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seal.’ labeling is presented i4th th. property that the c~~~l . n tary

path toUovs the hC~~tOW pith tracked by the usual vsc’tor labeling. This

• pro&zc.s an algorithe iihich d.t.r.inie the pith iritbout pivoting. on a linear

syst and vitbout the utra AI~~~~.j~~~ ~~~~~~~~~~~ 
g~ ta.. “~~ i4vich”~~~,z’oich.

Th results should therefore lied to ce~~~t&ticnsl savings.
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1. IBTRODUCTION 
-

Th. theory of siuplicisl approxination has been applied by maerous

authors to probls involving th. ecuiputation of fixed points and the .qui-

valent pioblie of finding solutions to a systen of nonlinear equations Ii],

[2], (33, (hI, [s], (6], (i] ,  (8], (9], (101, (ii], (121, (13], (‘hI, (151,

(161, (171. In moSt of the pr.vlous works in this field two apparently ~~Efer-

ant approaches can be reccguized. Thes. two approaches pivot ‘w°~ the sans

triangulation (of , for .‘.~~~p1e, t x (0 , 1]) but they differ in that on.

uses a “sealar labeling” end the other a “vector labeling.” The soalar label-

ing was initially presented by Scarf (15] for the problen of c~~~ Lting fixed

points on th. usit sinp].x, and, by simple sxtension, for a map f: C ~ C,

C compact in t. Scaler lab.lings were then pr esented by Fisher and Gould (ja]

• fO~ the nonlinear eo.pl ntarity problem and by Fisher , Gould and Toll. (6], (7),
• aM Gould .nd Toll. (3.2] for th. general problem of solving t(x) • 0, f: t • R~.

Th. so—called “victor labeling.” were developed most notably by Eaves (2], (3],

(hJ, ani JIerrill (131, both for th. fixed point problem and the problem of sole-

ing f(x) - 0 on bouad ri end uaboimdad regions. Theorems regarding the existence

of h~~~toW paths wer, shown in Gar cia (9], and Chimes, Garcia and L.~~~~ [1].

• I~ z’riU (131 end Eaves (5] independently solved the restart problem for vec-Cor

lIb.l4ngs. The problem was solved b~ Fisher, Gould, and Tolle (TI for scaler

• In this paper we shall for convenience present the ent ir , disc~msion in 
-

the fr svork of s.e~iag a solation , say z , to the system f(x) • 0. Altbou~~
the scal y and vector approaches appear to be different , it i. known that in a purely

foi~~l ~~~ aay scsl.ar labeling & can be encompa ssed within the weston’ fr ~~~~~k

as fOllow. • Lit v~ be ~~~ vertex in the tri angulation. Associated with this

_ __ 
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-
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vertex, define the col~~~

• it L(v~) i i j ( l < J ~~~n)

- 
• 

• 
it

where e~ is the unit vector in t and • is the n-vector of ones.

The scaler path generated by £ will be followed by using the vector labels

in conjunction with th. linear system (th. matrix A has col~~~s

ro l
A~~~—~ I, x o  (o cR ”).

- L’J

• Thou~~ this tr aasiticá 1. purely formal and not of computational interest it

• prompts the oumvi4-ss qusstien as to whether or not vector labeling. can be :T

- 
aapa’rned in the scaler fremsimrk. For ~~~~ la, the “esnd”tch” vector proce~~~s -

¶ .f Nm~rtl1 [l3J sssi isa1aasi £~. to ssch virt.x of *“ *(o , i] u fOflavs.

• i z v e t x ( o }  •
1 L1J• £ - 

~~~~~~~~~~~~~~~~~ 

~~~c tx (i }
L 1 J •

• Vsisg these labels, the vestor ~~~oach to solving f (z )  - 0 pivots on the

~~~~~~~~~~~

— 

~~~~~~~~ -~~~ ~~~~~~~~~~~



• 3

tr iangulation through successive basic feasible solutionr of the system

E
~~j  

[
~1+ Z A  f ( v

i
)1 - 11 (OcR ”)L 1J ~i L ’ J

where I
~ iadices vertices in R” x (o} and I~ indices ver tices in t x(i}.

