (E )  + n1R
’( i + I)f( £ + I)

+ j (I)7n1R ’( c) f (t )  d~ (11)

At this point, the exact form of the electron distribution

function is unknown. If it is assumed to be maxwellian ,

1/2
- ~ 

T312 
e i T (12)

I
where T is the electron temperature , then a temperature

_ _  
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model approach towards breakdown will emerge. Taking the

zeroth energy moment of Eq (11) yields an equation for elec-

tron growth(Appendix C)

dn
= (R5 nenl (13)

where <p5, the ionization rate , is a function of temper-

ature, obtained by averaging R’ over all energy . Taking

the first energy moment yields an energy balance equation

(Appendix C)

= 1. - x<R
X) n1 — I(R5 n1

— e� ~ (14)

where (), the average energy in eV, is given by T.

Eqs (13)—(14) taken together can be used to investigate

and predict many of the phenomena involved in breakdown

and are often referred to as a “temperature model” .

The conditions required for breakdown can now be es-

timated using Eqs (13)—(14.). Under the assumption that

• the average electron energy equilibrates raPidlY(teq~
.I7)

Eq (14) becomes

f. - x<RX) n.1 + 1(R’) ni + (iXR’) xii (15)

where Eq (13) was also used. The rates can be expressed

12
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as(Ref 5:388—390)

(RX) R~ e~~
/’T (16)

and <H’> = R~ e~~
’T (17)

• where R~ and R~ are slowly varying functions of T which

can be assumed constant. For R~~ R~ the last two terms on

the right side of Eq (15) can be ignored. Solving Eq (15)
for e~~~’T yields

e~~u’T 
= 

________  

‘ (18)

~~~~~ H0

Now , if both sides of Eq (18) are raised to the I/x power

and the results substituted into Eq (17), (R5 becomes

r ,I/x
• (R’) = R’I ~ I (19)

° Lne3
~l~

c R~J
Solving Eq (13) for 

~e 
and applying the breakdown criterion

yields

• ~~., - ln(n /n)  [ e~s 
2 2 

11/x 
• (20)

n1R~ Lni
x R~mec 0(v +w )J

which is Eq (2) with r = 1/n1(R’), and replaced by Eq (9).

Thus, for a given laser intensitS 8, breakdown will occur

only if the laser pulse length meets the criterion of

Eq (20).



The conditiona under which the assumption of a temp-

erature is valid will be discussed later in this report

(Chapter IV.)

The Quantum Kinetic Equation

The classical electron heating rate of Eq (9) was
• originally derived for use in microwave breakdown studies

and assumes a continuous absorption of energy by the elec-

tron. At microwave frequencies this assumption is valid

since the energy of each photon is small, and the average

energy per collision absorbed by an electron(as calculated

by Eq 9) is many times the energy of a single photon. At

optical frequencies the energy of a photon becomes appre-

ciable and the average energy per collision absorbed by an

electron is only a small fraction of the energy of a sin-

gle photon. Thus, an electron will experience many colli-

sions which do not involve the absorption of energy and a

quantum mechanical approach should be taken(Ref 3:657).

The heating of electrons by the radiation is the net

result of two competing processes. The first, bremsstrah—

lung absorption, occurs when an electron absorbs a photon

• from the radiation field during collisions with atoms or
• ions. The second, bremsstrahlung emission, occurs when an

electron is stimulated by the radiation field to emit a

photon upon collision with an atom or ion. A coefficient

of bremsstrah~.ung absorption can be derived quantum mecha-

nically and is given by(Ref 6:54.0)

14



a(s) = 2e2 
21 )11/2~~~~~/2) C (~+ hw/2) (21)

3m0cc0i’. L me J m

where is the electron energy, ?i~~ is the energy of the

photon absorbed, and Cm is the momentum transfer cross

section of the electron—atom pair. A coefficient of brem—

sstrahiung emission can be obtained from Eq (21) using mic—

roreversibility (Ref 2:774)

1/2
b( ~ + ?is~.) = a( )[~+~~~] 

(22)

Now, if the quantum mechanical rates for bremsstrahlung

emission and absorption are used to replace the microwave

heating term in Eq (10) the resulting quantum kinetic

equation will be

af~’) 
= Fna(a((_ ?tw)f(~~- lii.) - [a(E) +

+ b(+ ti~. )f (f +  ~~~ — £ fl~R~ (‘)f(’)
i~j)si

+ ~ ~~1
n~R~3(’+ 

x
~3

)f(I+ Xjj
) — £

+ £n 3
R~(i + I3

)f(~+ I~)

+ E)  £ ~ 7R~~(~~~~r E d E  (23)
• 3

where P is the photon flux(#/cm
2—sec) end is the total

15
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number of atoms. The first term on the right hand side of

Eq (23) is the rate at which electrons of energy ~ are

gained as a result of bremsstrahlung absorption and emis-

sion.

~ Diffusion Model

As previously mentioned the heating of the electrons

by a laser can be viewed as a diffusion of electrons along

the energy axis. This approach was originally presented

by Zeldovich and ~aizer(Ref 2). Eq (23) can be rewritten

in the form

= Fna{a(1_ hw)t(— hw) — [a ( )  + b ( E ) ] f ( E )

+ b(e+ ~w)f( + tiw)~ + Q (24)

where Q includes all, electron energy gain and loss mecha-

nisms not specifically written out. In the region near

the excitation and ionization energies ~~w/~ is a small

quantity and the bremsstrah].ung absorption and emission

terms can be expanded in a Taylor series in powers of

Retaining terms to second order results in

(Ref 2:775)

(25)

16



J = — D 8
~~2 + u f ( c )  (26 )

where D = 

~~ ~~~~~~~~~~~ 
+ b(~~] (27)

and u = Pna1i~~
[a(f) — b( )] — (28)

Eqs (25)—(26) represent a diffusion of electrons along the

energy axis. D is the diffusion coefficient, u is the net

velocity of the electrons along the energy axis, and Q re-
presents an electron “source ” . Eqs (27)—(28 ) can be sim—

plified further by expanding b(’) in terms of !1~ /E

• yielding(Ref 2:775)

D = 
~~~~~~~~~~~ 

(29)

u = ~~~ (30)

it ~ is assumed to be zero (no sources), Eq (25) can be

multiplied by and integrated over all energy so that in

the limit as tIw /E—~ O it becomes(Ref 2:776)

• d~t> e2Sv (31)
mec 
(
ow

where v was defined to be At optical frequencies

~2~< and Eq (31) agrees with Eq (9) which gives the

classically defined electron heating rate . Thus, it can

& be seen that the quantum kinetic model reduces to the

~~~~~~~

• 

• -  - 
~~~~~~~~~~~~~~~~~~~~~~~



correct classical limit as ?1~/E- 0, and for tiw/t small

the classical heating rate, è , can be used to accurately

describe the net bremsstrahlung absorption of laser radia-

tion.

The exact method of solution of Eq (25) is not impor-

tant, but the results does have a natural physical inter—

pertation which should be discussed. Q, in Eq (25), can be

replaced by a boundary condition involving the probability

of ionization. The electrons are then assumed to increase

in energy until they reach ‘a’ an energy 1—3 eV greater

than the ionization potential. Having reached this energy

the electrons will lose their energy to ionization with a

probability a and to excitation with a probility 1— a.

