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AN EXAMPLE OF AN INFINITE DIMENS IONAL FILTERING
PROBLEM: FILTERING FOR GYROSCOPIC NOISE

L. Horowits
Lincoln Laboratory
Massachusetts Institute of Technology
Casbridge, Massachusetts 02139

Abstract

An infinite-dimensivnal model is given for
the generation of gyroscopic noise, which exhibits
power spoctral density proportional to (1/f) over
a wide frequency range. The optimal filter is
given for separating a statistically described sig-
nal from additive gyroscopic noise, using discrete-
time observations. This filter is expressed as a
discrete-time infinite~dimensional Xalman-Bucy
filter, with an associated Riccati covariance
operator equation. Sufficient conditions are spe-
cified such that this Xalman-Bucy filter will
possess various desired properties.

1. Introduction

The gyroscope is an instrument used to detect
angular movesent. The problem of the removal from
the gyro output signal of noise inherent to the
gyroscope in a constant gravitational field is one
which has received considerable attention in the
literature. Sutherland and Geldb (1], for example,
discuss an aided inertial guidance system, where
periodic telescopic sightings are used along with
gyro output to develop gyro error observations.

The error observations arc used as the input to a
Rlman filter, which is used to estimate the gyro
error at the observation times. An estimate of
the true angular position is them obtained by sub-
tracting the estimated gyro orror from the gyro
output samples. Mehra and Bryson (2] discuss
smoothing of the gyro output to obtain estimates
of the input signal.

Gyraoscopic noise has often been modeled as
either a first-order Gauss-Markov process (3], or
as a Gaussian random walk (integral of Gaussian
white noite) [4,5). However, recent studies per-
formed at The Charles Stark Draper Laboratory (6] °
of the power spectral characteristics of the random
noise associated with various gyroscopes indicate
shat gyro noise is often characterized by a (1/f)
behavior in power spectral density over a wide
frequency range. An explanation of the source of
this noire in the magnetic materials of the gyro-
scope (e.g. the gyro float rebalance torquer) is

The research of the first author vas supported by
the National Science Foundation under a Graduate
Fellowship. The research of the second author

was supported by the Air Fewce Office of Scientific
Research undeor grant AF-AFOSR-72-227).

§.K. Mitter
Electronic Systems Laboratory
Department of Electrical Engineering
and Computer Science
Massachusetts Institute of Technology
Casbridge, Massachusetts 02119

proposed by Harris and Koenigsberg (7]. In Sec-
tion 2 we discuss their findings and add others.
We present an infinite-dimensional state space
model which generates noise with the power spec-
tral properties of gyroacopic noise. We also
discuss the possible relationship between magnetic
disaccomsodation and gyroscopic noise.

In Section 3 we introduce and solve the fil-
tering problem to be treated in the paper. Using
discrete-time observations, a statistically
described gyro output signal (resulting from angu-
lar motion inputs to the gyroscope) is optimally
separated from additive gyroscopic noise. Be-
cause observations are made at discrete times, we
first detsrmine a discrete~time infinite-dimen-
sional linear system to generate samples of the
gyroscopic noise, as modeled in continuous time in
Section 2. The filtering problem can be solved as a
conditional expectation filter in the case where
the input signal is Gaussian (this solution being
equivalent to the ainimum variance linear estima-
tor for non-Gaussian input signals). The result-
ing optimal filter is expressed as a discrete-time
infinite-dimensional Kalman filter with an asso-
ciated Riccati covariance operator equation. We
note here that steady-state filtering of a random
process with a (£-1-2€) power spectrum has been
discussed by Moran (8). However, the performance
of Moran's filter degrades as € * 0.

We indicate hov theoress concerning Hilbert
space Kalman filters and Riccati operator equations
can be appliod to the gyro noise filtering probles.
By specifying conditions on the system generating
the signal to be recovered, we are able to guaran-
tee a nusber of desirable properties for the Xal-
mar filter,

The optimal filter derived in Section 3 in-
volves integrations over a free time constant para-
meter. I applications, these integratioans must
be irplemented discretely. This discretization
can be achieved by making a finite-dimensional
approximation to the infinite~dimensicnal gyro-
scopic noise model. The optimal filter becomes an
ordinary finite-dimensional discrete-time Kalman
filter, with an associated matrix Riccati equation.
It can beshown (19] that the mean-squared estimation
erzor incurred in using the Kalman filter of the
finite-dimensional approximate model can be made,
through the use of a sufficient number of dimen-
sions in the approximation, to approach the mean-
squared estimation error associated with optimal
filtering of gyroscpic noise.
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The zesults found here for gyroscopic nolse
are applicable to any random process characterized
by & wideband (1/f) power spectral density, as
given in Section 2. (1/f) spectra are tound, for
esample in semiconductor flicker noise and in the
nolse characterizing the freguency fluctuations of
quarts crystal oscillators.

