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Introduction

This paper presents a comprehensive review of the research literature on
an aspect of probability assessment called "calibration." Calibration
measures the validity of probability assessments. Being well-calibrated

is critical for optimal decision-making and for the development of decision
aiding techniques.

Background and Approach

Subjective probability assessments play a key role in decision making.

It is often necessary to rely on an expert to assess the probability of some s
future event. How good are such assessments? One important aspect of 1
their quality is called calibration. Formally, an assessor is calibrated

if, over the long run, for all statements assigned a given probability (e.g.,
the probability is .65 that "Romania will maintain its current relation

with People's China."), the proportion that is true is equal to the probabi-
lity assigned. For example, if you are well calibrated, then across all

the many occasions that you assign a probability of .8, in the long run 80%
of them should turn out to be true. If, instead, only 70% are true, you are
not well calibrated, you are overconfident. If 952 of them are true, you
are underconfident. The figure below shows calibration curves of well-cali-
brated, overconfident and underconfident assessors. ’
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While this characteristic of assessors has obvious importance for applied
situations, people's calibration has rarely been discussed by decision
analysts or decision advisors. In the last few years, there has developed
an extensive literature about calibration, reporting both laboratory and
real-world experiments. It is now time to review this literature, to look
for common findings which can be used to improve decisions, and to identify
unsolved problems.

Findings

Two general classes of calibration problem have been studied. The first
class is calibration for events for which the outcome is discrete. These
include probabilities assigned to statements like "I know the answer to
that question,” "They are planning an attack,” or "Our slarm system is
foolproof." For such tasks, the following generalizations are justified
by the research:

1. Weather forecasters, who typically have had several years of experience
in assessing probabilities, are quite well calibrated.

2. Other experiments, using a wide variety of tasks and subjects, show
that people are generally quite poorly calibrated. In particular, people
act as though they can make much finer distinctions in their degree of
uncertainty than is actually the case.

3. Overconfidence is found in most tasks; that is, people tend to over-
estimate how much they know.

4. Despite the abundant evidence that untutored assessors are badly
calibrated, there is little research showing how and how well these
deficiencies can be overcome through training.

The second class of tasks is calibration for probabilities assigned to
uncertain continuous quantities. For example, what is the mean time between
failures for this system? How much will this project cost? The assessor
must report a probability density function across the possible values of
such uncertain quantities. The usual method for eliciting such probability
density functions is to assess a small number of fractiles of the function.
The .25 fractile, for example, is that value of the uncertain quantity such
that there is just a 252 chance that the true value will be smaller than

the specified value. Suppose we had a person assess a large numberof .25
fractiles. He would be giving numbers such that, for example, "There is

a 25Z chance that this repair will be done in less than x, hours" or "There
is a 257 chance that Warsaw Pact personnel in Czechoslovaéia number less
than x,." This person will be well calibrated if, over a large set of such
estima%es, the true value will be less than x, 25% of the time. The measures
of calibration used most frequently in resear%h consider pairs of extreme
fractiles. For example, experimenters assess calibration by asking whether
982 of the true values fall between an assessor's .0l and .99 fractiles.

For calibration of continuous quantities, the following results summarize
the research.
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1. A nearly universal bias is found: assessors' probability density functions
are too narrow. For example, 20 to 50Z of the true values lie outside the .01
and .99 fractiles, instead of the prescribed 2Z. This bias reflects over-
confidence; the assessors think they know more about the uncertain quantities
than they actually do know.

2. Some data from weather forecasters suggests that they are not overconfident
in this task. But it is unclear whether this is due to training, experience,
special instructions, or the specific uncertain quantities they deal with
(e.g., tomorrow's high temperature).

3. A few studies have indicated that, with practice, people can learn to
become somewhat better calibrated.

Implications

Since assessed probabilities are central to a wide variety of decision
problems (e.g., making intelligence estimates, assessing system reliability,
pProjecting costs, deciding whether to acquire more information), the question
of whether such probabilities are calibrated has far-reaching importance.
Almost all decision analyses involve probability assessments. If these
assessments are in error, the finest analysis relying on them may be faulty.
The bias towards overconfidence reported here is widespread and well documented.
What is not so well established is whether, and how, this bias can be overcome
through training. The superior performance of weather forecasters is
encouraging. These people have been using probabilities in their forecasts

on a daily basis for several years; one might assume that this experience
accounts for their excellence. Further research is needed to document just
how much training, with what kind of feedback, is most efficient for improving
assessors’ calibration. Such research is crucial to developing a viable
decision analysis technology. It also helps tell us how much faith to put

in the probability assessments and decisions of untrained decision makers
working without the benefit of decision aids.
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CALIBRATION OF PROBABILITIES: THE STATE OF THE ART

INTRODUCT ION

From the subjective point of view (de Finetti, 1937) a probability
is a degree of belief in a proposition whose truth has not been ascertained.
A probability expresses a purely internal state; there is no "right" or
"correct” probability that resides somewhere "in reality" against which it
can be compared. However, in many circumstances, it may become possible to
verify the truth or falsity of the proposition to which a probability was
attached. Today, we assess the probability of the proposition "it will
rain tomorrow." Tomorrow, we go outside and look at the rain gauge to see
whether or not it has rained. When verification is possible, we can use it
to gauge the adequacy of our probability assessments.

Assessors' adequacy has been discussed by Winkler and Murphy (1968a),
who identified two general kinds of '"goodness," normative goodness, which
reflects the degree to which the assessments conform to the axioms of probability
and espress the assessor's true beliefs, and substantive goodness, which reflects
the amount of knowledge of the topic area contained in the assessments. This
Paper reviews the literature about the kind of adequacy called calibration.

If a person assesses the probability of a proposition's being true as .7,
and later finds that the proposition is false, that in itself does not invalidate
the assessment. However, if a judge assigns .7 to 10,000 independent propositions,
only 25 of which subsequently are found to be true, there is something wrong
with these assessments. The attribute which they lack we call calibration.

This attribute has also been called "realism" (Brown and Shuford, 1973),

"realism of confidence" (Adams and Adams, 1961), "appropriateness of confidence"

(Oskamp, 1962), "external validity" (Brown and Shuford, 1973), "secondary
validity" (Murphy and Winkler, 1971), and "reliability" (Murphy, 1973). Formally,

a judge 1is calibrated if, over the long run, for all propositions assigned a
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given probability, the proportion that is true is equal to the probability
assigned. We can empirically evaluate judges' calibration by observing their
probability assessments, verifying the associated propositions and then
observing the proportion that is true in each response category. Judges who
are not calibrated may be either underconfident or overconfident. For the
underconfident assessor, the proportion of propositions that are true is
greater than the probability assigned to them. With overconfidence, too few

propositions are true.

In this paper, we review the experimental literature on calibration,
separated somewhat arbitrarily into two sections. The first is devoted to

the calibration of assessors making probability judgments about discrete

propositions; the second, to calibration for probability density function
concerning uncertain numerical quantities. The arbitrariness arises from

the fact that an uncertain quantity, for example, ''the population of Brazil," 4

can always be reworded into one or more discrete propositons, such as "the
population of Brazil exceeds 85 million." 1In a few cases, our decisfon about i
which section an experiment should be discussed in depended more on how the authors
reported thelr data than on how their subjects perceived the task.

Calibration is essentially a property of single individuals. Most of

the results reviewed here, however, are grouped across subjects. Although

grouping is often necessary to secure the large quantities of data needed for
stable estimates of calibration, it can both obscure interesting individual

differences and cause serious biases in studies in which only a few items are

presented to many subjects. The experiemnter who relies on but a few stimuli L

may run the risk of inadvertently including a preponderance of items which

most subjects answer incorrectly (e.g., Are potatoes native to Ireland or

Bolivia? How many people live in Quter Mongolia?). With such '"deceptive"

items, perfect calibration is impossible. A large number of items is one ﬁ




protection against this problem.

DISCRETE PROPOSITIONS

Discrete propositions can be stated with any number of alternatives:

No alternatives: What is absinthe? The subject is asked to provide an
answer, and then to give the probability that his or her answer is carrect.
The entire range of probability responses, from 0 to 1, is approptiate.

Only Adams (1957) has looked at calibration for this task.

One alternative: Absinthe is a precious stone. What is the probability

that this statement is true? Again, the relevant range of the probability
scale is 0 to 1.

Two alternatives: Absinthe is (a) a precious stone; (b) a liqueur.

With the "half-range" method, the subject first selects the more likley
alternative, and then states the probability that this choice is correct.
This response must be > .5. With the "full-range" method, the subject gives
the probability that a prespecified alternative is correct. Here the subject
may use any response from 0 to 1.