Under these conditions Eq (25) can be solved for the cas-

cade time constant(Ref 2:777)

T = ta/a (32)

• where ta I /3u is the time it takes an electron to grow

• in energy from 0 to ‘a’ and 1/a represents the number of

times this cycle must be repeated before an ionization

occurs. Thus, the electron growth rate, R = 1/v, depends

on the laser flux through ta and on the properties of the

gas through a. This is consistent with the results of the

temperature model.

18
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III . Approach

If a comparison of the results of a temperature model

with those of the more accurate quantum kinetic model is

to be valid care must be taken to insure that each model is

solved under similar conditions. The first part of this

• chapter discusses the various assumptions made to develop

self consistent models. The remainder of the chapter out-

lines the solution of the models and the comparisons made.

The Model Atom

The gas upon which the laser energy is incident con-

sists of a single atomic species. The atom has a mass of

15 amu and consists of a core arid one electron. Three

energy levels are permitted: a ground state at —14 eV, a

first excited state at —3.5 eV, and a second excited state

at —1.54 eV. Ionizations can occur from any state and

transitions are allowed between any two levels. Multiple

ionizations of an atom are ignored. The temperature of

the gas (atoms and ions) is assumed to remain constant

until late in the cascade when heating by the electrons

becomes significant.

Cross Sections and Rates

Cross sections and rates for the various processes

involved in breakdown were either chosen or calculated so

as to insure complete correspondence between the quantum
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kinetic rate and its temperature model counterpart. The

0 quantum kinetic rates for ionization and excitation were

determined using analytic formulas

R(i) o’(~) (33)

wherea’() is the cross section for either ionization or

excitation. Substituting the ionization cross section

into Eq (33) yields(Ref 5:392)

R~ (1) = 
(kirE )2 

~~~ E
3/2(E_ ~.) £21. (34)

where R~ is the ionization rate for the jth level and

is the corresponding ionization energy. In a similar man—

ner an excitation rate can be obtained(Ref 5:396)

= 

(kiTE )
2 3• 3

3f 13
_3/2(~_ x~~) ~~~~ (35)

where R~3 
is the excitation rate from level i to level 3 ,

Xj4 is the excitation energy, and f •4  the oscillatorp U
strength for absorption. As can be seen from Fig I these

• analytic rates compare favorably with similar data obtained

experimentally(Ref 7:115).

The corresponding temperature model rates were obtain—

• ed by multiplying the quantum kinetic rates by a Maxwell—

Boltzmann distribution function and integrating over all

energy. The ionization rate is

20
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R~ (T) - 
~~~~~~~~~~~ 

TV~ 
[e~~j

/’T 
+ E~(—I~/T)] (36)

where E~ 
is a tabu lated integral defined by

I t
E~ (x) - ff. dt (37)

Similarly, the excitation rate is given by

3/2 14.
2 ~Ve 3f .

o~ i1 I i X. . T
— 2 1/2 L~ ~~,JçQl.vE0) x~3

+ 4~ 
Ej(_x i j/T)J (38)

A complete treatment of the above cross sections and rates,

along with a table of numerical formulas, can be found in

Appendicies A and B. Rates for deexcitation and recombi—

• nation were not computed since they were ignored in the

solution of the equations.

Finally, a value for the electron—atom momentum trans—

• far cross section , °m = 7.1 x 10~~
6cm2, was taken from

Brown(Ref 7:5). This cross section is used to compute the

value of v in Eq (9) and also to compute a( ’) in Eq (21).

A cross section for electron—ion collisions was not cal—

culated since electron—ion collisions were ignored.

22
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The Quantum Kinetic Model

For the three level model atom assumed the quantum

kinetic equation can be written as

= Fna fa ( _ ?iw)f (E— ti~i~) — [a(e) +

+ b(i+ ?lw)f( + tw)} — £ n .R~ (E)f (E)i,j>i 1 lj

+ £ n
~
R
~ (‘+ x. )f(E + x. ) — E n.R’(E)f(E)• i,j>i ij

+ En R’(E+ I )f(~~
. I )

• i i i  3 3

•1
+ 1(E) £ fl /R3

(i)f(~)de (23)
3 0

The first term on the right side of Eq (23) represents the

rate at which electrons of energy £ are gained as a result

of bremsstrahlung absorption and emission. The coeffi-

cients a and b are given by Eqs (21)—(22); F is the photon

• flux(#/cm2—sec ) and is the total number of atoms

(#/cm3). The next two terms of Eq (23), involving R~3,
represent the rate at which electrons of energy t are

• lost as a result of excitations. The summation over i

goes from I to 3 and the R~3 are given by Eq (35). The

fj .fth and sixth terms of Eq (23) represent the rate at

which electrons of energy i are lost as a result of

ionizations. The summation over 3 goes from I to 3 and

the R~ are given by Eq (34). Finally, the last term of
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Eq (23) represents the rate at which electrons with zero

energy are created by ionizations from each of the three

atomic levels.

There are several assumptions implicit in Eq (23)

that should be mentioned. First , the diameter of the

incident laser beam is assumed to be large ( -. 1 cm) .

Diffusion of electrons from the region of the beam ’s

action will then be minimal(TD_ .IO 6sec) and can be

neglected. During the early portion of the cascade ,

electron—ion collisions will be rare and can be neg-

lected. This eliminates the need to consider the

bremsstrahlung heating of electrons by ions, and triple

body recombination resulting from the collision of an

ion and two electrons. For a similar reason , electron—

electron collisions can be ignored. Finally, the deexci—

tation of atoms is neglected. The energy lost to deexci—

tations is very small and the rate of ionization from the

excited states is not strongly affected.

Besides Eq (23), three other equations contribute

to the quantum kinetic description of breakdown. These

are the equations governing the change in the popula—

tion of the three atomic levels

+ <R~2(’)> + cR~3
(i)~] (39)

— n~n5[cR~ ( )  + (R~3(E) >I (40)
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= 
~I
ne<~~3

t:T)> + 
~
‘
~2
ne
(
~~3

t:o)> — 

~3
’
~e~~~~~~ 

(41)

where <R ( ’)>  is the energy average of the corresponding

rate. These equations together with Eq (23) can now be

solved numerically using methods similar to those of Ref 8

(see Appendix D). It should be noted that a good estimate

of the cascade growth rate can be obtained by solving Eq

(23) independent of Eqs (39)—(41) using the initial values

of r~1, r~2, n3. However , Eqs (39)—(41), as well as other

effects, become important if a solution is to be carried

to breakdown.

The Temperature Model

In an effort to insure self—consistency, the temp-

erature model equations are obtained directly from the

quantum kinetic equations . For ?lw/f assumed small , the

bremsstrahlu.ng absorption and emission terms in Eq (23)

can be replaced by the microwave heating term , Eq (9).

