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Let T be an operator defined on the subset U of a Banach space

X determined by equality or inequality constraints for a finite number

of fun ctionals on X. We find necessary conditions that the solution of

the minimization problem inf{ fiTu II : u U) must satisfy . A case of

particular interest Is when T has values in L . We analyze severai

examples in detail to show how the necessary conditions yield detailed

inform ation about the solution. We also Introduce the notion of a t-point
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ISOPARAMETR I C AND SUBPARAMETR I C VARIATIONAL PROBLEMS

Stephen D. Fisher

Introduction

Let T be an operator defined on a subset U of a real Banach

space X with values in a real Banach space Y. We shall suppose that

U is determined by a finite number of functional constraints :

U = {x ~ X : 1~(x) < r ., = 0,..., N )

or

U = (x ~ X : 1 (x) = r ., j = 0, . . . , N )

which we term the subparametric and isoparametric cases , re spectively.

in Section ~ we give a theorem on the exis tence of solution s of the

variational problem

(0.1) inf{ ilTu ll : u U)

In Section 2 we find necessary conditions that any solution of ( 0 . 1)  must

satisfy . In Section 3 we show that the results of Section 2 can be applied

to solve some non-linear equations of the form Tu 0. In Section 4 we

introduce the notion of a t-point and show how at a t-point we gain more

complete information about the nature of solutions of (0.1). In Sections 5

00
and 6 we analyze in detail the problem of minimum curvature in L

first for real-valued functions and then for complex analytic functions .

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and by the National Science Foundation , Grant MPS 75-05501 .
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Throug hout the paper a case of particular interest is when Y L ( 12, ~~

or some other dual space and indeed , this is a major point of difference

between our analys is of (0.1) and that say of [ 5 J  since here the func tional

f(x) = II Tx II to be minimized is not Frechet differentiable.

—2-



~ l. Existence

Let X and Y be real Banach spaces and let U C X. We distinguish

two cases:

Case I: X and Y are real Banach spaces with separable dual

* *spaces X and Y , respectively.

Case II: X and Y are each the dual of separable , non-refl exive

Banach spaces W and Z, respectively.

The main novelty and interest in this paper Is Case II but since the

proofs work (with weaker hypotheses) for Case I as well, we include both .

The following is a simple sufficient  condition for existence of

solutions to (0.1).

Theorem 1. 1. Let T be weakly (re spectively, weak_ *) sequentially

continuous on U. Suppose Q~~~ U Is weakly ( resp . , weak-*) closed

~~~ that there is a bounded min 1mizin~ sequence ~~ ~~~ problem (0. 1).

Then there is a solution ~j  (0.1) .

Proof. The conclusion Is immediate . If { u }  is a bounded minimizin g

sequence , then { u }  has a weak (resp . weak_ *) cluster point u t  U.

Since X is separable (resp. X is separable) we may assume that u~

converges weakly (resp. weak-*) to u. Hence, Tun 
-. Tu either weakly

or weak_ * and thus a = ~ITu H showing that u is a solution of (0.1 ).

Corollary I. 2. 
~~~~~~~ 

1
~~, 

. . 
~ 
1N ~~ weakly (r~sp., weak_*) sequentially

continuous functionals ~~ X ~~~



1. 1) U ( x c  X : 1 ( x )  sr ., j 0, . . . , N}

or

(1. 1) ’ U = (x X : 1~(x) = r ., j = 0,..., N )

AL .1 weakly (resp., weak_ *) sequentially continuous ~~~ j j  there ~~

,~~~ bounded minimizing sequence, ~~~~ there ~.j ~~ , solution ~~ (0. 1).

Remark. We can clearly have U defined by some mixture of equality

and inequality constraints; this case will not be mentioned specifically

in the sequel. We may also drop the assumption of separability

on W, Z by assuming that T is weak-* continuous.

