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Abstract
t _

An algorithm is presented for determining the values wuhich
simul taneously satisfy a set of relations, or constraints, involving
different subsets of n variabies. The relations are represented in a

series of constraint networks, which ultimately contain a node for every
subset of the n variables.

Constraints may be propagated through such
netuworks in (potentially) parallel fashion to determine the values which
simul taneousiy satisfy all the constraints. The iterated constraint
propagation serves to mitigate combinatorial explosion. Applications in
ocens analysis, graph theory, and backtrack search are provided.
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1. Satisfying simul taneous constraints: problem and applications

We are given a set of variables xl.....xn and constraints on subsets
;:f these variables limiting the values they can take on. These constraints
taken together constitute a global constraint which specifies wuhich sets of
values a;,...,8, for X;,...,X, can simultaneously satisfy all the given
constraints. In other words, the constraints define an n-ary relation.
Our problem is to synthesize this relation, i.e. to determine those sets of
values which simultaneousiy satisfy the set of constraints. »

The simultaneous satisfaction of several constraints--call them
proporti,n. relationships, predicates, features or attributes--is a very
general problem, with more applications than I can fully survey here. The
essential technique we apply, iterated reduction of possibilities through
constraint propagation, has analogues in many areas of computer science and
mathematics. ' Many of these applications and analogues are described in
(15), (11) and [24). Applications range from data base retrieval (find all
%, Yy and z such that x is a part and y is a part, and z is a supplier, x
must be installed before y, and z supplies both x and y) (see also [12)) to
scene analysis (segwent the scene into regions such that sky regions are

blue, grass regions are green, and car regions are shiny, sky regions are

‘above grass regions and cars are not totally surrounded by either grass or

oky). Of particular note is the work of J.R. Ullman, who has used
constraint propagation methods in @ variety of contexts, ranging from
pattern recognition (19) to graph isomorphism (211. The problem also

admite of a graphical representation, where its resemblance to networks of
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interacting processes conjures up a long history of other work, including
recentiy: (8], (18] and (6).

In scene analysis, in particular, there has been a recent groundswel |
of applications, e.g. (1], (16], (9], [13]. Several of the latest examples
can bes found in (3).

Often we are only given, or choose to use, "local" constraints, i.e.
constraints on small subsets of the variables, from which we must
synthesize the global constraint. For fundamental results on the
complementary problem, analysis of a global constraint into local ones, see

(14].

.

2. Previous results: partial consistency *

Constraints represented in network form may be propagated through

(potentially) parallel algorithms which cut down the solution search space

. by ruling out inconsistent combinations of values.

The obvious brute force approach of testing every possible combination
of values faces an equally obvious combinatorial explosion. Backtrack
search techniques cut down the search space but often oxh.l'bn costly
“thrashing” behavior (17) (2. Mackuorth ([11] has interpreted previous
work by Fikes (7], Waltz (23) and Montanari (15] as cutting down the search:
space and avoiding classes of thrashing behavior by eliminating
combinations of values which could not appear together in any set

satisfying the global constraint.

w




A netuork representation of a set of constraints is employed
(restricted to unary and binary constraints, predicates on one or two
variables). Each variable is represented by a node, and each binary
predicate by a link or arc betueen tuo nodes. (Loops on a node may be
vieued as binary or unary predicates.) For example, the problem of
coloring @ two node complete graph with one color can be represented as in

Figure 2.1.

C (red greenly (red greenl , 3

Figure 2.1

In the figure, (red greenl; and Ired greenl, are the initial domains of
values for Xl and Xz respectively, the predicate at each node is "colored
red"” and the binary predicate betuween the nodes is "is not the same color
as".

