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. AN ALGORITHM BASED
OF THE EQUIVALENCE OF VECTOR AND SCALAR LABELS

IN SIMPLICIAL APPROXIMATION

1 4

C. B. Garcia and P. J. Gould’

Graduate School of Business
University of Chicago

ABSTRACT
A scalar labeling is presented with the property that the complementary
path follows the homotopy peth tracked by the usual vector labeling. This
: produces an algorithm vhich determines the path without pivoting om s linesr
m-mummmmmmmuum{hm&%.
The results should txnrotm lead to computational savings.
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1. INTRODUCTION

The theory of lilpncigl approximation has been applied by numerous
authors to problems involving the computation of fixed points and thc equi-
valent problem of finding solutions to & system of nonlinear equations [1],
(2], (3], (], (5], (6], [T, (8], (9], (20], (21], (22], [13], [ah], [25],
(261, (17]. In most of the previcus works in this field two spparently 4fffer-
ent approaches can be recognized. ‘l.‘huotvomuchupivotmth.n'h
triangulation (of, for example, R x [0, 1]) but they differ in that ome
uses & "scalar labeling" and the other a "vector labeling.” The scalar label-
ing vas initially presented by Scarf [15] for the problem of computing fixed
points on the unit simplex, and, by simple extension, for amsp f: C~+C,
C compact in R". Scalar labelings were then presented by Fisher and Gould (5a]
for the nonlinear complementarity problem and by Pisher, Gould and Tolle (6], (7],
and Gould and Tolls [12] for the gemeral problem of solving f£(x) ® 0, f: n‘o'n’..
The so-called "vector labelings” were developed most notably by Eaves [2], (3],
(4], and Merrill {13], both for the fixed poimt problem and the problem of solwe
ing f(x) = 0 on bounded and unbounded regions. Mrﬂmmonnqeo
of homotopy paths were shown in Garcia (9], end Charnes, Gercia and Lemke [1]. '

.Marrill [13] end Eaves (5] independently solved the restart problem for vector

labelings. The problem vas solved by Fisher, Gould, and Tolle (7] for scalar
labelings.
'RMamnmrmeomsmﬁommumduu

.tumumu»mm. say i', to the system f(x) = 0. Although

the scalar and vector approaches appear to be differemt, it is known that in a purely
formal vay any scalar labeling L can be encompassed wvithin the vector framework
as follows. Let v" be any vertex in the triangulstion. Associated with this
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vertex, define the column

1 tvl) =g (1<3<n)

Al - 3

4 -

ir “'1) s+l

o

vhere o 13 the S unit vector 1n R® and e is the n-vector of ones.
The scalar path genersted by £ vill be followed by using the vector labels
al in conjunction with the linesr system (the matrix A has columns 41)

Ads= ], A>0 (oeR%).
1

Though this transition is purely formal and not of computaticmal interest it
prompts the couverse question as to vhether or not vector labelings can be

expressed in the scalar framework. PFor example, the "sandwich" vector procedure
of Nerrill (23] essigns o ladel A' to each vertex v' of K% x [0, 1] as follows.

[
12 v ¢ 8 x {0}
n b §
iy '1
2(v")
4 12 v e 8% x (1)
\ :

WMM,&.WM%M&‘ £(x) = 0 pivots on the

AR i Wil i
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triangulation through successive basic feasible solutions of the system

1 i
£ |7V | ez t(v)| . ["] (0 ¢ R?)
- 90 B
vhere I, indices vertices in R" x {0} and I, indices vertices in K" x {1}.
That is, the algorithm proceeds via complementary pivoting to generste a se-
quence of simplices ’0’ 80. ?1, 81. 1'2. 82, esey Where PJ and rw_ are
facets (n-simplices) of the n+l-simplex S,. The move from F, to S, is