-4- 
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2. Necessary conditions for extrernality

We assume in Theorem 2.1 that U is of the form ( 1.1) where

are Frecliet differentiable functionals on X and that the

Frech~ t de rivatives of I~ , . 
~~~~~~ 

1~~ are always linearly independent.

Theorem 2 .1.  Let u0 b e a  solution of ( O . l ) ~~~~~j et J ~~~thpse indices

for which 1 (u 0 ) = r , . Let 1’ be the Frechet derivative 
~~ 

I . ~~

U
0 ~~~~

V =  {vc X : 1 ( v ) < 0  for all c I)

{ vc  X : 1 ’ ( v )  = 0 for all j c  J ) .

Suppose there is a bounded linear operatp r L with rpnge in Y whose

domain contains V and for which

(2.1) T(u0 + cv ) = Th0 + eLy + o(e), v c V, c -.0

Finally, suppose iii Case I ~~~~ LV0 ~~ closed fl~ 
Y 

~~~~~~~ flh Case Ii

that LV0 ~~ ~~ finite codimensign ~~ Y and L l~. weak-* continuous. Let

V~ = {i c Y~ : t(Lv)> 0 for all v V}

~~~

= {m Z : m(Lv) > 0 for all v c v}
for Cases I and II , re spectively . Then

(2.2) a = inf{ II Tu + Lv I(~ : v c v)

~~~

( 2 . 3 )  a supj t1(Tu0) I : I c V~, III if ~ 1)

(2.4) a = sup{ Im ( Tu 0) I  : m ~~ lim O ~~i)

-5.. 
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where (2. 3) holds in Case I and (2.4) holds 
~fl Case II . ~~ either Case I

QL II , the supremum is actually a maximum.

Proof. Let x c  X satisfy 1’(x) < 0  for j J (or 1 (x) = 0 if 1~

Is linear for some j ) .  Then u0 + cx c U for all sufficientl y small e > 0

so that

a <  f (T( u0 + cx) fi~~ = liTu0 +~~Lx li~~+ o ( c )

If ll Tu0 + Lxff < a - 6 for some 6 > 0 , then

a ~ It Tu0 + cLx H + o(e) ~ t u T u 0 + LX II + (1 — c ) I I Tx0 Il + o(e)

< a  - € 6 + o(e) < a

for c small , a contradiction. Hence, ii Tu 0 + Lx i1,~, ~~ . a and so by

continuity

a = l nf { iI Tu0 + Lx JJ~ : x c  v)

whi ch is (2 . 2 ) .

Next , note that (2. z) implies that the convex set Tu0 + LV is

disjoint from the open ball in Y radius a. By the separation theorem

1 5; p. 133) there Is a continuous linear functional 1 of norm 1 with

(2 .5 )  sup{1(y) : H i ll <a) < inf{1(Tu
0 

+ Lv) : v c v}

which gives conclusion (2.  3) in Case I. In Case II we note that LV0
is closed ([4;  p. 1861) and hence weak-* closed since L is weak_ *

ccintinuous. Further, since V0 C V, the convex set (Tu 0 + LV)/LV0 in

Y/LV0 is disjoint from the open ball of radius a in the finite dimensional

space Y/LV0 and hence there is an element m c Z with tim It 1,

m(Lv) 0 for all v c V0 and

-6- 
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sup ~ m(y)  : I i I y J  “ Y/LV < a } < l n f {m (Tu 0 + Lv) : v t  V}

which gives conclusion (2.  4)  in Case 11.

~~~ cjll arv 2 . 2 .  J~~ u0 be~~~so2ution Q._f ( 0 . l ) . Then a = iITu0 II j~.

~~~ 
distance Y i!Qji~ Tu0 ~~ LV0 ; j f U = X, ~~~~ Il Tu0 H

~~~ distance in Y from Tu 0 to L(X) .
00

Corollary 2.3. j~~ 
Case II ~~~~~ Y = L (12, 

~~
).  ~~~n under ~~~

hypotheses of Theorem 2. 1 there is a function h L1 with ii h il~ 1 and

(i) 0 
~ f  hLv , all V e V

12
(2 .6) (i i)  hTu 0~~~0 a.e . ~

( ii i )  iTu0 I = a a .e. ~ where h *0.

Proof. Conclusions (11) and (li i)  follow from equality in Holder ’s inequality.

The Isopp rametric Case

The isoparametric case is almost the same as the sub-parametric

one; we do only Case U. Existence is covered by Corollary 1. 2; the

necessary conditions for an extremal are given below.

Theorem 2 .4 .  j~~ 1N ~~ Frec1~ t di fferentiable functionals ~
x ~n~~i~l

U = ( x c  X : 1 (x) = 0, j 0 , .. . , N )

Let T be ~~ qper&tor ~~~ U ~~ Y and suppose u0 c U satisfies

( 2 . 7 )  a = iI Tu 0 il = inf{ Il Tu ll : u U )

Let 1~~, . . . ,  1~ ~~~~~ Frechet derlvatlves 2L 
~~ 

l~~, respectively,

~~ U0 ~ jj~ suppose ~~~~~~~~~ there Is ~ bounded linear operator L ~ LUi

—7—
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range in ‘i’ whose ~~ m atn  contains ~ neighborhood Q! V0 :

V0 = {x X : 1 (x) = 0, j 0 , . . . , N )

and ~~ which

T(u 0 + v) - Tu0 
- Lv o( IIv If ), f l y  II 0

Su~~ose further ~~~ 1~~, .. . , 1~~ are linearly Independent, L 
~~ 

weak_ *

continuou s, and LV0 ~~~ finite codimension ~~ Y. Then

(2.8)  a = inf{ lI Tu0 + Lv ii : v c  v0}