Three or more alternatives: Absinthe is (a) a precious stone; (b) a %

liqueur; (c) a Caribbean island; (d) . . . Two variations of this task

may be used: (1) the subject selects the single most likely alternative and

states the probability that it is correct, using a response > 1/k for k

alternatives; (2) the subject assigns probabilities to all alternatives,

using the range O to 1. This procedure induces dependencies in the data, by

requiring the k assessments to sum to 1.

For all these variations, calibration may be reported via a "calibration

curve." Such a curve is derived as follows: (1) Collect many probabilistic

responses to items whose correct answer is known or will shortly be known to

the experimenters. (2) Categorize the responses, usually within ranges; for




example, all responses between .60 and .69 are placed in the same category.

(3) Compute for each category the proportion correct, that is, the proportion

|
|
|
4
1
|

of items for which the proposition is true. (4) For each category, plot the
mean response agaiunst the proportion correct.

Several measures of overall calibration have been proposed. Murphy (1973)
has looked at the general case of k-alternative items. Each response, |
i, is represented by a row vector of probabilities, L= (rl, ...,rk), and
the associated outcome by a row vector gy - (cli""’cji""’cki)’ where cji

equals one for the true alternative and zero otherwise. Given response

ety

vectors for N items form a single individual, the Brier (1950) scoring rule
(proper quadratic scoring rule such that the smaller the score, the better)
is:

N

1 & P
B L Cs)Es)!

B =

in which the prime denotes a column vector. Murphy partitioned this score

‘ into three terms. The response vectors are sorted into T subcollections

i o

such that all the responses x, in a subcollection are identical. Let n, be

the number of respomses in the t'th subcollection, and let Et be the

proportion-correct vector for the t'th subcollection:

- - » - L -
Et - (clt’o.ogcjtgnoo’ckt) s where cjt - tElet/nt .

Let‘é be the proportion-correct vector across all responses,

N

- - - - - 1
c= (cl""’cj""’ck) s where cj = iflcji s

and let u be the unity vector, a row vector whose k elements are all one.

Then Murphy's partition of the Brier score is:




The first term measures the uncertainty inherent in the set of N items.

For example, if all items concern rain vs. no rain, this term reflects

how often it rained in fact. The second term, which Murphy called

"reliability," is a measure of calibration, the weighted sum of squares

of the difference between the responses and the proportion correct for
those responses. The third term, called "resolution," reflects the ability
of the assessor to sort the events into subcategories for which the hit
rate is maximally different from the overall hit rate.

Murphy (1974) has further suggested a "sample skill score" to measure
the skill of forecasters. This score, which constitutes a proper scoring
rule, is calculated by subtracting the second term in the partition,
calibration, from the third term, resolution. Assessors should maximize
this score; the maximum is (k-1)/k.

Murphy's partition was designed for repeated predictions of the
same event, e.g., rain. When the items are diverse, as in a multiple-
choice examination, so that the alternatives can be identified only as

" and so forth, then the first term is

"first alternative, second alternative,
not meaningful; it is simply a function of the order in which the true alternatives
were arranged across items.

When the assessor is asked first which is the correct alternative, and

next what the probability is that the chosen alternative is correct, only
one response per item is scored. In these cases, Murphy's (1974) measure

reduces to what he has called (Murphy, 1972) the "special scalar partition:"

T T
B' = c(1-c) + % z nt(rt-ct)2 - % z nt(c-:t-a)2 s
t=1 t=1

where ¢ is the overall proportion correct, and Et is the proportion correct

in the t'th subcategory. When the second response is the response > .5 (as

el




with the two~alternative, half-range task), the first term does have an
interpretation: it reflects the subject's ability to pick the correct
alternative, and thus might be called "knowledge." The second term measures
calibration, and the third, resolution, as before.

This scalar measure of calibration, a weighted squared error, is similar
to measures proposed by Adams and Adams (1961), who used a "mean absolute
discrepancy score,"

1 2 T
tfl/gt |z-c.| /tfl CRE
and by Oskamp (1962), who used an "appropriateness of confidence" scale:

3l -
& %% lze-e,

t=1

Shuford and Brown (1975) also started with a proper scoring rule,
the logarithmic. In addition to computing a score for the assessor's
responses, S, they proposed fitting a least squares regression line to
the data in a calibration curve. The equation for the best-fitting line
can be used to externally recalibrate the assessoi's responses, in order
to correct for systematic bias. One can then compute the score for these
recalibrated responses, g. If M 1s the maximum score possible, then u-§
measures the loss in score due to lack of knowledge, while §-S measures the
loss in score due to poor calibration.

None of these measures of calibration have as yet gained acceptance in
the research literature. None discriminate overconfidence from underconfidence.
Nothing is known about the sampling properties of any of the measures.

Meteorological Research
In 1906, W. Ernest Cooke, Government Astronomer for Western Australia,

advocated that each meteorological prediction be accompanied by a single

number which would "indicate, approximately, the weight or degree of




probability which the forecaster himself attaches to that particular

prediction." He reported (Cooke, 1906a, 1906b) results from 1,951 predictionms.
Of those to which he had attached a weight of 5 ("almost certain to be
verified"), .985 were correct. PFor his weight of 4 ("normal probability"),

.938 were correct, while for his weight of 3 ("doubtful"), .787 were correct.

oy e
st

In 1951, Williams asked eight professional Weather Bureau forecasters in

Salt Lake City to associate the number 0, .2, .4, .6, .8, or 1.0 with each

12-hour forecast of precipitation. The calibration curve for 1,095 predictions
appears in Figure 1. These assessments of the probability of precipitation were
too high throughout most of the range (see Figure 1). This might be the
result of a fairly natural form of hedging in public promouncements. People
are much less likely to criticize a weather forecast that leads them to carry
an umbrella when it does not rain than one that leads them to be without an
umbrella when it does.

Similar results emerged from two studies of forecasters reported by
Murphy and Winkler (1974). One of their studies dealt with the effect of
a computerized weather prediction system (PEATMOS) on forecasters' assessments.
The task was to assess the probability of precipitation the following day.
Forecasters did this twice, before and then again after seeing the PEATMOS
output. Data were collected in Great Falls, Montana, and Seattle, Washington.
All 7,188 assessments (before and after PEATMOS in both cities) were combined
to produce the calibration curve in Figure 1, which shows the same over-
estimation of the probability of rain.

In the other study forecasters were asked to predict the next day's
high temperature. Two forecasters used a "fixed-width, variable-probability"
technique. First, they named the median temperature. Then they stated the

probability that the temperature would fall within intervals of 5° F and 9° F

centered at the median. Such a technique converts a continuous probability
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distribution into a two-alternative discrete task: the temperature is scored
as falling either within or outside of the stated interval. Calibration for
241 such assessments is shown in Figure 1. These forecasters, who could
have used any probability between 0 and 1, responded below .4 on only three
occasions (excluded from the curve). Again, we see a systematic bias across
the entire range covered: the probability associated with the temperature
falling inside the interval is always too large. Better calibration was
reported by Sanders (1958) who collected 12,635 predictions of a variety
of dichotomized events: wind direction, wind speed, gusts, temperatures,
cloud amount, ceiling, visibility, precipitation occurrence, precipitation
type, and thunder~storm, using the eleven responses 0, .1, ... .9, 1.0.
The resulting calibration curve is shown in Figure 1.1

In contrast to the meteorological studies showing a constant bias

across almost the entire response range, Root (1962) has reported calibration

for 4,138 precipitation forecasts which shows (see Figure 1) a more systematic

pattern. Here, assessed probabilities were too low in the low range and too

high in the high range, relative to the observed frequezncies. This pattern

indicates overconfidence both for the proposition, "It most likely will rain,"

and for the proposition, "It most likely won't rain."

Figure 2 shows calibration curves for one year of precipitation
probability forecasts from Hartford, Connecticut (Winkler and Murphy, 1968b).
These forecasters had the option of forecasting for either a six-hour period
or a twelve-hour period. They made 3,174 six~hour forecasts and 2,936
twelve-hour forecasts; these data are shown separately. There was some

ambiguity about whether the forecasters had intended to include or exclude

1 The references by Cooke (1906), Williams (1951), and Sanders (1958) were
brought to our attention through an unpublished manuscript by Howard Raiffa,

dated January, 1969, entitled "Assessments of probabilities."
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"a trace of precipitation" (less than .01 inches) in their predictions of

precipitation. Accordingly, the data were analyzed twice, once assuming that

"precipitation" included the occurrence of traces, and once assuming that

"precipitation" did not include traces. The inclusion or exclusion of

traces had a substantial effect, as did the choice of time period. Six-hour j
forecasts were associated with lower observed frequencies than were ﬁ
twelve-hour forecasts. Thus the forecasters were found to assess precipitation
probabilities that were too high for the six-hour, traces excluded case, and

too low for the twelve~hour, traces included case, relative to the observed

frequencies, while the other two cases showed very good calibration.

