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ABSTRACT 

A new scalar labelling algorithm is presented for solving a system 

of equations by simplicial approximation. The method presented exhibits 

strong convergence behavior and supercedes previous simplicial pivot 

algorithms due to the elimination of an extra dimension, the simplification 

of the pivoting process by using scalar rather than vector labels, and, most 

importantly, the nature of the homotopy path taken which has the remarkable 

properties of monotonicity and Jacobian invariance. Examples are presented 

wherein the new method converges but Newton's method, Euler's method and 

previously proposed simplicial pivot algorithms fail to converge. 

The work of this author was supported in part by ONR Grant No. NOOOlU- 
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IUTRODUCTIOl» 

Io this paper we consider the method of simplicial approximation for 

solving the general problem 

find x€ Rn satisfying f(x) » 0 

where f: R • Rn is continuously differentiable. 

A number of results on simplicial approximations appear in the litera- 

ture:  [1], [2], [U], If), [6], (Tl. [•], [9], [10], [11], [12], [13], [1U], 

[17], [18], [19], [20]. For example, it is known that a vector labelling 

[1], [10] method due to Merrill [lU] tracks the "homotopy path" f(x) • Xx, 

X <_ 0 assuming (without loss of generality) that the method is initiated at 

the origin. In [9] we showed that a "scalar labelling" can be defined on an 

appropriate triangulation so as to follow precisely the same homotopy path. 

This is of computational significance since it eliminates the need for an 

extra "sandwich" dimension and the need to pivot on a linear system. 

In [l] and [10] a different vector labelling was defined in such a way 

that under appropriate assumptions the homotopy path followed is of the form 

f(x) - Af(o), 0 <_ A <_ l, assuming once again that the starting point is at 

the origin. In this latter case an efficient implementation of the algorithm 

suffers from a difficulty in determining the initial simplex. However, once a 

satisfactory start is obtained, the ensuing path will in general be distinctly 

different than the one generated by Merrill's algorithm and it exhibits powerful con- 

vergence behavior. In particular, if f has a nonsingular Jacobian at the origin, 



and if the origin is the only preimage of f(0), and, finally, if the pre- 

image of the line segment [0, f(0)] (i.e. the segment Joining 0 and f(0)) 

is compact then the method is assured to converge to a zero of f. Further- 

more, if f is also 1-1 on the preimage of [0, f(0)] then the method 

is "norm-reducing" in the sense that  ||f(x)||  decreases as one moves along 

the path. This is the first known example of a complementary pivoting 

algorithm which exhibits this more classical monotonicity behavior. Another 

remarkable feature of the algorithm is that the same path is generated 

regardless of whether the algorithm is applied to f(x) or to the modified 

function g(x) obtained by premultiplylng f by the inverse of its Jacobian 

at the starting point i.e. g(x) • J~ (O)-f(x). That is, the path defined 

by f(x) • Af(0) is identical to the path defined by g(x) - Xg(0). This 

invariance appears to be of importance, for with most other complementary 

pivoting algorithms a different path is obtained by changing from f to 

g, and in fact the choice of g is indicated (see [8] and [9]) because 

of much stronger convergence behavior. An obvious way of stating essentially 

the same point is as follows. Changing the subscripts of the f.  functions 

can change the course of the path fix) *  Ax, and hence the subscripting 

can affect the convergence. The path f(x) • Xf(0) is independent of sub- 

scripting. v 

In this paper we present a "scalar labelling" approach that generates 

the homotopy path f(x) • Af(o), 0 <_ A <_ 1, and overcomes the above mentioned 

difficulty in starting. The resulting algorithm is successfully applied to 



tvo examples where Merrill's algorithm appears to fail. This points out 

the advantage of following the path of the form f(x) - Af(0), 0 _< A <_ 1. 

Use of the scalar labelling to define this path leads to improved speed of 

convergence because of the ease in pivoting and the elimination of an 

extra dimension. We also show an example where our algorithm converges but 

where both Newton's method and Euler's method fail. 

