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CHAPTER |
INTRODUCTION

Most design techniques for sampled-data or discrete-time feedback
systems are borrowed from those developed for continuous systems. For
example, the w-transform or fictitious frequency method is simply an
extension of the Bode approach[l]. Therefore, the compensators

synthesized by this method are, in general, the recursive type.

It is known that the recursive type compensators have the following
inherent shortcomings[2’3]: (1) stability problems; (2) phase charac-
teristic problems; and (3) arbitrary approximation problems. In recent
years, nonrecursive type compensators have become increasingly more
important. By using the nonrecursive type filters, one can not only
eliminate the disadvantages of the recursive filters but also have a

simpler design procedure and an easier realization process.

This report is concerned with nonrecursive compensator design from
fundamental principles to detailed design procedures. The method
developed in this report utilizes the Fast Fourier Transform (FFT)
algorithm and is minicomputer oriented. The simple FFT algorithm[h]
and the availability of powerful mlnlcomputersISJ enable us to deal with
complicated systems quite easily and accurately.

There are three types[2'6'7] of design methods available for the

design of nonrecursive compensators:
(1) Window method - The main contributors are Kaiserle].
Helmsls"ol. Gold and Rador[“]. Rablner[6'7l. etc.

(2) Analytic method - This method entalls the use of analytic
techniques analogous to the Butterworth and Chebyshev
methods for designing recursive filters. Hermnnn[lzl wa
mainly responsible for this development.
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(3) Successive approximation method - This efficient method
is computer oriented. Parks and McCIellan['3}, Rabiner,
Gold and HcGonegalls] have developed a useful cataloque
of compensator designs.

Since the window method is simple, straightforward and yet affords
plenty of room for improvement, we will concentrate on the window method.
The ?rlncl?le of the window method is based on reducing Gibbs' phenom-

15,17

enon and improving the convergence of the truncated Fourier
series in the frequency domain along with the interpretation of the
generalized Gibbs' pheonomenon. However, in the literature, Gibbs'
phenomena in the time domain are considered in detail while only men-
tioned in the frequency domain. For clarity, we will derive the time
domain Gibbs' phenomenon as a basis and develop its frequency domain
counterpart in a systematic manner in Chapter Il. The latter is neces-
sary to understand the phenomena in both domains before firmly estab-

lishing window techniques.

In Chapter 11|, the generalized Gibbs' phoenmenon is established.
The trapezoidal window function is used as a basic unit from which a
family of new windows are developed, and a thorough understanding and

[l8,19:2°]_ such as Hamming,

insight of windowing is obtained. Windows
Hanning, Kaiser etc., are empirical in nature; however, a theoretical
base will be presented in this report. In the frequency domain, the

main lobe and side lobes of a windowed Fourier series can be clearly
seen. Both the derivation and interpretation presented here are believed
to be new.

[2’3’201. The most

Chapter IV concentrates on nonrecursive filters
common complaint in the nonrecursive filter field is that frequency
transformations cannot be applied; since through their application the
resulting filter becomes recursive. We will develop a complete, novel
technique from which high-pass, band-pass, and band-rejection filtérs

can be designed via frequency transformations.
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Chapter V concentrates on the analysis of discrete-time control
systems. The procedure for using the FFT and minicomputers to obtain
the frequency response and transient response of discrete-time control
systems will be presented logically utilizing block diagram transforma-
tions. Particular emphasis will be placed on the theorems associated
with the z-transform. For example, the Ragazzini-Zadeh ldentitylz'] is
repeatedly applied to simpiify and manipulate the system block diagram.
A unique and novel stability study based completely on return difference
is utilized to derive a stability criterion which is believed to be new.

The design of discrete-time control systems is investigated in
Chapter Vi. Specifications of example closed loop control systems are
presented and analyzed using the FFT, Fourier Analyzer, and window
techniques. The design procedure through which realizable nonrecursive
compensators are designed utilizing the window method is presented
in detail. Two frequently used examples of discrete-time control sys-
tems (type '"0" and type '"'1'') are discussed in detai). The resulting
compensators are synthesized and their performance verified.

In summary, this report presents an FFT-oriented, minicomputer-
alded, design procedure for nonrecursive compensator synthesis of discrete-
time feedback systems. The method is simple, powerful, and more accurate
than previously existing methods.
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CHAPTER 1)
THE GIBBS' PHENOMENON

2.0 INTRODUCTION

[15]

variation, the Fourier series converges at every point, particularly at

It is well known that for a periodic function with bounded
points of discontinuity. In 1899 Gibbs pointed out that convergence
of the truncated Fourier series behaves in a quite different manner
at points of discontinuity. Bocher, in 1906, extended Gibbs' result
and established a theorem commonly called the Gibbs' phenomenon.

In this report, the phenomenon originally discovered by Gibbs and
B8cher is referred to as the Gibbs' phenomenon in the time domain.
However, the same phenomenon exists in the frequency domain and will be
referred to as the Gibbs' phenomenon in the frequency domain. Gibbs'
phenomenon is an important aspect associated with analysis and design
of nonrecursive filters and compensators.

Let us start with analysis of the truncated Fourier series.
2.1 TRUNCATED FOURIER SERIES

Let f(t) be a real periodic function of time t with period T and
bounded in (- ;5 ;J. The Fourier series expansion of f(t) is given by

Jku, t
R )

km=co
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where
T
2 = jkw, .
a =5 fwe % (2)
% 3
2
and
2n
vy = (3)

For computing advantages and practical purposes, we often take only
a finite number of terms of the Fourier series in Eq. (1). In other
words, we calculate the partial sum instead of dealing with the entire

infinite series. Consider the nth partial sum (which contains 2n+l
terms):

jkmot
fn(t) = kizn a e (4)
Substituting Eq. (2) into Eq. (4) yields
I
2
fn(t) = - d"(t-r,) f(r) a (5)
. % ¢
where
jka, t
d, () = %2_:" Y (6)

Equation 6 Is called the periodic Dirichlet kernel!!”] or window func-
tion in the time domain. With some algebraic manipulations, it is easy
to arrive at the following:

———
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¥ slni(n + T) wotl
w,t
27 sin (-é}-)

According to Eq. (5), the partial sum of a Fourier series is given by
the convolution of f(t) and dn(t) over one period. The interpretation
of Eq. (5) for the partial sum of Eq. (1) is straightforward; however
it is not simple, since the window function [Eq. (7)] is complicated.

d (t) = (7)

A second interpretation in terms of the Fourier Transform results
if we let F(jw) be the Fourier Transform of f(t), then

f(t) = ;-;f Flju) &It du (8)
From Eq. (1), we have
F(ju) = 2n .2 a G(w-kmo) (9)
k==

The nth partial sum of f(t) is given by Eq. (4), thus, the Fourier
Transform of fn(t) is

F (w) = 2= 2_:“ a, 8 (w-kuy) (10)
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in general, we have

f(e) = a= | F () &

J =

r nwo

Fljw) et do ()

N =
=%

o -nmo

However, from the definition of the Fourier Transform,
o -
F(ju) -f f(t) e JUt gt (12)

and substituting Eq. (12) into Eq. (11) using the dummy variable x for
t in Eq. (12), yields

f (t) = — f f(x) e - Jux jwt dx dw
-nu,

. N,
o ‘;7 f f(x) f IO (t%) g g (13)
-= ~nw,

Eq. (13) can be rewritten as
fn(t) -j:: f(x) wn(t-x) dx (14)

where wn(t) is called the aperiodic Dirichliet window,

T S X i

w’;w, R




dw (15)

sin (nw.t)
A o, o (16)

mt
Now, we recognize that the aperiodic Dirichlet window is an ideal low

pass filter with cutoff frequency nw, and unity gain. In other words,

0
the partial sum fn(t) can be considered as the output of the ideal low
pass filter excited by f(t). This is a more explicit interpretation of
the partial sum of the Fourier series and is important for deriving

the Gibbs' phenomenon and windowing effects later on.
2.2 GIBBS' PHENOMENON IN THE TIME DOMAIN

Since Gibbs and Bbcher[‘S], many investigators have worked on the
property of the Fourier series of a function having points of discon-

tinuity. Here, we adopt the derivation given by Gulllemin[17].

If the given function f(t) is discontinuous at t = a, the property
of the truncated Fourier series in the vicinity of t = a is equivalent
to that of replacing f(t) by the biased step function;

f (t) = Au(t-a) + fla’) (17)
where
f(a) = 1im f(a-¢) (18)
e+0

and A is a real constant, such that

A= 1im [f(ate) - f(a=¢)] (19)
e+0




Considering Eq. (17); the second term f(a ) is a constant and continuous;
therefore, we can drop it for the time being when studying the proper-
ties of the partial sum of the Fourier series for a function at the
point of discontinuity. To drop the term f(a ), let

g(t) = f(¢) - fla) (20)
For n very large, it is easily shown that

g (t) = £ (t) - f(a) (21)

Now, from Eq. (14), we have

gn(t) = f‘. wn(t-x) ga(t) dt (22)
where
g, (t) = f (¢) - f(a) = Au(t-a) (23)

Without loss of generality, let us assume a = 0. Thus we have

gn(t) -]: wn(t-x) Au(x) dx (24)

PV Y s, e AR NS AT K S 188 < Sy

According to the properties of the convolution integral, we have

e

t
gﬂ(t) - A-[” wn(x) dx (25)

Substituting Eq. (15) into Eq. (25), ylelds




t
sin (nwo x)
gn(t) = A o - dx

nwot
- % J‘ ﬁ;.'.l dy (26)

In terms of the sine-integral function, Si(x), defined as

X
Si(x) -J SRy o (27)
G ¥

Eq. (26) can be rewritten as

gn(t) = A[—'z- + % Si (nwot)] (28)

The above function is shown in Figure 2-1. Therefore, as n becomes

very large, gn(t) has a global maximum, occurring at t = %— ;
0

A A[% +Lsi m] (29)

= 1.0895 A (30)

and a global minimum, occurring at t = - —— ,
0

9, (- n—;;) - “[1‘»' + :- Sl('w)]

= -0,0895 A (31)

10
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FIGURE 2-1. THE TIME FUNCTION gn(t)

As no, e and - — approach t = 0 which is the point of discontinuity,
nwy nw
and the ripples in Figure 2-1 are compressed into a single vertical line

at t = 0. Eqs. (30) and (31) correspond to the top and bottom of this
vertical line segment. In other words, the overshoot at the point of
discontinuity Is given by

lim |Max g,(t) -A| = 0.0895 A ~ 9% A (32)
N

and the undershoot is given by

lim |Min gn(t)l = 0.0895 A~ 9% A (33)
n->oo

The Fourier serlies of a discontinuous function results in a 9% overshoot
in the vicinity of the point of discontinulity. This is known as the
Gibbs' phenomenon.
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This behavior is important in dealing with time domain analysis of
periodic signals. However, in the study of digital filters or discrete
systems the same phenomenon is encountered in the frequency domain; and
it is helpful to analyze digital filters from Gibbs' viewpoint.

2.3 GIBBS' PHENOMENON IN THE FREQUENCY DOMAIN - REAL PERIODIC FUNCTIONS

Let F(w) be a real periodic function of frequency w with period P
and bounded in (- ;, -ZP-). As with the periodic function in the time
domain, we can expand F(w) as a Fourier series in the frequency domain:

-jktow

Flo) = D0 A e (34)
kst =co
where
P
= Jkt. x
Ak-%f'z,l’(x)e 0 & (35)
E
and
ty = %1 (36)

The nth partial sum is defined as

-jkt
F o) = }: P (37)
-n

Let us use the second interpretation of the partial sum of the Fourler
series. If f(t) is the inverse Fourler Transform of F(w), then

f(t) = ‘ﬁ f. F(w) ‘jwt dw (38)

12
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From Eq. (34), we have

F(t) = D5 A 8(t-keg) (39)

k==co

From Eq. (37), the inverse Fourier Transform of the nth partial sum is

fn(t) = ;;n A G(t'kto) (40)

Now, according to the definition of the Fourler Transform,

o < Jus
F. () -j; f(t) e Ot 4t (41)
nto %
- I F(t) e dut gy (42)
-nt

and substituting Eq. (38) into Eq. (42), using the dummy variable x for
w in Eq. (38), yields

nto «
Fn(m) = -%;— [ f F(x) ‘jxt e-"mt dx dt
o L

-nt -

© nto
- %; f F(x) f Jtlew) g gy (43)
- ‘l‘lto

Eq. (43) can be rewritten in the form of a complex convolution

Fn(w) = -;?j:“ F(x) Hn(cu-x) dx (hb)

13
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where

nt
0 Stk
Vn(w) -] e It g¢ (45)
-nt,

2 sin (nwt.)
oiosicion, 4 (46)

w

may be called the aperiodic Dirichlet kernel in the frequency domain.
Taking the inverse Fourier Transform of wn(m), yields

1 [t] < nt
w (1) -{ i (47)
0 [t] > nt,

According to the complex convolution [Eq. (44)], we have

f () = f(t) w (t)
{f(t) lt] < nt,
0 [t] > nty (48)

In other words, wn(t) is a rectangular window in the frequency domain.

