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In discrete-time feedback control system des qrt , the use of nonrecursive
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CHAPTER I

INTRODUCT ION

Most desi gn techn i ques for sampled-data or discrete-time feedback
systems are borrowed from those developed for continuous systems . For
example , the w-transform or fictitious frequency method is simply an
extension of the Bode approach hh] . Therefore, the compensators
synthesi zed by this method are, In general , the recurs i ve type.

It is known that the recurs ive type compensators have the following
inherent shortcomings~

2
~

3] : (1) stability problems ; (2) phase charac-
teristic problems; and (3) arbitrary approximation problems . In recent
years. nonrecursive type coinpensators have become increasingly more
important. By using the nonrecursive type filters , one can not only
eliminate the disadvantages of the recursive filters but also have a

simpler design procedure and an easier realization process.

This report is concerned with nonrecurs i ve compensator desi gn from
fundamental principles to detailed design procedures. The method

developed in this report utilizes the Fast Fourier Transform (FF1)

algorithm and is minicomputer oriented . The simple FF1 algori thmt41

and the availability of powerful mlnIcomputers1
~
1 enable us to deal with

complicated systems quite easily and accurately.

There are three typesE2 6 uhJ of design methods available for the

design of nonrecurslve coinpensators:

(1) Window method - The main contributors are Kaiser 181,
Helms E9~lf

~~, Gold and Rader~~~~, Rabiner
16’~

1 , etc.

(2) AnalytIc method - This method entails the use of analytic
technlques analogous to the Butterworth and Chebyshev

methods for desi gn ing recurs i ve filters . Hermann~~2J was

mainly responsible for this development.

I

~ 

--~~ - -- -.-~ — ._..
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(3) SuccessIve approximation method - This efficien t method
is computer oriented . Parks and McC lellan~~~

j, Rabiner ,
Gold and McGonegal t61 have developed a usefu l cataloque
of compensator designs .

Since the window method is simple , stra i ghtforward and yet affords
plenty of room for improvement , we will concentrate on the window method.
The principle of the window method is based on reduc i ng Gibbs ’ phenom-
enon t 5,llj and imp rovi ng the convergence of the truncated Fourier
series in the frequency domain along with the inte rpretation of the
generalized Gibbs ’ pheonomenon. However, In the literature , Gibbs ’
phenomena in the time domain are considered in detail while only men-
tioned in the frequency domain. For clarity , we will derive the time
domain GIbbs ’ phenomenon as a basis and develop its frequency domain
counterpart in a systematic manner in Chapter II. The latte r is neces-
sary to understand the phenomena in both domains before firmly estab-
lishing window techn iques.

In Chapter III , the generalized Gibbs ’ phoenmenon Is established .
The trapezoi dal window function is used as a basic unit from wh i ch a
family of new windows are developed, and a thorough understanding and
insight of windowing is obta ined. Windows(l8~

l9
~
2
~J , such as Naming,

Hanning , Kaiser etc., are empirical in nature ; however, a theoretical
base will be presented in this report. In the frequency domain , the
main lobe and side lobes of a windowed Fourier series can be clearly

seen. Both the derivation and interpretation presented here are believed

to be new.

Chapter IV concentrates on nonrecursive filters I2
~3~

20]. The most

common complaint in the nonrecursive filter field Is that frequency

transformations cannot be applied; since through their application the

resulting filter becomes recurs ive. We will develop a complete, novel

technique from which hi gh—pass , band-pass, and band-rejection fi1 t~rs

can be designed via frequency transformations.

2



Chapter V concentrates on the analysis of discrete-time contro l
systems. The procedure for using the FF1 and minicomputers to obtain
the frequency response and transient response of discrete-time control
systems will be presented log i cally utilizing block diagram transforma-
tions . Particular emphasis will be placed on the theorems associated
with the z—transform. For example, the Ragazzlni-Zadeh identity l2fl is
repeatedly applied to simplify and manipula te the system block diagram .
A unique and novel stability study based completely on return diffe rence

is utilized to derive a stability criterion which is believed to be new.

The design of discrete-time control systems is Investigated in
Chapter V i. Specifications of example closed loop control systems are

presented and analyzed us i ng the FF1, Fourier Analyze r , and window
techniques. The design procedure through which realizable nonrecursive

coinpensators are designed utilizing the window method is presented

in detail. Two frequently used examples of discrete-time control sys-

tems (type “0” and type “I”) are discussed in detail. The resulting

compensators are synthesized and their performance verified.

In summary, this report presents an FFT-oriented , minicomputer-

aided, design procedure for nonrecursive compensator synthesis of discrete-

time feedback systems. The method is simple , powerful , and more accurate

than previously exIsting methods.

3 
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CHAPTER II

THE GiBBS ’ PHENOMENON

2.0 INTRODUCTI ON

It is well kncwn [15] that for a periodic function with bounded

variation , the Fourier series converges at every point , particularly at

points of discontinuity. In 1899 Gibbs pointed out that convergence

of the truncated Fourier series behaves in a quite diffe rent manner

at points of discontinu i ty. Bôcher, in 1906, extended Gibbs ’ result

and established a theorem convnoniy called the Gibbs ’ phenomenon.

In this report , the phenomenon originally discovered by Gibbs and

B&her is referred to as the Gibbs ’ phenomenon In the time domain.

However, the same phenomenon exists in the frequency domain and will be

referred to as the Gibbs ’ phenomenon In the frequency domain. Gibbs ’

phenomenon is an important aspect associated with analysis and design
of nonrecurs ive filters and compensators.

Let us start with analysis of the truncated Fourier series.

2.1 TRUNCATED FOURIER SERIES

Let f (t) be a real periodic function of time t with period I and

bounded In (- 
~~, ~~

). The Fourier series expansion of f (t) Is given by

J kcu0 tf ( t) — C (1)

1$

_
-_i

~~ 
- T T T ~~~~~ -
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- 
where

ak j’ e
J
° d~. (!)

and

2i~
~‘o r

For comput i ng advantages and practical purposes, we often take only

a finite number of terms of the Fourier series in Eq. (1). In other

words, we calculate the partial sum Instead of dealing with the entire

Infinite series. Consider the nth partial sum (which contain~i ?n+ l

terms):

jk~0t
— 2.~ 

ak e (4)
k-n

Substituting Eq. (2) into Eq. (4) yields

T
• 2

I (t) d (t—r .) f (r .) (It , (5)n
2

whe re

I j kt~0t
d~ (t ) — e (6)

k—-n

Equation 6 is called the periodic D lric h ie t kerne l~~~’ or window func-

tion in the time domain. With some algebraic manipulations, it is easy

,o arrive at the follow ing :

1; 

.. - --- —.---- ~~— ---  --. - -._ _

----- .-

~ 

— 



w sin [(n +!) 
~
,,

d (t) — 
0 

/u
2
t\

0 (7)
2w sIn(~4-)

Accord ing to Eq. (5), the partial sum of a Fourier series is given by

the convolution of f(t) and dn(t) over one period . The interpretation

of Eq. (5) for the partial sum of Eq. (1) is stra ightforward ; however
it is not simple , since the window function (Eq. (7)] is complicated.

A second interpretation in terms of the Fourier Transform results

if we let F(Jw) be the Fourier Transform of f(t), then

f (t) — 

~f_: F(j~) ejW t du (8)

From Eq. (1), we have

F(jig) — 2w E ak 6(orkw0)k--u’

The nth partial sum of f(t) is given by Eq. (4), thus, the Fourier

Transform of f~(t) is

F (Ju) — 2w 
I~~n 

ak ~(w ku0) (10)

6



In general , we have

f~(t) — F~~Jw e~~ du

t - 
Jnwo 

Fjw e~~ (11)
flu0

However , from the definition of the Fourier Transform,

F(ju) — 

1: 
1(t) ~~~~ dt (12)

and substituting Eq. (12) into Eq. (ii) using the dummy variable x for

t in Eq. (12) , yields

(nw~ ,,,
fn(t) — 

~J J f(x) e’~’~ ~~~ dx du
flw~ 

-

I’.

~~~

. J 1(x) J ej~~
t
~~
) du dx (13)

-. -flu

Eq. (13) can be rewritten as

f~(t) — 1x  wn(t
~
x) dx (14)

where w~(t) is called the aperiodic Dir ich let window,

7
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W
n
(t) — 

~~ 
f fl~ 0 

e-~~~ du (15)
-flu

0

sin (nu t)
— (16)

Now, we recogni ze that the aperiodic Dirichlet window is an ideal low

ass filter with cutoff frequency nw0 and un i ty gain. in other words,
the partial sum f~(t) can be considered as the output of the i deal low
pass filter excl ted by 1(t). This Is a more explicit interpretation of

the partial sum of the Fourier series and is i mportant for deriving
the Gibbs ’ phenomenon and window ing effects later on.

2.2 GIBBS ’ PHENOMENON IN THE TIME DOMAIN

Since Gibbs and Bôcher~~~
1 , many investigators have worked on the

property of the Fourier series of a function having points of dlscon-
• tinuity. Here, we adopt the derivation given by Gui ll emin ~~~

1 .

If the given function f(t) is discontinuous at t — a, the property
of the truncated Fourier series In the vicinity of t — a is equivalent

to that of replacing f(t) by the biased step function ;

— Au(t—a) + f(a ) (17)

where

f(a ) — u r n  f(a—e) (18)
£40

and A Is a real constant, such that

A — l i e (f( a+e) — f (a—c)J (19)
c~O

8
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Considering Eq. (17); the second term f(a ) is a constant and continuous ;

therefore, we can drop it for the time being when studying the proper-

ties of the partial sum of the Fourier series for a function at the

point of discontinuity. To drop the term 1(a), let

g(t) — 1(t) - f(s ) (20)

For n very large, It Is easily shown that

— f~(t) 
- f(a ) (21)

t
Now, from Eq. (14), we have

— f _ : Wn (t~X) g~(t) dt (22)

where

g~
(t) — fa(t) — f(a ) — Au(t—a) (23)

Wi thout loss of generality, let us assume a — 0. Thus we have

g~(t) — f w~(t-x) Au(x) dx (24)

According to the properties of the convolutIon integra l , we have

ft
g~(t) — A) w~(x) dx (25)

t -*

Substitut ing Eq. (15) into Eq. (25) , yields

9
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ft sin (nw x)
— A J ttx dx

nu t
— 

A J o  sin 
~
‘ dy (26)

In terms of the sine—integral function , Si(x), defined as

Si(x) — 
1x sin y dy (27)y

Eq. (26) can be rewritten as

g~(t) — A [~
.. + ~~

. Si (nw~t)] (28)

Th. above function Is shown in Figure 2-1. Therefore, as n becomes

very large , ~~(t) has a global ma*imum, occurring at t 
ç~~

—

A [++lSi(w)] 

0 

(29)

— 1.0895 A (30)

and a globa l minimum, occurring at t — -

- A[~.+ ~~:i(~w)]

— -0.0895 A (31)

10
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1.0895 A

~4 - 2  ~~~~~ 
-

~~ ~

-o.0895A

FIGURE 2—1. THE TIME FUNCTION 9n (t)

As n~u’, 2— and - _!
~~ approach t — 0 which is the point of discontinuity ,nw0

and the ripples in Figure 2— 1 are compressed into a single ver t ica l lin e
at t — 0. Eqs. (30) and (31) correspond to the top and bottom of this

vertical line segment. In other words, the overshoot at the point of

discontinuity is given by

l i,n Max ~~(t) -A~ — 0.0895 A — 9% A (32)

and the undershoot is given by

tim 1Mm g~(t) I — 0.0895 A 9* A (33)

The Fourier series of a discontinuous function results In a 9% overshoot

in the vicinity of the point of discontinuity. This Is known as the

Gibbs s phenomenon.

I
t  11
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This behavior is important in dealing with time domain analys i s of
periodic signals. Howeve r, in the study of dig ita l fi l ters or discrete
systems the same phenomenon is encountered in the frequency domain; and

it is hel pful to analyze digita l filters from Gibbs ’ viewpoInt.

2. 3 GiBBS ’ PHENOMENON IN THE FREQUENCY DOMAIN - REAL PERIODIC FUNCTIONS

Let F(w) be a real periodic function of frequency w with period P
and bounded in (- , 4. As with the periodic function in the time
domain , we can expand F(w) as a Fourier series in the frequency domain:

Jkt~wF(~) — ~ 
A~ e

k-u ’

where

jkt x
A — 

~ 
2 F(x) e 0 dx (35)k

~1

and

2w 36

The nth partial sum Is defined as

-Jkt0u
F (u) — A~ C (37)

Let us use the second in terp retat ion of the partial sum of the Fourier
series. If f(t) is tha Inverse Fourier Transform of F(w), then

f(t) — 
~~ 

F(ø) ejt
~
t du (38)

12 
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p..

From Eq. (34) , we have

F(t) .— 

~~ 
A~ .S(t-kt0) (39)

k—-u’

From Eq. (37), the i nverse Fourier Transform of the nth partial sum is

f~ (t) - 
I~~n 

Ak 6(t-kt 0) (40)

Now, according to the definItion of the Fourier Transform ,

F(u) fn(t) e
jWt dt (41)

,nt
0

— J f(t) e - ~’~ dt (42)

—nt
0

and substituting Eq. (38) into Eq. (42), us Ing the dummy variable x for
w In Eq. (38) , yields

F~(u) — F; 
1

nt0 j F (x) ej~Ct e j
~
t dx dt

-fi t 0 
-u’

— 

~~ 
F(x) ejt (*

~~ dt dx (43)

• Eq. (1.3) can be rewritten in the form of a complex convolution

F~(u) - F x  W~(w-x) dx (44)

t 

13 
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where

1~ 
nto

W (w) — J •~
Jtw dt (4~)-nt

0

2 sin (nut )

— 
0 (46)

U

may be called the aperiodic Diri chlet kernel In the frequency domain.
Taking the inverse Fourier Transform of Wn (w)~ 

yields

(I i t t < n t
w Ct ) — <  (47)

n It i ‘. nt
0

According to the complex convolution (Eq. (44)], we have

— 1(t) w~~(t)

- f f (t )  It I < n t
0

it i > nt 0 
(48)

in other words, w~(t) is a rectangular window in the frequency domain.

Now, assume that F(u) is a discontinuous function with a point of

discontinuity at w — a. Following the derivation h Section 2.2 ,
F(w) converges to the biased step function in the v i c i n i ty  of w — a,

F(w) — Au (u-a) + F(a ) (49)

where
- —-—S •~•

F(a ) — t im F(a—c) (50)

11.
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_ —,--t* ___._,__. -

- - and A is the real constant ,

A — lim (F(a+c) - F(a-t)J (51)
-• £40

- Since convergence in the v i c i n i t y  of w — a Is governed by the first term

of Eq. (49), we can assume, for simplicity and without loss of generality,

that a — 0 and F(a ) — 0. Under this assumption we have

- F (w) — Au(w) (52)

- From Eq. (1.4), the partial sum is give n by

F~(w) a ~~ 
Fa X W~(urx) dx

- 

~~ 
u(x) W~(w-x) dx (53)

- • Substituting Eq. (46) into Eq. (53), yIelds

- A sin (nt0(w-x))
— 
; J u (x) urx 

dx
- :  -a

(~~ 
sin (fit y)

.

~~~~ 
J —  ~

,
° dy (54)

or

to..
(55)
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Comparing Eq. (55) with Eq. (26), we f i nd that convergence of a real
periodic funct i on in the frequency domain in the v i c i n i t y  of the point
of discontinuity is similar to that of a real periodic function in
the time domain. Eq. (55) can be written as

F (w) — A [~. + 1 si (nt
Ow)] (56)

Following the reason i ng in Section 2.2, the Fourier series of a real
discontinuous function in frequency domain results in a 9% overshoot
in the vicinity of the point of discontinuity . Therefore, we have
determined the counterpart of the Gibbs ’ phenomenon in the time domain;
that is , the Gibbs ’ phenomenon In the frequency domain.

We now have identica l properties for the truncated Fourier series
of real periodic functions in the time domain and the frequency domain:

(1) The partial sum of a real periodic function In the time
domain can be expressed as the convolution of the origina l
function and an Ideal filter with unity gain; the partial
sum of a real periodic function in frequency domain  can be
expressed as the complex convolution of the origina l func-
tion and a rectangular window with unity height.

(2) The Fourier series for both the real periodic function In

the time domain and the real periodic function in the fre-
quency domain has a 9* overshoot in the vicinity of the
points of discontinuity ; in other words, the Gibbs ’
phenomenon for a real periodic function In the frequency

domain is exactly the same as that for a real periodic func-
tion in the time domain.

- t
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It is important to point out that we have limIted our study to the
• partial sum of the truncated Fourier series for real periodic functions

in the frequency domain. In reality, we often must consi der complex
periodic functions in the frequency domain. For this case , the f irst

• result listed above is valid ; however, Gibbs ’ phenomenon for a complex
periodic functIon in the frequency domain must be redefined .

2.4 GIBBS ’ PHENOMENON IN THE FREQUENCY DOMAIN - COMPLEX PERIODIC

FUNCTIONS

Since we did not place any particular restrictions on F(w) when we

derived Eq. (4¾) for the partial sum of a periodic function in the Ire-
- quency domain, Eqs. (1.4) and (46) are still valid when F(w) is a com-

plex periodic function. However, if the Gibbs ’ phenomenon Is to be

considered , we need to treat the real part and imaginary parts m dlvi-

dually. Let

F(~) — FR(u.) + JF 1 (w) (57)

The window function in Eq. (1.6) is real; therefore, the partial sums of

- Fft
(~i~) and F 1 (u) are

— 

~~ I F~ (x) Wn (w
~

x) dx (58)

- and

F 1
(w) — h F 1 x W (w—x ) dx (59)

respectively. Now, if F(u) has a point of discontinu i ty at u — a and

le tting

C — tim [F(a+c) - F(a—c)J (60)

17
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where C is , In general , complex and can be defined as

C
~~~

CR + JC i (6 1 )

where

CR — u r n  [FR(a+c) — F
R (a—c)] (62)

and

C 1 — lim [F1 (a+c) - F 1 (a- )J (63)

Now, we can treat FR (~u) and F ,(w) as two real periodic func ions in
the frequency domain. From Eq. (55) we have the partial sums

c 
nt0w

FR (w) — ;!. J_~ 
sin ~ dz (64)

and

~ 
nt0w

— ~ 
J IID 

sin ~ dz (65)

In other words, in the vicinity of a point of discont i nu i ty , the partial
sum of the complex function in the frequency domain Is

F~ (w) — FR (w) + JF 1 (w)

fit w

~c J 0  sin z dz (66)

4
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Eq. (66) can be rewritten as

— c[~+ ~.Sl (nt0i~)} (67)

• Therefore , the Fourier series for the complex periodic function in the
frequency dom.ln results in an overshoot, CR ~ 

SI(w)-l] — 9* CR, in

the real part and an overshoot, C,[~.Si(w)_l] — 9% C 1, In the imag i nary
part near the point of discontinuity. Although the magnitudes of the

overshoots In the real and imaginary parts are generally not equal , the
percentages are still the same as the Gibbs ’ phenomenon in the time

domain if CR — C 1.

When dealing with the transfer function of digita l filters or dis-

crete—time control systems , we are often inte rested in the magnitude

and phase relationshi ps of the frequency response Instead of the real

part and the imag i nary part. In terms of phase and magni tude , the
Gibbs ’ phencmsnon s more complicated. Figure 2-2 shows the situation

for overshoots of megnItud. and phas. relativ e to those of the real part
and the Imaginary part. The Jump—amplitude at the poInt of discontin-

uity is given by

— F(ai’)~ - F (a)I (68)

The J.s~-phase Is

- 
a ARG [F( a~)] - ARGEF(a )J (69)

The overshoot In amplitude is

— F(a’) + 9*C~ - F(a ’fl (70)

and the undershoot in amplitude is

62 — IF( a ) I  - (c(a ) - 9tC { (7’)

19
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The overshoot in phase is

— ARG (F(a4) + 9%c] - ARG (F(a 4 ) ]  (72)

and the undershoot In phase is

02 — ARG (F(a )] - ARG(F(a ) - 9%C] (73)

F 1 (w)

~~ 
CR DI

F(a ’)

FR(w)

FIGURE 2—2. OVERSHOOTS OF MAGNITUDE AND PHASE RELATIVE TO
THOSE OF REAL AND IMAGINARY PARTS

In general 61 ~
i 6,, e~ ,~ 0~,; the percentages of overshoot (T) and under-6 1~

shoot (
~~~

) in amplitude are not 9% except In some special cases.