That is, the algoritha proceeds via cospl~~~nt.ry pivoting to generate a se—

m ince of simplice. F
~
, 8~, 

~~~~~ ~
1, 

~
2, 

~2’ •• •~~ where F~ and am,

facets (n—.implices) of the n+1-slmplex S~. The move from F~ to S~ is

made by J oining a single ver tex to the n+l vertices of ?~. The ml .  for

select ing the vertex to bring in is given by the triangulation formala. The

• move from to ?~+~ is made by dropping a vertex from The drop-out

m l .  is ~z~v1ded via the linear system by pivoting from th. basic feasible

solution associated with to the one associated with 1
J~

l• ~~ is Icuovu

(Chain.. , Gar cia and Lick. (13) that when the s4 ’plices of the triangulation

are suitably ~~~-1’ th. path generated by the above vector labeling is (in the

limit ) the bouotop~~psth 1(x,t)*0 where E(x , t ) I t f ( x ) + ( 1 — t ) z ,

t c (0 , 2],  x c Rn . Without loss of generality we have chosen the initial point

to be 0 £ Rn. Thus 1(0, 0) - 0 aM if the algorithm c~~v~z’g.s to Cx’, 1)
we bave R(Xe , 1 ) . 0 . f ( z*).

The principal result of thi s paper is that a scaler labeling and a modifi ed
pivoting procedure have been discovered for generattng precisely the s~~ hamotopy

• path. In this sense the vector labeling c~n be cast into the scaler fr ~~~vork . The

result is of cc~~~tational significance , for it .tt.4 .t.a both the extr a “sandwich”
&4~~,5ion and the need to pivot on the linear system.

• 2. ~~~ ALOORITRI MD TU r~nr,rwo

Assun. that f: R n . R n  is continnou s,

end Xe is interior to same orthant . Each orthant of Rn ~s triangulated (in

• • • 
-•* - •-•*---- —-•••— -•--- - - --•

_ _ _



general, orthants are deteiwined by a starting point w rather than the

origin). Ther, is no need to add an extra dIwe,~ ion by triangulating Rn x (o , 13.
The algorithm begins in same orthant denoted E~ at the origin with an n—simplex
(n + 1 vertices) containing the labels 1 throug h o + 1. A simplex with labels

1 through n + 1 is termed an Cu + 1)—complete (or a completely labeled) simplex.
• C~~~1ensntary pivoting with scalar lab.ls produces a path in of n—simplic.s

with labels 1 through u. A simplex with labels 1 through n is termed an
n-complete (or a (n + 1)-almost complet. simplex). We note that although an

Cu + 1)-complete simplex mast be an n—simplex, an n-complete simplex ~~~ be an
n-simplex or an (n — 1)—simplex. The simplicial path which we generate ii des-

cribed b~ the following possibilities.

(P1) The path consists of an unbounded sequenc. of n-complete

n-simplices in

(P2 ) Th. path tscedn at.s at an Cu + 1)-compl ete simplex which

is ussr Xe (interior to 1).

(P3) Th. path t.rwinat.s at en n-complete Cu - 1)-simplex in the

boomdsryof I~.

In case (P3) a modified piloting teoheime will generate a sequence of bonadary
(a - 1)-dmpliees in such f ~~~ that either’

(Ps) (a) the bomader3r peth . is unbounded, or
j (Ps) (b) the path reverts back into the arthant or it breaks

thr~~~~ the boundary into a us. orthsnt 1~.
If (Ps) (b) occur,, them ens of the possibilitise (P 1), (P2), cr (P3) wiu
again occur, with 1~ rupla.ed by 1~.

It will be sheen t~~ wham the triengulatiom ~~id is suitably ~~U the above
described path follows the hematopy path which is followed by the vector labeling.

• • - • •

_ _ _ _ _  ——-
~~~~~~~~ 

- -



5

A new scaler labeling i. introduced for our purpose. At each step

of the algorithm the curreflt simplex either intersects th. interior of an

orthaut or lies in a boia.iA~~y of an orthant. We sha ll. term the “currant

orthent” to be either the. or thant whose inte rior the cur rent simplex inte r-

sects or, in case the curr ent simplex I. in a boundary , the current orthant

is th. one whose interior’ was last visited.

