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MEAN AND VARIANCE OF THE CORRELATION
MAGNITUDE OF RANDOM AND PSEUDONOISE SEQUENCES

INTRODUCTION

The mean or expected value and the variance of the absolute value or mcgnftude of
the correlation between two equal-length independent random sequences are derived for
all unique blt-inteVsl relative phase conditions. These are then compared with the same
measures for the full-period correlation between pairs of certain specific types of pseu-
donoise (PN ) sequences which have been applied extensively in spread-spectrum radio-
communications systems. The study of independent random sequences reported here
provides a long-needed point-of-reference for designers of spread-spectrum systems, be-
cause the autocorrelation and crosscorrelation properties of candidate PN sequences may
now be compared with the same quantities derived for fundamental random sequences.
Correlation detectors exist which function on the basis of the magnitude of correlation
between a receiver input and an internally generated reference sequence. The treatment
of random sequences presented here permits evaluation of the performance characteristics
of such detectors during periods of noise-only InpUt.

Design studies, validated by measurements of hardware Implementation, have proved
that differential ly coherent phase-shift-keyed (DPSK) modulation formats permit realiza-
tion of a relatively high communications efficiency for digital radIo-communications ‘ye-term when interference is an insignificant problem. An important motivation for the
development of spread-spectrum techniques stems from the need to mitigate the effects
of severe electromagnetic Interference. Spread-spectrum systems have been developed
which reduce interference significantly and approach the same communications effi-
ciencies demonstrated by DPSK systems.

Spread-spectrum systems employ an encoding digital bit stream upon which base-
band Informational data are imp1.ased as a modulation. The basebend information can be
recovered In the demodulation process only by correlation with a properly synchronized
rep lica of the encoding signal; however the correlation process permits a discrimination
against the uncorrelated Intervening interference. Certain reproducible, deterministic,
pseudorandom sequences which provide the wideband low-power-density encoding signals
needed for such systems tend to ~~~- thnlze the isee of the communications capacity offered
by a channel with noise and Inte~ference. These sequences have statistical properties
similar to noise and hence are known as pseudonolse (PN) sequences.

The usefulness of PN sequences codes In spread-spectrum communications depends
on both their individual autocorrelatlon and their joint croacorrelatlon properties. Auto-
correlation properties are Important for assuring rapid and proper synchronization of the
Incoming signal with the locally generated replica of the PN encoding sequence. To

Manuscript submitted August 16, 1.76.
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BEARCE AND ZIFFER

perform the synchronization , a scann ing or time search between the incoming signal and
the local PN sequence (often generated by a binary shift-register code generator ) is re-
quired . Sequences with off-peak autocorre latlon values comp arable to the main correla-
tion peak are undesirable , because they tend to confuse the synchron ization process and
prevent the full interference discrimination or processing gain realizable with proper syn-
chronization. The crosacorrelation properties of the sequences are of considerable signif-
icance in multiplexing applications in which many communications systems must operate
in a common frequency channel , with each commu nication link employing a different
PN sequence. The croascorrelation between any two sequences used in the system must
be sufficiently low to provide the particular amount of interference isolation required
between the multiplexed channels for sat isfacto ry operation .

Prior studies by others have considered the statistical nature of only the correlation
function itself for various sequences. However the properties of the absolute value of the
correlation function are often of primary interest In applications such as spread-spectrum
communications, where a strong negative correl ation is equally as significant as a strong
positive correlation. Gold [1, 2) has developed a method of select ing certain special
maximal-length linear PN sequences which he used in pairs and called preferred p airs. A
maximal-length sequence is the longest whic h can be repetitively generated by a given size
code generator. The least upper bound of the absolute values (or magnitudes) for the
crosscorre lation of these maximal-length preferred pairs is better (smaller) than for any
other two arbitrarily chosen maximals of the same length (except for some minor excep-
tions which have peaks only sLightly less than that bound). Because these special codes
were originally identified by Gold and are most often used in sets of two , they are com-
monly referred to as Gold pairs. Further , and of considerable significance for practical
applications, Gold (1, 2) proved that these same low croascorrelation magnitude bounds
exist for large families or related encoding sequences, known as Gold code familie s, where
each member of a family may be generated by form ing modulo-2 linear combinations
of a Gold pair of sequences. Such codes have the same period as the Gold pair used to
generate them. The bound for the magnitude of crossco rrelation between any two mem-
bers of a Gold family of sequences thus can be characterized by just the bound appro-
priate for the Gold pair used to generate the family.

Since a statistical analysis of the propert ies of the magnitude of correl ation for all
possible phase shifts of two purely random sequences apparently has not been develop ed
and presented previously, expressions are derived for the expected value and variance of
the full-period correlation magnitude values for each relative phase relationshIp between
a synchronized random sequence and another Independent code of the same length. (If
a binary sequence is random and Independent of another, the expected correlation
magnitude between the two is independent of the specific nature of the other , because
in either case the probab ility of matching any pair of bits Is 1/2. Furthermore the ex-
pected crosscorrelatlon magnitudes for two Independent random sequences is therefore
the same as theIr Individual expected autocorrelation magnitudes, for the same reasons. )
Random code lengths corresponding to maximal-length PN sequenc es have been selected
for study to facilitat , a dIrect comparison of their respective characteristics. The analysis
provided by this study Is applicable to bit-synchronized data with negligibly small
Doppler-frequency effects. The cro..pectral correlation characteristics which are discussed
In F~~ 3 and 4 for nonsynchionized data with significant relative Doppler-frequency
shifts are not treated here.