Mackuorth distinguishes three levels of inconsistency for a constraint
netuwork, which represent combinations of values which cannot participate in
eny solution to the global constraint. The first and most obvious is node
inconsistency. Here the potential domain of values for Xl and Xz is given
as red and green, but the unary predicates specify red. HWe can immediately

eliminate green from both nodes, as in Figure 2.2,

C tred gréén, ired gréddl, )

Figure 2.2 i




The next level of inconsistency is arc inconsistency. the arc from X1

to Xz is inconsistent because for a value in Xy namely “red", there does
not exist any value a in XZ such that red and 3 together satisfy the
relation "red is not the same color as 02'. To remedy this inconsistency
we remove red from X,, and similarly, from X5, This cute doun our search
space all right: unfortunately, in this case it reflects the fact that the
problem is impossible. There is no global solution, i.e. the network is
what | call “"unsatisfiable".

It is entirely possible for a network to have no arc inconsistencies,
and still be unsatisfiable. Consider the problem of coloring a complete

three node graph with tuo colors, represented in Figure 2.3.

{red greenl ,

{red greeni (red green) 5
Figure 2.3

Assume the set of possible values for each variable is (red green] and the
binary predicate betusen each pair again specifies "is not the same color
as".

This network is arc consistent, e.g. given a value "red" for Xjo we
can chooese "green" for ch red is not the same color as green. VYet
obviously thers is no way of choosing single values 8, 8, 83, for X;, Xp,
and X3. such that all three binary constraints are satisfied
sinultansousiy. 1f ue chooss red, for X, for example, we sre forced to

choose green for X, to satisfy the constraint betueen X; and X,. This




forces a choice of red for X3, which forces a choice of green for X
already picked to be red.

Nevertheless, it may be holhpful to remove arc inconsistencies from a
network. This involves comparing nodes with their neighbors as we did
above. Each node must be so compared; houever, comparisons can cause
changes (deletions) in the network and so the comparisons must be 7terated
until a stable netuwork is reached. These iterations can propagate
constraints some distance through the network. The comparisons at each
node can theoretically be performed in parallel and this paraliel pass
i terated. :

Thus removing arc inconsistencies involves several distinct ideas:
local constraints are globally propagated through iteration of parallel
local operations. It remains to be seen which aspects of this process are

most significant to its application. The parallel possibilities may prove

to be particularly Iimportant; however, at the moment serial

implementations are used in practice.

Haltz "filtering" algorithm for scene labelling (23) is the paradigm
example of an arc consistency algorithm. HWaltz wishes to attach labels to
the lines in & line drauing indicating their semantic interpretations as
convex, concave or occluding thres-dimensional edges. The line drawing
itself functions as the constraint netuork. Vertices function as network
nodes. An individual vertex value consists of a label forA each of the
lines incident to the vertex; the set of possible values is initially
constrained according to realizeble three dimensional interpretations for

the verious types of vertices. The lines are the arce of the network and
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each represents the relation "the labellings of the adjacent vertices must
agree along this line".

Haltz filtering algorithm (expecialiy when further constrained by
specifying initial labels for edges on the background) generally results in
an amazing combinatorial reduction: thousands of possiblilities are often
reduced to a state where all nodes have a single value remaining, thus
totally solving the problem of obtaining the global solution. Of course
the algorithm does not always terminate with a unique value at each node.
Generally, in this case, most nodes will still have a unique value, while a
few nodes will have S.uall set of values remaining. Normally this final
state indicates that several ambiguous interpretations are possible;
alternative sets of values that simultaneousiy satisfy all constraints can
be quickly found with tree search. l

it is perhaps not as ueil appreciated that this final state may also

- be reached for 3 figure which in fact admits no consistent iabelling. Thie

is to be suspected, however, given that the filtering algorithm only
ochlmo'are consistency. Given the basic Huffman label set (18] (4] (not
Ualtz' expanded label set) and spplying the filtering algorithm (without
first constraining the outside |ines to be occlusions), the |ine drauing in

Figure 2.4 ie left labelled as shoun.




Figure 2.4

Houever, there is no consistent choice of labels for the vertices of the
inner triangle. In other words the filtering olgorlth-'olono uill not
determine if a line drawing is what Huffman calls an "impossible figure".