2. DESCRIPTION OF THE LABELLING AND THE INITIAL SIMPLEX 

Let f: Ra * R  be continuously differentiable. Furthermore, assume 

that the following conditions hold: 

1) Jf(0) is nonsingular where J.(0) is the Jacobian 

of t    at x » 0. 

2) [J^(0) f(0)]1 i  0 all i - 1, 2, .... n. 

Define g: Rn * Rn by the mapping 

rl/ g(x) - J-x(0) fix) 

Then by 2) above g.(0) i  0. all i. This function g was first used in 

the complementarity context in [6]. Given any fixed e such that 

0 < e < min U|g (0)|, define the label of x to be 
1   x 

min {i 

L£(x) 

««(x)      g.(x) a£ i^öViijWVJ)  " 1&5T* (0- x - SJjJWJ *)    for some    k 

n + 1    otherwise 



The change from f to g is made in order to prove the existence of a 

unique (n • l) - complete initial simplex in a neighborhood of the origin. 

The following series of Lemmas will establish this result. 

Let us employ the definition ||x|| * max |x.| throughout the paper. 
i 

Also, for 5 > 0, define the 6-cube 

D(6) - {x C RD|-<3 < x. < «S , all i} 

Nov. given e > 0, define 

oQ(e) » {v , v , ..., va} where v »0, v • -e sgn g.(0) e , each I £ 1« 

where e  is the i   unit vector in Rn. 

We shall impose a triangulation on Rn in such a way that (7(e) is 

an n-simplex of the triangulation and such that each n-simplex intersects 

only a single orthant of R . This triangulation is specified in the appendix. 

Define a simplex of the triangulation to be (n + Incomplete if the labels on 

the vertices of the simplex are 1, 2, ... n • 1, and define it to be 

n-complete if the labels are 1, 2, ..., n.  (Thus, only a n-simplex can be 

(n • l)-complete, and only (n - 1) and n-simplices can be n-complete.) 

We now ahow that there is a D(iS) such that for all triangulations 

with grid size small enough (as measured by e ) a (e) is the unique 

(n + Incomplete simplex of D(6). Recall that e is used to define the 

grid size in the sense that the vertices of the initial simplex cr.(e) are 

given by 

/ 



v°-0 , v « -e sgn g^O) e , i • 1, ..., 

Consider an x £ D(<5) for some 3 > 0. Recalling that, by assumption, 

g.(0) i  0, all i, the Taylor expansion for g.(x) about the origin yields 

g. (x)      x. 
i • 1, 2, ..., n 

where 

lim li l.o. 

We choose 6 > 0 in such a way that 

i) & <  U/5 min |g.(0)| 
i   x 

ii)    for each    x£D(<5),     | |x| |  + 0, we have 

III li< min |nTTTi7TöTT 

Thus for each i, 
-1 »1    „ R(llxll) ^ T^ 

-qiT^T 

Lemma 1  Let | |x| | - € £ (0, <S), x^  - 0. Then L£(x) + i    . 

Pranf | 
kW 
g^bT 1 + R(||x||) > 1 - g^ön > i - fcujwi and 

hence Lc(x) i« i 



Lemma 2  Let x € D(3), |x | » ||x|| 4  0, and sgn x^  » sgn gi (0). 

Then    L (x) tllt0<c<6 

Proof: 

"l*T^n*R(l|x||) 

1 •#•*•<" W" 

•ii^-Ä*'<"'"> 

-1 * i Ig^oll > 1 "^ L
e
(x) * 1   lf     0<e<6 

Lemma 3      Let    x£ D(<S),   |xA|  •  ||x||  i* 0,    sgn Xj^ • -sgn g^O) 

Then   L£(x) f« n + 1    if   0<e<J|x||. 

Proof: 
g4(x) |x  I 

-l-*T^fHr* (-xj^ttiT• •«w'>] 



-x - iT^m* l - ütZfini' - üTi^öTi 
if   o < c < ||a 

g«(x) 
Furtheraore I 

^-tiMr^-ti^W (*lnce lw,i*' 
>0    (since    • < 7 Bin  |g.(0)|). 

