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1. Satisfying simultaneous constraints: probl em and applications )

Je are given a set of var i abl es X1....,X~ and constraints on subsets

of these vari ables limiting the values they can take on. These constraints

taken together constitute a global constraint which specifies which sets of

va lues ai.....a~ 
fo r X1,...,X~ can simu l taneousl y satisfy all the given

constraints. In other words, the constraints define an n—ary relation.

Our pr oblem is to syn t hesize this relation, i.e. to determine tho se sets of

va lue s which simultaneous l y s atisfy the set of constraints.

The simultaneous sat is fact ion of several constraints——call  them

propert ies, relationships , predicates , features or attributes —-is a very

gener al problem , with more applications than I can fully survey here. The

essential technique we apply, i terated reduction of possibilities through

constraint propagation, has anal ogues in many areas of computer scIence and )
mathematics. Many of these applications and analogues are descri bed i~
(163 , (113 and (24). Applications range from data base retrieval (find all

y and z such that K is a part and y Is a par t, and a is a supplier , x

must be installed before y, and z supplies both x and y) (see also (123 ) to

scene analysis (segment the scene into regions such that sky regions are

blue, grass reg ion. are green, and car regions are shiny, sky reg i ons are

above grass regions and cars are not totally surrounded by either grass or

sky) . Of particu lar note is the work of J.R. U ll man , who has used

constraint propagation methods In a variety of contextS, ranging from

pattern recognition (193 to graph i somorph i sm (21). The probl em also

admits of a gr aphical repr esentat ion , whsre its resemb lance to networks of

()
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interacting processes conjures up a long history of other work, including
recentl yt (83 , (183 and (63 .

In scene analysis, in particular, there has been a recent groundswell
of applications, e.g. (13 , (16) , (93, (133. Several of the latest examples
can be found In (33.

Often we are only given , or choose to use , ‘local” constraints, i.e.
constraints on small subsets of the var i ables , from which we must

synthesize the global constrain t. For fundamental results on the

comp l ementary problem, analysis of a globa l constraint i nto local ones, see

(14).

2. Previous re~ultss partial consistency

Constraints represented in network form may be propagated through

(potentially) parallel algorithms which cut down the solution search space
by ruli ng out inconsistent combinations of values.

The obvious brute force approach of testIng every possible combination

of values face s an equall y obvious comb i natorial exp l osion. Backtr ack

search tec hn i ques cut down the search space but often •xhlbit cost ly
thraehing behavior (17) (23 . llackworth (113 has interpreted previous

work by Fik.. (73 , Waltz (233 and Ilontanari (15) as cutting down the earch

space and av oiding classes of thrashing behavior by eliminatin g

comb i nations of va l ues wh i ch could not appear together in any set

satisfying th. globa l constraint.

U 
.

~~~~~~

-

H ____



4

A network representation of a set of constraints is emp l oyed

(restricte d to unary and binary constraints , pred i cates on one or two

var i ables ) . Each var i able is represented by a node, and each binary

predicate by a link or arc between two nodes. (Loops on a node may be

viewed as binary or unary predicates. ) For example , the problem of

coloring a two node complete graph with one color can be represented as in

Figure 2.1.

(2 (red green) 
~ 

— red green) 2

Figure 2.1

In the figure, red green)1 and (red gr~~n)2 are the initial domains of

val ues for and X2 respectively, the predicate at each node i~ ‘colored

red” and the binary predicate between the nodes I. “is not the same color

a.”.

Mackworth distingu i shes three levels of inconsistency for a constraint

fletwork, which represent combi nations of values which cannot participate in

any solution to the global constraint. The first and most obv ious is node

inconsistency. Hsrs the potential domain of values for and is given

as red and green, but the unary predicateS specify red. lIe can immediately

el em its green from both nodes, as in Figure 2.2.

C~red d#d~M1— —.---— (red d1~d.U2 D
~~~~~~~ ‘.MPW ~~~~~~~

Figurs 2.2
IT’
*
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S The next l evel of inconsistency is arc inconsistency, the arc from

to is inconsistent because for a value in X1. namely ‘red”, there does

not exist  any value a2 in such that red and a2 together sat i sfy the

relation ‘red is not the same color as az” . To remedy this inconsistency

us remove red from X1, and similarl y, from X2. This cuts down our search

space all rights unfortunately, In this case it ref lec ts the fac t that the

problem is i mpossible, There is no global solution, i.e. the network is

what I call ‘unsatisfia ble ’.