2
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DERIVATION OF TIlE EXPECTED VALUE FOR THE MAGNITUDE OF
THE CORRELATION BETWEEN TWO RANDOM SEQUENCES

For time-dependent periodic fur’~tiona f(t) and g(t) of period T, the normalized
crosscorrelation R(T) between them is

Rfr) j  f(t)t(t + r) dt. (1)

The functions f( t) and g(t) of the continuous variable t are now replaced with the func-
tions a(i) and b(1) of a discrete variabl e i (which is a common form for describ ing se-
quences), so that the crosscor relation may be expressed in the analogous discrete form

L
RU) = a(i)b(1 +1)~ (2)

i—i

where the a(i) and b(l ~1) values are taken from the set C+1, -1) and L is the number
of disc rete elements in the period Hence

a(l)b(I +j) +1, if a(t) b(i +1),
(3)

-1 if a(I) * b(l +j).

If is represents the number of agreements, then L - is will represent the number of
disagreements; and RU) can be written as

RU) f [ a( l)b(l +J) + a(l)b(l .1)] (4)

~~i) b U +j )  a( i) * b(i +j )

— ÷ [ a(flb( 1 +1) - IaQ)b(1 +1)] (5)

(fl-b (i + J) aQ) *b Ø +J)

- (6)

The expression in brackets In (6) is the form given by Gold (1, 2) for the correlation,
namely, the number of agreements minus the number of disagreements. The multiplicative
factor (ilL) normalizes the correlation. Following Gold (1,2) 0 will be used to represent
the norntuli,,d discrete correlatIon 0(n), (where the discrete variable is here represents the
number of agreements between the two sequences, rather than a particular phase shift of
the second sequence). Thus

0(n) — (2n/L ) — 1. (7)

I 
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Given two sequences of the same length, If at least one sequence is random and
independe nt of the other , the probability of an agreement between any two correspond-
ing bits is 1/2. Hence the probability of is agreements arranged in a particular order is
(1/2) Slmllarl y th eprobs bilft yofL -nd isag reementso ccu rmigin apartj c~jar order is
(1/2)~~~. With use of the binomial coefficient , namely,

IL\ LI LI I L \
n!(L — n)! — (L — n)! n! I

~L— n ) ’  (8)

wh ich is the number of different ways of obtaining is agreements and L - is disagr eements,
the probabilIty of getting exactly is agreements in any order Is

/ LV1\hhfl\ L n
p(n ) 

k ) ~i~
) ~i)

F = (L)(1)
L 

(9)

The expected value E( I0I) , or mean ~i, of the absolute value of the correlation is the
sum of each of the possible values of I0(n)I, weighted by the corresponding probability
of occurrence for each case. Thus

p - = 
~~~ 

1O(n) ~p(n) -

= 
2n 

- ~~ [(L)(1)L]

- (l)L L ~~~ - 1I(
~ )- (10)

By definition of the absolute value,

- 1 1 _ i -  
~~~~~ , lf 0’~~n~~~ K~,

(11)
‘.~~~~- 1,1 fK + 1 ~~~ n 5 ~ L ,

where 

~~~~~~ Ladd,
(12)

L -2 Leven.

4 
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Thus (10) can be written

— (
1)1w 

[~~~~(i~~~~)(~~) + (13)

Let m L - is; then, by use of (8), the second summation in (18) becomes

t ~~ (~~~
_ i)(~~) _  ~~ [

2(L - m)
i]( L)

n”X+l ss ”L-(K+l)

Lodd,

- 

m~~~~i
(’

~~~~~~~~~~~~
’ L eren,

which , after the index m Is replaced with n, becomes

* 
~~~~~~ 

(
~ 

- i) (~
) — ~~~~~ (i - 

~~~~~~~~~~ 

L odd,

- 

~~~
(1 -~iOC’) - ~(‘ ~~ !)(1e), Leven,

- 
~~~~~ (i - L odd or even. (14)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(i_ ~~~)_  ~~~~~~~~~~ 0 (15)

-

- 
_ i

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Substitution of (14) in (13) gives

p — (*)~ [2L(1
_
~~)(~))

= (1)~~1 [~
(
~)- 

~~ 
, (16)

n 0  n 1

where in the second summation the lower index becomes 1 instead of 0 because is is a
multiplicative factor.

The binomial expans ion

(a + b)1’ ~~ (P)oP..iba (17)

becomes , for a — b — 1/2,
1

(
~~)P~~~

(p) (18)

which can be written

ZP 

~
(
~
‘). (19)

In the notation desired here, (19) is written as

2L -

— + 
~~ 

(
~
,), (20)

n 0

which, by use of (12) and m - L - is, can be written as

(
B

I 

- .-----— 
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L odd ,

(21)

~~ ( L )  L even.
n 0  m— k+ 1

Then, if the arbitrary index m is replaced by is and the order of summation , is reversed,
(21) becomes

2L ,;~(~) + 
)(n) Lodd,

(22)

_ ~~ (L) + ~~ 1
(L) , L even,

or

K—( L-1~!2
— 2 ~~ ( L) Lodd

n 0
(23)

K—(L-2)/2
- 2  

~~ ~~~~~~~~~~~~~~~~~

Also, from the definition of the binomial coefficient ,

nIL\ / n \ 1  LI
L~n) ~Lfln!(L - n)!

— 
(L —1 )!

(n —1 ) ! ( ( L — 1)  — (n — i)] !