2.5 DEMONSTRATION OF GIBBS ’ PHENOMENA WITH HP FOUR I ER ANALYZER

In this section, Gibbs ’ phenomena in the time domain and the fre-

quency domain will be demonstrated through the use of the Hewlett Packard

Fourier Analyzer. The Fourier Analyzer performs the FF1’ algorithm 1
~
1 to

compute the Discrete Fourier Transform (DFT) of discrete signals in the

time domain or in the frequency domain. The DFT can be used to evaluate

the coefficients of Fourier series from the periodic waveform or to
synthesize the waveform from the coefficients of the Fourier series

(Appendix A).

20
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To demonstrate the Gibbs ’ phenomenon in the time domain , the following

wave was chosen as an example:

f ( t) a 0 t — 4, 0, - (74)

— i O < t ’ c .~.

The square wave defined by Eq. (lIe) is characterized by an amplItude of

unity and a period of I second. Program No. I (Appendix C) is a listing

of the program utilized for this demonstration . The number of samples

required for the FF1 algorithm was 4096. Figure 2-3 shows the resulting

waveforms for various partial sums of the Fourier series for Eq. (74).
The maximum overshoots for different nth partial sums are shown in Fi g-

ure 2-It. The maximum overshoot approaches 0.181 when n is very large .

The height of the Jump at the point of discontinuity is 2; thus, the

ratio of overshoot to the height of the j ump is 0.0905 or 9.05%. This

Is almost equa l to the prediction of 8.95% based on Gibbs ’ phenomenon.

The fol lowing example is presented to demonstrate the Gibbs ’

phenomenon in the frequency domain. Cons i de r the periodic func t ion
F(w) — FR(u) + JF 1 (w), where

1.0 < 0.25

FR(w) — (74a)
-1.0 0.25 < ~w I < 0 . 5

(-2.0 + 1e.O~,, -0.5 < w  < 0.25

F 1 (w) — 4.Ou jul 0.25 (7¾b)

2.0 - 4.0w 0.25 ‘ w ‘ 0.5

21
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f (t)

___________________________ 
I_I t

- (a) f( t )

-Ii 

.#~~~~~\J
f
T 

al~ (b) 6th PARTIAL SUN

(c) 10th PARTIAt SUM

F

(d) 32nd PARTIAL SUM

FIGURE 2-3. PARTIAL. SUMS OF THE SQUARE WAVE
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164 (t) 
-

- -

S1 
~~~~ (e)~ 64th PARTiAL SUM

1- ~~~~~~~~
-- -. - -

~~

fsi2 (t)
I

(f) 512th PARTIAL SUM

FIGURE ~~~ PARTIAL SUMS OF THE SQUARE WAV F (Concluded)

FIGURE 2-4. ~~XINUN OVERSHOOT FOR DIFFERENT PARTIAL SUNS OF EXN~PLE 1
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The period Is 1 radian. The Fourier Analyzer only displays FR(w) and
F1 (w) for 0 < u  < 0.5 and assumes FR

( w) — FR(w), F1 (— w) — F1 (w). FR(u)
and F1 (w) as well as the magnitude and phase of F(w) are shown in
Figures 2—5(a) and (b). The results of various partial sums are shown
In Fi gures 2—5(c) through 2-5(g). The magn i tude of F(w) displays Jumping—
up and Jumping-down spikes at the middle of the curve. The Jumping-down

spike is due to the real part of the Fourier series (FR(w)J converging

to 0 at t — ~-, and the magnitude of F(w) converging to 1.0 at t —

The jump-up spike Is due to Gibbs ’ phenomenon. The maximums of the
ripple magnitude for the j ump-up spike of diffe rent nth partial sums
are shown in Figure 2-6; the peaks of the ripples approach 1.542. In

other words, the ratio of the maximum of the ripples to the Jump ing hei ght

in the real part FR(w) (which is 2.00) is ((1.5422 - 1~0Øo2)i’2 -

2.00 — 0.087 or 8.7%. This is very close to the prediction of Gibbs ’
phenomenon. Since F1 (w) is continuous , the overshoots at t — are due

to the discontinuity of FR(w) only. The magnitude function, as shown
in Fi gure 2—5(b), is also continuous; therefore, taking the ratio of
overshoot to the Jumping height (which is 0) of the magni tude function,

we find that the ratio is infinite. The result Indicates that the ratio

of overshoot to the Jumping hei ght in the magn i tude function for a

complex periodic function in the frequency domain Is not always equal

to 9%.

2.6 REMARKS

Starting with the truncated Fourier series, we have defined, derived,

and interpreted Gibbs ’ phenomenon hi the time domaIn and frequency
domain. The latter is a counterpart of the former. A one-to-one
correspondence exists with the exception that Gibbs ’ phenomenon in the
frequency domain deals with complex periodic functions while In the
time domain Gibbs ’ phenomenon deals with real functions.

This chapter offers a basis for nonrecursive filter analysis via the

windowing method.
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(a) REA L AND IMAGINARY PARTS OF F(i~)

IF(w) I 
____

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
:X

.. ~~~~~~~~~~

(b) MAGNITUDE AND PHASE OF F(w)

IF(w) l /F(t~)

(c) 6th PARTIAL SUM

FIGURE 2- 5. THE PERIODIC FUNCTION F(u) AND THE MAGNITUDE AND PHASE OF
VARIOUS PARTIAL SUMS OF F(w)

25



- t F(w ) I

£ .1~~~~~

” 
~

(d) 16th PARTIAL SUM

IF(w) t

Ce) 32nd PARTIAL SUM

/F(u)

(F) 121th PART IA L SUM

FIGURE 25. THE PERIODIC FUNCTI ON F(w) AND THE MAGNITUDE AND PHASE OF
VAR IOUS PARTIAL SUMS OF F(w) (Continued)
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IF(w) l

(g) 512th PARTIAL SUM

FIGURE 2—5. THE PERIODIC FUNCTION F(u) AND THE MAGNITUDE AND PHASE OF
VAR I OUS PARTIAL SUMS OF F(u) (Concluded)

w1J-
0

z
(5

I I—
2 1 10 20 50 100 200 300

FIGURE 2-6. THE JUMP-UP SPI KE OF DIFFERENT PARTIAL SUMS OF EXAMPLE 2
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CHAPTER I I I  -

THE GENERALIZED GIBBS ’ PHENOMENON AND WINDOWS

3.0 INTRODUCTION

In Chapter II , we have shown that the truncation of a Fourier series

can be considered the same as the windowing of a function through the
use of a rectangular window. If a point of discontinuity occurs in the

function, then Gibbs ’ phenomenon results. To eliminate or reduce the

Gibbs ’ phenomena, rectangular windows must be modified into windows of
othe, shapes. When modified windows are used, the corresponding effects
are referred to as the generalized Gibbs ’ phenomena. In turn , based

on the generalized Gibbs ’ phenomena, we will develop, classify , and

Investigate various windows both In the time domain and frequency domain;

in particular , we will establish a trapezoida l window. It is believed

that this is the first time that the trapezoidal window has been uti-

lized to offer a unified picture of windowing techniques.

3.1 WIND OWING IN THE TiME DOMAIN

Let us restate the nth partial sum of the truncated Fourier series

as

f
n
(t) — f(x ) w~(t—x) dx

— f(t) * W (t) (I)

where “*“ i s rea l convolu t ion and

sin (flu t)
w~(t) a 

wt 
0 (2)
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The refore , since i t is apparent that Eq. (2) represents an I deal filter

with a cutoff frequency nw0, we can say that the partial sum f~(t) Is
governed by the characteristics of the Ideal filter w~(t). As shown in

Figure 3- 1 (a) , w~(t) displays low-damped oscillations around t — 0; result-
ing in (1) a slow convergence rate and (2) Gibbs ’ phenomenon. To improve

the convergence rate and eliminate the Gibbs ’ phenomenon , we must use
other filters or window functions instead of wn(t) given in Eq. (2).
If we filte r the nth partial sum 

~
‘
n
(t) with a filter with impulse

response w
~~

(t) , the resulting smoothed waveform is given by

f~(t) fn(t) * w
~~

(t) (3)

Substituting Eq. (1) into Eq. (3), yields

*f~(t) 
a f(t) * w~ (t) * w

tn
(t) (4)

Since the convolution integral Is an associative operation , Eq. (Se) can
be rewritten as

f~(t) a f(t) * w(t ) (5)

where

w(t) — w~(t) * w
~~

(t) (6)

Let us assume that the Fourier Transform of w
~~
(t) is W

~~
(w) and

— 0 for w ‘ flhs 0, where a 
~~~
. and T Is the period of f(t).

Takin g the Fourier Transform of w(t), we have

W (w) a F(w(t)J — W~(u) W
~~

(w) (7)

L i~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Since Wn(w) represents an Ideal filter with cutoff frequency nw0,

W (w) — W (u) (8)

and ,

w(t ) — w (t) (9)

Eq. (5) now becomes

f~ (t) — f (t )  * w
~~

(t) (10)

The result , f~ (t) , may be called the windowed partial sum of the periodic
function f(t). From this viewpoint, truncation of the Fourier series
(Chapter II) can be considered as a special case of window i ng .

3.2 THE GENERAL IZED GIBBS PHENOMENON IN THE TIME DOMAIN

As pointed out earlier , the property of the truncated Fourier
series in the vicinity of a discontinuous poInt is equivalent to that

of replacing f(t) by a biased step function. If only the oscillations
in the vicinity of the point of discontinui ty are considered, we can

replace f(t) by

f~(t) — Au(t) (11)

where A is the jump heIght of f(t) at the discontInuous point t — 0.
When the periodic function f(t )  is windowed by w

~~
(t) , we can apply

this idea and evaluate the overshoot in the vicin ty of the discon-

tinuous point. Let us define

— 
~
‘a~

t) * W
~~

(t) (12)
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Then

I g~ (t) — Ax: u(x) w
~~

(t-x) dx (13)

I- — A f w
~~

(x) dx (14)

To facilitate our dlscusslon, let us define the unit window w
~
(t ) for

the class of windows w
~~
(t), for n — 1, 2, ..., such that

-I Wt (u) 
~ 

F(w
~
(t)J a 0 for w — 1 (15)

and

w
~~
(w) a Frw t~

(t)1 — w
~(~

._) (16)

- Thus, we have

- w
~~

(t) neo wt (nw 0t) (17)

Substituting Eq. (17) into Eq. (14) y ields

t
g~(t) — Af ~ o wt (nu0x) dx

nw0t
— A J 

w
~

(y) dy (18)

Letting

4 f t
g(t) — A )  w

~
(y) dy (19)
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Then

g~(t) — g(nw0t) (20)

Assume tha t 9(t) has several ripples with the local maxima occurring at
t — t1, t2, ... , then gn(t) has local maxima occurring at

t t
— ~~~~~~ , ~~~~~ Thirefore, when ii-’— , all the ripples of g (t ) aremu0 mu0 fl

compressed Into a single vertica l line at t — 0. ThIs may cause the
same effect as Gibbs ’ phenomenon.

in order to obtain the same Jump height (A) after windowing for
n. , we need to have

lim~ [ u r n  g (c)] — Af  w (y) dy — A (21)
£90 n’ 

n 
—* 

t

or

w
~
(o) 

~1: 
w~(y) dy — 1 (22)

In other words, the necessary conditions for an acceptable time domaIn
window are the following:

(1) Its Fourier Transform W
~~

(w ) vanishes for fw~ ncu0.

(2) W
~~

(u) — 1 for u — 0.
(3) W~~(-w) —

Let us define

ft
g*(t) — J w

~
(y) dy (23)
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and

l.u.b. ( * ( ) )  1 t C (o,) (24)

Then

— l.u.b. {~~ (t)} — 1 t C (0,.) (25)

From Eqs. (19), (23) and (24) , and following the same arguments used in

SectIon 2 1 of Chapter II , we can define the generalized Gibbs ’ phenom-

soon in the time domain as:

(1) if a periodic function has a discontinuous point with Jump
height (A) and is windowed by a tims domain window w

~~
(t),

then the overshoot In the vicinity of the point of discon-
tinuity is given by

a g~A (26)

(2) The ratio of the overshoot to the Jump height is a con-
stant, 

~
, which is dependent on the unit window w

~
(t)

for the specific class of windows generated by w~~
(t) —

w (flu t).t o

The unit window for the rectangular window or the ideal filter is

I w l < 1
a (27)

0 IuI ’~l

and

w
~
(t) — !i~ 

t (28)
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Thus from Eq. (23), we have

* ( )  — d~ (29) . .

and

— i.u.b. {g*(t)) - 1 t C (0,.’)

— J-- SI (-,r) - . (30)

Eq. (30) i~ approximately equa l to 0.0895 or 8.95*. This is the over-

shoot ratio for the well-known Gibbs ’ phenomenon caused by the trunca-

tion of the Fourier series.

In order to reduce the overshoot ratio , we have to choose the window

with g~ as small as poss lble. If g~ 
— 0, no overshoot occurs . From

Eq. (24), we note that the Gibbs ’ phenomenon was elim inated , if and only

if ,

l.u.b (g*(t)} 1 for t C (0,.) (31)

Consider the specIal kInd of windows wi th unit window

w
~
(t) > 0 for t C (0,.) (32)

If g*(t) Is usonotonic Increasing; then

Is 
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l.u.b. {g*(t ) }  — u r n  g*(t)

dt

— l  (33)

In other words If w
~

(t ) or w
~~

(t) is non-negative , 9c —

Consider th. triangul ar window which has the unit window

l w  O < u c l
— (34)

l + w  l < w c O

The corresponding time function Is given by

w
~
(t) 

~~
[s; (

~

.)J

2

It is evi dent that w
~
(t) > 0 for t C (0,.). Therefore • 0 and we

may conclude that the triangular window can be used to elimIna t , the
Gibbs ’ phenomenon completel y.

3.3 THE TRAPEZO I DAL WIND OW I N THE TIME DOMAI N

Consider the class of trapezoidal windows with unit window

I 2 b w l

W
~

(w) — 1 lul ‘ 1 - 2b (36)

-I .c w c — o — 2b)

where 0 ‘ b ‘ 0.5
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The corresponding time function is gIven by

w
~
(t) _[L

; b][sin (bt)][sin U) 
b)t t]]

From Eqs. (36) and (37) we recognize that the trapezoidal windows
become rectangular windows if b — 0 and triangular windows if b a 0.5.
Therefore, the trapezoidal window is a generalization for stra ight seg-
ment windows. The overshoot ratio is — 8.95* when b a 0 and g

~ 0
when b — 0.5. Figures 3-? through 3-6 show the trapezoidal window

and f w
~
(c) dC for various b’s. Program No. 3 (Appendix C) was

used for this purpose. The overshoot ratios for diffe rent b’s are
shown In Table 3—1 and Figure 37.

The width of the mai n lobe is defined as twice the interva l from
t 0 to the first zero—crossing of w

~
(t) . From Eq. (37) we f ind that

the width of the main lobe is given by

- 

1 - b  (38)

for the unit window. Figure 3—8 shows T~ as the function of b. if the
trapezoidal window has a cutoff frequency mu0, the width of the main lobe
Is given by

*T
T ._!_ (39)W mu

0

From F igure 3-1 through 3-6 we see that as b increases , not only
does the overshoot ra t Io become small er  and smaller , but also the
sId lobe becomes smaller and damps out more quickly. From this view-
point, the triangular window is the best window for the overshoot ratio

— 0 sInce the side lob, damps out quickly. However, if we examine
Figure 3-8, we find that the width of main lobe Increases with b; the re-
for., the width of the main lobe Is largest for the triangular window.

36
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From the properties of the convolution integra l , an increase in the
width of the main lobe means a decrease in the resolution of the windowed
waveform. A good window is characterized by the following: (1) the
width of the main lobe is small , (2) the side lobes damp out quickly
and (3) th. overshoot ratio is small or zero.

I
TABLE 3— 1

OVERSHOOT RATIO g AND THE WIDTH OFC 
*MAIN LOBE

— b

O 9.0 1.00

0.05 8.8 1.05
0.10 8.7 1.11
0.15 8.4 1.18
0.20 7.9 1.25

0.25 7.0 1.33
0.30 5.9 1.43

0.35 4.3 1.54
0.1.0 2.1 1.67

0.45 0.7 1.82

0.50 0.0 2.00

Consider the square wave discussed In Chapter II. The partial

sum converges slowly and the Gibbs ’ phenomenon with an overshoot ratio

of approximately 9 occurs. Figure 3-9(a) shows the 15th partIal sum

of its truncated Fourier series. Figures 3—9(b), (c) and (d) show the

15th partial sums of the windowed Fourier series utilizing trapezoidal

windows with b • 0.33, 0.4 and 0.5 respectively. From Figure 3-9 we

see that the underdemped oscillation Is eliminated and the overshoot

spike is reduced after windowing by trapezoidal window with b • 0.33.

Figures 3—10(a) through 3—10(d) show the 255th partial sums of the

1.1

_ _  _ _ _  a a a . .. -, .aar— -~___-_ - —  — . - - - . .
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windowed Fourier series utilizing trapezoidal windows with b — 0, 0.33,
0.4 and 0.5 respectIvely. From Figures 3-9 and 3-10, the effect of

windowing is evident.

3.4 WI NDOW I NG AND THE GENERALIZED GIBBS ’ PHENOMENON IN THE FREQUENCY

DOMAIN

In the frequency domain we have a complex periodic function to

deal with and we can develop windowing techniques accord ingly. Con-

sider Eq. (44) In Chapter II , rewritten as

F ( w) — F(u) ® W~(w)

where “® “ implies complex convolution and

2 sin (nut )

Is the Dirich let kernel or rectangular window in the frequency domain.

