SEAKEEPING TRIALS OF THE STABLE SEMI-
SUBMERGED PLATFORM (SSP KAIMALINO)

by

James A. Kallio

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT

APRIL 1976

SPD 650-03
MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

DTNSRDC
COMMANDER 00
TECHNICAL DIRECTOR 01

OFFICER-IN-CHARGE
CARDEROCK 05

SYSTEMS
DEVELOPMENT
DEPARTMENT 11

SHIP PERFORMANCE
DEPARTMENT 15

STRUCTURES
DEPARTMENT 17

SHIP ACOUSTICS
DEPARTMENT 19

MATERIALS
DEPARTMENT 28

OFFICER-IN-CHARGE
ANNAPOLIS 04

AVIATION AND
SURFACE EFFECTS
DEPARTMENT 16

COMPUTATION
AND MATHEMATICS
DEPARTMENT 18

PROPULSION AND
AUXILIARY SYSTEMS
DEPARTMENT 27

CENTRAL
INSTRUMENTATION
DEPARTMENT 29
Title: Seakeeping Trials of the Stable Semi-Submerged Platform (SSP Kalmarino).

Authors: James A. Kallio

Performing Organization Name and Address:
David W. Taylor Naval Ship Research and Development Center, Ship Performance Department
Bethesda, Maryland 20084

Report Date: Apr 1976

Number of Pages: 57

Security Classification of This Page: UNCLASSIFIED

DISTRIBUTION STATEMENT (of this Report):

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Abstract:
Full scale trials were conducted on the Stable Semi-Submerged Platform (SSP) known as the SSP Kalmarino, a Small Water Plane Twin Hull (SWATH) with an overall length of 87.8 ft (26.76m) and displacement of 193 tons (196 MTSW). Trials were conducted in a Sea State 4 at various headings and speeds. A helicopter was used to obtain motion and still photographs with an oceangoing tug running alongside for comparison purposes. Measurements were made of craft motions and accelerations as well as pressures on the craft structure due to wave impact.
TABLE OF CONTENTS

ABSTRACT 1

ADMINISTRATIVE INFORMATION 1

INTRODUCTION 2

CRAFT DESCRIPTION 2

DESCRIPTION OF MEASUREMENTS AND INSTRUMENTATION 4

TRIALS PROGRAM AND PROCEDURE 5

TRIAL RESULTS 6

CONCLUSIONS AND RECOMMENDATIONS 11

LIST OF TABLES

Table 1 Geometric Characteristics of the SSP Kaimalino 13

Table 2 SSP Kaimalino Transducer Locations 14

Table 3 SSP Kaimalino Seakeeping Trial Matrix 15
LIST OF FIGURES

Figure 1 - SSP Kaimalino Transducer Locations
Figure 2 - SSP Kaimalino Pressure Gage Locations
Figure 3 - Zero Speed Sea Spectra Measured in the Molokai Channel
Figure 4 - Zero Speed Sea Spectra Measured off Koko Head
Figure 5 - SSP Kaimalino Motions in Head Sea State 4
Figure 6 - SSP Kaimalino Accelerations in Head Sea State 4
Figure 7 - SSP Kaimalino Motion Rates in Head Sea State 4
Figure 8 - SSP Kaimalino Frequency of Impacting in Head Sea State 4
Figure 9 - SSP Kaimalino Impact Pressure Histograms for Pressures Measured in Head Sea State 4
Figure 10 - SSP Kaimalino Motions in Bow Quartering Sea State 4
Figure 11 - SSP Kaimalino Accelerations in Bow Quartering Sea State 4
Figure 12 - SSP Kaimalino Motion Rates in Bow Quartering Sea State 4
Figure 13 - SSP Kaimalino Frequency of Impacting in Bow Quartering Sea State 4
Figure 14 - SSP Kaimalino Impact Pressure Histograms for Pressures Measured in Bow Quartering Sea State 4
Figure 15 - SSP Kaimalino Motions in Beam Sea State 4
Figure 15A - Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Beam Sea State 4
Figure 16 - SSP Kaimalino Accelerations in Beam Sea State 4
Figure 17 - SSP Kaimalino Motion Rates in Beam Sea State 4
Figure 18 - SSP Kaimalino Frequency of Impacting in Beam Sea State 4
Figure 19 - SSP Kaimalino Impact Pressure Histograms for Pressures Measured in Beam Sea State 4
Figure 20 - SSP Kaimalino Motions in Stern Quartering Sea State 4