~~~ there 
is ~~ element z0 c Z with

(i) 11Z 0 11 = 1

(2.9) (ii) (z
0,

Lv) = 0, all v c V0

(iii) (z0,Tu0) = a .

Proof. We shall only show (2.8) ;  the rest is as in Theorem 2.1. Let

x = ~~ V0

where V0 is the intersection of the null spaces of ‘b’ ~ 1~~ and

X1 Is  spanned by the N + I vectors x0, . . . , x~ with

= 6
J k ’ j , k = 0, . . .  ,N

Such vectors exist since 1~~, . . ., 1j ~ are linearly independent. Define
N+1A : X - . IR by

A(x) = (1~ (x) , . . . , 1N~~~
Then the Frech~t derivative , A ’ , of A at u0 exists and is an

isomorphism of X1 onto ~ N+1 If v c V0, then the implicit function

theorem (for Euclidean space) assures us that there are continuous functions

— 8—
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N iefined in some neighborhood of c = 0 such that  g (0 )  = 0

and

N

N 

. \ ( u 0 + ev + ~j g (c)x .) 0

Let y( c ) = ~ g , ( c ) x .; then
0

0 = A( u 0) + eA ’(v)  + A ’(y ( c ) )  + o(c) + o( II y (c) ii )

Since \ ‘  is invertible we find that lj y ( e ) I f  = o(e). Thus ,

a < HT (u 0 + cv + y( e))~ = ll Tu0 + eLv ff + o( c )

and the rest follows as in Theorem 2.1.

*Remark. Consider an I c V ; then certainly

1 (Lx ) = 0 if 1’(x) 0 for j = 0, . . ., N

Hence ,

N
(2. 10) 1(Lx) ~ c , I~(x), x c X, c0, . . ., C

N 
c JR

j = 0  ~

*Similarly, f o r  m V, we have

N
(2.11) m(Lx ) = c 11(x), x c X, C0, . . ., CN c JR

j = 0

Suppose that Y = L~(12, p.), 1 < p < 0 0;  let p’ be the conjugate exponent

of p. Then , assuming that the hypotheses of Theorem 2.1 or 2 .4  hold

there is a function h t L~~(12, ,~) with

Nf  h Lx dp .=  ~ c 1 ( x ) .
12 j = l

-9-
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Now suppose that 1~~, .  . ., 1’ span the dual of kernel L; then