(24)

Use of (23) and (24) in (18) yields

.- .

~

._-_-. .-- --

~ 

_

_ _ _ _ _ _ _ _ _ _  _ _ _  _ _  __ - - _.. .~~-



BEARCE AND ZIFFER

(
i)1~

1 

[~~~ i _ 2
~~~(~~~1)] ,Lodd,

(25)

= (i)1
~~1 

~ 
-
~~(L~2) 

_ 2~~~(~
. -

~i)]  , L even.

If

M = n - i  (26)

is introduced, then

~~~( L _ i )  = ~~
1

(L _ i)  (27)

where

K - = ___

(28)
L -4

— ~~~~~~ even.

When L is even, L - i is odd, and vice versa; therefore if (23), is applied, to the case in
which L is replaced by L - 1, it can be written as

21~ 1 = 2
(
~~~

/2
(L_ 1) +((

~~~

), 
L odd,

2 (29)
(L-2)/2

2 ~~ (L;1) L even.
n.O

2L 1  fl, Lodd,
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2~~~ (~~~1) - 
2[

~~~~~~~ (~~~1) -(:.~)] 
= - 

2 ( )
~L even.

(30)
Substituting (30) into (25) and using (27),

1 L-1 L - 1
P = (

~
) 

[

~~~~i - ~~~ , L odd,

(31)

= (i)
L~1 

[2L..1 - l(
L\

\ - 2L-1 + 
(L - 

\] , 
L even.2 L t

\
L) \~L~~2)J

For L even, the expression in brackets may be simplified using (8):

1 L-1 L - i  1fL\ 1 1 L [ 4~~)(L _ 1 ) !  LI 1
= 

~i) [
~
( )  i~)J - (~) - ~~

(L))2J

(1)
L 

L even. (32)

Thus
,1~L-1f L — 1

p — E (l 0 I) — (
~ ) ( , Lodd,
‘~~‘ t L — i

\ 1  
(33)

- (1)L(
~

) 

L even.

i.

9

t _
~- - —-r -

~~~~~
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In expanded form p — 1 for L 1 and for L > 2,

I1\13V5\ IL- 2\
- \~Aifli)- - ~ — r)’ L odd,

(34)
(1\(3\/5\ /L —1\

— 

~2)1~Ai)- - ~ j~~)’ 
L even.

By use of Stirling’s approximation for factorials namely,

m! ~ i~~mm (2wm )hl2, (35)

the following approximate evaluations for (33), valid for L>> 1, can be obtained ;

(e~~mm(2vM)hI2
~ ( 2)1/2

[e
.m

~
12 (_~1~

’2
(~

v !j!)
l” ~ 2 ~..sm

where

2~~m — L-1, Lodd,

4Leven. (36)

This approximate relationship Is particularly useful when L is very large, because the
direct evaluation of (84) takes excessive computer tIme. Table 1 presents a test program
for comparIng (33), or (34), with (38) for several sequences of period L - 2N - ~~, where
N Is a positive integer corresponding to the number of stages in a binary shift-register
code generator. The results , shown in Table 3, IndIcate that (36) becomes a progressively
better approximation as N (and L) Increases and that the error Is negligible (less than
0.0003 dB) f or L lO,000 or more.

DERIVATION OF THE VARIANCE OF THE MAGNITUDE OF THE
CORRELATION Btrw~Br4 TWO RANDOM SEQUENCES

The variance o of the absolute value of the correlation about the mean value Ii de.
fined as the aim of the sqUares of the devIations from the mean, weighted by the prob-
ability of occurrence far each case. Thus, by u of (7) and (10) and, by definition,

£
H E~

(
~

) — 1 ,
s—o 4

I
10

— —. — 

~~~~~~~~~ - - . ~~~~~~~~~~~~~ 
- -,- - .~ ~~~~~~~~ 

_ .
.

. 
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TabJe 1— FORTRAN Program to Validate the Approximation Given by (86)

00100 PRO6RRM STIRL (OUTPUT)
00110 PRZNT.• 1$ L TRUE APPROX. ERROR•P
00120+” • VALUE VALUE IN DB•u~
00130 DO 10 N3 , 1 ?
00140 L 2.W4— 1
00150 CALL AVT (L~E>
00160 CALL XAVTCL ,T)
00170 DD)—eo. .AL OGIOCT’E)
00180 PRINT 20,N,LpE,T,DDB
00190 10 CONTINUE
00200 20 FORPIAT (218,2F10.6,E12.5)
00210 END
00220C
00230C
00240 SUBROUT INE RV T (L,E)
00250 J L
00260 E L’2
00270 K E.2.
00280 IF(K. E0.L) J J+1
00290 K 0
00300 J— (J—1)’2
00310 E 1 .
00320 DO 10 1 1,J
00330 X K K + 1  $ VaKsK+1
00340 E E.X’Y
00350 10 CONT INUE
00360 RETURN
00370 END
00380C
00390C
00400 SUBROUT INE XAVT (L,T)
00410 B.0.63661 9772365755
00420 J L

• 00430 A—L’2
0044 0 K—A.2.
00450 IF (k.EQ.L)J•J+1
00460 A—J— 1
00470 T—SORT (B’A)
00480 RETURN
00490 END

11
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Table 2— Computed R sults of the Validation
Program of Table 1