Let E’ denot, the current orthant and suppose x e !‘~. If z~ 0

for so.s i, define

~ ç (x)>0 and y~~ • O fer al].
- ( 7 ixz t’~~oz’if f1(x )<O a M 7~~C O

• I fo r aU y tn E~

-

— tf f~(x))0 and y~~< O for all

y i n  om it f~(x )<0 and y~~> O

for all y in

low, for any x C our labeling (depending on the or thant 1J ) i. specif ted
as follows :

• n + l  if xf(x) 0, ali tCi) i _ i

-f (x) f ( x)
~~ llest i s t.  •

~~ all J, otherwisexXi

3. ‘!BZ IEITIAL 8I1~ LU

• Vs no. identify a starting u—simplex which is a uciqus (n + l)—o~~~l.te
simpl ex in a neighborhood of the. origin. m. ap~c. Rn is triangulated in such

~

-

‘ 

- - .. 
~~~~~~~~~~~~~~~ ~~~~

-
~
_—

~
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a vny that the interior of any n-simplex will not intersect any byper-

plane x1 • 0 for any i. ~~~ each n-simplex is entirely in an orthant

of Rn.
As stated earlier it is aasussd that f~(o) ~1 0, i — 1 , ..., a. Tat D denote

the a * a matrix whose dimgane.1 terme Ire given by d~~ • - gu  f~(0) and
— - whose oft-diagonal tame ( j  # i) are zero Tat e~ be the ith unit

vector in Rn and e be the n-vector of ones. PLush y, let £ ) 0 be the

p’id sir. and triangulate in snob a way, as to includ, the simplex Cr°, vi , ...,
where

v0 .0

• 

. rt — e D ( . — .t), i l, ...,n .

Thus, f t ri 1, . . . , n , ur~~— 0  and, for

n—simplex will be the starting simplex, denote d eM it will be shown that

this is a uniqus (a + 1)-complet, simplex in sass neighborhood of the origin.

- Tat denote the arthant containing 0 .  lot, that if z is in the interior

~~ fT then x~f~(O)’O for ali. II .

1, 1. Tat 1(0, 6) be a neighborhood of the origin for which f~(x) i~ 0,

an i, f~~’ .w.rj x Ia 1(0, 4) . This for e p 0 sufficientl y ~~~ll the

simplex e~ is $ unique (a • 1)-o~~~1ate simplex contained in 1(0 , 4).

~~~~~~~. It is inesdiate from the labeling rules (1) that £~(v°) • a + 1.