It is entirely poss i b le for a network to have no arc inconsistencies,

and still be unsatisfiable. Consider the probl em of coloring a complete

three node graph with two colors, represented in Figure 2.3.

(red green) 2

(red green) 1 (,~ed green) ~

Figure 2.3

Assume the set of possible values for each var iable is (red green) and the

binary predicate between each pair again specifies ‘i• not the same color

a.”.

This network is arc consistent , e.g. given a value ‘red’ for X~. us

can choose green’ for red is not the same co!or as green. Yet

obviously there is no way of choosIng •ingie values a1, a2, a3, for X1, K2.
and K3, suc h that a l l  three binar y cons t r a i n t s  are s a t i s f i e d

simu l tan.ously. If we choose red, før K1, for example, we are forced to

choose green for K2 to sat i sfy the constraint between K1 and K2. This

C ...) 
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forces a choice of red for K3, which forces a choice of green for K1, )
already picked to be red.

Nevertheless, it may be helpful to remove arc i nconsistencies from a

network. This i nvo l ves comparing node• with their ne i ghbors as us did

above. Each node must be so compared; however, compar i sons can cause

changes (deletion.) irs the network and so the compar i sons must be iterated

until a stable network is reached , These i terat ions can propagate

constraints some distance through the network. The camper I sons at each

node can theoretically be performed in parallel and this parallel pass

i terated.

Thu. removing arc inconsistencies involves several distinct ideacs

local constraints are globally propagated through i teration of parallel

loca l operations. It rema ins to be seen which aspects of this process are

most significant to it, application. The parallel possibilit ies may prove )
to bs p a r t i c u l a r l y  Im por tant ;  however , at the moment serial

Implementation. are used in practice.

W altz “f i l tering” algorithm for scene l abelling (233 is the paradigm

example of an arc consistency algorithm. Wa ltz wishes to attach labels to

the lines in a line drawing ind icating their semantic i nterpretations as

convex, concave or occ luding three-d imensiona l edge.. The line draw ing

i tself  functions a. th, constr aint network. Vertice s function as network

nodes. An individual vertex value consist . of a l abe l for each of the

lines inc i dent to the vertex; the set of possible va l ues is initially

constr ained according to realizable three dimensional interpretation, for

the various t~ , e  of vertices. The lines are the arcs of the network and
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f each represents the relation “the Isbellings of the adjacent vertices must

agree along this line’.

Wa ltz filter i ng algor i thm (expecia iiy when further constrained by

speci fying initial l abels for edges on the background) generally resu l ts in

an amazing combinatorial reduction: thousands of poesiblilities are often

reduced to a state where all nodes have a single va l ue remaining , thus

totally solving the prob lem of obtaining the global solution. Of course

the algor i thm does not alway. terminate with a unique value at each node.

Generally, In this case, most nodes w i l l  sti ll have a unique value , while a

few nodes w i l l  have a ssail ~.t of values remaining. Normally this final

stats Indicate, that several amb i guous interpretations are possible;

alternative sets of values that simultaneously satisfy all constraints can

be quickly found with tree search.

( ~ It is perhaps not as well appreciated that this fina l state may also

- be reached for a figur e whIch In fac t admit, no consistent labelling. This

is to be suspected , however, given that the fIltering algor i thm only

achievee arc consistency. Given the basic Huffman label set (18) (4) (not

Waltz ’ expanded labe l set ) and applying the filter ing algorithm (without

first constraining the outside lines to be occlusions) , the line drawing in

Figure 2.4 is lef t labelled as shown.