Following the same reasoning given in Section 3-1 , if the nth partial

sum F (w) Is windowed by a frequency domain window Wfn (W) with
wffl(t) having the nonzero interval Iti -c nt 0, it yields

— F ( w) ® Wf~ (w)

— F(u) ®W fn (W) (42)

In order to study the oscillation in the vicinit~ of the point of

discontinuity after windowing by Wfn (W)P we replace F(w) by

F ( w) a Cu(w) (43)

- 
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0
where C — Cft + C 1J, and CR. C 1 are the Jump heights of FR(w) and

at the discontinuous point , respectively; and u(w) is the unit step

function of ~~. Let us define

G (w) ~ F(w)®Wf~(w)

— u (x) Wffl(w-x) dx

— W~~(x) dx (44)

Similar to the time domain window , we can define the unit window Wf(w)

for the class of windows Wffl(w), n • I, 2, ...,  such that

W
f
(t) ~ F~~(Wf(w)3 — 0 for t ~ 1 (1.5)

and

W fn (t) ~ F~~(w~~(w)] — Wf (sf ) (46)

From Eq. (46) we have

Wfn (W) — nt0 Wf(nt0u
) (47)

Substituting Eq. (47) into Eq. (44) we have

Gn(u) nt0 W~(nt0x) dx

F j Wf (y) dy (48)

_______________________________ _ _ _ _ _ _- -t______-ts_—_ — _ - - p. —S ___ —- —5- .-. . — ___________
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if we let

— 

~~ 
Wf(y) dy (49)

Then we have

G (w) — G(nt0w) (50)

if G(~) has ripples with local maxima occurring at w — w1, w2,
w w

then G~(w) has local maxima occurring at w — _L_ , Therefore,nt0 n 0
as n-’ , all the ripples of Gn(w) are compressed into a single vertical
line at w — 0. In order to obtain the same Jump height (C) after win-
dowlng for n~~, we need to have

lim Gn (C) — 

~~ 
Wf(y) dy

- — C  (5 1 )

or

Wf (O) — 

~~ 
Wf (Y) dy 1 (52)

Therefo re, the necessary conditions for an acceptable window in the
frequency domain are the following:

(1) I ts inverse Fourier  Transfo rm W fn (t) vanishes for Iti > nt0

(2) wf~(t) — 1 for t • 0.

(3) Wf~ (”t) — ~
‘
~fn (t) 

-

- ~~
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Let us define

G*(w) — 
~

- i: Wf(Y) dy — ~~~~~~~ (53)

and

— I.u.b. {G*(w)) — 1 w C (0,”) (54)

Then, from Eq. (50), we have

• .
~
. 1.u.b. {Gn(w)} 

- 1 w C (0.) (55)

Us can now dsf in the generalized Gibbs ’ phenomenon In the frequency

doma in;

(1) If a complex periodic function in the frequency domain has

a point of discontinuity with Jump heights CR in the rea l
part and C1 in the imaginary part, and Is windowed by a
frequency domain window Wf~(w)~ th. overshoot In the

vicinity of the poInt of dIscontinuity is given by

AR — GCCR in the real part. (56)

and

— G~C~ in the imaginary part. (57)

(2) Th. ratio of overshoot to the Jump height, defined as
A0
~~~~ and ~~—, is a constant G whlch Is real and dependent on
“R “I C

the unit window Wf(u) for the class of windows 
generated by

Wffl(cu) — Wf(ntØw).

“7
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The unit window for the rectangular wIndow is

1 (t(~~~l

W f (t) — 
-~58)

o (t (>i

and

Wf(w) — 
2 s In igi (59)

From Eq. (53) we have

— 

~~ 
2 

~ dy (60)

and

— 1,u.b. {G*(w)} - I for w C (0,”)

- _____ - 1

-‘ -51 (u) -~~~~
. (6 1 )

In Eq. (61) is about 8.95%. This is the overshoot ratio for the

Gibbs ’ phenomenon in the frequency domain caused by truncating the

Fourier series.

In order to eliminate the generalized Gibbs ’ phenomenon , we must

choose a w indow such that

• l.u.b. (G*(w)} - 1 — 0

48
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t

or

- l.u.b. {G*(w)} — 1 (62)

- 

For a class of windows with unit window

- W~(~) > 0 for w C (0,”) (63)

- then G*(w) is monotonic Increasing , and G
~ 

— 0. Therefore, Eq. (63)
- gives the suffIcient condition for eliminating the generalized Gibbs ’
- phenomenon. The triangular window with the unit window defined as

(1- t o < t < l
Wf(t) — 

(64)
- ~~l + t  — 1 < t < O

has a correspondIng frequency function given by

Wf(w) • 
[sin (~.)J (65)

t Since Wf(u) >0 for w C (0,—), the triangular window can be used to

eliminate the Gibbs ’ phenomenon.

When overshoots of magnitude and phase Instead of the real and

imaginary parts of the wIndowed complex period functions are concerned ,

Eqs. (70) through (73) of Chapter II are valid except that the overshoot

ratIo (9*) In those equatIons must be replaced by G
~ 
of the window which

is used.

3.5 ThE TRAPEZOIDAL WINDOW IN THE FREQUENCY DOMAIN

Consider the trapszoWal window in the frequency domaln with the

___ 

_ _ _  

_ _  
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unit window defined as

l - t  1 — 2 b - c t < l

W
f
(t) — 1 It I  < 1 — 2b (66)

1+  t —I < t < -(1  — 2b)

where 0 -c b c 0.5. The FourIer Transform of Eq. (66) is given by

Wf(i~) — 2(1-b) 
[sIn~~~ )J sin j(1-b)wJ (67)

V (~~)Figures 3—1 1 through 3—16 show the ampl i tude response of for
I

w > 0 and for b — 0 , 0.1 , 0.2, 0.3, 0.4 and 0.5, respectively, in both
the linear and the logarithmic scale. For b — 0, as shown in Figure 3-Il ,
the side lobes are underdamped; as a matter of fact, it is a rectangular
window. The peak of the highest side lobe, denoted by Sm~ 

is -13.3 dB.
As b increases, Sm dorisases When b is 0.418, as shown in Figure 3-17,
5m approaches a minimum of -32 dB. When b is greater than 0.418, Sm
increases. When b • 0.5, a triangular window results with Sm — -26.5 dB.
Table 3-2 and Figure 3—18 show the peak of the highest side lobe as the
function of parameter b.

The bandwidth of the main lobe, from Eq. (67), Is given by

— 
21! 

b (68)

and is the same as T shown in Figure 3-8. The overshoot ratio G
~ 

for
the generalized Gibbs ’ phenomenon is the same as g

~ 
which is the over-

shoot ratio for the generalized Gibbs ’ phenomenon in the time domaIn as

shown in Figure 3-7. From Figures 37 and 3-18 we see that for 0.58 <

b ‘C 0.5, th. overshoot ratio is less than 3* and 5m Is less than

-26 dB ; therefore, tI.s trapezoldai windows with 0.38 -c b -c 0.5 gIve good
w indowing resul ting i n a small overshoot ratio and overdamped side lobes.
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TABLE 3—2
PEAK OF THE HIGHEST SIDE LOBE

4- 
_ _ _ _ _ _ _ _

b S (dB)

0 -13.3
0.1 -13.6
0.2 — 15.1

0.3 -19.0
0.35 -22.7
0.4 -28.8
0.418 -32.0
0.42 -31.6
0.45 -28.4

0.50 -26.5

From Figure 3-17 for b — 0.418, the peak of the highest side lobe
is -32 dB which is the lowest Sm as shown in Figure 3-18. ThIs is the
optimal trapezoidal window and shall be used in the design of nonrecur-
sive filters and coinpensators.

Program No. 4 (Appendix C) was used to determ i ne the amplitude
response of the trapezoidal windowed Fourier Transform of Eq. (1).

The well known Hann ing and Hanining windows are defined as:

(1) Unit window for Hanning window

w(t) — 0.5 + 0.5 cos (itt) It I  < I
— 0 It I > 1 (69)

and

W (w) — 
sin w 

+ 
1 sin (w+LI) + 1 sin (‘~~~ (70)

Is 1T+W
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(2) Unit window for Hamming window

w(t) — 0.54 + 0.1.6 cos (irt) 
~~ 

< 1
— 0 lt~ > 1 (7 1)

and

W(w) — 1.08 sin ~ + 0.46 sin (11+4,) 
+ 0.46 (72)

Fi gures 3-19 and 3-20 show the amplitude response of the Hanning and

the Hamming window respectively. The peak of highest side lobes of the
Hanning window is -3i..5 dB which is somewhat greater than the peak of

the optima l trapezoida l window. For the Hamming window, 
~m 

is equal to

-43.2 dB and is much lower than the Hanning window . However, the band-

width of the main lobe is 3.44 it for the optimal trapezoi da l window,
and 4-ti for both the Hanning and the Hamming windows.

Considering the second example at the end of Chapter II as an

Illustration of the effect of windowing in the frequency domaIn , Figures
3-21 and 3—25 show the magn i tudes and phases of the truncated Fourier

series windowed by a rectangular window for n — 16 and 256, respectively.

Th. results of windowing by trapezoi dal windows with b — j~. ~~~~ and
for n — 16 are shown in Figures 3—22, 3-24 and 3-25 respective ly.

Fi gures 3—26 , 3-27 and 3-28 show the results of windowing by trapezoida l

windows with b — ~~~~~~ , }-} and ~~
.
, respectively, for n — 256. Examina-

tion of these waveforms indicates that trapezoida l windows with b > 0.3

are acceptable for windowing In the frequency domain.

3.6 REMARKS

Based on the analysis of the generalized Gibbs ’ phenomenon , we have

explained important functions of various windows both in the time domain

and in the frequency domain. For simplicity in exploring the i dea , the

56
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I
trapezoidal window was used to offer a unified picture . In the following
chapters, we shall show that this approach is powerful and help ful in
design work.

I
I
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CHAPTER iv
DESIGN OF NONRECURSIVE FILTERS US I NG THE WiNDOW METHOD

4.0 INTRODUCTION

Di gital filters can be divided Into two general classes : recursive
and nonrecursive fi lters. In control systems applications , the non-
recursive filter has two important advantages ;

1. A nonrecursive filter has a linea r phase function with
poles located at z — 0, therefore, a higher degree of

- stability is inherent in the system.

2. SInc, the impulse response of a nonrecurs l ver filter is
finite in length, the filter has only a f inite memory , so
when a short duration disturbance occurs In the input signal ,
the effect on the output signal will die out after a finite
nu~~er of sampling periods.

The frequency response of a digital filter Is periodic and can be
expanded as a Fourier series in the frequency do.r1iin. If only a finite
nus~er of terms of the Fourier series is taken frr practical purposes,
i~~ must truncat. the Fourier series . Since the ‘requency response of
an ideal filter is always specificed as a discontinuous function with
a point of discontinuity occurring at the cutoff frequency, the trunca-
tion of Fourier series involves the Gibbs ’ phenomenon and the under-
damped side lobe problems. The most straightforward way to solve these
problems is through the use of windows.

in this chapter, we w i l l  develop a conc~-~~- - ‘ocedure to design
nonrecurs ive filters via the window method~

6’
~
1. Starting with low—

pass filters and extending the discussion to high-pass, band-pass and
band-rejection filters , a new technique of frequency transformation
will be established su~Pi that the hIgh-pass , band-pass or band-rejection
filters designed u~l’ig this techniqu. wilt remain nonrecursi ve. 
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4.1 LOW-PASS FILTER DESIGN

The transfer function of an nth order nonrecursive filte r can be

expressed as

F(Z) — E ak ( )
k—0

Its fr~’qu.ncy response is

F(e~~
T) — E ak e

’j
~

3T (2)

where I is the sample period. Assuming n — 2m, we have

F(CJWT) — 
-jmwT 

~~ 
bk ~

-JkwT (3)

where

bk — ak_rn (4)

Def ing

F ( e ~~
T) ~ bk ~

-jkwT (5)

Then, we obtain

F(eJWT ) — ~“jmi~T F ( e ~~
T) (6)

In fact , Eq. (5) can be treated as the Fourier series in the frequency

domaIn with period w — ~~.which is the sampling frequency. In other

words, we have
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bk — 

~~ 
F ( e~

”T) ej1’~
T dtu (7)

I ~sJ -T-

From Eq. (6) , we have

F(Z) f — IF (Z) I (8)

and

/F(Z) —/F (Z)-muT (9)

Letting /Fm (Z) — 0, yields

•(z) — /F(Z) — -muT (10)

which means that F(Z) is a nonrecursive filte r with linear phase. From
Eq. (5) , in order to have /Fm(Z) — 0, we must let

bk
ob _k ( 1 1 )

Now, the procedure for designing the nonrecursive filter utilizing the
FF1 and window techniques can be outlined as follows:

Cl ) Specify the magnitude response, IF(Z)I, and the slope of the
linear phase function, defined by k, — ~~~~

. — -ml.

(2) If the maximum frequsncy of the si gnal to be filtered is

thn , according to the well known Shannon sampling

theorem, the sampling frequency must be equal to or
greater than 2wmax~ 

or the sampling period T must be less

than or equal to _.L__
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-k
(3) The order of the nonrecursive filter Is 2m, where m is —~

y

±.

(4) Find the inverse Fourier Transform of the magnitude response,

— IFm(Z)f~ 
by using the FF1 algorithm.

(5) The f i r st  m + I componnnts of the inverse Fourier Transform

of IF(Z) J are bk, for k — 0, 1, ..., m.

(6) In order to have a smooth frequency response, windows must be

used to modify the coefficients bk, obtaining b~, for k —

0, 1, ..., m.

(7) The transfer function of the nonrecursi ve filter is given by

F(Z) — E ak (12)

where ak — b
~_m and b’k — bj~

It is often necessary to find the transient and frequency responses

of the nonrecursive filter. From Eq. (12) , the impulse response is

n
f(t) — 

~~ ak 
6(t—kt) (l2a)

Therefore, the Impulse response is very easily found once the coefficients

of nonrecursive filters are given. The frequency response of the non-

recursive filter is as shown In Eq. (2). Of course, we can find the

frequency response directly from Eq. (2) if the coefficients (ak ’s) are
given. However, the f requency response is the Fourier Transform of
the impulse response as shown In Eq. (l2a). Thus , the “fast” way to
find the frequency response is to t*ke the Fourier Transfo rm of the
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p

impu lse response us i ng the FF1 algorithm (Appendix A). Program No. 5
(Appendix C) is the keyboard program for nonrecurs ive f i l ter design
and for f ind ing  the frequency response.

Example 1. A low-pass fitter with the amplitude response

I ~~ < 100 Hz

IF(Z) I —

0 > 100 Hz

and
I

k — 
~~~~~~~“ -0.005 sec• dw

is required. The sampling frequency is 1600 Hz. Find the nonrecursive
f i l ter us Ing the wIndow method.

Solution. Since k, — — -0.005 -ml, we have

k
m o y±.o8 (13)

t
Using four diffe rent windows, the coefficients of four different non-

recursive filters were determIned and listed in Table 1.-i. The

frequency response of each of the resulting f i l ters is shown In
Fi gures 4-1 through 4-4 .

Figure 4-3 depicts the frequency response of the nonrecursive

filter designed with the trapezoidal window (b — 0.438); note that the

peak of the highest side lobe is ‘39 dB. in Figure 4-4 the frequency
response of the nonrecursive filter designed with the Hann i ng window

is shown; note that for this filter the peak of the highest side lobe

is -44 dB. From Figures 1i~3 and 4-4 we see that the trapezoidal window
and the Henning window are comparable; however, an Important advantage
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of the trapezoidal window is that it is much easier to construct than
the Hanning window.

TABLE 4— 1

COEFFICIENTS OF LOW—PASS FILTER DESIGNED BY FOUR DIFFERENT WINDOWS

WINDOWS 
— _ _ _ _ _ _ _ _ _

COEFF IC I ENTS TRAPEZO I DAL
RECTANGULAR HANN I NG

b — 0.375 b — 0.438 
__________

a8 0.1253 0.1252 0.1252 0.1252

a7 — a9 0.1221 0.1220 0.1220 0.1174

a6 — a10 0.1128 0.1127 0.0966 0.0962

a5 a11 0.0982 0.0818 0.0701 0.0678

a4 — a 12 0.0796 0.0531 0.0455 0.0398

a3 
— a13 0.0588 0.0294 0.0252 0.0182

a2 — a 14 0.0374 0.0125 0.0107 0.0055

a1 — a15 0.0172 0.0029 0.0025 0.0007

* a0 — a16 -0.0003 0 0 0

— 4.2 FREQUENCY TRANSFORMATION I: LOW-PASS TO LOW-PASS TRANSFORMATION

ConstantinidesE18~
23l developed a set of formulas for the frequency

transformation of digital filters . Although his formulas work well for

recurs ive f i l ters, they are not suitable for nonrecurs ive f i l ters. When

any of his formulas are used to transform a nonrecurs ive filter , the

resultant is no longer nonrecursive .

In this and subsequent sections, we will develop a set of trans-

formations for nonrecursive filters to construct ( 1) a low-pass filter

with a different cutoff frequency , (2) a high-pass fi lter , (3) a
band-pass filter , and (4~ a band-rejection filter , from a low-pass f i l ter
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prototype. Let us start with the low-pass filter.

Figure 4-5(a) shows the amplitude response for the ideal low-pass
filter with cutoff frequency 

~c 
and sampling frequency f5. A new non-

recurs ive filter with cutoff frequency 
~d as shown in Figure 4-5(b) is

requi red. The coefficients of the low-pass fIlter wIth  a rectangular
window are given by

bk - Lj~ F ( e ~~
T) e~~~

T du (14)

— 3.5_J F ( J21rf1) e j2
~~

fT df (15)

where

‘a)
$ (16)

If the low-pass nonrecursive filter has cutoff frequency 
~~ 

the coeff I-

cients are

~~ 
— 

~~ 
J- : ~~j2~~’T df

sin (2kf 1)
— ‘prkf5

’T (1 7)

When the window , w(t), is used for smoothi ng the ampl i tude response, the

modIfied coefficients become

- 
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F1

1 -

f
— 

—f5 —f 0 
.—

~~~~

.

(a) LOW-PASS FILTER WITH CUTOFF FREQUENCY f

F2

1

I _ _ _ _ _  _ _  _ _  _ _ _ _ _  I f
— 

-f ‘
~~d 

0 
~d

(b) LOW-PASS FILTER WITH CUTOFF FREQUENCY 
~d

FIGURE 4—5. FREQUENCY RESPONSES OF NO LOW-PASS FILTERS
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•
bkc — bkc * Wk ( 1 8)

where wk is the window function sampled at t — kT, or wk — w( kT) . I f
the cutoff frequency is 

~d’ 
we have the coefficients of the nonrecur sive

filter with a rectangular window:

* 
sin (2irkf I)

bkd — wk f T  
d (19)

If the wIndow, w(t), is used for smoothing the amplitude response, the
modified coefficients of the nonrecurs ive filter are

bkd — bkd * (20)

From Eqs. (18) and (20) we have

b*
kdbkd
_ b

k ~2i
- kc

Substitut ing Eqs. (17) and (19) into Eq. (21), yields

sin (2lkfdT)
bkd sin (2wkf

~
T) bk (22)

if sin (2wkf 1) 0 0.

Let us now state the following rule for the low—pass to low-pass
transformation:

If the low-pass nonrecursi ve digital filter is given by

F(Z) — ~
-m 

~~~ 

bkc Z (23)
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with cutoff frequency 
~c’ 

the new filter

F(Z) — ~
-m 

~~ ~~ Z (24)

where

sin (2lrkfdT)bkd — sin (2irkf 1) bkc (25)

will have the cutoff frequency ff. if sin (2nkf~
T) 0 0.

