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A SURVEY OF STATISTICAL METHODS IN SYSTEMS
RELIABILITY USING BERNOULLI SAMPLING OF COMPONENTS

Bernard Harris

i. Introduction. A fundamental problem in the area of statistical inference

in reliability theory is the statistical estimation of the reliability of a system

from experimental data collected on each of the individual components. In

this survey, I will try to describe the state of the art as I envision it. As I

will subsequently demonstrate, much still remains to be accomplished in this

area, particularly in the construction of statistical methods which are satis-

factory when the true system reliability is high.

The paper is divided into sections as follows. In Section 2 we de-

scribe coherent systems and list some of their basic properties. In Section

3, we discuss various measures of the importance of individual components

in a system. The fourth section treats methods of statistical inference for

series systems, and parallel systems are discussed in Section 5. The sixth

section is devoted to arbitrary coherent systems and the seventh section is

concerned with Bayesian methods. A discussion of the use of loss functions

is treated in Section 8. Some ccncluding remarks are made in the ninth

section,

2. Coherent s-,stems. We now introduce some definitions and notation which

will be used throughout this survey.

A system is regarded as a specified configutation of components. To each

component c, we associate the variable xc, where xc assumes the value 0

Sponsored by the United States Army under Contract No. DAAG29-75-C-00Z4.
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or 1 A ystem of k components is then defined as a function Z'1 x 2

X... x×k- { 0, }, where each i= {0, 1} and x,=xc iEi, i= l,Z,...,k .

In the customary language which originates from the engineering ap-

plications which have motivated the study of reliability theory,

xi = 1 means the component is functioning,

xi = 0 means the component has failed,

and

[i means the system is functioning
O0 means the system has failed.

The system 4p is said to be a coherent system if

I. 0(010, ... ,10) = O,

2. .9(, 1,..., ) = 1, and

3. g(X 1 , x2 , ... , xk) is increasing in each argument.

We let x = (xi, x 2 ,... , xk) . Then we can define the following types

of coherent systems.
k

1. Series systems, V(x) = T xi

k

2. Parallel systems, p(x) 1- iT (l-i)
i=1

3. Series-parallel systems, -x TO (1- , wher3 k 0J(x)+1
I=~and k k

rk
pL
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4. Pdrallel-series system, V(V) =i - - xT, where k 0r-1 J=O• t~kj-

and E kj = k.

j=0 ~
5. r out of k systems, 'p(x) IT x 1 T-[Acllx.), where A, is

jiE A hA.1
any subset of {I, 2, ... , k) with IA. I _ r, were 11AI denotes the

cardinality of the set A, and the sum is over all such subsets.

A series-parallel system consists of k components divided into dis-

joint subsets, each subset is a parallel system-a.nd the parallel systems, re-

garded as individual components,are combined into a series system.

The parallel-series system is analogously defined with each subset

being a series system and the totality is combined into a parallel system.

An r out of k system functions if and only if at least r of the k

components function.

There is an extensive literature on the theory of coherent systems.

These ideas were first formulated in Z. W. Birnbaum, J. D. Esary, and S. C.

Saunders [7], in which they extended some ideas of E. F. Moore and C. E.

Shannon [29]. For many further details, the reader is referred to R. E. Barlow

and F. Proschan [2], [4] and James P. Lipp [18].

Now let Xi, i = 1, 2,... , k be a family of mutually independent

Bernoulli random variables, and P{Xi = I} = pi= 1 P{X i= 0), i = 1,2, .k

Then we define the reliability function h(p1 , P2 9 "" Pk) of the system • as

(1) h(p) q(Xl, Xz,...,Xk)} = PfqP(X 1 ,X 2... ,Xk = 1}

where p = (p VP2''" Pk) " By (I), we see that h(p) is the probability

that the system is functioning, which coincides with the interpretation of the

term reliability in the customary engineering context.