Montaneri (15) has developed a wore powerful notion of inconsistency
which Mackuworth calls path inconsistency. A network is path inconsistent
if there are two nodes Xy and X, such that a satisfies Xj+ b satisfies Xy,
8 and b together satisfy the binary constraint betueen them, yet there is
some other path through the network from X; to X5, such thet there is no
set of values, one for each node along the path, which includes a and b,
and coen simultaneousiy satisfy all constraints along the path. For
example, the network in Figure 2.3 is path inconsistent: red satisfies X1,
green X3. red is not the same color as green; housver, there is no value
for Xp which will satisfy the constraints betueen Xy and X5, and between X,
and X3. while X; ie red, X3 is green.

Montanari gives an asigoritha that essentially removes path




(" inconsistencies from a network. However, path consistency does not
necessarily inesure satisfiability either, as powerful as it sounds.
Consider the problem of coloring the complete four node graph mith three
colors (Figure 2.5).

irg b'z

{r 9 b"

r ) b,l ir 9 b'3
Figure 2.5

Each node contains red, green and blue, and each arc again represents the
relation "is not the same color as". In particular, _th caonsistency does
not fully determine .tho set of values satisfying the globa‘l constraint,
which in this inconsistent case is the empty set.

In summary, arc and path consistency algorithms may reduce the search
space, but do not in general fully synthesize the global constraint. UWhen
there are multiple solutions, additional search will be required to specify
the several acceptable combinations of values. Even a unique solution may
require further sesrch to d.t.orulm. and the consistency algorithms may

even fail to reveal that no solutions at all exist.
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3. An extended theory

As the coloring problem suggests, the general problem of synthesizing
the global constraint is NP-complete (5], and thus unlikely to have an
efficient (poliynomial time) solution. On the other hand the experimental
results of Waltz, and the theoretical stut‘ﬁoo of Montanari, suggest that in
specific applications it may be possible to greatiy facilitate the search
for solutions. [ uill present an algorithm for synthesizing the n-ary
conotrllpt defined by a set of constraints on subsets of n variables. It
may be of substantial benefit in applications uhere pruning of arc and path
inconsistencies still (eaves many possibilities to be searched.

There ar.o tuo key observations that motivated the algorithm.

1. Node, arc and path consistency in a constraint network .for- n
variables can be generalized to a concept of k-consistency for any ksn,
where n-consistency constitutes a natural notion of global consistency.

2. The given constraints can be represented by nodes, as opposed to
links, in a constraint network; we can add nodes representing k-ary
conetrainte to a constraint network for all ksn (uhether or not a
corresponding k-ary constraint is given); and we can then propagate these
constrainte in this M!od net to obtain higher levels of consistency.

By successively adding higher level nodes to the network and.
propagating constraints in the augmented net, we can achieve k-ary
consistency for all k. We do not need to restrict the given constraints to
binary relations. Ruling out lower order ‘inconsistencies in stages

progressively reins in the combinatorial explosion. The final result is a
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globally consistent network, where the n-ary node specifies explicitly the
n-ary constraint we seek to synthesize. No further search is required.
The rest of this paper will present the algorithm, along with a sufficient
theoretical base to justify its operation.

4. A prelinminary example of the synthesis aigorithm

I will give a crude example of the synthesis algorithm In operation,
by way of motivation for the formal description which follows. The
presentation in this section is intentional ly sketchy.

Suppose we are given the following constraints on variables Xpo Xoo
X3| The unary constraint Cl specifies that Xl must be either a or b, i.e.
Ci=la bl. Similarly Co=le fl and Cg=lc d gl. The binary constraint on X1
and Xz specifies that either Xl is b and Xz is e, or Xl is b and Xz is f:
Cio=ibe bfl. Likenise Cy3=(bc bd bg) and Co3=led fgl.

We wish to determine what choices for Xy X2, X3, if any, can
simul taneously satisfy all these constraints. We begin building the
constraint network with three nodes representing the unary constraints on

the three variables, as shoun in Figure 4.1.