The electron distribution function, an unknown in Eq (23),

is assumed to be maxwellian

1/2 ‘IT1(t) 
=4 

~ 5f2 
e (42)

If Eq (23), as modified, is integrated over all energy

the zeroth energy moment of the Boltzmann equation will

result
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dn
= £ n~(R~> (43)

where the(R~)are now averages over a maxwellian, and

are a function of temperature. Eq (43) describes the rate

of growth of free electrons. Eq (23) can also be multi-

plied by £ and integrated over all energy to obtain the

first energy moment of the Boltzmann equation

____  
I

dt 
~~

— 

~~~>~
nixij(R~j> 

- (1i4)

where ct>= (3/2)T is the average electron energy. Eq (114)

describes the rate of growth of the average tree electron

energy. To complete the description of the temperature

model Eqs (39)—(41) must be included with Eqs (43)_(L~4).

The rates in these equations are all functions of temper-

ature and are the result of averaging over a maxwellian.

A more complete derivation of the temperature model can

be found in appendix C.

• The assumptions involved in the temperature model are

identical with those of the quantum kinetic model with two

exceptions. The bremsstrahlung emission and absorption

terms were replaced by a microwave heating term. For twIt
small the two terms will yield the same electron heating

rate so that consistency is maintained. The second excep—
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tion involves electron—electron collisions. If the max—

wellian nature of the electron distribution is to be main-

tained, electron—electron collisions must be at least im-
plicitly allowed. Since it is the validity of the assump-

tion of a maxwellian that is being tested, this will not

cause a conflict.

The temperature model equations are solved numeri-

cally using a procedure outlined in appendix E.

Solution and Comparison

The two breakdown models have been solved under a

variety of conditions to obtain a comparison of the re-

sults and behavior of each model . Certain initial condi-
tions were imposed and remained fixed for all comparisons.

The laser radiation was assumed to have a wavelength of

1O.6,& • This fixes the energy of a photon at .12 eV. The

initial density of ground state atoms was assumed to be
2.5x 1019/cm3. The initial temperature of the gas was set

at .1 eV. This condition fixed the initial population den-

sity of the first and. second excited states as well as the
• total number of atoms initially present. The cascade was

• assumed to proceed from an initial free electron density of

100/cm3. Since solution of the quantum kinetic model re—

quires that the energy axis be divided into bins(see ap—

pendix D), a standard of 25—1eV bins was chosen.

Under these conditions the two models were solved

utilizing the rates found in table X (Appendix B). The

2?
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cascade growth rates predicted by each model were computed

for a wide range of incident flux densities(5 x ~~ — io12

V/cm2) and compared. A study of the apportionment of en-

ergy among the various loss mechanisms suggested that a

comparison of the growth rates predicted by the two models

be performed assuming a two level atom. Finally, the re-

sults of the quantum kinetic model were compared for vari-

ous bin widths.

To determine the effects of manipulation of energy

levels and ionization and excitation rates, comparisons of

the growth rates were made under the following conditions:

~ ~~2 
increased by a factor of 10.

2. I
~ 2 

decreased by .5

3. increased by a factor of 10.

4. R~ decreased by .5

5. Ground state energy raised to —13 eV.

6. Ground state energy lowered to —15 eV.

7. 1st excited state energy raised to —2.5 eV.

8. let excited state energy lowered to -4.5 eV.

The results of all comparisons performed will be

discussed in Chapter IV.

An Improved Diffusion Model

In an attempt to find a breakdown model applicable

over a wider range of incident fluxes, the improved dif—

fusion model of Vyskrebentaev and Raizer(Ref 9) was stu—

died. Unlike the old model of Zeldovich and Raizer,
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excitations are treated specifically rather than being

lumped into a generalized term, Q. Assuming a two level

atom, Eq (25) can be modified to(Ref 9:33)

arcs) 
= — — h(t)f(E)v* (45)

(0 for t<x
where h(e) - a (46)

~1 for X~
C (<Ia

The energy Xa is defined to be approximately 1eV greater

than the excitation energy, x, while ‘a is 1eV greater

than the ionization energy, I. In the interval from

to ‘a’ the average excitation rate, v~~, is assumed con-

stant.

Eq (Li.5) can be solved with the aid of several bound-

ary conditions. At l XaI f ( t )  and df(i)/dt are assumed

to be continuous. All electrons reaching ‘a are assumed to

lose their energy to ionization with a probability $ and

to excitation with a probability (1—13) so that f(Ia) = 0.

Finally, the rate at which electrons appear with energy

zero equals the rate of excitation in the interval

plus twice the rate of ionization(this accounts for newly

born electrons). Under these conditions Eq (11.5) yields a

transcendental equation for the cascade growth rate, v~(Ref

9:34),

29
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fr
e~~~

1 [cosh(~) + z sinh(~)]— e~~~~~~~ [cosh(~)

— z sinh (~ )] — 2a(I+13)y — 2(1—z 2
)fy coshf(a—I)y]

+ sirih [(a—I )yJ — ay} = 0 (14.7)

where y = + v*)xa/(E:/ne) (48)

z =VI + v*/~T (14.9)

a = (50)

Before Eq (47) can be solved $3, v , and C must be evaluated.

The value of 13 is obtained from

R’(I )I a (51)
Ri (Ia) + R~2(Ia)

and is found to be .09 . The rates in Eq (51) were calcu-

lated using table X(Appendix ~). The value v~ is defined

by(Ref 9:33)

(52)

• where ~~ and ~~ are mean values of the electron velocity

and •xcitation cross section in the interval

determined by
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I

~~ I € ‘~“2f(~~ dt
e a  ( )

f
;.~~~~~~_! a (514 )

for = 2.5 x 1019/cm3 Eqs (52)— (54 ) yield a value for v~

of 8.5 x 10~~/sec. The quantity ~ is evaluated over a

range of fluxes using Eq (9). Eq (11-7) can then be solved

numerically and the growth rates compared with correspon-

ding quantum kinetic rates.

A Two—Temperature Model

Analysis of the results of the comparisons between

the temperature model and the quantum kinetic model(Chap—

ter IV) suggested that modification of the temperature

model distributio~~function might lead to a more accurate

prediction of the growth rate. The most encouraging ap-

proach appeared to be one in which the electron distribu-

• tion function was broken into two sections , each described

by a different temperature.

The problem is first simplified by considering a two

• level atom. The two—temperature electron distribution

• 

• 

function is then defined as

• 31
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(C 1 El/ ’2 e t/’T i for 0stsx

f ( )  ~~~~~ (55)

t C2t1/’2e
t/’T2 for x~ t<~~

where x is the excitation energy of the model atom. This

distribution function is assumed to be continuous at the

boundary of the two regions

C1e~~/’T1 = C2e~~ /’T2 (56)

A second condition requires that the distribution function

be normalized

X ~~~~~~ •Ivn ~~~i /~~ ~~/m

C1 /t”~ e ~‘~1 dt + C2 /f”~e 
‘~2 d’ = 1 (57)

0 x

The energy balance equation of the old temperature model

• is also needed

dc.> 
= — x(RX>n1 - I<R~~n1 — (14)

• It should be noted that the average energy and the rates
t

in this equation must be reevaluated using the modified

distribution function defined in Eq (55). Assuming a

rapid equilibration of the average electron energy and

substituting for dne/dt using Eq (13) the energy balance

equation becomes
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I — xn~<RX> — (I + <i,)n1<R
’> = 0 (58 )

Eqs (56).-(58) form a set of three equations in four

unknowns. A fourth condition on the unknowns can be ob-

tained by taking the second energy moment of the Boltzmann

• equation(Appendix F). This will yield an equation for the

time rate of change of <.2>

dc.> 
= 2~-<.> + x2n1<R

X> + 12n1<R’>

— 2xn1c.R
X> — 2In1< R  > <

‘~e
> 
~~~ (59)

where the averages must be taken over the distribution

function defined by Eq (55). Again , assuming a rapid

equilibration of <~ 2> and using Eq (13) yields

+ x2n1<R
X> + (~2 —

— 21n1<’R’> = 0 (60)

• The two—temperature model consisting of Eqs (56)—(58)

and (60) can now be solved. The initial conditions used

were identical to those used in solving the quantum kine—

tic model. To obtain a solution the constants C1 end C2

are first eliminated from Eqs (58) and (60) using Eqs (56)

end (57). Eqs (58) and (60) must then be solved numeri-.
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caily for the values of T1 and T2. The two constants can

then be determined by substituting for T1 and T2 in Eqs

(56) and (57). The cascade growth rate, n1<R
’>, is calcu-

lated using

= n1C2 ?.~~
2R’( c )e /T2 d • (61)

and compared with the corresponding quantum kinetic rate.