N I TRUE APPRC)C. ERROR
VRLUI VAL UE IN Dl

3 7 .312~300 .325735 .360292.00
4 15 .2O~473 .213244 .1549?E+00
5 31 .144464 .145673 .723692-01
6 63 .100924 .101331 .3502EE—01
7 12? .070940 .0710*1 .1?234E—01
8 235 .050014 .050064 .85491E—02
9 511 .035314 .035331 .425?OE-02

10 1023 .024952 .024958 .2224?E-02
1* 2047 .017637 .017640 .10613E— 02
12 4095 .012469 .012470 ..53040E—03
13 819* .008816 .008817 .26514E—03
14 16383 .006234 .006234 .13255E—03
15 3276? .0044 08 . 0044 08 .66273E-04

-
: 16 65535 .00311? .003117 .33136E— 04

1? 131071 .002204 .002204 .165706—04

the verlance ls

L
— ~ (l 8 (n) l - p)2p(n) (37)

is—0

£ £ L
— ~ (8(n)~

2pQs) - 2ME I O(n) Ip (n )  + p2
~~~p(n)

s 0  n 0

L
— E6’~

1p
~~

) - 2p(gi) + p2(1)
*—0

£
- E01(nbsn) - p2 (38)

12

_ _ _ _ _

F .~.. -
— — -  -



NRL REPORT 8068

02 - 
4(

~~~_ i)
2

(
~~)(~

)

L 
-

a ± ( ± !~~~~~~~ + i ]  (
LX1)L 2

- 1 - ~2 + (1)L
2 

[L
2

(L) ± 2(~)J  

‘ (39)

where the index has been shifted from a - 0 to a 1 to account for the zero-value
summand. By use of (8) the last summation becomes

- . 

4 f L \ _ 4 ~ nL!

— 4~
., (L — 1)!

• 
L..~ ( n — 1 ) ! ( L — 1 — ( n — 1 ) J !

LI
— P 1

— n 1

— 
(L — 1)! 

+(L—1 ) ! 4~~ n — 1

(40)

- 
From (19) and (8)

i 
I.±

L!

r
— 1 +~~~ (L) (41)

- 13

L_
~~~ :r:~~~~~~~~~~~~~
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When applied to the case L • P - 1 and q - a + 1, (41) becomes

— + ~~~~ ~P_ i )  — i + (42)
n 1  q 2

which, by an exchange of arbitrary parameters, can be rewritten as

— ~~~ -1. (43)
n—2

Substitution of (43) into (40) gives

(44)

which, when substituted into (39), gives

02 - (1)L 2 ± 2
(L) 1

— ( 1\L 2 ,~ ., n (L -!JL - 1 - 2
\ 2 /  LjL(n- 1)!(L-n) ! p

— 

~
(
~
) E(M+1)(M) - 1 —

n 0

whereJ-L- l a nd M- n -1.  Then

02 - ‘(l
~
’4 

[~~~
M(

~~) ~~~ (~
)]- 1 - ~ 2 (45)

From (44) and (19), (45) sImplifies to

•2 I(l
~
’1

[
~~

J.1 + 2 ’] - 1  - . p 2 ,

which further sImplifies to

14
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02 = (J + 2) — 1 — p2

L + 1  2= L

or finally 
________________

2
° L ~

= — E(I0l)2 . (46)

DETERMINATION OF THE EXPECTED VALUE FOR THE MAGNITUDE OF
CORRELATION BETWr EN TWO GOLD-PAIR SEQUENCES

To obtain, for comparIson, the dist inguishing characteristics between purely randomand PN Cold codes, the expected value and variance of the m~ nitude of croescorrelation
for a preferred pair of PN Gold sequences, over the various possible code-phase combina-
tions, is also determined. Again, as in (10), where now L = 2N — 1, the mean or ex-pected value is

pg = ~~ lO,1p1. (47)

But now

p1 = f1/(2N — 1), (48)

where f~ is the frequency or number of occurrences of a particular value of lO ’l over theperiod. SInce 0~ Is a deterministic function for Gold pain, the f1 can be uniquely determined.

Gold (Sj has show n that the correlation for a Gold psir when N is odd can only be
one of three specific values, namely,

01 = (...2(N+1)/2 — 1j/(2N — 1), (49*)

03 S (3(N+1)12 — 1J /(2M ~_ l ) ,  (49b )

03 — — 1 / (I N_ l ) ,  (49c)

with frequ encies of occurrence

15
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= ~~~~ — 2(N 3)/2 (50a)

f2 = 2N-2 + 2(N-3) 12 , (SOb)

f3 = 2 N 1 _ l , N odd . (50c)

Substitution of (48), (49), and (50) into (47) gIves for N odd

12(N+1)/2 + 1J
= (2N-2 — 2(N-8)/21

• ( 2N_ 1) 2

12(N+1)/2 + 1] N-i
+ 2(N-3)/2 1 + 2 — 1

(2N — 1)~ (2N — 1)2

I ~ = (2(3N-1)/2 — 2(N-1)/2 + 2N-1 — iJ/(2N — 1)2, N odd. (51)

~~er~~~ [3J provides the distribution for N even, where N = 6 + 4A and A = 0,
£ 1, 2 (Pairs of maximal length sequences with three-level crosscorrelation values do

not exist f o r N=0, 4, 8, 12 ) Inthis case the three correlation values and frequen-
des of occurrence are

01 [_2(N+2)/2 — lj/( 2N — 1) (5k)

82 = (2(N+2)/2 — iJ/(2N — 1), (52b)

83 = _l/(2N — 1) (5?Z~)

with

fi = 2N-3 — 2(N-4)~2 (53a)

2N-3 + 2(N-4)/2 , (53b)

= 3(2~~ 2) — 1 , N = 4A ; A = 0, 1, 2, 3, ... (53c)

Substitution of (48), (52), and (53) Into (47) gIves

(2 N3  — 2(N-4)/2 Jp1 (2N_ l)2

(2N 3 + 2(N-4)121 3I2N-2~ — 1
+ ~~~~(2(N+2)!2~ .1J~~ ‘