5    i 
Thus    Le(x) i n • 1 

Lena* \     OQ(E)      is    (n • l)-complete if    0 < e < 6. 

Pro«!1       Take any i | {l, 2, ..., n}. 

Bote that |vj| - ||**|| - e and sgn TJ - -sgn gl(0). 

Hence, by Lemma 3, L (• ) +  n • 1 

and, by Leans 1, L^r1) »* J all J f» i. 

Hence ^(r1) - i. Since L(0) « n • 1, o (E) is (n • l)-complete. 



Lemma. 5      Given e£(0, <S), let o » {u°, u1, ..., un} # <*0(e)» <* c D(<S), 

and assume a is in the same orthant as a At).    Then n • lcL (u) 

Proof:       Take any J € {0, 1, .... n}. Note that  ||u3|| i  0. 

Hence choose i such that  |u^| • f | u"' 11 f  0. 

Since o c orthant °"0(e)» sgn tf* • -sgn g.(0) 

Since ||uJ|| > e, by Lemma 3, Le(u
J) i  n + 1 

Thus n + 1 4. I« (a). 

Next, consider an n-simplex 0"*{u,u,...,u}, 0"CD(3) and' 0 

not in the same orthant as 0"Q(e), given 0 < e < 6. Let u • (u_, u2, .... u ) 

he a vector defined by 

fmin u? if uj >0 all J «0, 1, ..., n 

if uj < 0 all J * 0, 1, .... n 

Note that for each i, either u^ > 0 all J or u£ £ 0 all J, Also 

note that for any 2 vertices x, y of 0,  |x | - |y.| € {-e. 0, e} for all J 

Furthermore, for any i and J 

|uj[| is either lüj or IÜJ + £. 

First, let us consider the case where  ||u|| = 0. 



Lemma 6  Given 0 < e < 3, let o » {u , u , ..., un> C D(«S), a not in 

the same orthant as 3Q(
e)> an*  IlulI " °- Then there is an 

i £ (l, 2, .... n} such that i^L (a). 

Proof:       If ||u|| -0 then ||uJ|| <_ c for all J. 

Since o <fc orthant of aQU), there is an i such that u| # 0 implies 

sgn u^ « sgn gj(0), for all J. Consider any J « 0, 1, .... n.  If 

||uJ|| • 0 then uJ » 0 so that L (0) • n • 1 +  i. Othervise,  ||uJ|| • e. 

If u^ • 0, Lemon 1 implies that Le(u
J) i  i. If |u^| » ||u"|| • e, then 

Lemma 2 implies L (uJ) 4  1« 

Next, consider the case where ||u|| +  0. 

m 

Lemma T  Let i be such that  |u,{ • \\VL\\  * ke for some  positive integer k. 

Then for all J » 0, 1 n either |uj| - ||uJ|| or 

|ui' "FTTlluJ|1-  (°fcour"  l|uJIN0, since  ||uJ|| > | |ü| | i  0.) 

Proof:       Take any J * 0, 1, .... n. 

Then     |uj| < ||uJ|| - |u£| (some k) < |u^| «• e < | |ü"| • e 

Furthermore    |u^| _> luj • | |u| |. 

Hence if |uj| < ||uJ|| (i.e. |uj| - ||uJ|| - e) we have 

Thus, 

u-ii - nun + E 

« ke    and    ||u"||  - (k + l)e 

•r4r IWl 
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Leana 8  Consider a • (u , u , ..., ua}, a<z  D(6), a not in the same 

orthant as a Ac).    Let i be such that |u|i i  0. 

Then if sgn ^ • sgn gi(0) we have L£(u
J) *< i all J = 0, 1, . > n< 

Proof: Take any    ,) £ { 0, 1,   ..., n}.   Since    u.  4 0,    we have 

Uj    J*    0    and    sgn u^ » sgn &,(0).    By Lemma 7 either 

uJ I|  where    k    is a xJM    or    luJl-s^y 

positive integer such that     ||u||  • ke. 