iv
LIST OF FIGURES (Cont'd)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20A</td>
<td>Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Stern Quartering Sea State 4</td>
<td>37</td>
</tr>
<tr>
<td>21</td>
<td>SSP Kaimalino Accelerations in Stern Quartering Sea State 4</td>
<td>38</td>
</tr>
<tr>
<td>22</td>
<td>SSP Kaimalino Motion Rates in Stern Quartering Sea State 4</td>
<td>39</td>
</tr>
<tr>
<td>23</td>
<td>SSP Kaimalino Frequency of Impacting in Stern Quartering Sea State 4</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>SSP Kaimalino Impact Pressure Histograms for Pressures Measured in Stern Quartering Sea State 4</td>
<td>41</td>
</tr>
<tr>
<td>25</td>
<td>SSP Kaimalino Motions in Following Sea State 4</td>
<td>42</td>
</tr>
<tr>
<td>25A</td>
<td>Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Following Sea State 4</td>
<td>43</td>
</tr>
<tr>
<td>26</td>
<td>SSP Kaimalino Accelerations in Following Sea State 4</td>
<td>44</td>
</tr>
<tr>
<td>27</td>
<td>SSP Kaimalino Motion Rates in Following Sea State 4</td>
<td>45</td>
</tr>
<tr>
<td>28</td>
<td>SSP Kaimalino Frequency of Impacting in Following Sea State 4</td>
<td>46</td>
</tr>
<tr>
<td>29</td>
<td>SSP Kaimalino Impact Pressure Histograms for Pressures Measured in Following Sea State 4</td>
<td>47</td>
</tr>
<tr>
<td>30</td>
<td>SSP Kaimalino Motions in Sea State 4 at Various Speeds and Headings</td>
<td>48</td>
</tr>
<tr>
<td>31</td>
<td>SSP Kaimalino Accelerations in Sea State 4 at Various Speeds and Headings</td>
<td>49</td>
</tr>
<tr>
<td>32</td>
<td>SSP Kaimalino Motion Rates in Sea State 4 at Various Speeds and Headings</td>
<td>50</td>
</tr>
<tr>
<td>33</td>
<td>SSP Kaimalino Frequency of Impacting in Sea State 4 at Various Speeds and Headings</td>
<td>51</td>
</tr>
</tbody>
</table>
ABSTRACT

Full scale trials were conducted on the Stable Semi-Submerged Platform (SSP) known as the SSP Kalmalino, a Small Water Plane Twin Hull (SWATH) with an overall length of 87.8 ft (26.76m) and displacement of 193 tons (196 MTSW). Trials were conducted in a Sea State 4 at various headings and speeds. A helicopter was used to obtain motion and still photographs with an ocean-going tug running alongside for comparison purposes. Measurements were made of craft motions and accelerations as well as pressures on the cross structure due to wave impacting.

ADMINISTRATIVE INFORMATION

These trials were conducted for the Systems Development Department, Advanced Concepts Office, David W. Taylor Naval Ship Research and Development Center (DTNSRDC), under work unit 1-1170-090.
INTRODUCTION

Seaworthiness trials were conducted on the SSP Kaimalino as part of the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) trials program. The craft, designed by the Naval Undersea Center (NUC) Pearl Harbor, was built at the Curtis Bay Coast Guard Shipyard. The seakeeping trials reported herein were conducted off Oahu Island, Hawaii in July 1975.

Experiments were conducted in head, bow, beam, quartering and following Sea State 4 (Significant wave height approximately 6 ft or about 2 m) at various speeds. Measurements were made of the seaway, the craft pitch, roll, heading angle, relative motion at the bow, angular rates and vertical and horizontal accelerations at various craft locations. In addition, pressures due to wave impact on the cross structure were measured at various locations along the length of the craft. A helicopter obtained motion picture and still photographs of several runs with an oceangoing tug (ATF) operating alongside to obtain a visual record for comparison of the motions of the two craft. Some of the data obtained on the full-scale craft may prove suitable for use in comparing model and full-scale experimental results.