( .,)

-- -- —.. ..—.—..—-- ---- — - .,~~~ ._-- —.-—__—,
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FIgure 2.4

However, there is no consistent cho ice of label. for the vertices of the

inner tr iangl e. In other words the f i l ter ing alg orithm alon , w il l not

determine if a line drawing is what Huffean ca l ls an ‘impossible figure’. )
Ilontanar i (15) has developed a more powerful notion of inconsistency

which Iiackworth call , path inconsistency. A network is path inconeletent

if there are two nodes K1 and K2 such that a satisfies K1, b satisfies K2,

a and b tøgeth.r satisfy the binary constraint between them, yet there is

some other path through the network from K1 to such that there i. no

••t of values, one for each nods along the path, which inc ludes a and b,

and can simu l taneously satisfy all constriinte along the path. For

example, the network in Figure 2.3 is path Inconsistent; red eatlet lee K1.
green K3, red is not the same color a. greens however, there ie no value

for K2 which will satisfy the constraints between K1 and ~2’ 
and between K2

and K3, whil e K1 is red, K3 i. green.

tion t anar l gives an algor i thm that essentially remov es path

~r~
_
~’ 
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nconei .tenci,s from a network. However , pat h consistency does not

necessarily i nsure satisfi abi l it y either , as pow erful as it sounds.

Consi der the problem of coloring the complete four node graph with three

colors (Figur e 2.5).

Ir g b12

(r g b)1 Ir g b)3

FIgure 2.5

Each node contains red, green and blue, and each arc again represents the

relat ion ‘is not the same color as’. In particular, ....th c~ns i etency does

not fully determine the sit of values satisfying the global constraint,

( which in this incons i stent case is the empty set.

In summary, arc and path consistenc y algorith ms may reduce the search

space, but do not in general fully synthesize the globa l constraint. When

there are multiple solutions, additional search w i l l  be required to specify

th. several acceptable combinations of values. Even a unique solution may

require further search to determine, and the consi stency algorithms may

even fail to revsal that no solutions at all exist.

,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “—.— . — — — — — ~ 5 _~~~~~~ * S * ~~~~~ ’ ~~~~~~~ #d: ~~~~~~~~~~~~~
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3. An extended theory

k
As the coloring problem suggests, the general problem of synthesizing

the globa l constraint i. NP—complete (53 , and thus unlikely to have an

efficient (po l ynomial time) solution. On the other hand the exper i mental

results of Waltz , and th. theoretical stud es of tlontanar i , suggest that in

specif ic applications it may be possible to greatly facilitate the search

for solutions. I will present an algor i thm for synthesizing the n—ary

constraint defined by a set of constraints on subsets of n var i ables. It

may be of substantial benefit in applications where pruning of arc arid path

Inconsistencies ,tiIl leaves many p o ssibilities to be searched.

Thre  are two key observations that motivated the algorith m.

1. Nods , arc and path consistency in a constraint network for ii

variables can be generalized to a concept of - k—consistency for any k~n, - )
where n—consistency constitutes a natural notion of global consistency.

2. The given constraints can be represented by nodes, as opposed to

links, in a constraint network; we can add nodes representing k—ary

conetra inte to a constraint n•twork for a l l k~n (whether or not a

correspond ing k-ary constraint I, given): and we can then propagate these

constraints in this augmented net to obtain higher l evels of consistency.

By succe ssive l y add i ng hiph sr level nodes to the network and

pr opagating constraints in the augmented net, we can achieve k—a ry

consistency for all Ii. U. do not need to restrict th. given constraints to

binary -relat ions. Ruling out l ower order I rscon .)etencies In stages

progressively reins in the combinatorial explosion. The final result Is a

)

— L  - 
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globally consisten t network, where the n-ary node specifies explicitl y the

n—ary constraint we seek to synthesite. No further search is required.

The rest of thi s paper will present the algorithm , along wit h a sufficient

theoretical base to justify it. operation.

4. A preliminary example of the synthesis algorithm

I will giv , a crude example of the synthesis algorithm in operatIon,

by way of motivation f or the forma l description wh i ch follows. The

presentation in this section is Intent Ional l y sketchy .

Suppose we are given the follow i ng constraints on var i ables K1, K2,

K3; The unary constraint C1 speci f ies that K1 must be either a or b, i.e.

( -
, C1— la bi . Similarly C~s(e fi and C3.(c d gI. The binary constraint on

and K2 specifies that either K1 is b and K2 is e, or K1 is b and K2 is ft

C12.(b. bf). Likew i se C13.(bc be bg) and C~~.(ed fg).

14. wish to determin e what choices for K 1, K2, K3, i f  any, can

simu l taneousl y sat is fy  a l l  th ese constraints. lie begin building the

constraint network with three nodes represen ting the unary constraints on

the three var iables, as shown in Figure 4.1.