2. An Wfinite-Dimensional Model
for Gyroscopic Noise

Gyroscopic noise has often been modeled as
either a first-order Gauss-Markov process (3], or
as & Gaussian random walk (integral of Gaussian
white noise) [4,5). The Gaussian nature of the
noise is inferred from histogram plots of gyro
output. A linearised version on log-log scales of
the power spectral density of a first-order Gauss-
Narkov process is shown in Pigure 1. The random
walk has a variance proportional to time, hence is
nonstationary. Thus in a strict sense the power
spectral density of a random walk process does not
exist. When discrete sasples of bandlimited white
noise are generated by computer and summed (to
resemble the integration of white noise), the re-
sulting noise is found to be characterized by a
(1722) power spactral density over the bandwidth
of the original bandlimited white noise. (The
pover spectral density is found through evaluation
of the squared magnitudes of the rourier coeffi-
cients of the output signal.) Por the following
zeasons we intuitively expect this result. The
power spoctral density, S, (f). of the output of a
time-invariant linear sys (transfer functions
M(f)) to an ingut signal of PSD (power spectral den-
sity) 8,,(f) is given by:

Sy () = Bgtn) - Jmin)]? w

The transfer function of an integrator is propor-
tional to (1/s), hence we would have:

‘.(g)" - IR TN 1 (.3)
WD (3200 g2 2

to have behavior proportional to (1/£2). The PSD
resulting from the cosputer simulation described
above is shown in Pigure 2. MNotice that both ran-
dom processes discussed here exhibit (1/f2) behav-
for in PSD (slopes of (-2) on log-log scales).
Recent studies performed at The Charles Stark
Draper Laboratory (6) of the power spectral charac-
teristics of the random noises associated with .
v-m”mmmmmtmmu
often characterised by a (1/f) behavior in power
spectral demsity. (The gyro is set up as an input
rate integrator, with a binary torque rebalance
1oop. The units of PSD are (input rate)3/ms.) A
lhunulgunotmmunolunrus
spectral density is given in Pigure J. The (£4)
portion of this graph is primarily sttributed to
mmmuumumnmm.
This effect of quantisation is currently under in-
vestigation. Pover spectral anslyses of separate
record lengths of gyro nolse show the power spec-
tral density to be constant in time, hence we will
treat the gyro noise as stationary. An explanation

of the source of this noise in the magnetic mater-
ials of the gyroscope (e.g. the gyro float reba-
lance torqguer) is proposed by Harris and Xoenigs-~
berg (7). 1In this section we shall discuss their
£indings end add others. We first discuss a model
for magnetic relsxation-(disaccommodation). This
model is then used to develop an infinite-dimen-
sional state space wodel for the generation of
gyroscopic noise.

Examination of the literature on magnetic
relaxation (e.g. Ref. [9])) indicates that the

of iron to transients in applied magnetic

fiwld can be characterized as the impulse response
of a continuum of first-order linear systems with
a uniforms volume density distribution of time
constants. The term "uniform volume density dis-
tribution” is used here to mean a spatial distri-
bution of systems such that each volume element
contains many systems, and such that the systems
in each volume element have time constants distri-
buted according to the same probability density
function. Each individual system is characterized
by a transfer function of the form:

T
°t (s) = el (3)

The probability density function of time constants
(T) is given by (see insert in Figure 4):

(/8T /T, (/T T, STLT
Pyl® = { 7N 1 2

o ) otherwise
(4)

We shall demonstrate that the above density func-
tion is effective in explaining the gyro noise ?SD
in addition to magnetic relaxation, which is ob-
served when the gyro is operated in the presence
of power supply transients. Incidentally, other
possible density forms (for anelastic relaxation
of strain in crystalline eolids, a related pheno-
menon) are discussed by Nowick and Berry (10].
The impulse response of sach linear system (Eq.
(3)) is given by:

n(t) = o"/T (s)