CRAFT DESCRIPTION

Principal dimensions and other craft characteristics are presented in Table 1, a detailed discussion of craft design and construction is given.
Although the craft waterline and displacement varied from day to day because of varied fuel loading, trial results were not significantly affected. The mean draft and craft displacement were 15.67 ft (4.78 m), 15.92 ft (4.85 m) and 193.3 tons (196.4 MTSW), 195 tons (198.1 MTSW) during the two days on which seakeeping trials were run. The vertical center of gravity (VCG) was determined by an inclining experiment in Hawaii.

Propulsion for the craft was provided by two 2230 horsepower gas turbines geared through a chain drive to controllable pitch propellers. Auxiliary diesel engine power, used for close quarter maneuvering dockside, was not used during seakeeping trials.

Control surfaces on the craft were rudders, stern foil flaps and forward canards. These surfaces were held fixed during the data collecting portion of each run.

The SSP is a twin strut SWATH design with most of the buoyancy provided by lower submerged hulls. Another feature of this particular design is the full span stern foil between the lower hulls.

Figure 1 is a sketch of the Kaimalino showing motion and acceleration transducer locations while pressure transducer locations are shown in Figure 2.
DESCRIPTION OF MEASUREMENTS AND INSTRUMENTATION

Measurements were made of craft motions, accelerations, races and wave impact pressures as well as of the seaway. Table 2 presents a list of these measurements and the transducer locations. Pitch and roll motions as well as surge, sway and vertical accelerations were measured by means of a stabilized platform located on the centerline just forward of Frame 24. Vertical accelerations were also measured in the pilot house (Frame 5) and on the port side of the well (Frame 35). Pitch, roll and yaw rates were measured by means of rate gyros located just to port of the stabilized platform. Relative bow motion was measured 3 feet forward of the craft nose by means of an ultrasonic displacement transducer. Pressures due to wave impacting on the bridging structure were measured by means of strain-gaged diaphragm type pressure transducers rated at 100 psi with a flat response to 1000 hz and a natural frequency of at least 10,000 hz, and thus were more than adequate to measure the impact phenomena. The seaway was measured by a free floating buoy which telemetered wave data to the craft for recording.

During the experiments the transducer signals were amplified and recorded in analog form on paper strip chart (including an oscillograph for recording wave impacting phenomena) and analog magnetic tape. The system for recording impacts had a flat response to 1500 hz which was more than adequate for the phenomena.
TRIAL PROGRAM AND PROCEDURE

The SSP trial program consisted of ten conditions: head, bow, beam, quartering and following sea headings run at about 9.5 and 17.5 knots in a Sea State 4 (significant wave height about 6 ft or 2 meters). About 30 minutes of real time data was collected for each run condition. In addition, about 5 minutes of data was collected during photographic runs in head, bow and beam seas at about 12 knots.

In conformity with the procedure for the other types of trials conducted on the SSP, the craft was ballasted at zero speed, to zero trim and heel condition each day before trials began. Draft readings were then made and recorded along with water temperature and specific gravity in order to determine craft displacement. Table 3 indicates craft condition for the two days during which seakeeping trials were conducted.

Prior to beginning the trials each day, the wave height buoy was deployed by the chase boat in a position which was intended to be in the center of the trials area. At all times during data collection the relative positions of buoy and craft were under the surveillance of a deck observer. All trials were run in an area where the water depth was at least 600 ft (183 m).

In preparation for each particular run, the craft was steadied up on course at the desired speed. The craft course, set to maintain a constant heading to the predominant seaway, was determined by observations from the deck and wind direction was indicated by an on-board anemometer. Once the heading and speed were set, the data collecting portion of the run
was executed until about 30 minutes of data had been recorded. No changes to control surfaces or propulsion were made during the runs except on two occasions when the propeller began to broach the water surface and the turbines idled down automatically by signal from the turbine overspeed governor control.