Comparisons were made under two sets of conditions.

First , Eqs (59) and (60) were solved approximately by as-

suming that most of the energy went into excitations. The

third term in Eq (58) and the third and fifth terms in Eq

(60) could then be neglected. Also, <>was assumed to be

(3/2)T1. The equations were then resolved without any ap-

proximations(Appendix G). Results of the comparisons

will be discussed in Chapter IV.
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• IV. Analysis and Discussion

The results of each of the comparisons will be pre—

sented and discussed in this chapter. AU comparisons

• were made during the early portion of the electron cas-

cade, shortly after a steady state had been established.

The first portion of the chapter discusses the results of

the temperature model comparisons. The remainer of the

chapter will deal with the comparisons involving the im-

proved diffusion model and the two temperature model.

t
The Temperature Model

The comparisons between the temperature model and the

quantum kinetic model were made at several values of inci-

dent laser flux ranging from 5 x 107-.1012W/cm2. The re-

sults of these comparisons are presented in figs. 2 — 4

and table I. Fig. 2 is a plot of the cascade growth rate

as a function of flux for both the quantum kinetic and tem—

perature models. Figs. 3 and 4 are plots of the electron

distribution functions predicted by both models at 5 x io8

V/cm2 and I0~~W/cm
2 respectively. Table I summarizes the

apportionment of energy among the various loss mechanisms

for several values of incident flux.

A comparison of the growth rates predicted by each of

the models can be made from fig. 2. At higher fluxes,

those above 5 x 109W/cm2, the rates predicted by the tem-

perature model agree rather well with the quantum kinetic

35
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rates. Below 5 x 109W/cm2 the predictions of the two

models begin to diverge, disagreeing by more than four

orders of magnitude at 5 x 109W/cm2. The rates predicted

• by the temperature model are much too large. This sug-

gests that at lower fluxes a maxwellian distribution func-

tion permits too many electrons of higher energy to exist.
• This can be confirmed using fig. 3 which plots the two dis-

tribution functions for an incident flux of 5 x 108W/cm2.

At energies above 14 eV, the ionization energy of the

ground state, the quantum kinetic distribution function

predicts an electron density significantly smaller than

that of the temperature model. Fewer electrons are there-

fore available f or ionizations and a lower growth rate re-

sults. In the region between 10.5 eV, the ground state

excitation threshold, and 14 eV the situation is reversed.

The electron density of the quantum kinetic model is now

greater than that of the temperature model. Thus, not

only does the temperature model predict an excessively

high growth rate, but it also permits fewer excitations

than the quantum kinetic model. Finally, below approxi-

mately 1.5 x IO8W/cm2 the quantum kinetic growth rate be—

comes small enough that many of the neglected processes

become important. If these are taken into account, the

quantum kinetic growth rate would be reduced and break—

down might not occur. However, the temperature model rate

would remain unaffected and erroneously predict breakdown

at fluxes well below the breakdown threshold.
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Focusing attention on the high fluxes, it can be seen

that the quantum kinetic curve of fig. 2 begins to diverge

from the temperature model curve above 10~~W/cm2. Closer

study revealed that this divergence was artificially cre-

ated by the conditions under which the quantum kinetic model

was solved. At sufficiently high values of incident flux
• a sizable number of electron will possess energies in ex-

cess of 25 eV; however, the procedure used to obtain a

numerical solution limits electrons to a maximum energy of

25 eV. Solution of the quantum kinetic model using 30, 40,

and 50 1—eV bins produced improved rates. As the number

of bins was increased, the quantum kinetic rates approach-

ed those of the temperature model. The effects of bin

size on the quantum kinetic rates was also investigated.

An increase to 2 eV and 3 eV bins resulted in a signif i—

cant increase in the growth rates while reducing the bin

size to .75 eV and .5 eV had little effect on the rates.

Therefore, the choice of I eV bin size appears to be

justified.

An analysis of the energy gain an’~i loss mechanisms

can be made using table I. The rate (eV/sec) at which an

electron absorbs energy from the radiation field is given

by t. The losses due to the different mechanisms are

given as a percentage of the energy gained. Losses which

result from ionization out of the second and third levels,

end excitations between these levels are not included

since these losses are 10 — 15 orders of magnitude smaller
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than the others and need not be considered.

The energy gain rates predicted by the two models

agree reasonably well over the entire range of incident

fluxes. This is to be expected since the classical micro—

wave heating rate used in the temperature model was de-

rived directly from the quantum kinetic rate for net brem—

• sstrahlung absorption(Appendix C). Although the two rates

are independent of their respective distribution functions,

the small difference in the rates can be attributed to the

t different average energies predicted by the two models(see

table II).

Table II

Average Electron Energy (eV)

Flux (W/cni2)

TM QK

5 x 10” 1.65 2.84

io8 1.80 2.93

• 5 x ~~ 2.25 3.29

2.45 3.53

j 5x 1 0 9 3.26 14.34

1010 3.81 4.86

5 x 10’~0 6.30 6.90

1011 884 9.41
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At fluxes above 5 x 109W/cm2 the two models agree

rather well in their predictions of energy lost to ground

state ionization, R~. However, at fluxes below 5 x I&

V/cm2 the predictions of the two models begin to diverge,

with the temperature model predicting a significantly larg-

er loss to ionization than the quantum kinetic model. This

supports an earlier conclusion, made on the basis of fig.

3, that at lower fluxes the temperature model allows too

many electrons of higher energy to exist. Additional sup-

port can be found by analyzing ET, the energy required to

bring newly born electrons into the distribution at the

average energy. At lower fluxes the larger temperature

model growth rate requires a much larger ET than does the

quantum kinetic rate. This in spite of the fact that the

average quantum kinetic energy is larger than the average

temperature model energy(see table II).

It can be seen i~ om table I that relatively little

energy is lost to excitations between the first and third

atomic levels, R~3. This suggests that the third atomic

level might be eliminated with negligible effect on the

growth rate. Table III summarizes the cascade growth rates

predicted for both a two level and three level atom. The

growth rates for the two level atom were obtained under

the same conditions as those for the three level atom.

The results indicate an increase in the growth rates as

might be expected. However, the increases are small enough

that the third level can be neglected in most calculations.
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Table III

Cascade Growth Rates f or
Two and Three Level Atoms

Flux TM QK

2 3 2 3
• 

io8 4.65x106 k.46x106 2.94x103 2.51x103

• 5x1 o8 4. 37x1 4 • I 4x1 o~ i . ~~xi o6 1. i~~x i o6

5x1 1.11 xl I .02x1 7. 76x1 0~ 6 • 86x1

5x101° 2.98x1010 2.68x101° 2.94x101° 2.70x10’~°

1011 8.32x101° 7.40x1&0 5.71x1010 5.36x101°

Referring again to table I , the energy loss to exci-

tations between the ground state and second atomic level ,

1
~ 2~ 

can be analyzed. At the higher fluxes the two models

once again predict similar losses. However, at lower

fluxes the temperature model predicts a smaller excitation

loss than the quantum kinetic model. In both models, ex-

citations are the principal b u s  mechanism and account for

up to 90 — 100% of the energy loss at lower fluxes. Thus,

the lower excitation losses predicted by the temperature
• model allow much more energy to be available for ioniza—

• tions and increased growth rates result.