The magnetic relazation of the material is then
characterised (see Ref. (9]) by the weighted inte-
'ul“thm-ommo!mluur sys-
tems; with the time constant density of (Eq. 4):

aw & x j: "(t.)h‘(t)ﬁ ®

substituting Bq. (4) and Bq. (S) into Bq. (6), we
find that:

alt) © m#—, f ? e Vhe o
1N

changing vuriables, we obtain:

AN >
ale) = m—k— (e Yryiay (®
TN ["‘a

where we have made the substitution:
yeth { (9)

Wi L SR
e b e A & S & — -

Acthor=Pleose put posge numby e of vour r how
a2
L2 f




Pinally, we obtain:

ae) nﬁ;ugm,» - (t/T)) Q0

¥hare .l(l) is the exponential integral, defined
by - _u
@
I‘(l) -[' ( - ) du (11)

We choose K to normalise m(t) to Y(t), where we
require for normalisation that:

%(0) = 1 ¥(™ =0 (12)
We find that:
Re ) (13

Thus, the magnetic disaccommodation (relaxation)
is normalised to:

e - (m-,-?;;p (2, (t/T,) 8, (/)] (16

Graphe of ¥(t), for Ty = 0.01, T, = 1.0, on linear-
1inear, semilog, and log scales are found in
rigures 4, 5, and 6, respectively. As discuseed
in Ref. (7), ¥(t), with proper choise of T.

in the study of sagnetic relaxation (ses Ref. (11)).
{ mcidentally, T; and T3 may be estimated by ob~
ommm"uom“-muunym
approximation (12) for ¥(t), for t between T) and
In summary, the tims constant demsity given
determinist

we ohall now discuse.

If & linser system (Bq. (3)) with time con~
stant () is fed by an input fumction w(Y, t) then
its respomse, =(T, t), is characterised by:

k xt, &) - -«}n«. O ewit, ) (8

(§(-) is the Dirac Gelta functiom)
slwiz, twly, t-a)) & ws(r-yIda a6

wit, t) ie formally a * two-dimensional white

a0ise”. The inputs to two systems with time com-
stants T and y are independent if T ¥ v. Bq. (12)
say be regarded as & state equation, where state
2(%, t) is & function of T ¢ (Ty,73]. Gyroscopic
mum-auaumna&nama
the outputs of the filters (where x(T, t) is the

(

i

time t) of a filter with time constant
given by: £

=5
-
©

[ ]
glc) -f x(T, t)pglTIdr ($§))
» (]

h more rigorous form, £q. (15), (16) and
(17) are shorthand for:-

T
2
oe) - I pg(me~ (1,0

o TR

1, t
. .‘“,.-(t-l)/t““..)

LY (] (18
wvhere the first integral, the initial condition
propagation, is a Wiener integral and the second
is a "two-dimensional Wiener integral", defined in
Appendix A. In this appendix we also discuss the
two-dimensional Wiener process 8(T,s) whose (for-
mal) mixed double partial derivative is the two-
dimensional white noise, w(T,s), in £q. (13).
Purthex, as discusssd in Appendix A, normalization
of g(t) so that the noise has unit variance re-
quires:

We ""“a"x’ (19)

The power spectral density of the noise is then
given by:

5. 5
Soqlt) = ‘Eﬁ'bﬂ"”ﬁ'““ ;

awg(t, - 1)
.[__:.’;,_‘_ ] (20)
i+ a 1’31‘
A graph of (£) is plotted in Pigure 7. Wote
that the (1/f) characteristic of gyro noise ob-
served experimentally is inherent in the linear-
1zsed version of this plot. The (£2) section of
Pigure 3, the experimentally cbeerved gyro hoise,
due to quantisation dominates over the (1/f3) line
of Pigure 7 at high frequencies, P'“.' that por-
tion of the gyro noise. Further, it is felt that
the low frequency breakpoint of Figure 7 torres-
ponds to times longer than the record lengths nor-
mally esployed for observations of gyro output,
accounting for its absence from Pigure ) (see cap-
tion of Pigure 2). Ongoing experiments at The

Charles Stark Draper Laboratory with long record

lengths of gyro output indicate that the power
density is flat at very low frequencies
(=1 cycle/month) for scme of the gyroscopes being

by cur state space model. The gyroecopic noise is
asowmnd to have started at (t=-=), hence to be
stationary at (t=0).

acidentally, alternative models, in terms
of 4iffusion mechaniems, for stochastic processes
with the power spectral characteristics of gyro-
soopic noise are discussed in Ref. (13) and (24].
Another sodel ,with a (£-1-2€) power spectrum, is
discussed in Ref. (15). Wote however that because

O LU B R LRI alooam g
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sequence. Thus all mathematical models which gen-
erats stochastic processes with the same PSD as
gyro noise (hence the same second-order properties
a8 gyro noise) will yield the samo optimal (mini-
sum variance) filter. In the next section we for-
sulate the problem and indicate how it can be
solved in an infinite dimensional context.