The United States Weather Bureau (1969) has collected massive amounts of |
calibration data for precipitation forecasts made from April, 1967, to

March, 1968, at sites all over the country. Figure 3 shows just one-fourth of

these data (the rest of the data were highly similar); each curve is based

on more than 16,800 forecasts. The solid-line curve is for forecasts for “
the first time period, that which immediately followed the time the forecast

was made. Here, calibration was excellent, with a mean absolute error of

only .03. As the lag between the time the forecast was made and the period
it referred to increased, calibration deteriorated. This deterioration was
not as great as it appears in the figure, because in the later periods

forecasters used fewer responses in the high range. Thus, even for the third |

period the mean absolute error was only .05. Hurphy2 believes that these

data more accurately represent the current performance of weather forecasters

than do the data in Figures 1 and 2. He attributes the suverior performance

in the present report to the increased experience with probabilities that

the forecasters have gained over the years, and to the fact that these

data were gathered from real on-the-job performance, whereas some of the previous

data either were collected in experimental situations (Winkler and Murphy, 1974)

or with events that are not usually forecasted probabilistically (Sanders, 1958).

2
Personal communication, February, 1976.
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Early Laboratory Research |

In 1957, Joe Adams published a paper using an eleven-point "confidence
scale" with a zero-alternative task. His subjects were trained to use, not
probabilities, but a scale defined to them in precisely the way we have
defined calibration: "[the subject was] instructed to express his confidence
in terms of the percentage of responses, made at that particular level of
confidence, that he expects to be correct. . . Of those responses made with
confidence p, about pZ should be correct" (p. 432-3).

Each of forty words was presented tachistoscopically ten times |
successively, with increasing illumination each time, to ten subjects.
After each exposure subjects wrote down the word they thought they saw, ;
and gave a confidence judgment, limited to the numbers 0, 10, 20, . . . 90,
100. The resulting calibration curve, across subjects, is shown in Figure 4.
Great caution must be taken in interpreting the data: because each word
was shown 10 times, the responses are highly interdependent. It is unknown b
what effect such interdependence has on calibration, but the finding of gross

underconfidence along the entire response scale has been replicated with only

one subject in one experiment (Swets, Tanner and Birdsall, 1961). Perhaps
subjccts were "holding back," unwilling to give a high response when they
knew that the same word would be presented several more times.

The following year Adams and Adams (1958) reported a training experiment,

using the same response scale, but a new, three-alternative, single-~response

task: For each of 156 pairs of words per session, subjects were asked

i

whether the words were antonyms, synonyms, or unrelated. Thirteen of the

14 experimental subjects, who were shown calibration tallies and calibration

aa

curves after each of five sessions, had lower discrepancy scores on the fifth

day than on the first. The mean decrease for the 14 subjects was 487. Six

control subjects, whose only feedback was a tally of their unscored responses,

13
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showed a 362 mean increase in discrepancy scores. Figure 4 shows the
calibration, grouped across all five sessions for one experimental subject--
the only subject for whom Adams and Adams reported such data.

In a 1961 Psychological Review article, Adams and Adams discussed many
aspects of the calibration of probabilities (using the term "realism of
confidence"), anticipating much of the work done by others in recent years,
and presented more bits of data, including the grossly overconfident calibration

curve of a schizophrenic who believed he was Jesus Christ. They reported

calibration curves from a nonsense syllable learning task with large
overconfidence after one trial and improvement after 16 trials. They also
described briefly a "transfer of training" experiment: On the first day,
subjects made 108 decisions about the percentage of blue dots in an array of
blue and red dots. On the second and fourth days, the subjects deéided on

the truth or falsity of 250 general statements. On the third day, they lifted
weights blindfolded. On the fifth day, they made 256 decisions (synonym, antonym,
or unrelated) about pairs of words. Eight experimental subjects, given
calibration feedback during the first four days, showed on the fifth day a
mean absolute discrepancy score significantly lower than that of eéight control
(no feedback) subjects, suggesting some transfer of training. Finally,

Adams and Adams reported a correlation of .36 between absolute discrepancy

scores and fear of failure (achievement anxiety) for 56 subjects taking a
multiple choice final examination in elementary psychology. Neither over- 1
nor underconfidence nor knowledge was related to fear of failure, only

calibration.

One can suppose that, having originated such a wide range of thoughtful

ideas, the Adamses sat back to watch the procession of further work on the

topic. If so, they may still be waiting. Except for the study by Oskamp

(1962) described next, no other work appeared for over ten years, and of all
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the other literature reviewed in this paper, not a single author has referenced
the Adamses' or Oskamp's work!

Oskamp (1962) used 200 MMPI profiles3 as stimuli. Half the profiles

“

were from men admitted to a VA hospital for psychiatric reasons; the others
were from men admitted for purely medical reasons. The task was to decide,
for each profile, whether the patient's status was psychiatric or medical, 1

and state the probability that the decision was correct, using the half-range 3

method. Each profile had been independently categorized as hard (61 profiles),
medium (88), or easy (51) on the basis of an actuarially-derived classification
3 system, which correctly identified 57Z, 69%, and 92% of the hard, medium, and
easy profiles.
4 j Three groups of subjects judged all 200 profiles: 28 undergraduate
} psychology majors, 23 clinical psychology trainees working at a VA hospital,
and 21 experienced clinical psychologists. The 28 inexperienced judges
were later split into two matched groups, and given the same 200 profiles
‘ again. Half were trained to improve accuracy: after the first 50 repeated
profiles, they were told their percent correct for the first 200 and the
just-completed 50, and instructed in the use of four simple actuarial rules
(e.g., if the P-gcale is 55 or higher, call the profile psychiatric). For

profiles 51 through 100, they received right/wrong feedback after every 10

profiles. They received no feedback during profiles 101-200. The other
inexperienced judges received calibration training during their second session.
After every 50 profiles, they were told their percent correct, their
calibration score, their rank within the group on both these measures, and

shown their calibration curve. The experimenter suggested and discussed

3The MMPI (Minnesota Multiphasic Personality Inventory) is a personality

inventory widely used for psychiatric diagnosis. A profile is a graph of
13 sub-scores from the inventory.

16

TN v sl




T T ——— e e - e T

ways of improving each sublect's calibration.
Oskamp used three measures of subjects' performance: accuracy (percent
correct), confidence (mean probability response), and appropriateness of

confidence (a calibration score: % In:|t:-zt|). All three groups were,
t

in general, overconfident, especially the undergraduates in their first
session (accuracy 70Z, confidence .78). However, all three groups were
underconfident on the esy profiles (accuracy 87Z, confidence .83).
The subjects trained for accuracy increased their accuracy from
67Z to 73Z, closer to their confidence, .78, which did not change as a
z result of training. Their calibration score decreased from .17 to .10.4
| The subjects trained for calibration lowered their confidence from .78
to .74, bringing it closer to their accuracy, .68, which remained unchanged.
A Their calibration score decreased from .15 to .ll.
Signal Detection Regearch
In the early days of signal detection research, investigators looked
‘ into the possibility of using confidence ratings rather than Yes-No

responses in order to reduce the amounts of data required to determine a

stable ROC (receiver operating characteristic) curve. The classic Psychological

Review paper by Swets, Tammer and Birdsall (1961, the same volume in which the
Adamses' review appeared!) reported individual calibration curves for é
four observers who used a six-point rating scale to indicate their confidence
that they had heard a signal plus noise rather than noise alone. The ratings
were defined on a probability scale, the first point representing 0.0 to 0.04,
the next 0.05 to 0.19, followed by four equal-width categories, 0.20-0.39,

0.40-0.59, 0.60-0.79, 0.80-1.00, The calibration curves of the four subjects,

AMM?I-buffs might note that with this minimal training the undergraduates

showed as high an accuracy as either the best experts or the best actuarial

prediction systems. 1
17




based on 1,200 trials each, are shown in Figure 5. The individual differences
are striking, with aly one subject being even remotely well calibrated.

Clarke (1960) reported an experiment in which one of five different
words, mixed with noise, was presented to listeners through headphones.