I. f!~
la b)1 lc d g)3

Fi gure 6.1

.
,

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ITT
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Next we add nodes representing the binary constraints . and l ink them to the J
unary constraint s as shown in Figure 4.2 (e.g. (be bf)12 represents C12).

I.

(be bf) 1., led fg ) 23
‘
V

(a b1 1 — lbc be bg)13 — Ic d gi 
~

Figure 4.2

After we add and l i n k node C12 we look at nods C1 and find that
element a does not occur in any member of C12. We delete a from C1.
Similarly, we delete c from C3 after adding C~~. The constraint network now
appears as in Figure 4.3.

(s f ) 2 -

“N(y bf) 12 (ed fgI~~
Ii b) 1—ibc be bg) 13— l~ d 9)3

Figure 4.3

Now from C3 we look at C13 and find that there Is an elemen t bc in C13
which require, c as a value for K3, while c is no longer in C3. lie remove

bc from C13, as in Fi gure 4.4. -

)

_ _ _ _  
_ _  —
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I
(sf )2

(~~_bf ~12 ted fgl ~~
(bi ~~~~~~~ be bgl 13’ W 913

Figure 6.4

So far we have merely achieved a sor t of ‘arc consiste ncy’ (though we

indic ate the restriction of the pair bc , as well as the elements a and c).

Next , we add a node for the te rnpry constraint. No order three

constra int was given or ig ina l ly ,  so we could assume i n i t i a l l y  the

‘non—constraint’, all possible triples. However, we w i l l  take advantage of

the rest r i c t ion s avai lab le  from the b inary and unary pred i cates to

( construct a mors limited .•t of possib ilities. C1 and C2~ together allow

only the follow ing set of triples: (bed bfg). lie use this as the ternary -

node and link it to the binary nods. as shown in Figure 6.5.

‘f ) 2
(be bf)1~ ed bfgi1~~~~~ - led

Ib) — --——-- (be bg113 —- - -- - -- - -- 
~~

Figure 4.S

lie look at the nsu nods from its neighbors and vice versa, as us did
earlier , to in sure consistency of the sort we obtained earlier between

nsiØ~bor ing nodes. C13 is consistent with the new nods: be is part of

bed. bg par t of bfg. Similarly C12 and C~ are consistent with the ternary

( )  

-

-

~

-

~ 
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node. If necessary, we co uld pro pagate deletions around until loca l

consistency is achieved on this augmented network. However, in this case,

the network Is already stabiet no fur ther changes are required .

The ternary node represents the synthesis of the given constraints.

There ars two ways to simultaneousl y sati sfy the given constraints:
X2.s, K3sd or K1.b, K2.f, X3rg.

S. Basic definltionss constraint expressions, constraint networks arid

satia f lability

This section prisents ssveral definitions needed to stats the problem

and It. solution prec i sely. -

lie are given a .it of variables X1,... ,X,,, which may take on values

from a set of universes U1,...,U,, respective l y. We will assume the U1 to

be discrete, finite domains, Let I— lI 2 ... riP . Many of our definitions

will be mad., for any subset JCI. U. denote by Kj the indixed set of

variables (K J
)
J~J. A value a1 in U1 will be cal lid an instantiation of

K1. An instantiation of a set of variables Xj, denotsd by •j, ~Ie an

lndsued sit of values I~jl j(J.

A constrain t on Xj , denoted Cj. is a set of ineta n tlat ions of Xj.

The ‘indexed set’ notation Impl ies that there Is a function, a, from J

onto the Instantiation •j. which serves to indicat , wh ich member of aj
instantiate, which variables the value of a at j, denoted a1, is the

ineta ntiation .of K1. lie could also represent Cj as an ordered ••t or
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4 m—tupl s , where m is the numbir of elemen ts in the ..t J (called the

t cardinality of J and denoted IJI): ajs(a a ), t~ in UIi ia ii ii
for l ick, i ,k.1,...,m. Thus Cj  may be thought of a. an m—ary relation . I

have found it useful , however, to use set notation rather than refer to

cross products or predicates in the presentation which follows. Given a p .

‘aj(aj’ will denote the instantiation of K1 contained in aj.