Pina].ly, the energy balance equation can be rewritten

as

R  - 4~ <R~2>n1 (62)

-
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where a two bevel atom was assumed and R is the cascade

growth rate. From Eq (62) it can be seen that as long as

the energy lost to excitations is significant the growth

rate will depend strongly on the distribution function

through <R~2>. Therefore if the growth rates predicted

by the two models are to agree, their distribution func—

tions must be similar. At l0~~W/cm2 fig. 4 shows the dis-

tribution functions of the two models to be quite similar

and fig. 2 indicates that the predicted growth rates are

almost identical. Conversely, at 5 x 10
8W/cm2 fig. 3 re-

veals two significantly different distribution functions

and fig. 2 confirms an order of magnitude difference in

the growth rates.

The results of the comparisons obtained through the

manipulation of the rates and energy levels will now be

discussed. Eq (19), the ground state ionization rate pre-

dicted by the temperature model, can be rewritten as

r A iI/x
R — n1R

1I— ~ ‘ 
I 

(63)
°LnenixR

~
J

where R is the cascade growth rate and a two level atom is

• assumed. Using Eq (63), the effect of the manipulations
-

• on the growth rate can be predicted in most cases. How-

ever, since Eq (63) was obtained using the temperature

model, it cannot be expected to accurately predict quantum

kinetic model results.

Table IV presents the results of comparisons made by

4 4 .
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manipulating the excitation rate, R~2. Eq (63) predicts

that the growth rate should increase as R~2 decreases and

decrease as increases. Table IV confirms this at all

values of flux for both the temperature and quantum kinetic

models. Eq (65) also accurately predicts the new values of
the temperature model rates. A closer comparison of the

rates in table IV reveals that for .5 R~2 the predictions

of the two models agree at fluxes as low as 108W/cm2, while

for 10 the rates of the two models show increased dis-

agreement. This is not unexpected and can be explained

using energy considerations. Since at lower fluxes almost

all the energy is lost to excitations, a decrease of 50%

in the excitation cross section will shift considerable

energy into ionization. Thus, the energy balance will be

similar to that which exists at higher fluxes and the

growth rates, as predicted by Eq (62), will no longer be

as strongly affected by small differences between the two

distribution functions. At 10 R~2 the reverse will be

true. More energy will be forced into excitations and the

growth rates of the two models will now disagree at fluxes

up to 5 x 109W/cm2.

• The results of the comparisons involving the ioniza-

tion rate , R~ , are found in table V. For .5 R~ the growth

rates decrease as expected and the temperature model rates

are close to the values predicted by Eq (63). For 10

the growth rates increase, but the temperature model rates
do not increase to the extent predicted by Eq (63). This
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happens because the increased ionization cross section

permits more ionizations at lower energies and causes a

corresponding decrease in the electron temperature. Since

CR1> is given approximately by ~~~~~~~ the decrease in T

will offset part of the increase in R~. A comparison of

the growth rates predicted by the two models reveals lit—

• tie change. At low fluxes the temperature model still

predicts a considerably higher growth rate. This is to be

• expected since the change in the ionization cross section

has little effect on the amount of energy going into exci-

tations. At high fluxes, the agreement between the rates

predicted by the two models is maintained with one excep-

tion: the quantum kinetic growth rate for .5 R~ at 10
11

W/cm2 is too low. Reducing the ionization cross section

by 50% increases the number of electrons which possess
energy above 14 eV. To properly account for this larger

number of “high energy electrons” the quantum kinetic

equation must be solved using an increased number of bins.

If this is done the quantum kinetic growth rate for .5

at 10’~ W/cm2 will approach the higher temperature model

rate.

• A change in the ground state energy of the atom will

affect the cascade growth rate through changes in both the

ionization energy of the ground state and the excitation

energy between the ground state and the first excited

state. Table VI lists the growth rates which result when

the ground state energy is changed. Eq (63) correctly
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predicts the new values of the temperature model rates.

An increase in the ground state energy(11 = 13) produces

a smaller growth rate while a decrease in the ground state

energy(11 = 15) yields a larger rate. However, Eq (63)

predicts the wrong trend for the quantum kinetic rates at

5 x 1010 and 1011W/cm2. At these fluxes table VI shows

that an increase in the ground state energy raises the

growth rate rather than lowering it as predicted by Eq

(63). Similarly, a decrease in the ground state energy

produces a lower growth rate. At these fluxes, a signi-

ficant amount of energy is lost to ionization and the as-

sumptions which were made in deriving Eq (63) lose their

validity. The change in the growth rate becomes a strong-

er function of and can be better predicted from Eq

(62). At the lower fluxes Eq (63) is valid and predicts

the correct trend of the quantum kinetic rates. Comparing

the quantum kinetic and temperature model growth rates, a

slight improvement in the agreement of the two models is

noted for I.~’.l5. Conversely, setting I..~-l3 produces a

slightly greater disagreement between the rates of the two

models. This can be explained by assuming that for a con—

• stant ~ the electrons diffuse along the energy axis at a

constant velocity. Let t1 be the time required for an

electron to attain sufficient energy(11) to cause an ion—

ization; then (1—x1/11)t1 is the fraction of t1 during

which excitations can occur without competition from

ionization. Thus, a smaller value of (1—x1/11)t1 will
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allow more energy to go into ionizations. This in turn

will yield better agreement between the rates predicted

by the two models.

Last to be discussed are the comparisons obtained by

changing the first excited state energy. This change will

affect only the excitation energy between the ground state

• and the first excited state. The results of the compari-

sons are presented in table VII. Eq (63) correctly pre-
dicts both the temperature model rates an~1 the trend of

the change in the quantum kinetic rates. An increase in

the excited state energy(12=2.5) causes the growth rate to

increase while a decrease in the excited state energy

(12111455) yields a smaller growth rate. A closer compari-

son of the growth rates in table VII reveals that for

12B2.5 the range of fluxes over which the two models pre-

dict similar growth rates is extended to 5 x 108W/cm2.

For 12
114.5 the disagreement between the two models is in-

creased at lower fluxes, but the agreement at higher

fluxes is not strongly affected. This behavior can be

explained using the same reasoning that applied to changes

in the ground state energy. As the excitation energy in—

creases, the time during which excitations can occur with—

out competition from ionization decreases. Therefore, more

energy goes into ionizations leading to better agreement

between the growth rates predicted by the two models.
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The Improved Diffusion Model

The results of the comparisons between the quantum

kinetic and temperature models clearly pointed out the

need for a simple model that could predict cascade growth

rates with reasonable accuracy at lower fluxes. Since Ref

9 stated that the results of the improved diffusion model

were valid over a wide range of frequencies and conditions,

it was hoped that this model would be able to predict the

electron growth rate over a wider range of fluxes than the

temperature model. Care was taken to insure that the dif-

fusion model was solved under the same conditions as the

quantum kinetic model. The quantity v~ was found to be

independent of the exact form of the distribution func-

tion used over the interval from to 1a~ 
The growth

rates predicted by the diffusion model are given along

with the corresponding quantum kinetic rates in table VIII.