The listeners selected the word they thought they heard and then rated their
confidence by indicating one of five categories defined by slicing the
probability scale into five ranges. Twelve practice tests of 75 items each
helped the listeners to calibrate themselves. After each test, listeners
scored their own results and noted whether the appropriate percentage of
correct identifications fell in each rating category, thus allowing them to
change strategies on the next test. Clarke found that although all five
listeners appeared well calibrated when data were averaged over the five
stimulus words, analyses for individual words showed that the listeners

tended to be overconfident for low-intelligibility words and underconfident
for words of relatively high intelligibility. As we show in the next section,
this pattern of findings, overconfidence for difficult items and underconfidence
for easy items, has been obtained in different tasks.

Clarke also reported an experiment in which both the signal-~to-noise
ratio and the number of alternatives were varied. He found that the calibration
curves for different signal-to-noise ratios were nearly identical when only
four words made up the message set. But when any one of 16 words was
possible, the curves appeared well calibrated only for the larger signal-to-
noise ratios, deteriorating of overconfidence at smaller signal-to-noise
ratios. In spite of their training in using the rating scale, the listeners
adopted different response criteria for different stimulus characteristics,
thereby shifting their calibration curves.

Pollack and Decker (1958) used a verbally defined 6-point confidence
rating scale that ranged from "Positive I received the message correctly"

to "Positive I received the message incorrectly.” With this rating scale

18
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Calibration for Four Subjects in a Signal Detection Task
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- | it is impossible to determine whether an individual is well calibrated, but

A it 1s possible to see shifts in calibration across conditions. In seeming

', ' contrast to Clarke's results, Pollack and Decker showed that the average

| calibration curve over three subjects remained unchanged with different signal-
to-noise ratios. However, when subsets of difficult items, medium items and
easy items were analyzed separately, the invariance of the calibration

curves disappeared. Calibration curves for easy words generally lay above
those for difficult words, whatever the signal-to—-noise ratio, and the curves
for high signal-to-noise ratios lay above those for low signal-to-noise

ratios, whatever the word difficulty.

In another experiment on message reception, Decker and Pollack (1958)

varied the frequency cutoffs for the noise that was mixed in with the

; speech. For one subject, calibration was unaffected by the change in filters,
but for the other two subjects, the calibration curve for the lower-frequency
filter was below that fer the other filter. Here, the effect of task

; ‘ difficulty on calibration depended on the individual.

3 In most of these studies, shifts in calibration curves were of secondary

interest; the important question was whether confidence ratings would yield
the same ROC curves as Yes-No procedures. To answer this question, it is

not necessary to define rating scales in terms of probabilities; verbally-

defined categories are sufficient. Thus, the probability scale disappeared
from signal detection research. By 1966, Green and Swets concluded that,

in general, rating scales and Yes-No procedures yield almost identical ROC
curves. Since then, studies of calibration have disappeared from the signal
detection literature.

Recent Laboratory Research

Hazard and Peterson (1973) found no effect on calibration due to




changes in response mode. Forty subjects, armed forces personnel studying

at the Defense Intelligence School, responded with probabilities, and with

odds, to 50 two-alternative general knowledge items (e.g., which magazine had

the largest circulation in 1970, Playboy or Time?), using the half-range
method. Substantial overconfidence was found, as shown in Figure 6.
Lichtenstein (unpublished) replicated the results, using the same items but
only the probability response, with 19 Oregon Research Institute employees.
Phillips and Wright (in press) found similar results with different items,
using British undergraduate students as subjects. The calibration curves
shown in Figure 6 look remarkably similar considering the variety of subject
populations employed; all showed gross overconfidence.

Using the same half-range, two-alternative method, we have recently i

conducted a series of experiments exploring calibration (Lichtenstein and

Fischhoff, 1976). We will briefly review our findings here.

In two tasks chosen to be extremely difficult, subjects were poorly
calibrated; in fact, they showed no evidence of calibration at all. Figure 7 {4
shows curves for these tasks, one in which subjects were asked to identify
small sketches as drawn by European or Asian children, and one in which they

studied stock market charts and were asked to predict whether the stock

described by each chart would be up or down 3 weeks hence. Overall percent
correct was 53% for children's art, 47% for scOcks.S

Even a small amount of substantive knowledge will induce some
improvement in calibration. We asked two other groups of subjects whether
each of 10 examples of handwriting was written by a European or an American,
after they had studied 10 similar examples. All examples were preselected

to be difficult to judge. The training group's study examples were correctly

) We caution the reader against trying to interpret the fascinating shape (a
fish?) created by these two calibration curves. We think it's a fluke of chance.
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Calibration for Two Impossible Tasks
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labeled as to country of origin; the mo-training group's study examples

were unlabeled. As shown in Figure 8, the training group, who correctly
identified 71% of the handwriting examples, were much better calibrated
than the no-training group (512 correct).

We pursued the notion that substantive knowledge affects calibration in ]
several additional studies using two-alternative general knowledge items.
Substantive knowledge was defined for subjects by the proportion of items
they correctly answered (best or worst subjects) and for items by the

proportion of correct answers, across subjects, for each item (easy or hard

items). Figure 9 gives results for 50 graduate students pursuing Ph.D.'s in
psychology. A replication using different items and a different sample of

subjects, undergraduate student volunteers, showed similar results (not

graphed here).
These curves clearly show that the degree of over- or under-confidence 1
is a function of substantive knowledge. The most knowledgeable subjects

answering the easiest items showed substantial underconfidence, while

e

the worst subjects on the hardest items showed substantial overconfidence.

The relationship between item difficulty and over- or under-confidence is mediated
by the distribution of responses given by subjects. To be well calibrated

with hard items, an assessor must use many responses of .5 and .6 and a few

of .9 and 1.0, while with easy items the reverse must be true to achieve

good calibration. The distributions of responses for the four calibration

curves shown in Figure 9 indicate that the subjects did change their distribu-
tions, but not as much as they should have. Across 16 different experiments

or sub-experiments we have run (Lichtenstein and Fischhoff, 1976) using
two-alternative half-range tasks, there is a .91 correlation between the

mean response over all subjects and items (range .65 to .86) and the percent

correct over all subjects and items (range 43 to 92), giving further
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Calibration for Subsets Varying in Difficulty
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evidence that subjects do change their response distributions as the
difficulty level of the task changes, though not enough to achieve good cali-
bration.

The calibration curves shown in Figure 9 were not calculated from
separate, independent sets of data, but from subsets of items embedded in
a larger set, the longer test given to each subject. To guard against the
possibility that there is some artifactual reason for these findings, due
perhaps to an adaptation level effect operating in the larger, more varied
tests the subjects actually took, we prepared two tests, one hard (50 items)
and one easy (50 items), using items that had previously been used in a
large, varied test. These smaller tests were given to two new groups of
subjects; 48 subjects took the hard test, 45 the easy. Figure 10 shows
that the calibration from these two separate, independent tests was
essentially the same as calibration calculated from sub-tests created
artificially (and post hoc) from a larger set of data. The effect of test
difficulty shown here is not an artifact due to our method of analysis.

Using a full-range, one-alternative task, Pitz (1974) found an item-
difficulty effect similar to that reported above. He gave 38 subjects 12
items concerning the population of various countries (e.g., 'the population
of Brazil exceeds 85 million'"), and an unspecified number of items concerning
the grade each would receive in Pitz's course, one week before the final
exam. The population items were chosen to be difficult, the course grade
items easy. The divergence of the two calibration curves is apparent (see
Figure 11).

While Pitz did not report percent correct for either group, his '"hard

item" calibration curve is similar to data Fischhoff and Lichtenstein (in

preparation) have collected with the two-alternative, full-range method (see
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Calibration for Several Full-Range Studies
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Figure 11). 1In our study, 100 two-alternative items were given to 131
subjects. Half the subjects were told to assess the probability that the
first alternative was correct; the other half responded to the second
alternative. The data from the two groups were combined. The test items
were composed of two subsets, one with 75 items of moderate difficulty
(65% correct)6 and one with 25 items of greater difficulty (55% correct).
Clearly, the pattern of Pitz's results for hard itews was repeated; the
calibration was abysmal.

Perhaps the categorization of items into "hard" and "easy" does not
really capture the essence of expertise. Experts might be better calibrated
not only because they know the correct answer for more of the items, but
also because they have thought more about the whole topic area, and thus
can more readily recognize the extent and the limitations of their knowledge.
We tested this hypothesis, using psychology graduate students as our experts.
They responded to 100 items, 50 dealing with knowledge of psychology and
50 dealing with general knowledge. The two parts of the test were analyzed
separately. The percent correct was the same (76%) for the two parts.

Since item difficulty was controlled for, differences in calibration could
only be attributed to the hypothesized quality of insight that experts might

have above and beyond their level of knowledge. As shown in Figure 12, no

such differences were found.