Tat C be chosen so ~1 that is contained La 1(0, 6) . lot, that for

in 3 fl 1(O , 6) snoh t~~t x
3 ~ o it tb e theease that x

~ 
eM

• f~(x) have opposite sigos. Pick index 1* (1, ..., a~). I.oaU • 0 -
~~~

lines,

-__

____________ - -  . - ~ — _,__ .
~•~

__-r_,,,•-__ W ~~~~~~~~~~~~~~~ .~~~ — - - . • -  — . - - — - — .-‘ 
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• f (~1 ) P (v~)
— —, > — ~~ all j~~~i

and therefore £~(v~) - 1.. This shave that a~ is (a + 1)-complete . Nov

let a~ be any ot~~~ (a • ‘1)-complete simplex in 1(0 , 5) .  ‘It the interior
of an is La ~~~ orthant other than I~, than for each x in the interior

of an i~ nest be that and f~ Cx) have the sane sign for sane J , and

hence thi s label would be ~~~luded from a~. Consequently an and inst

be in the sane ortbant , 2IT~ Purthermore, the origin lw 0) nest be a vertex

of an. Otherwise, if v is the ver’~- ~z labeled a + 1, than, from the
labeling mule (i), v~f~( v ) > o ~ all. j. If so.. v~~~~01 then, since f~(v)

is also nonzero, it follows that both have the sans sign which contrs dicta the
fsct that for~~~~ x in l f l N ( O , 4) it muet be that jf x~~~~0 thsn x~~~and
f~(x) have opposite si~~~. Since ,P (the origin) i~ in a~, there is a

coordinate i snob that for each of th. other vertices the ith coordinate is

nonzero and sane other coordinate is zer o (see Figure . 1). Hence, it an
the label 1 is ax~1~~,4 from an, a contradiction. I

to

- 
Pi~~~e 1* Th. $tan ’ttag Simplex end Triangulation in it3 (for f(o) < o) 

- - . —‘-—--— —- 

• ,—••_ - - - — — . - . •  S -
~~——-~~‘;ç—- -.- .— .- -_.- , .  — - - -  — — ., • - .—- - . _ . .

•

~

••- -

~ 
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8

~~. T~~~PAT~~IN EJ ,~ 
-

Starting with the In + 1)-complete simplex ~~ in the orthant !,

the algoritha generates an (a + 1)-elnost complansatary path, i.e., a se-
queue, of distinct a—simpi ices (ac, a~, 1~, ...} where

• (L) escb a i a i n g1

(ii) each ts a—c~~~lete , for 3 > 0

(iii ) o~ 1) is an n-complete (n—l)—a iiuiplex, all 3.

Zither the path of simpitce. is unbound ed or else it stops with

(a) either an In + 1)—couplet. simplex a~, or

(a) an n—complete (a — 1)—simplex on so.. boundary . 0

on l’1. -

1, nov show that in the lisit this path of simplic.s in coincides ‘with
tbe b~~ topy psth E(x,t)u’ O where I(x , t ) l tf(x) + (l — t)x , t C ( O , ll,
z c t.  lat . that I(x, 0 ) — 0  Lf aM onl.y if x 0,and jf t~~~0 thin
1(x,t)-0 UaM omly Lf t(z)~~~Ax tor so.. A < 0 .  Thus , far x # 0  the
honeto~~ pith is described ~~ the known condition (11 

• 
-

• f (z ) . A z , some A o  .

‘~~~~~J1~ Let be a sequence of ~~id sizes such that Sb • o and let
C denote th, eonn.cted closed set which is the lindting curww of the above

generated path of simplices in i. Then for each x C C, t(x) — Ax for
i~~~~ A j ~O.

~~~--——~~~ ~~~~~~J r -  -- - ‘ - - 
- ~~~~~~~~~~

* •S•_ -,•_ ,•
~~‘-,~•_~ — —••-—— — — -••-—.— --— --—-—-—- — — ——- —
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Proof. Suppose x t O  and ~~~~~ ~~~~~~ Theu since each sjap]..x js

n-complete, and by continuity, it must be that f~(x)./x~ — t3 (x)/x~ ‘C 0.

Thus there Is a A < 0 such that fk(x) - Ax.~ for each Zk ~ 0. Suppose

- 0. Thin in each neighborhood of x there is a point y in 1 with

label 1. and bane , at which r~(~ )/i~ < 0. In each neighborhood of x there

is also a. point a a Z’~ with label 3 ~ i. Thus f3 (s)/z
3 ~~~, ~~~~~~~ 

Since

is near zero , and the Possible values of a3 can be bounded away from zero ,
the last inequality neans that t~(z)/z~ > 0. Since y and a axe both in

it nest be the case that and z~ have the sane sign. Hence t~(~ ) and

t~(z) have opposite signs. It follovs that t~(x) — 0 and, hence x~ satisfies

f~(z).Ax 1 for any A. 
-

• •

Note: 3y reasoning analogous to that in the proof of Theorem 3. it can be

seen that any point in a “~~i11’! (n + 1)-complete terminal, simplex is an approxi-

te zero of f.

5. ~~ AIALISIS W~~ Titit PA~TE T~ I~NATIS

• I1T!~~ BoUNDABy oP

For simplicity of exposition, ye shall k. the nondegeneracy sssi~ption
that except for the oris’4n the hanotopy path {x: tI x) • Ax , A 