A ~ j~nt ~~~~~~~~ of order n Is a conjunction of constraints

C. A Cj , one constraint for each subset J of I (excep t the empty subset).
J521

Normally we wi l l  not be exp l i c i t l y  given constraints for all JCI s

however, we can assume they exist, with no loss of gsnerality, as the ‘non
constraInt’ for can always be specified, the .it of all combinations of

elements from the domains of the variables in Kj.

( ) 
We say that an instantiation aj satisfie , a constraint Cj If s~cC~.

The instantiat i on aj satisfies a constraint CH, HcJ , if the set

(a jicaj)j(H, wh ich we call aj restr icted to H, is a member of CH. An

Instantiat Ion aj. where JJ.k, .Mthfi e a constraint expression of

order n~k if aj satisfies the constraints CH for all HcJ. If an
Instantiation a

~ n-satisfies the constraint expression of order ri. we say

that •~ satisfies the expression. A constraint expression C is

~ .uti!i iabi if for all cardinality k subsits J of I, there exists an aj
such that aj k— satisfies C. If C of order n is n—satisfiable it Is said to

be satisfiable.

A conjunction of constraints, a constraint express Ion, defines another

constraints the set of all instantiation. a1 which satisfy the constra int

expression. Our central prqblss is to synthes i ze the order n conetraint on

(~~
-
)

_________ - - ~~~~~~~~~~~~~~~~~~~~~~ 
- 
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K 1 defined by the constraint expr ess ion , i.e. to determine e x plicitly the

se t of In .tantlations a 1 uhich simult aneously satisfy all the given

constraints. An instantiation a1 which satisfies C is called a solution of

the constraint ex pressi on .

A constraint network of order k In n var i ables, kin, is a set of

constraints called nodes, Nj , for each ,JC1, JI~k, where a link is said to

exist between N~ and NH if HCJ and H~”$J~-1. Linked nodes are called

neighbors. A constraint network of order n in n vari ables will be called a

~~j constra int network, A nods N~ is said to correspond to a given

constraint CJ if NjsCj , i.e. each instantiation of one is a member of the
other . A full constraint network in n var i ables corresponds to a

constraint expression of order n i f  each node N~ I n  t he ne tw or k

corresponds to the constraint Cj In the expression. The order of a node

N~. or a constraint Cj. is the cardinality of J .
For example, the networpi in Figure 5.1 corresponds to the constraint

expression C. A Cj  , where: 1.11 2), C1.(r gi, C2.’(r gi , C12.Irg gr).
Jic21

(I avoid set notation in the subscr ip ts for simplicit y .)

Ir glj — (rg pm 12 (r gi 2

Figure 5,1

This is obviously a representation of the problem of coloring a two node

graph with two colors.

As nodes are constraint s we are abl e to restate all the above

def Initi on, Involving sat ief lab ility in terms of nodes and networks, rather

)

-- --— -
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than constraints and constraint expressions. In particular we can speak of

an instantiatIon aj satisfying a node NH for NC). We also will want to

talk about aj satisfying P41 for H)J. We will say that a~ satieflis P41
H~J, if then exists an in NH such that (a J caHl J(J.aJ. I.e. hers is an

InstantIation which satisf ies P41 who se res triction to J is aj.