(2’~-1)~ (2 N _ l ) 2

Mg — (2( 3N-$) l2 — 2(N 2)I* + 3(3N 2)_  lJ f( 2N_ l )2 , N — S  + 4A; A —  0, 1, 2 

(54)
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DETERMINATION OF THE VARIANCE OF THE MAGNITUDE OF THE
CORRELATION BETWEEN TWO GOLD-PAIR SEQUENCES

The variance of the maguitude of the correlation function for PN Gold pairs can be
obtained in a similar manner. Thus, for N odd, by use of (38), (48), (49), and (50),

I

[~(N+1)/2 + 112
= (2N 2 — 2(N—3)/2 1(2 N_ 1) 3

12(N+1)12 — 11~ nN- 1 —
~~~~1 ‘ [2~~~ + 2(N-.3)/2j + £ 

—

(2N — 1)~ (2?! —

1 2~~ — 2N — 1 2 1
[o~2 

(2N _. 1)3 
— p1 N odd . J (55)

ForN = 6 + 4 X, A 0 , 1, 2, . . . , by use of (38), (48), (52), and (53),

f 2(N+2)/2 + 112
o2 

= ‘ [2N~3 — 2(N 4)/2j
(2N_ 1) 3

12(N+2) 12 — 3i2N-2~ — 1
+ I ‘ [2~~~ + 2(N 4)/2] + ‘ ‘ — p2

(2N_1)3 (2N_ 1)3

1 
— p2 N = 6 + 4X , A = 0, 1, 2, . -

The result is that (55) and (56) are of the same form.

THE CROSSCORRELATION AND OFF-PEAK AUTI)CORRELATJON
UPPER BOUND FOR THE MEMBERS OF GOLD CODE FAMILIES

As previously stated, Gold (1,21 proved that the maximum mageitude of the cross-

* correlation whIch can occur for a preferred pair of maximal- length sequences I. also the
maximum crosacorrelatlon mageitude or bound that will be achieved for any combination

4 of two members from the family of sequences known as 00W-family codes. A method
of generating a Gold family of sequences Is diagrammed In FIg. 1. Code A and code B
are maximal-length linear sequences whIch constitute a preferred or Gold pair. Each has
a period of length 2N - 1, for N.stage digital shift registers. A member C1 of the Gold
famlly corresponding to codes A and B can be formed by the modulo-2 addition of code A
with a particular phase of code B. The sequences formed In this manner belong to the

17
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I ISOOUL.O-2 A001T106 )

Fig. 1—A method of generating members of a Gold fam ily of code.
such that each member has a bounded croascorr.l.tlon magnitude be-
tween itself and any other member within th. family. T~ is in int.i~rilnumber I of clock cyciss of tim. delay for each member C1 of the
farnily,w hare l . 1,2,..., 2”-l.Codus A and B .re selected (OOld-
Pair) N-stags shift r.~ .ter-gsnerat.d maxlmaI-leivj~h linear sequence.
which are she members of the Gold code family.

nonmaximal class of codes; however, the two maximal-length sequences used to generate
the other members of the family are themselves included in the family. Since there are
2N - 1 possIble phases of code B, there are 2?! +1 members in the Gold family.

Golomb (6J gives the off-peak normalized autocorrelatlon values for a maximal-length
linear sequence, such used in generating a Gold code family (such as code A or code B),
which are the same low value (the negative reciprocal of the sequence length), Irrespective
of the relative code phase. Thus the off-peak normalized autocorrelation magnitudes for
either code A or code B are

lOt — 1/(2~~— 1 ) . (57)

The off-peek normalized autocorrelatlon magnitudes for the other members of the Gold
family are not as Ideal; however Gold has stated in a ~rt~.te communication that the
off-peak autoconsistion values for il l codes In a Gold family are bounded in magnitude
and that this upper bound for any one family member is the same as the croescorrelation
m agnitude bound for any two family members. This bound is known as the Gold bound.
The lu.r,.4 crosacorrelation magnitude of the Gold pair used In gsneratlng the family can
thus be used to characterize the crossoorrelatlon off-peak and autocorrelatlon bounds for
the whole family of sequences.

The Gold bound for the normalized crosscorrelatlon and off-peak autocorrelation
m.gattudss over the full period for a Gold pair (or for any two members of the associ-
ated family of codes) is given by

( [giN+ 1)l1 + 11/(2?! — 1), N odd,

~ (2(N+2)lI + 1JI(2N — 1), N even . (58)

With N odd, this i~ psr bound I. a sharp bound In the sense that some relative phase shift
of the palm of sequences can be found that provides a magaitude of correlation which Ii

18 
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equal to the bound. With N even, however , there are some non-Gold-pair sequence com-
binations which yield maximum values for 101 which are just slightly less than the bound
indicated in (58).

A COMPARISON OF PSEUDONO ISE GOLD-PAIR CODES AND INDEPENDENT
RANDOM SEQUENCES

A FORTRAN computer program has been devised to evaluate the several expressions
providing the mean, variance, and bounds, where applicable , for two random sequences
and Gold-pair sequences of lengths £ = 2N - 1. The program listing is provided as
Table 3. Table 4,Fig. 2,and Fig.3glve the resulta as computed by the prograzn.
The program is based on equations (34), (36), (46), (51), (54), (55), (66), (57), and (58).
The approximate relation given in (36), based on Stirling’s approximation, is used when
the length is greater than 10,000 in order to avoid excessive computation time.

The term Gold bound as used here Is synonymous with bounds on the magnitudes of
the normalized crosseorrelation of a Gold pair (or for the autocorrelation or crosscorrelation

N
3 4 5 5 7 I 9 10 11 12 13 14 15 16 17 16 19 20 21 ~~
I I I I I I I I I I I I I I I I I U I

0 , , , i i  ~u .q p ~i,iq u iii ,,, i , i p i

THE PEAK AUTOCORRELATION MAGNITUDE BOUND .0 dO

~ THE GOLD BOUND FOR OFF-PEAK AUTOCORRELATION AND
- ‘ -.--CROS SCORRE LATION OF GOLD -FAMILY CODES