Now, assume that F(w) is a discontinuous function with a point of
discontinuity at w = a. Following the derfvation in Section 2.2,
F(w) converges to the biased step function in the vicinity of w = a,

F.(w) = Au(uw-a) + F(a') (49)
where
F(a ) = 1im F(a~¢) (50)
e+0
1
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and A is the real constant,

A = lim[F(a+te) ~ Fla-¢)] (51)
e+0

Since convergence in the vicinity of w = a is governed by the first term
of Eq. (49), we can assume, for simplicity and without loss of generality,
that a = 0 and F(a ) = 0. Under this assumption we have

Falo) = Au(w) (52)

From Eq. (44), the partial sum is given by

Fn(w) = ';-17 j: Fa(X) Vn(w-x) dx

“ %'- [ u(x) wn(w-x) dx (53)

Substituting Eq. (46) into Eq. (53), yields

T sin [nt,(w=x)]
Fo ) --:- I u(x) u_g dx

A ® sin (l‘lto y)

- - -——--—-----—-'—y dy (5")
or i
Flu) =2 ol sinz 4 (55)
a3 Z .
15
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Comparing Eq. (55) with Eq. (26), we find that convergence of a real
periodic function in the frequency domain in the vicinity of the point
of discontinuity is similar to that of a real periodic function in

the time domain. Eq. (55) can be written as

F ) = A[%- + ;- Sl(ntow)] (56)

Following the reasoning in Section 2.2, the Fourier series of a real
discontinuous function in frequency domain results in a 9% overshoot

in the vicinity of the point of discontinuity. Therefore, we have
determined the counterpart of the Gibbs' phenomenon in the time domain;
that is, the Gibbs' phenomenon in the frequency domain.

We now have identical properties for the truncated Fourier series
of real periodic functions in the time domain and the frequency domain:

(1) The partial sum of a real perfodic function in the time
domain can be expressed as the convolution of the original
function and an ideal filter with unity gain; the partial
sum of a real periodic function in frequency domain can be
expressed as the complex convolution of the original func-
tion and a rectangular window with unity height.

(2) The Fourier series for both the real periodic function in
the time domain and the real periodic function in the fre-
quency domain has a 9% overshoot in the vicinity of the
points of discontinuity; in other words, the Gibbs'
phenomenon for a real periodic function in the frequency
domain is exactly the same as that for a real periodic func-
tion in the time domain,

16
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It is important to point out that we have limited our study to the
partial sum of the truncated Fourier series for real periodic functions
in the frequency domain. In reality, we often must consider complex
periodic functions in the frequency domain. For this case, the first
result listed above is valid; however, Gibbs' phenomenon for a complex
periodic function in the frequency domain must be redefined.

2.4 GIBBS' PHENOMENON IN THE FREQUENCY DOMAIN - COMPLEX PERIODIC
FUNCTIONS

Since we did not place any particular restrictions on F(w) when we
derived Eq. (44) for the partial sum of a periodic function in the fre-
quency domain, Eqs. (44) and (46) are still valid when F(w) is a com-
plex periodic function. However, !f the Gibbs' phenomenon is to be
considered, we need to treat the real part and imaginary parts indivi-
dually. Let

Flo) = Folw) + JF|(w) (57)

The window function in Eq. (46) is real; therefore, the partial sums of
FR(u) and F'(m) are

Fr @) = 3= ]: F(x) W_(wx) dx (58)
and

o) = f AR (59)
respectively. Now, If F(w) has a point of discontinuity at w = a and
letting

C=1lim [Flate) - Fla-€)) (60)
€-+0
17
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where C is, in general, complex and can be defined as

C=Cp+JcC, (61)
where
Co = lim [F,(a+e) - F_(a-¢€)] (62)
R c..:; R ate R a~e€
and
C, = lim [Fl(lﬂ:) - Fl(rc)] (63)
e+0

Now, we can treat FR(u) and F'(w) as two real periodic functions in
the frequency domain. From Eq. (55) we have the partial sums

c ntom
o) =R I sz, (60
and
c ntow
Fialel = 5 j Wi 5

In other words, in the vicinity of a point of discontinuity, the partial
sum of the complex function in the frequency domain is

Fn(u) = FRn(u) + jF|n(w)

ntow
C i
.;I —-’:‘ dz (66)
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Eq. (66) can be rewritten as
Folo) = [} + L si(negl] _ (67)

Therefore, the Fourier series for the complex periodic function in the
frequency domain results in an overshoot, CR E— Sl(w)-l] = 9% CR' in

the real part and an overshoot, C|[-:- Sl(w)-l] = 9% C', in the imaginary
part near the point of discontinuity. Although the magnitudes of the
overshoots in the real and Imaginary parts are generally not equal, the
percentages are still the same as the Gibbs' phenomenon in the time

domain If CR = C|.

When dealing with the transfer function of digital filters or dis-
crete~time control systems, we are often interested in the magnitude
and phase relationships of the frequency response instead of the real
part and the Imaginary part. In terms of phase and magnitude, the
Gibbs' phenomenon is more complicated. Figure 2-2 shows the situation
for overshoots of magnltude and phase relative to those of the real part

and the imaginary part. The lump~amplitude at the point of discontin-
uity is given by

aM o= |Fla")| - |F(aT)] (68)
The jump-phase Is
80 = ARG[F(a")] -~ ARG[F(a")] (69)
The overshoot In amplitude is
8, = |F(a®) + 9%¢| - |F(a")] (70)
and the undershoot in amplitude is

8, = [FlaT)] - [F(a”) - 92¢| (7)

19




The overshoot in phase is
0, = ARG[F(a") + 93C] - ARG[F(a*)] (72)
and the undershoot in phase is

0, = ARG[F(a’)] - ARG[F(a") - 9%C] (73)

AF'(N)

Fa ()
—

FIGURE 2-2. OVERSHOOTS OF MAGNITUDE AND PHASE RELATIVE TO
THOSE OF REAL AND IMAGINARY PARTS

8
In general 61 # 62. el # 62; the percentages of overshoot (K%J and under-

shoot (z%) in amplitude are not 9% except in some special cases.
2.5 DEMONSTRATION OF GIBBS' PHENOMENA WITH HP FOURIER ANALYZER

In this section, Gibbs' phenomena in the time domain and the fre-
quency domain will be demonstrated through the use of the Hewlett Packard
Fourier Analyzer. The Fourier Analyzer performs the FFT algorlthm[5] to
compute the Discrete Fourier Transform (DFT) of discrete signals in the
time domain or in the frequency domain. The DFT can be used to evaluate
the coefficients of Fourier series from the periodic waveform or to
synthesize the waveform from the coefficients of the Fourier series

(Appendix A).
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To demonstrate the Gibbs' phenomenon in the time domain, the following
wave was chosen as an example:

f(t) =¢ 0 t=-%0, ;- (74)

The square wave defined by Eq. (74) is characterized by an amplitude of
unity and a period of | second. Program No. | (Appendix C) is a listing
of the program utilized for this demonstration. The number of samples
required for the FFT algorithm was 4096. Figure 2-3 shows the resulting
waveforms for various partial sums of the Fourier series for Eq. (74).
The maximum overshoots for different nth partial sums are shown in Fig-
ure 2-h, The maximum overshoot approaches 0.181 when n is very large.
The height of the jump at the point of discontinuity is 2; thus, the
ratio of overshoot to the height of the jump is 0.0905 or 9.05%. This
is almost equal to the prediction of 8.95% based on Gibbs' phenomenon.

The following example Is presented to demonstrate the Gibbs'
phenomenon in the frequency domain. Consider the periodic function
Flw) = FR(W) + jF'(u), where

1.0 |lw] < 0.25
FR(“’) = (74a)
-1.0 0.25 < |u| < 0.5

(-2.0 + 4.0w -0.5 < w < -0.25
Filw) =< 4.00 |o| < 0.25 (74b)

2.0 - 4.00  0.25 < w < 0.5

21
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FIGURE 2-3.

(a) f(¢)

(b) 6th PARTIAL SUM

(c) 10th PARTIAL SUM

(d) 32nd PARTIAL SUM

PARTIAL SUMS OF THE SQUARE WAVE
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The period is | radian. The Fourier Analyzer only displays FR(u) and
Fi(w) for 0 < w < 0.5 and assumes Fp(-w) = Fo(w), F (-u) = F (). Fplw)
and Fl(u) as well as the magnitude and phase of F(w) are shown in
Figures 2-5(a) and (b). The results of various partial sums are shown
in Figures 2-5(c) through 2-5(g). The magnitude of F(w) displays jumping-
up and jumping-down spikes at the middle of the curve. The jumping-down
spike is due to the real part of the Fourier series [FR(“)] converging
to0at t = %3 and the magnitude of F(w) converging to 1.0 at t = %u

The jump-up spike is due to Gibbs' phenomenon. The maximums of the
ripple magnitude for the jump-up spike of different nth partial sums

are shown in Figure 2-6; the peaks of the ripples approach 1.542. In
other words, the ratio of the maximum of the ripples to the jumping height
in the real part Folw) (which is 2.00) is [(1.542% - 1.000%)'/% - 1} »
2.00 = 0.087 or 8.7%. This is very close to the prediction of Gibbs'
phenomenon. Since F'(m) is continuous, the overshoots at t = %-are due
to the discontinuity of FR(m) only. The magnitude function, as shown

in Figure 2-5(b), is also continuous; therefore, taking the ratio of
overshoot tc the jumping height (which is 0) of the magnitude function,
we find that the ratio is infinite. The result indicates that the ratio
of overshoot to the jumping height in the magnitude function for a
complex periodic function in the frequency domain is not always equal

to 9%.

2.6 REMARKS

Starting with the truncated Fourier series, we have defined, derived,
and interpreted Gibbs' phenomenon in the time domain and frequency
domain. The latter is a counterpart of the former. A one-to-one
correspondence exists with the exception that Gibbs' phenomenon in the
frequency domain deals with complex periodic functions while in the
time domain Gibbs' phenomenon deals with real functions.

This chapter offers a basis for nonrecursive filter analysis via the
windowing method.

24




(a) REAL AND IMAGINARY PARTS OF F(w)
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FIGURE 2-5. THE PERIODIC FUNCTION F(w) AND THE MAGNITUDE AND PHASE OF
VARIOUS PARTIAL SUMS OF F(w)
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CHAPTER 111
THE GENERALIZED GIBBS' PHENOMENON AND WINDOWS

3.0 INTRODUCTION

In Chapter |l, we have shown that the truncation of a Fourier series
can be considered the same as the windowing of a function through the
use of a rectangular window. |f a point of discontinuity occurs in the
function, then Gibbs' phenomcnon results. To eliminate or reduce the
Gibbs' phenomena, rectangular windows must be modified into windows of
othes shapes. When modified windows are used, the corresponding effects
are referred to as the generalized Gibbs' phenomena. In turn, based
on the generalized Gibbs' phenomena, we will develop, classify, and
investigate various windows both in the time domain and frequency domain;
in particular, we will establish a trapezoidal window. It is believed
that this is the first time that the trapezoidal window has been uti-
lized to offer a unified picture of windowing techniques.

3.1 WINDOWING IN THE TIME DOMAIN

Let us restate the nth partial sum of the truncated Fourier series

fn(t) = ]:w f(x) wn(t-x) dx

= £(2) *w (0) (1)

where "'*" s real convolution and

sin (nmot)

nt (2)

wn(t) -
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Therefore, since it is apparent that Eq. (2) represents an ideal filter
with a cutoff frequency nw., we can say that the partial sum fn(t) is
governed by the characteristics of the ideal filter w (t). As shown in
Figure 3-1(a), wn(t) displays low-damped oscillations around t = 0; result-
ing in (1) a slow convergence rate and (2) Gibbs' phenomenon. To improve
the convergence rate and eliminate the Gibbs' phenomenon, we must use
other filters or window functions instead of wn(t) given in Eq. (2).