Table VIII
S

Dif fusion Model Growth Rates

Flux QK ~
5x108 1.44x106 3.9Ox1O~

5 x io~ 6.86 x io8 2.17 x io8

5 x 1010 2.70 x 1010 1.28 ~ 1010

At ~ x and 5 x 10’
~
0W/cm2 the predicted diffusion rates

come close to the quantum kinetic rates; however , they do
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not appear to be quite as accurate as the temperature model

growth rates. At 5 x 10
8W/cm2 the rate predicted by the

diffusion model is two orders of magnitude less than the

corresponding quantum kinetic rate. The predicted growth

rate showed no improvement over the temperature model rate

at the same flux. Finally, the failure of the improved

• diffusion model to predict the cascade growth rate at low

fluxes appeared to be the result of its inability to accu-

rately calculate the excitation rate. Since this was the

same problem experienced with the temperature model, con-

tinued study of the improved diffusion model did not ap-

pear justified.

The Two—Temperature Model

The results of the comprisons between the quantum

kinetic and temperature models showed that at low fluxes

the actual electron distribution function could not be

adequately approximated by a maxwellian. Referring back

to fig. 3, it is seen that a maxwellian allows too many
electrons to exist above the ionization energy and too few

between the excitation and ionization energies. A close

• study of fig. 3 and similar plots at other low values of

incident flux indicated that the actual distribution func—

tion could possibly be represented by two straight line

segments. These line segments , each having a different

slope , would intersect at the excitation energy (10.5 eV)

and form a two—temperature distribution function. This
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forms the basis for the two—temperature model described

ia chapter III.

Since results obtained earlier in this chapter indi-

cate that at low fluxes most of the energy is lost to ex-

citations it was expected that an appro~cimate solution to

the two—temperature model would give results accurate

• enough to yield a valid comparison. The growth rates re-

sulting from the approximate solution of the two—tempera-

ture model are found in table IX. A comparison of the

Table IX

Two—Temperature Model Growth Rates

Flux QK 2T

5 x 1 0 7 1.08 x 1 02 1.70 x10 2

5 x 1 08 1.44 x 1 06 4.37 x 1 06

5 x IO~ 6.86 x i08 7.19 x I09

5 x 10~~ 2.70 x 1010 2.23 x 1011

quantum kinetic and two-temperature rates reveals that

only at one flux , 5 x 108W/cm2, does the predicted two—

• temperature rate approach the quantum kinetic rate. At

all other fluxes, including high fluxes, the predicted

two—temperature rates are not even within an order of

magnitude of the quantum kinetic rates. The assumptions

associated with the solution were reexamined and the as—

sumption that <~~> - (3/2)T1 was found to be in error.
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Since T1>T2, this assumption resulted in an overestimate

of the average energy .

The two—temperature model was then solved exactly to

reduce the possibility of further error. The resulting
— growth rates were, at every value of incident flux, much

worse than the rates of table IX. Agreement with the quan—

• turn kinetic model growth rates did not exist nor did the

rates approach those of the temperature model at high

fluxes. Thus, it appears that the two—temperature model,

which was based on approximating the shape of the distri-

bution function, is not valid and the possibility that the

electron distribution is a function of an additional vari-

able, such as incident laser flux, should be considered.

S
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V. Conclusion

From the results presented in Chapter IV several con-

clusions can be drawn concerning the validity of the vari-

ous models assumed.

Under the conditions assumed in Chapter III the tem-

perature model adequately predicts breakdown phenomena for

incident laser fluxes above 5 x 109W/czn2. At these fluxes,

the distribution function can be assumed to be maxwellian.

In addition, at higher fluxes, the proportion of energy

lost to ionizations is greater and the growth rate is not

as strongly dependent on the shape of the distribution

function. Below 5 x 109W/cm2 the temperature model is not

reliable. The actual electron distribution is no longer

adequately approximated by a maxwellian and the tempera-

ture model growth rates are too large. Finally, a two

level atom can be assumed withou~; significantly affecting

the accuracy of the temperature model.

The results of Chapter IV indicate that the range

over which the quantum kinetic and temperature model growth

rates agree can be extended. A change in the excitation

• rate , ground state energy, and first excited state energy

has a significant effect on the reliability of the temper-

ature model. The low flux accuracy of the temperature

model growth rates will improve as the excitation cross

section decreases, the ground state energy decreases, and

the first excited state energy increases. Therefore, the
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temperature model will be most reliable when applied under

the conditions of a low excitation cross section arid a

ratio of excitation energy to ionization energy near one .

Attempts to develop a simple model which would be

valid at low fluxes proved unsucessful . The improved dif-

fusion model possessed sufficient accuracy at high fluxes ,

• but in the limit of low fluxes it was no better than the

temperature model. The two—temperature model could not

predict reasonable growth rates at any flux; therefore , it

must be concluded that the assumption of a two—temperature

distribution function is not valid.

Finally, it appears that the key to developing a sim-

ple breakdown model valid at low fluxes lies in a success-

ful approximation of the electron distribution function.

Therefore , any further investigation of breakdown at low

fluxes should be directed toward the development of a

distribution function which will adequately approximate

the actual electron distribution function. One possible

approach might be a modification of the temperature model

distribution function to include an additional term which

would depend on both the electron heating rate and the

• electron energy. At high fluxes this term would have lit—

tie effect on the distribution function; however, at lower

fluxes it would modify the distribution function suff i—

ciently to permit an accurate prediction of the cascade

growth rate.
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Appendix A

Cross Sections

A classical approach can be used to determine an ana-

lytic formula for the ionization cross section(Ref 5:392).
• If an electron of energy c passes near another electron,

the differential cross section for energy transfer to the

target electron in a range A €  to ~ i + d(~~) is given by

do = 
ire4 

2 
d(~~c~ (64)

(LI. ir~~~) ~ (Ai)

Now, integrating this expression from I to i yields the

ionization cross section

4we 
~~~~~~~~~~~~~~~ (65)

(4w e )~~0

where I, the ionization energy, is the minimum energy that

can be transferred. Thus, the cross section for ioniza-

tion from the jth level can be written as

- 
we4 

_ _ _ _ _  (66)
(L4wt0) I ~ .

where 13 
represents the ionization energy of the jth level -

and ionization is assumed to occur each time an energy

greater than I~ is transferred to an atom.

A simplified expression for the excitation cross

liii 
I



section is given by(Ref 10:40)

- 

(4.w % ) 2x~~ 
~ 
:2~~~ 

3f1~ ~~~ 
(67)

where i represents the energy of the free electron, x~3 
=

— I~ is the excitation energy between levels i and j,

and f~~ is the oscillator strength for absorption given

by(Ref 5:296)

32 1 1 1

~~ (1/n~ — i/~~ )~ 
(68)

The value of the momentum transfer cross section, am,

for collisions between atoms and electrons, taken from

Brown(Ref 7:5), was assumed to be constant over the elec—

tron energies of interest

- 7.1 x io 16 cm2 (69)

I
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Appendix B

Rates

• The rate for the occurrence of ionization or excita-

tion will depend on the cross section for the interaction

and the relative velocity between the particles involved.

Since the velocity of the electrons will be much greater

than that of the atom, the velocity of the atom can be

neglected so that the rate becomes

R(o ) = ij~~~o(c) (33)

where is the energy of the electron and me its mass.

If the cross section for ionization is substituted

into Eq (33) the rates of ionization used in the quantum

kinetic model are obtained

R~(e) - ir~/ ;j~~ 
(4~~:)

2hj 

(~3/2(f — ‘)  (34 )

To obtain the ionization rate , R1(T ), used in the temper—

atur. model , Eq (34) must be averaged over a maxwellian

energy distribution

R~ (T) 
~~‘~~ 3f2 

~.1/2R~( e
_ S/Tã~ (70)

which upon integration becomes
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= 