-

~~~ 
UPPER lo CROSSCORRELAT~ N MAGNITUDES

\ 
OF GOLD-PAIR coce seoueiczs

~~~~~ o •  \ • 
—

\ (\ ~~~N 
_ _ _

~~ECTW N I ~ OPPI E~ FP~EOUB4CY- / \ caosscossa,rnow\ StIWT -Oiii ] -
k MAGNITUDES OF

• oo’p~~r 
\O0LD.PA* SEOUENCES ~~~ 

‘..
~

AIflOocamCATION ~-as - MassiluceS OP \ -
MAXIMAL4.0 GTh \

- IuscL soLD~.Mal \
COOE $EOUfN~E5 \ ~-so I I I I iiii l p I I &I~ 1 I 1 1 1  iiiil i i i i  iiijl i”t I i*iiii ” I I I I

101 tO~ lO~ 16 is’
COOI LENGTh—2~-1

Fig. 2—mi boone and .zp.et.d msgsltudss of the norinalland full-period autoeon.Iatlon
and .~ms.....k tloe of Gold family cod, .quencse (0 dB rapramnta the lsrgs.t possible
conol.tlon megeltad. which ocew. when them Is .4th.. total agreement or dIsagreement
among eorreeposidlng hi~ of the s.qu.ness.)
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Table 3— FORTRAN Program for Generating Table 4

00100 PROGRAM DCORR (OUTPUT)
00110 PRINT 200
00120 502—SOR T (2.)
00330 DO 10 I1e3,23
00140 G.M
00150 14’I1’2
00160 H—H+2 .
00170 F—N’4
00180 F—F 4.
00190 L——1+2+ N
00200 PsI.
00210 E—0 .5•(I.+N)
00220 T.2...E
00230 IF(6.EQ.H)T—T•502

-: 00240 1 T+I .
00250 6B—T’P
00260 6)Da20.~ ALO6I0(GB)
00270 CALL AVTHETR (L.RPI)
00280 RMD.20. .A1OG10(RM)
00290 RVs I. ’L—RN.RPI
00300 U2SV—20. ALOG1O (RM+2..SQRT (RV) )
00310 IF(6.EO .H)CALL EVEN(PI,GN,GV)
00320 IF (G.NE.H)CALL ODD (N.GN.GV)
00330 GND—20..ALO610(GN)
00340 UISV .20. ALOG1O (GM+SQRT (GV))
00350 GAD~20..ALO610(l.’P)00360 PRINT 210.H
00370 IF (F.EQ..G)PRINT 230
00380 IF (F .NE .6)PRINT 240
00390 IF (F.NE .6)PRINT 250 ,P ,GB ,GM ,GV ,RM ,RV ,GAD ,GBD ,GND ,UISV ,RPiD ,ueSv
00400 IF F.EQ ..6’PRIMT 255,P,GB ,RM,RV ,GAD ,GBD ,RND ,U2SV
00410 10 CONTINUE
00420 PRINT 260
00430 200 FOR~~T(l8X,.EXPECTED (AUTO’CRVSS) CORR EL ATI ON PIAGNITUDES..’.
00440+15X ,•PETVEEN PAIRS OF PIAX IMAL GOLD AND RANDOM SEQUENCES.,”,
00450+2X .W4 .,5Xp.CODE •..3(?X..6OLD.).2(5X ..RANDIJM.).’,
00460+6X, .LENGTHi, 7X, •PO UND., ?X. CPIEAIl., 3X. .VARIAMCE.. ?X,
00470+.MEAN..3X..YAR!ANCE..”.5X..6OLD AUTO—Bb..7X,
00480+’D)..9X . .DP., SX, IUIS Y (DB) 0, 7X~00490+.D)..3X,’U2SV(DP)•,214.s.’)
00500 210 FORNAT (IX.12. )
00510 230 FORMATCINS. ’)
00520 240 FORNAT(• I,’)
00530 250 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00540 255 FQRNAT (F9..3X,F9.7,22X.2F$l.7,’,FI7.l,F~.~~,2gX ,F$1.2,F13.~~,~ )
00550 260 FORNAT (’~,1X,1N... IF N IS $ MULTIPLE OF
00560+. THE NUMIER OF $V$ILRILE GOLD PAIRS I~ LIMITED...”.00570+1X,2N.... UISV s UPPER 1-SI~~’IN V$LI*..00580+.; U2SV • UPPER a—SIGMA VAU*..”.
00590+. NOTEs CORRELATION IO1~~D • •.3b1 2. .N.I)’t).l)’e..N—I). N ODD.’.00600+25X.35N. (2 .( (Ps.?) ‘2).1) ‘ (t.SN—1). N EVEN .”.
006l0+18X. *LEN6TN •
00620 END
00630C

20
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Table 3 (Continued) — FORTRAN for Generating Table ‘~

00640C
00650 SUBROUTINE AVTHETA(L,RP!)
00660 J L  $ RN L/2 $ k—RPIS2 .
00670 IF<K .EO .L)J J+ 1
00680 IF (L.LT.10000)GO TO 5
00690 RN—SORT (0.6366197723657495’ (J—1))
00700 60 TO 20
00710 5 CONTINUE
00720 s(—O
00730 J (J—1)’2
00740 RPI 1.
00750 DO 10 I.i,J
00760 XsK•K+1 $ Y K K + 1
00770 RPs.RM .XfY
00780 10 CONTINUE
00790 20 CONTINUE
00800 RETURN
00810 END
00820C
O0$30C
00840 SUBROUTINE ODD (N.GPI ,GV)
00850 F1a2.•.(—N)

t 00860 F2 1. -Fl
00870 F3 2.+.(—(1+tO’2)
00880 F4 F3—2...(-(3.N+1)’2)+2...(— i -N)
0089 0+—2. .. (—20N)
00900 6P1+(F4’F2)’F2
00910 F5 2.•.(-ffi—1)’2)
00920 F6 2...(—(I$+3)’2)
00930 GV .(F5+F1)..2•(0.25—F6)
00940 GV GV+ (F5—F1) •.2I(O. a5+F6)
00950 GV GV+2.•• (—2 11—1) —2. .. (—3.14)
00960 6V ((GV/F2> ‘F2> ‘F2—GN.6P1
00970 RETURN
00980 END
00990C
oioo~~
01010 SUBROUTINE EVEI1(t1,Gl4,GV)
01020 F1•?. ••(—ft)
01030 F2.1. —F3
0104 0 F3.2. ..(—(24I1)’2)
01050 F4 F3—2. +. (- (3.11+2) ‘2) +3. .2 • .. (—2—t i)
01060+—2. ••(—2.fl)
01070 G1+(P4’F2) ’F2
01080 F5 2 . I. (- (P4—2) ’2)
01090 F6’2...(-(N+4)’2)
01100 GV (F5,F1).I2I(0.125—F6)

L 01110 GV GV+ (F5—F1)0•2•(0. 1254F6)