Example 2. Using the results of Example 1 , design a low-pass nonrecursive
filte r with a cutoff frequency of 200 Hz and the same sampling frequency
(1600 Hz).

Solution. From Eq. (25), we have

bkd — 
sin [

~
. k] 

(26)
sin [B- k]

The coefficients of the required nonrecurs ive filter are listed in
Table 4—2. The frequency responses of these three nonrecurs i ve filters
are shown in Figure s 4-6, 4-7 and 4-8, respectIvely.

4,3 FREQUENCY TRANSFORMATION II: LOW-PASS TO HIGH-PASS TRANSFORMATION

FIgure 4—9 shows the amplitude response of an Ideal high-pass filter.
f

if the vertica l axis Is shif ted to , we find that the amplitude
response of the high-pass filter with cutoff frequency 

~h and sampling
frequency f becomes the amplitude response of the low-pass filter withS

cutoff frequency 
~~~ 

— -
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Mathematically we have

Fh(eJ2
~~

T) — F
h

(Z)
j  2ir fT1 e

fi2irT(f -
— FLLe j (27)

where Fh(Z) is the transfer function of the high-pass filter and F
~

(Z)
Is the transfer function of the low—pass filter. Assume that the trans-
fer function of the low-pass filte r with cutoff frequency 

~ 
is

FL (Z) — Z m j  ak z’k (28)
k—-rn

From Eq. (27) we have

-Jwf T
Fh(Z) — F

~
(e s Z) (29)

—1

_ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  

f
- I I I — —  I - I I

0 
~h

FI GURE 4-9. THE AMPLITUDE RESPONSE OF AN IDEAL HIGH-PASS FILTER
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0- 1Since f5 — , Eq. (29) becomes

Fh(Z) — F1 Ce J1TZ)

— r1 (—z) (30)

Combining Eqs. (28) and (30), yields

Fh (Z) — (-z) m i: ak (-Z)~~k--rn

— ~~
m 

~~~ 

( .1) m_ k ak Z
’
~ (3 1 )

In brief , we have the following rule for the low-pass to high-pass
transformation:

If a hi gh—pass nonrecurs i ve filter with ~±. = k
,~ cu toff fre quency

and sampling frequency 
~~ 

is required , we f i rs t  design a low-pass

nonrecursive filter with cutoff frequency f — ~!. - and ~~~
. —

then substituting Z by -Z, we arrive at the high-pass nonrecurs i ve filter
with the specified performance.

Example 3. Desi gn a nonrecurs ive filter with a sampling frequency of

1600 Hz, cutoff frequency of 400 Hz, and k~ — —0.005 seconds.

Solution. We first design a prototype low-pass filter with cutoff fre-
f k

quency 
~c — r - 

~h 
— 400 Hz, k~ — -0.005, and m — y±. — 8. Us i ng the

near optimal trapezoidal window with b — 0.438, we determine the transfer
function of the prototype low-pass filter

F
1

(Z) — z 8 
i~~~~8 

k ~~~~~~ (32)
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where

a8 — a 8 — O  
-

a
7 

a ,,, 7 = —0.0065

a6 a 6 — -0.0001

a5 = a_5 = 0.0273

a4 a_4 — 0.0002

a3 a ,,3 = -0.0759

a2 a,,,2 — -0.0003

a 1 a,,1 — 0.3183

a0 — 0.5001 (33)

Now, replacing Z by -Z, we have the nonrecurs ive high-pass filter

Fh (Z) — z 8 
kt8 

bk z
”'k (~4)
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/
where

b8 — b_8 — 0

b7 
— b_7 — 0.0065

b6 b_6 -0.0001

b5 
— b_5 — —0.0273

b~ — b_4 — 0.0002

b
3 

— b_3 — 0.0759

b2 — b_2 — -0.0003

— b_1 — -0.3183

b0 — 0.5001 (35)

The amplitude response and phase characteristics of the filte r defined

by Eq. (31i) are shown in Figure 1—1 0.

4• 1~ DESIGN OF A NONRECURSIVE BAND—PASS FILTER

Let

Fh(Z) — ~
-m 

~~~ 
ak (36)

and

F
~

(Z) — ~
-m 

I~~ m 
bk 2

-k (
~~)

be the transfer functions of a high—pass filter with cutoff frequency

and a low-pass filter wi th cutoff frequency 
~~ 

respectWely.
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Figure k—11 (a) shows the amplitude responses of Eqs. (36) and (37).
Assune that

‘ 
~h 

(38)

Then, the amplitude response of

Fb(Z) — Fh(Z) F~
(Z) (39)

as shown In Figure 4—11(b) , exhibits the band-pass characteristic, with
pass band f1 c f < f2, where f1 — 

~h 
and f2 — 

~~~~~ 
Therefore, we can

construct the bend-pass nonrecursive filter by cascading a low—pass and
a high— pass filter with proper cutoff frequencies. Substituting Eqs. (36)
and (37) Into Eq. (39), yields

Fb(Z) — Z m[~~ ak z-’][~ , bk (40)

Eq. (40) indicates that the bend-pass nonrecursive filter has a linear
phase relationship with ~~~~u’ -2mT.

Now , we can state the following rule for the construction of a band-
pass f i l ter:

If the band-pass nonrecursive filter wi th pass-band f1 < f <

and ~~~~— k is required, we first design two low—pass filters , F
~i (Z)

f I

and F (Z) , with cutoff frequencies ~~ - f1 and f , respectively, where

f 5 is the samp l ing frequency ; and the phase siopes ~~~~— — c— .
where and •2 are the phas. functions of F

~i (Z) and F~2
(Z), then the

transfer function of th. desi red bend—pass filter is given by

Fb(Z) — r~1
(—Z) F

~2
(Z) (41)
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Exa~~le 4. DesIgn a band-pass filte r with pass band 200 Hz ‘ f c 400 Hz
and ~~~~— —0.01 sec. The sampling frequency is 1600 Hz.

Solution. Since f1 — 200 Hz, f — 400 Hz and f — 1600 Hz, we first2 $

design two low—pass filters with cutoff frequencies ~L- f1 600 Hz
and 400 Hz, respectively, and k,1 — k~2 — -0.005. The order of low-pass

filters is m — -ji— 8. Following the procedures given in Section 4.1
and using the near optima l trapezoidal window with b — 0.438, yields

F
~i

(7) — 7 8 

~~~ 
ak ~~1( (42)

and

F
~2

(Z) — z 8 
i~~8 

bk Z (43)

where

a8 — a_8 — 0

a7 — a-i — -0.005

a6 — a_6 — 0.016

a5 •
~ 

— 0.020

‘4 S
~~ 

0.00i

a3 — — 0.054

— ‘-2 — -0.137

•1 
— a_ 1 — 0.225

— 0.750 (41+)

_ _ _ _ _  

4



- — ____—--.- -

and

f b8 — b 8 —

b7 — b_7 — -0.0065

t b6 — b 6 — -0.0001

b
5 

— b ,5 — 0.0273

b4 — b..4 — 0.0002

b
3 

— b 3 — -0.0759

b2 — b 2 — —0.0003

b1 — b .1 — 0.3183

• 0.5001 (45)

Now, using Eq. (41) the transfer function of the band-pass filter

becomes

Fb (Z) — r~i
(—z) ‘t2~

— ~~
1’ Ck Z~~ (46)

_ _ _ _ _ _ _  
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where

C16 — C.,16 — 0

C15 — C.,15 — 0

C14 — c.,14 — -0.0001

C13 
— C.,13 — -0.0002

Ci2 — C_i2 — —0.0001

C11 — C ,11 — 0.0004

C10 — C.,10 — 0.0005

C9 — C — -0.0004
C8 — C 8 — -0.0001

C7 
— C

7 
— -0.0015

C6 — C4 — 0.0145

C5 
— C ,5 — 0.0460

C4 — C ,4 — -0.0001

C3 — C — —0. 1320

C2 — C 2 — -0.11+29

C1 — C.,1 — 0.0935

C0 — 0.2410 (1+7)
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t

The frequency response of the band-pass filter as expressed in Eq. (46)
Is shown in Figure 4-12.

4.5 DESIGN OF A NONRECURSIVE BAND-REJECTION FILTER

Let

Fh(Z) — 7-m 
~~ 

a~ 7 (4$)

and

— 
-rn 

i~~m 
bk z~~ (49)

be the transfer functions of a high-pass filter with cutoff frequency

and a low—pass filter wi th cutoff frequency 
~~ 

respectively. Figure

4-13(a) shows the amplitude responses of Eqs. (48) and (49). Assume

that

(50)

Then the amplitude response of

F (Z) — Fh(Z) + FL(Z) (5 1)

as shown in Figure 4—13(b), exhibits the band-rejection characteristics ,

with rejection band f1 
< f c f2 where f1 — f

~ 
and f2 — 

~~ 
Therefore,

we can construct the band-rejection nonrecursive filte r by the parallel

connection of a high-pass and a low—pass filter wIth proper cutoff fre-

quencies. Substituting Eqs. (48) and (49) into Eq. (51), yields

Fr
(Z) — 7-m ~j (ak + bk) 

~~k (52)
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FIGURE 4-13. CONSTRUCTION OF THE BAND-REJECTION FILTER FROM A LOW-PASS
AND A HIGH-PASS FILTER

93

_ •, •_—.-
~u_ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .,- , .•.—.,—.—. - — — —.—•—•——————-•—— —•. • ______

_______  - — - - • — - - ——— - - - - • --_ - .



It is evident that the band-rejection filter as represented by Eq. (52)
has a linea r phase relationship with -ml.

Accordi ngly, we can now state the following rule for the construction
of the band-rejection filter.

if the band—rejection nonrecurs i ve filte r with rejection band

~ ~ and ~~~~~~ k is required , we f irst design two low-pass f i l ters
(I) • f

F
~1 (Z) and F

~2 (Z) with cutoff frequencies f 1 and - f2, respectively,d$
where f5 is the sampling frequency ; and the phase slopes are
d$2
~~~~—— k

~
. where and are phase functions of F

~1 (Z) and F
~2 (Z) , then

the transfer function of the desired band-rejection filte r is given by

F (Z) — F
~1

(Z) + F
~2
(—Z) (53)

Example 5. Design a band-rejection filter with rejection band 100 Hz <

f 600 Hz and ~. — -0.005 seconds. The sampling frequency is 1600 Hz.

Solution. Since f1 — 100 Hz, f2 — 600 Hz and f5 — 1600 Hz, we first
design two low pass filters with cutoff frequencies of 100 Hz and of
f

~~ f2 — 200 Hz , respectively, and k,1 — k~2 — -0.005 seconds . There-
fore , the order of the low—pass filters Is m — 8. If the near optima l

trapezoidal window with b — 0.438 is used, we have

F
~i (Z) — z~

8 
~~~ 

ak (54)

and 

F
~2

(Z) - bk z~ (~5)

a



p.,.

whe re

a8 — a 8 — 0

a7 — a_
~ 

— 0.0025

a6 — a 6 — 0.0107

5
5 ~ 1•,5 — 0.0252

a4 — a
~~ 

— 0.0455

a3 — a 3 — 0.0701

a2 a 2 — 0.0966

a1 — — 0.1220

a0 — 0.1252 (56)

and

b8 — b 8 — 0

b
7 

— b,.,7 — 0.0046

b6 — b 6 — -0.0152

b
5 

— b,,5 — 0.0194

b4 — b 4 — 0

b
3 

— b,3 — -0.0535

b2 — b,2 — 0.1364

— b,,1 — -0.2253

— 0.2502 (57)
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Therefo re , the required band-rejection non recurs i ve filter is given by

F ( Z 1) — ~~ k~~ 
Ck Z (58)

where

C8 — C.,8 — 0

c
7 

— c.,7 — 0.0070

C6 — C
6 

— -0.0045

— c.,5 — 0.0446

c4 — c.,4 — 0.0454

C
3 

— c_3 — 0.0167

c2 — c 2 
— 0.2329

c1 — c,,1 — -0.1032

C0 0.3754

The frequency response of this band-rejection nonrecursive filter s

shown in Figure 4—14.

4.6 REMARKS

The design of various kinds of nonrecursive digital filters using

the FF1 algorithm and windows has been presented. it Is evident that an

arbitrary frequency response can be realized through a nonrecursive

digital filter of the proper order. This technique w i l l  be emp loyed to

design nonrecursive digita l coinpensators for control systems.
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CHAPTER V

ANALYSIS OF DISCRETE-TIME CONTROL sYSTEMS ’

5.0 I NTRODUCTION

To understand and analyze a discrete-time control system , we of ten
manipulate and transform the system block diagram , and then study the

system response and stability. -
In this chapter, we will develop a consistent set of rules for dealing

with system block diagrams. Block diagram operations , simp il fications ,

and closed—loop transfer function evaluations will be derived from

direct applications of these rules ; i.e., the Ragazzini-Zadeh identity.

As far as the transient response and the frequency response are

concerned, algorithms have been developed wh ich are Fast Fourier Trans-

form oriented ; therefore, the techniques dev i sed are to be used with the

aid of minicomputers or microcomputers.

Finally, a novel stabIlity crIterion based on the return difference

is derived , explained , and demonstrated through various examples . This

cri terion Is also of the FF1-orIented and minicomputer-aided type.

In general , this chapter presents methods for quantitative and

qualitative eval uation of the performance of a discrete-time control sys-

tem. Based on a thorough understanding of the principles presented in

this chapter, we will establish the procedures for the design work

presented in the following chapter.

5.1 FREQUENCY RESPONSE OF DISCRETE-T IME CONTROL SYSTEMS

If the transfer function of a discrete-time control system is given

by
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0*
5 + a  z+ a  z + .,. +a

G(z) — 
0 1 2 m (1)

b0 + b 1 z + b 2 z + ... + b z ”

then the frequency response of the system is given by

G(jw) ~ G(z)

JuTz — e

a + a ejW T + a ej2
~

T + ... + a ejmul
— 

b: + b1 e~
”T + b: e~~~

T + ,.. + b: ~~~~ 
(2)

where I Is the sampling period and w — 
2w Is the sampling f requency.

j(u+w )T ~ r
Since e — e~~ , we see that G(Jw) is a complex periodic function
in the frequency domain with period w~. Therefore, Eq. (12) can be
expressed as a Four ier series ;

G(Jw) — an e~
j
~~
T (3)

The inverse Four ier Transfo rm of G (jw) ,  wh ich Is the Impulse response of

the discrete-time control system , is given by

g(t) — F 1 (G(jw)J

— E an 6(t—nT) (4)

For a causa l system, the impulse response must be

9(t) — 0 for t 0 (5)
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In othe r words , in Eq. (4)

an~~~
O f o r n < 0  (6)

For simplici ty, Eqs. (3) and (4) can be rewritten as

G(Ju) — a e ’j~~
T

and

g(t) — ~~ 6(t-nT) (8)

The conventional methods to obtain the an coefficients of Eq. (8) are
the partial fraction expansion, long division algorithm , etc. A new
method of using the DFT to find the frequency response G(Jw) and then
taking the inverse Fourier Transformation of G(jw ) to get g(t) has been
developed and can be adopted.

In the preceding chapter, the frequency response of the nonrecursive
filter was determined using the FF1 algorithm. Eq. (1) can be rewritten
as

G(z) — ~~ (9)

where

1(z) — am z’~~” + am i  ~
m-n-l + ... + a1 z 1” U

~ + a0 ~
-n (10)

and

D (z) — b + bn i  z’
~ + ... + b1 e

l-n 
+ b0 z

m (11)
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I
* t

and m ‘C n. Of course, N(z) and D(z) can be treated as transfer f unc t ions
of two nonrecursive filters . Therefore, utilizing the technique developed
in Chapter IV , the frequency response of N(z) and D(z) can be determined
us i ng the FF1’ algorithm. Next, dividing N(e’~

T) by D(eJWT) ,  the frequency
response of the system t ransfe r function G(z) is obtained. The procedure

suggested here is actually a fast method to calculate the frequency
response of discrete—time control systems. Program No. 6 (AppendIx C)

- was developed according to this procedure.

Example I. Find the frequency response of the system with the transfer
function

- G(z) — 
1.264z (12)

- 0.lO4z + 0.368

- and sampling period I — 0.1 seconds.

- Solution. Rewrite Eq. (12) as

1.264z 1
- G(z) — — 1 —2 ~l3)

1 - O.104z + 0.368z

Case (I). Choose N — 61. for performing the FF1.

The frequency resolution of the frequency response is give n by

W
5 2w

• 6 w r .Tlur
in this case, I — 0.1 seconds and 8u — ‘~~~~~~~“ 0.9818. The resulting frequency

response is shown In Figure 5-I for 0 ~ w

&

t 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

10) 

1
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Case (2). Choose N — 1024 for performing the FF1.

In this case, ~u — 0.06136 is much smaller than that In

Case (1). The frequency response for 0 < u  is shown in Figure 5-2.
Increasing the va l ue of N resul ts in a much smoother curve compared to

that of Case (1).

5.2 TRANSIENT RESPONSE OF’ DISCRETE-TIME CONTROL SYSTEMS

If the discrete—time control system has the transfer function G(z)

and Input R (z), then the output is given by

C(z) — G(z) R(z) (15)

and the transient response is

c( t) — Z 1 [G(z) R ( z ) ]  ( 16)

Many methods exist for finding the transient response c(t), such as the

long division method, and partial fractIon expansion , etc. However, if

we tak. advantage of the FF1 algorithm for find i ng the i nverse Z-transform

as in Eq. (16) and using Eq. (15), we have the Fourier Transform of C(z) k
which can be expressed as

C(e~”~
T) — 0(5J0~T) R(eJ(~T) (17)

Then, the trans ient response is

c(t ) — F ’1 (C(eiwI)]

— ~“l (~(~jWT) R(a3”T)] (18)
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FIGURE 5-1. FREQUENCY RESPONSE OF G(z ) , N — 64
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FIGURE 5-2. FREQUENCY RESPONSE OF G(z), N — 1024
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Thus , we firs t find the frequency response G(eJWT) and the Fourier Trans-
form R (e~~

T) usi ng the FF1, as discussed in Section 5.1 , then we use the
FF1 to eval uate the inverse Fourier Transform of G(eiwT) R (e~°~

T) to deter-
mine c(t). Details of this method are given in Appendix B.

5.2.1 UNIT IMPULSE RESPONSE

The unit impulse I nput is defined as

R(z) — Z [ s S ( t ) J  — 1 ( 19)

From Eq. (18), we have the unit impulse response

c( t) — F~~(G(.~~
T)] (20)

Program No. 7 (Appendix C) was written to evaluate the unit impulse
response from the transfer function G(z).

Example 2. Find the unit ’impulse response of the system wi th the trans-

fer function

G (z) — 2 
l.264z (21)

z - 0.104z + 0.368

• and sampling period I — 0.1 seconds.

SolutIon. Choose N — 1024. UtilizIng Program No. 7 (AppendIx C) the
unit impulse response Is
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I-
c(t) — 1.264 6(t-O.1) + 0.132 â(t’0.2)

- 0.0452 6(t-0.3) - 0.096 ó(t-0.4)
+ 0.157 6(t—0.5) + 0.052 6(t—0.6)

— 0.053 6(t—O.7) - 0.025 6(t—O.8)
+ 0.017 8(t—0.9) — 0.011 6(t—l.0)
— 0.005 6(t—l .1) (22)

The resulting transient response is shown in Figure 5—3.

c (t)

LI

I.. / \
.4- 1

I ’
.4 I

.4 1

• 
t (eec)

I ., .s ‘.L 

-.1 1

-A

FI GURE 5-3. THE UNIT IMPULSE RE SPONSE OF EXAMPLE 2

If the system has poles at z — 1 , the frequency response is undefined

•in the neighborhood of w — 0; therefore, the impulse response cannot be

eva luated di rectly by FF1’ algorithm. To overcome this difficulty , we

‘ can factor out 
( 

~ )k and define
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G1 (z) — (z i) G(z) (23)

such that no pole exists at z — I In G
1 (z). The impulse response of

G1(z) is determined ; and the method for eval uat ng the step response,
which is discussed in the following section , is used to find the i mpulse
response of G(z).

5.2.2 UNIT STEP RESPONSE

When the Input Is a unit step function , defined as

R(z)—j l z - l  (24)

Eq. (24) can be expanded as

R(z) — I + + z” 2 + •.. + z~~ 4’ ... (25)

Thus , the unit step response is

C (z) — R( z) G (z)

— G (z) + z”1 G (z) + z 2 G(z) + ,•, + ~
-n G (z) + ... (26)

and we have

c(t) — g(t-iT) (27)

where

g(t) — Z ’1(G(z) J (28)
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is the unit impulse response of the system. Since the phys i cal system

is causal ,

9(t) — 0 for t 0 (29)

From Eq. (27), we f ind

n
c(nT) — E g(nT) for n — 0, 1 , ... (30)

I —O

The Four ier Anal yzer has an integration algorithm which actually performs
the V

~umation exactly as shown in Eq. (30); therefore, the In tegratIon
operation can be used to eval uate the unit step response. Program No. 8
(Appendix C) was written to determine the unit step response from the

transfer function of the system.

Example 3. FInd the unit step response of the system with transfer
• function

1.264zG (z) — 2 ~3l
z - 0.lO4z + 0.368

and sampling period T — 0.1 seconds .

Solution. Using Program No. 8 (Appendix C), the unit step response is

c(t) — 1.264 6(t—0.1) + 1.395 6(t—0.2 )
+ 0.944 6(t-o.3) + 0.849 6(t-0.4)

+ 1.005 ~(t-O.5) + 1.056 6(t-0.6)

• + 1.004 6(t—o. 7) + 0.980 ~(t-0.8)

+ 1.007 6(t—O.9) + 1.002 6(t—l.O)
• + 0.998 6(t—).1) + ... (32)
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The resulting step response Is shown In Figure 5-4.

~ 
c(t)

I.,

1.0 
- ‘ 

.4- /

.4- 1
.4- /
.1’

t (eec)
0’ — — — — — — —• 2 .4 4 .4 1.0 1.2

FI GURE 5—4. THE UNIT STEP RESPONSE OF EXAMPLE 3

Example 4. Find the unit impulse and unit step responses of the system
wi th the transfer function

0(z) — 
1.5z (z + 1) (

~~
)

(a — i)(z - O.5z + 0.5)
and sampling period T — 0 .1  seconds .

Solution. First , define

G1 (z) — ~ 
— 1 

2 
(z + 1) (34)

Z a — 0.5z+0.5

The unit Impu lse response of G1 (z) i s
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g1 (t) — 1.501 6(t—O.I) + 2.25 6(t—O.2)

+ 0.0375 6(t-O, 3) - 0.938 6(t-O .4)
- 0.657 6(t— 0 .5) + 0.14 1 ó(t-o.6)

& + 0.399 ~~t—o .7) + 0.129 6(t-O.8)
+ 0.135 ~(t—0 . 9) + 0.002 6(t-1.O)
+ 0.067 ~(t—1.l ) + ... (35)

From Eq. (30). the unit impulse response of 0(z) Is

g(t) — 1.501 S (t—O.1) + 3.751 6(t—O.2)

+ 4.126 6(t—0.3) + 3.188 6(t— O.4 )
+ 2.532 6(t—0.5) + 2.673 6(t—O.6)

+ 3.071 6(t-o.7) + 3.200 6(t-0.8)
+ 3.065 6(t—O.9) + 2.933 6(t—1.0)

+ 2.935 6(t—l.1) + ... (36)

and the unit step response of G(z) Is

h(t) — 1.51 6 (t—O.l )  + 5.26 6(t—o.2)

+ 9.38 6 (t— O .3) + 12.57 6 (t—0 .4)
+ 15.10 6(t—0.5) + 17.77 o(t—O.6)
+ 20.85 6(t—0 .7) + 24.05 &(t-O.8)
+ 27.11 6 (t—O. 9) + 30.04 6(t-1.0)

+ 32.98 6(t—l.l) + ... (37)

Both g(t) and h(t) are shown In Figures 5—5 and 5-6 respectively.

Example 5. Find the frequency, unit impulse , and unit step responses

of the discrete—tIm . system with the transfer function

7

0(z) — —j———--—- (38)
~~~b 1 z