: In the full-range method, percent correct is calculated as follows: when

the subject responds with a probability > .5, we count the successes; when

the response is .5, we count half the responses, under the assumption that the
subject, when asked to choose which of two alternatives is the preferred one,
would randomly make that choice. When the response is < .5, we count the
failures: i1if you say the probability of rain tomorrow is .1, and it doesn't rain,
then you were correct in beljeving it would more likely not rain than rain.
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Finally, we looked at the effect of intelligence on calibration. Our
usual volunteers were mostly undergraduate college students. Our graduate
student subjects may be presumed to be significantly more intelligent, as
a result of highly selective admissions procedures. Figure 13 shows the
calibration of two subtests of 73 items. The subtests were chosen from
previously collected data so that each item from the usual volunteers was
matched in difficulty (¥ correct) by an item from the graduate students.

The graduate students appear to be slightly better calibrated at .5 and 1.0.
The differences are slight, however, when compared with differences in
calibration due to test difficulty.

Data from two full-range studies are shown in Figure 14. Fischhoff and
Beyth (1975) asked 150 Israeli university students to assess the probability
of 15 then-future events, possible outcomes of President Nixon's much-
publicized trips to China and Russia. Examples of the events are "President
Nixon will meet Mao at least once"; "The USA and the USSR will agree to a
joint space program'"; "President Nixon will announce that his trip was
successful.” The resulting calibration curve, based on 1,921 assessments, is
suboptimal at 0 and 1, and shows a dip at .7, but is otherwise remarkably
close to the identity line. Why? The subjects received the usual instructions.
They were not experienced in probability assessments. They were run in large
classroom groups. They were not foreign-affairs experts. Is this ability a
special attribute of Israelis?

Sieber (1974) had 20 subjects assess probabilities for all four
multiple-choice alternatives of 20 items in a college classroom exam. All
1600 responses are included in this curve. A large proportion of the
responses (77%2) were of the form (1, 0, 0, 0), and for these responses the
calibration was superb: the percent correct was 98.7. The rest of the

curve (see Figure 14) is based on few data. It is difficult to know to
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what extent the apparent symmetry about the point (1/4, 1/4) is forced on
the curve by the inclusion of all four responses to each item.

The primary purpose of Sieber's experiment was to study the effect of
motivation on calibration. The subjects whose data are plotted here were
told that the score they earned on the test (based on a proper scoring rule)
would not count in their grade. Another group was told their score would
count in their grade. The latter (highly motivated) group used (1, 0, 0, 0)
for 90%Z of their responses. Their calibration (not plotted here) appears
worse, but so little data are available for the curve (aside from the end
points) that one should be cautious in drawing any conclusion.

In a stock market prediction task, Staél von Holstein (1972) asked
subjects to assess probabilities for a five-alternative task: the future
movement of stocks categorized into five intervals fixed by the experimenter.
He did not report the data necessary to compute a calibration curve, except
to note, tantalizingly, that of 7,896 distributions only 40 were of the
extreme form (1, 0, 0, 0O, 0). Of these, only 12 were correct!

The full-range studies based on laboratory research, shown in Figures
11 and 14, indicate symmetric calibration: the proportion correct for any
response r is approximately equal to one minus the proportion correct for
the response l-r. In contrast, the full-range calibration curves from the
weather forecasting studies shown in Figures 1 and 2, are not (except for
Root, 1962) symmetric: they show a constant bilas across the entire range.
It is tempting to believe that whether a calibration curve shows symmetry
or bias depends on the implicit payoff structure for different kinds
of error. Forecasters may prefer to forecast rain and be wrong than to
forecast no rain and be wrong. But it seems unlikely that laboratory
subjects perceive differential penalties for saying absinthe is a liqueur
and finding out it is a precious stone versus saying it is a precious

stone and finding out it is a liqueur.
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A rarely-discussed problem in measuring an assessor's calibration is

the large number of assessments needed to provide a stable estimate. One

way to reduce the number of responses required is to assume that the calibration

curve is one of a family of curves, and use the data to estimate the parameters

of the curve. Shuford and Brown (1975; see also Brown and Shuford, 1973)

assumed that calibration curves are straight lines, and found least squares

estimates of the slope and intercept for each subject. The model becomes a
one-parameter (slope) mucel when, for n items with k alternatives, the subjéct

gives responses to all alternatives and all nk responses are fitted by the :

model. Provided that the sum of the k responses to a single item is always

1.0, the fitted line is constrained in their model to pass through the point
(1/k, 1/k). Using 3-alternative items, Shuford and Brown reported, without
supporting detail, that "as long as a reasonably wide range of [responses]
is used by the [subjects], this estimation procedure can yield fairly stable
results with 15- and 20-item tests" (1975, p. 157). However, the authors
were concerned that their model assumes that all responses are independent,
and suggested that when more than two alternatives are used, this might not
be true because "some people might tend to overvalue information when deducing
reasons in favor of an answer, but tend to undervalue information when
deducing reasons against an answer" (p. 157). To solve this problem, they
proposed a planar least-squares estimation procedure for the special case of
three alternatives. The planar model, however, did not produce stable
estimates for small numbers of 1tems.7

Schlaifer (1971), in his MANECON program called TRUCHANCE, proposed a

one-parameter model which is linear in the log of the odds of the response

(r) plotted against the log of the odds of the proportion correct (c):

log i%; = A+ log ié;

7
T. A. Brown, personal communication, March 3, 1975.
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His program uses a Bayesian approach to finding the posterior distribution of
the parameter A, given a set of responses, and uses that distribution to re-
calibrate future responses. This model is somewhat limited. The only
forms of miscalibration it can recognize are curves always above the diagonal
or always below {t. Such a model could not adequately represeat the symmetric
full-range data shown in Figure 1 (Root, 1962) and Figure 1l1.

We have recently been exploring the use of models to improve the
stability of estimates of calibration (Phillips and Lichtenstein, in prepar-
ation), using both a two-parameter linear model and a two-parameter expansion

of Schlaifer's model:

log I%; = A+ B log TEE o

We are less sanguine than Shuford and Brown about the number of items
required for stable estimation. Consider an assessor who is so badly
calibrated that she says .2 when she ought to say .35, and says .8 when she
ought to say .7. Preliminary results with simulated data indicate that the
probability that such an assessor will appear to be perfectly calibrated can
be as high as .5 for a 100-item test.

The need for accurate estimates of calibration with the fewest possible
data is most pressing when one considers the problem of training an assessor
to become better calibrated. An obvious design for a training experiment
would be to run a subject for, say, eight sessions. At the end of each
session, we would give her feedback, telling her about her calibration and
urging her to improve it. If we collect too few data per session, we stand
a large chance of giving her false feedback~-telling her, for example, that
she is consistently underconfident, when in fact she is really overconfident.
In addition, the experimenter in such a study would have little power (in

the statistical sense) to conclude, after the experiemnt, that training led
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to improvement. On the other hand, preparing and presenting 800 to 1600
stimuli (100 to 200 per session) presents problems for both the experimenter
and the subject.

Brown and Shuford (1973) have suggested two ways of dealing with this
problem: (1) Give subjects scoring-rule feedback after every item. This might
serve to keep subjects interested and learning. (2) Give calibration
feedback after every N items. This feedback would be the straight line
fitted to the data. They further suggest that all responses to each item,
not just one response, be fitted. We believe that using all the data might
work for those situations where a constant bias is unlikely, such as when
using diversified items of general information. But when the items are
repeated presentations of the same question, such as "Will it rain tomorrow?",
the inclusion of both responses to each item would tend to obscure the kind
of bias shown in Figures 1 and 2.

One further problem in training assessors is the possibility that the
assessor will trade off informatton transmission for calibration. At the
extreme, an assessor could always respond with the base rate (the overall
proportion of correct propositions), thus yielding excellent calibration
but no information. To avoid this strategy, it might be wise to feed back
to the trainee Murphy's vector partitions of the scoring rule (or, where appro-
priate, the special scalar partitions) at the end of every session. Hopefully,
the subject would learn to improve the calibration portion of the score without
greatly decreasing the resolution portion. In addition, one would wish to
show the trainee, perhaps via a calibration curve smoothed by a fitted model,
whether poor calibration was due to overconfidence or underconfidence.

Our previous finding that subjects tend to be overconfident with hard

items and underconfident with easy items adds to the dilemma one faces in
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planning a training experiment. Those data suggest that one might have to

train subjects in both hard and easy tasks, separately, to have any hope
that the training would generalize.
CONTINUOUS PROPOSITIONS: UNCERTAIN QUANTITIES

Continuous uncertain quantities can be proportions (What proportion
of students prefer Scotch to Bourbon?) or numbers (What is the shortest
distance from England to Australia?). Subjects are usually not asked to
draw the entire density function across the range of possible values.