01120 GV.6V+3. .2... (—2.11—2) —2... -3•N)
01130 GV ((6V/F2)’F2)’F2-6NSGM
01140 RETURN( 01150 END

21
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p. 

Table 4 —  Expected (Auto/Cross ) Correlation Magnitudes Between
Pairs of Maximal Gold and Random Sequences

N CODE GOLD GOLD GOLD RANDOM RANDOM
LENGTH BOUND MEAN VARIANCE MEAN VAR IANCE

GOLD AUTO— DB DB DB U1SV(DB) DB U2SV(DB) ..

3 7 .7142857 .3469388 .0399833 .3125000 .0452009
—16.90 —2.92 —9.19 —5.24 —10.10 —2 .64

4. 15 .6000000 .2094727 . 0227879
—23.52 —4.44 —13.58 —5 . ~~5 31 .2903226 .1446410 .012344 1 .1444644 .01138& 1
—29.83 —10.74 —16.79 -11.84 —16.80 -8.92

6 63 .2698413 .0753338 .0104458 .1009237 .0056874
—35.99 —11 . 38  —22.46 -15. 01 —19.92 — 11.98

7 127 .1338583 . 0668981 .0034602 . 0709403 .0028415
—42.08 -17.4? —23.49 —18.01 —22.98 —1 5 .01

8. 255 .1294118 .0500143 .0014201
—48.13 —1 7•76 —26. 02 —18 .04

9 511 .0645793 0322877 .0009183 .U~53136 .0007099
—54.17 —23.80 —29 82 —24.07 —29.04 -21.05

10 1023 . 0635386 .0163732 .0007 10 4 . 0249522 . 0003549
—60.20 —23 .94 —35.72 —27.33 —32.06 —24.06

11 2047 .0317538 .0158768 .0002367 .0176374 .0001774
—66.22 —29.96 —35.98 —30. 10 —35. 07 —2? . 08

12. 4095 .0315018 . 0124692 .000088?
—72.25 —30. 03 —38. 08 —30. 09

13 8191 .0157490 .007874 5 .00~ 0601 . 0088163 .0000444
—78.27 —36 .05 —42 .08 —36 .12 —41.09 —33.10

14 16383 .0156870 . 0039523 .0000454 . 0062339 . 0000222
—84.29 —36.09 —48.06 —39.42 —44.10 —36.11

15 32?67 .0078433 .0039216 .0000151 .0044079 .0000111
—90.31 —42.11 —48 .13 —42.14 —47.12 -39.12

16. 65535 .0078279 .0031168 .0000055
—96.33 -42.13 —50.13 —4~ .i317 131071 . 0039139 .0019570 .0000038 .0022039 .0000028

— 102 .35 —48.15 — 54.17 —48. 16 —53.14 —4 5 .14
18 262143 . 0039101 .0009794 .0000029 .0015584 .00 (0014

—108 .37 —48. 16 —60.18 —51.47 —56.15 —48.15
19 524287 .0019550 .0009775 .0000010 .0011019 .0000007

—114.39 —54.18 -60.20 —54.19 -59. 16 -51.16
20. 1 048575 .0019541 .0007792 .0000003

—120.41 -54.18 —62.17 —54.17
21 2097151 .0009770 .0004885 .0000002 .0005510 .0000002

—126 .43 -60.20 -66.22 —60.21 —65. 18 —57 . 18
22 4194303 .0009768 .0002443 .0000002 . 0003896 . 000000 1

-132 .45 —60.20 -72.24 —63.52 -68.19 —60.1 9
23 8388607 .0004884 . 0002442 . 0000001 . 0002755 . 0000000

-138.4? -66.22 —72.25 —66.23 —71.20 —63.20

• IF N IS A MULTIPLE OF 4. THE NUMBER OF AVAILABLE GOLD PAIRS IS LIMITED.

.. U1SY • UPPER 1—SIGMA VALUE P U2SV - UPPER 2—SIGMA VALUE

NOTEs CORRELAT ION BOUND • (2•• ( (N. 1) /2) + 1) / (2..N— 1), N ODD
• (2..(ai+2) ’2)+1)’(2..N—1), N EVEN

LENGTH • 2. fl— I
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Fig. 3—The bound and expected distribution of the normalized correlation of independent
random sequences. (The expected crosscorrelatlon magnitudes of GoId.Pair codes are shown
for comparison.)

between any two members of a Gold family of codes). The upper 2o values are equal to
the mean value plus twice the standard deviation, or the square root of the variance. In
the case of random sequences with Gaussian distributions, the upper 2o values are ex-
ceeded with a probability of only 0.025.

Table 4, Fig. 2, and Fig. 3 permit a comparison between the expected properties of
the magnitude of croescorrelation between PN Gold pairs and pairs of purely random
sequences in relation to the bound determined by Gold given in (58). Several maximal -
length sequences of period L = 2N - 1 are examined , where N is the number of stages in
each of the two binary shift-register code generators . The autoco rrelation of independent
random codes is the same as their crossco rrelation . Although the off peak autocorrelation
magnitudes of Gold-fam ily codes are limited by the Gold bound just as the crosscor rela.
tion magnitudes are, the off -peak autocorre lation magnitude s of all maximal-length se-
quences of the same length are considerably lower. The 0.dB bound for the magnitude