p i—0

_ _ _ _

k 
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g(t) ~~~~~~

3 / .. 
...

2

/ t (sec)
• — .1 .4 — .4 — .4 LI

FIGURE 5— 5. THE UNIT IMPULSE RESPONSE OF EXAMPLE 4

h (t)
4.-

SI

I. 
- - 

-

* 

i 1  _  _  — _  _~~~ (sec)

FIGURE 5—6. THE UNIT STEP RESPONSE OF EXAMPLE 4
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where

a0 — -0.006 b0 — 0.006

a1 — 0.044 b1 — -0.044

a2 — 0.262 b2 — 0.262

a
3 

— —0 .516 b
3 

— 0.516

a4 — 0.152 b4 — -0.152

a5 
— -0.210 b5 — 0.210

a6 — 1.116 b6 — -1 .116

a7 — 1.682 b7 
— -1.682

b8 — 4.0

and sampling period I — 0 .5  seconds.

Solution. Utilize Program No. 8 (Appendix C) to find both frequency and

transient responses of the system. Figure 5-7 shows the resulting fre-
quency response. The unit Impu l se response is given by

g( t )  — 0.4205 6(t-0.5) + 0.41.58 6(t-l.O)

+ 0.2566 6(t-l.5) + 0.2510 sS(t-2.O)
+ 0.0403 ~(t—2.5) 

— 0.0290 6(t—3.O)
— 0.0797 6(t—3.5) • 0.0939 .s(t—o. 4)

— 0.1035 6(t—4.5) — 0.0861 ~(t—5.o)
— 0.0597 6(t—5.5) • 0.0350 6(t—6.O)
— 0.0139 6(t—6.5) + 0.0030 6(t—7.0)

+ 0.0139 6(t—7.5) + 0.0185 6(t—8.O)
+ 0.0186 6(t-8.5) + 0.0159 ~(t—9.0)
+ 0.0117 ~(t-9.5) + 0.0070 6(t—lO.0) + ... (39 )

II) 

IV
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and the wilt step response is

4(t) — 0.42) 1(t-O.5) + 0.876 6(t-1.O)

+ 1.133 ~(t—l .5) + 1.381. 6(t—2.0)

+ 1.424 ~(t-2.5) + 1.395 ~(t—3.0)

+ 1.3)5 ~(t—3.5) + 1.222 6(t—4.O)

+ 1.118 6(t—4.5) + 1.032 6(t—5.0)
V + 0.973 6(t-5.5) + 0.939 4(t—6.0)

+ 0.924 6(t—6.5) + 0.927 6(t—7.O)

+ 0.941 ~(t 7.5) + 0.959 6(t—8.O)

+ 0.978 6(t-8.5) + 0.991. 6(t 9.0)
+ 1.005 6(t—9.5) + 1.012 6(t—lO.O) + ... (40)

Both g(t) and h(t) are shown In FIgures 5-8 and 5-9, respectively.

V 

5.3 BLOCK DIAGRAM OPERATIONS FOR DISCRETE-TIME CONTROL SYSTEMS

To f ind  the closed loop transfer functIon of a discrete—time system,

we must first derive a set of block diag ram operations for sImplify ing

the system structure. The following outlines some elements and funda-

mental operations for simplifying the block diagram of a discrete-time

system:

• The S-domain

• (1) Components

(a) CC 1 - Dynamic device

x(s) upf~i(s)] Y(s) — 6(s) X (s)

(b) CC2 - Sunining device.

x 1 (s) — a t (s) • X 1 (s ) * X 2
(s) * ... ± X~ (s)

X2 (s ) X~ (e)

V 
V~~~~~~~ VV~~~~~V.V~~~~- - • _~~~~~ - 

~~3

4 r—~~—V. - 
V. - —
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P (2) Operations .

(a) C01 - Series operation .

_____ 

i y(s) 
_________ 

X (s) 
_____

X(s) I 
_____ _________ _____ _____

..IG1 

~I-” I G2(s)
J ~

- 
~~~ 

.~ G1 ( s)G 2(s) ~

(b) C02 - Parallel operation.

a ..[c~
(s) ± G2(s)j 

~~~X ( s)  ~~~
G l (s)1 

~~~ Y( s) 
________ 

X(s) 
_____

G2(s)j 
±

(c) C03 - Feedback operations.

Ill -
I 

G(s)1 Y(s) 
_________ 

X(s) [ 0(5) 
_____

± ~~ 

a
1 U1G(5~ H ( s)

a The Z-doinaln.

(1) Components.

(a) DC1 - Dynamic device .

X(z ) .u.-J G(z)j 
a Y(z ) — 0(z) X(z)

(b) DC2 - Si~~ Ing devIce.

X 1 (z) ~~~~~~ a y(z) — X 1 (z) t X2 (z) ± ... ± X,~(z)

/~~~~~~~~X2 (z) x~ (z)
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- (2) Operations.

(a) DO) - Series operation.

X(z)
10
()f....{G ()1 ~~ ~ ~~ X (z )

..{
~~( ) G () 

~ 

Y)~~

(b) D02 - Parallel operation.

X(z) ~ J y(z) 
_ _ _ _  

X
~~
4
~~~T c (~~~~

Y(Z)

(c) D03 - Famdback operation.

I 

X

~~~? [] 
Y(z)  X ( z )

[ rGL~ H(z)J

V I

• The hybrid domaIn.

(1) Component.

V (a) NC) — Sampler (discrete input).

V X (z) ..(~) a Y(z) — X(z)

(b) HC1 - Sampler (continuous input).

V 

X( s) a Y (~) — ZEX(s)]
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(2) Operation.

HOl - Ragazzini-Zadeh I dentity l2fl.

X( s) ..r~
’
~~~._a.J_G(s)}—a.~~~~ 

.Y(z) : ~~~~~~~
All of the previous operations are based on the linear graph theory with

the exception of the Ragazzini-Zadeh IdentIty . Through the use of

these five components and seven fundamental operations , we can derive
other useful operations:

• Insert or delete the sampler - The sampler can be inserted
Into or deleted from the path through which the dIgItal sI g-

nal Is passed. This is based on the property of the sampler
(HC1).

X(z) 
_________ 

X(a) /—.~
~ -~~--- -

~~ .—‘-t.._.~_
1——.-

• Eliminate or create the sampler:

(
~
4

~~~~~~ p(z)

This operation results directly from Ragazzlnl-Zadeh identIty .

• Moving a sunsning device beyond/ahead of dev ices or sa mplers .

at c - y ~~ ~~~ X 1 a( G 
~

I X2 u . I o !

X l a® ~
- ~ ~ - ..f ’~

X2 X2 •~c~:i::~ 
I
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• Moving the take-off point beyond/ahead of devices or samp ’ers.

X “i~~1 •L~~l IU1- ~~~X 

J
a-I G I  aV i

0 aV2

x Jl .~ ~~- x ~~~~~~~~~~~~~ a

aY2 ~~~~~~ ~~~2

5.4 CLOSED LOOP TRANSFER FUNCTION

The block diagram operations given In the previous section will be

used to determine the closed loop transfer function of systems presented

in this section. ConsIder the system shown in Figure 5—10(a); moving the

suivuning device beyond the first samplier and the take-off point ahead

of G2(s) , the block diagram transforms Into that shown In Figure 5-10(b) .
Next, using the RagazzinI—Zadeh i dentIty (Operation HOl) to eliminate the

samp lers , we have Figure 5-10(c). Finally, applying the feedback opera-

tion 003 and the series operation 001, the transfer function can be
exp ressed as

____ 

Gi (z)_02(2)F(z) — 
1 + 01 (2) 02 H(a) 

(4 1 )

where

G2H(z) — Z [02 (s) H(s )] (42)

Conside r the missile launching system with a dIgita l controller as

shown i n F i gure 5—11 (a). The launcher dynamics are given by

50GL
(s) — 

~~~~ + + 2) 
(43)
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+ 

~~~~~~~~ 
..[ G~(s) )— c~i:ii:~ .f~z s I ~ 

C(z)

_ 
I

f~(s~~~~

(a)

~~~ V E  aL~ 5) 1 
~~~~~~~~~~~

R(s) 
Q 

+ _____ ____

Ge(s) H(s)j- uuu

(b)

R(z) 
~~~(z)} 

ai.{G~
(z) 

C(z~1~

~ 
G2
H(z) ~

(c)

FIGURE 5-10. BLOCK DIAGRAM SIMPLIFICATION
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r -‘
CONTROL SYSTEM COMPUTER D/A

R(s); 
~~~~~ 

~
4f
~ 

p.-

~ 

D~(z) 
~~~~~~ ~

..j G~~~~j
_- lii

i 
G~(s) iu.r

~:::I~::~ 
0(s) 

(a) SYSTEM CONFIGURATION

R(z) 
oil Dc(z)] ~ 

%(s) 
~ 

Uh f GL(s) ~~ 
o(z~

(b) EQUIVALENT BLOCK DIAGRAM

R(z) 
..[Dc~~~j  ~rj 0(z ) 

e(z~

(c) SI MPLI FIED SYSTEM

FIGURE 5-11. MISSILE LAUNCHING SYSTEM WITH DIGITAL CONTROLLER
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The zero-order hold Is

Go(s) — 
1 _~~ ‘Ts

where T Is the sampling period CT — 0.1 seconds). The dig ital compensator

Is given by

D (z) — 
O.0577 (z - 0.92) (a — 0.7 16)

c z + O.22z + 0.446

MovIng the take-off point beyond the last sampler in the feed-forward

path and eliminating the first sampler , the block diagram reduces to

Figure 5-11(b). Applying the Ragazzini-Zadeh identity (Operation HOI)

yields Figure 5-11(a) where

G(z) — Z[60(s) GL(s)] (46)

Since 
~~ 

is given In Eq. (44), we can express G(z) as

0(z) — z[.~.. GL(s)] - GL
(s) e 1’

S]

— (1 - .~,.) z[~
GL s]

In other words, we can write the zero-order hold as

G0(s z) — 
1~~ 2 (48)

If we replace G0(s) In Eq. (46) by Eq. (48) and then 
apply the Ragazzini-

Zadeh IdentIty, we can invnsdiately obtain the result of Eq. (47). From

Eq. (47) we have
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6( z) — 
3.925 x 10 4(z + 3.35)(z + 0.26)
(z - l)(z - O.9048)(z - 0.8187) (49)

V 
Therefore, the closed loop transfer function is given by

D (a) 6(z)
C

1 + D~(z) 0(z)

— 
3.925 x 10 4(z + 3.35)(z + O.26)(z - 0.92) (0.0577z - 0.403)

z2(z - 0.934) (22 - I.508z + 0.6065)

(50)

5.5 STABILITY OF DISCRETE-TIME CONTROL SYSTEM

Numerous criteria , such as the Schur-’Cohn criterion , the Inne r

theory, the Ronth-Hurwitz criterion , the Nyqulst criterion , etc., are

available for testing the stability of dIscrete-time control systems.

Most of these criteria , with the exceptIon of the Nyquist criterion ,

are algebraic algorithms and are based on the closed loop characteristic

equation. The original Nyquist criterion~~ is based on the enc i rcle-

ment of the frequency plot of the return ratio function of the closed

loop system. Since the frequency response of the discrete-time control

system can be found utilizing the FF1 algorithm , It Is evident that the

Nyquist criterion can be an effective tool for stability testing via

the FF1.

Recently, a generalized Nyquist criterion
(28] based on the return

difference rather than the return ratio has been derived and successfully

used for testing the stability of lumped and distributed parameter con-

tinuous systems. Subsequently, we will derive Its counterpart for

discrete-time systems.

If a discrete~tIme control system has a feed-forward 
path transfer

function G(z) and a feedback path transfer function H(z), the closed

loop system transfer function is given by
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F(z) — 1 + G(z) H(z) (5 1 )

Similar to the definitions for continuous system, we can define the

return ratio of the discrete-time system as

Q(z) — 6(z) H(z) (52)

and the return difference as

P(z) — 1 + Q(z) (53)

Let us express the return ratio as

Q(z) — 
A(z) (54)

where A(z) and B(z) are relative prime polynomials , and the order of

A(z) Is not greater than that of B(z) . Substituting Eq. (51.) into Eq.
(51), yields

F(z) — 
0(z) B(z) (55)
A(z) + 8(z)

Assuming that there is no coimnon factor between the denominator of 6(z)
and the numerator of H(z), then 0(z) B(z) In Eq. (55) is a polynomIal;

B(z) Is the open loop characteristic function and A (z) + 8(z) is the

closed loop characteristic function A 1 (z). Thus the return difference

becomes

P(z) — 
A(z~~+ B(z) 

— 

A~ (z)

— 
closed loop characteristic function (56)
open loop characteristic function

i 22
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P
The orig ina l Nyquist criterion for discrete-time systems is to count the

number of enc i rciements of the frequency response of the return ratio

from .~L to - where w is the sampling frequency, about the critica i

point (-I + Jo) . The generalized Nyquist criterion consi dered here Is

to count the total phase change of the frequency response of the return

difference from 0 to ; therefore, the new criterion is much simpler

than the original one.