TRIAL RESULTS

The motion data obtained during these trials were analyzed in both the frequency and time domains. This analysis yields mean values, power spectra, histograms and Fourier transforms as well as statistical information about the time histories. The data presented in this report are the significant double amplitudes (average of the one-third highest peak to peak excursions) of craft motions and accelerations such as relative bow motion, pitch and roll motions. Significant vertical accelerations were measured at the bow, the stable platform location and at the port side of the well. Absolute vertical motions at these locations were calculated by double integration of the acceleration response spectra and are designated as bow displacement, heave displacement and port displacement. Significant sway and surge accelerations as well as pitch, roll and yaw rates were measured at the stable platform location. Impact pressure data, extracted manually from oscillograph records, are presented in terms of frequency of impacting and impact pressure histograms. Table 3 presents mean heading, speed, pitch and roll angle and control surface angles for the various runs.
Figures 3 and 4 present the zero speed sea spectra recorded during the first and second days of the seakeeping trials. Though the data indicates the significant wave height to be slightly larger than 5 ft (1.5 m) the seaway sample was measured in an area closer to shore than that in which trials were conducted. From visual observations the significant wave height in the operating area was closer to 6 to 7 ft (2m) and the seaway unidirectionality was very good, moreso in the Molakai channel than off of Koko Head. Note the seaway data collected during photo run 3 (Figure 3) is also presented as a function of wavelength/craft length, \(\lambda/L \).

Figures 5 through 9 present results of experiments conducted in head seas at various speeds. For the speeds tested there is no appreciable speed effect on motions, absolute vertical motion, rates or surge and sway accelerations. The vertical accelerations increase as speed increases.

The high frequency of occurrence of impacts at gage 13 (Figure 8) may be due to the large buildup of water around midships, common around 9 knots. Though the maximum pressure recorded at gage 13 was 9.8 psi (67.6 kPa) and the pressure for most samples was 6 psi (41.4 kPa) or less (see Figure 9). The \(N \) indicated on the pressure histograms is the total number of impacts samples during the run. The relative frequency is calculated by dividing the number of samples in a particular pressure range [0 to 2 psi (13.8 kPa) for example] by the total number of samples, \(N \), and multiplying by 100.
Figures 10 through 14 present results of experiments conducted in bow quartering seas at various speeds. Here too, there is no speed effect on motions, absolute vertical motions, rates or surge and sway acceleration. The vertical accelerations increase as speed increases up to about 16.5 knots.

The high frequency of occurrence of impacts at gage 11 (Figure 13) and the low pressure magnitudes (see Figure 14) are due to the water rising up the inside of the starboard forward strut since the seaway was from the port bow direction.

Figures 15 through 19 present results of experiments conducted in beam seas at various speeds. There is an increase in roll motion and roll rate as speed increases from 9 to 17 knots and an increase in relative bow motion as speed increases from 9 to 12 knots. Sample strip chart records (Figure 15A) indicate that pitch and roll are in phase.

Figures 18 and 19 indicate very little impacting except at gage 10. Note that in Table 3 the mean roll angle during the run in which gage 10 is on the forward starboard strut and the seaway was from the port beam.

Figures 20 through 24 present results of experiments conducted in stern quartering seas at various speeds. There is an increase in pitch, roll and relative bow motion as speed increases from 9 to 16 knots while the accelerations and rates remain fairly constant because at this heading, for a given wave length, the encounter frequency decreases as the craft speed increases. The encounter period for a 400 ft (122m) wave length is
CONCLUSIONS AND RECOMMENDATIONS

The limited amount of full scale seakeeping data reported herein tends to indicate the following trends for the SSP Kaimalino operating in Sea State 4.

1. Motions in head and bow quartering seas are smaller than in stern quartering and following seas up to about 17 knots.

2. Vertical accelerations increase as speed increases in head and bow quartering seas but vary little with speed in stern quartering and following seas.

3. Frequency of wave impacting in the bow area of the bridging structure appears higher in quartering and following sea conditions due to the larger bow down pitch attitudes which occur frequently at these headings. These bow down attitudes are also responsible for the two cases of propeller ventilation. However, propeller ventilation was overcome by trimming the craft bow up by use of control surface.