It is easily seen that for the series, parallel, series-parallel, paral-

lel-series and r out of k systems,

-3-
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(2) h(P) =o(P)

upon extending the domain of (p to the k-fold product of unit intervals and extend-

ing the rangeot 1p to the unit interval. On the set {O<Pji, i0-,2,.... ,k},

h(p) is increasing in each p,, i = 1, 2, .... , k, whenever v is a coherent system.

The techniques to be described in this survey are all concerned with

methods for statistical inference concerning p - h(p)

Before turning to the problems of statistical inference, I would like to

call attention to some concepts which I feed hvre potential utility in statistical

inference for systems reliability, but thus far oppear not to have been really

exploited.

3. The relative importance of individual components in a system. Z. W.

Birnbaum [6] defined two notions of the importance of a component in a system.

The reliability importance of component i, 1 < i < k is defined as

I P ah(p )(3) Ih, i( ) p

and the structural importance of component i is defined as

h 1p

In R. E. Barlow and F. Proschan [3], the notion of a fault tree was

employed to justify a different definition of the importance of a particular

component In a system. In the notation and terminology of this paper, this

- notion of the importance of the ith component can be interpreted as the

%m



probability that component i caused the failure of the syste-m given that

the system has failed. In R. E. Barlow and F. Proschan [ 3 ], this concept

was introduced fo- continuous life distributions, rather than the model em-

ployed here in terms of Bernoulli random variables. Thus for Barlow and-

Proschan the probability that more than one component caused the failure of

the system is zero. However, for the Berroulli model of this paper, such is

not the case. Therefore. some modifications of this definition are needed.

Hence, we would like to propose the following ad hoc alternative in this case

and define the importance of component i by

k
(5) 1 {=l _ Z p{()=0, X =X =X .. X =0}.

t (X<... <e} <_k, 1
I 1< !<l -1,

in

This is equivalent to assigning the cause of failure to a single com-

ponent at "random" when more than one component has failed and the system

has failed. The result obtained using (5) will not in general coincide with

the corresponding result that would be obtained if specific lifetime distribu-

tions for the individual components were assumed.

For example, if the system is a series system with two components, then

the component which causes the failu-e is the first component to fail. If Y

and Z are the waiting :imes to failure and F(y) and G(z) are the respective

waiting time distributions, then the probability that the first component causes

the systam f~ilure, given that both components have failed on or before time T

is given by

- -5-
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T

zjx< T, Z< T} = [F(T)G(T)- f F(z)dG(z)

0

Itis easily seen that in general P{Y> ZJY<T,Z<_T1 Z < however, if

F(y) = G(y), y > 0 or if F(y) and G(z) are uniform distributions on

[01 u, 1[0, uzl respectively with T<min[_ u , Uz], then P{Y< ZlY< 1,Z<T} = I
y z y z2

Still another alternative for a notion of the importance of the ith

corriponent is suggested by the following considerations. In many applications,

the objective is to produce a system of hign reliability, hence it is natural to

suppose that the reliability of each component should be high. In this case,

improvement in the system reliability is affected principally by the behavior

of h(pl, P), " P as each p1 tends to unity. Thus, a further suggestion

is to define the importance of the ith component by

(6) 3 = h(p)

where the indicated differentiation is to be interpreted as a left-derivative.

It is hoped that these suggestions prove to be useful. As of this date,

I have not yet explored their properties or their applications to statistical

methods of assessing reliability.

4. Methods for statistical inference for the reliability of series systems. To

simplify notation, we define qi = 1 - pi, i= 1,,...,k . Then qi is the

probability that the ith component is defective. Assume that N. Bernoulli1

trials have been made on the ith component. Then, if Xi is the number of

successes observed on the ith component, we have

-6
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k N xi Ni-xS(7) P{X I = X~l"'" X k = X k) =T (x) Pi q i i, x= it ,,..NiI
"i=l i

i= 1 ,2.... k.