Case a. II* - 
Then    by  Lemma 2      L (uJ) + i. 

Casa b. 1^1 TM*1*' 
g.(uJ) 

*- g7cT--1*Ti7S7T+R(||uM) 

i1*!   ^tttf«l|uJ||)       (since    j^ijl 

>_ 1    since    uJ£D(<S) 

LE(uJ) * i 

Lemma 9 Consider o as above. Let i be such that 

|u | • ||u|| »* 0. Then if sgn u. « -sgn g.(0) we have 

Lc(u
J) ^nU all J » 0, 1, .... n. 

• 

- —- — « 

w 
- 
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Proof:       Take any j€{0, 1, ..., n}. Of course sgn u^ * -Bgn g.CO), 

By Lemma T, |u}| - ||uJ|| or |uf| 

some positive integer k. 

k + 1 for 

Case a. Mil 

Since ||u II * e» Lemma 3 implies L (u^) +  n + 1. 

Case b.       |UJ| ,_A_||UJ||. 

g,(uJ) 

-1 - 

^T*B(||uJH) 

k + 1 

S»-* i^^dluJll,        „«.-X-,1 

< 1 - 1 Mu" 
ST^ToTT r* ^^(iMii) 

since    ||uJ||  > E 

Furthermore 

^•»-tH^wjÄh-H 
> ,      5fc » 1    |luJl|      . ,      7k. * 1 5 

fen 

(since    ||uJ||  < 6) 
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> 0 (since <S < jr min |g. (0)|) 
3 A 1 

-> L£(u
J) t  n + 1, 

Theorem 1.        °r/E^ ia tae uni1ue ^n + l)-complete simplex in 

D(<S) if 0 < G < 5. 

Proof:   This follows from Lemma«* k,  5, 6, 8 and 9- 

The choice of e in Theorem 1 is crucial in the speed of convergence 

of our method. If e is too large, it is possible that the method cannot be 

initiated. If e is too small, the method may require a prohibitively large 

number of pivots to reach a terminal simplex. Our test examples show that 

e * min |g.(0)|  worked veil, 
i   X 

3. CONVERGENCE 

The above Theorem 1 is all that is needed to validate our method. 

The method is now a familiar one in complementarity theory: starting from 

the simplex a At)    generate the sequence of distinct simplices a  , a ,  ..., a  .., 

such that o. 0 a. . is n-complete for i • 0, 1, 2, Terminate 

upon reaching for the first time an n-simplex a_ which is (n • Incomplete. 

Ve may now use any vertex of am   as the next point to restart the method. 
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A condition under which this method is assured to converge to 

a zero of f is given by the following Theorem. First define the set H 

hy 

H - {x|f(x) - Xf(0), 0 <_ X < 1} « {x|g(x) » Xg(0), 0 <_ X < 1} 

We define the p-neighborhood of H to he {y ||y - x|| £ p for some x £   H}. 

Let f: R * R , f continuously differentiable on Rn. 

,-1/ 

Theorem 2. 

Suppose f(x) • f(o) iff x » 0, J~x(0) exists, 

[Jl (0) f(0)]. # 0 all i, and H is compact. Then there exists a solution 

x to f(x) = 0 and furthermore as the mesh size goes to zero the method will 

converge to a solution. 

Proof:   Let <S >  0 be such that Theorem 1 holds and let {e.}  be a 

sequence, 0 < e, £ 5, with e. decreasing to 0. Let C. denote the path 

of sioplices generated by the method for a triangulation of mesh size e.. Then 

for every p-neighborhood of H, say N , there exists a i such that i > i 

implies C. c N . To see this assume to the contrary that there is a neighbor- 

hood V     for which & n (Rn - N ) »* 0 for infinitely many i. Let 

x € 3H n C. . Then it follows from the continuity of f on If , the nature 

of the labeling, and the fact that each simplex in each path is n-complete, 

that every cluster point of {x } is in H, which is a contradiction. It 

follows from this result that for i sufficiently large each path C. terminates 

with a final simplex, say a  . Since, by Theorem 1, 0Q(c)    is the unique 



Ik 

(n • l)-complete simplex in the <5-cube,   each terminal simplex a  is 

outside this cube. Since this terminal simplex contains labels 1 through 

&Ax)   • 
n • 1, any x in the simplex must satisfy —rrrr • 1 for all i or 

gi(x) _ » 
rQ\  » 0 for all i. Since the unique preimage of g(0) is, by assumption, 