J J J
made by Joining a single vertex to the n+l vertices of F. ., The rule for

ulm;umm.:eomuuuamwtmmtiutm. The
move from 8, to Py, 1s made by dropping & vertex from S,. The drop-out
rule is provided via the linear system by pivoting from the basic feasible
ooh;tion associated with PJ to the one associated with ’J#:l.‘ it is knowmn
(Charnes, Garcis and Lemke [ 1]) that when the simplices of the triangulation
are suitably small the path generated by the above vector labeling is (in the
limit) the homotopy path H(x, t) = 0 where H(x, t) = tf£(x) + (1 - t)x,
tc'[o. 1], x € R®. Without loss of gemerality vo.hsvo chosen the initial point
tode 0cR®. Thus H(0, 0) = O and if the algorithm converges to (x*, 1)

we have H(x*, 1) = 0 = £(x*). :
The principal result of this paper is that a scalar labeling and & modified

Pivoting procedure have been discovered for genersting precisely the same homotopy
peth. In this m..tho'nctoi- labeling can be cast into the scalar framework. The
result is of computational significance, for it eliminates both the extra "sandwich"
dimension and the need to pivot on the linear systea.
2. THE ALGORITEM AND THE LABELING
Assume that f: R" + R® {5 continuous, £,(0) 40,4 =1,...,n, £(x*) =0,
end x* is interior to some orthant. Each orthamt of R® is triangulated (in
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M.Mommmwtmmmm w vrather than the

origin). There is no need to'add an extra dimension by trisngulating R x [0, 1]. .
The algorithm begins in some orthant demoted E° at the origin with an n-simplex -

(3 + 1 vertices) containing the labels 1 through a + 1. -A simplex with labels
1 through a + 1 is termed an (n + 1)-complete (or a completely labeled) simplex.
Complementary pivoting vith scaler labels produces a path in E° of p-simplices
vith labels 1 through n. A simplex with labels 1 through n is termed an
n-complete (or a (n + 1)-almost complete simplex). We note that although an
(n*l)—e@lct;otlplcmun n-simplex, an n-complete simplex may be &n
n-simplex or an (n - 1)-simplex. The simplicial path which we mmto is des-
cribed by the following possibdilities.

(P1) The path consists of an unbounded sequence of n-complete

n-simplices in l‘r .

(P2) The path terminates at an (n + 1)-complete su;phx vhich
is near x* (interior to !J).

(P3) The path terminates at an n-complete (n-l)-d.lplcinm
boundary of B, '
In case (P3) a modified pivoting technique will generste s sequence of boundary
(2 = 1)-simplices in such a way that eitber
(P%) (a) the boundary peth . is unbounded, or
(PA) (b) the path reverts back into the arthant r’ or it breaks
through the boundary into & nev orthant K.
e (Ph) (v) m.th-a.or.m possidilities (P1), (P2), or (P3) vild
agsin occur, vith ¥ replaced by E. '
" It vill be shown thet vhen the trisngulation grid is suitaily mall the sdove

mummmmwmmuumwmmwm
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A new scalar hbcunc is introduced for our purpose. At each step
of the algorithm the current simplex either intersects the interior of az
orthant or lies in a boundary of an orthant. We shall term the "current
orthant” to be either the orthant whose interior the currest simplex inter-
sects or, in case the current simplex is in & boundary, the currest orthant
1s the one vhose interior vas last visited. :

Let BJ dencte the current orthant and suppose xcz‘t. I? 31-0
for some i, define

(4= 12 £(x)20 and y,20 foranl
y ta B orif £,(x)<0 ad y, <0

. | forall y in B
-L- =

5
vl By

“ 1f £,(x)>0 snd y, <0 for all
y in ¥ orit £,(x) <0 amd y, 20
for all y in E

h

Bowv, for any el our labeling (depending om the orthant l'r)umciﬁod.
as follows:

(1:) |a+l i xf(x)>0, al1 ¢
x
smallest 1 s.t. :L ‘(- ‘:Lx- all J' otherwvise
1 J

3. THE INITIAL SIMPLEX

We now identify a starting n-simplex vhich is & unique (n§1)-o¢p1m
simplex in e neighborhood of the origin. The space R 1is triangulated in such
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& vay that the interior of any n-simplex will not intersect any hyper-
plane 31-0 for any i. Thus each n-simplex is entirely in an orthant
of R°.