Clearly (XV, Xz,... , Xk) is a sufficient statistic and any statistical technique

need employ only the data set {(xl, NI), (xV, NO), .... , (xk, Nk)}

We first treat the case of a series system. Then since

k
h(p) = iT p1i=l

a natural choice as an estimator of h(p) is

k k
(8) h(s) =T (xI/N1) = TT p,

i=1 i=1

which is both the maximum likelihood estimator and the minimum variance

unbiased estimator. However, this estimator can have some undesirable

properties. In the case of parallel systems, its behavior as a point estimator

can be very poor and we present an example to this effect in Section 5. Many

writers have attempted to exploit (8) as a basis for determining a lower con-

fidence limit Lh to h(p) . Naturally, all confidence limits to be described

depend on the confidence coefficient 1 - a; the dependence on a will be

suppressed in the notat.on that will be employed.

We now present a summary of various techniques that have been

proposed.

F. Nishime [3Z] computes the lower confidence limit L for each p

using the binomial distribution. Let
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k

k

and let L' be the lower confidence limit for the binomial parameter computed
k k

from the binomial distribution with N N N and x Y, xt . Then
i::l i--

k
Eh= (L-/L*)k TT L,1=1

The rationale for the method is by no means obvious. If the N are very

disparate, this can give unreasonable answers.

N. R. Garner and R. W. Vail, Jr. [13] have proposed another method of

combining component data to obtain a lower confidence limit. Let N= min N
k l<i<k

let y =_ (N1-xi), that is, y is the total number of failures observed.
i=1*

Further let y = max (Ni-xt) . Then if y < N, the lower confidence limit is
l<i<k

given by

N-y
(9) Lh = * L(N)(z) b(z.NLh(p) b(w;B,h(p))

z= N-y =N-Y

where b(x;M, p) is the binomial probability function with parameters M arid

(N)
p and L ( is the lower confidence limit for the binomial parameter when x

successes are observed in N Bernoulli trials. It can easily be seen that this

produces optimistic (non-conservative) answers in some cases.
A A

D. L. Lindstrom and J. H. Madden, (see D. K. Lloyd and M. Lipow
T

[191) have proposed the following ,rocedure. Interpret N h(p) as the number

of successes in N Bernoulli trtals. That is, Nh(A) is interpreted as the

= F75l 75 - I

I~ 8 5 ll i i l



observation from a binomial distribution with parameters (N, h(p)) and
this is employed to obtain a lower confidence limit Lh for h(p)

R. J. Buehler [101 suggested a technique for obtaining "optimal" one-
sided confidence intervals for the product of binomial parameters. His tech-

nique, however, requires that the possible observed k-tuples be ordered.

Thus, if k = 2, there are (NI+1)(N2 +i) sample points that must be ordered
in a sequence. Specifically, let CN N(Xl,x 2 ) satisfy

(10) P{CN N2(xf x2 ) < plP 2 <1 1 >1-a.N1' 2 2 12 > c

Then the numbers cN N 2(x, x2 ) form a set of lower confidence limits1' x2 )
for plP2 . These are to be ordered so that

(11 (x(MJ) x•j)) < • xi lxi

NIN 2 (l 1 z - N1,N2(xli 2

whenever i <J, where 1 <i <J < (NI + 1)(N 2 +1) . The unique sequence sucn
that the c N (xI, x2 ) are uniformly largest subject to the specific orderingNha N c 2
chosen is given by
(12) c (xi) ,x (i)= inf(plP b(Nl, x M))b(N x M

N1' 2 ( P: N 
P1:p2 * 2

where the index j is determined by the ordering. Since (12) depends on the

choice of ordering, the question of how a particular ordering should be chosen
is by no means clear. Buehler has suggested the ordering based on the criterion

-9-
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CNI(Xl, 1TV )c N 2(X, 4T"F--a < Nl(X it--a)CN2(Xý, 4-1 --a

implies

N N Z(Xl x2 ) -N NI' 2'(xi,

where c N (x, %T1- )denotes the lower confidence limit for a single binomialN1

parameter with confidence coefficient 4 1--a-

Under suitable conditions the binomial distribution may be replaced

by the Poisson distribution, which offers some computational advantages.

