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Introduction

The bulk of the work carried out under this contract was concerned

with algorithms for solving three types of optimization problems:

(1) nonlinear programming problems with both equality and inequality

constraints, (2) nonlinear programming problems with functional

constraints of the form $(x,w)<0, as well as ordinary equality and

inequality constraints (these arise in engineering design), and (3)

constrainted optimal control problems.

The thing that all these problems have in common is that algorithms

for their solution, in “conceptual” form, require an infinite number

of “elementary” operations per iteration and hence must be converted

into “laplementable” form by the introduction of approximations.

Typically, the approximations are applied to the solutions of a

differential equation, or to the solution of a system of equations and

inequalities, or to the computation of the constrained maximum of

a Iun’ ’~ton. Now, it is not difficult to see that arbitrary approximation

schemes may lead to implementable algorithms that do not converge.

Furthermore , the invention of approx imation schemes consistent with

convergence is by no means easy. Finally, in many engineering

app lications, even approximate solution. are quite costly and hence

computational efficiency of the resulting implementable algorithm

is a very important consideration in the evaluation of an approximation

scheme.

During the three years of this project, (i) we have contributed

4 substantially to the theory of adaptive approximations as it applies to

the construction of implementable algorithms. In addition, (ii) We
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have made use of our theory in developing several new iinplementable

algorithms for the classes of problems mentioned earlier. We

have developed techniques for enlarging the region of convergence without

loss of rate, of such algorithms as Newton’s method or secant methods,

by grafting them onto slower, but more robust algorithms. We have developed

a new theory of convergence in the sense of relaxed controls for optimal

control algorithms and, finally, we have explored a few problems

in multicriteria optimization.

Maj or Results

1) Adaptive Approximation Theory

For the purpose of illustration, consider the following relatively

simple problem, which is the absolutely simplest example of the type

of problem occurring in computer aided design.

mm f(x) (1)

with

f (x) — maxt~~(x ,w ) I s~ fl} (2)

and •:l~xp*+Ii~ differentiable, OCP
5 compact. To simplify matters

further, suppose that for each there is only one s~~ (2 ,ia~(x) , such

that f(x).~ (x,w). Then f(’) is differentiable and (1) can be

solved by Araijo’s gradient method: (~~(O,l), ~~(O,l) parameters)

k
X
j~~j

Z
j~~B 

1V+ (x~ 5 us(x~)) (3)
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where k
1
>O is the smallest integer satisfying

~~~ 1~

- f (x j_8
iV$(x

i
,w(xj)))_f(xj)~_8

i
izII V

~
(x
it
~

s(xj) fl)
2 (4)

Quite obviously the conceptual version (3)—(4) is naive, because it

requires k~ evaluations of f(x) at each iteration, and even a

fair approximation to f(x) and w(x) can be quite expensive. Furthermore,

when $(x
1

) is not convex, there is no certain way to evaluate f (x)

at all! We have developed a theory for modifying algorithms such as

(3)—(4) into efficient implementable forms with demonstrable convergence

properties and we have developed a number of new algorithms by making

systematic use of our theory. These algorithms are in the gradient

projection, reduced gradient, and m m  max algorithm families. A

L key fea ture of our theory is that it permits the use of very coarse

approximations in the early iterations and that it uses a test to

determine when accuracy should be increased. In particular, we

~~ wish to draw attention to [10,16,171, which describe three algorithms that

perform very well in computer aided design applications. These algorithms

solve problems of the form min {f O(x)~ gi (x)<O , j — l—in ; max F

i — I—L}. The results dealing with gradient projection and reduced

gradient methoc~. are reported in (3 ,51. Our numerical experiments show

that algorithms with adaptive approximation features are many times

faster than similar algorithms which use constant precision throughout.

2) Exact Penalty and Multiplier Methods

As a representative problem, consider

min{f°(x)~ f~ (x) cO} (5)

.3...
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with f0,f~ :J~~.R
1 
differentiable. This problem has the same solutions

as the unconstrained exact penalty problem

mm (f°(x)+klf’(z)() (6)

provided the penalty k>O is sufficiently large. An algorithm for solving

(5) via (6) must incorporate a scheme for computing a satisfactory

k which is finite and it must be able to cope with the nondifferentiabil.ity

of 1f1(x)I. In [7) we have described a general scheme for automatically

computing a parameter for an algorithm which is to be inserted into

the algorithm as a test with logic. Applications of this scheme

to new optimal control and nonlinear programming algorithms are

reported in (11,12,13,141. We also wish to draw attention to the novel way in

which the use of the penalty function. If’(x)I has been eliminated in
[11] by the addition of inequality constraints and in [14) by more

sophisticated techniques.

3) Stabilization of Locally Convergent Algorithms

Consider the problem

mm f ( x)
~~~~~ (6)

with f:~~
fl+~~

1 three t imes continuously differentiable. The simplest

version of Newton’s method:

—lx~~1.uxj—H( x~) Vf( xi) (
~

(with II(x)”42f(z)/ax2) converges only if x0 is sufficiently close

to a solution. For the case H(x)>O for all xEIt’, Goldstein proposed

the modified method

—4—
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xi+i
::j

_A
i

H(x
i
)’

~
f (x

i
) (8)

with A~—8 (BE(O ,l)) satisfying a certain line search rule. The method

(8) has a greater region of convergence than (7) ,  but it breaks down

when H(x)>O Vx does not hold. We have developed algorithms which use a

test to switch between formulas such as (8) and another one, such as, e.g.,

x
j÷i~~

x
j
_A

j
V f(x

i
) (9)

in such a way that the region of convergence is enlarged over (8) and

quadratic rate of convergence is still retained. Details can be found

in [1,2,4].

4) Convergence Theory for Optimal Control

An optimal control algorithm constructs an infinite sequence

of controls {ui
} which are measurable functions from an interval

[t ,t
f)
~*~ffi W. Generally, the sequence {ui} cannot be shown to have

limit points in L:[~ O,~~f] or 
in L~ [t0.tf ] or in L~[tØ.tfJ which are

the usual spaces for analysis. However, it is possible to place this

sequence in correspondence with a sequence of relaxed controls (U
i

) which

always has limit points in the topology of relaxed controls. We have developed

a convergence theory for optimal control algorithms, which, by means

of relaxed controls, enables us to make meaningful statements about

their convergence. Specifically, although ordinary limits for the

sequence of controls do not exist, the corresponding trajectories

do have L,, limits and we show that these limit trajectories satisfy

certain optimality conditions which emanate from the relaxed

Pontrygin Maximum Principle. The theory is described in (9 1 ,

applications can be found in (14,151.
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5) Multicriteria Optimization

So far, we have made only very modest progress in this area. Our

results are described in (6,8). Our continuing aim is to construct

computational aids which facilitate the decision process on the Pareto—

optimal (i.e. trade—off) surface.

conclusion

The last three years have been productive years for us during

which we have obtained several significant results.
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