If we filter the nth partial sum fn(t) with a filter with impulse

response wtn(t). the resulting smoothed waveform is given by

(1) = f (1) *w (1) (3)
Substituting Eq. (1) into Eq. (3), yields
fr(e) = £(t) % w (6) *w_(0) (4)

Since the convolution integral is an associative operation, Eq. (4) can
be rewritten as

Fa(t) = £(2) * wlt) (5)
where

w(t) = wn(t) *w

en(®) (6)

Let us assume that the Fourler Transform of "tn(t) is wtn(u) and
th(u) = 0 for w > W, where wy %1-and T is the period of f(t).

Taking the Fourier Transform of w(t), we have

Ww) & Flwle)] = v () ¥, () (7
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Since Hn(w) represents an ideal filter with cutoff frequency nwy s

Wiw) = th(w) (8)

and,

w(t) = wtn(t) (9)

Eq. (5) now becomes

Fr(t) = £(2) * W () (10)

tn

*
The result, fn(t), may be called the windowed partial sum of the periodic
function f(t). From this viewpoint, truncation of the Fourier series
(Chapter 11) can be considered as a special case of windowing.

3.2 THE GENERALIZED GIBBS PHENOMENON IN THE TIME DOMAIN

As pointed out earlier, the property of the truncated Fourier
series In the vicinity of a discontinuous point is equivalent to that
of replacing f(t) by a blased step function. If only the oscillations
in the vicinity of the point of discontinuity are considered, we can
replace f(t) by

f.(t) = Au(t) (1)
where A is the jump height of f(t) at the discontinuous point t = 0.
When the periodic function f(t) is windowed by wtn(t). we can apply

this idea and evaluate the overshoot in the vicinity of the discon-
tinuous point. Let us define

g,(t) = £ (t) * w (t) (12)
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Then

gn(t) - AI. u(x) wm(t-x) dx

t
- Af wtn(x) dx
-

(13)

(1)

To faclilitate our discussion, let us define the unit window wt(t) for

the class of windows wtn(t), forn=1, 2, ..., such that

W (W) & Flw (t)] =0 for w=1

and

W () & Flw (8)] = wt(;,-:;)

Thus, we have

wm(t) = nwy W, (nmot)

Substituting Eq. (17) into Eq. (14) ylelds
t
gn(t) = A = nag wt(m»ox) dx

nuot
= AI wt(y) dy

Letting

t
g(t) = Af wt(y) dy

31
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(18)

(19)
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Then

gn(t) - g(nwot) (20)

Assume that g{t) has several ripples with the local maxima occurring at
t=1t, t, ..., then gn(t) has local maxima occurring at
t‘ t

t = F‘-"-E 2 M’LO y «+«. Therefore, when n+=, all the ripples of gn(t) are

compressed into a single vertical line at t = 0. This may cause the
same effect as Gibbs' phenomenon.

In order to obtain the same jump height (A) after windowing for
n+=, we need to have

l:g+ [rl'_l: g,(e)] = Aj: wt(y) dy = A (21)
or
wt'(o) -[_ w,(y) dy =1 (22)

In other words, the necessary conditions for an acceptable time domain
window are the following:

(1) 1ts Fourier Transform W, (w) vanishes for lw] > nwg-
(2) Hm(ﬂ) =] for w=0.
(3) W, (-w) =V, ()

Let us define

* t
g (t) = f "t(Y) dy (23)
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and

9. = l.ub. {g' (1)} -1 t€ (o, (24)

Then

g =% lub. {g () -1 € (0,2 (25)

From Eqs. (19), (23) and (24), and following the same arguments used in
Section 2.1 of Chapter |1, we can define the generalized Gibbs' phenom-
enon in the time domain as:

(1) If a periodic function has a discontinuous point with jump
height (A) and is windowed by a time domain window wm(t),
then the overshoot Iin the vicinity of the point of discon-
tinuity is given by

L =gA (26)
(2) The ratio of the overshoot to the jump height is a con-
stant, 3., which is dependent on the unit window wt(t)

for the specific class of windows generated by wtn(t) =
wt(nuot).

The unit window for the rectangular window or the ideal filter is

) lw] <
W, () = (27)
0 lw] >
and
in t
w,(t) = 222 (28)
33
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Thus from Eg. (23), we have

t
9*(t)-f siog 4 (29)

and

g, = 1.u.b. {g*(t)} -1 t € (0,=)
4 sint 4 -
- = '; ‘
=Llsitm -3 (30)

Eq. (30) is approximately equal to 0.0895 or 8.95%. This is the over-
shoot ratio for the well-known Gibbs' phenomenon caused by the trunca-
tion of the Fourier series.

In order to reduce the overshoot ratio, we have to choose the window
with g, as small as possible. |If i 0, no overshoot occurs. From
Eq. (24), we note that the Gibbs' phenomenon was eliminated, if and only
if,

*
l.u.b {g ()} =1 for t € (0,=) (31)

Consider the special kind of windows with unit window

w (t) 20 for t € (0,) (32)

If g*(t) ts monotonic increasing; then
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T.u.b. {g*(t)} = 1im g*(¢t)

| ol

-[ wf(t) dt

=] (33)

In other words if wt(t) or "tn(t) Is non-negative, g_ = 0.
Consider the triangular window which has the unit window

| 0<wc«<

v, (0) = 5 (34)

1+ “1<w<0

The corresponding time function is given by
2
t
sin
w(t) = ;-;[—T-(f) (35)
b3

it is evident that wt(t) >0 for t € (0,=). Therefore 9. = 0 and we
may conclude that the triangular window can be used to eliminate the
Gibbs' phenomenon completely.

3.3 THE TRAPEZOIDAL WINDOW IN THE TIME DOMAIN

Consider the class of trapezoidal windows with unit window

Low 1-2b<ws<

W, (w) = 1 lw] <1 - 2b (36)
Lt -1 <w<=(1-2b)
where 0 < b < 0.5
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1

The corresponding time function is given by

v (8 _{l : b][sinbt(bt)][sln“[(l ;):) :]] (371

From Eqs. (36) and (37) we recognize that the trapezoidal windows
become rectangular windows If b = 0 and triangular windows if b = 0.5,

Therefore, the trapezoida) window Is a generalization for straight seg-
ment windows. The overshoot ratlo is 9. = 8.95% when b = 0 and g. =0
when b = 0.5. Figures 3-1 through 3-6 show the trapezoidal wlndow

t
wt(t) and .I. wt(c) dz for various b's. Program No. 3 (Appendix C) was

used for this purpose. The overshoot ratios 9. for different b's are
shown in Table 3-1 and Figure 3-7.

The width of the main lobe is defined as twice the interval from
t = 0 to the first zero-crossing of w, (t). From Eq. (37) we find that
the width of the main lobe is given by

* 27
W TB i

for the unit window. Figure 3-8 shows T* as the function of b. If the
trapezoidal window has a cutoff frequency nwy s the width of the main lobe
is given by

N
Tw = “_“’-o- (39)
From Figure 3-1 through 3-6 we see that as b increases, not only
does the overshoot ratlo 9 become smaller and smaller, but also the
slde lobe becomes smaller and damps out more quickly. From this view-
point, the triangular window is the best window for the overshoot ratio
"> 0 since the side lobe damps out quickly. However, If we examine
Figure 3-8, we find that the width of main lobe increases with b; there~
fore, the width of the main lobe is largest for the triangular window.
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FIGURE 3-7. OVERSHOOT RATIO OF THE TRAPEZOIDAL WINDOW WITH RESPECT TO
THE PARAMETER b
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FIGURE 3-8. WIDTH OF THE MAIN LOBE OF THE TRAPEZOIDAL WINDOW WITH
RESPECT TO THE PARAMETER b




From the properties of the convolution integral, an increase in the
width of the main lobe means a decrease in the resolution of the windowed
waveform. A good window is characterized by the following: (1) the
width of the main lobe is small, (2) the side lobes damp out quickly

and (3) the overshoot ratio is small or zero.

TABLE 3-1
OVERSHOOT RATIO g_ AND THE WIDTH OF
MAIN LOBE T:

T*
b 9. (%) =
0 9.0 1.00
0.05 8.8 1.05
0.10 8.7 1.1
0.15 8.4 1.18
0.20 7.9 1.25
0.25 7.0 1.33
0.30 5.9 1.43
0.35 4.3 1.54
0.40 2.1 1.67
0.45 0.7 1.82
0.50 0.0 2.00

Consider the square wave discussed in Chapter Il. The partial
sum converges slowly and the Gibbs' phenomenon with an overshoot ratio

of approximately 9% occurs. Figure 3-9(a) shows the I5th partial sum
of Its truncated Fourier series. Figures 3-9(b), (c) and (d) show the
15th partial sums of the windowed Fourier series utilizing trapezoidal
windows with b = 0.33, 0.4 and 0.5 respectively. From Figure 3-9 we
see that the underdamped oscillation Is eliminated and the overshoot
spike is reduced after wlndowlné by trapezoidal window with b = 0.33.
Figures 3-10(a) through 3-10(d) show the 255th partial sums of the

B N0 1N b NI VA ARO) ST i i




windowed Fourier series utilizing trapezoidal windows with b = 0, 0.33,
0.4 and 0.5 respectively. From Figures 3-9 and 3-10, the effect of
windowing is evident.

3.4 'WINDOWING AND THE GENERALIZED GIBBS' PHENOMENON IN THE FREQUENCY
DOMAIN

In the frequency domain we have a complex periodic function to
deal with and we can develop windowing techniques accordingly. Con-
sider Eq. (44) in Chapter Il, rewritten as

Fn(w) = F(w) @\vln(w)

where " ® " implies complex convolution and

2 sin (nwt

)
0
W () = ()

w

is the Dirichlet kernel or rectangular window in the frequency domain.
Following the same reasoning given in Section 3-1, if the nth partial
sum Fn(w) is windowed by a frequency domain window an(m) with

we,(t) having the nonzero Interval |t] < nty, it ylelds

Frlw) = F_(u) @V (0)

- Flo) ® v, () (42)

In order to study the oscillation in the vicinity of the point of
discontinuity after windowing by \lfn(w). we replace F(w) by

Flw) = Cu(w) (43)

b2
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where C = C, + C,j, and Cp, C, are the jump heights of FR(w) and F'(w)

at the discontinuous point, respectively; and u(w) is the unit step

function of w. Let us define

6, (w) 2 F () ® v ()

= %[: u(x) an(m-x) dx

¢ w
o B
-co

(44)

Similar to the time domain window, we can define the unit window Uf(w)

for the class of windows Ufn(w), n=1, 2, ..., such that

we(t) 4 r"[wf(u)] =0 fort >

and

wen(8) & DM ] = g (“—:J)
From Eq. (46) we have
We,(w) = ntg Vf(ntow)

Substituting Eq. (47) into Eq. (44) we have

C
Gn(u) - -2—'-[: nt, Vf(ntox) dx

ntou
- -g; I Wely) dy

45
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If we let

c w
Gn(w) o _[. Vf(y) dy (49)

Then we have
Gn(w) = G(ntow) (50)

If G(w) has ripples with local maxima occurring at w = Wys Woy ey

w W
then G_(w) has local maxima occurring at w = 1 5 o 12 B
n nto nto
as n+, all the ripples of Gn(w) are compressed into a single vertical
line at w = 0. In order to obtain the same jump height (C) after win-

dowing for n+«, we need to have

Therefore,

m, 1im G_(z) -g; jo Wely) dy

e i

=C (51)
or
we(0) = = ]' Vply) dy = 1 (52)

Therefore, the necessary conditions for an acceptable window in the
frequency domain are the following:

(1) Its inverse Fourler Transform wfn(t) vanishes for [t| > nty
(2) wg (t) =1 for t = 0.