~~~~~~~~~~~ 
T1”2 

[e
_1
j/T + E~(—I3~

’T)] (36)

where E1(—13/T) 
is given by Eq (37). Similarly, the rates

of excitation for the quantum kinetic model can be given by

= 

~~~~ 
(M
~
iTE
:)
2xij 

~—3/2~~ — x~3 )3f~~ (35)

and the corresponding temperature model rate is

3/2 42 lTe 3f~~ i r —x /TR~j  P = 
~~~~(4wE0

)
2
x~3 

~“2 
1e ij

+ —~ ä E~(—x 13/T)] 
• 

(38

Table X gives compact numerical formulas for the various

rates.
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Appendix C

Derivation of the Temperature Model

Using a method similar to that of Ref 11 the temper—

ature model can be derived from the quantum kinetic equa—

• tion for the time rate of change of the electron distri-

bution function, Eq (23), where f (t) is assumed maxwellian.

For small ~ w/. , the bremsstrahlung absorption and emission

terms can be expanded in a Taylor series and in the limit

as hw,4 -’O Eq (23) becomes(Ref 2:774 ,776)

ar~s) = 
j,, ~~~~~~~~ — 

~~~~~~

~ 
n,R~ (. x. )r(.+ x4 .) — ~~n3 i i

+ Z n 3R~(’+ I3
)f( + i~ )

e 4(i) Zn 7R1(i)f(s)d. (71)
3 3 ,  3 

*

where t is the classical microwave heating rate given by

• Eq (9).

An equation for the time rate of chc~rge of 
~e can be

obtained by taking the zeroth energy moment of Eq (71).

Integrating the equ3tion over all energy yields

(43)

- - — - - -~~~ . - —W.- -
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To obtain an equation for the time rate of change of <c> ,

the average energy, the first energy moment of Eq (71) is

taken. Multiplying the equation by s and integrating over

all energy yields

dc.>

~e j

— 

i,~ 
n~x13<R~3 > —

~~ —: ~~~ (44)

where the non—zero terms of the integration are

j ,ar (s ) 
de = ne”~~

> 
+ <s>~~~~ (72)

£ n.R~ (c)f(c)d s - 1. £ n.R
X 

~
£ i ,3i

1 ‘

+ xi3)r(a+ x1~
)ds = 

~e 
~~~~~f 1

n1x~3
icR~3

> (73)

j~Z n 3R~(t ) f (s)d4  — .fiZn3
R~(t

+ i~)f(s + 13)dc fl~ ~ n3I3<R~ > (74)

CR> being the energy average of the ionization or excita-

tion rate, and < >  - (3/2)T for a maxwellian , where T is

defined to be the electron temperature.

The equations for the tLme rate of change of the flj

can be written as
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These three equations together with Eqs (43)—(44 ) form the

set of equations which comprise the temperature model.

I
I
I .

69



I
p Appendix D

I 

Numerical Solution ~~ the Quantum Kinetic Model

- The equations to be solved are the quantum kinetic

equation (23), and the equations representing the changes

in the population of the three atomic levels, Eqs (39)—

(41). The method of solution employed is similar to the

one used in Ref 8.

t Eq (23), as written, cannot be readily solved, since

the form of the distribution function is unknown. However,

if the energy axis is divided into K discrete bins of width

~~ Eq (23) is transformed into K equations of the form

df

I 
~a?(am_ifm_i — (am+ bm)f m + bm+ifm+i]

I — 

~~ 
fl
3
R~~f~ + ~~ 

fljR~,m+ij
fm+ij 

-

+ j~~>j
niR

~j ,m+xij
f m+xjj  

+ o~~ j
z
k
njRLkfk (76)

where m represents the value of the electron distribution

function at energy •m = (m — 1/2)h~, the midpoint of the

-
~ mth bin. Rm~ am, and bm are the corresponding values for

the various rates at energy •m’ while I~ and x13 are in-

tegere which represent the number of bins which correspond

to the various ionization and excitation energies. Eq (76)

together with Eqs (39)—(41) can now be solved.
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The initial conditions are established by specifying

the temperature of the gas, the photon flux, the number of

ground state atoms , the number of electrons present as a

result of non—equilibrium effects(i.e. pre—ionization),

the number of bins, and the bin width. The populations of

the second and third atomic levels are calculated assuming

a Boltzmann distribution

= n1 e~~1i
”To (

~~
)

where T0 is the gas temperature and the degeneracy of each

level is assumed to be 1. The total free electron popula-

tion is determined by adding the equilibrium electron pop-

ulation, as determined by the Saha equation

- (~~ a)1/2{2w:~
T0]3/4e_h12To (78)

to the population resulting from non—equilibrium effects.

The electron population of each bin is then calculated by

integrating a Maxwell—Boltzmann distribution function over

the width of the bin

c

f .
~~~

, 7 ti”~~e *
’Tã. (79)

a 
ui~

(h
~
)/2 T~ ’I~

Each bin is assumed to have a minimum initial population

of one electron.

The rates for excitation and ionization are calculated

Is - 
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for all bins which possess an energy, £ ~ greater than the

threshold energy of the corresponding rate. They are cal-

culated by substituting the value of into the appropri-

ate rates found in table X. The coefficients of brems—

strahlung absorption are calculated for each bin using

2 12 (4  + ?ic
~)11/2 (C  + ‘tiw/2)

am = Smeccow2[. 
me ]

where am is a constant given by Eq (69). The coefficient

for bremsstrahlung emission is calculated for each bin by

microreversibility

1/2
bm = am...i [.+~t~] 

(81)

The emission and absorption rates are then obtained by

multiplying the emission and absorption coefficients by

the scaled photon flux. The scaling of the incident flux

allows the choice of a convenient bin width, tw, which

does not correspond to the actual photon energy, ?iw,~ of

the incident radiation. The relationship between the ac-

tual and scaled fluxes is given by

p (82)
(~~~)2

where S is in W/cm2 and F is in #/(cm2—eec). The scaling

of Eq (82) yields a correct net absorption rate for ?iw/.

small. To show. this, the net absorption rate is expanded
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in a Taylor series which in the limit as t~/c-.0 yields

(Ref 2:776)

C O C ~~~ (83)

where ~ is the net bremsstrahlung absorption rate and S

• is the laser flux in W/cm2.

With the initial conditions established Eqs (39)—(41 )

and (76) are solved in time using an algorithm, developed

by Gear(Ref 12,13), for the solution of stiff systems of

first order ordinary differential equations. This scheme

employs multistep predictor—corrector methods of up to

sixth order. The error for each step is defined by

k+1 (k+1) 2 1/2

£ = {~: ~~~~~~~
+ 1 X

~~~~~~ 1! (84)

where the x2 s are the solutions to the set of equat ions ,

k is the order, ~t is the time step, ~
ck+1) is the (k+1)

derivative of x1, and ~~~~ is the maximum value of the x1
encountered. A step is accepted and the time advanced

when the error is less than .01 . The solution of the

• equations is terminated once a specified value of the free

electron density is achieved.
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Appendix E