4. Since very few samples of impact data were collected during this trial, it is highly recommended that conclusions concerning frequency of impacting and impact pressure magnitudes should not be drawn from this limited amount of data.

5. In order to obtain more reliable impact data, it is recommended that more wave impact data be collected, if possible, in a higher sea state.

6. It is also recommended that additional trials be run, especially at zero speed, in a seaway with sufficient energy near synchronism and over a broad enough frequency range to obtain an estimate of motion transfer
CONCLUSIONS AND RECOMMENDATIONS

The limited amount of full scale seakeeping data reported herein tends to indicate the following trends for the SSF Kaimalino operating in Sea State 4.

1. Motions in head and bow quartering seas are smaller than in stern quartering and following seas up to about 17 knots.

2. Vertical accelerations increase as speed increases in head and bow quartering seas but vary little with speed in stern quartering and following seas.

3. Frequency of wave impacting in the bow area of the bridging structure appears higher in quartering and following sea conditions due to the larger bow down pitch attitudes which occur frequently at these headings. These bow down attitudes are also responsible for the two cases of propeller ventilation. However, propeller ventilation was overcome by trimming the craft bow up by use of control surface.

4. Since very few samples of impact data were collected during this trial, it is highly recommended that conclusions concerning frequency of impacting and impact pressure magnitudes should not be drawn from this limited amount of data.

5. In order to obtain more reliable impact data, it is recommended that more wave impact data be collected, if possible, in a higher sea state.

6. It is also recommended that additional trials be run, especially at zero speed, in a seaway with sufficient energy near synchronism and over a broad enough frequency range to obtain an estimate of motion transfer
functions for the full scale craft.

7. Additional trials are also recommended to provide an insight into strategy for controlling the craft in quartering and following seas by manual or automatic control of horizontal control surface.
<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Length</td>
<td>87.8 ft</td>
<td>26.76 m</td>
</tr>
<tr>
<td>Submerged length, nose to trailing edge of rudder (AP)</td>
<td>81.25 ft</td>
<td>24.76 m</td>
</tr>
<tr>
<td>Submerged maximum beam</td>
<td>49.7 ft</td>
<td>15.15 m</td>
</tr>
<tr>
<td>Diameter of Submerged hulls</td>
<td>6.5 ft</td>
<td>1.98 m</td>
</tr>
<tr>
<td>Displacement</td>
<td>193.75 LTSW</td>
<td>196.9 MTSW</td>
</tr>
<tr>
<td>KG, height of CG above baseline</td>
<td>15.39 ft</td>
<td>4.69 m</td>
</tr>
<tr>
<td>Longitudinal distance, AP to CG</td>
<td>42.46 ft</td>
<td>12.94 m</td>
</tr>
<tr>
<td>KB, height of center of buoyancy above baseline</td>
<td>6.03 ft</td>
<td>1.84 m</td>
</tr>
<tr>
<td>Measurement</td>
<td>Transducer</td>
<td>Frame</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Pitch</td>
<td>Mark IV</td>
<td>24</td>
</tr>
<tr>
<td>Roll</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Heave Acceleration</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Surge Acceleration</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Sway Acceleration</td>
<td>Stable</td>
<td></td>
</tr>
<tr>
<td>Pitch Rate</td>
<td>Rate Gyro</td>
<td>24</td>
</tr>
<tr>
<td>Roll Rate</td>
<td>Rate Gyro</td>
<td></td>
</tr>
<tr>
<td>Yaw Rate</td>
<td>Rate Gyro</td>
<td></td>
</tr>
<tr>
<td>Relative Bow Motion</td>
<td>Sonic</td>
<td></td>
</tr>
<tr>
<td>Vert. Bow Accel.</td>
<td>Accelerometer</td>
<td>5</td>
</tr>
<tr>
<td>Port Vert. Accel.</td>
<td>Accelerometer</td>
<td>35</td>
</tr>
<tr>
<td>P-1 Pressure Gage</td>
<td>Pressure Gage</td>
<td>11-12</td>
</tr>
<tr>
<td>P-2</td>
<td>Pressure Gage</td>
<td>11-12</td>
</tr>
<tr>
<td>P-3</td>
<td>Pressure Gage</td>
<td>9-10</td>
</tr>
<tr>
<td>P-4</td>
<td>Pressure Gage</td>
<td>5-6</td>
</tr>
<tr>
<td>P-5</td>
<td>Pressure Gage</td>
<td>11-12</td>
</tr>
<tr>
<td>P-6</td>
<td>Pressure Gage</td>
<td>11-12</td>
</tr>
<tr>
<td>P-7</td>
<td>Pressure Gage</td>
<td>10-11</td>
</tr>
<tr>
<td>P-8</td>
<td>Pressure Gage</td>
<td>7-8</td>
</tr>
<tr>
<td>P-9</td>
<td>Pressure Gage</td>
<td>4-5</td>
</tr>
<tr>
<td>P-10</td>
<td>Pressure Gage</td>
<td>5-6</td>
</tr>
<tr>
<td>P-11</td>
<td>Pressure Gage</td>
<td>18-19</td>
</tr>
<tr>
<td>P-12</td>
<td>Pressure Gage</td>
<td>29-30</td>
</tr>
<tr>
<td>P-13</td>
<td>Pressure Gage</td>
<td>36-37</td>
</tr>
<tr>
<td>P-14</td>
<td>Pressure Gage</td>
<td>40-41</td>
</tr>
<tr>
<td>P-15</td>
<td>Pressure Gage</td>
<td>49-50</td>
</tr>
<tr>
<td>P-16</td>
<td>Pressure Gage</td>
<td>54-55</td>
</tr>
<tr>
<td>P-17</td>
<td>Pressure Gage</td>
<td>58-59</td>
</tr>
<tr>
<td>P-18</td>
<td>Pressure Gage</td>
<td>59-60</td>
</tr>
</tbody>
</table>
TABLE 3 - SSP KAIMALINO SEAKEEPING TRIAL MATRIX