3. Piltering and Properties of the Filter

Take X,U real separable Hilbert spaces,
(Q, S, u) a complete probability space.

3.1 Separable Hilbert space-valued random
variables

The reader is referred to [20) for more de-
tailed exposition of this material.

x:] * X is called an X-valued random varisble
(z.v.) Af it is a (weakly) measurable map. The
1inear space of X-valued r.v.'s is denoted
nes( 8, W X).

An X-valued stochastic process is & map
2(<)1R* S Mes( W, W X). x(-) is a measurable pro-
cesy if the map (t,w) * x({t,w) is measurable w.r.t.
uLlum denotes Lebesgue measure on R%).

x€ {8, w X) is first order if
x ¢ LM 8, u; X) and second order if x € L2[Q,u; X).
For a first order r.v. x(w) we define the mean
Bz}, @

E(xw)) = L x(w)dy {Bochner Integral)

Por a sacond order r.v. x(®), (h, h) + E{<x(w) -
B{xt))}, B <xW) - B{x(w)}i>} is a continuous,
sysmetric bilinear form which has unique represen-
tation through 9 ¢ L(x), Q> 0, 0* = Q as (h,R) +
<th, F>. @ is the covariance of x(w). The covari-
ance of a second order random variable x(w) is nec-
essarily nuclear.

Given two X~-valued second order r.v.'s x(w) o
vy, (h, B) + B{<x(w)=X, b> <y(w) - ¥, B>} has
unique representation (h,R) + <mh,i>, R ¢ L(x).

R is called the covariance of x(w), y(w) and is
written cov (x(w), yial.

x(w, ylw) € Nes( 2, w3 X) are t
it <h, x(w)>, <h, yw)> are mm!!!m %
B ¢ Xx. x ¢ L3(0,u:X) is Gaussian if <x(w), h>
is normally distributed for each h ¢ X.

3.2 Wiener Process

The U-valued stochastic process W(t, w) is a
W 1¢ (1) for finite collections
t1) € K*.1e4) € U, (wity @, o,) is a family of
real-valued gaussian r.v.'s (i1) W(t,w) is second

order for each t > O and there exists some auclear’
Q ¢ Lix) s.t.

.("(‘l" > ‘.(tzoﬂ, ob’

oach t,,t, 20, B,Rcl, (110 R(w(t,w)} = 0 for

each t > 0. See((20), p- 167 st seq.) for proper-
“."‘"do
* Notice that since Q is nucleax, Q9 > O,

.Q 5

o) = Dagsy a0 >

for some (A}, A, 2 0 with 2 A <=, some orthonor-

i
mal sequence {e,} in U. we 1 make use of the
property that z&oum: process W(t,w) has unique

representation .

wit,w) = lim 2-'1“‘""1
e iel

(imit in 1200, W X)

with the 31'1 independent real valued Wisner pro-
cesses.

3.3 The Wiener Integral

- Suppose bR’ + x 1s locally essentially
bounded, measurable and that B(t,w) is a real-
valued Wiener process. Then the Wiener Integral

r b(t)aB(t ,w)
0

is defined in the usual manner as a limit in
13(Q,u; X) through a e of simple functions
approxima b(t) in L2(0, Ts X]. Wow suppose
that B(-): R* =+ L(u, x) satisties (1) [[n()|]

is locally essentially bounded, mesasurable (ii)

t + B(t)x is measurable for each x € X. The Wiener

r B(t)dw(t,w)
0

is defined in this case as

» T
un L | B(te a8t
woe ie1 Jo

(1imit in £3(0, T4 X1)

where each element in the sequence is evaluated as
above. (e,, (tw) i =1l,w,.. as inSec. 3.2) For
8(-) uu&nbu w.r.t. the uniform operator topo~
logy this definition coincides essentially with
that in ({20], p. 180 et seq.). MNotice that the
Wiener Integral is defined modulo null-functions
in 120, W X).

