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\ AssTRACT

A nev scalar labelling algorithm is presented for solving a system

of equations by simplicial approximation. The method presented exhibits
strong convergence behavior and supercedes previous simplicial pivot
algorithms due to the elimination of an extra dimension, the simplification
of the pivoting process by using scalar rather than vector labels, and, most
importantly, the nature of the homotopy path taken which has éhe remarkable
properties of monotonicity and Jacobian invariance. Examples are presented
vherein the new method converges but Newton's method, Euler's method and

previously proposed simplicial pivot algorithms fail to converge.

e work of this author was supported in part by ONR Grant No. NOOOlk-
T5-C-0k49 and NSF Grast No. 08-42010.



1. INTRODUCTION

Ia this paper we consider the method of simplicial approximation for

solving the general problem

find x€ R® satisfying f£(x) = 0

n

vhere ¢: R®+R" is continuously differentiable.

A number of results on simplicial approximations appear in the litera-
ture: [1], [2], (4], [5], [6], [7), (8], [9], [10], [11], [12], [13], [24],
[17], [18], [19], [20]). For example, it is known that a vector labelling
1], [10] method due to Merrill [14] tracks the "homotopy path" f£(x) = Ax,
A <0 assuming (without loss of generality) that the method is initiated at
the origin. In [9] we showed tuat a "scalar labelling” can be defined on an
appropriate triangulation so as to follow precisely the same homotopy path.
This is of computational significance since it eliminates the need for an

extra "sandwich" dimension and the need to pivot on a linear system.

In [1) and [10] a different vector labelling was defined in such a way
that under appropriate assumptions the homotopy path followed is of the form
£(x) = A£(0), 0 < A <1, assuming once again that the starting point is at
the origin. 1In this latter case an efficient implementation of the algorithm
suffers from a difficulty in determining the initial simplex. However, once a
satisfactory start is obtained, the ensﬁing path will in general be distinctly
different than the one generated by Merrill's algorithm and it exhibits powerful con-

vergence behavior. In particular, if f has a nonsingular Jacobian at the origin,
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and if the origin is the only preimage of £(0), and, finally, if the pre-
image of the line segment [0, £(0)] (i.e. the segment jJoining O and £(0))
is compact then the method is assured to converge to a zero of f. Further-
more, if f is also 1 - 1 on the preimage of (0, £(0)] then the method

1s "norm-reducing" in the sense that ||f(x)|| decreases as one moves along
the path. This is the first known example of a complementary pivoting
algorithm vhich exhibits this more classical monotonicity behavior. Another
remarkable feature of the algorithm is that the same path is generated
regardless of vhether the algorithm is applied to f(x) or to the modified
function g(x) obtained by premultiplying f by the inverse of its Jacobian
at the starting point {.e. g(x) = J;l(o)-f(x). That 1,, the path defined
by f£(x) = Af(0) 4is identical to the path defined by g(x) = Ag(0). This
invariance appears to be of importance, for with most other complementary
pivoting algorithms a different path is obtained by changing from f ¢to

g, and in fact the choice of g is indicated (see [8] and [9]) because

of much stronger convergence behavior. An obvious way of stating essentially

the same point is as follows. Changing the subscripts of the £, functions

i
can change the course of the path f£(x) = Ax, and hence the subscripting
can affect the convergence. The path f(x) = Af(0) is independent of sub-

scripting. ~

In this paper we present a "scalar labelling" approach that generates
the homotopy path f£(x) = Az(0), O < A <1, and overcomes the above mentioned

difficulty in starting. The resulting algorithm is successfully applied to



twvo examples where Merrill's algorithm appears to fail. This points out
the advantage of following the path of the form f(x) = Af(0), 0 <A < 1.
Use of the scalar labelling to define this path leads to improved speed of
convergence because of the ease in pivoting and the elimination of an
extra dimension. We also show an example where our algorithm converges but

vhere both Newton's method and Euler's method fail.