c0 = = C
n 

= 0. Finally, suppose that for j = n + 1, . . . , N , 1’ has

the form

= ~ Q. Lx d~ when x € ker

where Q1, 
~ ~ N-~ 

are some L~ functions. Since L is 1 - I on

fl ker 1~ , we have h € span {Q1, . 
~~ ~ N-~~ 

modulo function s

orthogonal to the range of L. If L is known to be onto then h lies

in the span of Q1, .. ‘ 0r~i-n~ 
In particular if Q1, 

~~~~~~ 

is a subset

of a (weak) Chebyshev system of size r >  N - n , then h has at most

r - 1 zero s (sign changes) and , in particular , when p = ~~~~, Tu 0 = ± a

with r - 1 or fewer sign changes (strong sign changes.)

Example. Let g be a bounded smooth monotone decreasing function

on JR and let

Tu = u ” + g(u)

for u € W ‘ . Let q’0, .. 
~‘~~N be a Chebyshev system on [0 , l J

and set

U = {u W~ ’ ~~: f uw~ = y,, j = 0, .. ., N)

where y0 , . . 
~ 

are prescribed numbers . Let u 0 be any solution of

a inf{ffTu Ii 00 
:u c U)

and let h be the L1 
function (assured by Theorem 2. 4) with hTu0 > 0.

Now L is given by

-10-

- .  
-~~f ~~~~*



Lv = V ” + Av

where A(t ) g ’(u 0(t)) is negative so that L is 1 - 1 and onto . Let

G(s , t) be the Green ’s function for L with homogeneous initial conditions.

Then

1 1 1 1
y ,  = 1( u ) = f u~~. = f {f G(s , t ) (Lu) ( s ) ds )Q~(t )dt = f (Lu) (s)4 , ,( s) d s

0 0 0 0

I
where ~~(s) = f G(s , t)4~.(t)dt . However , ~~ ~ 

form a Chebyshev
3 0

system since G(s, t) is totally positive and hence h has N or fewer

zeros on [0 , 1]. Thus , for any u0 with iI Tu0 Ii = a we find that

u~ + g( 4 0) = *a with N or fewer sign changes.

—11—
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•5

~ 3. Solutions of some non-l inear  equati on s

There are certain happy cases when it is immediate that the operator

L in Theorem 2. 1 maps V0 onto Y and in these cases we can directly

conclude fro m Corollary 2. 2 that the equation Tu = 0 has a solution ,

provided the minimization problem (0.1) has a solution. We illustrate

this below with several examples.

Example 1. Let F(t , x) be a C1 function on [0 , 1] X and consider

the initial value problem

I ~~~~~~~ + F(t , ~~t), . . . ,y~~~~(t))  = 0, 0 t <
(3.1)

I (v)
1... y (O ) = a , v O ,...,n — 1 .

The Frechet derivative of Ty = y~~ + F( . , y, . . . , ~
(n_ l )

) at u0 is

(Lv)(t)  v~~~(t) + (t , u0(t ), . . . , ur (t))v
~~~

’
~

(t)

and hence L maps V0, which in this case is the space of functions

satisfying homogeneous initial conditions , onto L~ . It is easily verified

that if either

(a) I F( t , x ) I  ~~ (1 - 6 ) Ix I + M , some 6 , M > 0

or

(b)  I F ( t , x ) l  ~~Cix  I l i og x  I + M , some C, M > 0

then the minimization problem i n fj  Il Tu 11 00 
: u c i~~’ 

00
(0 , 1)) has a solution

and hence so does (3 .1) .

Example 2. Let L0 > 0 be given and let g be a function in L~(O , L0).

We wish to show that there Is a smooth curve t ‘~~ (x(t), y(t)) of length L0

-12—
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or less whose curvature is g. That is , if X = {(x , y) : x , y t w2’ P(Ø , L0) },

then we wish to show that there is an element of X with

(a) f L0 
(~ 2 

+ 
.2
)1/2 

~ L0
(3.2) 0

I .- ... .2 . 2 — 3 / 2
(b)  L (xy - xy)(x + y ) = g

Let 

~~ . 2 — 3 / 2T(x , y ) = (xy - xy)(x + y ) - g, (x , y) c X

and

3. 3) a = inf (  Ii T(x , y) : (x , y) c X }

If + 1, then we have (T(x , y) + g)2 = ~2 
+ ~2 so that both ~

and y lie in a ball in L~ of radius no more than the norm of T(x , y)

plus the norm of g. Hence , a weak compactness argument shows there

is a solution (x ,y)  of (3. 3) which satisfies ic2 
+ 1 on [0 , U ,

L ~~ . U0 . If L < L0, extend x, y linearly on E L, L0 J . According to

Corollary 2. 2 , a is the distance of T(x , y) to LV0 where

L(u ,v) = -Zuy - uy + Zvx + vx

is the Frechet derivative of T at (x , y) and V0 is the null space of

the Frechet derivative of 10(u , v) at (x , y):

V0 = {(u,v):f xu + y ~’ O ) .
0

In deriving the formula for L we have used the fact that kx = j’~ and

ky = -x where k is the curvature of (x , y). For w c W~’ ~~
, define

u , v by

— 13-
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U = ~~~~~~ u(0) 0

v = x’i~i, v ( O ) = 0 .

Then (u , v) € V0 and L(u , v) = w so that LV0 contains all L~ func-

tions and hence a = 0.

Ex~mp1e 3. Let g be a continuous monotone increasing function on JR.

Consider the boundary-value problem

(i) (u ’(t) + g(u(t))  = f(t) 0 ~ t < 1, f L1(0 , 1)
(3 .4 )

(i i)  u(0) = u( l) = a

I
We shall show: (3.  4) has a solution ~ and only if the number b = f  f

0
lies in the range of g.