(3) we (=t) = -w (t)
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Let us define

and

6*() = 5 f " wly) dy = S (53)

Gc = l.u.b. {G*{w)} =~ 1 w € (0,=) (54)

Then, from Eq. (50), we have

6 = % b, {6 W} -1 w€(0, (55)

We can now define the generalized Gibbs' phenomenon in the frequency

domain;

(1)

(2)

If a complex periodic function in the frequency domain has
a point of discontinuity with jump heights Cp in the real
part and C' in ;he imaginary part, and is windowed by a
frequency domain window W (w), the overshoot in the
vicinity of the point of discontinuity is given by

b = 6 Cp in the real part. (56)

and

a, =GC, in the imaginary part. (57)

The ratio of overshoot to the jump height, defined as
A A
R |
and is a constant G_ which is real and dependent on
T Ep :

the unit window W, (w) for the class of windows generated by
\Ifn(u) = wf(ntou).
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The unit window for the rectangular window is

1 [t] <1
wf(t) =
0 [te] > 1
and
Ve () -2Sinw

From Eq. (53) we have
la) & "’Z.s_‘n_x.d
FL I Yy Y

and

G, = l.u.b. {(6*(w)} -1 for w € (0,»)
" sin
- [Ldra

1 1
';S‘(‘l’) '-2-

{58)

(59)

(60)

(61)

G, in Eq. (61) is about 8.95%. This is the overshoot ratio for the

Gibbs' phenomenon in the frequency domain caused by truncating the

Fourier series.

In order to eliminate the generalized Gibbs' phenomenon, we must

choose a window such that

G, = 1.u.b. (G*(w)} - 1 =0
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or

J.u.b. {G*(w)} = (62)
For a class of windows with unit window
Vf(m) >0 for w € (0,=) (63)
then G*(w) s monotonic increasing, and G, = 0. Therefore, Eq. (63)
gives the sufficient condition for eliminating the generalized Gibbs'
phenomenon. The triangular window with the unit window defined as
b=t 0<t<)
wf(t) - (64)

1+t -1<t<0

has a corresponding frequency function given by

sin (%
flo) = —wjﬁ (65)
8

Since wf(u) > 0 for w € (0,=), the triangular window can be used to
eliminate the Gibbs' phenomenon.

When overshoots of magnitude and phase instead of the real and
Imaginary parts of the windowed complex period functions are concerned,
Eqs. (70) through (73) of Chapter !l are valld except that the overshoot
ratio (9%) in those equations must be replaced by G, of the window which
is used.

3.5 THE TRAPEZOIDAL WINDOW IN THE FREQUENCY DOMAIN

Consider the trapezoidal window in the frequency domain with the

k9
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unit window defined as

T 1 -2b<t<
we(t) =¢ 1 [t] <1 - 2b (66)
Lt slct<-(1-2p)

where 0 < b < 0.5. The Fourler Transform of Eq. (66) is given by

V() = 201-p) [2lnglbu) ] sin [(blu] (67)

Figures 3-11 through 3-16 show the amplitude response of ;—f—((:-;- for

f
w>0and for b =0, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in both
the linear and the logarithmic scale. For b = 0, as shown in Figure 3-11,
the side lobes are underdamped; as a matter of fact, it is a rectangular
window. The peak of the highest side lobe, denoted by Sm. is -13.3 dB.
As b increases, Sm docrus.es. When b is 0.418, as shown in Figure 3-17,
Sm approaches a minimum of -32 dB. When b is greater than 0.418, S
increases. When b = 0.5, a triangular window results with S"I = =-26.5 dB.
Table 3-2 and Figure 3-18 show the peak of the highest side lobe as the
function of parameter b.

The bandwidth of the main lobe, from Eq. (67), is given by

By = 2t (68)

and Is the same as T: shown in Figure 3-8. The overshoot ratio Gc for
the generalized Gibbs' phenomenon Is the same as 9. which is the over-
shoot ratio for the generalized Gibbs' phenomenon in the time domain as
shown In Figure 3-7. From Figures 3-7 and 3-18 we see that for 0.38 <

b < 0.5, the overshoot ratio Gc is less than 3% and sm Is less than

=26 dB; therefore, the trapezoidal windows with 0.38 < b < 0.5 give good
windowing resulting In a small overshoot ratio and overdamped side lobes.

|
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TABLE 3-2

PEAK OF THE HIGHEST SIDE LOBE
.

b Sm(dB)
0 -13.3
0.1 -13.6
0.2 =15:1
0.3 -19.0
0.35 =227
0.4 -28.8
0.118 -32.0
0.42 -31.6
0.45 -28.4
0.50 «26.5

From Figure 3-17 for b = 0.418, the peak of the highest side lobe
Is =32 dB which is the lowest Sm @s shown In Figure 3-18. This is the
optimal trapezoidal window and shall be used in the design of nonrecur-
sive filters and compensators.

Program No. 4 (Appendix C) was used to determine the amplitude
response of the trapezoidal windowed Fourier Transform of Eq. (1).

The well known Hanning and Hamming windows are defined as:
(1) Unit window for Hanning window

w(t) = 0.5 + 0.5 cos (mt) [t] <1
=0 [t] > (69)

and

U(w) - Slg W + ! sin (ﬁ+w) + 1 sin (ﬂ'w) (70)

m+w m™w
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(2) Unit window for Hamming window

w(t) = 0.54 + 0.46 cos (nt) |t| <1

=0 le] > 1 (71)
and
& sinw sin (n+w) sin (m-w)
Wiw) 1.08 ~ + 0.46 —Tr+ 0.46 oo (72)

Figures 3-19 and 3-20 show the amplitude response of the Hanning and
the Hamming window respectively. The peak of highest side lobes of the
Hanning window is -31.5 dB which is somewhat greater than the peak of
the optimal trapezoidal window. For the Hamming window, Sm is equal to
-43.2 dB and is much lower than the Hanning window. However, the band-
width of the main lobe is 3.44 ©m for the optimal trapezoidal window,
and 4r for both the Hanning and the Hamming windows.

Considering the second example at the end of Chapter Il as an
illustration of the effect of windowing in the frequency domain, Figures
3-21 and 3-25 show the magnitudes and phases of the truncated Fourier
series windowed by a rectangular window for n = 16 and 256, respectively.
The results of windowing by trapezoidal windows with b = %%-, %%-and
i-for n = 16 are shown in Figures 3-22, 3-24 and 3-25 respectively.
Figures 3-26, 3-27 and 3-28 show the results of windowing by trapezoidal
windows with b = %%% 3 %%%-and %3 respectively, for n = 256. Examina-
tion of these waveforms indicates that trapezoidal windows with b > 0.3

are acceptable for windowing in the frequency domain.

3.6 REMARKS
Based on the analysis of the generalized Gibbs' phenomenon, we have

explained important functions of various windows both in the time domain
and in the frequency domain., For simplicity in exploring the idea, the

56




B o e e T

trapezoidal window was used to offer a unified picture. In the following

chapters, we shall show that this approach is powerful and helpful in
design work.
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CHAPTER IV
DESIGN OF NONRECURSIVE FILTERS USING THE WINDOW METHOD

4.0 [INTRODUCTION

Digital filters can be divided into two general classes: recursive
and nonrecursive filters. In control systems applications, the non-
recursive filter has two important advantages;

1. A nonrecursive filter has a linear phase function with
poles located at z = 0, therefore, a higher degree of
stabitity Is inherent in the system.

2. Since the impulse response of a nonrecursiver filter is
finite in length, the filter has only a finite memory, so
when a short duration disturbance occurs in the input signal,
the effect on the output signal will die out after a finite
number of sampling periods.

The frequency response of a digital filter is periodic and can be
expanded as a Fourier series in the frequency domain. If only a finite
number of terms of the Fourier series Is taken frr practical purposes,
we must truncate the Fourler series. Since the ‘requency response of
an Ideal filter is always specificed as a discontinuous function with
8 point of discontinuity occurring at the cutoff frequency, the trunca-
tion of Fourier series Involves the Gibbs' phencmenon and the under-
damped side lobe problems. The most straightforward way to solve these
problems is through the use of windows.

In this chapter, we will develop & conci:“~ srocedure to design
nonrecursive fllters via the window mtbod“‘g]. Starting with low-
pass filters and extending the discussion to high-pass, band-pass and
band-rejection fllters, a new technique of frequency transformation
will be established su:h that the high~pass, band-pass or band-rejection
filters designed u=ing this technique will remain nonrecursive.
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4.1 LOW-PASS FILTER DESIGN

The transfer function of an nth order nonrecursive filter can be
expressed as

. -k
F2) = X a, 2 M
k=0
Its fraquency response is
n
FlelT) = 3 a, e kT (2)
k=0

where T is the sample period. Assuming n = 2m, we have

F(QJNT) = e'JmT bk e-jkwT (3)
K==m
where
by * 8 -m (4)
Defining
ACSED M (s)
Then, we obtain
F(ijT) - e-jmT Fm(eJmT) (6)

In fact, Eq. (5) can be treated as the Fourier series in the frequency
domain with period wg = %E-Whlch is the sampling frequency. In other

words, we have
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b, = :,': 2 F (eT) JNT g, (7)
“s
T
From Eq. (6), we have
|F@2)| = |F (2)] (8)
and
[F(Z) = {rm(z)-nm (9)
Letting {rm(z) = 0, yields
$(2) = fF(2) = -muT (10)

which means that F(Z) is a nonrecursive filter with linear phase. From
Eq. (5), in order to have {F (Z) = 0, we must let

AL (1)

Now, the procedure for designing the nonrecursive filter utilizing the
FFT and window techniques can be outlined as follows:

(1) Specify the magnitude response, |F(Z)|, and the slope of the
linear phase function, defined by k¢ - gﬁ-- -mT.

(2) If the maximum frequency of the signal to be filtered is
Bie? then, according to the well known Shannon sampling
theorem, the sampling frequency must be equal to or

greater than 2um. , or the sampling period T must be less

X
L

than or equal to -
max
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-k
(3) The order of the nonrecursive filter is 2m, where m is -71 i

(4) Find the inverse Fourier Transform of the magnitude response,
|F(2)| = |F_(2)], by using the FFT algorithm.

(5) The first m + | components of the inverse Fourier Transform
of |F(2)] are b» for k=0, 1, ..., m

(6) In order to have a smooth frequency response, windows must be
used to modify the coefficients bk’ obtaining b'!, for k =

O, ¥ viei
(7) The transfer function of the nonrecursive filter is given by

F(2) = 3 s (12)
k=0

= ! =
where a, bﬂ-m and bl b& .

It is often necessarf to find the transient and frequency responses
of the nonrecursive filter. From Eq. (12), the impulse response is

f(t) = ‘(220 a, §(t-kt) (12a)

Therefore, the impulse response is very easily found once the coefficients
of nonrecursive filters are given. The frequency response of the non-
recursive filter is as shown in Eq. (2). Of course, we can find the
frequency response directly from Eq., (2) If the coefficients (ak's) are
glven. However, the frequency response is the Fourier Transform of

the impulse response as shown in Eq. (12a). Thus, the "fast' way to

find the frequency response is to take the Fourier Transform of the
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impulse response using the FFT algorithm (Appendix A). Program No. 5
(Appendix C) is the keyboard program for nonrecursive filter design
and for finding the frequency response.

Example 1. A low-pass filter with the amplitude response

1 |€] < 100 Hz
IF(2)| =
0 |f] > 100 Hz
and
k, = 9%« -0.005 sec
€ ¢ duw 2
? is required. The sampling frequency is 1600 Hz. Find the nonrecursive

filter using the window method.

Solution. Since k, = %3- -0.005 = -mT, we have

: k
;; m-TlIB (]3)
% Using four different windows, the coefficients of four different non-

; recursive filters were determined and listed in Table 4-1. The
frequency response of each of the resulting filters is shown in
Figures 4-1 through 4-4,

Figure 4-3 depicts the frequency response of the nonrecursive
filter designed with the trapezoidal window (b = 0.438); note that the
peak of the highest side lobe Is =39 dB. In Figure 4-4 the frequency
response of the nonrecursive filter designed with the Hanning window
Is shown; note that for this filter the peak of the highest side lobe
is -4k dB. From Figures 4-3 and 4-4 we see that the trapezoidal window
and the Hanning window are comparable; however, an Important advantage
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of the trapezoidal window is that it is much easier to construct than

the Hanning window.