{e f!z
{a D’l fcd 9’3

Figure &.1




12

Next ue add nodes representing the binary constraints, and link them to the
unary constraints as shoun in Figure 4.2 (e.g. (be bfl 5 represents C;5).

{e "2
{ £ {
be b"lz eod fﬂ,23
g

{a bll—-—lbc bd bglm—-lc d 0‘3
Figure 4.2

After we add and |ink node ‘:12 we look at node Cl and find that
element a does not occur in any member of CIZ' We delete a from Cl.

Similarly, we delete c from 63 after adding 023. The constraint network now

appears as in Figure 4.3.

{e ﬂz

P
{be bf) {ed fgl
% 12 23

(8 b}y ——(bc bd bgl 3—1¢ d gig
Figure 4.3

Nou from C3 we look at Ci3 and find that there is an element bc in Ci3
which requires ¢ as a value for X3, while c is no longer in C3. We remove
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{e f'z
{be bf} {ed fgl
12 9
N 23
‘D'l—"“ bd bgi 13 ~—{d gls

Figure 4.4 .

So far we have merely achieved a sort of "arc consistency” (though we
indicate the restriction of the pair bc, as uell as the elements a and c).
Next, we add a node for the ternary constraint. No order three

constraint was given originally, so ue could assume Initially the

"non-constraint”, all possible triples. However, we will take advantage of

the restrictions available from the binary and unary predicates to

construct a more limited set of possibilities. Cl and 523 together allou

only the follouwing set of triples: (bed bfgl. We use this as the ternary:

node and link it te the binary nodes as shown in Figure 4.5.

fe "2 Y
{be bfl 7 ———lbed big)yoq — (ed t9) 29
///' - .\\\“
(bll % {bd bgl 13 roy e d ﬂ’a

Figure 4.5

He look at the new node from its neighbors and vice versa, as we did
sariier, to insure consistency of the sort ue obtained earlier between
neighboring nodes. Cm is consistent with the new node: bd is part of
bed, b part of bfg. Similarly C;p and Cpy are consistent uith the ternary
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node. If necessary, we coyld propagate deletions around until local
consistency is achieved on this augmented network. However, in this case,
the network is already stable; no further changes are required.

The ternary node represents the synthesis of the given constraints.
There are two ways to simultaneously satisfy the given constraints: Xl-b.

xz... X3.d or xl-b. xztf, xsiﬂ.

S. Basic definitions: constraint expressions, constraint networks and

satisfiability

This section presents several definitions needed to state the problem
and its solution precisely.

He are given a set of veriables Xl.....)(“ which may take on values
from a set of universes Ul""'un respectively. He will assume the U‘ to
be dlocr'oto. finite domaine. Let Ie«ll 2 ... nl. Many of our definitions
will be made for any subset JCI. He denote by Kj the indexed set of
varisbles lx‘l’d. A value a; in U; will be called an jnstantiation of
Xi« An instentiation of a set of verisbles Xj.» denoted by .J.. ‘is an
Indexed set of valuss ls)} . :

A gonstraint on X;, denoted Cy, ie @ set of instantiations of Xj.
The "indexed set" notstion implies that there is a function, a, from J
onto the inetantiation a;, which serves to indicate which member of ay
instantiates which veriable: the value of & at j, denoted a, ie the

instantiation.of x,. We could also represent 8; @s an ordered set or
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m-tuple, where m is the number of elements in the set J (called the
cardinality of J and denoted |J|): ‘J'“)l'""‘j." @«“ in Uji' Ji<ix
for i<k, i,kel,...,m. Thus C; may be thought of as an m-ary relation. I
have found it useful, however, to use set notation rather than refer to
cross products or predicates in the presentation which follows. Given ay,
'ljuJ" will denote the instentiation of )(j contained in aj.

A constraint expression of order n is a conjunction of constraints

Cs A Cj» one constraint for each subset J of | (except the empty subset).
Je2!