The necessity of this condition follows by integrating (3. 4) (i) over

[0 , I J .  If b lies on the boundary of the range of g then either g(x) = b

for all x ~ x 0 or g(x) = b for all x < x1, say the former . Let

u~ (t) = f( t) - b with u0(0) = u0(l) = a and put u1(t) = u0(t) + c where

c is some large constant. Then g(u 1(t)) = b for all t and

u~ = u~ f - b = f - g( u1). Hence , we may assume that b lies in the

Interior of the range of g. By subtracting b from both sides and by

a translation we may assume that b = 0, g(0) = 0, and 0 is In the

interior of the range of g.

Suppose {u ~) is a sequence of functions in W1’ 1(0 , 1) and the

functions w~ = u + g(u
1

) - f lie in ball of U of radius C. Then

we have

— 14— 



~~u~ ( x ) <~~~u~ (x) + f  g(u )u . ~
X
(1+w j

)u j ~ ( l l f H 1 + C) Ii u 3 i1~

Hence , I lu . 11
00 ~ C’ for all j .  Thus , j lg(u ) II~ < C” for all j and

we have

I u ’(x) I ~~ . 
I f ( x ) I + C + C” for all x and all

Hence , {u , )  is uniformly bounded and equicontinuous in C [O , 1j so

that we may assume that u . -. u uniformly. We may assume that w ,
00 1converges weak_ * in L (and hence weakly in U )  to a function w.

Thus , we get U’ -, u ’ weakl y in L1 and we find

u ’ + g(u) f + w

u(0) = u(l) = a

Thi s shows that the following holds: if

a = in f{ JJ u ’ g(u) — f 11
00 

: u(0) = u( l) = a)

then there is a U € W1’’ with a = Il u ’ + g(u) - f Il
00~ (That a is finite

is easy: let u0 solve u~ = f , u0(0) = u0(l) = a; then + g(u0) - f =

g(u0
) L

00
.)

If V0 = {v € W1’~ : v(0) = v(1) = 0) ,  then Corollary 2 . 2  asserts

that a is the distance of u’ + g(u) - f to LV0 where U Is the Frech~ t

derivative of Tu = u ’ + g(u) - f given by

Lv = v’ + Av

and

A(t) g ’ ( u ( t ) ) > O

However , it is obvious that L maps V0 both 1 - I and onto the space of

functions with 0 mean-value . Thus , a = 0 and we are done .

— 15—
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H
~-l. Tig ht eonstraints

Suppose that one of the lunct ionals , say 10, has the property

that a i s not a constant funct io n of r0 . Let us fix r1, . . . , rN and

a llow r r0 to vary and consider the function

(4 .1 )  ~{r)  = inf ( ff Tu f~ : u U(r) }

where

( 4 . 2 )  U(r) = (x X : 10(x) ~ r, 1 (x) ~ r ., j = I , . . . , N )

in the subparametr ic case or

(4. 3) ~(r ) = i n f ( Ij Tu ll : u 1.1(r) )

where

( 4 . 4 )  U(r) = ( x c  X : 10(x) = r , 1~(x) = r ., j = 1, . .  ., N)

in the isoparametri c case. We will be interested in values of r at which

a (or ~3) has a definite change. We define a point r0 in the interior

of the domain of a continuous function f to be a t-point if there Is a

A � 0 and a sequence c - 0 withn

( At > 0 , n = 1, 2 ,
(4 . 5)

e 1(f ( r 0 + t )  - f(r 0)) --

(The terminology is derived from the fact that at a t-point for a the constant

10(x) < r0 becomes tight:  10(x) = r0 .) We have the following elementary

pro position which shows that any continuous non-constant function f

has (many)  t-points.

Pro pgsition 4 .1 .  Let f be ~ non-const ant conti!n*ous function Qj~, [a , b J .

Then I t -p oint j~ (a , b) .

-16-
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Proof. We may assume f(b) s f(a). Suppose that for each x t [a , b) we have

lirn s~ip h 1( f( x + h) - 1(x)) < 0 .