‘As stated earlier it is assumed that £,(0) #0,1 =1, ..., o. Let D dencte
the n Xa matrix vhose diagonal terms are given by du--qnfi(o) and
vhose off-dligoual terms &, ( J # 1) are sero. Let o' be the ita it
vector in R® and e be the n-vector of cnes. Finmally, let € > 0 be the
erid size and triangulate in such a vay as to include the simplex (v, v*, ..., v°}
where

v°-o

."'-CD(C-."). i=], ..., n .

Thus, for i = 1, ....n.v:'_-o and, for aiz.vi--cuntj(o)..m

n-simplex vill be the starting simplex, dencted 0 and it vill be shown thet
this is & wnique (n ¢ 1l)-complete simplex in some neighborhood of the origin.

Let '-7 dencte the orthant conmtaining c" Hote that if x is in the interior

of ¥ ‘then x,£,(0) < 0 for an1 §.

Jamma 1. Let ¥(0, §) be a neighborhood of the origin for vhich £,(x) ¢ 0,
Qll 1, forevery x in ¥(0, §). Then for €7 0 sufficiently small the
simplex o 1s & wique (n + 1)-complete simplex contained in (0, 8).

Broof. It is immediste from the lsbeling rules (1) that ¢ (n-an..
Let € be chosen so mmall thet Oy is comtained in N(0, §). Bote that for
any x in ¥ N N0, §) such that %, # 0 1t must be the case thet x, ed
£,(x) have opposite signs. Pick en index i€ (1, ..., n}. Recall v; =0 and

i
vjio.au. Hence,
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2, (v}) £ (v})
T s . -Li— >am, gll J#4
'1 VJ

and therefore 1(v!) = 1. This shovs that g3 is (n + 1)=complete. Now
let 0" be any other (n + 1)-complete simplex in N(0, &). 'If the interior
of & 1516 onb it e 1 . han o aaeh = in e istertor
of d® it must be that x, snd f,(x) bave the same sign for some J, and
hence this label would be excluded from 0°. Consequently ¢ and gy mst
be in the same orthant, ¥ . Furthermore, the origin (v°) must be a vertex
of o". Otherwise, 1f v is the ver*- of 0® labeled n + 1, then, from the
labeling rule (1), vt(v)>o. all J. If some 1 # 0, then, since f(v)
is also nonzero, it follows that both have the same sign which contradicts the

~

fact that for amy x in E N N(0, &) it mst be that if x, #0then x, nd
£,(x) bave opposite signs. Since v0 (the origin) is in - a‘, there is &
coordinate i such that for each of the other vertices the ith coordinate is
nonzero and some other coordinate is zero (see Pigure 1). Hence, if o"ﬁcs

the label 1 1is excluded from 0, o contradiction. A

(sl"

————
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L. THEPATH IN & .°

Starting with the (n + i)-eoupln. simplex d‘; in the orthant E,
the algoritim generates an (n + 1)-almost complementary path, i.e., a se-

quence of distinct n-simplices {fb.‘ J;. d;. v} vhere

(1)mc§uur’

(11) eeach U; is n-complete, for Jj > 0O

(112) d: n °§+1 i2 an n-complete (n-l)-simplex, all .
Bither the path of simplices is unbounded or else it stops with

(a) either am (n + 1)-ccip1ctc simplex d;, or

(b) an o-complete (n - 1)-simplex on some boundary x, =0

~

on .