Normally we uill not be explicitiy given constraints for all Jgl;
housver, we can assume they exist, with no loss of generality, as the "non
constraint” for X; can aluays be specified, the set of all combinations of
elements from the domains of the v&i.bln in Xj.

We say that an instantiation a; satisfies a constraint CJ it nJcCJ.
The instantiation a; satisfies a constraint Cy, HSJ, if the set
hJqu““. which we call ey restricted to H, is a member of CN‘ An
instantiation ay, where |J|=k, k-satisfies a constraint expression of
order n2k if a; satisfies the constraints Cy for all HeJ. [If an
instantiation a; n-satisfies the constraint expression of order n, we say
that a; satisfies the expression. A constraint expression C is
k-sstisfiable if for all cordinality k subssts J of I, there exists an ay
such that a; k-satisfies C. If C of order n is n-satisfiable it is said to
be satistisble.

A conjunction of constraints, 8 constraint expression, defines another
constraint: the set of all instentiations 8; vhich satisfy the constraint

expression. Our central problem is to synthesize the order n conetraint on

R e L b AP s i NS e BT S
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Xl defined by the constraint expression, i.e. to determine explicitiy the
set of instantiations a; which simultaneously satisfy all the given
constraints. An instantiation 8; which satisfies C is called a solution of
the constraint expression.

A constraint netuork of order k in n variables, ksn, is a set of
constraints called nodes, Nj, for each Jcl, |J|sk, where a link is said to
oxist betueen Nj; and Ny if HEJ and [H|e|J|-1. Linked nodes are called
neighbors. A constraint network of order n in n variables will be called a
full conetraint netuork. A node Nj is said to correspond to a given
constraint CJ it Nj=C;, i.e. each instantiation of one is a member of the
other. A full constraint network in n variables corresponds to a
constraint expression of order n if sach node NJ in the netuork
corresponds to the constraint CJ in the expression. The or&or of a node
Nj. or a constraint Cj. is the cardinality of J. . :

For example, the network in Figure 5.1 corresponds to the constraint

expression C= A C; , uherer I=il 21, Cy=ir gi, Cpuir gl, Cypeirg grl.
Je2!

(I avoid set notation in the subscripts for simplicity.)

ir gl — Irg orljp ——Ir gly
F‘". S.1

This ie obviously a representation of the problem of coloring @ two node
graph uith tuo colors.
As nodes are constraints we are able to restate all the above

definitions Involving satisfiability in terms of nodes and networks, rather

-
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than constraints and constraint expressions. In particular we can speak of
an instantiation a; satisfying a node Ny for HEJ. UWe @slso will want to
talk sbout a; satisfying Ny for H3J. He will say that a; satisties Ny,
H3J, |f there existe an &y In Ny such that (ajcayl j g=a5. 1.0, there ie an
instantiation which satieties Ny uhose restriction to J is ay.

6. Constraint propagation

We can now define the basic constraint propagation mechanism. To

locally propsgate the constraint N; to 8 neighboring constraint Ny, remove
from Ny all ay which do rot satisty Nj. Global propagation is defined

recursively. To globally propsgate 8 constraint Nj through a neighboring
constraint Ny: firet locally propagete Nj to Ny then, if enything uee
removed from N, by the local propsgation, globally propagate Ny through all
ite neighbors except NJ. To propagste a constraint NJ. global ly propagate
Nj through all its neighbors. The propagation procedure is similar to an
arc consistency algorithm. Mackworth discusees efficient serial algorithme
for arc consistency (11). Of course, a paralilel Inplouinl.tion ie
possible.

A constraint network ie said to be m if we can propagate every
constraint N; in the network uithout csusing any change (deletions from
nodes) in the net. The relaxation of a conetraint network is the network
obtained by propagating all nodes of the network. (The propagation
obviously terminates in a relaxed network.)

N B A SN M AR I 0T A5 B P SR M) AR W vy
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7. Synthesis algorithm

e are nou ready to state the synthesis algorithm. The claim, to be
proven in section 18, is that this algorithm, given a constraint
expression, produces 8 constraint network whose order n node corresponds to

the order n constraint defined by the constraint expression.