2. DESCRIPTION OF THE LABELLING ANRD THE INITIAL SIMPLEX
Let £: R® +R® be continuocusly differentiable. Furthermore, assume
that the following conditions hold:

1) Jf(o) is nonsingular where J'f(o) is the Jacobian

of t at x = 0.
2) [J;l(o) r(o)]1 0 N A =L, B, ...y 0.

Define g: R® + " by the mapping
glx) = 37H0) t(x) .

Then by 2) above 51(0) $0, all 1. This function g was first used in
the complementarity context in {8]. Given any fixed € such that

0<e€<min hlgi(o)l, define the label of x to be
i

(x)

‘nin {1 __(_)_51 <

(2]
~—

5 J} 1t WE(O’I-W) for some k
Le(x)
n + 1 otherwise




The change from f to g 1is made in order to prove the existence of a
unique (n + 1) - complete initial simplex in a neighborhood of the origin.

The following series of Lemmas will establish this result.

Let us employ the definition ||x|| = max ’xil throughout the paper.
i

Also, for § > 0, define the J§-cube
D(S) = {x € RI|-§ <x, <&, all 1} .

Now, given € > 0, define

1

co(e) = {vo, v, «v.y ¥} where vV = 0, v

= -¢ sgn g,(0) ei, each 1 > 1,
i -

th

vhere ei is the 1 unit vector in Rn.

We shall impose a triangulation on R® 4n such a way that uo(e) is
an n-siAélex of the triangulation and such that each n-simplex intersects
only & single orthant of R®. This triangulation is specified in the appendix.
Define a simplex of the triangulation to be (n + 1)-complete if the labels on
the vertices of the simplex are 1, 2, ... n + 1, and define it to be
n-complete 4if the labels are 1, 2, ..., n. (Thus, only a n-simplex can be

(n + 1)-complete, and only (n - 1) end n-simplices can be n-complete.)

We now show that there is a D(S) such that for all triangulations
wvith grid size small enough (as measured by € ) oofe) is the unique
(n + 1)-complete simplex of D(S§). Recall that € 4s used to define the
grid size in the sénne that the vertices of the initial simplex co(e) are
given by




i = o, I sgn gi(o) ei. =L ..o il

Consider an x £ D(§) for gsome § > 0. Recalling that, by assumptionm,

31(0) # 0, a11 i, the Taylor expansion for 31(3:) about the origin yields

81(X) xi
g (o " 1 * eyt RUIKD, T T R
vhere
m 2 £ = o.
Hix||+o

We choose § > 0 in such a way that
1) § <45 min |g(0)]
i

i) for each x & D(S), ||x|] # 0, we have

R

X < min |
b 4 1 Elgizoﬂ

=T B R([[x 1
Thus forea.gh 35 Wimg.x W<%<m§nm

1
W7
Lemma 1 Let ||x]| = ¢ &€ (o, §), x, = 0. Then L(x)#1 .
g, (x) i a & :
Progf: ‘—11'67'1+R(||x||)>1-d-£I-H)T|-- -W an
hence L.(x) # 4 ; LY




Lezma 2 Let x € D(§), Ixil = ||x|] # 0, and sen x, = sen gi(o).

Then Le(x)fi ir 0<e<$

g, (x) X
Proof: ;i“(gy'l*q%'gy*ﬂllxll)
5,

=1+ + R(||x]])
|81105|

ER8 o AR

3o 2 pkab « (clsthy + iein)
_>_1+ﬁ-~rl-l-’(‘-c|,-;-r>1-one(x)#i it 0<e<$§

Lemma 3 Let xé€ D(§), |xi| = ||x|] # 0, sen x, = -sgn 31(0).

Then Le(x)#n'bl it o<e < ||x|].

g, (x) x,
Proof: %G -1-Tl-1-(;|)-ﬂ-+R(||x|1)
33kt (- ety e st




_ 3 s -.Fl%-lv< J
f1-3 g, (0 s te, (0 £1 4Tg, (0)]

1t 0<e < ||x||

g (x) x
rrverre S5 1 - 3 7l +(r|-§;{gv+a<ux||))

x §
>1 -E‘-L-}T(H-rll -%m (since |[x|| < §)

>0 (since § < = min |gi(0)|).