S. Constraint propagation

We can now defi ne the basic constra i nt propagation mschani sm. To

~~~~~~~ the constraint Nj  to a neighboring constraint ~~ remove

from NH all aH wh i ch do not satisfy Nj. Global propagation is difined

recursively, To pioballu ~~~~~j1 a constraint Nj through a neighburing

( ) constraint P41: first l ocally propagate N~ to 141: then, if anything was

removed from 
~41 by th. local propagation, globally propagate P41 through all

its neighbor s except Nj. To ~~~~~~~ a constraint N~. globally propagate

Nj through all its neighbors. The propagation procedure is similar to an

arc consIstency algorithm . Mackuorth discusses efficient serial algorithms

for arc consist ency (113. Of course, a parallel imp l ementat ion is

possible.

A constraint network is said to be ~~~~~ if we can propagate every

constraint Nj In the network without causing any changs (deletione from

nodes) In the net. The 
~~
j

~~
jj

~~ 
o~ a constraint network is the network

obt ained by propagating all nodes of the network , (The propagation

obviously terminates In a relaxed network.)

( 5
) . 
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7. Synthesis algorithm

We ars now ready to state the syn thesi. algorithm. The claim , to be

proven in section 10, Is tha t this algor i thm , g i ven a constraint

expression , produces a constraint network whose order n node cor respond . to

the order n constraint defined by the constra int expression .

ALGORI Th is

Given C. A Cj . lie define the algorithm i nductively :

J21

STEP 1. Construct a constraint network with nodes Nj  corresponding to

constraints Cj  in the given constraint expression , for all JCI of

cardinality one.

STEP k.1: For all Jcl of cardinality k+1s

Add the nods Nj to the network corresponding to the given constraint

Cjr. Link N~ to all Np~ such that H P. a c.rdlnality k subset of J.

Locally propagate to Nj from each of it~ neighbors. Propagate N~.

For a constraint exprees)on of order is, the algorithm is run for is

step.. The result is a ful l constr aint network, where N1 corresponds to C.
The nest section wi l l  present several examples of the algorithm in

operation. First a few general observations. The network produced by this

algorithm is the nsla.tatIon ef the network corresponding to C. Ws couid

have obtained It simply by buildIng the cor r.sponding order is network and

)
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propagating each nods. By proceeding in stages we take advantage of the

elimination of poss ib i l i t ies  that may occur at each stags to mitigate

combinatorial explosion. We take this principle further and propagate each

node as it is added, before adding another. A good heuristic would be to

add earlier these nodes which exert a heavy constraint , e.g. where Cj is

small. The propagation of these constraints sag elim inate elements from

nodes used in constructing later constraints. If Cj is the non-constraint

is can construc t Nj in i tia l ly  from some NH and NJ..HP where H is a

cardina lity Ii subset of J , preferably the one for which INJIKINJ...Hl Is a

minimum . (A dd to each member of NH each member of
Other refinements are clearly possible , Provision should be made for

early tsrminatlon , s.g. as soon as one node becomes empty. Propagation can

be simplified , e.g. by noting non-constraints, or us ing comp l ements of

( ) nodes. Additiona l links could permit direct propagation between a node

and the nodes for all subsets of J.

It is generally rsdundant to require all non-constrai nt nodes ;

basi call y we only need one ‘path’ up to the n-ary node for every ‘real’

constraint. Consider a constraint expression on four variables where only

the binary constraints are really spec i f i sd (th. others are

non—constraints). Only the binary constraints can rsai ly have any effect

on the global solution. Three ternary nodes are sufficient for the network

constructed by the algorithm. If the fourth ternary node rule . out any

element of the ordsr four node, it is only reflecti ng a bInary constraint ,

which is rsflscted in one of the other ternary nodsp, On the other hand we

may be Intsrsatsd in the effects on non-constraists of the pr,opagation

( )
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process. In general the pruning process of the algorithm progressive l y

makes explicit  at N~ restrictions on instantiations of Xj that are not

originally given by Cj. but rather impl ied by the other constraints. In

the fina l network produced by the al gorithm every member of ever~g Nj is

part of some solution of the constraint expression. (In particu lar, we

have der i ved the ‘min imai ’ network. Montanan ’s ‘centra l problem’ (153.)

0. Further examples : graph coloring, scans labelling, graph i somorphiem

As the synthesis prob l em Is such a general one, the synthesis

algor i thm has many potential applications. Graph prob lems, of course, l end

themse l ves particularly to a constraint network formulation. I present in

L this section three applications wh ch w i ll serve to iilustrat e the

algor ith m, and are of same independent interest a. well.

As we would  expect from the discussion in section 2, the graph

coloring problem can easil y be represented as a constraint network. Given

a graph G, and a set of co l ors, we construct a constra i n t network from C as

follows: Each node of C is replaced by the unary constraint representing

the set of colors. It there is an edge between nodes In C, we rep l ace it

by a binary constraint linked to the nodes which represents ‘is not the

same color as’. If there is no link between nodes In C, we add the

non—constraint between the nodes.

Let we consider two examples. First coneider the problem of coloring

• complete three node graph with three colors. Figures Lie, Lib and $.lc

)

_ _ _ _  
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show the constraint network after steps one, two and three of the

algor ithm, where the nodes N1, N2, N3 are all the set Ir g bi , N12, ~l3 
and

P423 all equal (rg rb gr gb br bg) and N123.Irgb rbg brg bgr grb gb.), the

si~ possible colorings.

N2 - -
~~~~~~ 

-

L N1 N3

8.1.