ALGORI THMs

GCiven Ce A Cj. HUe define the algorithm inductively:
Je2!

STEP 1: Construct a constraint network with nodes N; corresponding to
constraints C; in the given constraint expression, for all Jgl of )
cerdinal ity one.

STEP k+l: For all JEI of cerdinality kel:

Add the node N; to the network corresponding to the given constraint
Cyge Link Njy to all Ny such thet H is a c?rdlnllity k subset of J.

Locel Iy propsgate to N; from each of its neighbors. Propagate Ny

For & constraint expression of order n, the algorithm is run for n
steps. The result is a full conetraint network, where Nj corresponds to C.
The next section will present several examples of the algorithm in
operation. First a feu general observations. The network produced by this
slgorithm (e the relaxation of the network corresponding to C. th.ewld
have obtained it simply by bullding the corresponding order n network and
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propagating each node. By proceeding in stages we take advantage of the
elimination of possibilities that may occur at each stage to mitigate
combinatorial explosion. We take this principle further and propagate each
node as it is added, before adding another. A good heuristic would be to
8dd earlier those nodes which exert a heavy constraint, e.g. where Cy is
small. The propagation of these constraints may eliminate elements from
nodes used in constructing later constraints. If CJ is the non-constraint
we can construct N; initially from some Ny and N;_,, where H is a
cardinality k subset of J, preferably the one for which INJlxINJ_HI is a
minimum. (Add to each member of Ny each member of Nj_,..)

Other refinements are clearly possible. Provision should be made for
early termination, e.g. #s soon ss one node becomes empty. Propagation can
be eimplified, @.g. by noting non-constraints, or using complements of
nodes. Additional linke could permit direct propagation between 8 node NJ
and the nodes for all subsets of J.

It is generally redundant to require all ron-constraint nodes;
basicaliy we only need one "path® up to the n-ary node for every "real”
constraint. Consider a eom\raintv expression on four variasbles where only
the binary constraints are really specified (the others are
non-constraints). Only the binary constraints cen really have any effect
on the global solution. Three ternary nodes are sufficient for the network
constructed by the algorithm. [f the fourth ternsry node rules out any
element of the order four node, it is only reflecting a binary constraint,
which is reflected in one of the other ternary nodep. On the other hand we

may be interested in the effects on non-constraints of the pr,opmtlon
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process. In general the pruning process of the algorithm progressively
makes explicit at N; restrictions on instantiations of X; that are not
originally given by C;, but rather implied by the other constraints. In
the final netuork produced by the aigorithm every member of every NJ in
part of some solution of the constraint expression. (In particul&r. ue

have derived the "minimal" netuwork, Montanari's "central problem" ([15).)

8. Further examples: graph coloring, scene labelling, graph isomorphism

As the synthesis problem is such a general one, .tho synthesis
algorithm has many potential applications. Graph problsms, of course, lend
themselves particulariy to a constraint netuwork formulation. | present in
this section three applications uhich uill serve to illustrate the
algorithm, and are of some independent interest as we!l.

As ue uwould expect from the discussion in section 2, the graph
coloring problem can easily be represented as a constraint network. Given
8 graph G, and a set of colors, we construct a constraint network from G as
follows: Each node of G is replaced by the unary constraint representing
the set of colors. [f there is an edge betueen nodes in G, we replace it
by 8 binary constraint linked to the nodes which represente "is not the
séme color as". [f there is no |ink betueen nodes in G, we add the
non-constraint betueen the nodes.

Let ue consider two examples. First consider the problem of coloring
8 complete thres node graph with three colors. Figures 8.1a, 8.1b and 8.1¢c
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shou the constraint network after steps one, twuo and three of the
algorithm, where the nodes Ny, N2. N3 are all the set ir g bl, le. Ny3 and

No3 8!l equal (rg rb gr gb br bg) and Ni23=irgb rbg brg bgr grb gobr), the
eix possible colorings.