I
5
i
Thus Le(x)#n*l n

Lemms L OO(E) is (n + 1)~complete if 0 < € < §.

Proof: - Take any 1¢ {1, 2, ..., n}.
Note that lvil = Ilvill =¢ and sgn vi = ~sgn g, (0).
Hence, by Lemma 3, Le(vi) dn+1l

and, by Lemme 1, Le(vi)#J all J# 1.

Hence Le(vi) = i. Since L(0) =n +1, Oo(e) is (n + 1l)-complete,




1

Lemms 5 Given €€(0, §), let o = {uo, Uty ..., Ut} # oo(e), oc p(s§),

and assume 0 1is in the same orthant as ao(e). Then n + 1 ¢ Le(o).

Proof: Take any J € {0, 1, ..., n}. Note that ||u’|] # o.

Hence choose 1 such that I“il - [ud]] # o.
Since 0 < orthant o (€), sen ui = -ggn 31(0)
Since ||u"|| > €, by Lemma 3, Le(u") #n+1

Thus n+l¢LJﬂ.

e
[k

Next, consider an n-simplex o0 = {uo, ul, ceey ut}, oCD(S) and o

not in the same orthant as oo(e), glven 0<e <38, Let us= (;1, ;1.2, g P ;n)

be a vector defined by

min ud 12 w>0 all §=0,1, ..., n
kN 3 ' 3
max u if u' <0 all J=0,1, ..., 1

Note that for each i, either ui >0 all J or ui <0 all §. Also

note that for any 2 vertices x, y of O, |xJ| - |}'J| € {-c, 0, €} for al1 .

Furthermore, for any i and J

Iuil is either I‘Eil or |;1| + €.

Pirst, let us consider the case where ||u]| = 0.




Lema 6 Given 0 <€ < §, let os':uo, ul, vees, W} € D(S), 0 mot in

the same orthant as oo(e), and ||ul| = 0. Then there is aa

1 €11, 2, ..., n} such that 1;‘:.8(3).

Proof: 1t |[2]| =0 then [[uw!|| <€ for all jJ.

Since g ¢ orthant of ao(e). there is an i such that u‘l # 0 implies
sen u = sgn g (0), for all j. Consider any j =0, 1, ..., n. If

||u‘1|| =0 then uw = 0 so that L(0) = n+ 14 4. Othervise, ||u‘1|| = .
If u) = 0, Lemma 1 implies that Le(uJ) #1. 1t |ull = ||u)]| =€, then
Lemma 2 implies Le(u‘j) $1. ) r’

Next, consider the case vhere ||u|| # oO.

Leoima 7 Let 1 be such that ':1‘ = ”E” = ke for some positive integer k.

Then for all § = 0, 1, ..., n either |ui| = ||| or

|u‘1| = ktl ||uJ|| (0f course ||u‘1|| # 0, since ||u"|| > ||u|] # 0.)
Proof: Take any j=0,1, ..., n.

Then |u‘1| < |19 = |ui1| (some k) < |;.k| +e<|lull +€

Furthermore CHENERIIE

‘Hence if |ui| < 1] .e. |u‘1| = ||u‘1|| - €) we have

ldl = [, 1] = (15l + e
Thus, [u)| = ke and || = (x + 2)e

= [ujl _.kl-:l ] - ]