We nov show that in the limit this path of simplices in E coineides with
the homotopy path H(x, t) = 0 where H(x, t) = tf£(x) + (1 - t)x, ¢t € [0, 1],
xcB”, Botethat H(x, 0) ®0 ifandonly if x =0, and if t$0 then
B(x, t) 0 ifandonly if f(x) = Ax forsome A <O. Thus, for x# O the
homotopy psth is descrided by the known condition (1] '

£(x) » Ax, some A <0 .

Torsm i Let € be e sequence of grid sizes such that € 0 and let
C denote the connected closed set which is the limiting curve of the above
generated path of simplices in 2. Then, for each x ¢ C, f(x) = Ax for
some A < 0.

C—————
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Proof. Suppose x € C and x, #0, x, # 0. Then since each simplex is

n-complete, and by continuity, it must be that fi(x)'/xi = fJ(x)/::‘1
Thus there is & A < 0 such that tk(x) = lxk for each x # 0. Suppose

< o.

x; = 0. Then in esch neighborhood of x there is a point y in K with
lsbel 1 and hence at vhich f,(y)/y, < 0. In each neighborhood of x there
1s also e point z € 2’ with label J £ 1. Thus £,(2)/z, < £,(z)/3,. Since

:1 is near zero, and the possible values of 2z, can be bounded avay from zero,

J
the last inequality means that ft(z)/zi > 0. Since y and z are both in EJ,
it must be the case that y, and z, have the same sign. Hence £,(y) and

£,(z) bave opposite signs. It follows that f,(x) = 0 and hence x,
ti(x) = Ax, for aay A. e : ’

satisfies

Note: By reasoning analogous to that in the proof of Theorem 1 it can be
seen that any point in & "small" (n + 1)-complete terminal simplex is an approxi-

mate zero of f.

S. THE ANALYSIS WHEN THE PATH TERMINATES
IN THE BOUNDARY OF E°

For simplicity of exposition, ve shall make the nondegeneracy sssumption
that except for the orizin the homotopy path {x: £(x) = Xx.‘x £ 0} intersects
any boundary Z, = 0 only at points x such that xdﬁo.dii.

Sov assume that the simplicial path terminates with an n-complete (n - 1)-sim-
Plex ia the boundary of E’. Under the nondegeneracy assumption thers will be o
K >0 such that if the grid ¢ is sufficiently small then for every x in the

simplex lle 2K, all §#4. A modified pivoting procedurs will now be descrived

for use on x, = 0 and' it will be shovn that this path in the boundary of E

remains arbitrarily.close to the homotopy path.
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Suppose - Lt s n-complete simplex in that boundary of E° for
vhich x, = 0. Let a""-{v".. ...,v“}.z(v-’)-a.v';'-o. all §,’
and for each J we have, by nondegeneracy, I%illlc all m#¥ 4 and some K > 0. The
(o = 1)-simplex i is a facet ofmctlytwon-ciugucu. One of these,
o®, is tn r’ The other, &%, isumonw o on the "opposite
ddo"ott&obaundlry 81'0. Let ls.
orttast ¥, vhere the rules for 13 are also given by (1). Points an the

denote the labeling function on the

boundary x = 0 will have different lsbels depending on whether the labeling
function L; ar 43 1is employed. This is because for such points f,.(x)/x1
wvill be += on one side of xino and -» on the other side, depending on

the sign of r,_ at =x.

Lemma 2. Suppose v 1is in the boundary x, -0..where 2v) dn+1
(1) 2y(v) =1 o= 23 (v) ¥ 1, '
(11) If 2.(v) =1 thea 25(v) = lln.‘llut J #1 such that
£(v)/vy <t (v)/v,, all k44,

Proof. Observe that

2, (v) £, (v) - :
l:(v)-id-b-L"— ® » on n"oio-iv;)-«- on t’@lg(v)#i
g : 1
Hence, (i) holds, and (ii) follows immedistely. ’

Bov let 0™ be an apbitrary (a - 1)-simplex om the plame x, =0 and
let ® and & be the n-simplices in F and E respectively such that
*lac®n

P ke A B L AT AL PP T B 4 T



Lemme 3. ;
- (1) P is an n-complete facet of 0" (with respect to !.J)
ire !.J(o"'l) = {1, . n}.