In general, Buehler's method is difficult to utilize, particularly for

k > Z, because of the computational effort involved in ordering the sample

outcomes.

J. L. Epstein [12] considered the case k = 2 and compared the
A A

estimators h= (X1 + l)(X2 + I)/NIN2 and h= X2X2/NIN 2 . Let
Ti = {(Xi X2):N N2 h = i0 and S. = {(x, ): = N h2

~~ (x, 2 : 1 21 1,x 2 ~ 1vi2n
1 < i < (N +l)(N2 +1), 0 < j <N: N 2 . Ten the sets T and S. determine

12

partitions of the sample space which we denote by ZY and 8 respectively.

The zcets T. and S are ordered so that a monotonicity condition isk k

satisfied, that is if (xl, x,) U S, then (y I y U S, for all

yl : x,' Y2 < x2 . Epstein computes some numerical examples of confidence

limits and it appears from his investigation that the partition U possesses

some advantages over the partition 8.

In an unsigned and undated mimeographed report which has come to

my attention (listed in references as Anonymous [11), the following technique

-10-



has been suggested. Let P, = X i/Ni i = 1,2,...,k and consider

k k
log1 =1 " log h()-1 log Pii=lil

k
Then since , log p1 is a sum of independent random variables, we assume

1=1

that the central limit theorem can be employed and use a normal approximation

to obtain the lower confidence limit Lh * Note that the mean and variance

of log pi do not exist. The author suggests using the "relationship between

the moments of the normal and the moments of the lognormal distributions to

determine the moments of log Pi

One of the techniques in the "folklore" of reliability theory has been

the use of Poisson approximations when the reliability of each component can

be assumed to be "high". Intui-ively, this technique can be sketched as

follows. Write

k1 h(-p) = I - TT" (1l-qi) qi = -Pi i= 1, ,...k
1=1

Then set

q I Ix/Ni i = I, ,..., k

Accordingly, we can write

k k
I - h(p) 1 TT -I/N) x IN

Thus, if we let N X Y I=l,2t.., k, we can regard the Y,'s as

being independently Poisson distributed random variables with parameters X.

This idea has been extensively exploited 4n the statistical literature and we

provide three illustrations.

- 11



In the book by B. V. Gnedenko, Yu. K. Belyayev and A. D. Solov'yev

S[14], the following method is suaggested, which the authors attribute to R. A.

Mirniy [28].
k k

Let q -- log P1 and let ' = max(-E log r ) subject to the con-
1=l k i=1

ditions X_>0, i = 1,1,...,k and . < la(yl, Y2,' Yk) I
•, I-•} =1

where 4{ % < A >1-a; A is the solution in a of P {Z<k w= - - I-a a -

SY } = a and Z has the Poisson distribution with parameter A.
i=l

Then they obtain

(13) Lh e

where

(14) (P =l-(Y'Yz'''Yk)IN

I. V. Pavlov [34] provides a comprehensive discussion of Poisson

methods for series reliability. L. N. Bol'shev and E. A. Loginov [8] use the

Poisson approximation and determine the lower confidence limit by

(15) L =1 a)
-h ZNX* 1a- Zy +2

2
where y + denotes the (1-a) point of the chi-square distribution with

2y +2 degrees of freedom.

The evidence accumulated thus far suggests that these are likely to

produce conservative results.
4

A conservative method in keeping with the above-mentioned "folk

theorem" of reliability theory is described in the paper by A. Winterbottom [41].

-12-



A method known as the key test results method was introduced by

K. A. Weaver [391 and described oy him for the case N1 = N = = N = N

and extended to arbitrary N,, I < i < k by A. Wlnterbottom [40], [41].