it
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Lemma 8 Consider o = {uo, ul, vees u}, 0 D(S), O not in the same
orthant as oo(e). Let 1 bYe such that l;;l = ||u]] # o.
Then if sgn ;; = sgn 31(0) we have Le(uJ) Py ATl jo=0,R, sen
2ra0s: Teke any Jj€{0, 1, ..., n}. Since ;i # 0, we have
ui # 0 and sgn ui = ggn 31(0). By Lemma 7 either
k
[l = [1ed]] or |ul] = —E5 [|u!]| vhere x 1s e
positive integer such thet ||u]| = ke.
Case a. |ui| = ||l
Then by Lemma 2 Lc(uJ) #1.
k
Cas2 b. |u‘1| o T E ||uJ||
g, (u)) |u | 4
Then E:(E’—' 1+W+ R(||u’|])
k uJ D)
TLYEeT T, 00 ¢ R 7|1
1 uJ J k 1
21+g 5, (0 + R(||u’|]) (since TN 1
>1 since ul g D(S)
- L (u)) #1 B
Lemma 9 Consider o as above. Let 1 be such that

lEil = ||u]| # 0. Then if sgn u,

L) $a+l a1 y=0,1, ..., 0

= -sgh éi(o) we have

a.
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Proof: Teke any J&€{0, 1, ..., n}. Of course sgn u‘l = -sgn gi(o).
By temma 7, [ul| = ||| or |ufl = = E 1!l for

some positive integer k.

Case a.

ld| = 1w

since ||ull| > €, Lemma 3 implies Le(ud) #n+1l.

Case b.
e g, (u?)
en :
81105
Furthermore
' si(u'j)
Bih;

IA

iAa

A

fiv

ludl = = W]

i k+1

Bl

J
l-m*R(”u ||)

J
k u J

J
L Ui u J k i
-2 1—'—%—}”10 + R(||w|]) since —T 23
J J
1
1-3 g: ol * (' g: oT * R(||u-‘1||))

J
1lu | J .
l-:“FgTaH-rf_l Fmio since ||u||3_e.

J Iyd
1
1- B 1 (rri‘;#r +R(lluﬂm)

J
F+1 wl| ok + 1 $
L=tk g. (0)! 2i-k+% IgiZoH

b §

(since ||u‘1|| < §)
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5 k+1 .5
>1 !‘W sincehih

> 0 (since § < E-min |gi(0)|)
i

5
-1 () #Fn+ 1, -
Theorem 1. oo(e) ig the unique (n + 1l)~complete simplex in

D(§) 4ir 0 < e <&,

Broof:  This follows from Lemmss 4, 5, 6, 8 and 9. B

The choice of € 4n Theorem 1 is crucial in the speed o? convergence
of our method. If € 18 too large, it is possible that the ;ethod cannot be
initiated. If € 4is too small, the method may require a prohibitively large
number of pivots to reach a terminal simplex. Our test examples show that

€ = min |81(°)| worked well.
1 .

3. CONVERGENCE

The above Theorem 1 is all that is needed to validate our method.
The method is now a familiar one in complementarity theory: starting from

the simplex oo(e) generate the sequence of distinct simplices ai’ 02, 00 6 at...

such that o, n °1+1 is n-complete for { =0,1, 2, ..., . Terminate

upon reaching for the first time an n-simplex OT which is (n + 1)-complete.

We may nov use any vertex of 0, as the next point to festart the method. .

r




v
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A condition under which this method is assured to converge to

a zero of f is given by the following Theorem. First define the set H

by

H= {x|£(x) = A£(0), 0 < A < 1} = {x|g(x) = 2g(0), 0 < A < 1}

We define the p-neighborhood of H to be {y|||y - x]| < p for some x € H}.

Theorem 2. let f£: RC -+ Rn, f continuocusly differentiable on R".
Suppose f(x) = £(0) iff x = 0, J;l(O) exists,

[J;l(O) f(O)]i $#0 all i, and H 1is compact. Then there exists a solution

x to f(x) = 0 and furthermore as the mesh size goes to zero the method will

converge to & solution.