(11) ®* is an n-complete facet of J° (with respect to 23)

122 2.(3) #1 for s unique ¥ of o™l ana z3(0“°1 -{#) =, ..., a} = {1}.

Proof.  Part (1) is definitional. Por part (i1), o™ ' is n-complete (with
respect to 13 iff !.3(0"1) = {1, ..., n}. The conclusion follows from (i) in
Lemma 2. : : ’

Definitiop 1: Let O be & simplex on x, = 0. This simplex is termed joimtly
Bccomplete (Jnc) 1f
(1) %y(v) =1 for some vertex v of .

(11) !-J(v) $#1 .rormvortox v of a.

(111) £;(0)V 23(0) = (1, ..., ul.

Note that only an (o - 2)-simplex or an (n - l)-simplex om x, = 0 can be Jmc.

i
Also, by Lemms 2, £, can be replaced by L3 in (1) apd (11) of the above definition.

Lemme b. Let o®~1 be & simplex on x, = 0 such that 0! 14 n-complete vith
Tespect to either L, or £3. Then " has s ypigue Jnc facet =2,

m‘ m dn.l.{'lo.o-o' 'n}o m ‘:(onﬂl).(l, ceey l} and

let t(v)) =g, a1l . Suppose £5(v') = k. By Lewma 2, X ¥ 1. Them

o™ . (v*} satisties (1), (11), and (111) of Definition 1 and hence is jnc. Let
o=d®l . (v}, 541,k dencte any other facet of "L, Them 3 ¢ 25(0)V 25(0)
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and hence o™t - (v} is not Jnec. Also, o""'l - (v} 1s not Jnc decause
1t contains no vertex v with L;(v) = 1. Hence @1 - (v} 1s the only

" Jnc facet of L. The same argument applies if !.3(6“1) = {1, ...,n}. #

Lemma 5. Let 0®! ve a jne simplex on x, = 0 but not n-complete with

respect to either I.J.

or !.3_. Then o™} pbas exactly twa jJnc facets.
Broof. Let ™= (v, ...,v’):. Since ™1 15 jnc we can assume
AL z,(;‘) =1, t3(v') =k # 1,
A2. for some s ¥ 1, !.J(v') =g (s could equal k)
8. (e(vh), 15V} = (5, 1}, for 344
Case (1). £.(vF) = 1. Note that v* e o™l (v'} ant v o™ - (v}
Thus parts (1) and (11) of Definition 1 are satisfied. From A3 plus the assumption

that £(vF) = 4 1t follows thet o1 - (v!} ts jme.

Case (11). 2£(v*) ek #1. There 1s o vertex ¥ ¢ ™! - (v}, ¥} suan
that 2,(¥) = 4. Othervise £.(0®)) = {1, ..., n} which is not possible by
the hypothesis of the lemma. Bince ¥ ¢ 0 F - (v!} ana v ¢ 1. (v},
1t follows again thet o™ - {v'} s jnec.

Now consider the.facet o™t . (vX},

Case (1). £(v) = 1. Note that v' e ™ . (v} ana +* ¢ ™. ().
From A3 end the fact that L (v') =1 it follows that o®! . (v} 1s jne.

Case (11). lJ(})-kl‘i. There is a vertex %"to“'_'l-{v". v*} such
that £,(7) § 1. Othervise £3(c®!) = (1, ..., n}, which is not possible by the

B e T3 oviats avnsit
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hypothesis of the lemma. Since Vv ¢ ol {(v*} and v* eo®l. {vk},
"§t follows that o®t - (v} is Jnc. HNote that these are the only two
Juc facets of ol 1. ’

Ve nov show that in the limit the simplicial path in the boundary of
l'r coincides with the homotopy path.