W Wy -y
8.1v

)
i N2 {"ﬂza — Ny
N z. M3 s N3

8.1¢c

F'". 8.1 .

He could construct & network of the sort we used in section 2, for this

problem. However the network would be path consistent; erc and path

consistency algorithme would not rule out any elements at the nodes.
Consider now the problem of coloring & complete four node graph with
three colors, which we used in section 2 to illustrate that path

consistency is not & sufficient condition for satisfisbility. After the
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third step of the algorithm ue would have four ternery nodes, each equal to
the ternary node in the previous example. :

At the beginning of the fourth step we use Nio3 and N, to construct an
order four node: N1236" {rgbr rgbg rgbb rbgr rbgg rbgb brgr brgg brgb bgrr
bgrg bgrb grbr grbg grbb gbrr gbrg gbrbl. Local propagation from the other
ternary nodes quickly reduces the order four node to the empty set (and
this constraint propagates back doun to remove all elements from all the
nodes). No instantiation of the order four node will simultaneousliy
satisfy the four ternary nodes. Unsatisfiability is demonstrated.

These examples are rather perverse cases, of course, though they do
illustrate points uith respect to the discussion in section 2. Applications
in the scene labelling domain generally involve more propagation than
occurs in the coloring problem. The synthesis algorithm does function as a
test for impossible figurss. It aleo finde all the interpretations in an
ambiguous figure. You may want to simulate the algorithm on a simple

figure like that in figure 8.2.

F‘w. '02
After the Waltz filtering algorithm ie run on the Huffman labe! set
(without sdditional constrainte on the beckground labellings) there are

three labelis (aft et each order tuo vertex and two at each order three

ver tex.
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For a final example, uwe take graph isomorphism. Given two graphs G

and H, which we wish to test for isomorphism, construct a constraint

netuork from G as follows. (If H hes more nodes than G the algorithm will

seek isomorphic mappings of G onto subgraphs of H.) Replace sach node of G
uith a unary constraint node containing all the nodes of H. (1f we allow
loops, edges from 8 node to itself, the unary constraint on a node in G-
uith a loop uill be "has a loop in H", on a node in G without a loop, "has
no loop in H*. We could also incorporate additional unary constraints such
a8 the order of the vertex (22].) Replace each edge betusen nodes @ and b
in G with a binary constraint node, |inked to the unary nodes for a and b.
This binary node uill represent the constraint "these two (distinct) nodes
share an edge in H". In other words the binary constraint uill contain a
pair xy if and only if there is an edge betwsen x and y in H. Between two
nodes which do not share an edge in G we ailso place a binary node, |inked
to them, but representing ﬂn constraint "these two (distinct) nodes do not
ehare #n edge in H", '
For examplet given the graphe G and H In Figure 8.3

: . \ .3

Figure 8.3

ue produce the conetraint network in Figure 8.4.




|

24

nz2a,
13312332,
. T :
(12 21, n23,
| 13 31 23 321
uz%///
Figure 8.4

Propageting conetraints, we obtain the network in Figure 8.5.

i S
| a3z,
e
nz 210, _uza
| 13 3 23 321,

e
nza,
Figure 8.5

Now adding the ternary node we obtain Figure 8.6.
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Figure 8.6




This network is relaxed. The ternary node represents the tuwo possibie
isomorphisms: a->1, b->2, c->3 and a->2, b->1, c->3. (The algorithm aiso
finds isomorphic subgraphs along the way.)

In the above applications, the desired global state is defined in
terms of local constraints. Often we first face an analysis problem:
choosing, or learning, a set of local constraints that specify or
approximate the desired global state (20]. (An important concern will be
the choice of a "good" constraint expression, i.e. one that can be
synthesized efficientiy.) As we explore various applications, it will, of
course, be equally important to develop theoretical methods for @nalyzing

the performance of the algorithm in a givin domain,

9. Consistency and completeness

The synthesis algorithm operates bu.rmvlng higher and higher level
inconsistencies unti! a global consistency has been achieved. In this
section, | define this sequence of consistency states, and aiso define 8
concept of completeness which we uill uant to apply to a netuork.