the origin, g(x) is approximately zero for x in a  .    Take any sequence 

{s } such that s £ a.. It is clear that any cluster point of {s } is 

a zero of f and g. 

k.    JACOBIAH IHVARIANCE AMD M050TONICITY 

It is clear that finding a solution to the syst« 

(1) f^x) »0,  i • 1, .... n 

is equivalent to solving the system 

(2) g1(x) - 0,  i - 1, .... n 

where g(x) • J~ (0)*f(x). Host simplicial pivoting algorithms follow 

different paths depending on whether system(l)or(2)is being solved. Moreover 

it is not unusual for the simplicial path associated with (1) to be unbounded 

whereas the path for (2) converges (see [8], [9], [13], [19], and [20]). In 

other words, the transformation to system (2) is known to improve convergence. 

For the method presented in this paper the simplicial path is the same, 

regardless of whether (l) or (2) is attacked. More precisely, suppose the 

labeling function L(x) is redefined exclusively in terms of f rather 
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than g (i.e. replace g  with f  in the definition). If this is 

done, a unique initial n • 1-complete simplex may not exist, and hence it 

may be either impossible or difficult to implement the algorithm. However, 

if a unique first simplex ia found, then the path followed will coincide 

with the path generated by the method of this paper. In other words, the 

paths for (1) and (2) are the same. We hare defined the labeling function 

in terms of g (i.e. we solve system (2)) only to constructively prove 

the existence of cr (e). This assures us of a start. The fact that the 

path is invariant under the Jacobian transformation endows this algorithm 

with a natural property not shared by others. 

Another property that the method possesses is that if f is 1-1 

on the homotopy path H • {x|f(x) » Xf(o), 0 < X <  1> then ||f(x)|| 

decreases monotonically to zero on that path. Monotonicity is assured 

inasmuch as X will decrease from 1 to 0 as one traces the path R. 

This property is especially useful in restarting our method. In other 

simplicial pivot techniques, there is no assurance that the sequence of 

v 
approximate solutions, x  (in the terminal simplex of the iteration 

corresponding to e ) will become "better" approximations to a true solution' 

as k increases. In our method however, for e.  suitably small, at any 

point r* in a terminal simplex it will be true that  ||f(xk)||  is less 

than ||f(xr )|| i.e. in each iteration the norm of f at a point in the 

terminal simplex is less than the norm of f at a point in the initial 

simplex for that iteration. Thus each point x  is an improved estimate. 
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5. EXAMPLES 

Here ve present three examples. In each example our method converged. 

We also attempted to solve the first two examples by using Merrill's 

algorithm [lk]  initiated at the same starting point. In each of these two 

examples the variables on the homotopy path appeared to grow without bound 

and hence Merrill's algorithm terminated without convergence. In the third 

example both Newton's method and Euler's method failed whereas .our method 

converged. 

Example I 

f^x) K-   l iH 
x   -  1000 1 < i < n 

We used our method on this problem for n • 10. The starting point 

was chosen to be x. • 20 all i. The mesh size e.  was chosen by 

e^ - min |s±(x
k)| 

k 
where   x  is the approximation furnished by the previous iteration. This 

selection of e^ was the most ideal among the options we considered. As 

seen in the examples, such a choice yielded EL  • ~ or better in every 

case. The results are shown in Table I. 

Example II 

This example 
• 

boundary problem 

u"(t) 

is a standard 

(see More' and 

- | (u(t) • t 

R(b ) discretization of a two 

Cosnard [15]) 

• l)3 0 < t < 1, u(0) - u(l) - 

point 

0 . 