N12
N1 ——-•--------- N13 -.- - - ---- -— N3

8.lb

• 8.1c

FIgur e LI -

We could construct a network of the sor t we used in section 2, for this

problem. However th. nstwork would be path consistent : arc and path

consistency algorithms would not rule out any elements at the nodes.

Consider now the problem of coloring a complete four ssods graph with
three colors, which we weed In section 2 to il lus trat, that path

cons-istenoy Is not a suffIcIent condition for os t isf labili ty. After the

(
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third step of the algorithm we would have four t,rnary nodes, each equal to

the ternary nods in the prevIous example.

At the beginning of the fourth step we use N123 and N4 to construct an

order f our node: ~~~~ irgbr rgbg rgbb rbgr rbgg rbgb brgr brgg brgb bgrr

bgrg bgrb grbr grbg grbb gbrr gbrg gbrb). Local propagation from th. other

ternary nodes quickly reduces th. order four node to the empty set (and

this constraint propagates back down to remove all elements from all the

nodes). No instantiation of the order four node will simu l taneousl y

satisfy the four ternary nodes. Unsatl.tlabiiltg is demonstrated.

These examples are rather perverse cases, of course, though they do

illustrate points wi t h respect to the discussion in section 2. Applications

in the scene labelling domain generally i nvo l ve more propagat ion than

occur s in the coloring problem. The synthesis algorithm does function as a

test for iposeible figures. It also finds iii the intirpretatlan. In an

ambiguous figure. Y~u may uan t to s imulate the algor i thm on a simple

fIgur e like that In fIgur e 8.2.

- 
Figure 8.2

After the W alt z filter ing algorith, I. run on the I4uff.an l abe l set

(withou t additional constraints on the background labellings) there are

three l abels left at each order two vertex and two at each order three

vertex.

)
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For a final example, we take graph isosorphism. Given two graphs C

and H, which we wish to test for Isomorph i sm, construc t a constraint

network from C as follows. ( If  H has marc nodes than C the algorithm will

seek isomorphic mappings of C onto eubgraphs of H.) Replace each nods of C

with a unary constraint nods containing all the nodes of H. (If we allow

l oops, edges from a node to itself , the unary constraint on a node in C-

with a l oop will be ‘ha. a loop in H’, on a nods in G without a loop, ‘ha s

no loop In H’. lie could also i ncorporate additiona l unary constraints such

as the order of the vertex (221.) Replace each edge between nodes a and b

InC with a binary constraint node, linked to the unary nodes for s and b.

This binary nods will represent the constraint ‘these two (distinct) nodes

share an edge in H’. In other wards the binary constraint w i ll contain a

peir xy if and only if there is an edge between x and y in H. Between two

nodes which do not shore an edge InC we also place a binary node, linked

to them, but representIng the constraint ‘these two (distinct) nodes do not

share en edge in H’.

For smamplel given the graphs C and H in FIgure 8.3

• 

b

- Figurs 8,3

us produce the constra int network in Figure 14.

- 
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5)

11 2 31 a

(12 211ab 
- (1 2

(13 31 23 321~~
112 31b

• Fi gure 8.4

Propagating constraints, we obtain the network in Figure 8.5.

(1 2 31a 
23 *V ac

(12 211ab It 2 3)c

Figura 8.5

Now adding the ternary nods we obtaIn Figure 8.6.

(1 2)~
13n ac

(12 211ab~~~
1123

113

Figure LB

)
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C -

Thi. network Is relaxed. The ternary node represents the two possible

isomorphlsm.s a—~1, b—>2, c—>3 and a->2, b—>1, c—>3. (The algorithm also

finds i somorphic eubgraphs along the way.)

In the above applications, the desired globa l state Is defined In

terms of loca l constraints. Often we first face an anal ysis prob l ems

choosing, or learning, a set of local constra ints that spec i fy or

approximate the desired g l oba l stats (281. (An i mportant concern will be

the choice of a ‘good’ constraint ex pression , i.e. ens that can be

syn thesized effici en tly. ) As we explore var i ous applications, it w i l l ,  of

course, be squally important to develop theoretical methods for snalyzing

the performance of the algori thm in a given domain.