Specifically, define

k
, (16) ~h(•)p) = P- {h(TT (x/N > h(^)}

i=1

that is, the probability of observing an estimator of the form (8) greater than

or equal to the observed value h(p) . Then

(17) {p: G(h(P); p)}> a

constitutes the set of parameter points that would be accepted in a significance

test of size a . The lower confidence limit is given by inf{h(p): G(h(A), p)>a}

Winterbottom gives a graphical method for solving (17) when k = 2 and

comments on the difficulties encountered when k > 2 .

With no loss of generality, we can let N= N <_ Nz < <N k N Then

the key test results are those with 0 < x :N, x,= N1, i = Z,...,k. Using

the key test results, Winterbottom shows that

N1

(18) Lh = inf{p: E b(z;N,p)> a
Z=X I

where, if h($) = u, interpret the experimental outcome as xI= Nu and

compute the lower confidence limit from (18).

We conclude this section by briefly mentioning the work of C. Mack.

In a sequence of four papers, he treated various problems concerned with

-13-



determining confidence limits for products of binomial parameters. In the

first of these [20], he provides a number of technical improvements to the

likelihood ratio technique proposed by Madansky [24]. The third [Z2] treats

the case of the product of two binomial parameters (k = 2) . The technique

is basically a computational method, which can be used when the number of

failures is small. Tables of formulas and numerical values are given to

facilitate the computation.

5. Methods for statistical inference for parallel systems. For parallel systems,

we write 1 - h(p) =I-qi * Thus, there is a natural duality between parallel

and series systems and many statistical techniques for series systems may

be transformed into equivalent methods for parallel systems upon replacing

X by N~ -Xt, P. by qt and conversely. Then lower confidence limits for

k k
TT P become upper confidence limits for IT q1 " This duality has been exploited
i=l 1=1

in the papers by R. J. Buehler [10), J. L. Epstein [12), Anonymous [1] and C. Mack [20].

Note that in the case of the suggestion by Anonymous [I], if no failures

have been observed for any component, then the data cannot be used. This is

somewhat contradictory in that one should feel happy that no failures are

observed, yet this prevents utilization of the experimental data.

We now consider methods specifically designed for parallel systems.

B. Harris [15] assumed that YI' Y "..." Y are independently Poisson

distributed with parameters ki, XZ,..., X, where YIY, "...Y "k are to

be regarded as the number of observed failures for each of the components. 5

Further X is to be regarded as Niqi, I = lZ,...,k Then, if

-14-
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k k
(19) o =T x 1TT(qI/N

the conditional distribution of Y1 given Y -Y, ... ,Yk-Y1 depends only on

e and not on the individual X s . This observation may be employed to

obtain uniformly most powerful similar tests and uniformly most accurate

unbiased confidence intervals for 0 . The contitional distribution referred

to above is known as the generalized incomplete modified Bessel distribution

and is tabulated in B. Harris and A. P. Soms [16].

In the remaining two papers by C. Mack [21], [23], methods for use

with parallel systems are described. Both are restricted to the case k = 2

the first giving appropriate methods for use when the number of observed

failures is small. The second of these is largely devoted to tables to facilitate

computation of the upper confidence limit for the probability of failure of the

system.

We digress briefly to comment on the point estimation of h(p) . The

minimum variance unbiased estimator and maximum likelihood estimator of
k k

I - h(p) =TT q is I - h() = TIT (N XI/N1, thdt is, the product of the
i~l i=l

observed proportion of failures of the individual components. However, if

Sany component exhibits no failures in the experiment, then h(p) 1 Thus

fordata like N1 = IOQX 1 = 75, N?. =10, X? =70, N3 = 5, X3 = 5, we have

h(ip) 1, which is inherently e poor estimator.