TABLE 4-1

COEFFICIENTS OF LOW-PASS FILTER DESIGNED BY FOUR DIFFERENT WINDOWS

WINDOWS
COEFFICIENTS | pectancuLar e HANN I NG
b=0.375 | b=0.438

ag 0.1253 0.1252 0.1252 0.1252
a; = ag 0.1221 0.1220 0.1220 0.1174
ag = a,, 0.1128 0.1127 0.0966 0.0962
ag = ay, 0.0982 0.0818 0.0701 0.0678
a, = a), 0.0796 0.0531 0.0455 0.0398
8y =3, 0.0588 0.0294 0.0252 0.0182
a, = ay, 0.0374 0.0125 0.0107 0.0055
a =a 0.0172 0.0029 0.0025 0.0007

ag = ay -0.0003 0 0 0

h.2 FREQUENCY TRANSFORMATION I:

Constantinides
transformation of digital filters.
recursive filters, they are not suitable for nonrecursive filters.

[18,23]

LOW~PASS TO LOW-PASS TRANSFORMATION

developed a set of formulas for the frequency
Al though his formulas work well for
When

any of his formulas are used to transform a nonrecursive filter, the

resultant is no longer nonrecursive.

In this and subsequent sections, we will develop a set of trans-

formations for nonrecursive filters to construct (1) a low-pass filter
with a different cutoff frequency, (2) a high-pass fiiter, (3) a

band-pass filter, and (4} a band-rejection filter, from a low-pass filter
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prototype. Let us start with the low-pass filter.

Figure 4-5(a) shows the amplitude response for the ideal low-pass
filter with cutoff frequency fc and sampling frequency fs. A new non-
recursive filter with cutoff frequency fd as shown in Figure 4-5(b) is
required. The coefficients of the low-pass filter with a rectangular

window are given by

Ws
| g S
b, = - F,(eJoT) e JhoT g, (14)
s w
8
f
s
= %__ Fm(janT) e-ijka df (15)
s f
-—s
2
where
ms
fs - ﬁ (16)

If the low-pass nonrecursive filter has cutoff frequency fc, the coeffi-

cients are

*

f
| I € -jankfT
b, = e df
ke ?s =

f
c

:‘- sin (2kf T)
-—— a7

When the window, w(t), is used for smoothing the amplitude response, the
modified coefficients become
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- - °

fs fe fe :

(a) LOW-PASS FILTER WITH CUTOFF FREQUENCY fc
$ 2
1

1 | 5.

-fs -fd 0 fd fs

(b) LOW-PASS FILTER WITH CUTOFF FREQUENCY fd

FIGURE 4-5. FREQUENCY RESPONSES OF TWO LOW-PASS FILTERS
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ke k (1e)

where Wi Is the window function sgmpled at t = kT, or w

e w(kT). |If
the cutoff frequency fis fd, we have the coefficients of the nonrecursive

filter with a rectangular window:

. sin (Zwkde)

bhd " TRRET 9

If the window, w(t), is used for smoothing the amplitude response, the
modified coefficients of the nonrecursive filter are

Bd ™ Bred * Wi (20)

From Eqs. (18) and (20) we have

(21)

Substituting Eqs. (17) and (19) into Eq. (21), yields

sin (Zﬂkde)

bkd " sin lin?cT, bkc (22)

if sin (2wkch) ¥ 0.

Let us now state the following rule for the low-pass to low-pass
transformation:

If the low-pass nonrecursive digital filter is given by
F(z) = 2" b 2" (23)
W= ke
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with cutoff frequency fc’ the new filter

F(z) = 27" kt g™ (24)
=-m

where

sin (ande)
L STh (ZekF_TT ke (25)

will have the cutoff frequency fer 1f sin (2nkch) # 0.

Example 2. Using the results of Example 1, design a low-pass nonrecursive
filter with a cutoff frequency of 200 Hz and the same sampling frequency
(1600 Hz).

Solution. From Eq. (25), we have

. sin [-K- k] (26)

bkd sin [g- k]bk

The coefficients of the required nonrecursive filter are listed in
Table 4-2. The frequency responses of these three nonrecursive filters
are shown In Figures 4-6, 4-7 and 4-8, respectively.

4.3 FREQUENCY TRANSFORMATION I1: LOW-PASS TO HIGH-PASS TRANSFORMATION

Figure 4-9 shows the amplitude response of an ideal high-pass filter.
f

If the vertical axis Is shifted to 5~ , we find that the amp!itude
response of the high-pass filter with cutoff frequency fh and sampling

frequency fs becomes the amplitude response of the low-pass filter with
f

s
cutoff frequency fc o fh'
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g 2

Mathematically we have

7 o JOFfT

f
janT\f - ii

where Fh(Z) is the transfer function of the high-pass filter and Fz(l)
is the transfer function of the low-pass filter. Assume that the trans-
fer function of the low-pass filter with cutoff frequency fc is

= Fl e

(27)

m
F (2) = 2™ - S (28)
: &
From Eq. (27) we have
-jnf T
@) =Fle” *9 (29)

FIGURE 4-9. THE AMPLITUDE RESPONSE OF AN IDEAL HIGH-PASS FILTER
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Since f_ = %-, Eq. (29) becomes

F(2) = F,(e172)

= F,(-2) (30)
Combining Eqs. (28) and (30), yields

m
F(2) = (-2)™ 2 a (-2)7K

k==m
=z" s: -7k 4 2% (31)
K==m
In brief, we have the following rule for the low-pass to high-pass
transformation:
If a high-pass nonrecursive filter with %%-= k¢, cutoff frequency

fh’ and sampling frequency fs is required, we first design a low-pass

nonrecursive filter with cutoff frequency fc = fi = fh and %%-- k¢;
then substituting Z by -Z, we arrive at the high-pass nonrecursive filter

with the specified performance.

Example 3. Design a nonrecursive filter with a sampling frequency of

1600 Hz, cutoff frequency of LOO Hz, and k0 = -0,005 seconds.

Solution. We first design a prototype low-pass filter with cutoff fre-
f k
s = - = =

quency f_ = = - f, = 400 Hz, k, = -0.005, and m ’Ft 8. Using the

near optimal trapezoidal window with b = 0.438, we determine the transfer

function of the prototype low-pass filter

Fi(2) = 28 2;8 ay 2k (32)
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where

Now, replacing Z by ~Z, we have the nonrecursive high-pass filter

Fo(2) = 28

83

-0.0065
=0.0001
0.0273
0.0002
-0.0759
=0.0003
0.3183

0.5001

WS g

k

(33)

(34)
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where

bs-b_a.o

b, = b_, = 0.0065

b6 = b-6 = -0,0001
=b . = -0,0273
b, = b_y = 0.0002
by = b_y = 0.0759

b, = b_, = -0.0003

2 -2

by=b_y = -0.3183
by = 0.5001 (35)

The amplitude response and phase characteristics of the filter defined
by Eq. (34) are shown in Figure 4-10.

L.4 DESIGN OF A NONRECURSIVE BAND-PASS FILTER

Let

F @ =" ;s;; N e (36)

F2) =2 j: o (37)
=m

be the transfer functions of a high-pass filter with cutoff frequency

and

fh and a low-pass fllter with cutoff frequency fc' respectively.
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Figure 4-11(a) shows the amplitude responses of Eqs. (36) and (37).
Assume that

fo>f (38)
Then, the amplitude response of
Fb(Z) = Fh(Z) Fl(Z) (39)

as shown in Figure 4-11(b), exhibits the band-pass characteristic, with
pass band f, < f < fy, where f, = f,and f, = f.. Therefore, we can
construct the band-pass nonrecursive filter by cascading a low-pass and

a high-pass filter with proper cutoff frequencies. Substituting Egqs. (36)
and (37) into Eq. (39), yields N

o]

Eq. (40) indicates that the band-pass nonrecursive filter has a linear
phase relationship with %ﬁ-- -2mT.

Now, we can state the following rule for the construction of a band-
pass filter:

If the band-pass nonrecursive filter with pass-band fLefcef,
and gﬁ-- k’ Is required, we first d:slqn two low-pass filters, Fl'(z)
and F,, (2), with cutoff frequencies s>~ f, and f.,, respectively, where

22 . 2 e, . K

W
fs is the sampling frequency; and the phase slopes - el e }-’- 5
where ¢, and 4, are the phase functions of rl,(z) and rlz(z). then the
transfer function of the desired band-pass filter is given by

Fo(2) = Fy (-2) F ,(2) (41)
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(b)  BAND-PASS FILTER

FIGURE 4-11. CONSTRUCTION OF THE BAND-PASS FILTER FROM A LOW-PASS AND
A HIGH-PASS FILTER
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Example 4. Design a band-pass filter with pass band 200 Hz < f < 400 Hz
and aﬁ-- -0.01 sec. The sampling frequency is 1600 Hz,

Solutlion. Since f' = 200 Hz, fz = 400 Hz and fs = 1600 Hz, we first

design two low-pass filters with cutoff frequencies fi - f' = 600 Hz

and 400 Hz, respectively, and kO‘ = k¢2 = -0.005. The order of low-pass

k
filters ism= -%l-- 8. Following the procedures given in Section 4.1
and using the near optimal trapezoidal window with b = 0.438, yields

Fop(2) = 28 i;e a - e (42)

and
Fpp(@) = 28 é; by z (43)
where
ag=ag= 0
ay = a_y = -0.005

a =a " 0.016
= -0.020

8, =89 = -0.00}

a;=a - 0.054
a =a_, = -0.137
a=a,=- 0.225
8, = 0.750 (44)
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and

Now, using Eq. (41) the transfer function of the band-pass filter

becomes

bs-b_s- 0

b, = b_, = -0.0065

7 =7

bg = b_g = =0.0001
bg = b_g = 0.0273
by = b_y, = 0.0002
by = b_y = -0.0759
b, = b_, = =0.0003
by = b_, = 0.3183

by = 0.5001

Fo(2) = Fy, (-2) rlz(z)

o -
-2
6 k

89

(u5)

(46)




where

Cyy = C.qy = -0.0001
C,p = C_y, = =0.0002
C,, = C_,, = =0.000]
Cyy = C_yy = 0.0004
=C_,, = 0.0005
Cq = C_q = -0.0004
‘tg = Cg = -0.000]

C, =¢C = -0.0015

7 =7
Cg = Cg = 0.0145
Cg =Cg = 0.0460
¢, =€, =-0.0001
€y =Cy = -0.1320
¢, . C., = -0.1429
¢, =C, = 0.0935
€, = 0.2410 (47)




P ———

The frequency response of the band-pass filter as expressed in Eq. (46)
is shown in Figure 4-12.

4.5 DESIGN OF A NONRECURSIVE BAND-REJECTION FILTER

Let

Fo(2) = 2" ; a, * B (48)

F (2) = 27" j: b 27 (49)
“m

be the transfer functions of a high-pass filter with cutoff frequency

and

fh and a low-pass filter with cutcff frequency fc' respectively. Figure
4-13(a) shows the amplitude responses of Eqs. (48) and (49). Assume
that

f_>f (50)
Then the amplitude response of

rr(z) - Fh(z) + rl(Z) (s1)

as shown In Figure 4-13(b), exhibits the band-rejection characteristics,
with rejection band fl <f :_fz where fl = fc and fz - fh' Therefore,
we can construct the band-rejection nonrecursive filter by the parallel
connection of a high-pass and a low-pass filter with proper cutoff fre-
quencies. Substituting Eqs. (48) and (49) into Eq. (51), yields

- -k
F (2) =2 - ;;m (a, +b,) 2 (52)
91
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(b) BAND-REJECTION FILTER

FIGURE 4-13. CONSTRUCTION OF THE BAND-REJECTION FILTER FROM A LOW-PASS

AND A HIGH-PASS FILTER
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It is evident that the band-rejection filter as represented by Eq. (52)
has a linear phase relationship with g%-- -mT.

Accordingly, we can now state the following rule for the construction
of the band-rejection filter.

If the band-rejection nonrecursive filter with rejection band

fl <f< fz and %(%- k, is required, we first design two low-pass filters

¢ f
F,,(2Z) and F, (2) with cutoff frequencies f, and == - f., respectively,
21 22 1 2 2 do
where fs is the sampling frequency; and the phase slopes are ==
dé
2

- ke k¢, where % and ¢, are phase functions of F“(Z) and Flz(z), then
the transfer function of the desired band-rejection filter is given by

rr(z) = FEI(Z) + Fzz(-Z) (53)

Example 5. Design a band-rejection fllter with rejection band 100 Hz <
f < 600 Hz and %% = -0.005 seconds. The sampling frequency is 1600 Hz.