Proof: Let § > 0 be such that Theorem 1 holds and let {c i}” be a
sequence, O < ei 5! §, with ei decreasing to 0. Let Ci denote the path
of simplices generated by the method for a triangulation of mesh size ei' Then

for every op-neighborhood of H, say Np, there exists & 1 such that i > 1

{ c Np. To see this assume to the contrary that -there is a neighbdor-

hood N, for which C, N (R® - up) $ ¢ for infinitely many i. Let

xi € BNp n Ci. Then it follows from the continuity of f on Np, the nature

of the labeling, and the fact that each simplex in each path is n-complete,

implies C

that every cluster point of {xi} "is in H, which is a contradiction. It
follows from this result that for 1 sufficiently large each path ci terminates

vith & finel simplex, say O,. Since, by Theorem 1, bo(e) is the unique
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1k

(n + 1)-complete simplex in the J-cube, each terminal simplex o, is

outside this cube. Since this terminal simplex contains labels 1 through
g (x) _
n : l, any x in the simplex must satisfy m =] forall i or
g, (x)
é(ay #= 0 for all i. Since the unique preimage of g(0) is, by assumption,

the origin, g(x) is approximately zero for x in © Take any sequence

1.
{s!} such that sié ;- It is clear thet any cluster point of {si}‘ is
a zero of £ and g.

L. JACOBIAN INVARIANCE AND MONOTONICITY

It is clear that finding a solution to the system
(1) | fi(x)to, 1i=1, ..., n
is equivalent to solving the system
(2) g(x)=0, t=1,.., &

vhere g(x) = J;l(o)'f(x). Most simplicial pivoting algorithms follow
different paths dépending on vhether system(1l)or(2)is being solved. Moreover
it is not unusual for the simplicial path associated with (L) to be unbounded
vhereas the path for (2) converges (see (8], [9], [13], [19], and [20]). In
other words, the transformation to system-(2) is known to improve convergence.
For the method presented in this paper the simplicial path is the sanme,
regardless of whether (1) or (2) is attacked. More precisely, suppose the

labeling function I.e(x) is redefined exclusively in terms of f rather
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than g (i.e. replace & with f, 1in the definition). If this is

i
done, a unique initial =n + l-complete simplex may not exist, and hence it
may be either impossible or difficult to implement the algorithm. However,
if a unique first simplex is found, then the path followed will coincide
with the path generated by the method of this paper. In other words, the
paths for (1) and (2) are the same. We have defined the labeling function
in terms of g (i.e. we solve system (2)) only to constructively prove

the existence of co(e). This assures us of a start. The fact that the

path is invariant under the Jacobian transformation endows this algorithm

wvith a natural property not shared by others.

Another property that the method possesses is that if ¢ is 1 -1
on the homotopy path H = {x|f(x) = Af(0), 0 < A <1} then ||f(x)]|
decreases monotonically to zero on that path. Monotonicity is assured
inasmuch as A will decrease from 1 to O as one traces the path H.
This property is especially useful in restarting our method. In other
simplicial pivot techniques, there is no assurance that the sequence of
approximate solutions, x* (in the terminal simplex of the iteration
corresponding to t:k) will become "better" approximations to a true solution®
as k increases. In our method however, for t:k suitably small, at any
point x* 1n a terminal simplex it will be true that ||f(xX)]|] 1s less
than ||£(xX"1)|| 1.e. in esch iteration the norm of f at a point in the
terminal simplex is less than the norm of f at a point in the {nitial

simplex for that iteration. Thus each point a.k is an improved estimate.
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5. EXAMPLES

Here we present three examples. In each example our method converged.
We also attempted to solve the first two examples by using Merrill's
algorithm [14] initiated at the same starting point. In each of these two
examples the variables on the homotopy path appeared to grow without dound
and hence Merrill's algorithm terminated without convergence. In the third

example both Newton's iethod and Euler's method failed vwhereas our method

converged.
Example I
fy(x) =x) - I x,-1000 1<ig<n
big!

We used our method on this problem for n = 10. The starting point

was chosen to be x, = 20 all {. The mesh size Ek was chosen by
k
Ce1 ” min ley (7)1

vhere x° 1s the approximation furnished by the previous iteration. This
selection of tk vas the most ideal among the options we considered. As
"

seen in the examples, such a choice ylelded Ek+l = < or better in every
case. The results are shown in Tabdble I.