(

9. Consistency and completeness

Th. synthesis algorithm operates by removing higher and higher leve l

Inconslatsnci•s until a globa l consistency has been achieved. In th is

section, 1 dsf ins this sequence of cons istency states , and also define a

concept of completeness which we w i l l  want to apply to a network.

A node Nj of order k is k-consistent with a constraint •*pression C

if all members of Nj k-satisfy C. A network of order k or greater is

k—consistent with C If all nodes of order k are k—consistent with C. If a

full constraint network of order n Ii n—con sisten t with . a conatraint

expression C of order n we say that It is consistent with C. -

- 
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A nods N~ of order k is ç~~~i~~j for C if any instantiation aj

which k—satisfies C is a member of N~. A network N is k-complete for C if

every node of order k is k-complete. An n-complete full constraint network

of order n Is said to be complete.

A few comments may be in order to relate the consistency notions

described in this section to the background discussion in section 2. For

networks of unary and binary constraints, k-consistency implies that if we

pick va l ues of any k— i variables from the unary nodes, and a kth var iable,

there w i l l  be a value of the kth variable, at the unary node, such that the

it va l ues together satisfy all predicates invo lving the it var i ables (i.e.

they form an instantiat ion of N~ where J is the set of it var iables

chosen). This indicates that 1—consistency of a constraint network implies

node consistency of the corresponding network of the type descr i bed in

sect i on 2, 2—consiat.ncy Implies arc consistency and 3-consistency implies )
path consistency. The first two are obvious; the latter requires reduc i ng

- path consistency to the three node case, which Is done by induction in a

theorem of flontanari.

Suppose we seek a global solution by using depth first tree search on

the elements remaining in the unary nodes of a k-consistent network of

unary and binary constraints. Backup will only be initiated below the kth

level. If the network Is cons i stent , there will be no backup. Even

better, and for arbitrary relaxed constraint networks, us can choose an

order it nods, and use its members as the al ternative paths through the

first It l svsls of a search tree . onl y really doing tree search on the

remaini ng n—k nodes. Of course, if we have ach i eved full consistency the

• - . ‘5- - - 5- -~~~~’ 5 -~~~~ “ ‘ “5- ’~ ’ — -— -
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members of the order n nods are the solutions and no further search Is

— requ i red.

18. Synthesis theorem

Us are now ready to stats the theorem which justifies the sy nthesis

algorithm .

THEOREMs The rsiaxation of the network corresponding to a constraint

expression C. A Cj  is consistent and complete with respect to C.
Jc21

The proof will be by i nduction. Consistency and compistenese of order

( one are obv ious. Our In duct ion hypothesis is that the network is
-

~~~ k—cons istent and k—com plet e; is wish to prove k+1-consistsncy and

k.i1—co mplsts nsss.

Consistency; Us want to show that all Nj. ~or J any cardinaiity k+1

subse t of I are k+1—consistsnt. Nj. before rel axation, corresponded to

Cj, so inc l uded nothing which did not satist~ Cji rel axation does not add

any elements to a nods. Suppose there exists an aj  In Nj such that aj

does not sat isfy CHI for some proper subset H of J , I.e. aj restricted to

H is not a member of C14. Pick a set C of cardinalitg it such that H~~cJ.

Because of the local propagation during the relaxation process. we know

• that aj sati sfies N6. Thus aj restr icted to C, a6, is a member of As

the network is K—consisten t a6 restricted to H i s a  member of Cpj. But

restricted to H is aj restricted to H; contradiction.

0

a
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Co.plstenesss Cbnsidsr any aj not in Nj, for J any cardinality k+1

subset of I. There are two possibili ties. If was not in Nj before

re l axation , then aj  doss not satisfy Cj. If aj was removed dur i ng the

relaxation process, then aj doss not satisfy NH for some cardinality K

subset H of J; by the induction hypothesis •j restricted to H does not

k—satisfy C. In either case, aj does not k+1-sat isf y C.

There are several immediate corollaries.

Corollary is N1 corresponds to the order n constraint defined by the

constraint expression C.

Corollary 2: C is satisfiable if and only If N1 is not the empty set.

Corollary 3; The constraint network constructed by the synthesis

algorithm operating on a constraint expression C is k—consistent with. and
k—complete for C after st ep it . The network constructed by the algorithm is
consistent with and complete for C, and N1 corresponds to C.

_ _ _  - .5 - - -5- - -
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