M 
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The resulting problem in the unknowns x • u(t ) is defined by 

Vx) - *** - Vi - Vi+ h {\ * \+1)3« Lik^ 

where  n is taken to be 10, and 

n+1 
x0 " Vl - 0. tk - kh and h - rTT 

The method is started at the point 

x • (E-, .... e )  where £j » *«(*« " *•) 

and the results are presented in Table II. The system of equations has 

a unique solution x* • (e*, ..., e*) where -0.5 < e? < 0. 
l     n — l — 

Example III 

Let     f.(x) » nx. • § sin x. -  E x, - 100 - i  ,  1 < i < n. 
i      i  2    i   Jfli J -  - 

A  solution (up to an accuracy of 8.106 * 10) to this problem for n» 5 1« 

x • (101.0U3, 101.166, 101.293, 101.U23, 101.557). We tested Newton's method 

xk+1 - xk - J^x*) f(xk) 

twice on the above problem using initial points x • (20, 20, 20, 20, 20) 

and x° - (120, 120, 120, 120, 120). 

In both cases, the method failed to converge due to some component of 

x growing large. 
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We also tested Euler's method of the form 

xk+1 - xk - **fcft [f(xk) +JL^T f(x-): 

k+i   k   -lv    h k - 0, 1, .... T - 1 
x-k+1 - xk - Jf

l(^) f(xk) k-T.fl. ... 

where T is a given positive integer. 

This method is a "continuation method" which may be visualized as that of 

approximating the path f(x) • Af(0), 0 <_ X < 1 by way of Newton directions 

([16], p. 232). The method converged from starting point x * 120 all i 

using T • 100. However, it failed to converge from x. • 20 using 

T • 100, 1000, and 10000. 

With the seas initial points, we tested our method on the problem 

above first using grid sizes computed via 

e^-min Jgi(x
k)| 

where x  is the approximating solution after malor iteration k. For 

this approach our method moved to points within 10 units of the solution, 
v 

but failed to come closer because points x  were encountered for which 

the preimage of g(x ) is not unique. 
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We then used grid sizes of the form 

eQ - min |gi(x°)| 

e^ - min {i, min |gl(x
k)|} 

For both initial points x. * 20  all i, x. • 120  all i the method 

converged to a solution. The results of our tests are shovn in Tables III and 

IV. 

Conclusion 

In this paper ve presented a "scalar labelling" algorithm for solving a 

system of equations by way of simplicial approximation. The method presented 

possesses several remarkable properties such as monotonicity and Jacoblan invari- 

ance. The algorithm compares favorably with previous algorithms of Eaves and 

Saigal [U] and Merrill [lU] due to the elimination of an extra dimension, the 

simplification of tkj pivoting process by using scalar rather than vector labels 

and, most importantly, the nature of the homotopy path taken. 



10 x° «  (20, 20, 20, 20,  20, 20, 20, 20, 20, 20) 

ITER. 
JIO. xk 

MESH SIZE 
||f(xk)|| 

NO. OF PIVOTS 

TO REACH xk 

1 (8.5, 11.k,  .. ., 11.1») 2.8631U 1*75.369 758 

2 (10.68, 10.3«», .... 10.3k) 1.07039 296.865 300 

3 (10.13, 10.3U, .... 10.3U) .187178 5U.3887 20 

1 (10.30, 10.3^, .... 10.3U) .088 15.1*807 10 

5 (10.28, 10.30, .... 10.30) .020 6.3 U58 

6 (10.29, 10.30, .... 10.30) .0085 2.67 10 

7 (10.29, 10.3, .... 10.3) 7-95 * '.O'5 .02U6 210 

Table I 



n - 10 with    x ?-7TT(rTT-1)     isl'2' -• 10 

ITER. 
NO. 