3.4 Infinite Dimensional Formulation
of the Filtering Problem

We first show how equations (13) and (17)

_can be represented in the infinite-dimensional sto-

chastic setting just described. Let X = L3(7),Ty
R) be the space of square-integrable functions with
values in R, and let <-,*> denote the natural sca-
lar product on X. All random variables are con-
sidred with respect to some fixed complete proba-~
bility space (2, A, P).

Denote by B(t) = w(-,t) the X-valued Wiener
process with covariance operator W cbtained from
the two dimensional Wiener process w(t,t).

Consider A:X + Xix(T,t) * -% x(T,t). This

is clearly a bounded linear operator.
Let y(t) = x(°,t) be an X-valued random var-
isble, given as the solution of the integral eque-

LS ) R i
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i) &My, o [ ;g0 (21)

1e an X-valued Gaussian rendom variasble
with sefo mean and coveriance operator . It is
sseumed that yo and §(t) are independent. It cen
be showm that (1) y(t) ie e Gaussien rendom vari-
eble, (11) B(y(t)) = O and (1i1) writing A(t,0) =

covly(t) .y (o)), <Al o> = w2t 0P ¢

(t,.0)
* t WM IN e, en R e

A® denotes the adjoint of A. ;
‘ommﬁmm-ﬁlu,

2
p.(ﬂl".ﬂﬂ (22)

gyro owtput is saspled. Then, doing & *
data” appromimation to (21) and (22) we obtain the
diecrete-time repressntation

yined) = Py(n) ¢+ B(n)

23

y(0) = ,°
2

oln) = "(ﬂ.“o”“ . (24) j

1 |

|

Ae ..l.’otao 4 ;

meze ¥ € L(x,x) is the mapping £(T) ¢  2(T)

incremeat, end @ (n)

a(ntl) = a(n) ¢ Buin)

"m-l’.hl (26)
Bere a(0) uulmol-l'-nhdnnﬁm
with meen O and coveriance P, u(n) is a “white"
Geuseian sequence with msan sero and coverismce
m.oulmmummm-ﬂn
a vector.

The cheervation equation is

s(n) -.,w ¢ gln) ¢+ vin), (a7
wvhere vi(n) is a white gaussian scalar sequence with
nnl.--lcupn.u"o.

(n) is the ideal gyro noise output which

A B g 0

control problem (in backward time)
R(tel) = PR(t) + Gult), t = 0,.,2,...7-1

: (20)
with cost functional of .the form

-1 2
W &) ¢ L [r amxir,oler
t=0 1‘

+ alt)'Qalt) + um’] (29)

((*,-) dsnotes the natural scalar produce on

&
i
4
i
;
:
;

metric positive semidefinite matrix, q(t) 2 ¢ > 0
able function and @ >0 is a
is the asywptotic
(that is, the
asyaptotic behavior of the filter).
) 19

We eay that (20 geachable if there ex-
iste an integer Y > 0 and a constant 0 < a < ®
ouch that

z

£
..ol

2 g(r)“ar for scme & > 0
1

: (T3,T) B) which is clearly impossible.
mmotkmumm. hos

t
<
o
)
S

qtonit.e e o <QTY =l-,0) ,QTInd,

Bence the mapping x(°,t) ‘n‘q!-h('.c) = Oui-,t)
say be thought of as an observation equation for
the X-part of the system. We say that the X-part
of (28) with the sbove cheervation equation is ob-
servable if ¥ integer ¢ > O and & constant

that

(=, i S e .’_.”l“’ exex
120

Sinoe q(t) > ¢ > 0 the X-part of the system
is cheerveble. WNow assums that a(k¢l) = da(k) +

[ ]
Mu(k) is stabiliseble and E‘o"‘m“ > 0 for scks s.

| 18 S iy

..... —. . ———— - - -cames

Author - Pleve put page aembor of your . 7 bere
[ oo

i 8

T S —




¢
¢
£
i
t
:
¢
'
g
i
“

1t then follows from the results of Hager and Noro-
wits [22), on the asymptotic behavior of Discrete
Riccati Operator Equations, that the resulting f£il-
ter is asymptotically stable. Por the appropriate
concepts of filter stability see the forthcoming
paper by Vinter (23]).