Solution. Since fl = 100 Hz, f2 = 600 Hz and fs = 1600 Hz, we first

design two low pass filters with cutoff frequencies of 100 Hz and of
f

i—’- - l’2 = 200 Hz, respectively, and k = -0.005 seconds. There-

= k
¢l $2
fore, the order of the low-pass filters is m = 8, |f the near optimal

trapezoidal window with b = 0.438 is used, we have

-8 -k

F”(Z) -2 i;e a (54)
-8 =X

Fypl2) =2 é;e b, 2 (55)

and
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where

%g=ag" 0

ay=a,- 0.0025
a = a_ = 0.0107
a_g = 0.0252
8, = a_, = 0.0455
a-a,- 0.0701
8, =~ a_, = 0.0966

ay=a, - 0.1220

0.1252

.7 = 0.0046

bg = b_g = -0.0152

b b_ = 0.019

.3 = =0.0535

b, =b_, = 0.1364

-

b, = b_, = -0,2253

-1

b =

0 0.2502
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Therefore, the required band-rejection nonrecursive filter is given by

F ozl - 28 ;2;; o (58)

CB‘C_B- 0

where

c., = 0.0070

Cg = C_g = ~0.0045

€g ™ 0.0446

€y = €.y = 0.0454
€3 " 0.0167
c, = c, = 0.2329
€y = ¢y = -0.1032

<o = 0.3754

The frequency response of this band-rejection nonrecursive filter is
shown in Figure 4-14,

4.6 REMARKS

The design of various kinds of nonrecursive digital filters using
the FFT algorithm and windows has been presented. It is evident that an
arbitrary frequency response can be realized through a nonrecursive
digital filter of the proper order. This technique will be employed to
design nonrecursive digital compensators for control systems.
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CHAPTER V
ANALYSIS OF DISCRETE-TIME CONTROL SYSTEMS®

5.0 INTRODUCTION

To understand and analyze a discrete-time control system, we often
manipulate and transform the system block diagram, and then study the
system response and stability.

In this chapter, we will develop a consistent set of rules for dealing
with system block diagrams. Block diagram operations, simplifications,
and closed-loop transfer function evaluations will be derived from
direct applications of these rules; i.e., the Ragazzini-Zadeh identity.

As far as the transient response and the frequency response are
concerned, algorithms have been developed which are Fast Fourier Trans-
form oriented; therefore, the techniques devised are to be used with the
aid of minicomputers or microcomputers.

Finally, a novel stability criterion based on the return difference
is derived, explained, and demonstrated through various examples. This
criterion is also of the FFT-oriented and minicomputer-aided type.

In general, this chapter presents methods for quantitative and
qualitative evaluation of the performance of a discrete-time control sys-
tem. Based on a thorough understanding of the principles presented in
this chapter, we will establish the procedures for the design work
presented in the following chapter.

5.1 FREQUENCY RESPONSE OF DISCRETE-TIME CONTROL SYSTEMS
If the transfer function of a discrete-time control system is given

by
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NI SIS

N I T

2 3 m
a, + a z + 3, 2"+ ... ¢+ a,z m
2 n
bo*b'2+bzz +...+bn2

G(z) =

then the frequency response of the system is given by

6(jw) 2 6(2)

= erT

jauT | moT

JuT
-.o*‘le-"'ze
by + b LN b, T

J
.ta e
e]dET (2)

e *+ b
n

where T is the sampling period and wg = %1 Is the sampling frequency.

Jlwra )T JuT
Since e = ¢’ , we see that G(jw) is a complex periodic function

in the frequency domain with period w, - Therefore, Eq. (12) can be
expressed as a Fourier serles;

6(jw) = i a, e I™T (3)

The inverse Fourier Transform of G(jw), which is the impulse response of
the discrete-time control system, is given by

g(t) = F 6w
. nz;. s, S(t-nT) 0

For a causal system, the impulse response must be

g(t) =0 for t <0 (s)
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In other words, in Eq. (4)

a =0 forn <0 (6)

For simplicity, Eqs. (3) and (4) can be rewritten as

(o) = 338, &7IT &)
ns
and
olt) = g a 8(t-nT) ®)
ne=|

The conventional methods to obtain the a coefficients of Eq. (8) are
the partial fraction expansion, long division algorithm, etc. A new
method of using the DFT to find the frequency response G(jw) and then
taking the inverse Fourier Transformation of G(jw) to get g(t) has been
developed and can be adopted.

In the preceding chapter, the frequency response of the nonrecursive
filter was determined using the FFT algorithm. Eq. (1) can be rewritten

as
6(2) - M3 (9)
where
N(z) = a_ 2" . & " g B N LA 8 z " (10)
and
D(z) =b_+b 24t b, 2™ by z " ()
100
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and m < n. Of course, N(z) and D(z) can be treated as transfer functions
of two nonrecursive filters. Therefore, utilizing the technique developed
in Chapter 1V, the frequency response of N(z) and D(z) can be determined
using the FFT algorithm. Next, dividing N(eJ”T) by D(eJ”T), the frequency
response of the system transfer function G(z) Is obtained. The procedure
suggested here is actually a fast method to calculate the frequency
response of discrete-time control systems. Program No. 6 (Appendix C)

was developed according to this procedure.

Example 1. Find the frequency response of the system with the transfer
function

1.2642
G(z) = b s (12)
? 2" - 0.104z + 0.368

and sampling period T = 0.1 seconds.
Solution. Rewrite Eq. (12) as

1.264z""

6(z) = =1 )
1 - 0.10kz”' + 0,368z

(13)

Case (1). Choose N = 64 for performing the FFT.

The frequency resolution of the frequency response is given by

us_Zw

M-r 3 (14)
In this case, T = 0.1 seconds and Aw = %ﬁ-- 0.9818. The resulting frequency

w
response Is shown in Figure 5-1 for 0 < w 5_!3 .
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Case (2). Choose N = 1024 for performing the FFT.

Sn

In this case, Aw = " 0.06136 is much smaller than that in

W
Case (1). The frequency response for 0 < w f-fi is shown in Figure 5-2.

Increasing the value of N results in a much smoother curve compared to

that of Case (1).

5.2 TRANSIENT RESPONSE OF DISCRETE-TIME CONTROL SYSTEMS

If the discrete-time control system has the transfer function G(z)

and input R(z), then the output is given by
c(z) = 6(z) R(z)
and the transient response is

c(t) = 27'[a(2) R(2)]

(15)

(16)

Many methods exist for finding the transient response c(t), such as the

long division method, and partial fraction expansion, etc.

However, if

we take advantage of the FFT algorithm for finding the inverse Z-transform
as in Eq. (16) and using Ea. (15), we have the Fourier Transform of C(z) {

which can be expressed as
c(elT) = c(ef*T) r(ef*T)
Then, the transient response Is
c(t) = F ' (el

- F ' 6(eI%T) r(eI®TY)

102
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FIGURE 5-1. FREQUENCY RESPONSE OF G(z), N = 64

FIGURE 5-2. FREQUENCY RESPONSE OF G(z), N = 1024
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Thus, we first find the frequency response G(erT) and the Fourier Trans-
form R(ejmT) using the FFT, as discussed in Section 5.1, then we use the
FFT to evaluate the inverse Fourier Transform of G(eJ”T) R(eij) to deter-
mine c(t). Details of this method are given in Appendix B.

5.2.1 UNIT IMPULSE RESPONSE
The unit impulse input is defined as
R(z) = z[8(¢)] =1 (19)
From Eq. (18), we have the unit impulse response
c(t) = Fla(el*N)] (20)

Program No. 7 (Appendix C) was written to evaluate the unit impulse
response from the transfer function G(z).

Example 2. Find the unit impulse response of the system with the trans-
fer function

G(z) . ,.26'.2 (21)
z” - 0.104z + 0.368

and sampling period T = 0.1 seconds.

Solution. Choose N = 1024, Utilizing Program No. 7 (Appendix C) the
unit impulse response is
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c(t) = 1.264 §(t-0.1) + 0.132 §(t-0.2)
- 0.0452 &§(t-0.3) - 0.096 &(t-0.4)
+ 0.157 6(t-0.5) + 0.052 &(¢-0.6)
- 0.053 §(t-0.7) - 0.025 &(t-0.8)

+ 0.017 8(t-0.9) - 0.011 &(t-1.0)

- 0.005 &§(t-1.1) (22)
The resulting transient response is shown in Figure 5-3.
dc(v)
1 *
1.0 ‘,
REE
: 2 ," ".
JF i N ey ) g M e (e
2 ‘_" 6 ~do..--F7 oo oot
: -
: -.2- \ /
:’{; I\‘ t"/
%— “‘J 3 l"l
¢
3 FIGURE 5-3. THE UNIT IMPULSE RESPONSE OF EXAMPLE 2
: If the system has poles at z = |, the frequency response is undefined
: in the neighborhood of w = 0; therefore, the impulse response cannot be
3 evaluated directly by FFT algorithm. To overcome this difficulty, we

k
can factor out (-z+r) , and define
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(23)

such that no pole exists at z = | in Gl(z). The impulse response of
G|(z) Is determined; and the method for evaluating the step response,

which is discussed in the following section, is used to find the impulse

response of G(z).
5.2.2 UNIT STEP RESPONSE
When the input Is a unit step function, defined as

Z

1
it §
Eq. (24) can be expanded as
R(z) =1+ 2! & £ IR T s e

Thus, the unit step response is

C(z) = R(z) 6(2)

=Gl2) +27' 6(z2) +2726(2) + ... + 2" 6(2) + ...

and we have

cm-gumn

g(t) = 27'(6(2)]

where
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is the unit impulse response of the system. Since the physical system

is causal,
g(t) =0 for t <0 (29)

From Eq. (27), we find
c(nT) = '22% g(nT) forn=0,1, ... (30)

The Fourier Analyzer has an integration algorithm which actually performs
the summation exactly as shown in Eq. (30); therefore, the integration
operation can be used to evaluate the unit step response. Program No. 8
(Appendix C) was written to determine the unit step response from the
transfer function of the system.

Example 3. Find the unit step response of the system with transfer
function

G(Z) - 1.2642

i (31)
’ z“ - 0.104z + 0.368

i and sampling period T = 0.1 seconds.
Solution. Using Program No. 8 (Appendix C), the unit step response is

c(t) = 1.264 &§(t-0.1) + 1.395 §(t-0.2)
+ 0.944 8(t-0.3) + 0.849 5(¢t-0.4)
+ 1.005 §(t-0.5) + 1.056 &§(t-0.6)
+ 1.004 §(t=-0.7) + 0.980 &§(¢t-0.8)
+ 1,007 §(t-0.9) + 1.002 &(t-1.0)
+ 0,998 §(t-1.1) + ... (32)

2
¥
2
&
¥
3
¥
)
£
i
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The resulting step response is shown in Figure 5-4.

1ed cl(t)
1.2 ,[ \‘.‘
1.0 - ! 5 P Eatittt SALLRtl CUSSNNISU SRR SEEEREE poomen
' L’ [
e
.8 ] ,"
]
:
o
24 :‘:
i t (sec)
°%s 2 4 I 8 1.0 -
THE UNIT STEP RESPONSE OF EXAMPLE 3

FIGURE 5-4.
Find the unit impulse and unit step responses of the system

Example 4.
with the transfer function
G(z) = 1.52 (z + 1) (33)
(z -1)(z" - 0.5z + 0.5)

and sampling perfod T = 0.1 seconds.

First, define
- 1.5 (z + 1) (34)

Solution.
G,(z) = Z
! 2 2. 0.52+0.5

The unit Impulse response of G‘(z) is
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g, (t) = 1.501 §(t-0.1) + 2.25 6(t-0.2)
+ 0.0375 6(t-0.3) - 0.938 &(t-0.4)
- 0.657 §(t-0.5) + 0.141 &(t-0.6)
+ 0.399 6(t-0.7) + 0.129 &(t-0.8)
+ 0.135 6(t-0.9) + 0.002 §(t-1.0)
+ 0.067 s(t=1.1) + ... (35)

From Eq. (30), the unit impulse response of G(z) is

g(t) = 1.501 §(t-0.1) + 3.751 &(¢-0.2)
+ 4,126 §(t-0.3) + 3.188 &(t-0.4)
+ 2.532 §(t-0.5) + 2.673 6(t-0.6)
+ 3.071 8(t-0.7) + 3.200 6(t-0.8)
+ 3.065 6(t-0.9) + 2.933 &(t-1.0)
+2.935 8(t=1.1) + ... (36)

and the unit step response of G(z) is

h(t) = 1.51 &(t-0.1) + 5.26 &(t-0.2)
+9.38 §(t-0.3) + 12.57 &(t-0.4)
+ 15,10 §(t-0.5) + 17.77 5(t-0.6)
+ 20.85 8(t-0.7) + 24.05 &(t-0.8)
+ 27.11 &(z-0.9) + 30.04 &(t-1.0)
+ 32,98 8(t-1.1) + ... (37)

A0 5 IO AR 5 6 T NG R g St

Both g(t) and h(t) are shown In Figures 5-5 and 5-6 respectively.