Numerical Solution of the Temperature Model

The equations to be solved are the equations for the
S

change in population of the three atomic levels, Eqs (39)—

(41), and the equations for the zeroth and first energy

moments of the Boltzmann equation , Eqs (43) and (44). Eq

(44) becomes, upon setting < >  = (3/2)T ,

= 

~~~f~~~

- - En~I~R~(T)

dn
— 

1~~>1
n1x13R~3(T)] 

— ~~~~~~ (85)

The initial conditions are established in a manner quite

similar to that used in the quantum kinetic solution. The

gas temperature, laser flux, density of ground state atoms ,
and density of non—equilibrium electrons are specified.

The populations of the remaining atomic levels are ccic~—

lated. using Eq (77). The total free electron density is

dstermined by adding the result of Eq (78) to the no~~
.quilibrium density. The heating rate is calculated using

~~ 
(9). Pinaily, the rates as a function of temperature

. salcalatid from

11(T) - 
p312 

J ’
~~~ 

I 
~~~~ di (86)
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which upon integration becomes

R1(T) = (C/T3~
’2
)[Te~~

’T 
+ I E~(_I/T)] (87)

where I now represents either the ionization or excitation

energy, C is a constant, and E1(—I/T) is the integral de-

fined in Eq (37) and is evaluated using algorithms found

in the Handbook of Mathematical Functions(Ref 14:231) .

The solution to the set of equations , (39)—(4 1), (43)

and (85) ,  is obtained by using a second order predictor—

corrector method. The equations are all of the form

= f(x~,x3,~~*.x5) (88)

The various ti’s are first computed utilizing Eqs (39)—(4 1)

(43) and (85) ,  and the initial conditions at to. A pre-

dicted value of x1 at t = t0 + At is then computed

= x1 + ±~~t (89)

The derivative is computed and used to obtain a cor—

• rected value of x1 at

- xi + ~~~~ 
(t~ + *~

) (90)

The predicted. and corrected values are compared and if the

error as defined by

-- 

-



£ =
~~~~~ lx~ ~~~~~~ 

(91)

is less than .01, the solution is accepted, the time ad-

vanced from to to t1, and a new iteration is begun with At

doubled. If the error is greater than .01, the solution

is rejected, At is reduced by a half, and the calculation

repeated. This process is then continued until the solu-

tion at a particular time is obtained, or a specified

value of any of the x1 is reached.
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Appendix F

Derivation of the Second ~~ier~~ Moment

of the Boltzmann EQuation

The solution of the two—temperature model requires

the use of an additional equation. This equation can be

obtained by taking the second energy moment of the Boltz—

mann equation, Eq (11). Multiplying Eq (11) by £2 and

integrating over all energy yields an equation for the

time rate of change of < .2>

dc.3> 
= 

~~~~~~

<

~~

> + x 2n1<Rx> + 12n1<R
1>

— 2xn1<.R
X> — 2In1<~R > 

<
e> ~~~

where the non—zero terms of the integration are

• 2 dnIt2 Sf dc = n5
d
~~ 

> 
+ <~ 2> (92)

£f.2~~L d( = — 2 S<t> (93)

n1 x)RX( + x)dc ‘~1 142f )R’~(.)d.t =

X2
fl1flgr ~~~~ - 2~~ lme<d1tX> (94)



•

n1 fc
2r(c + I)R1(c+ I)d. — n1 ft

2f(.)R’(c) dc =

I2nifle<R
’> — 2Inine<CR

’> (95)

The c > describes the average of the enclosed quantity over

the appropriate distribution function.

:
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Appendix G

Numerical Solution of the

Two—Temperature Model

The equations to be solved are the equations for the

zeroth, first, and second energy moments of the Boltzmann

equation, Eqs (13)—(14) and (59), subject to the condi—

- 
tions of Eqs (55) — CS?) . Assuming a rapid equilibration of

cc> and <ç2
> Eqs (14) and (59) upon substitution for

become

— cn~cR~5 — (I + <e>)n1<R
’> = 0 (58)

+ x2n1<R
X> + (12 —

_2xn1c.R
X> — 2Ifl1icCR

’> = 0 (60)

Before Eqs (58) and (60) can be solved, the averaged

quantities in each equation must be evaluated using the

two—temperature distribution function, Eq (55). The aver—

age value of the energy,<c>- , is given by

- c1 ~~~~~~~~~~ ds + c2 7c3u/2e /’T2 d. =

c1T~
’2[r(5/2) — r(5/2,x/T1)] + C2T~

”2r(5/2,x/T2) (96)
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where the gamma function is defined by(Ref 14:255)

r (x) = It’~~ e
t dt (97)

0

and the incomplete gamma function is given by(Ref 14:260)

r(a,x) = 7 ta—I e
_t 

d.t (98)

The value of < 2> is given by

c 51
~e 

S1T1 d.c + ~ 7,5/’2e ‘1’~~~ d.c =

0 x

C1T~
”2(r(7/2) - r(7/2 ,x/T1)] + C2T2 r(7/2 ,x/T2) (99)

Using Eqs (36) and (38) the average values of the ioniza-

tion and excitation rate can be written as

CR1> = (2.?6xI0~~’)C2[T2e~~ h’T2 + I E~(—I/T2)] (100)

- (6.41x10_502[T2e
_Xh’T2 + x E1(—x/T2)] (101)

where E~ is defined by Eq (37). Finally, the averages

and CRX> upon integration become

- (2.76xI0 7)C2T~ e~~ /’T2 (102)

}
- (6.41x10~~ )C2T~ e X/’T2 (103) 
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The constants C1 and C2 must now be expressed in

terms of T1 and T2. Solving Eq (56) for C1 yields

c1 = c2 e~~~
T2 eX/Ti (104)

Integrating Eq (57) and substituting for C1 using Eq (104)

yields

C2 = f T~’~ e~~/’T2 eX~’Ti [r(3/~ )

— r(3/2,x/T1)] + T~”2r(3/2,x/T2)}~~ (105)

Eqs (58) and (60) can now be solved for T1 and

using an iterative procedure(Ref 15:239). Eqs (58)  and

(60) are first written as

= — xn~<RX> — (I + c.>)n1<R
’> (106)

G(T11T2) = 2~~ <.> + x2n1<R
X> + (12 —

..2xn~ CC&5 — 21n1CcR’> (10?)

The functions P(T1,T2) and G(T1,T2) are then evaluated at

three points (Ti~
T2)a~ 

(Tl,T2)b, and (Ti~T2)c which are

estimates of the actual solution (T1,T2), to Eqs (58 )  and

(60). An improved estimate, (Tl,T2)d, is obtained using
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Tia Tib Tic
det 

~
‘a B’b ~

‘c
G G G

Tj d = 
_ _ _ _  

a b 
~~. 1,2 (108)

det 
~a Fb ~

‘c
Ga Gb G0

The improved estimate is used to replace one of the ori-

ginal estimates and the iteration is repeated. This pro-

cedure is continued until successive estimates of (T1,T2)

agree to within .01 eV. The constant C2 is then computed

using Eq (105) and the electron growth rate obtained using

R (2.76x10~~)n1C2[T2e~~
1T2 + I E~(_I/T2)] (109)

where n1 is the ground state population.

S

S

S
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