The elicitation procedure most commonly used is some variation of the
fractile method. In this method, the subject is asked to give the median

of the distribution ("state a value such that the true value is equally
likely to fall above or below the value you state'"), and then several other
fractiles. For example, for the .0l fractile the subject would be asked

to state a value such that there is only 1 chance in 100 that the true value
is smaller than the stated value. In one variant called the tertile method,
the subject 1sinot asked the median. He is asked to state two values

(the .33 and .87 fractiles) such that the entire range is divided into three
equally likely sections.

The most common calibration analysis is to calculate the interquartile
index, which is the percent of items for which the true value falls inside
the interquartile range (i.e., larger than the value associated with the
25th fractile, but smaller than the value associated with the 75th fractile),

" which is the percent of true values

and to calculate the '"surprise index,
that fall outside the most extreme fractiles assessed. The perfectly
calibrated person will, in the long run, have an interquartile index of 50.
When the most extreme fractiles assessed are .0l and .99, then the perfectly

calibrated person will have a surprise index of 2.
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The impetus for investigating the calibration of probability density
functions came from an unpublished paper by Alpert and Raiffa (1969),

surely the most referenced rough draft in the literature of decision making.

s

Alpert and Raiffa worked with four groups of subjects, all students enrolled
in courses given by the Harvard Business School, and all familiar with the
fundamentals of decision analysis. In their first experiment, all subjects
assessed five fractiles, three of which were .25, .50, and .75. The extreme
fractiles were, however, different for the different subgroups, .0l and .99
(Group A); .001 and .999 (Group B); "the minimum possible value" and "the

] maximum possible value" (Group C); and "astonishingly low" and "astonishingly

') high" (Group D). The interquartile and surprise indices for these four

j subgroups are shown in Table 1. Alpert and Raiffa, discouraged by the

enormous number of surprises, then ran three additional groups who, after

; assessing 10 uncertain quantities, received feedback in the form of an

d_ extended report and explanation of the results, along with perorations that

! in the future the subjects should "Spread Those Extreme Fractiles!" (p. 13).

The subjects then responded to 10 new uncertain quantities. Results before

and after training are shown in Table 1. All groups showed some improvement

with training. The greatest changes were shown by Group 4, the only group

of subjects who were not exclusively from the Harvard Business School, but

were enrolled in a decision analysis course designed for students from other
departments.

Alpert and Raiffa experimented with fitting a beta function to the
.25, .50, and .75 fractiles for a few subjects' responses to proportion
questions (e.g., what proportion of students answering this questionnaire
prefer Bourbon to Scotch?). The extreme fractiles of the fitted beta,
rather than those the subjects actually gave, were used to compute the

surprise index. This technique led to no improvement, suggesting that éf
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E3 Calibration Summary for Continuous Items:

Percent of True Values Falling Within Interquartile Range
and Outside the Extreme Fractiles

a
- N
Alpert & Raiffa (1969)
Group 1-A (.01, .99) 880
Group 1-B (.001, .999) 500
Group 1-C ("min" & *'max'") 700
Group 1-D ("astonishingly high/low'") 700
Groups 2 & 3 Before 1670
After 1670
Group 4 Before 600
After 600
tdlession & McCarthy (1974) 2035
! Selvidge (1975)
. Five Fractiles 400
_) Seven Fractiles (incl. .1 & .9) 520
; Schaefer & Borcherding (1973)
¢} 1st Day, Fractiles 396
:f 4th Day, Fractiles 396
; 1lst Day, Hypothetical Sample 396
4 4th Day, Hypothetical Sample 396
} Pickhardt & Wallace (1974)
| Group 1, First Round ?
Fifth Round ?
Group 2, First Round ?
Sixth Round v
Pratt & Pratt (Personal Communication)
"Astonishingly high/low" 175
Brown (1973) 414

Seaver, von Winterfeldt, & Edwards (1975)

: Fractiles 160
- Odds-Fractiles 160
Probabilities 180
0dds 180
Log Odds 140
Murphy & Winkler (1974)
Extremes were .125 & .875 132
Murphy & Winkler (this volume)
Extremes were .125 & .875 432
Stael von Holstein (1971) 1269

all experiments except Brown (1973).
so the ideal 1is 407.
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8 N is the total number of assessed distributions.

Interquartile Surprise
Indexb
Observed Observed Ideal
46 2
40 .2
33 47 ?
38 ?
33 39 2
44 23 2
36 21 2
43 9 2
25 47 2
56 10 2
50 7 2
23 39 2
38 12 2
16 50 2
48 6 2
39 32 2
49 20 2
30 46 2
45 24 2
37 5 ?
29 42 2
42 34 2
53 24 2
57 5 2
47 5 2
31 20 2
45 27 25
54 21 25
27 30 2

The ideal percent of events falling within the interquartile range is 50, for

He elicited the .30 and .70 fractiles,
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the problem does not reside solely in subjects' inability to give
sufficiently extreme .0l and .99 fractiles, but in their .25 and .75 frac-
tiles as well.

Hession and McCarthy (1974) collected data comparable to Alpert and
Raiffa's first session, using 55 uncertain quantities and 37 graduate students
as subjects. In their instructions, they urged subjects to make certain
that the interval between the .25 fractile and the .75 fractile did indeed
capture half of the probability. "Later discussion with individual subjects
made it clear that this consistency check resulted in most cases in a
readjustment, decreasing the interquartile range originally assessed" (p. 7),
thus making matters worse! This instructional emphasis, not used by Alpert
and Raiffa, may explain why Hession and McCarthy's subjects were so badly
calibrated, as shown ir Table 1.

Hession and McCarthy also gave their subjects a number of "personality"”
tests they thought might be related to individual differences in calibration:
the F (Authoritarian) Scale, the Dogmatism Scale, the Gough-Sanford Rigidity
Scale, Pettigrew's Category-width Scale, and a group-~administered intelligence
scale. The correlations of these tests with the interquartile index and the
surprise index across subjects were mostly quite low, although the F scale
showed a hint of a relationship with calibration, correlating -.31 with the
interquartile score and +.47 with the surprise score (N = 28).

Selvidge (1975) extended Alpert and Raiffa's work by first asking
subjects four questions about themselves (e.g., do you prefer Scotch or
Bourbon?). The responses were then used to find the true answer for what
we will call "group-generated" uncertain quantities (e.g., how many of the
500 students answering the questionnaire preferred Scotch to Bourbon?). One

group gave five fractiles, .01, .25, .5, .75, and .99. Another group gave

|
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those five plus two others, .l and .9. As shown in Table 1, the group

with two additional fractiles did better. These results are not as different
from the results of Alpert and Raiffa as they appear. Two of Alpert and
Raiffa's uncertain quantities were group-generated proportions which were
similar to Selvidge's items. On these two items only, Alpert and Raiffa
found 58% in the interquartile range and 17Z surprises. These results are
much more similar to Selvidge's results than were their results for the entire
10-item set. Selvidge also reported surprise indices of 10Z for extremes

of .01 and .99 and 24% for extremes of .1 and .9, using five fractiles.
Finally, when she asked subjects to give .25, .5 and .75 first, and then

to give .01 and .99, she got fewer surprises (8%) than when the order was re-
versed (16%).

Schaefer and Borcherding (1973) explored the effects of training. They

ran 22 university student subjects for four sessions, using 18 group-

generated proportions per segsion. Each subject used two assessment

[ .- =

techniques: (1) the fractile method (.01, .125, .25, .5, .75, .875, .99),
‘ and (2) the hypothetical sample method. In the latter method, subjects

are asked to state the sample size, n, and the number of successes, r, of

a hypothetical sample which best reflects their knowledge about the uncertain
quantity. The larger n is, the more certain they are of the true value of

the proportion. The ratio r/n reflects the mean of the distribution of

their uncertainty. Subjects had great difficulty with this method, despite
instructions which included examples of beta distributions. After every
session subjects were given extensive feedback, with emphasis on their own
and the groups' calibration. The results from the first and last sessions
are shown in Table 1. Improvement was found for both methods. Results from
the hypothetical sample method started out worse (507 surprises and only

167 in the interquartile range) but ended up better (62 surprises and 487
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in the interquartile range) than the fractile method.

Pickhardt and Wallace (1974) replicated Alpert and Raiffa's findings,
with variations. Across several groups they reported 38 to 487 surprises
before feedback, and not less than 30% surprises after feedback. Two
variations, using or not using course grade credit as a reward, and using
or not using scoring rule feedback, made no difference in the number of
surprises. Pickhardt and Wallace also studied the effects of extended training.
Two groups of 18 and 30 subjects (number of uncertain quantities not
reported) responded for five and six sessions with calibration feedback
after every session. Modest improvement was found, as shown in Table 1.