Dhecren 2. Let x be a point of convergence of a sequence of jnc simplices
on x, =0. Then f(x) = Ax for some A <O.

Ireot. Let x be a point of convergence of & sequence of jJnc simplices
~ @2 e x 0. By (1) in Deftaition 1,

f 2 - . f,_(x)/x1 = on ¥

By (11) of Definitica 1,

tz""‘t s on ¥
Raoce r‘(x) = 0. By (111) of Definitionm 1,
t:(:)lzd < 'k(.‘)/‘k for m kdi, J¥ L.

Bemce f(x) = Ax for some A < 0. ; ’

Tais completes our description of the modified pivoting in the boundary of E°.
’ Starting from fl.mmmdmot-n xiio.mm.l.
sequence of distinct (n - 1)-simplices on X, ® 0. The sequence is of the form

gt ot Bt )
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vhere f&"'” c?:i are jnc for all J, until we obtain s terminal facet
O’:'l vhich is again an n-complete facet of g or !3 (in vhich case we
elther pivot "back” iato E' or "through” the boundary into F'). Note that
becsuse of the sssumption that & solution x* is interior to some orthant,
for & small grid size ve cannot encounter a vertex labeled n + 1. Also, by
the nondegeneracy assumption, we cannot intersect the boundary of the plane
% = 0 (for » small grid size). Noncycling is assured as o°> and o2°%
bave only cue juc facet vheress 01~', 03 T, ..., 0271 each Bave exactly two
such facets.

In summary, ve have the following rules for pivoting in the boundary of

‘2 on which x, =0

. 1. Prst (n-1)-simplex, "%, is n-complete. Let . Li(v!) =1,
#5(v') = k. Remove the vertex z with 2(z) =k to cbtatn * 2 a Pl (g},
vhere o2 t# jJue. '

2. Given any 0®2 which is jac, join & vertex ¥ by the triangu-
lation rule to obtain & new o+ = ¢®2U (3}.

. If oL is complete with respect to L., return into B
by sdting en (o + 125 vertex 1o the interior of ¥ and formings &
r. : £ Al

b. 12 ™1 is complete with respect to 13(1.,(3)#1 for a
wique ¥ end £5(o® 1 - (3H) = (1, ..., 0} - (1)) go through =z, = 0 iato
¥ wetisgm (84108 serter ta totertor of ¥ and forming & & 1ia
3 .

c. Otherwise, either: case (1) 1.3(:)-1. !.3(:)-3 or
case (1) l.:(:)'.p'it. In either case, remove the vertex = ¥ v such that

—
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(a) ).J.(x) = p, or (v) la(z) =i, !.3.(:) = p. Since ®2 44 Jnc
either (a) or (b) will occur, dbut not bdoth.

6. GEOMETRIC ILLUSTRATIONS

: Prior to this work it has been quite difficult to illustrate the
course of the homotopy path. This state of affairs is nov considerably

improved. As an illustration, Pigure 2 shows the new scalar labeling for
the functions

fl(x.y)-x-y-lo
fz(to Y).'B-Y-S .

Note that the path does not converge. If the function f were to be

replaced by
: -l -~
g(x) = I, (0):2(x) = yoo

then & representation similar to Figure 3 would be obtained and the homotopy
path would converge. This idea of using the Jacobian trmtomt:loﬁ for tel.u_r
labelings was first presented by Pisher, Gould and Tolle [ 7) n.ndm later
studied by Wolsey (17] and Todd (16]. The present work underscores the impor-
tance of this transformstion for the new scalar labeling presented herein and
h.utortlnnmrmouuunu




S

sty

A B 23 S S A T R DN D S AR T G S T TG DT R

R T .