MESH 
£k MfUk)|l 

MO. OF PIVOTS 

TO REACH xk 

1 U.56 x io"2 .1019 158 

2 2.2U x io"2 3.26 x io"2 15U 

3 1.115 * IO"2 2.25 x io"2 162 

k 5.56 x io"3 8.863 * IO"3 150 

5 2.77 x io"3 3.58 x io";! 192 

6 1.38 x io"3 3.17 * IO"3 138 

7 6.926 x io"U 1.58 x io"3 108 

,-2 ,-2 x    • (-t.3 * 10    , -8.2 x io c, -.llU,-.lU2,-.l60,-.170,-.170,-.156,-.125,-.075) 

Table II 



n • 5 x    « (20, 20, 20, 20, 20) 

ITER. 
NO. MfUk)|| s 

HO.  OF ITERS. 

TO REACH    xk 

1 U1.2U U0.2U 95 

2 6.161 1.2575 1028 

3 6.923 .629 U6 

U U.105 .311*3 75 

5 3.691 .1572 w 

6 3.08U .0786 9U 

7 1.0UU .0393 115 

8 .U968 .0196 72 

9 .8970 9-82 * 10~3 112 

10 .U809 U.91 x io"3 
213 

11 .3867 2.U6 * IO"3 27U 

xU • (101.095, 101.166, 101.291, 101.U21, 101.556) 

Table III 



f 
xU •  (120, 120,  120,  120,  120) 

I7ER. 
WO. !|f(xk)|| s 

NO. OF ITERS. 

TO REACH xk 

2.81U62 6.3276 95 

25.1*6 32 1.5819 U3 

5.3331 .79095 28 

3.3965 .3955 36 

1.3965 .1977 51 

•50790 .0989 Ul 

.1*579 .0-9^ he 

.2582 .O2U7 80 

.0510 .012»» 68 

x9 - (101.046, 101.165. 101.3, 101.»»21, 101.55) 

Table IV 



The pivot rules are given as follows. Suppose {u , u , ..., u } 

and (s, , ...» s ) are given.  If the vertex u  is dropped we must 
1      n 

specify a new initial vertex u  and a new permutation (s_, s«, ..., s ). 

The rule ü   • ü + ^^i+i^ v*11 then determine the new simplex (u , u , u ). 

Case 1: Drop u, 1 < i < n - 1 

Ü0 . u°, s1 « s1+1, si+1 » s±,  3j » 3j for J h- i + 1} . 

Case 2: Drop u 

0 "u • sj * Vr ^J-11-1' 3n 

Case 3: Drop u 

0° - u° - Q(sn), ij » SQ, Sj » •  , 2 < J < n . 

Bote that oAe)    is determined by u • 0 and the permutation (1, 2, ..., n) 

i.e. aQ(e) • {v°» v
1, .... vn>. v° - 0, y1 » - e sgn gj^CO) e1, 1 < i < n. 



Appendix: The Triangulation and the Pivot Rules 

The triangulation and pivot rules are given for R . Let Q denote the 

n * n matrix whose i   column is denoted by Q(i), where Q(i) • v   - • " , and 

where v » 0, v * - e sgn g, (0) e , 1 <_ i <_ n. That is 

e sgn g1(0) 

0 

0 

0 

£ sgn ^ (0) 

e sgn g2(0) 

0 

0 

e sgn g2(0) 

£ sgn g3(0) 

0 

0 

0 

0 

e sgn sn ,(o) 

0     - £ sgn g (0) 
n 

Let (s,, ..., s ) denote a permutation of the integers (l, 2, ..., n). That 
i      n 

is, each s. £ {l, ..., n} and s. • s, •*• i • J. Row consider a triangulation 

of mesh £. And let {u , ..., u } be an n-simplex in the triangulation, 

where u  is any point in the e-lattice (each u  is an integral multiple 

of E). Associated with this simplex is a permutation (s,, s„, ..., s ) such 
i d n 

that 

u1+1 - u1 + Q(s1+1).  0 < i < n - 1. 

That is, any simplex in the triangulation is defined by the initial vertex 

0 , » 
u  and the permutation (slt ..., s ). 

x      n 
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