Finally, Pickhardt and Wallace studied the effects of increasing
knowledge on calibration in the context of a realistic decision-making
exercise: a production simulation game called PROSIM. Thirty-two graduate
students each made 51 assessments during a simulated 17 "days" of production
scheduling. Each assessment concerned an event that would occur 1, 2 or 3
"days" hence. The closer the time of assessment to the time of the event, the
more the subject knew about the event. This increased information did
affect calibration: there were 327 surprises with 3-day lags, 24Z with 2-day
lags, and 7% with l-day lags. No improvement was observed over the 17 '"days"
of the simulation.

Pratt8 asked a single expert to predict movie attendance for 175
movies or double features shown in two local theaters over a period of
more than one year. The expert assessed the median, quartiles, and
"astonishingly high" and "astonishingly low" values. As shown in Table 1,
the interquartile range tended to be too small. Despite the fact that the
expert received outcome feedback throughout the experiment, the only evidence

of improvement in calibration over time came in the first few days.

8;. W. Pratt, personal communication, October, 1975.
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Brown (1973) reported calibration results for 31 subjects responding

to 14 uncertain quantities with fractiles .01, .10, .30, .50, .70, .90, and
«99. The results, shown in Table 1, are particularly discouraging, because
each question was accompanied by extensive historical data (e.g., for "Where
will the consumer price index stand in December, 1970?", subjects were given
the consumer price index for every quarter between March, 1962, and June,
1970). For 11 of the questions, had the subjects given the historical
minimum as their .0l fractile and the historical maximum as their .99 fractile,
they would have had no surprises at all. The other three questions showed
strictly increasing or strictly decreasing histories, and the true value was
close to any simple approximation of the historical trend. The subjects
must have been putting a large emphasis on their own erroneous knowledge to
have given distributions so tight as to produce 427 surprises.
Brown also reported unpublished data of Norman Dalkey and Bernice
Brown, who elicited quartile assessments for uncertain quantities and found,
for 1,218 cases, 31% of the true answers fell inside the interquartile range.
Seaver, von Winterfeldt, and Edwards (1975) studied the effects of
five different response modes on calibration. Two groups used the fractile
method, responding in units of the uncertain quantity to either fractile
(.01, .25, .50, .75, .99) or the odds equivalents of those fractiles
(1:99, 1:3, 1:1, 3:1, 99:1). Three other groups responded with probabilities,
odds, or odds on a log-odds scale to one-alternative questions which specified
a particular value of the uncertain quantity (e.g., what is the probability
that the population of Canada in 1973 exceeded 25 million?). Five such
questions were given for each uncertain quantity. For each group, seven to
nine subjects, undergraduate and graduate students, responded to 20 uncertain
quantities. As shown in Table 1, the groups giving probabilistic and odds

responses had distinctly better surprise indices than those using the fractile
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method. The log odds response mode did not work out well.

Four experiments used weather forecasters for subjects. In two
experiments Murphy and Winkler (1974; and in press), using the variable-
width, fixed-probability parallel to the earlier described fixed-width,
variable-probability experiment (which we analyzed as a discrete task),
asked subjects to give five fractiles (.125, .25, .5, .75, .875) for
tomorrow's high temperature. The results, shown in Table 1, indicate
excellent calibration. These subjects had fewer surprises in the extreme
25% of the distribution than did most of Alpert and Raiffa's subjects in
the extreme 2%! Murphy and Winkler found that the five subjects in the two
experiments who used the variable-width technique were better calibrated than
the four subjects using the fixed-width technique. Pitz (1974), however,
using a within-subject design with 44 college-student subjects, reported that
the fractile technique led to worse calibration than the fixed-width tech-
nique, as did Seaver, von Winterfeldt and Edwards (1975).

Peterson, Snapper and Murphy (1972) asked for only three fractiles
(.25, .5, and .75) for tomorrow's high temperature. Of 55 events, 51%
fell inside the interquartile range, 16Z fell on one of the boundaries,
and 33% fell outside. This bit of data contains no evidence of poor
calibration.

Staél von Holstein (1971) used three fixed-interval tasks: Average
temperature tomorrow and the next day (dividing the entire response range
into 8 categories), average temperature four and five days from now (8
categories), and total amount of rain in the next five days (& categories).
From each set of responses (4 or 8 probabilities summing to 1.0), he
estimated the underlying cumulative density function. He then combined

the 1,269 functions given by 28 participants. He reported an undue number
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of surprises: 25X of the true answers fell below the inferred .07 fractile,
and 252 fell above the .79 fractile. Using the group cumulative density
function shown in his paper, we have estimated the surprise and interquartile
indices (see Table 1). In contrast to the studies by Murphy and Winkler

and by Peterson, Snapper and Murphy, these weather forecasters were quite
poorly calibrated. Stadl von Holstein's task was essentially similar to
Murphy and Winkler's (1974) fixed-interval task. We have reviewed the

former here and the latter in the section on discrete tasks simply because

that is the way the authors summarized their data. ‘
§ Barclay and Peterson (1973) compared the tertile method (i.e., the ;
fractiles .33 and .67) with a "point" method in which the assessor is f

asked to give the modal value of the uncertain quantity, and then two

L N

values, one above and one below the mode, each of which is half as likely

';f) to occur as is the modal value (i.e., points for which the probability ;
% density function is half as high as at the mode). Using 10 almanac
‘ questions as uncertain quantities and 70 students at the Defense Intelligence

School in a within-subject design, they found for the tertile method that 297%
(rather than 33%) of the true answers fell in the central interval. For
the point method, only 397 fell between the two half-probable points, whereas,

for most distributions, approximately 75% of the density falls between these

points.

Pitz (1974) reported several results using the tertile method. For 19
subjects estimating the populations of 23 countries, he found only 167% of
the true values falling inside the central 33 percentile. He called this
effect "hyperprecision.” In another experiment he varied the items
according to the depth and richness of knowledge he presumed his subjects

to have. With populations of countries (low knowledge) he found 237 of :

s it
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the true values in the central third; with heights of well-known buildings

(middling knowledge), 27%; and with ages of famous people (high knowledge),

47%, the last being well above the expected 33%. In yet another study, he

o

asked six subjects to assess tertiles, and a few days later to choose among
bets based on their own tertile values. He found a strong preference for
bets involving the central region, just the reverse of what their too-tight
intervals should lead them to. Pitz suggested that the point estimate (the
most likely value of the quantity) was over-controlling their choices.

The overwhelming evidence from research on uncertain quantities is

% 4 that people's probability distributions tend to be too tight. The assessment
-) of extreme fractiles is particularly prone to bias. Training improves 4
:_f calibration somewhat. Experts sometimes perform well (Murphy and Winkler,

1974, in press; Peterson, et al., 1972), sometimes not (Staél von Holstein, :

?f; 1971). There is only scattered evidence that difficulty is related to
f,ﬂ calibration for continuous propositions. Pitz (1974) found such an effect,
‘ and Pickhardt and Wallace's (1974) finding that 1-day lags led to fewer :
surprises than 3-day lags in their simulation game is relevant here. Several %

studies (e.g., Barclay and Peterson, 1973; Murphy and Winkler, 1974) have
reported a correlation between the spread of the assessed distribution and
the absolute difference between the assessed median and the true answer, ;

indicating that subjects do have a partial sensitivity to how

much they do or do not know. This finding parallels the finding, with discrete
propositions, of a correlation between percent correct and mean response.
Pratt's expert showed no such correlation.9

DISCUSSION

Why should an assessor worry about being well calibrated? Von Winterfeldt

and Edwards (1973) have shown that, in most real-world decision problems, L

9J. W. Pratt, personal communication, November 13, 1975.
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fairly large errors make little difference in the expected gain; "A

suboptimal choice does not seriously hurt the decision maker as long as
the alternative selected is not grossly away from the optimum" (p. 1).

We can see at least two types of situations in which calibration does make
a difference. First, in a two-alternative situation, the payoff function
can be quite steep in the crucial region. Suppose your doctor must decide

the probability that you have condition A, and should receive treatment A,

versus having condition B and receiving treatment B. Suppose that the
utilities are such that treatment A is better if the probability that you

have condition A is 2.4, as shown in Figure 15. If the doctor assesses

e e

the probability that you have A as p(A)=.45, but is poorly calibrated, so
that he should have said .35, then he would treat you for B instead of A
and you would lose quite a chunk of expected utility. Real-life utility
functions of just this type are shown in Fryback (1974).