~~~, 
o} inter sects

auy baundszy zj • O  ouly at pojnts z such that x
3 # 0 , j~~~i.

law ass~~~ that the s~”p1icia1 path terminates with an u-complete (a — 1)-sim-

plex in the boundary of I~. Under the nondegenez’scy assmption there ‘will be a
• K >  0 such that if the grid £ is sufficiently . .t1 then for every x in the

simplex (x3 1 ,~~~ K, all. 3 ~ 1.. A modified pivoting procedtu’i will now be described
for use on - 0 and it will, be shown that thi s path in the boundary of
r~~~in arbitrarij~’ close to the houotopy path . -

- - 
~~~~~~~~~

-- -
~~~~-—*-—-:~

- - -T~
- - - - -•- •

— — — —• S., - ~~~~~~~~~~~ 
-,— —— - — .,-•-, ,, -S. — — - — —

— 
- - - - - - -

~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

. 

. 

10

Suppose ’ ~~~~~~~‘~~‘ is an u—complete simplex in that boundary of for

‘whic h x~ — 0. Let • c?, ... , ,fl}, t(v3 ) • 3, v~ — 0, all 3,
and for each 3 we have, by ncndegeneracy, (v~ ( > K  all m # i a n d  acme K > 0 .  ~he

(a — 1)-simplex a~~ is a facet of euctly two n-simplices . One of these ,

aD, I’ in ~~ The other, ~~~, is in the orthant H3 on the ‘opposite

side” of the boundary x~, - 0. Let denote the labeling Thneti’on on the

orthant 1T, where th. rules for are also given by (1). Points on the

boundary x~, • 0 ‘will have different labels depending on whether the labeling

functi on £~j , or is employed. This is becanse for such points

‘will be I on one sid, of xj • 0 and - - an the other side , depending on

the sign of at x.

~~~~.2.
. Suppose v is in the boundary •Xj  • 0, where £j(V) ~ n + I

‘Ui £,1~(v )—i 4- ~~t~~(y)~~ j.

(ii) If &3(v)—i thel &;(v).i.i,.iiest j~~~i such tbat

f
J
(v)/vj fk(v)/vk, aU k ~~~i.

~~~L. Observe that

~~~~~~~~~~~~~~ -~~ cm H3~.. _4!.+. cm

lance, (1,) holds, and (ii ) follows inesdiately. S

Ja w 3~~ be an erbitrsrr (n - 1)-simplex on the pla~~ x~ • 0 and

iet aD and ~~ b the n—siaplices in and respectively such that
- on- ’L _ a D f l~~f l

4

- , - - - -  - -~~~~~- 



- - - —
. __

• 13.

L 3 .  -

• CL ) aD 1 is an n—complete facet of aD (with respect to t3)

iff t3(aD ’3’) • (1, ... , n}.

(ii ) aD~’ i~~an n—ccmplete tacet of ~~ (with respect to L~)

if &~,(v) ~ i for a unique i~ of aD3 ’ and t~1(aD ’1 — (~}) • (1, ..., n} — (j}•

~~~~~~~~. Part Ci) is definitional . For par t (ii) , aD~ ’ is n-c~~~l.ete (with

respect to iff L~(aD~~’) • (1, ..., n}. The conclusion follows from Ci) in

f T~~~~~2. 
- 

- - 5

Definit ion I: Let U be a simplex on Xj — 0, This simplex is termed fointl.T

(t ) L3(v ) .L  for scme vsrt.x v of U.

(ii ) L3( v ) # i  for sc.s vert.x v of a.