Exasple IT
This example i{s a standard R(hz) discretization of a two point
boundary problem (see Mord' and Cosnard [15))

u''(t) --;-(u(t) *t*l).s 0<t<1l,u0)=ull)=o0 .



Y

The resulting problem in the unknowns X, = u(tk) is defined by

2
flx) mon -xy -n +lr g ey o0 1cksn

vhere n is taken to be 10, and

1
n+l

=X s kh and h =

b n+l

0 =0, ¢t

k

The method is started at the point

xo = (el, R en) where €, = ti(ti -1)

and the results are presented in Table II. The system of equations has

s unique solution x* = (e‘l'. -+es €) where -0.5< €} < 0.

Example III
n ;
Let fi(x)-nxi-kzsinxi-J:‘:ixJ-IOO-i 2 121 %4

A  solution (up to an sccuracy of 8.106 x 10'5) to this problem for n = 5 is
x = (101.043, 101.166, 101.293, 101.423, 101.557). We tested Newton's method

xk"'l & xk 5 J';l(xk) £(x

k)
twice on the above problem using initial points x° = (20, 20, 20, 20, 20)
anda x° = (120, 120, 120, 120, 120).

In both cases, the method failed to converge due to some component of

X growing large.
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We also tested Euler's method of the form

Ny

i SC J;l(x“) (e(x*) « -‘E-,;—T £(x")]

X ® 0 Ly eoeg D= 1
k+1l k -1, k k ¥ = 2
T mx = 3 (xT) £ K=T, T+1, ...
vhere T is a given positive integer.
This method is a "continuation method" which may be visualized as that of
approximating the path f(x) = Af{0), 0 < A <1 by way of Newton directions
({16], p. 232). The method converged from starting point xg =120 all i

using T = 100. BHowever, it failed to converge from xg = 20 using

T = 100, 1000, and 10000.

‘With the same initial points, we tested our method on the problem

above first using grid sizes computed via

x
Sg T lg, (x7)]

vhere xk is the approximating solution after major iterstion k. For
this approach our method moved to points within 10 units of the solution,
but failed to come closer because points xk wvere encountered for which

the preimage of ¢(xk) is not unique.
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We then used grid sizes of the form

= min |gi(x°)|

€
’ i

% K
€4y = RN {-2-, min Igi(x )|}

For both initial points x, = 20 &1 4, x, = 120 all i the method
converged to a solution. The results of our tests are shown in Tables III and

Iv.

Conclusion

In this paper ve presented a "scalar labelling” algorithm for solving a
system of equations by w of simplicial approximation. The method presented
possesses several remarkable properties such as monotonicity and Jacobian invari-
snce. The algorithm compares favorably with previous algorithms of Eaves and
Saigal (4] and Merrill [14] due to the elimination of an extra dimemsion. the
simplification of the pivoting process by using scalar rather than vector labels

and, most importantly, the nature of the homotopy path taken.




Table I

n = 10 x° = (20, 20, 20, 20, 20, 20, 20, 20, 20, 20)
I'II“OF.R:. X MESH SIZE 265 | NO. OF vao;is
CE TO REACH x
1 (8.5, 1d, ..o 1L.W) 2.8631L L75.369 758
2 (10.68, 10.34, ..., 10.34) 1.07039 296.865 300
3 (10.13, 10.34, ..., 10.34) .187178 s4.3887 20
" (10.30, 10.34, ..., 10.34) .088 15.4807 10
5 (10.28, 10.30, ..., 10.30) .020 6.3 k58
6 (10.29, 10.30, ..., 10.30) .008s 2.67 10
7 | (10.29, 10.3, ..., 10.3) | 7.95 x 2072 .02k6 210




n = 10 with x0 = —b— (——-1) 1=1,2, ..., 10
ITER. MESH NO. OF PIVOTS
NO. 6 I 2(%)]] TR