E le 5. Find the frequency, unit impulse, and unit step responses
of the discrete-time system with the transfer function

7
5
- (38)

2: b' z'

i=0

G(z) =
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FIGURE 5-5. THE UNIT IMPULSE RESPONSE OF EXAMPLE 4
} hiv)
40
20 A o
20 ’,,-W"
ﬂ ~T
10- . "’/
T t (sec
= t (sec)
¢ 2 ) . K] 1.0 1.2
THE UNIT STEP RESPONSE OF EXAMPLE 4

FIGURE 5-6.
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where

a, = -0.006
a, = 0.04k4
= -0,262
= -0.516
ah = 0.152
= -0,.210
a = 1.116

a, = 1.682

and sampling period T = 0.5 seconds.

0.006

o
"

b, = -0.044
b, = 0.262
b'. bd '0.‘52
b. = 0.210
b6 = -1.116
b, = -1.682
ba Lo “.0

Solution. Utilize Program No. 8 (Appendix C) to find both frequency and

transient responses of the system.

Figure 5-7 shows the resulting fre-

quency response. The unit impulse response is given by

g(t) = 0.4205 §(t-0.5) + 0.4458 &§(t-1.0)
+ 0.2566 §(t-1.5) +

+

!

0.0403 &(t-2.5)
0.0797 &(t-3.5)
0.1035 &(t-4.5)
0.0597 &(t-5.5)

L

0.2510 §(t-2.0)
0.0290 §(t-3.0)
0.0939 4(t-0.4)
0.0861 &(t-5.0)
0.0350 &(t-6.0)

: - 0.0139 §(t-6.5) + 0.0030 &(t-7.0)
‘ +0.0139 &(t-7.5) + 0.0185 5(t-8.0)
: + 0.0186 6(t-8.5) + 0.0159 §(t-9.0)
: + 0.0117 §(t-9.5) + 0.0070 &(t-10.0) + ... (39)
f
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and the unit step response is

h(t) = 0.42) §(t-0.5) + 0.876 &§(¢-1.0)

1.133 8(t-1.5) + 1,384 &(t-2.0)

1.424 §(t-2.5) + 1.395 §(¢-3.0)

1.315 &(t-3.5) + 1.222 &(t-4.0)

1.118 &(t-4.5) + 1.032 &§(e-5.0)

0.973 §(t-5.5) + 0.939 &(t-6.0)

0.924 §(t-6.5) + 0.927 8(t-7.0)

0.941 &6(t-7.5) + 0.959 &(t-8.0)

0.978 &(t-8.5) + 0.994 6(t-9.0)

1.005 5(t-9.5) + 1.012 &(t~10.0) + ... (40)

+ + + + + + + + ¢+

Both g(t) and h(t) are shown in Figures 5-8 and 5-9, respectively.
5.3 BLOCK DIAGRAM OPERATIONS FOR DISCRETE-TIME CONTROL SYSTEMS

To find the closed loop transfer function of a discrete-time system,
we must first derive a set of block diagram operations for simplifying
the system structure. The following outlines some elements and funda-
mental operations for simplifying the block diagram of a discrete-time
system:

° The S-domain

(1) Components

(a) C€C) - Dynamic device

x(s) | G(s) e Y(s) = G(s) X(s)

(b) C€C2 - Summing device.
Y(s) = x,(s) ¢ Xp(s) ¢ ... % X (s)

xn(s)

13
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(2) Operations.

(a) €Ol - Series operation.

G (s) e Gz(s)-—v-(—s) - e | G, (s)G, (s) | i

X(s)

(b) €02 - Parallel operation.

G, (s)
1
X(s) T+ v(s) x(s) G (s) £ Gz(s) Y(s)
[czm ¥

(c) €03 - Feedback operations.

X(s) Y(s) X(s) 6 ( Y(s)
= =y

H(s)

@ The Z-domain.

(1) Components.

(a) DC! - Dynamic device.

X(z)—={ G(z) p—=Y(2) = G(z) X(z)

(b) DC2 - Summing device.

x,(z) Y(z) = X'(z) + Xz(z) + ... % Xn(z)

b 4
xz(z) Xn(z)
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(2) Operations.

(a) DOl - Series operation.

xfl. G, (z) cz(z)..l.fi) il xx) Gl(z)Gz(z) _Y_(i)
(b) D02 - Parallel operation.
Sl + Y(2)
x(z) - Y(2) x(z) G‘(z) : Gz(z)‘-—-:
Gz(z) *

(c) D03 - Feedback operation.

x(z) Y x(
: ) (z) 2) g : 5 Y(2)
ti I
¢ H(z)

® The hybrid domain.

(1) Component.

(a) HC) - Sampler (discrete input).

X(l)—‘®——° Y(z) = x(2)

(b) HC! - Sampler (continuous input).

() —=(2 }—= ¥(a) = 20x(o)]
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(2) oOperation.

MOl - Ragazzini-Zadeh identityl?!],

X Y(z) = z2[G(s) z[x(s)]]
(s) <:> G(s) ( ) g 2(6(5)] 2[x(s)]

All of the previous operations are based on the linear graph theory with
the exception of the Ragazzini-Zadeh identity. Through the use of
these five components and seven fundamental operations, we can derive

other useful operations:
@ Insert or delete the sampler - The sampler can be inserted

into or deleted from the path through which the digital sig-
nal is passed. This is based on the property of the sampler

(HC1).
X(z) x(z) O
—_— il

® Eliminate or create the sampler:

x(z) v(z) x(z) Y(z)
—{ G(s) B 2[G(s) ] f—=

This operation results directly from Ragazzini-Zadeh identity.

() Moving a summing device beyond/ahead of devices or samplers.

X‘ = G ‘-—-Y-ﬂl————lb-xl--cw G | < L Y
+ +

Xz Xz_._..‘ G

X : Y ——X : Y
+ +

Xz X2
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° Moving the take-off point beyond/ahead of devices or samplers.

X—=i G Yl<f — X G ~Y|
¥y G Y2
x——@-———-—'l<—-——> x-ﬁ-—@——‘\f,
S5 ——@—"z

5.4 CLOSED LOOP TRANSFER FUNCTION

The block diagram operations given in the previous section will be
used to determine the closed loop transfer function of systems presented
in this section. Consider the system shown in Figure 5-10(a); moving the
summing device beyond the first samplier and the take-off point ahead
of Gz(s). the block diagram transforms into that shown in Figure 5-10(b).
Next, using the Ragazzini-Zadeh identity (Operation HO1) to eliminate the
samplers, we have Figure 5-10(c). Finally, applying the feedback opera-
tion 003 and the series operation D01, the transfer function can be
expressed as

6‘(2) Gz(z)

c
Fle) = RGF = TG, R iy
where
6H(2) = z[s, () ns)] (12)

Consider the missile launching system with a digital controller as
shown in Figure 5-11(a). The launcher dynamics are given by

0
&) = TG o
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R(S) +

(a)

b 4 G‘(S) »—-—@——»‘ 52(5)

c(z)

H(s) |=

R(s) + 6, (s) _,@_,, G, (s)

(b)

R(z) & s

Gz(s) H(s) je—d

G‘ (z) EE— Gz (l)

c(z)

&

c(z2)

Gzﬂ(z)

(c)

FIGURE 5-10. BLOCK DIAGRAM SIMPLIFICATION




D/A

8(s)

6o (s) |—af G ()

(a) SYSTEM CONFIGURATION

R
. o —{ 5@ | ¢ 0 | =)=

(b) EQUIVALENT BLOCK DIAGRAM

R(z) 8(2)
=

Dc(!) —={ G(2)

£ (c) SIMPLIFIED SYSTEM

FIGURE 5-11. MISSILE LAUNCHING SYSTEM WITH DIGITAL CONTROLLER
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The zero-order hold is

it e-Ts
Sgia) & sevific (44)

where T is the sampling period (T = 0.1 seconds). The digital compensator
is given by

D (2) = 0.0577(z - 0.92) (z - 0.716) o

22 + 0.22z + 0.446

Moving the take-off point beyond the last sampler in the feed-forward
path and eliminating the first sampler, the block diagram reduces to
Figure 5-11(b). Applying the Ragazzini-Zadeh identity (Operation HO1)
yields Figure 5-11(a) where

6(z) = Z[Go(s) GL(s)] (46)

Since Go(s) is given in Eq. (44), we can express G(z) as

G(z) = z[{- GL(s)] - z[%- G, (s) e'T’]
-0-3 z[—} GL")] (47)

In other words, we can write the zero-order hold as
Gols,2) = L2 (48)

If we replace Go(s) in Eq. (46) by Eq. (48) and then apply the Ragazzini-
Zadeh identity, we can immediately obtain the result of Eq. (47). From
Eq. (47) we have
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3.925 x lo"’(z + 3.35)(z + 0.26)

6{z) = =777z = 0.9048) (z = 0. B1E7) (49)

Therefore, the closed loop transfer function is given by

Dc(z) G(2)
F@) = e

o 3.925 x lo"'(z + 3.35)(z + 0.26) (z - 0.92)(0.0577z - 0.403)
22(z - 0.934) (z2 - 1.508z + 0.6065)

(50)
5.5 STABILITY OF CISCRETE-TIME CONTROL SYSTEM

Numerous criteria, such as the Schur-Cohn criterion, the Inner
theory, the Ronth-Hurwitz criterion, the Nyquist criterion, etc., are
available for testing the stability of discrete-time control systems.
Most of these criteria, with the exception of the Nyquist criterion,
are algebraic algorithms and are based on the closed loop characteristic
equation. The original Nyquist crlterlon['] is based on the encircle-
ment of the frequency plot of the return ratio function of the closed
loop system. Since the frequency response of the discrete-time control
system can be found utilizing the FFT algorithm, it is evident that the
Nyquist criterion can be an effective tool for stability testing via
the FFT,

Recently, a generalized Nyquist crlterlonlza] based on the return
difference rather than the return ratio has been derived and successfully
used for testing the stability of lumped and distributed parameter con-
tinuous systems. Subsequently, we will derive its counterpart for
discrete-time systems.

If a discrete-time control system has a feed-forward path transfer
function G(z) and a feedback path transfer function H(z), the closed
loop system transfer function is given by
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Similar to the definitions for continuous system, we can define the
return ratio of the discrete-time system as

Q(z) = G(z) H(z2) (52)
and the return difference as
P(z) = 1 + Q(2) (53)

Let us express the return ratio as

o) = 53 (54)

where A(z) and B(z) are relative prime polynomials, and the order of
A(z) is not greater than that of B(z). Substituting Eq. (54) into Eq.
(51), yields

G(z) B(
s (55)

F(z) = NOER160

Assuming that there Is no common factor between the denominator of G(z)
and the numerator of H(z), then G(z) B(z) in Eq. (55) is a polynomial;
B(z) is the open loop characteristic function and A(z) + B(z) is the
closed loop characteristic function A‘(z). Thus the return difference
becomes

A(z) + B(z A‘(z)
P(z) - - = m)_
o Closed loop characteristic function (56)
open loop characteristic function
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The original Nyquist criterion for discrete-time systems is to count the

number of encirclements of the frequency response of the return ratio

W w

from iz-to - fi , where we is the sampling frequency, about the critical
point (-1 + jO). The generalized Nyquist criterion considered here is
to count the total phase change of the frequency response of the return

o
difference from 0 to fi ; therefore, the new criterion is much simpler
than the original one.

Before proceding any further, the following definitions are required:

° Definition 1. The open arc on the unit circle with the
center at the origin onZ;pla?:. f;om w; to ® 4 is the
open segment of arc (e ! , e ) ), where T is the
sampling period.