(iii) Lj(c1)U L;(a) • (1, ... , u}. -

Note that only an (a - 2)—simplex or an (a - 1)-simplex on x~ • 0 can be Jac.

Also, by L. 2, i~. can be replac ed by £3 in (i) ~ g (ii )’ of the above definition.

~~~~~~~~~~~~~~~ Let am-1’ be a simplex cm x~ • 0 such that am-~’ is a-c~~~l.t. with

respect to either £; or £3. Thea aD ]  
~ ~~~~~~~~ 3a~ f~~~

~~~~~~~~. ~uppoee — (y1’, ..•, vD). Su~~ose £3(cm-1) — (1, ..., a) —
~~

• let &~(i 1) . j,  all 3. Suppose £3(vt) k .  ~~~t 2 ,  k~ I L .  Than
qm-L — (rk} satisfies (i) ,  (ii) ,  and (iii) of Definition 1. and hence is Jac . ‘ _-
q . 0 m-1. ( 1 1}, J~~~L , k  daeote~~~~ otber’- facet of aD’1. mea. J d i ~(a)U L3(a) 

~~~~~~~~~~~~~- ~~~~~~~~~~~~~~~~~~~ 

•_ -  -
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0 and hence - (~3} is not jnc . Also, — (v~} ii not Jnc because

it contains no vertex v with £3(v) — i. Hence aD”3’ — (~k} ii the ~uj,y
‘ Jnc facet of aD—1. The same argument applies if £3(aD~ ’) — (1, ..., a). 0

~~~~j. Let aD’1 be a Jac simplex on x~, - 0 but not n-complete with

respect to either 
~~ 

or £3. Then has exactly two inc facets.

~~~2L tat øm-~’ . (v1, ..., v~}. Since ~m-1 is inc we can sss~~~

Al. £3(vi) _ i , L3(vi) a k , ~ i.

A2. for scme s~~ i, £3(v’) — s  Cs could .qual 1)

A3. (i~(,.1), £3(’r1)} — (j, i}, for 3 ~ I.

Ca.. Ci) . £3(,
k) si. tote that £ aD*— (~ t} and v * am-~’ — (~i}

Thus Parts Ci) and (ii) of Definition 1 are satisfied. From £3 plias the a5.~~~tiOfl
tbat L;(vk) s i  it follow, that aD”1’ — ( v’} is Jan . 

-

Case Ui). £3(,*) . k # i .  Thar’ e i sa v e r t.x c a m-1 - (v~, i~} such
that £~( ) . t .  Ot~~~wtse £3(aD” ).(1,...,~~} vbich is not possible by
the ~~‘pothesis of the 1. Since a aD—i’ — (~i} and c a D ’  —

• it follows a .ln that am-1 — (r~} is jac.

~~~ consider the , f$e.t a~~
1 

-

Ca.e U). £3(vk) _ j .  J ote that vt c a D ’1_ ( r k} and

From A3 med the flct that t~(v1) .i  it follows that a~”1 — ( v ~} is Jan.

Case (ii). £3
(,~).k~Ii . There isavurtox t a D ’ 1 ’_ ( v ~, vk} such

that £;(~) i~ i. Otherwise £3(cm-l ) • (1, ..., a), which is not possible by the

I 

_ _  

_ _ _  
• -U 

—U- ‘ — - . ---- . 
~
-.-- .‘ _ _ “

~~ ‘
--_

~~~~~~
_‘ - --— 5- - -  —-,-~~.-- — — - -‘—~~--— ,--, -

L - A. - _______________
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hypothesis of the l~~~ . Since a — (vk} and. vt ~ am-3’ 
—

it follows that am-1’ — (vk} is inc . Note that these are the only two

Jan facets of or~”1’•

We now show that in the h it  the simplicial path in the boundary of

coincides with the ho~~topy path. -

~~~~~ J.. Let * be a point of convergence of a sequence at Jac stmplfces
on *1sO. men f( x) . A z  tor so.. A < o .

~~~~~~~~. Let x 
- 
be a point of convergence of a sequence of Jan simplices

‘ em z~~s0 .  ~ rU ) inDef imi t iom 1,

• f1(x)Ix~~s~~as am -

~ r (U) of Deflaitios 1,

s. on

lanai f~(z) • 0. ~~ (iii ) of Definition 1,

C ~~~~~~~ for every k # t , 3 ~ i.