A node Nj of order k is k-consistent uith a constraint expression C
if all wembers of Nj k-satisfy C. A netuork of order k or greater e
k-consistent with C it all nodes of order k are k-consistent with C. It a
full conetraint network of order n ls n-consistent with.a cono!nlnt

expression C of order n we say that it is consistent with C.

. . SISO S b St e s | R A ; A A SRR 4




A node NJ of order k is k-complete for C if any instantiation a
which k-satisfies C is a member of NJ. A netuork N is k-complete for C if
every node of order k is k-complete. An n-complete full constraint network
of order n is said to be complete.

A few comments may be in order to relate the consistency notions
described in this section to the background discussion in section 2. For
networks of unary and binary constraints, k-consistency implies that if we
pick values of any k-1 variables from the unary nodes, and a kth variable,
there uill be a value of the kth variable, at the unary node, such that the
k values together satisfy all predicates involving the k variables (i.e.
they form an instantiation of N; uhere J is the set of k variables
chosen). This indicates that 1-consistency of a constraint network implies
node consistency of the corresponding network of the type described in
section 2, 2-consistency implies arc consistency and 3-consistency imp)ies

path consistency. The first two are obvious; the latter requires reducing

. path consistency to the three node case, uhich is done by induction in a

theorem of Montanari.

Suppose ue seek a global solution by using depth first tree search on
the elements remaining in the unary nodes of a k-consistent netuwork of
unary and binary constrainte. Backup will only be initiated belou the kth
level. [f the netuork is consistent, there will be no backup. Even
better, and for arbitrary relaxed constraint networks, we can choose an
order k node, and use its members as the alternative paths through the
first k levels of a search tree, only really doing tree search on the

remaining n-k nodes. Of course, if we have achieved full consistency the
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membare of the order n node are the solutions snd no further ssarch ls -

required,

18. Synthesis theorem

e are nouw ready to state the theorem which justifies the synthesis

algorithm,

THEOREM: The relaxation of the network corresponding to a constraint

expression C= A CJ is consistent and complete with respect to C.
chl

The proof uill be by induction. Consistency end completensss of order

one are obvious. Our Induction hupotﬁnl- is that the network Is
k-consistent and k-complete; we wish to prove k+l-consistency and
k+l-completenesss.

Consistency: We uent to show that all Nj, for J any cerdinality kel
subset of I, are k+l-consistent. N;, before relaxation, corresponded to
Cj+ #0 included nothing which did not mmg Cji relaxation does not add
sny elements to 8 node. Suppose there exists an y in NJ such that a;
does not satisfy Cy, for some proper subset H of J, i.e. a; restricted to
H is not a member of Cy. Pick a set G of cardinality k such that HeGel.
Because of the local propagation during the relaxation process, we know
that a; satisfies Ng. Thus a; restricted to G, ag, is a member of Ng. As
the netuork is k-consistent a; restricted to H is @ wember of Cy. But ag

restricted to H i a; restricted to Hs contradiction.

Bpssnai



28

Completeness: Consider any a; not in Njo for J any cerdinality kel
subset of I. There are two possibilities. 1If a; was not in NJ before
relaxation, then 8; does not eatisty CJ. If a; was removed during the
relaxation process, then 8; does not satisfy NH for some cardinality k
subset H of J; by the induction hypothesis a restricted tc H does not

k-satisfy C. In either case, 8; does not k+l-satisfy C.

There are several immediate corollaries.

Corollary 1: N; corresponds to the order n constraint defined by the
constraint expression C.

Corollary 2: C ie satisfiable if and only if N; is not the empty set.

Corollary 3t The constraint network constructed by the synthesis
algorithm operating on a constraint expression C is k-consistent with and
k-complete for C after step k. The network constructed by the algorithm is
consistent with and complete for C, and N; corresponds to C.

N P B S g R Y St 3wt o v o - SR ———
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