1 Appendix A
The Two-Dimensional Wiener Process

In this appendix, we discuss the two-dimen-
sional Wiener process, with covariance:

'(.(1.&)!(!.0)1 oW - ain(T,s) * min(t,0)
"(A=1)

Mote that, formally, the mixed double partial de-
rivative of this process will have the covariance
of & two-dimensional white noise,because, formally:

3 2
INW(T.Q)(W 8(s,9))]

4
- So3osers BI8(T,t18(s,0)) a-2)
and from Bq. (A-1) we have that:

4
“5'5; B(B(T,t)B(s,0)) = w-§(T-0) 8(t-0)
(A-3)
We shall first show the existence of a (Gaussian)
random process with the covariance in Eq. (A-1).

We then shall give meaning to a two-dimensional
Wiener integral (vhere £ ¢ L2((0,%) x (0, ®))):

- ”»
/ / £(t,t)dB(T,¢t) (A-4)
o Jo :

Finally, we shall show that the model we have given
for gyroscopic noise in Bq. (18):

2
olet) = r pg(ve Tauiz,0)

b |
P
. f RUT (t=0) T a8t ,0)
1 (] (-$5)

{

We first show the existenca of the two-dimen-
sional Wiener process. The argumsnt closely par-
allels that of J.N.C. Clazk (17]. Choose two sets
of complete orthonormal functions in L3((0, ®))«

(vhere <+,+> s scalar peoduct notationm)

¥

{0! U’}
- ‘¢ 1-1' 3, ee e u.7’
Ly 1=

(o (1) . . <oy, > = ) $(0e (e -
{o. m}
- ] ‘.1. 2s oo (A-8)
1) i=y
(Mote that (v‘(e)} and (t‘m) may be the same

set of functions.) Next, define a sequenc: of
doubly-indexed Gaussian random variables:

(l“) o o '(.‘,l-'] - "‘u'c’ql

(:-1. R e
.1' 1. see
where 6‘. is the Kronecker delta function, defined
by 4 {00 iym
- (A-10)
‘.' 1) iem

We now define a sequence of random processes
{#"(t,t)}. Bach random process is a function of
two varisbles, (t) and (t). The definition is
given by:

" ] t t
(te) - E“_o ay, fo j: ¥, (V) ¢, (a) dady

(A-11)

Pix (1) and (t). We claim that (s%(t,t)} s a
quadratic mean Cauchy convergent sequence of ran-
dom variables. Observe that: (say X > N)

l((l'(t.c) - l'(ht))zl

i '[1-21 3&1“’ .l:j:.‘ hi il
,,g., .-ix"‘ j: j; ‘o,‘(mqwml‘.m

By Bg. (A-9), we obtain:

sttt 08", en?) o w.

[‘;‘( : v‘cvm)’]-[,_}:u.( ]: o,mm’]

(A-13)
Define the following function:
h O0cyge

x'm- (A-14)
(1] Yy>¢t

¥We may now express Bq. (A-13 in dot product nota-

tions
s, 08"t en?) -

e tey, 103 «,1?
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By the orthonormality of the sequences (¥ (v)) and
(0400} we have that each factor on the right of
» (A-15) approaches seroc as N * =, Thus
{#M(t,t)) is a quadratic mean Cauchy convergent
of random varisbles. Call the limit
8(T,t). We now desonstrate that B(T,t) has covari-
ance a8 in Bq. (A-1)¢

-
BIB(T,t)B(s,0)] = W- E"t"t’“x"o’l
i=0

[Eo <Q’,1‘><0 ,,x.>] ; (A-16)

By Parseval's theorem, we have that:
giB(t,t)B(s,0)) = v-q‘,xaxx‘,x:

- --( L 5 I, M1 cv)( [, ..tt I ﬂ)

B(B(t,t)B(s,0)]) = Wemin(t,0) -min(T,8) (A-17)

We have thus established the existence of the two-
dimsnsional Wiener process.