Before procedlng any further, the following definitions are required:

• Definition 1. The open arc on the unit circle with the

center at the origIn of Z-pIane , from to is the
jw 1T jw 1~ 1Topen segment of arc Ce e ), where I is the

sampling period.

• Definition 2. The phase angle change of the mapp ing  of
Jw 11) Jw 1~ 1T

an open arc L(I) — Ce , e ) by a certain complex

functIon P(z) is defined by V

- 
~°t(I) 

-(e~+l)
-(e1)

where
f

( /J(w T -c )~~)
— 1im ~~ARG P~e 

~~~ )1 (58)

and

(
e” — u r n  {ARG Pie (59)

i e_,.O~~
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• DefinItIon 3. The total phase change of the mapping of

all open arcs on the upper half of the unit circle by

P(z) is defined as

t~0 — 
~~ 

A0~~1~ (60)

where 
~
O&(j) is the phase angle change due to the

mapp i ng of the ith open arc.

Assume that the return difference P(z) has the following

properties:

(1) P(e j
~

T) ~ 0 for 0 < w

(2) There are B poles of P(z) on the unit circle and

y poles out of the un it circle , where B and y

are finite integers.

(3) P*(z) — P(z*) where * means complex conjugate.

Cons i der the Nyquist contour for discrete-time system as shown in

Fi gure 5-12. From the principle of argument , i t Is known that the total

phase change of P(z) along the rontour

r — t(—n) Uc(—n+1) ... UL(’ l) Uc(O) UL(l) U
UL(n) Uc(n) (61)

is given by

— 2w((NA
_M) - (N6- y)] (62)

V 
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where NA is the order of A 1 (z) , NB is the order of 8(z), N is the number

of closed loop characteristic roots out of the unit circle and ‘y is the

numbe r of open loop characteristic roots out of the unit c i r c l e,  i n

detail , the total phase change of P(z) along r can be evaluated by the
sun~nat ion of Individua l phase changes along t(i), I — + I , +2 , ... ,

and semicircies c(i), I — 0, + 1 , +2 , ... , + (n—i), n. In other words

— E ML(i) + t~
0t( i) — 

I——~ i—l ) 
AOc ( I )  (63)

Assume that

P(eJt13T) — 11 (w) + jV (w) (64)

where 11(w) and V(w) are real functions of w. From property (3), we have

t(2) z-plane

FIGURE 5-12. THE NYQUIST CONTOUR FOR DISCRETE-TIME CONTROL SYSTEMS
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p*(eJwl) — U(w) - JV(w)

— p(e ’J~
T)

V — U(-w) + JV( —w ) (65)

Therefore, following the definition of the phase angle change, we have

— 

~
0L( i) (66)

Substitut ing Eq. (66) Into Eq. (63), yields

— 2 E 
~°t ( i )  + 

i—ti 1) ~
0c(i) (67)

Next , consider the phase angle change along the semlclrcles c(i). Assume

that there are 
~ 

poles of P(z) at a — e-~~ , then

A0c ( I )  — -8~ r (68)

Thus

n n
E ~e — -~~ 8 (69)

i—-Tn—i) c( i ) 
i.”Tn-I)

where B — 8 and is the total number of poles of P(z) on the
I—-Tn-I)

unit circle. CombinIng Eqs. (62), (67) and (69) yields

— 
~ [2(y-M-K) + 8) (70)

where
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V —-- 

~ - —--- —-- -- —-~~——  — -- -

H 

~~~~~~~~~~~~~ V - V V

K a N B~~~
NA (71)

Now, we can state the generalized Nyqu st cr terlon for discrete-time

control systems, as follows:

if the return difference P(z) of the discrete-time system has

the properties (1) through (3), the system is stable if and

t only if the total phase change along the open arcs

1 I — 1 , 2, ..., n, is equal to j- E2(v—K) + B].

Substituting M — 0 into Eq. (70), we immediately prove the criterion .

Program No. 9 (AppendIx C) was written for use on the Fourier Analyze r to

calculate and plot the phase angle of the return difference P(z) for
w

Example 6. Consider the system with transfer functions

6(z) _
~~~~~~~ 
- 

2z3 + O.7z
2 + O.lz + 4 (72)

(z - fl(z + 4)

-; H ( z) — 1 (73)

The return difference is given by

1 P(z) — 
a3 + o.i~

2 
+ O.)z

z + 3z -

From Eqs. (72) and (71.), we have

- 8 2 , 1 — 2, K — l

Therefore , the stability criterion is
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- . (z (y-~) + B] - 2ic

The phase plot of Eq. (74) Is shown in Figure 5-13. The phase change is

2~; therefore, the system Is stable.

Example 7. ConsIder the discrete—time system with transfer functions

4
0(z) — 

24z 
2(z - 3) (z + 3) (z + 1)

H (z ) — 1 (76)

The return difference Is given by

P(z) — 
25z — z — 9 (77)
z4 - 8z2 - 9

Examining Eqs. (75) and (77), yields

8 2 , y 2 , K O

Thus, the stability criterion is

— j. (2(y-K) + 8]

— 3w
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/

V 
(A)

0 , , ,

/

FI GURE 5-13. PHASE PLOT OF THE RETURN DIFFERENCE OF EXAMPLE 6

DEG
1S0

FI GURE 5-14. PHASE PLOT OF THE RETURN DIFFERENCE OF EXAMPLE 7
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I
The phase plot of Eq. (77) is shown in FIgure 5-14. The total phase
change is

— +

— 2700 + 2700

— 3w

Therefore, the system Is stable.

Example 8. ConsIder the stability of the missile launch i ng system given
in Section 5.4. The return difference Is given by

P(z) — I + D
~

(z) G (z)

Figure 5-15 shows the phase plot of the return difference ; the phase change
is j- . From Eqs. (45) and (49), we have

8 1 , y — 0, K — O

According to the generalized Nyquist criterion

— j- [2(y-K) + 8] —
Therefore, the system is stable.

Example 9. Consider the discrete-time system with transfer function

0(z) — 
~~~ + 

O.5z 
0.5) (78)

H(z)— 1 (79)

The return differemce Is given by
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P(z ) — 
Z + a - 0.5 (80)
z + O .5z-O,5

Examining Eqs. (78) and (80), yields

B _ i , y — O , K — 0

Thus the stability criterion is ~O — . The phase plot is shown in
Figure 5-16; the phase angle change is - . Therefore, the system is

V 
unstable.

5.6 REMARKS

A unified approach to discrete-time control system ana l ysis via the
FF1 algorIthm has been established In this chapter. Even though only
single-Input/single—output systems were studied , it is evident that the
approach can be easily extended to the multiple input/output case.
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‘0

—lb

FIGURE 5-15. PHASE PLOT OF THE RETURN DIFFERENCE OF EXAMPLE 8

iso DEC

~0

usr

-‘a.
FIGURE 5-16. PHASE PLOT OF THE RETURN DIF FERENCE OF EXAMPLE 9
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CHAPTER V I
DESIGN OF DISCRETE-TIME CONTROL SYSTEMS

6.0 INTRODUCT ION

A design procedure for discrete-time feedback control systems is
presented in this chapter: (1) to study the closed loop specification

by converting various requirements into a unified language wh i ch Is
manageable via the minicomputer; (2) to construct a reference model , for
example, a required closed loop frequency response; (3) to search for
the suitable frequency response of the compensator via the FF1 algorithm ;

(4) to design a nonrecursi ve filter transfer function for the compensa tor
usi ng the window method; and (5) to verify the performance of the corn-

pensated system. Several des ign examples Inc luding type “0” and type
S I 1S I  systems are developed for Illustration .

6.1 FREQUENCY DOMAIN APPROACH FOR DISCRETE-TiME CONTROL SYSTEM DES I GN

Consider a basic conlIguratIon of a direct dIg ital control (DDC) sys-
tern as shown In Figure 6—1. G~(s) is the plant; H(s) is the feedback

device; and G0(s) is the holding circuit or D/A converter. Usually the

zero order hold is taken to be

Ge(s) — 
1 - e~~

T 
(1)

where T is the sampling period . D
~
(z) is the dIgita l compensator and Z

is the sampler or A/D converter.

Using the block diagram operations described In Chapter V , a slmpll-
fi.d block diagram in the z-dcinaIn is obtained and is shown In Figure 6-2,

where
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R(s
~~c~~ 

- ir-(~~~~~~ im 4 D~ (z) 
IT ~~~ 

Ge(s) a.,
~ 

G~(s) 
~~

I 
_ _

_ _ _ _ _ _ _ _

FIGURE 6-1. BASIC CONFIGURAT I ON OF DIRECT DIGITAL CONTROL SYSTEM

(z)~~~~ 
~~[~~~~~

]- 
~~~~~~ 

1 (z~1 
C (~~

I 
_ _

_

FIGURE 6—2. SIMPLIFIED BLOCK DIAGRAM IN THE Z-DOMAIN
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G 1 (z) — Z(G~ (s) G0(s)) (2)

and

02(2) — Z(G0
(s) G~(s) H(s)) (3)

Therefore , the closed loop transfer function is given by

C ) D (a) G~(z)F(z) — r~~
r- — i +

C
DC(z) 62(2) 

(4)

The design problem is to find the compensator Dc(Z) such that the charac-

teristics of the compensated system match the required specifications.

If G1 (z) and 02(2) are given , from Eq. (4) we have

D
~

(z) — G1 (z) - i ~~(z) F(z) (5)

In other words, if the closed loop transfer function F(z) is specified ,

the compensator Dc(Z) Is given by Eq. (5). However, there are some prob-

lem areas:

V 
(1) The analytic form of the specific closed loop transfer

function is necessary.

(2) The compensator D
~
(z) determined by Eq. (5) is in

recurslv. form and since the characteristics of a

recursive filte r are very sensitive to its coefficients ,

high accuracy in determining coefficIents is necessary.

Therefore the microcomputer, which usually has a data

word length of less than 16 bits , is not always suitable

to be employed as a recursive digital compensator.

(3) The compensator determined by Eq. (5) may be unstable.
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In order to avoid the disadvantages of the design method in z-dornain ,
we will develop a frequency domaIn approach. The frequency response of
Dc(Z) is given by

D (eJCdT) — 
F(eJWT ) 

(6)C G 1 (eJwT ) - C (e~~~) F( ei~
)T)

If G 1 (z) and G2 (z) are given , the frequency response G 1 (e juT) and G2 (e JWT )
can be found using the FF1 algorithm as described in Chapter V. The
required information concern i ng the closed loop characteristics is the
frequency response F(e~~

T). Therefore, F(z) can be specified either in
analytic form or by the time or frequency domain characteristics from
which an approximate frequency response can be found. If we take the
i nverse Fourier Transform of Dc(eJ~

)T)~ we can easi ly find the non-

I recursive filte r form for D (z). In other words, the window method for
nonrecurs ive digita l filter design as given in Chapter IV can be used
to design a discrete-time control system.

6.2 SPECIFYING THE FREQUENCY RESPONSE OF CLOSED LOOP SYSTEMS

Many approaches are available for specifying the closed loop fre-

quency response to match the required specifications . Two of these

approaches are discussed In the ensuing paragraphs .

(1) The Required Specification is Given In The Continuous Time

Domain or The Frequency Domain

When the output of the discrete-time control system is con-

tinuous in time , we can specify the closed loop transfer

function in the s-domain according to the required spec if i-

cations and then find its transfer function in a-domain.

For example, if we need the closed loop system which has
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C — 0.7
a

— 20

then, by the use of the multi—dimensional Newton-Raphson
method (27] the required closed loop transfer function can
be determined and is given by

F 1 (s ) — 2 
+ 12.674 (7)

s + 4.984s + 12.674

Assuming the sampling period of the system is ~ • 0.1 seconds ;
the a-transform of F(s) is given by

F(z) — 4.350z2 — 3.11.Oz (8)
z - l.5O87z + 0.6075

Using the FFT algorithm , the frequency response of the closed
loop transfer function can be easily found.

(2) The Specification is Given by The Discrete Transient Response

V If the impulse response of the closed loop is specified , the
frequency •(esponse can be obtained by taking the inverse

V Fourier Transform of the impulse response. Sometimes, the
step response, instead of the impulse response, of the closed
loop is specified. In this case, we need to find the impulse

response first. Since the step response Is

Cu (Z) — F(z) a - 1 (9)

the impulse response is given by
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C6(z) — c~
(z) 2 1

— C~ (z)( I - z~~) ( 10)

In the time domain , we have

C6(t) — c
~

(t) — C (t—T) (ii)

The Fourier Analyzer contains a differentiator wh i ch is actually

an operator with transfer function 1 - z 1 ; therefore , the
impulse response can be found from the step response uSing the
differentlator. Once the Impulse response is obtained , the

frequency response of the closed loop can be found easily.

Program No. 10 (Appendix C) can be used to find the frequency

response from the step response.

For example, the required unit step response is listed in Table 6-1

and the sampling period is 1 0.1 seconds. The transient response for

O < ~ 
c 5.0 is plotted in FIgure 6-3(a). Using Program No. 10 (Appendix

C), the Impulse response was obtained and is shown in Fi gure 6-3(b) and

listed in Table 6-1. The frequency response is shown In Figures 6-3(c)

and 6-3(d). 
- _ V V 

~~~~~~~~~~~~ - V V 
-

TABLE 6-1 
-

~~ —

REQUIRED UNIT STEP AND IMPULSE RESPONSES

V c
~

(t) C6(t) t C~(t) c 6 (t )

0 0 0 0.9 0.985 0.005

0.1 0.280 0.280 1.0 0.995 0.010

0.2 0.850 0.570 1.1 1 .010 0.015

0.3 1.050 0.200 1.2 1.005 -0.005

0.4 1.100 0.050 1.3 0.998 -0.007

0.5 1.070 -0.030 1.4 0.999 0.001

0.6 1.030 -0.040 1.5 1.000 0

0.7 0.990 -0.040 . 1.000 0

0.8 0.980 -0.010 1.000 0
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4
t (sec)

—i

—2

F I GURE 6— 3 ( a) .  REQU I RED UNIT STEP RESPONSE

V L ~V t (sec)

-.4

-.5

FIGURE 6-~ (b). UNIT IMPULSE RESPONSE
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r —

IMAG INARY

-2

FIGURE 6-3(c). FREQUENCY RESPONSE (RECTANGULAR)

2

_ _ _  2

FI GURE 6—3(d). FREQUENCY RESPONSE (POLAR)
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6.3 THE STEADY STATE ERROR AT THE SAMPLING INSTANTS

Consider the unit feedback system as shown in Figure 6—4. The sys-

V tern error is defined as

E(z) — R(z) — C(z )

— 
R(z) (12)V 1+0(z)

where R(z) is the input and C z) Is the output. From the Final Va l ue

theorem, the stead y state error is given by

- — l ie  e( t)

— u r n  a — 1 E(z )
z.l ~

— u r n  (a 
— 1) E(z) ( 1 3)

V z-’l zEl + 0(z)]

R(z) 

~~
?

E(z

~
u..Vj 0(z) 

C(z)

FI GURE 6-4. THE UNIT FEED BAC K SYSTEM

Th. followin g three kinds of stead y state errors are most importan t In

consIdering the closed loop specifications:

V 
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(1) PosItion errors.

The position error e~ Is defined as the steady state error
when the input is the unit step fu nct ion

R (z ) 
~~~~~~~ 

( 1 4)

From Eq. (13), we have

— 
1 + G(iJ — 1 + 0(1) — 

¼ 
( 15)

where

K~~— i+G (l) (16)

is called the position error constant. For type “0” systems ,
the position error e~ is finite ; for type “1” or h i gher sys-

tems, the position error e~ is zero.

(2) Velocity errors.

The velocity error Cv is defined as the steady state error
when the system Is exc i ted by the unit ramp signal

R(z) • 2 ( 1 7)
(z — 1)

Thus , from Eq. (13) we have

• 
~~ (a - l)t1 + 0(z)] 

( 18)

( 19)
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where

K — u r n  (a - 1) 0(z) (20)
z+i

is called the velocity error constant. For type “0” systems

e
~ 

— •; for type “1” systems e~, Is finite ; and for type “2” or

higher sys tems Cv 
— 0.

(3) AcceleratIon errors.

V 
The acceleration error e

~ 
is defined as the steady state

V error when the system is excited by the unit parabolic si g-
V nal

r( t) — ~- t2 (21)

or

R(z) T2(z + l~z (22)
2(z — 1)

Therefore, from Eq. (13) we have

V 

T2e — u r n —  2a z#l (2 — 1) tI + 0(z) )

(23)

where

K — L,ç. l lm (a - 1) 2 0(2) (24)
a r z..l
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P is called the acceleration error constant. For type “0” and

type “1” systems, Ca — 
~; for type “2” systems Ca 

Is finite ;

for type “3” or higher systems Ca — 0.

If the open loop transfer function G(z) Is given , it Is stra i ght-

forward to find the error constants K,, K and Ka~ 
If only the closed

loop transfer function F(z) is given , we have to find the open loop

transfer function

0(z) • (25)

and then find the error constants. However, if only the frequency response

of the closed loop is specified as described In Section 6.2, we do not

have the analytic form for F(z), and mus t f i nd the error constants f rom
the frequency response.

Substituting Eq. (25) into Eq. (16), yields

— ~~ + (26)

Since z — ej
~
I)T , z.l corre sponds to r~O. Thus , in the frequency domain

Eq. (26) becomes

IK l l m ~27p 
II)40 1 - F(e u1~

T)

Sim i la r ly ,  from Eqs. (20) and (24), we have

K — l im F(e
JWT)(e~~

T 
- 1) (28)

V w-’O T(1 - F(e~~
T))

and
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F1 jwT,~~ j uT —
K — u r n  ~ ,~e 

,, (29)a 
~~ T2[l - F(eJWT)]

t4.ost servo systems or autop ilot systems are type “1”, and the velocity

error Is important; therefore, we will dIscuss the velocity error con-

stant K
~ 

i n detail. For the type 1 system, the open loop transfer func-

tion can be rewritten as

0(z) — 1 X (z ) (30)

where x ( i) Is nonzero finite. Thus, the closed loop transfer function

is given by

F(z) - 1 + G~z) (a - 

(a) 
X (z)  (3 1 )

and

F ( l )  — 1 (32)

In other words, F(z ) - 1 has a factor (a - 1). From Eq. (31), we have

~ _ p dX (z ) _~~dF (z) ‘~~ ‘ dz 
Z

Z ((z - 1) + X(z)) 
V

Therefore , we have

F ’ ( I )  — - 

~fr~- 
(31.)

Since x(1) Is nonze ro finite , we conclude that F’ ( l ) — 0 and a — I is
a simple root of F(z) - 1 — 0 or

-

~~~~ 11.5
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Y(~) ~ 
F(z) - 1 (35)

is nonzero finite as z+l.