6. Methods which may be used for arbitrary coherent systems. A. Madansky

[24] treated the use of Wilk's likelihood ratio statistic for the construction of

• -15..



confidence sets for the reliability function h(• ) of series, parallel, and

series-parallel systems. He described the use of Lagrange multipliers to

accomplish the necessary constrained maximization. He also described

what he called the linearization method, that is, expanding the maximum

likelihood estimator h(p) up to terms of first degree and thus obtaining the

statistic

(20) Z = (h - h(p))/Sn(0)

A A%

where S (0) is an estimator of the asymptotic standard derivation of h(p)n

According to the usual large sample theory, Z is asymptotically normally

distributed with zero mean and unit variance.

This line of investigation was continued by J. M. Myhre and S. C.

Saunders [30], who compared the likelihood ratio with the linearization method

and concluded that the likelihood ratio method was the more accurate of the

two methods.

Myhre and Saunders [31] subsequently extended the work of Madansky

on the likelihood ratio statistic to arbitrary coherent systems.

R. G. Easterling [11] proposed a modification of the linearization method

in that the variance estimate Sn(0) of (20) is replaced by
n

(21) (r =, p 1-h(P /

where n is called the pseudo-sample size. The estimate A is obtained by

,2equating a- to the estimate of the asymptotic variance of the maximum

likelihood estimate. The data is then to be regarded as a sample from a

A

_16-
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A A A
binomial distribation with X = n h(A) successes and n observations and

this is used to obtain the lower confidence limit Lh

These methods all have the serious drawback that they perform very

badly when the reliability is high, that is, near unity. Yet I feel that this is

the region of the parameter space which is of greatest interest in applications.

A substantially different technique was proposed by Joan R. Rosenblatt

[35]. Given the sample sizes NP N2,.Nk and the data X, = x, X2 = xz,

... , = Xk, the author discussed simulation methods of statistical infer-

ence for h(p) . One method of simulation is to select possible systems by

sampling without replacement from each component. Then N systems are

constructed and thus N values of qp(x) are obtained. Then the average
N

Z•(x )/N is an unbiased estimator of h(p) and by the central limit

theorem, this statistic has an asymptotically normal distribution, permitting

statistical inference to be easily carried out.

The author notes properly that this is an inefficient use of the available
k

data. With the same data it is possible to construct N = iT N systems,
i=1

obtaining thereby N values of ((x) . The average of these is an unbiased

estimatorof h(p) . Further, she shows that this is a U-statistic in the

sense of Hoeffding and that 4N (U - h(p)) is asymptotically normally dis-

tributed whenever NI/N-* ci, t = 1, 2,..., k . Also, it is shown that

-U< (p)(l - h(p)). Thus an asymptotic lower confidence limit for h(p)

can easily be obtained. In general, this will be a conservative procedure.

7. Bayesian methods. There is an extensive literature on the use of Bayesian
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methods in reliability analysis. In this section we provide a brief description

of some of the literature in this area.

M. D. Springer and W. E. Thompson [36], [37] obtain the Bayesian

solution for series and parallel systems by employing beta priors for each

component. They employ the Mellin transform technique to combine the

posterior distributions for the individual components and this is inverted to

obtain the posterior distribution of h(p ) The resulting formula is fairly

intractable and the authors suggest the use of digital computers to evaluate

this and thus to obtain confidence limits. An elementary discussion of

Bayesian methods for series reliability using Beta priors for the individual

components may be found in A. M. Breipohl, R. R. Prairie and W. J. Zimmer

[9].

In W. E. Thompson and E. Y. Chang [38] the use of Chebyshev poly-

nomials is suggested as a numerical method for evaluating the posterior dis-

tribution of the system reliability. The paper was written for the purpose

of providing a Bayesian method for the reliability of parallel system when

each component has an exponential lifetime distribution. However, the same

technique can be employed in precisely the same manner whenever the posterior

distribution of the reliability of the individual components has the form

(Z ) (P) = +)a--- i+l--• Pi anIPi i. > 1, • > -1, 1 1 , 2,... k(22) f(p ) - -plf(l/p)
1  1 3- ~,,.,

I (a+1+) 1 .I

i ~-18 -
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J. B. Parker [33] pointed out that one obtains different results if one

chooses an uninformative prior for the system reliability than if one chooses

the same uninformative prior for the reliability of each individual component. For

example, a uniform prior might be an illustration of such a prior. Parker

presents a table comparing component priors and system prio:s.