We now wish to define a two-dimensional Wiener
integral. We first develop an analog of the
*orthogonal increment” property of Srownian motion.
For a Brownian motion, u(t), it is well known (17)
that:

(A(*) denotes length)
Bl (u(t)-u(s)) (uiq) -ulr)) J=k-A(ls,t) N(z.q))
(A-18)

Define the following function, over a box ([¥),T3)
x (t3,t3)) in the first quadrant (no generality is
lost by defining our process for T > O, t > 0) of
the »2 plane:

CRUT, Tyt )BT, ) <8 (T, 8 )BT, o 8))
+ Blryot)) (A-19)
wote, incidentally, that if a deterministic func-
tion q(t,t) ¢ C2 had its mixed double pertial de-

ravative integrated over this domain, we would
obtain:

f Tt .2
11 “ umh“ dedte ‘(‘2"2) - ‘(tzotl’

- q(tx.tz) * q(tl.t‘) (A~20)

This can be taken as motivation for Eq. (A-19). It
18 easily seen, using only Bq. (A-17) that: (A(-)
denctes ares) :

|('(tvtzotvt,)t(t,.t‘.t,.t‘))
- I-l(“t‘d,' -u,.z,n Nt (t’ot‘) x(e’.e‘) )]

i (a-21)

Squation (A-21) is the anslog to Rq. (A-10). Using
this property, we pruceed, as Wong (17) does for a
one-dimensional orthogomal incremant process, to
dofine the tvo-dimensionsl Wiener integral.

(1) 3¢ £ = Tlay,az)xby,by), the indicator func-

uq of the rectangle lﬁ..,):(bx.bz). we sets:

- -
[o fo (431 o‘,‘(‘ ‘t)““).:'b‘ :b:, ("’1)
n -

(2) 1= J at, vith £, functions as in (1),
vl

we set:

£(t,t)aB(T,t)= £ (T,t)dB(T,t)
JoJo e %, T
-

-
2 xz]ﬁ lznn,e)-m.c)l’cxu + 0, we set:
)

LN L] LN E ]
fLr(t.t)G(t.e)-u- in q.m. j [ £ .
] e 0 Jo

o(t,t)aB(1,t) (A-23)
The class of functions £(T,t) for which this
is possible is L2((0,*)%[0,»)). In addition, as

in the one-~dimensional case in Wong (18), we find
that:

L2 -
{[ t(t.c)d(t.t)][[ g(t.c)ds(t.z)]}
(] (]
- je
- L l £(t,t) (g(T,t)arat (A=24)

We shall make use of Eq. (A-24) in showing
that our model for gyroscopic noise (Eq. (A-5)
yields the desired power spectral density (Eq.
(A-6)). Prom Bq. (A~5) we have that (for a > 0):

T
2

slglt)g(t-a)) -[(L p‘(t)o""‘du(t.m
1

T2 fe
0[ L v‘(t)o’“’""du.-))!
1

2
n(r pge P A0 0
e

< -
2 |t-a
. f ] pg(Wye”HiE=0=01/ ‘anm)l‘
11 0

~25)
The process U(T,0) is an initial “t-axis-scaled”

Brownian wotion characterised by (analog of Eq.
(A.24) in one dimension (18):

s[([: muuu.o))( L:q(vm(y.o))]

2
- [ £(t)g(T) (h(T)ET) a-28)
1 ~ (tor soms h(T))




————

Also, we have that 8(1,8) (T 20, s > 0) is inde-
pendent of M(T,0)(T > 0). Thus we obtain from
Bg. (A-25) that:

Blg(t)g(t-a))

2
.o '[ pame N pmar
1

T t-0
2 28/T 'dsd
N ad L 9:(1)0.2“4)/‘] .
0

2 (A-27)
Integrate in Eq. (A-27) to obtain
Blg(t)g(t-a))
T2
e ."V'] p:m.'"""’" n(r)ar
%
%2
i .-c/t/ ‘g_t_,':m u_.-zte-o)/t,“
Y (A-28)

Let t * *® in Bq. (A-20) ,to cdbtain a stationary ran-
dom process characteriszed by:

l”«l) = Efg(t)g(t-a))

T
2
2 f (,ﬁu"“"' pi(mar (A-29)
T
1

A Pourier transorm of Eq. (A-29) yields:

s (ﬂ-f(—!z——)(p m1der (-3
9 o \1ean’g??/ ¢

Substituting Bq. (4) into Eq. (A-30) and using a
normelization (W = 2lnﬂ,/!1n to give $_ (f) unit
verisnce, we obtains » :
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1. Linearised power spectral density of first- .
order Markov procees
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simulated random walk. The lowest frequency

sample (sside from the sample at 0 correspond-
ing to the mean) of the power spectral dansity
i1s at (£ = 1/T), where T is the record length
used for analysis. The highest frequency sam-
ple 1s at (£ = 1/27,), vhere T, is the sample
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3. The cbserved form of gyro noise power spectral
dansity.
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4. $(t) vs. t; linear-linear scale.
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