<table>
<thead>
<tr>
<th>Trial Day</th>
<th>Trial Area</th>
<th>Mean Heading</th>
<th>Craft Speed Knots</th>
<th>Significant Wave Height ft (meters)</th>
<th>Run No.</th>
<th>Mean Pitch Angle Deg Bow Up * *</th>
<th>Mean Roll Angle Deg Port Up * *</th>
<th>Mean Canard Angle Deg. Trailing</th>
<th>Mean Flap Angle Edge Down * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 26, 1975</td>
<td>Molokai Straight</td>
<td>Head Sea</td>
<td>12.96</td>
<td>5.82 (1.77)</td>
<td>Photo 1</td>
<td>+0.10</td>
<td>+0.78</td>
<td>+7.40</td>
<td>-3.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bow Q Sea</td>
<td>12.10</td>
<td>6.08 (1.85)</td>
<td>Photo 2</td>
<td>+0.28</td>
<td>+0.70</td>
<td>+7.40</td>
<td>-5.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beam Sea</td>
<td>12.75</td>
<td>6.28 (1.91)</td>
<td>Photo 3</td>
<td>+1.25</td>
<td>+0.41</td>
<td>+7.30</td>
<td>-5.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Head Sea</td>
<td>9.39</td>
<td>5.89 (1.80)</td>
<td>4040</td>
<td>+0.16</td>
<td>-0.01</td>
<td>+7.30</td>
<td>+4.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stern Q Sea</td>
<td>9.82</td>
<td>5.56 (1.69)</td>
<td>4050</td>
<td>+0.16</td>
<td>+0.54</td>
<td>+7.20</td>
<td>+3.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beam Sea</td>
<td>9.60</td>
<td></td>
<td>4060</td>
<td>+0.08</td>
<td>-0.61</td>
<td>+7.10</td>
<td>+3.80</td>
</tr>
<tr>
<td>July 27, 1975</td>
<td>Echo Head</td>
<td>Following Sea</td>
<td>10.10</td>
<td>5.23 (1.58)</td>
<td>4070</td>
<td>-0.27</td>
<td>-0.10</td>
<td>+5.60</td>
<td>+5.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bow Q Sea</td>
<td>9.69</td>
<td>5.62 (1.71)</td>
<td>4080</td>
<td>-0.08</td>
<td>-1.09</td>
<td>+5.60</td>
<td>+5.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Following Sea</td>
<td>17.67</td>
<td>5.82 (1.77)</td>
<td>4090</td>
<td>-0.40</td>
<td>-0.35</td>
<td>+5.60</td>
<td>+5.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Following Sea</td>
<td>16.35</td>
<td>5.55 (1.69)</td>
<td>4091</td>
<td>+1.37</td>
<td>+0.54</td>
<td>+5.60</td>
<td>+0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Head Sea</td>
<td>16.41</td>
<td>5.81 (1.70)</td>
<td>4100</td>
<td>+0.43</td>
<td>+1.15</td>
<td>+5.60</td>
<td>+3.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stern Q Sea</td>
<td>17.41</td>
<td>5.33 (1.62)</td>
<td>4110</td>
<td>+0.76</td>
<td>+0.83</td>
<td>+5.60</td>
<td>+3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stern Q Sea</td>
<td>16.30</td>
<td>5.81 (1.77)</td>
<td>4111</td>
<td>-0.57</td>
<td>+0.20</td>
<td>+5.60</td>
<td>+3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bow Q Sea</td>
<td>16.63</td>
<td>5.47 (1.67)</td>
<td>4120</td>
<td>+0.53</td>
<td>+2.27</td>
<td>+5.60</td>
<td>+3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beam Sea</td>
<td>16.96</td>
<td></td>
<td>4130</td>
<td>+0.54</td>
<td>+1.84</td>
<td>+5.60</td>
<td>+3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beam Sea</td>
<td>16.94</td>
<td></td>
<td>4140</td>
<td>+0.82</td>
<td>-0.19</td>
<td>+5.60</td>
<td>+3.80</td>
</tr>
</tbody>
</table>
Figure 1 - SSP KAIMALINO Transducer Locations
Figure 3 - ZERO Speed Sea Spectra Measured in the Molokai Channel
SSP KAIMALINO