If we define

D( z) — F(z ) (36)
a — 

— z — 1 F (z)

then z — 1 is the simple root of F(z) - 1 — 0, and the denom i na tor of
Eq. (36) is nonzero finite as z+l . From Eq. (28) we have

— ~r D(e
JWT)

w O (37)

Another approach to find ing K~ Is to first find the error response E(z) .
From Eq. (12), the error response of the unIt ramp input is

Tz

E ( z) — 

1 

(a 
F(Z)

I - F(z)

— Tz 1[ ~ — F(z)] (38)

Since 
~ 
F(z) is the unit step response of the closed loop, 

~ I -

F(z) is the error response of the unit step input. If the closed

loop charac teris t ic is specified by Its unit step response, the error
response of the unit step input in the time domain

e
~

(t ) • 1 
- 

a — 1 F(z)] (39)

11.6
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can be found easily. Then, the error response of the unit ramp in the

time domain

er(t) — i1 (E (z) ] (40)

can be obtained by integrating 
~ 

2 )
~~ and the right shift ing (Z 1)

of Eu(t)~ 
Once er(t) is found , the veloci ty error Is

e
~ 

— llm (t — er (t )] (4 1 )

and

(42)

The entire procedure for find ing the frequency response and a n a l y z i n g

the velocity error from the specified step response of the closed loop

is included in Program No. 11 (Appendix C).

For the system with closed loop step response shown in Figure 6-3(a),

the frequency response of 0(z) (Eq. (36)] is shown in Figure 6-4(a).

From Figure 6-4(a), we have D(eJWT) — 0.604 when w — 0; there fore ,

t 
K_4 !i”6.01I (43)

The error response of the unit ramp input is shown in Figure 6-4(b).

The steady state error is approx imately 0.1654; thus ,

— ~~ —. — 6.04595 (1.4)

and the results of Eqs. (43) and (44) are consistent.
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6.4 CALCULATION OF THE FREQUENCY RESPONSE OF REQUIRED COMPENSATOR

The basic formula for finding the frequency response of the required

compensator Is given by Eq. (6). For computing advantages , we need to

study the following system categories:

(1) Type “0” systems.

For the type “0” system, no pole occurs at a — I for both

G
1 (z) and 02

(2); the refore , Eq. (6) can be used without

difficu l ty. In the unit feedback system as shown in

Figure 6—4, G(z) ~ G1
(z) — G2(z); therefore, we have

juT
o ( JuT) — 

F(e ) (45)
C G(eJWT)[l -

When w — 0, or ejWT — I , we have

- G~l)[i - F(1)] 
(46)

From Eq. (27) we have

1
I — F(l)

and

F(l) — 1 +~~~~.-. (JiB)

Thus, we have

1 + K
0
~

( 1) — (49)
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FIGURE 6-4(a). FREQUENCY RESPONSE OF D(z)
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FI GURE 6-4(b). ERROR RESPONSE OF THE UNIT RAMP INPUT
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When a small position error or a large position error
constant (K1,) is required, Eq. (49) indicates that the
dc gain of the frequency response of the compensator
should be as large as possible.

(2) Type “1” systems.

For type “1” systems , G 1(z) and G2 (z) become infinite
when w~0 or z+1. As shown in the last section , (1 - F(z )]
has a factor (z - I). Thus, In the uni t feedback system ,
0(z) ~ G 1 (z) — G

2
(z); Eq. (45) gives an undefined value

for D
~
(z) when w-’O. In order to avoid this ambiguity,

we must modify the formula for the frequency response

of the compensator.

Assume that

c(z) 
~ ~ G~ (z) (50)

when Gn(Z) has no pole or zero at a — I. From Eq. (45),

we have

O (z) — 
F(z) (5 1 )

C G (z)[_ 2 - F(z)]]

Substituting Eq. (36) Into Eq. (51), yields

D
~

(z) — (52)

V 
Since the frequency response of 0(a) is well-defined for
O < w  < w 5, the frequency response of the required coin-

pensator Is given by
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JuT
— 

G~(e
iuI)

From Eq. (37) , we see that

0( 1) a TK~, (54)

When w — 0, we have

1K
D
~

( l )  — G~(i)

Eq. (55) indicates that the dc gain of the frequency response
of the compensator is proportional to the velocity error
constant

6.5 GENERAL PROCEDURE FOR DESIGNING NONRECURS IVE COMPENSATORS BY THE
WINDOW METHOD

Once the frequency response of the required compensator is found ,

the frequency response can be expanded as a Fourier series in the

frequency domain and then truncated through the use of windows to con-
struct a nonrecurslve compensator of the proper order. The basic
principle is the same as the window method for nonrecurs l ve dig ita l

filter desi gn.

As pointed out in Chapters II and III , the effects of windowing

are: (1) to reduce or to eliminate the Gibbs ’ phenomenon in the fre-

quency domain and (2) to improve the damping rate of the side lobes of

V the rectangular window which corresponds to the trucation of the Fourier
series. In most cases, we do not have a point of discontinuity In the
frequency response of the compensator; therefore, the princ i pa l effect

of windowing in nonrecurs i ve compensator design is the latter. In

fact, this effect smooths the frequency response of the compensator.
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The genera l procedure for nonrecursive compensator design by the
window method can be outline d as follows:

(1) SpecIf y the closed loop characteristics ; such as the
overshoot, the rIse time , the settling time , the

veloc i ty error , the posi t ion erro r , etc.

(2) Find the frequency response of the closed loop matching

the required specifications .

(3) Calculate the frequency response of the required compen-

sa tor from the frequency responses of the open loop and
the closed loop.

(4) Construct the transfer functIon of the compensator from

its frequency response by the window method and deter-
mine the compensator in nonrecurs i ve form.

(5) Check the closed loop characteristics of the compensated
system; such as the frequency response, the impulse
response, the step response, etc.

The whole procedure can be performed us i ng the FF1 algorithm. Following
this procedure, the Fourier Analyzer becomes a power tool for discrete-
time control system desi gn.

Since there are some differences in computation of the frequency
responses of the compensator for type “0” and type “1” systems, two 

V

separate programs were prepared for the design of each type. Program
No’s P2 and 13 (Appendix C) were written for type “0” and type “1”
system designs resp ectivel y.
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6.6 TYPE “0” SYSTEM DES I GN

Example 1. Consider the dynamIc system as shown In Figure 6-5. The

required specifications are as follows:

(1) The rise time Is less than 41, 1 — 0.2 seconds,

(2) The overshoo t is less than 15*, and

(3) The position error constant K1, 
— 5.

The open 1oop transfer function in the z-domain is given by

0z — z[G1,(s) 1 ~~

— 
O.4487z + 0.2962 6

z — O.5564z + 0.3012

The open loop frequency ràsponse is shown in Figure 6-6. The step

response as shown in Figure 6-7(a) is the specified model of the required

closed loop, and matches all the specifications given by (1) through (3)

The frequency response of the closed loop, based on the step response

in Figure 6—7(a), Is shown in Figure 6-7(b) and the frequency

response of the required compensator is shown in Figure 6-7(c).

The coefficients of nonrecursive compensators obtained by different

windows are shown In Table 6—2. Figures 6-S(a), (b) and (c) show the

frequency response of 01 (z) obtained using the rectangular 
window, the

corresponding system frequency response, and the unit step response of

the compensated closed loop system with compensator D1 (z) , respectively.

From Figure 6-8 we see that both the frequency response and the transient

response have too many ripples ; therefore, this compensator Is not

suItable. FIgures 6-9(a), (b) and (c) show the frequency response of
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FIGURE 6-5. A TYPE “0” DYNAMIC SYSTEM

2

1

1 2
, , S 

__
__

_i,:::: ::::~

?’) 

~ I

FIGURE 6-6. OPEN LOOP FREQUENCY RESPONSE
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TABLE 6-2

COMPENSATORS FOR EXAMPLE 1

_____________ 
D1 (z) 

____________COEFFICIENTS

______________  

01
(z) 02(2) 0

3
(2)

d0 0.950 0.950 0.950

d 1 —0.234 -0.231 -0.234

d2 0.826 0.794 0.826

d
3 0.111 0.102 0.111

0.568 0.484 0.524

V d~ 0.251 0.195 0.212

d6 0.446 0.308 0.343

d7 0.303 0.180 0.210

d8 0.383 0.192 0.236

d
9 0.316 0.127 0.170

V 
d10 0.347 0.107 0.161

d11 0.313 0.069 0.121

0.323 0.048 0.100

d13 0.304 0.025 0.070

d14 0.305 0.012 0.047

d15 0.292 0.005 0.023

LEGE ND

1
D1 (z) — d z , for I — 1 , 2, 3.

j~0 J

D1(z) - DesIgned by using the rectangular window.

V 
D2 (z) - Designed by using the Hanning window.

D
3
(z) - Designed by using the trapezoidal window, b — 0.4.
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FIGURE 6-8. PERFORMANCE OF THE SYSTEM COMPENSATED WITH 01 (2)
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D2(z) which is obtained using the Hann i ng window, the corresponding sys-
tem frequency response, and the unit step response of the compensated
system with compensator D2(z) , respectively. From Figure 6-9, the rise
time is approximately 31; the overshoot is approximately 10%, and the
position error constant is approximately 4.4. FIgures 6—10(a), (b) and
(c) show the frequency response of 0

3
(z) which is obtained us i ng the

trapezoida l wi ndow, the corresponding system frequency response, and the
unit step response of the compensated system, respecti vely. From
Figure 6—10, the rise time Is approxImately 31; the overshoot is approx i-
mately 12%; and the position error constant Is approximately 4.9.

From this example , we see that the effect of windowing is remarkable.
Also, we note that the trapezoi dal window with parameter b = 0.4 performs
as well as the Hann ing window.

Example 2. Cons I der the system as shown in Figure 6—11. The

required specifications are as follows:

(1) The rise time is less than 31, T — 1 second ,

(2) The overshoot of the unit step response is less than 30%, and

(3) The position error constant K~ — 10.

The open loop transfer function in the z-domatn is g iven by

1 O.2326z
0(z) — 2 — (57)

(~~ 
+ l)(s + 2) z2 - O.5032z + 0.04 978

The frequency response of 0(z) is shown in Figure 6-12.

Us ing Figure 6— 13(a) as a model of the unit step response for the

cc~~ensat.d closed loop system , the required frequency response is shown
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(c) UNIT STEP RESPONSE OF THE COMPEN~ATEC ~YSTFJ’ V

FIGURE 6—9. PERFORMANCE OF THE S~’S~EM COMPENSATED WITH 02(2)
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(a) FREQUENCY RESPONSE OF (b) FREQUENCY RESPONSE OF
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in Figure 6—13(b). The frequency response of the compensator is shown

in Figure 6-l3(c). The coefficients of nonrecursive compensators obtained

using various windows are listed in Table 6—3.

Figures 6—14(a), (b) and Cc) show the frequency response of D1 (z)

obtai ned by using the rectangular window, the corresponding system fre-

quency response, and the unit step response of the compensated closed

loop system, respectively. By observation, too many ripples appear in
the closed loop frequency response and too many waveiets in the transient

response; therefore, this compensator is not acceptable.

Figures 6—15(a), (b) and Cc) show the frequency response of 02(2)
obtained using the Hanning window, the corresponding system frequency

res ponse and the unit step response of the compensated system respec-
tively. From Figure 6-15, the rise time is approximately 21; the over-

shoot Is approximately 28%; and the position error constant K~ ~ 9.

Figures 6—16(a), (b) and (c) show the frequency response of D3
(z)

obtained using the trapezo’idal window with parameter b a 0.4, the

corresponding system frequency response, and the unit step response of

the comepnsated system, respectively. Figure Figure 6-16, the rise time

is approximately 2T; the overshoot is approximately 30*; and the position

error constant K~ ~ 10.

The results of these two examples were determined using Program 110.
12 (Appendix C).

6.7 TYPE ‘9” SYSTEM DESIGN

Example 3. ConsIde r the infrare d trac k ing syste m (221 as shown In
Figure 6—17. The Input r(t) Is the target line—of-sight; the output

c (t ) is the tracke r l ine—of—sight; Dc (Z) is the d igital compensator and
Is the zero order hold given by

162

V V 

V V V V



Ifl-. , . is • 
10

V 
t(sec)

— 1 V

~2
(a) REQU IRED UNIT STEP RESPONSE
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TABLE 6-3

COMPENSATORS FOR EXAMPLE 2

D (z)
COEFFICIENTS

______________- 
D1 (z) 02(2) D

3
(z)

d0 2.593 2.593 2.593

d1 2.201 2.175 2.201

d2 2.157 2.074 2.157

d
3 

2.114 1.931 2.114

2.067 1.763 1.908

d5 2.023 1.569 1.712

1.979 1.368 1.522

d7 1.937 1.153 1.341

d8 1.894 0.947 1.166

d
9 1.853 O.III 0.998

d10 1.813 0.560 - 0.837

1 .774 0.391 0.682

d12 1 .735 0.254 0.534

d13 1.697 0.140 0.392

1.660 0.063 0.256

d15 1.623 0.013 0.125

LEGEND

Di (z) — d~ z~~, for I — 1 , 2, 3.

Di (z) - Designed by using the rectangular window.

D2 (z) - Designed by usi ng the Mann ing window.

D
3

(z) - Des igned by using the trapezoidal window, b — 0.4.
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1 -sT
Go(s) — 

e (58)

The transfer function of the servomotor loop Is

G~Cs) — s(s + 3.5) (59)

The required specifications of the IR tracking system are as follows:

(I) The overshoot is less than 25*,

(2) The rise t ime Is less than 31,

(3) The settling time is less than 15T,

(4) The velocity erro r constant Is greater than 10 sec 1 , and

(5) The bandwidth is greater than 6.28 rad/sec.

Accord ing to Eq. (5), we must choose the samplin g frequency , us > 2(% — 41T .

Thus, the sampling frequency should be greater than 2 Hz. Let us choose

f 5 — 10 Hz, or a sampflng period of I — 0.1 seconds.

The open loop transfer function, in the z-domaln , of the tracking

loop is given by

G(z) — Z(G0 (s) G~(s)]

0.0O446(z + 0.8903)
— (z - 1)~ z — O.7O4~i 

(60)

Us i ng Figur e 6— 18(a) as the model of the unIt step response for the
compensated closed loop matching specifIcations (1) through (4), the
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corresponding closed loop frequency response Is shown in Figure 6-18(b).
The frequency response of the required compensator is shown in Figure
6—l8Cc). The coefficients of nonrecurs i ve compensators obtained using
various windows are listed in Table 6-4.

Figures 6-19(a), (b) and Cc) show the frequency response of 01 (2)
obtained us ing the rectangular window , the corresponding system frequency
response and the unit step response of the compensated system respec-

tively. By observation, too many ripples appear in the closed loop
frequency response and too many small wavelets In the transient response;
therefore, this compensator is not suitable.

Fi gures 6-20(a), (b) and (c) show the frequency response of D2 (z)
obtained us ing the Hannin g window , the corres pond i ng sys tem fre quency
response and the unit step response of the compensated system respec-

tively. From Figure 6-20 we find: (1) the overshoot is 20*, (2) the

rise time is 2T, (3) the settling time is lOT, and (4) the velocity

error constant Is K
~ 

— 9.97.

Figures 6-21 (a), (b) and Cc) show the frequency response of D3
(z)

obta i ned using the trapezoi dal window with the parameter b — 0.4, the
corresponding system frequency response and the unit step response of

the compensated system respectively. From Figure 6-21 we find : (1) the

overshoot is 22*, (2) the rise time Is 2T, (3) the settling time Is lOT ,
and (4) the veloc i ty error constant Is K

~ 
— 11.2.

Comparing Figure 6-21 with Figure 6-20, we note that the trapezoi da l

Window performs even better than the Hann i ng window and yields a larger

veloci ty error constant.
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TABLE 6-4

COMPENSATORS FOR EXAMPLE 3

D (z)
COEFFICIENTS

______________ 

01 (z) 02(2) 0
3
(2)

d0 66.8 66.8 66.8

d1 — 32.8 — 32.4 -32.8

d2 -40.7 -39.2 —40.7

76.7 70.1 76.7

-80.4 -68.6 -74.2

d5 79.2 61.4 67.0

d6 -67.9 
V
~~ V -46.9 -52.0

d
7 63.0 37.5 43.6

d8 —54.2 -27.1 -33.4

d
9 52.1 20.9 28.0

d10 -43.9 -13.5 -20.2

40.8 9.0 15.7

d12 -32.6 - 4.8 -10.0

d13 30.0 2.5 6.9

-22.85 - 0.9 - 3.5
d15 21.4 0.2 1.7

LEGEND

D1 (z) — d~ z~~, for I - 1, 2, 3.

01 (z) 
- Designed by using the rectangular window.

D2
(z) - Des i gned by usi ng the Manning window.

D3 (z) - Designed by usInç the trapezoi da l wIndow, b — 0.4.
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Example 4. Cons i der the gun drive control system as shown In

Figure 6—22, In wh i ch the dynamic transfer function of gun drive is

G Cs) — (61)p s(s + 3.5)(s + 18)

The required specifications are the same as those of Example 3. Let us
choose a sampling period of T — 0.1 seconds. The open loop transfer
function In the z-domain is

G(z) — Z [G0(s) G (s)]

— 
O.005604z(z — O.1489)(z 2.342) (62(z - 1)(z — O.7047)(z — 0.1653)

Using the same model of the unit step response as shown in Figure 6-18(a) ,
the frequency response of the required compensator is shown in Figure

6—23. The coefficients of nonrecursive conipensators obtained us i ng

var~ous windows are listed In Table 6-5.

— Figures 6-24(a), (b) and Cc) show the frequency response of 01
(z)

obtained us i ng the rectangular window , the corresponding system frequency

response and the unit step response of the compensated system respec-

tively. From the unit step response, we see that the result almost •

matches the required specifications. The velocity error constant is
— 18.9. However, since some ripples ~re present in the freq~~~ y

response of the compensated closed loop, the step response has a smal l
wavelet.

Figures 6—25(a), (b) and Cc) show the frequency response of 02(z)
obtained us i ng the Manning window, the corresponding system frequency

response and the unit step response of the compensated system respec-

tIvely. From Figure 6—25, we find: (1) the overshoot is approximately

20*, (2) the rise time is 2T, (3) the settling time is 71, and (4) the

velocity error constant Is 14.0. The unit step response is smoother

than that in Figure 6-24.

176

.

4 V V V V



_ _ _ _ _ _ _   
GUN DRIVE

r(t) 

~~ ~4 D~(Z)~ ~~~~~ H 
G~(s) J 

c(t)
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TABLE 6—5

COMPENSATORS FOR EXAMPLE 4

D (z)
COEFFICIENT S

D1 (z) D2(z) D3(z)

d0 15.36 15.36 15.36

d1 17.51 17.31 17.51

d2 -36.70 —35.30 -36.70

d
3 26.36 24.08 26.36

-11.64 - 9.93 -10.74

d5 4.93 3.82 4.17

d6 
- 0.59 - 0.41 - 0.46

d
7 

- 0.82 0.49 0.57

d8 - 0.07 - 0.04 - 0.05
d9 0.96 0.39 0.52

d10 0.50 0.16 0.23

d 11 - 0.17 - 0.04 - 0.07

d12 1.36 0.20 0.42

d13 - 0.65 - 0.06 - 0.16

d14 1.47 0.06 0.23

dV 15 - 0.56 - 0.01 - 0.05
LEGEND

I
Di(z) — d 1 z , for I — 1, 2, 3.