The use of Monte Carlo methods in conjunction with a Bayesian analysis

is described in A. Hinojosa, D. V. Mastran and D. Spreen [17] and in

D. V. Mastran [Z7]. A prior distribution is assumed for the reliability of

each individual component. Then the experimental data is used to determine

the posterior distribution. In [17] uniform priors are used and in [27] Beta

priors are assumed. Then an estimate of h(p) is obtained by simulation,

that is, a random reliability is chosen for each component by sampling from

the respective posterior distributions. Repeating this, an estimate of the

posterior distribution of the system reliability is obtained. A beta distribution

is fitted to this empirical posterior by the method of moments and the lower

confidence bound can then be determined.

In [17] the following problem is also discussed. Consider a series

system with k = 2 and let N = N and assume that no failures have been
I 2

observed. This can also be regarded as N trials of the compAete system

with no observed failures. The authors suggest that the second interpretation

would give better reliability estimates, however, no theoretical justification

for this remark is provided in the paper.

D. A. Berry [5] considered sampling plans which minimize the Bayes
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risk, taking the sampling costs into account. Specifically he considers the

loss function

A k(23) L(h(p), h(p), N ,..., Nk) (h(p) - h(p)) + ci Ni

where c! > 0 is the cost of a single observation on the ith component.

The specific details are carried out for series and parallel systems with

k = 2 and uniform priors for the reliabilities of the individual components.
mi

This is extended to k compcnents, k > Z and priors of the form p i.

In N. R. Mann and F. E. Grubbs [25], the posterior distribution of

-In h(p) is approximated by a chi-square distribution to obtain lower con-

fidence limits for series and parallel reliability. While computationally

straightforward, the procedure is tedious to describe and the details are

omitted. The sa--'e procedure is also described in the book by N. R. Mann,

R. Schafer, and N. Singpurwalla [26]. The authors claim that their riethod

provides excellent agreement with procedures known to possess some opti-

mality property, such as Harris [15].

8. Decision theoretic models. To date, I have no evidence that decision

theoretic techniques have been employed with the exception of Bayesian

decision methods. Here, the only loss function that has been utilized is

L(h(p), h(p)) (h(p) h(p)) (see [5], [9]). I regard this as an inappropriate

loss function. If the system reliability is .99, then on the average it should

fail one t.1me in 100, whereas if the system reliability is 999, it should fail

about one time in 1000 and hence is ten times as good. Thus, the loss func-

tion should depend on how well one estimates (I - h(p)) , Possibilities for
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this are loss fuictions of the form

L(h(=), h(p 1(1 -h(ý)) ( - h(p , >0

It appears to me that this is a direction well worth considering.

9. Concluding remarks. Of necessity, this survey is far Lom complete.

There are several reasons for this. Much of the literature of reliability theory

is contained in proprietary publications and is not in the usual open literature.

Hence, many articles could not be obtained easily. Similar inaccessibility

applies to papers appearing in a number of foreign journals which could not

be easily obtained. In addition, some readily accessible articles have surely

been inadvertently overlooked.

Finally, it is clear that there are an enormous number of methods avail-

able a-d, to the best of my knowledge, there has beei no definitive work to

date which provides a -eliable and comprehensive comparison between the different

techniques., Maly papers compare numerical values for the lower confidence

limit for hip) for several techniques, but this is an incomplete comparison,

since the true confidence coefficient has on.'y been approximated by the

stated confidence coefficient, and the former is in general unknown.
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