ZERO SPEED SEA SPECTRA - KOKO HEAD

Figure 4 - ZERO Speed Sea Spectra Measured off Koko Head
Figure 5 - SSP KAIMALINO Motions in Head Sea State 4
Figure 6 - SSP KAIMALINO Accelerations in Head Sea State 4
Figure 7 - SSP KAIMALINO Motion Rates in Head Sea State 4
SSP KAIMALINO

HEAD SEA = 180° HEADING

Figure 8 - SSP KAIMALINO Frequency of Impacting in Head Sea State 4
SSP KAIMALINO

HEAD SEA = 180° HEADING

Pressure Gage P-1
9.4 knots
N=3

Pressure Gage P-1
16.4 knots
N=1

Pressure Gage P-3
9.4 knots
N=1

Pressure Gage P-3
16.4 knots
N=1

Pressure Gage P-13
9.4 knots
N=10

Pressure Gage P-14
16.4 knots
N=11

Pressure Gage P-11
16.4 knots
N=1

Pressure Gage P-5
16.4 knots
N=1

Figure 9 - SSP KAIMALINO Impact Pressure Histograms for Pressures Measured in Head Sea State 4
SSP KAIMALINO

Bow Quartering Sea = 135° Heading

Heave Displacement

Relative Bow Motion

Pitch

Roll

Figure 10 - SSP KAIMALINO Motions in Bow Quartering Sea State 4
SSP KAIMALINO

BOW QUARTERING SEA - 135° HEADING:

Figure 11 - SSP KAIMALINO Accelerations in Bow Quartering Sea State 4
Figure 12 - SSP KAIMALINO Motion Rates in Bow Quartering Sea State 4
Figure 13 - SSP KAIMALINO Frequency of Impacting in Bow Quartering Sea State 4
SSP KAIMALINO

BOW QUARTERING SEA = 135° HEADING

Figure 14 - SSP KAIMALINO Impact Pressure Histograms for Pressures Measured in Bow Quartering Sea State 4
Figure 15 - SSP KAIMALINO Motions in Beam Sea State 4
SSP KAIMALINO