~~~~: t (z )sAx f~~~so,e )~~,O. S

This o~~~1et.s ~~ deecriptiom of the .odifi.d pivoting La the boundary of
• tertiig from 1’, th. first a—c~~~leto facet en - 0, we generate a

+~~:ane of distinct (a — 1)-simpl ices on • 0. Tb. sequence ii of the form

~ 

~~~~ 
~~~±‘: -~~~~~ 

- -  

-
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• lb

where Cn-1’ (1 are Jan for all 3, until we obtain a terminal facet

which is again an a-ct~ plete facet of or (in which case we

either pivot ‘back” into 1 or “tbrou~~” the boundary into 2
11). Note that

because of the esw~~~ticn that a solution x is interior to s~~~ orthant ,

for a .~~11 ~ ‘id size we cannot encounter a vertex lab.led a + 1. Also, by

t 
the nondegeneracy assi~ ptton, we cannot intersect th. boundary of the plane

• 0 (for a .enU p’id size). loncycling is assiwed as ar and

have only one Jac facet whereas a~~~, a ’1’, •.., each have exactly two

such facets.

In s~~~ zy, we have the following rules for pivoting in the boundary of

zT on wbiah

1. First (a — 1)—simplex, a D ’, is n-complete. Let £3(vt ) —

$3(y
t) k. R~~ vi~ the vertex z with £;(s) a k to obtain am-2 aD’1 - (a) ,

-: where aD~ i, jan. 
-

2. Given a~~’ Øm-2 which ii Jan , join a vertex by the trianga—

lstion rule to obtaj n saev ~
m-’ s a D~~~U ( ) .  -

‘a if am-1’ is complete with respect to L~ , ret~n’n into 2T

W adding en (~ + vertex in the interior of 1~ and fbt’adng a aD 1*

b. If Om-~ Ls conplete witb respeat to £3(&~(~) Ø t  for m 
-

unique ~ and £3(am-1 — ( ’ } ) a ( l , ,. ., a} (j}) o throu~~ x1 0- i*t o
l~ by adding an (~~+ 1)E. vertexininterior of .ad foreing a ~~ in

a. Otherwise, either: came (1) £;( )  . i, £3( )  s p or

ass. (ii ) &~( ‘) •p ~ 1i.  In either case , r .aju the vertex s~~ s~~~~that 

—---,-——--—‘---- ______
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(a. ) £j(*) a p, or (b) £~(s) — i *~ (z) — p. Since am-2 in inc

either (a) or (b) will occur, but not both .

6. a~os~rRic rx is~~*~iois

- I Prior to this work it has been quite difficult to illustrate the

co~g’se of the hcantopy path. This state of affairs is now considera bly

imp~~~ d. As an illustration, Figure 2 shows the new sealer labeling for

the functions

f1
(x , y ) — x — y — l ~

f2(x ,y ) .~~~~— y — 5

Jot, that the path does not converge. If th. function f were to be
replaced by

g(x) • J ”
~(O)~f(x) a,f 7 — S

then a. representation slail.” to Figure 3 vould’be obtained and the h~~ topy
path would converge • This idea of using the Jacobian transformation for scaler
habel.inga uns first presented by Fisher, Gould and Tolle [7]  and vas later
studied by Vol.s.y (3.?] and Todd (16]. me present work unA.rscores the impor-
tense of this transformation for the new scaler labeling presented herein and
hence for the vector labeling as well .

- ~~~~~~~~~~~~~~~~~~~~~~~~ 
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g1~~~0
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I
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0 0 0

?t~~~e 3: Scaler Labeling end I path for g
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