of the autocorrelat lon or crosscorrelatlon of random codes occurs whenever corresponding
bita in the two sequences happen to either all agree or all disagree.
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The values of mean magnitude of correlation between Gold pairs fo r 3 < N < 24
are from about 0 to 4 dB lower than the corresponding mean values for independent
random sequences (where the mean is taken over all of the various possible code phase
conditions to obtain the expected value for code lengths corresponding to those produced
by N-stage shift-regist~er code generators). The expected values also tend to be as much
as 6 to 12 dB below the Gold bound. The superior performance of the Gold codes is
due to their especially high degree of mutual orthogonality. Adding one more stage to a
pair of odd-order Gold code generators allows the production of even-order sequences
with a significantly lower mean magnitude of correlation but with only a slightly lower
variance and bound, whereas adding one more stage to a pair of even-order Gold code
generators provides odd-order sequences with a much lower magnitude of correlation
bound and variance but only a slight improvement or reduction in the mean value. An
indication of the standard deviation for Gold pairs is provided by the 1~ values , which
lie above the mean values by the amount of the standard deviation.

The even-order Gold bound is comparable with the upper 2o values for independent
random codes; hence purely random sequences can be expected to have lower correlation
magnitudes than the maximum for even-order Gold codes of the same length for about
97.5 percent of the cases. However odd-order Gold codes have a sharp bound (meaning
that they can at times achieve the bound) about 2 dB below the upper 2o values for
random sequences; thus independent random sequences can be expected to have larger
magnitudes of crosscorrelation than the maximum for odd-order Gold sequences for more
than 2.5 percent of the cases.

The primary advantage of PN Gold codes in comparison with the independent ran-
dom sequences, in addition to the benefit of a lower expected value, is that the magnitude
of correlation is bounded at a significantly lower value, which decreases even more as
sequences are made longer.

SUMMARY

The magnitude of correlation of purely random sequences has been evaluated to
provide a fundamental point of reference needed for characterizing the relative perform-
ance properties of pseudonolse sequences. Expressions for the mean or expected value
and the variance for the magnitude of the full-period correlation between independent
random sequences and also PN Gold pairs have been determined for code lengths up
throug h those correspond ing to the period of maximal-length sequences from 23-stage
binary shift -register code generators .

The comparison of the crosacorrelatlon characteristics of independent random se-
quences and PN Gold pain reveals certain advantages of Gold pairs due to their inherent
mutual orthogona lity.

The Importance of choosing longer sequences whenever poss ible is clearly indicated
in all cases; for not only Is the expected magnitude of autocorr elation and crosscorrela-
tion decreased thereby , but the variances are also lowered. Longer sequences thus pro-
vide better correlation performance, whether they be purely random or pseudonoi se Gold
codes , achieved by the use of more stages in the binary shift-register code generators.
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The analysis of the magnitude of correlation for random sequences provided here is
useful for evaluating the expected performance of signal correlation detectors which func-
tion on the basis of the magnitude of correlation with a reference sequence while they
are operating on noise-only Input.
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