' ° Definition 2. The phase angle change of the mapping of
' JoT) - JugyT
an open arc (i) = (e , © ) by a certain complex

function P(z) is defined by

88, (1) -(e;”)-(e?) (57)

where
£ J( T - ¢)
Oie1 = 1im { ARG P(e Y14 : )} (58)
€0

: and
;
; J(w,T + ¢)
: o} = 1im { ARG P(e i )} (59)
:- e+0
E < 123



® Definition 3. The total phase change of the mapping of
all open arcs on the upper half of the unit circle by
P(z) is defined as

n
A8 = ‘23 86, (1) (60)

where Ael(') is the phase angle change due to the
mapping of the ith open arc.

Assume that the return difference P(z) has the following
properties:

JoT Ys
(1) p(e’®) #0 for 0 <w < 5.
(2) There are B poles of P(z) on the unit circle and
Y poles out of the unit circle, where B8 and y
are finite integers.
(3) P*(z) = P(z*) where * means complex conjugate.
Consider the Nyquist contour for discrete-time system as shown in
Figure 5-12. From the principle of argument, it is known that the total

phase change of P(z) along the contour

I = 2(-n) Uc(=n+1) ... UL(=1) Uec(0) ve(1) u ...
.o U2(n) Uc(n) 61)

is given by

a6, = 2 [Ng-M) - (Ng- )] (62)
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where N, is the order of A‘(z), Ng Is the order of B(z), M is the number
of closed loop characteristic roots out of the unit circle and y is the
number of open loop characteristic roots out of the unit circle. In
detail, the total phase change of P(z) along ' can be evaluated by the
summation of individual phase changes along £(i), i = +1,+2, ..., %n

and semicircles c(i), i =0, +1, +2, ..., + (n-1), n. In other words
n n
dop = T 0,1y * 0% " %y M) i
Assume that
P(eIT) = Uw) + jV(w) (64)

where U(w) and V(w) are real functions of w. From property (3), we have

}

1(2) z-plane
c(2) c(1)
£(n) (1)
c(0L>
c(n)

£(-n) L(-1)

c(-2) c(-1)

1(-2)

FIGURE 5-12. THE NYQUIST CONTOUR FOR DISCRETE-TIME CONTROL SYSTEMS

125




P+ (e1®T) = u(w) - jV(w)
- P(e-J“’T)
= U(-w) + jV(-w) (65)

Therefore, following the definition of the phase angle change, we have

By (1) = 88, 1) (66)

Substituting Eq. (66) into Eq. (63), yields

n

n

Next, consider the phase angle change along the semicircles c(i). Assume

that there are Bl poles of P(z) at z = eJ”|, then
Aec(') - -8'“ (68)
Thus

n

3 (69)
A6 - - (]
t--}'a-l) c) = 7" s--zl:ml) :
n

where 8 = }? : 8 and is the total number of poles of P(z) on the
j==(n-1
unit circle. Combining Eqs. (62), (67) and (69) yields

3 0y) = (26000 + 8) (70)

where
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K=N =N (71)

Now, we can state the generalized Nyquist criterion for discrete-time
contro] systems, as follows:

If the return difference P(z) of the discrete-time system has
the properties (1) through (3), the system is stable if and
only if the total phase change along the open arcs 2(i),
i=1,2,...,n, Is equal to %-IZ(Y'K) + ).

Substituting M = 0 into Eq. (70), we immediately prove the criterion.
Program No. 9 (Appendix C) was written for use on the Fourier Analyzer to

calculate and plot the phase angle of the return difference P(z) for
("}
0<uw<s.

2

Example 6. Consider the system with transfer functions

b 3 2
=z’ ~ 22° + 0.72° + 0.1z + & (72)
(2 - (22 + 4)

G(z) =

H(z) =1 (73)

The return difference is given by

3 2
z : 0.7z + 0.12 (74)

P(z) =
z +32°-4

From Eqs. (72) and (74), we have

B =2, y=2, Ke]

Therefore, the stability criterion is
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26 = % [2(y=K) + 8] = 2n

The phase plot of Eq. (74) is shown in Figure 5-13. The phase change is
2n; therefore, the system Is stable.

Example 7. Consider the discrete-time system with transfer functions

2#1“
G(z) = 3 (75)
(z - 3)(z+3)(" +1)
H(z) =1 (76)
The return difference is given by
4 2
P(z) = 253 =82 -0 (17

2’ - 82 - 9

Examining Eqs. (75) and (77), yields

Thus, the stability criterion is

20 = % [2(y-K) + 8]

-3'
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PHASE PLOT OF THE RETURN DIFFERENCE OF EXAMPLE 6
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FIGURE 5-14.
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The phase plot of Eq. (77) is shown in Figure 5-14. The total phase
change Is

46 = Ael + Aez

= 270° + 270°

-31[
Therefore, the system is stable.

Example 8. Consider the stability of the missile launching system given
in Section 5.4. The return difference is given by

P(z) =1 + Dc(z) G(2)

Figure 5-15 shows the phase plot of the return difference; the phase change

is %-. From Eqs. (45) and (49), we have

According to the generalized Nyquist criterion
86 = 3 [2(y-K) + 8] = 3
Therefore, the system is stable.
E le 9. Consider the discrete-time system with transfer function
6(2) = (78)

H(z) =1 (79)

The return difference Is given by
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2
P(Z) - 2 + 2z -0.5 (80)
2" + 0.5z - 0.5

Examining Eqs. (78) and (80), yields

Thus the stability criterion is A6 = ;— . The phase plot is shown in
Figure 5-16; the phase angle change is - -;- . Therefore, the system is
unstable.

5.6 REMARKS
A unified approach to discrete-time control system analysis via the
FFT algorithm has been established in this chapter. Even though only

single-input/single-output systems were studied, it Is evident that the
approach can be easily extended to the multiple input/output case.
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CHAPTER VI
DESIGN OF DISCRETE-TIME CONTROL SYSTEMS

6.0 INTRODUCTION

A design procedure for discrete-time feedback control systems is
presented in this chapter: (1) to study the closed loop specification
by converting various requirements into a unified language which is
manageable via the minicomputer; (2) to construct a reference model, for
example, a required closed loop frequency response; (3) to search for
the suitable frequency response of the compensator via the FFT algorithm;
(4) to design a nonrecursive filter transfer function for the compensator
using the window method; and (5) to verify the performance of the com-
pensated system. Several design examples including type ''0' and type
"1" systems are developed for illustration.

6.1 FREQUENCY DOMAIN APPROACH FOR DISCRETE-TIME CONTROL SYSTEM DESIGN

Consider a basic configuration of a direct digital control (DDC) sys-
tem as shown in Figure 6-1. Gp(s) is the plant; H(s) is the feedback
device; and Go(s) is the holding circuit or D/A converter. Usually the
zero order hold is taken to be

-sT
1 'sQ (l)

G (s) =

where T is the sampling period. Dc(z) is the digital compensator and Z
is the sampler or A/D converter.

Using the block diagram operations described in Chapter V, a simpli-
fied block diagram in the z-domain is obtained and is shown in Figure 6-2,
where
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6,(2) = z[6,(s) 6, (s)] (2)

and
6,(2) = 2[5 (s) 6 (s) H(s)] (3)
Therefore, the closed loop transfer function is given by

chr Rl
RGT ™ T3 0. 6, o

F(z) =

The design problem is to find the compensator Dc(z) such that the charac-
teristics of the compensated system match the required specifications.
If 6,(z) and Gz(z) are given, from Eq. (4) we have

F(z)
0 () = G - 6,() Flz) (5)

In other words, if the closed loop transfer function F(z) is specified,

the compensator Dc(z) is given by Eq. (5). However, there are some prob-
lem areas:

(1) The analytic form of the specific closed loop transfer
function Is necessary.

(2) The compensator Dc(z) determined by Eq. (5) is in
recursive form and since the characteristics of a
recursive filter are very sensitive to Its coefficients,
high accuracy in determining coefficients is necessary.
Therefore the microcomputer, which usually has a data
word length of less than 16 bits, is not always suitable
to be employed as a recursive digital compensator.

(3) The compensator determined by Eq. (5) may be unstable.
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In order to avoid the disadvantages of the design method in z-domain,
we will develop a frequency domain approach. The frequency response of
Dc(z) is given by

o M
(ej(dT) = Gz(eJNT) F(ejmT)

o (el*T) = (6)

¢

I f Gl(z) and Gz(z) are given, the frequency response G‘(ej“T) and Gz(eij)
can be found using the FFT algorithm as described in Chapter V. The
required information concerning the closed loop characteristics is the
j(.DT)

analytic form or by the time or frequency domain characteristics from

frequency response F(e Therefore, F(z) can be specified either in
which an approximate frequency response can be found. |f we take the
inverse Fourier Transform of Dc(eJ”T), we can easily find the non-
recursive filter form for Dc(z). In other words, the window method for
nonrecursive digital filter design as given in Chapter IV can be used
to design a discrete-time control system.

6.2 SPECIFYING THE FREQUENCY RESPONSE OF CLOSED LOOP SYSTEMS

Many approaches are available for specifying the closed loop fre-
quency response to match the required specifications. Two of these
approaches are discussed in the ensuing paragraphs.

(1) The Required Specification is Given In The Continuous Time
Domain or The Frequency Domain

When the output of the discrete-time control system is con-
tinuous in time, we can specify the closed loop transfer
function in the s-domain according to the required specifi-
cations and then find its transfer function in z-domain.
For example, If we need the closed loop system which has
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t =0.7
wy = 5
Kv = 20

then, by the use of the multi-dimensional Newton-Raphson
method[27] the required closed loop transfer function can

be determined and is given by

4,350s + 12.674

Fils) = —
s” + 4,984s + 12.674

(7)

Assuming the sampling period of the system is T = 0.1 seconds;
the z-transform of F(s) is given by

h.35022 - 3.140z
z2 - 1.5087z + 0.6975

F(z) = (8)

Using the FFT algorithm, the frequency response of the closed
loop transfer function can be easily found.

The Specification is Given by The Discrete Transient Response

If the impulse response of the closed loop is specified, the
frequency response can be obtained by taking the inverse
Fourier Transform of the impulse response. Sometimes, the
step response, instead of the impulse response, of the closed
loop is specified. In this case, we need to find the impulse
response first. Since the step response is

¢, (2) = F(2) 72 (9)

the impulse response is given by
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Csl2) = ¢ (2) 2L

=, @0 -2 (10)
In the time domain, we have
Cs(t) = (0) - ¢ (t-T) (11)

The Fourier Analyzer contains a differentiator which is actually
an operator with transfer function 1 - z-'; therefore, the
impulse response can be found from the step response using the
differentiator. Once the impulse response is obtained, the
frequency response of the closed loop can be found easily.
Program No. 10 (Appendix C) can be used to find the frequency
response from the step response.

For example, the required unit step response is listed in Table 6-1
and the sampling period is T = 0.1 seconds. The transient response for
0 <t <5.0is plotted in Figure 6-3(a). Using Program No. 10 (Appendix
C), the impulse response was obtained and is shown in Figure 6-3(b) and
listed in Table 6-1. The frequency response is shown in Figures 6-3(c)
and 6-3(d). T

TABLE 6-1
REQUIRED UNIT STEP AND IMPULSE RESPONSES

t cu(t) Cs(t) t Cu(t) Ca(t)
0 0 0 0.9 | 0.985 0.005
0.1 | o0.280 0.280 1.0 | 0.995 0.010
0.2 | 0.850 0.570 1.1 | .00 0.015
0.3 | 1.050 0.200 1.2 | 1.005 | -0.005
0.4 | 1.100 0.050 1.3 | 0.998 | -0.007
0.5 | 1.070 | -0.030 1.4 | 0.999 0.001
0.6 | 1.030 | -0.040 1.5 | 1.000 0
0.7 | 0.9%0 | -0.040 : 1.000 0
0.8 | 0.98 | -0.010 - 1.000 0
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6.3 THE STEADY STATE ERROR AT THE SAMPLING INSTANTS

Consider the unit feedback system as shown in Figure 6-4. The sys-
tem error is defined as

E(z) = R(2) - C(2)

o T_E)(T:(z . (12)

where R(z) is the input and C 'z) is the output. From the Final Value
theorem, the steady state error Is given by

e, " 1:: e(t)

- 1im ‘—-;—l E(z)

2+

z - 1) E(z
= |IM£T]—+%TZ-)TL (13)

2=+

R2) 4~ E() o ¢

FIGURE 6-4. THE UNIT FEEDBACK SYSTEM

The following three kinds of steady state errors are most important in
considering the closed loop specifications:
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(1) Position errors.

The position error ep is defined as the steady state error
when the input is the unit step function

R(z) = z—-f—l (14)
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