J-O J

D1 Cz) 
- Designed by us i ng the rectangular window.

02(2) - Designed by using the Manning window.

03
(2) - Designed by using the trapezoidal window, b — 0.4.

178

V 

-



200 2

100 1

I 4 I 
100 200 

I I I 

( 
)  

* I

(a) FREQUENCY RESPONSE OF (b) FREQUENCY RESPONSE OF
THE COMPENSATOR D i

(z) THE COMPENSATED SYSTEM

t (sac)

(c) UNIT STEP RESPONSE OF THE COMPENSATED SYSTEM

FIGURE 6—24. PERFORMANCE OF THE SYSTEM COMPENSATED WITH

179

~ 

- -

_ _ _  -



A D— A 034 02? ARMY MISSILE RESEARCH DEVELOPMENT AND ENSINIPINS LAS—ETC F/S ~,4 ~1ANALYSIS AND OCSIVI OF DIGiTAL CONTROL SYSTEMS. PART 11. P* INCI——ETCt u)OCT 76 R £ YAT ES. 7 t TSAr. C F C~CN
UNCLASSIFIED 11—77—3 I3u~ 3AD

A034 027

______ END
DAT E

FILMED

2 -~77

II



I 0 ~ 
2

1110
1.1 ~ llllI~0

• ~~L8

.25 1i1fli•~ lUll

I II ~ I
1,1 tdl I ~~~~ I



200 2

100 1

$ 
100 200 

_________________ 
2

(a) FREQUENCY RESPONSE OF (b) FREQUENCY RESPONSE OF
THE COMPENSATOR D2(z) THE COMPENSATED SYSTEM

2

• 1

0
S 10

(s.c)

(c) UNIT STEP RESPONSE OF THE COMPENSATED SYSTEM

FIGURE 6—25. PERFORMANCE OF THE SYSTEM COMPENSATED WITH D2
(z)

180

____________ • •-,- — -~~- ,•-~ . •  . •-  .-..~~~ -—- .

•. • • • • • ~~~~~~- • --~~~~•



Figures 6—26(a), (b) and (c) show the frequency response of D3
(z)

obtained using the trapezoidal window with the parameter b — 0.4, the
corresponding system frequency response and the unit step response of
the compensated system respectively. From Figure 6-26, ws find:
(1) the overshoot is approximately 21%, (2) the rise time is 21, (3) the

settling time is 71, and (1!) the velocity error constant is 15.0. Also ,

th. unit step response Is smoother than that obtained by usi ng the

rectangular window. Comparing with Figure 6-25, the step response of
the compensated system, with the compensator obtained us ing a trapezoi-

dal window with b — 0.1!, is approximately the same as that found us i ng

the Manning window.

6.8 REMARKS

The ci isat~rs designed In this chapter are associated with direct
digital controllers ~d~Ich can be easily realized usi ng on-line minicomputer

• or microcomputer. kcause of the avaflablflty of the Fast Fourier Trans-

form algorithm, the design procedure is easier, simpler , and more
accurate than other exisdng methods.
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CHAPTER V I I
CONCLUS IONS

This report has established a general windowing procedure for

discrete-time feedback control system design . initial ly, the basic

princi ple of Gibbs ’ phenomena was derived ; and then developed into

the generalized Gibbs ’ phenomena in both the time and frequency domain.

• In other words, the reasons for us i ng window functions in compensator

• synthesis has been fully explored. The rationale were presented step

by step in order to develop a sound foundation.

The process for nonrecursive filter design was presented and two

new techniques were developed. One used the trapezoidal windows to

offer a unif ied approach, and the other extended the frequency trans-
form ation method for nonrecursive filter design .

In the analysis of discrete-time feedback systems, we mainly applied
the Fast Fourier Transform to eva l uate the transient and frequency

responses and to study stØili tiss . A new criterion based on the return

difference was formulated which is simpler than the Nyquist criterion .

Finally, a detailed design procedure for discrete-time feedback
syst~~ wee establ i shed. Two kinds (type “0” and type ‘1”) of feed-

back systems were used as demonstration examples. The five steps for
design were: (1) Specifying the required performance; (2) Constructing

a reference model; (3) Computing a suitable frequency response of the

compensator; (Ii) Designing a nonrecurs i ve filter transfer function by

the window msthod; and (5) VerIfying th, performance of the compensated
system. Compared wi th other methods, this new window method for compen-
sator design is not only simpler and more systematic, but also a fast
algorithmic which Is comput.r-orl.nted.
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I’
APPENDIX A

EVALUATION OF FOURIER COEFFICIENTS AND COMPUTATION OF THE FOURIER

TRANSFORM VIA THE rrr ALGORITHM

• A.O INTRODUCTION

The definitIons~~
1 of the FF1 algorithm are

N— i —J2irnm
X(n) — E x(m) e N (A-i)

and

t 
_ _P N-l J2irmn

x(m) — E X(n) N (A-2)
n-O

where X(n) and x(m) are the sequences in the frequency domain and the

time domain, respectively. For the sake of simpUcity, let us rewrite

Eqs. (A-i) and (A-2) as

X(n) — FF~~(x(m)] (A-3)

and

x (m) — FF~~[X(n)J (A-b)

A.l EVALUATION OF FOURIER COEFFICIENTS

A.1.l FOURIER ANALYSIS OF PERIODIC FUNCTIONS IN THE TIME DOMAIN

• Let f(t) be a periodic function In the tim. domain with period T.
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The Fourier series expansion Is given by

— 
Jnu t

f( t) —~~~~~~~ a~ a 
0 (A—5)

where

T

~ 
( -Jnw0t

— y J f(t) e dt (A 6)
0

and — 4 . If we take N samples in one period and evaluate Eq. (A-6)
by sunuistion, we hve

N-i -Jnw mAt
a~ — f(ni6t) ~ 0 At (A 7)

where At — ~~
. . Wri te the ‘finite partial sum of Eq. (A-5) as

N
jn~~mAt

f (mAt) — a~ a (A-8)

n-I.

Defining

a,, n 0 , ... ,~~. — 1

(A-9)

n ! ., ...,N - 1

and substituting Eq. (A-9) Into Eq. (A—I) yields

f(mAt) — FF~~,(b~] (A-b )

_ _ _  - ,-~~~~~~~- • . . • 

l~~ 

- 

- 

• •
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From Eqs. (A-i) and (A-8), we have

b~ — FFNfl[f(l$~
t)] (A—i l)

A.l.2 FOURIER ANALYSIS OF PERIODIC FUNCTIONS IN THE FREQUENCY DOMAIN

Let G(u) be a periodic function In the frequency domain with period
• P. The Fourier series expansion of G(w) is given by

G(w) — 
~~ 

A,~ ~~~~~ (A-12)

where

• P
Jnt w

— G(~) e 
0 (A- ;3)

0

In Pand t0 — p— • Let Au — , and

N
A~ n — 0, 

~~
., — I

— (A-l1!)

N
• An_N

By th. same reasoning used In sub*.ctiOn A.l.i , we have

G (mAu) — FFffi,,IIfl]N (A-is)

and

FT 1 (G(mAam)J

N 
(A- 16)

( 
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A.2 COMPUTATION OF THE FOURIER TRANSFORM

By definition , the Fourier Transform pair is

F(w) — f f( t) •.hut dt (A— l i)

and

f(t) — 

~~
. f F (w) e j

~
rt dt (A- 18)

Let t — , and Au — 4.!. . If I is large enough, then

F(nAu) 
~ 

f( t) e j
~~~

t dt

f(mAt) e J~
15AuAt 

At (A—19)

and

N

f(mAt) ~~~;,/:w ;F(w) ~
Jwt du

a’ F(nAu) •
JnmAwA t p

~ 
(A-b )



• 
• - •- - -•- -

~ Let

F(nAu) n 0, ..., ~~~~~
.- 1

F — (A-21)

- N
f(mAt) m — 0, ..., - I

f — (A—22)

f (IFPIAu) n — ~ , ..., N -

Then, we have

— FF
Nfl ~m 

T (A-23)

I ‘ ~~ 
— 

FF~~ F~ (A-24)
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APPENDIX B
THE INVERSE FOUR I ER TRANSFORM OF A PERIODIC FUNCTION IN THE

FREQUENCY DOMAIN

Let C (w) be a periodic function In the frequency domain with per-
iod ~~~ From Eq. (34) of Chapter II , we can expand C(w) as a Fourier
series in the frequency domain,

C(w) — E A~ e j
~
TW (B-I)

where T.!L ,and

— j”
~

•
~ 

C(x ) ~-JkTx dx (8-2)

Therefo re, from the definition of the Inverse Fourier Transform, the
I nverse t ransform of C(w) IS given by

C(t) A

— 
~ 

A~ 6(t-kT) (8-3)

and the Fourier coefficients (Ak’s) form the time sequence of the i nverse

Fourier Transform of C(w).
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APPENDIX C

KEYBOARD PROGRAMS

I
PROGRAM 1

DEMONSTRATION OF THE GIBBS ’ PHENOMENON IN THE TIME DOMAIN

11. 0
4 RS 4096
71. 1

IO CL. 0
13 X c 3
1 6D 0
19 F
2 1 D  0
24F
26Y 807

• 29V 807
• 32.

PROGRAM 2
DEMONSTRATION OF THE GIBBS ’ PHENOMENON IN THE FREQUENCY DOMAIN

• 11. 0
4 B~ 4096

• 11.
lo ct. a
13 X4 3
16D 0
19 F

• 2 1 D  0
24 F
2 6 D  0
29 !P 0
32D 0
3 5y  807
38Y 807
41
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V
PROGRAM 3

EVALUAT I ON OF THE TIME RESPONSES OF THE TIME DOMAIN TRAPEZO I DAL
WINDOWS AND THE WINDOW EFFECTS

I L  0
4BS 128
7 C L  0

30 CL I
1 3 D  0
1 6J 10
22 CL I
25 BS 4096
28 CL 0 51 2048
33: 0 64
3 7 F  0
40: 0 64
44— 0 2048
48D 0
5 1?  807
54 V 0 2036 2067
59$ 0
62D 0
65? 807
68 ‘1 0 2095 2126
73 V 0 2180 2211
78 V 0 1895 1926
83 V 0 1960 1991
88J 99
9 1 L  10
94X I
97 X’ 2
IOO X 1
103 $ 1 0 50
108 D  1
ili x
I1A A- 2
117 * 0 — 1
121 A. I
124 C
126 L 99
129
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PROGRAM 4
EVALUAT I ON OF THE FREQUENCY RESPONSE OF THE FREQUENCY DOMAIN TRAPEZO I DAL

WINDOWS AND THE WINDOW EFFECTS

IL  0
48S 256
7 C L  0

IO CL I
1 3 D  0
16J 10
19D 0

I 22 CL. I
25 BS 4096
28 CL 0 201 4095
33 0 100
37! 0
4 0 W  0 0 3
4 5 0  0
480 0 0 500
5 3 ?  807
56 0 0
59 X’ I
62 11.. 1
650 1 0 500
70? 807
730 1 0 160

• 7 8 J ’ 99
811. 10
8 4 X  1
87 X3 2
90X 1
93$ 1 0 100
980 I
III X 1
104 A— 2
107 * 0
III A+ 1
l14 X~ I

• 117 *- 50
120 * 0 -I
$24 0 0
127 CL 0 0 155
132 A+ 1

• 135 0 156
139
141 1. 99

• 144 .
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PROGRAM 5
DESIGN OF NONRECURSIVE FILTERS

11. 0 65X 1
48S 4096 68 X) 2
7CL 0 7 1X  I
100 0 745 1 0 8
13! 0 790 1
16 ; 0 4096 82X 1
20W 0 0 9 85 *— 2
250 0 88* 0 -1
28— 0 4088 92 *. 1
320 0 95X~ I
35! 0 98 *— 3
38 * 0 4096 101 * 0 -1
42 11. 0 105 0 0
450 0 IO8 CL 0 0 55
48? 807 113 A+ I
510 0 lI6 r 0 56
54? 807 120 0 0
57 0 0 123 ’
6e~~ 125 .
62 1. 30

PROGRAM 6
EVALUATION OF THE FREQUENCY RESPONSE OF DISCRETE-TIME CONTROL SYSTEMS

11. 0
40 0
7CL 0
IO CL 1
130 0
16? 0
19? 1
22, 1
250 0
28? 810
31? 807
34? 809
370 0

• 40? 807
430 0

. 46? 810
• • 

• 

4 9 ?  807
• 52? 809
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V
PROG RAPI 7

EVALUATION OF THE UNIT IMPULSE RESPONSE OF DISCRETE-TIME CONTROL SYSTEMS

I L  0
4B S  1024
ICL 0

1O CL 1
13D 0
16? 0

• 19? 1
22s 1
25D 0
28! 0
31 s 0 1024
35W 0 0 63

• 40.

• PROGRAM 8
EVALUAT ION OF THE UNIT STEP RESPONSE OF DISCRETE-TIME CONTROL SYSTEMS

I L  0
4 B S  1024
7 C L  0

IO CL 1
130 0
16W 0 0 10
2 1 W  1 0 10

• 26? 0
• 297 1
• 32; 1

350 0
• 38! 0
• 4 1 ;  0 1024

4 5 W  0 0 63
50$ 0
53W 0 0 63
58.

~~~~~~~~~~ 111111



PROGRAM 9
CALCULATION AND PLOT OF THE PHASE ANGLE OF THE RETURN DIFFERENCE

I L  0
4CL 0
7 C L  I
I O D  0
1 3 7  0
167 1
1 9 : 1
220 0
2$ TP 0
280 0

• 31 V 807
34? 810
37? 809
4 0 .

PROGRAM 10

FINDING THE FREQUENCY RESPONSE FROM THE UNIT STEP 1ESPONSE

1 1 .  0
• 4 B S  1024

70 0
l O W  I I 63
1 5 0  0
181 0
2 1 W  0 I 83
267 I
29* I 1024
33 D I
36? 807
39? Ill
4 2 ?  809
4 5 0  0
4 8 ?  807
5 1 0  0
5 4 ?  807
57? 810
61Y 809
63.
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PROGRAM 11
FIND I NG THE DESIGN MODEL AND ANALYZ I NG THE VELOCITY ERROR FROM THE

SPEC IFIED STEP RESPONSE

11. 0 116 CL I I
4 8 S  1024 120 X~ 9
7 C1. 0 123 W 0 0 63
100 0 128 0 0
13W 0 0 63 131 X~ 12

• $80 0 134 CL 0 0 0
21 x. 15 139 ; 0 10
24* 0 -1 143 $ 0 0 100
28 *. 12 148 W 0 0 63
31 X~ 10 153 X’ 8
347 156 0 0

• 36* 0 1024 159 *- 9
40X 5 162 W 0 0 63
43 Xc 15 167 X. 7
462 0 170 0 0
49 X’ 14 173 1. 10
52W 0 I 63 176 D 0
57D 0 179 ? 807

• 607 0 182 Y 810
63 * 0 1024 185 V 809
67 X~ 13 - 188 e
7ID 0 190 L 20
73; 5 193 0 0
76X~ 6 196 ? 807
79W 0 0 31 $99 ? 810
S a D  I 202 ? 809
877 0 205 0 0
90: 0 1024 208 ? 807
94W 0 0 63 211 0 0
990 0 214 ? 80’?
112 X~ 10 217 V 810
105 $ 0 10 220 ? 809

• 109 $ 0 223~~112 — 0 1023 225 .

II • 
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PROGRAM 12
DESIGN OF TYPE “0” SYSTEMS

1 1 .  0 155 X’ 8
48S 1024 158 W 0 0 31
7CL 0 163 *. Ii
100 0 166 X~ 4
1 3W  0 0 63 169 Xc 8
180 0 172 : 4
21 X~ 15 175 X~ 6
242 0 178 0 0
27 X~ 14 181 D 0
30W 0 0 63 184 L 40
35D 0 187 7 0
387 0 190 $ 0 1024
41* 0 *024 194 W 0 0 63
45X~ 13 199 0 0
48D I 2I2 L 50
51 A— 11 205 $ 0
54* 0 -1 208 W 0 0 63
58X~ 5 213 0 0
61 Xc 12 216 L 60
64 A- 15 219 S 0 0 400
6 7 0  0 224 0 1023
70 CL 0 228 D 0
73 C1. 1 231 CL 0 0 0
7 6 D  0 236 W 0 0 63
7 9 7  0 241 0 0
82 F 1 244 L 10
8 5 ;  1 247 0 0
88 X~ II 250 V 807
91 * 5 253 V 810
9 4 X ~ 1 256 ? 809
9’7 X~ 13 259 4

$00~~ 1 261 1. 20
103 0 0 26 4 0  0
106 ? 0 267 ? 807
109 : 0 *024 270 V 810
113 X~ 9 273 V 809
116 W 0 0 63 276 0 0
121 0 0 279 V 807
124 L 30 282 D I
127 W I I 63 285 ? 807
132 P 288 V 810
134 * I 1024 291 ? 609
138 0 0 294 ’
1 4 1X ’  1 296 .

• 144 W I 0 31
149 X( 1
152 * 10

H - 

~~~~~~~ •
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PROGRAM 13
DES IGN OF TYPE “i’ SYSTEMS

I L  0 124 0 0
• 4CL 0 127 D 0

7CL 1 130 1. 40
lID I 133 ! 0

• 13 F I 136 a 0 1024
16? 1 140 W 0 0 63
19 ; 1 145 0 0
22 X’ 11 148 1. 50
25* 5 151 1 0
28X~ 1 154 W 0 0 63
31 Xc 13 159 0 I
34; 1 162 1. 60
370 I 165 $ 0 0 400
4 0 7  0 170 — 0 1023
43~~ 0 1024 174 0 I
4 7 X ~ 9 17? CL 0 0 0
5 0 W  0 0 63 182 W 0 0 63
5 5 D  0 IBi D 0
5 8 L  30 19I L II
6 1 W  0 I 63 193 0 0
6 6 ?  , 196 ? 807
68 * 0 1024 199 V 810
72 X” 1 202 ? 809
7 5 W  1 0 31 205 4

• BID  0 207 1. 20
83 Xc 10 210 0 0
86 X. 2 213 ? 817

• 890 0 216 ? 810
92 X’ I 219 Y 809
95* 2 222 0 0
98D 0 225 ? 807
1I1 X. 8 228 0 0
104 W 0 0 31 231 V 807
109 A . 7 234 Y 810
l12 X ~ 4 237 ? 809

• llS Xd 8 240~~
Ill s 4 242 .

• 121 X’ 6
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