Secondly, even if the expected loss function for poor calibration is

quite flat, the payoffs may be so large, and the errors so large, that
the expected loss looms large. Weatherwax (1975), in critiquing the $3
million Rasmussen report on nuclear power safety (AEC, 1974) noted that
"at each level of the analysis a log-normal distribution of failure rate
data was assumed with 5 and 95 percentile limits defined" (p. 31). The
research reviewed here suggests that distributions built from assessments
of the .05 and .95 fractiles may be grossly bilased. If such assessments
are made at several levels of an analysis, with each assessed distribution
being too narrow, the errors will not cancel each other, but will compound.
And because the costs of nuclear disasters are large, the expected loss
from such errors could be enormous.

If proper calibration is important, how can it be achieved? One way

is to externally recalibrate the assessments people make. External
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recalibration consists of collecting a set of assessments for items with ;
known answers, fitting a model to the data, and substituting, in future 4
assessments, the response predicted from the model for the response :
given by the assessor. The technical difficulties confronting recalibration ?
are substantial. When eliciting the assessments to be modeled, one would :
have to be careful not to give the assessors any more feedback than they
normally receive, for fear of their changing their calibration as it is

being measured. As Savage (1971) pointed out, ". . . you might discover

with experience that your expert is optimistic or pessimistic in some respect
and therefore temper his judgments. Should he suspect you of this, however,
you and he may well be on the escalator to prediction " (p. 796). Onme

would also have to be quite confident that the real world matches, in
difficulty, the known world on which their calibration is measured.

The theoretical objections to external recalibration may be even more
serious than the practical objections. An assessor who consistently
follows the axioms of probability theory can still be badly calibrated.

The numbers produced by a recalibration process on such an assessor will

not, in general, follow those axioms (for example, the numbers associated
with mutually exclusive and exhaustive events will not always sum to one, nor
will it be generally true that P(A) . P(B) = P(A,B) for independent events);
hence, these new numbers cannot be called probabilities.

A more fruitful approach would be to train assessors to become well
calibrated. The literature reviewed here gives us modest optimism that
training might be successful. Yet we believe that the development of
efficient training methods depends on our understanding of what is going
on in a person's head when probabilities are assessed; this understanding

depends on the development of good psychological theory.




The most striking aspect of the literature reviewed here is its

"dust-bowl empiricism." Psychological theory is largely absent, either

EJ

as motivation for the research or as explanation of the results. Much

of the research seems motivated by simple questions beginning "What would
happen if we. . . ?". Much of the interest in the research is in its potential
applications. If people are going to have to assess probabilities in

the course of making important future decisions, let us figure out the best

way to do it. We can not help feeling that a better understanding of

the psychological underpinnings of these findings would speed the solution

to these applied problems.

Not all authors have avoided theorizing. Tversky and Kahneman (1974)
and Slovic (1972) believe that, as a result of limited information-processing
abilities, people adopt simplifying rules or heuristics. Although generally
quite useful, these heuristic: can lead to severe and systematic errors.

For example, the tendency of people to give unduly tight distributions
when assessing uncertain quantities could reflect the heuristic called

" When asked about an uncertain quantity, omne

"anchoring and adjustment.
naturally thinks first of a point estimate, the most likely value. This
value then serves as an anchor. To give the 25th or 75th percentile, omne

must adjust this anchor downwards or upwards. But the anchor has such a

dominating influence that the adjustment is insufficient; hence the fractiles
are too close together, yielding overconfidence. When, however, the
experimenter provides a value, and the subject must supply a probability,

the natural anchor is the first probability one thinks of. If that first
probability thought of is .5 (reflecting initial uncertainty about whether
the true value is above or below the value provided), then insufficient
adjustment from this natural anchor will result in underconfidence.

Tversky and Kahneman report data supporting this view. Pitz's (1974) data
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in Figure 11, however, show overconfidence when a single value of the
uncertain quantity is given to the subject. If these subjects were using
the anchoring and adjustment heuristic, .5 was not their anchor.

Pitz (1974), too, believes that people's information-processing
capacity and working memory capacity are limited. He suggests that people
set up complex problems serially, working through a portion at a time. To
reduce cognitive strain, people ignore the uncertainty in their solutiomns to
the early portions of the problem in order to reduce the complexity of the
calculations in later portions. This could lead to too-tight distributions
and overconfidence. Pitz also suggests that one way people estimate their
own uncertainty is by seeing how many different ways they can arrive at an
answer, that is, how many different serial solutions they can construct. If
many are found, people will recognize their own uncertainty; if few are found,
they will not. The richer the knowledge base from which to build alternative
structures, the less the tendency towards overconfidence. This was the
reasoning that led Pitz to gather the data of Figure 11, which support his
hypothesis.

These considerations are not full-fledged theories, but they may help

us to gain understanding of how people think probabilistically. Another

notion that may be helpful is coding. How do we code in our minds the
outcomes we receive? Surely not the way we have coded, on paper, the data
needed to plot a calibration curve.

A person could conceivably learn whether his judgments are

externally calibrated by keeping a tally of the proportion

of events that actually occur among those to which he

assigns the same probability. However, it is not natural

to group events by their judged probability. In the




absence of such grouping it is impossible for an individual

to discover, for example, that only 50 percent of the

4

predictions to which he has assigned a probability of .9
or higher actually came true. (Tversky & Kahneman, 1974, p. 1130)
In addition, as Fischhoff and Beyth (1975) found, even when subjects

were forced to assess probabilities, they later altered their memory of
these probabilities. Specifically, they remembered assigning higher
probabilities than they actually had to events which later occurred and
lower probabilities than they had to events which did not occur. To the {
.) extent that we do code events by probabilitic categories, we bias our
coding towards overconfidence. '"The judge who is insufficiently aware
of the surprises the past held for him, and of the need to improve his

’; performance, seems likely to continue being surprised by what happens in

i

the future" (Fischhoff & Beyth, 1975, p. 15).
In conclusion, it seems appropriate to summarize what we know about
‘ calibration. We may characterize our knowledge as falling into one of
three states: understanding, confusion, ignorance.
Understanding reigns when we have extensive evidence pointing at a
common conclusion which any theory must accommodate. Understandings are,

as might be expected, fairly scarce. Ome is that, as a result of subjects'

failure to discriminate different levels of uncertainty adequately,
different calibration curves emerge for tests with different levels of
difficulty. A second conclusion is that the most common form of mis-

calibration is overconfidence. Nearly all the data about uncertain

i

quantities point in this direction, as do the discrete-proposition data

for all but the easiest tasks. If overconfidence is further evidence of

a general tendency toward what Dawes (1976) calls "cognitive conceit," it
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is crucial to understand its origins, limits and remedies. A third
and more optimistic conclusion is that calibration can be somewhat improved
by training.

Confusion reigns when studies of a given question point in contrary
directions or when we must put our faith in a single study using but one
of the many possible variations of experimental procedure and stimuli.
Consider for example the symmetry or asymmetry of the curves in different
full-range studies, or the contrary contrasts of the variable-width and
fixed-width methods of Pitz (1974) and Murphy and Winkler (1975), or
Hazard and Peterson's (1973) lonely finding that odds and probability
judgments have similar calibration curves.

One partial solution to the problem of divergent findings is to
increase our understanding of the sampling properties of calibration
curves. Some conflicting results may be attributable to sampling
variations. The second general solution (aside from collecting more
data) is to improve our theoretical conceptualization of probability
assessment tasks and of the factors which influence performance. Apparently
divergent findings may be explained by previously unnoted differences in
task characteristics such as difficulty level, instructions, or implicit
loss functions.

When ignorance reigns, it is the job of any theory to advance
interesting hypotheses and identify crucial issues. Even in lieu of
developed theories, it is still possible to raise many questions that
bear answering. What are the effects of varying instructioms, e.g.,
ardently discouraging the use of .00 and 1.00? Are there any response
modes particularly conducive to calibrated judgments? Should one restrict

assessors to some fixed number of possible probability responses (say,
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.5, .75, and .99) which reflects the number of meaningful discriminations
that they can make? What is the effect of the number of alternatives on
calibration? Are there individual differences in calibration and, if so,
what distinguishes well-calibrated judges? Holding task difficulty
constant, neither brains nor expertise appears to make much difference.
We have recently found that with a half-range, two-alternative task,
heavy reliance on the responses .50 and 1.00 (which might reflect lack

of effort or perceived inability to make finer distinctions) is not a
sign of inferior calibration. Other than task difficulty, what does make
a difference? Even without theoretical advances, we have some work to do

before reaching the bottom of empiricism's dust-bowl.
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In particular,
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