1 4.56 x 1072 .1019 158

2 2.24 x 10°2 3.26 x 1072 154

3 1.115 x 1072 | 2.25 x 1072 162

4 5.56 x 10™> 8.863 x 107> 150

5 2.77 x 1073 3.58 x 1077 192

6 1.38 x 1073 3.17 x 107 138

8 6.926 x 107" | 1.58 x 1073 108

x' = (<4.3 x 1072, -8.2 x 102, -.11k,-.142,-.160,-.170,.170,~.156 ,=.125,-.075)

Table II




n=5 x° = (20, 20, 20, 20, 20)

ITER. N NO. OF ITERS.
NO. [1e(x)] € T0 REACH xk-
1 41.24 Lo.2k 95
2 6.161 1.2575 1028
3 6.923 .629 46
4 4,105 .3143 75
5 3.601 .1572 77
6 3.08L .0786 9L
If 1.0Lk .0393 115
8 .L968 .0196 T2
9 .8970 .9.82 x 1073 112
10 .L809 4.91 x 1073 a3
1 .3867 2.46 x 1073 274
x! = (101.095, 101.166, 101.291, 101.421, 101.556)

T E—

Y S

Table III




x° = (120, 120, 120, 120, 120)

ITER. NO. OF ITERS.
¥O. I2¢*)] ] Y o i

1 2.81462 6.3276 95

2 25.4632 1.5819 43

3 5.3331 .T9095 28

L 3.3965 -3955 36

5 1.3965 1977 SL

6 .507%0 .0989 Ll

T 4579 .0Lok L8

8 .2582 L0247 8o

9 .0510 .012k 68

x = (101.06, 101.165, 101.3, 101.521, 101.55)

Table IV




| -

and (sl, e sn) are given. If the vertex u1
specify a new initial vertex a°

The rule =ui+Q(§

Case

A4l A
isl

Drop ui,

g ey ey *

1<i1<n-1

'si, QJ

and a new permutation (Ql, 32,

The pivot rules are given as follows. Suppose {uo, ul, coop un}

is dropped we must

n

) will then determine the new simplex (ﬁo,

-thorJ¢{i,i+1}.

Pa)

=u,sJ=sJ+1,.1_<_J_<_n-1,s =5

Case 2: Drop uo
A0 1
u

Case 3: Drop ey

Note that o‘o(e) is determined by w = 0 and the permutation (1, 2, ..., n)

i.e.

ot —

©=u®-as), 8 =, 8 s,

co(t-:) = {vo, vl, b

n

2<3<n

» 8).

Al
u

°y Vn}' 70'0: vi = - € 8gn 81(0) ei, liiin.

Al




Appendix: The Triangulation and the Pivot Rules

The triangulation and pivot rules are given for R®. Let Q denote the

n X n matrix vhose ith column is denoted by Q(i), where Q(i) = vi = vi‘l, ad

vhere v'0 = 0, vi = - € 3gn gi(o) ei,' 1<i<n. That is

—- € sgn gl(o) € sgn gl(o) . 0 0 T
0 - € sgn 32(0) € sgn 82(0) 0
0 0 - € sgn 33(0) o
(0] 0 (0] (0]

€ sgn g;_l(o)

0 0 0 - € sgn gn(O)

L d

Let (sl, AR sn) denote a permutation of the integers (1, 2, ..., n). That
is, each s, € {1? «es», n} and s, * 8y <> { = J, Now consider a triangulation
of mesh €. And let {uo, ceey WP} be an n-simplex in the triangulation,

vhere uo is anfvpoint in the e-lattice (each ug is an integral multiple

of €). Associated with this simplex is a permutation (al, Sy +oes ln) such
that

wt*l = ol 4 a(s 0<i<n-1.

141

That is, any simplex in the triangulation is defined by the initial vertex

w’ and the permutation (814 2ens sn).
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