'Pigure 2: Secalar Libeling and N path for ¢

——————




17

>0

.

e ———




IS SN AR 1 e

(1]

(2]

(3]

(&)

(5]

(%a)

(3]

n

Ilinois. P v

.
’

REFERENCES

A. Chu:;u. C. B. Garcia, and C. E. Lemke, "Constructive proofs of
theorems relating to: f£(x) = y with applications,” to appear in

Mathematical Programming.
B. C. Eaves, "Computing Kakutani fized points,” SIAM Journa) of Applied
Mathematics, a. (1971), pp. 236-2u%,

B. C. Eaves, "Solving piecevise linear convex equations,” Mathematical

Programming Study 1 (November 1974) 96-119.

B. C. Eaves and R. Saigal, "lo-otopin for computation of fixed poinfo

on unbounded regions,” wmw Bo. 2 (1972) 225-237.

B. C. hm. "lmtoptu for computation of fixed points,” Mathematical
Programming 3, ¥o. 1 (1972) 1-22.

M. L. ’1M M '. J'- Gonu. "A simplicial daorith for the nonlinear
complementarity problem,” Mathematical Progratming 6 (1974) 261-300.

M. L. Fisher, F. J. Gould and J. W, Tolle, "A new simplicial spproximstion
algorithm with restarts: ' Relations bm counvergence and hbo:uu."
m Department of Mathematical sd.m. cl.-a University,
Clemson, South Carolina (June 1974).

M. L. Pigher, ?P. J. Gould and J. W. Tolle, "A Mcm approximation
algorithm for solving systems of ncalinear equations,” to appear in the

sations, National Institute of Higher Mathematics, City University, Rome,
Italy (April 1974), also in Center for Mathematical Studies in Business
and Econcaics, Report No. 7421, May, 1974, University of Chicago, Chicago,

NS S el
ey




- (8]

(9]

[20]

(1]

(12]

(13]

(18]

(15]

C. B. Garcia, "A hybrid algeritbm for the computation of fixed points,
Management Sciepce, 197T6.

C. B. Garcia, "Computation of solutions to nonlinear equations under
homotopy invariance,” to sppeer in Mathematics of Operations Research.
C. B. Garcia, C. E. Lemke and H. J. Luethi, "Simplicial approximation
of an equilibrium point for non-cooperative N-person games," in

Mathemstical Programming, eds., T. C. Hu and S. M. Robinson (Academic
Press 1973) 227-260.

F. J. Gould and J. W. Tolle, "A unified approach to complementarity in
optimization,” Discrete Mathematics, 7, Nos. 3-k (19T4), 225-2T1.

F. J. Gould and J. W. Tolle, "An existence theorem for solutions to

£(x) = 0," to sppeer in Mathematical Progrsmming, also in Cenmter for
Mathematical Studies in Business and Economics Report No. 7515, March,

1975, University of Chicago, Chicago, Illinois.

0. H. Merrill, "Applicsticns and extensions of an algorithm that

' computes fixed points of certain upper semi-continuous point to set

mappings,” Ph.D. Thesis, University of Michigan, Ann Arbor, 1912.‘

H. Scarf, The computation of ecopomic equilibris (Yale University Press,

Sew Haven 1973).

H. Scarf, "The spproximation of fixed points of & contimuous mapping,”
SIAK Journal of Avplied Mithematics 15 (1967).

o -

}p'~



(16] M. J. Todd, "Improving the convergence of fixed-point algorithms,"
Technical report No. 276, Octcber, 1975, Department of Operations
Research, College of Engineering, Cornell University, Ithaca, New
}ork.

(17T] L. A. VWolsey, "Convergence, simplicial paths and accelerstion methods
for d-pncin approximation algoritims for finding a zero of a system
of nonlinear equations,” CORE Discussion Paper No. T42T7, CORE,
Universite Catholique de Louvain, Belgium (December 19Th).

.
i ot o e TS ——————
e A, B S
e - i s o satm sy ey S Al Wit S - o ittt - . .