Run 4130 Beam Sea from Port, 17 knots

Bow Up+ 4°
PITCH

Stbd Down + 5.4°
ROLL

Typical Impact Trace at Pressure Gage P-10

8 psi

Figure 15A - Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Beam Sea State 4
Figure 16 - SSP KAIMALINO Accelerations in Beam Sea State 4
SSP KAIMALINO

BEAM SEA = 90° Heading

Figure 17 - SSP KAIMALINO Motion Rates in Beam Sea State 4
SSP KAIMALINO

BEAM SEA = 90° HEADING

Figure 18 - SSP KAIMALINO Frequency of Impacting in Beam Sea State 4
SSP KAIMALINO

BEAM SEA = 90° HEADING

Figure 19 - SSP KAIMALINO Impact Pressure Histograms for Pressures Measured in Beam Sea State 4
SSP KAIMALINO

STERN QUARTERING SEA = 45° HEADING

HEAVE DISPLACEMENT

RELATIVE BOW MOTION

SIGNIFICANT DOUBLE AMPLITUDES

PITCH

ROLL

Figure 20 - SSP KAIMALINO Motions in Stern Quartering Sea State 4
Figure 20A - Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Stern Quartering Sea State 4

SSP KAIMALINO

Run 4110 Stern Quartering Sea from Starboard, 17.4 knots

Pitch: 4°, 5.4°
Roll: 10 sec.
Turbine goes into overspeed
Impact trace at pressure face P-3

3 psi

1 sec.
SSP KAIMALINO

STERN QUARTERING SEA - 45° HEADING

Figure 21 - SSP KAIMALINO Accelerations in Stern Quartering
Sea State 4
SSP KAIMALINO

STERN QUARTERING SEA = 45° Heading

Figure 22 - SSP KAIMALINO Motion Rates in Stern Quartering
Sea State 4
Figure 23 - SSP KAIMALINO Frequency of Impacting in Stern Quartering Sea State 4
SSP KAIMALINO

STERN QUARTERING SEA = 45° HEADING

Figure 24 - SSP KAIMALINO Impact Pressure Histograms for Pressures Measured in Stern Quartering Sea State 4
SSP KAIMALINO

FOLLOWING SEA = 0° HEADING

HEAVE DISPLACEMENT

RELATIVE BOW MOTION

PITCH

ROLL

Figure 25 - SSP KAIMALINO Motions in Following Sea State 4
SSP KAIMALINO

Run 4090 Following Sea, 17.4 knots:

- Bow Up +
- Pitch
- Stbd down +
- Roll

Turbine Goes into Overspeed

Time Correlated Impact at Pressure Gauge P-3

5 psi

10 sec.

1 sec.

Figure 25A - Sample Strip Chart Record of Pitch, Roll and Impact Pressure in Following Sea State 4
FOLLOWING SEA = 0° HEADING

Figure 26 - SSP KAIMALINO Accelerations in Following Sea State 4
SSP KAIMALINO

FOLLOWING SEA = 0° Heading

PITCH RATE

ROLL RATE

YAW RATE

Figure 27 - SSP KAIMALINO Motion Rates in Following Sea State 4
SSP KAIMALINO

FOLLOWING SEA = 0° HEADING

Pressure Gage P-1

Pressure Gage P-3

Pressure Gage P-4

Pressure Gage P-5

Pressure Gage P-10

Pressure Gage P-11

Pressure Gage P-13

Figure 28 - SSP KAIMALINO Frequency of Impacting in Following Sea State 4
Figure 29 - SSP KAIMALINO Impact Pressure Histograms for Pressures Measured in Following Sea State 4
Figure 30 - SSP KAIMALINO Motions in Sea State 4 at Various Speeds and Headings
Figure 31 - SSP KAIMALINO Accelerations in Sea State 4 at Various Speeds and Headings
Figure 32 - SSP KAIMALINO Motion Rates in Sea State 4 at Various Speeds and Headings
Figure 33 - SSP KAIMALINO Frequency of Impacting in Sea State 4 at Various Speeds and Headings
DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER

(2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES RECORDING INFORMATION OF A PRELIMINARY OR TEMPORARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS, NOT FOR GENERAL DISTRIBUTION