Let ~ 0 be give n and set F(x) = c(x - a) - f (x )  + f ( a ) .  If t ~‘ x but

is close to x, then f(t) — f (x )  < (t /2 )~ t - x ) so th at

I~ t) — f lx )  = c( t  — x ) — (1(t) — f x)) ~ 0

Hence . F is incre asing so that  F( b )  ~ F( a) = 0. ThI s implies

1(b) < f~ a) + c (b - 
~~~

) .  Let c 0 and conclude f(b) < f (a ) .  Hence , if

f i b )  ~ 1a ) , then there must  be a p oint  x0 and a ~~~> 0 with

lim sup h 1( f( x0 + h) - f( x0 )) =

h — 0 ~

I f f(b) < f~~i ) ,  apply the reasoning to g(x) = f(a + b — x) which satisfies

g(b )  g( a) .

Theorem 4 . 2 .  Let r0 be~~ t-polnt~~ a ~~~~~~ x0 c U(r~ ) satisfy

(( Tx 0 ~
j : r 0 . Let L the Frechet derivative 2j T ~~ x0, 1~ fl~~~ 

Frechet

derivative ~j  ‘0 ~~ x0 ; in Case II assume Q~~~~~ 
1~ j~ wepk~~* continuous.

Set

U0 = (x € X : 1’(x) = 0 for = 1, . . .  , N)

* *Then there are elements y Y ~~~ z Z ~~ norm 1 
~~~~~~~~

(i) y*(Tx ) rx0 Ji ~~~ y *(Lx ) c1~ (x) , x c U0(4 .6 )
(Ii) z(Tx0) il Tx0 II ~~~~~ z( Ux ) = c1~~(x) , x U0

j~ Cases I~~~~ II , respectively, where c~~ > 0  ~~ id ~ i A U I Tx0 it .

Proo f. We shall  do the case when A > 0; the case when A < 0 is entirely

similar.  We first  show that in U0, the kernel of L lies in the kernel
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of 1~~. If not , then there is an x c U
0 with Lx = 0 bu t 1~ ( x) = 2.

Hence , x0 + cx € U(r 0 + c) for c small and so, iii the case A > 0,

c A < a ( r 0 + c) - a(r 0) <  II T(x 0 + cx) II -

= (( Tx0 + cLx Il + o (c)  — I I Tx0 II
= o(c)

a contradiction .

If 1~ (x) > 6 , then x0 + cx U(r 0 + cb) for c small enough and

hence we find for a sequence of c — 0

~A < c 1(a(r0 
+ €5) — a(r 0))

< c ~~( I l Tx0 + cLx II - ( I Tx0 I ( )  + o(l)

Thus, 6A < lirn
÷ c 1( I I Tx0 + cLx II - II Tx0 II )

Write y0 = Tx0; we make use of the formula

(4 .7) lb,0 H u r n  
+ 

e~~( Hy 0 + cLx II - I1 1P0 H ) ,jnax
y C

where

c = {y * Y~ : I ty
t

II = 1, y *(y 0 ) = 1(y 0 11)

see [1; Theorem V .9 . 5, p. 447). Let C1 = (c1~ : c > A l 1 y0 11 } and

C2 = {L y : y c C).  Then C1 and C2 are closed convex sets and

C2 is weak-* compact. If C1 and C2 are disjoint , then there is an

x0 c U~ which strictly separates C1 and C2 :

cI~ (x) < r < r + 6 < y *(Lx 0), c ~ A 11y 0 II and y* C.

Hence, 1~ (x
0)<0. If 1~ (x

0
) = -i <~~, then

- r <  ~All y0 j l < max *(L~~~~) < -r - S
y c C

—18-



a contradictio n. If i~ (x
0
) 0 , then r ~ 0 and

y *(L( _ x
0)) ~~-r - 5 < 0 , all y C

However , a continuity argument shows that

max *(L( )) > 0
* 0y € C

*again a contradiction . Hence , there is a c 
~~ . 

A and a y c C with

c1~ (x) *(Lx ) X c  U
0

This is the proof for Case I;  for Case II the proof is done in Y/LV0 and

hence the functionals come fro m elements of Z.

I would l ike to thank C. Micchelll for pointing out ( 4 . 7 )  to me and

thus giving a proo f of Theorem 4. 2 which is appreciably shorter than my

original proof.

An almost Identical proof yields the following isoparametric version

which we state only for Case II.

Theorem 4.3. Let r0 be ~ t-point j~ the isopprametri c problem (4. 3) and

J.~~~~ 
x0 € U(r 0) satisfy (l Tx0 H I~(r 0). Let L ~~~ 1~ be the Frechet

derivative of T 
~~~ 

1
~~

, respecJ~ively, ~~ x0 ~~~ supp ose 1~ j~

wepk_ * ~~~~~~ Then there ~~~~~ element z c Z ~~ norm 1 
~~~~

num ber c, c A >  0 and I c I ~ IA l i l y0 II with

(4.8) z(Tx0) = 11m0 11 and c1~ (x) = z(Lx) , x U
0

Remark. In the subparametri c case a(r) is a monotone decreasing function

of r and we always have ~(r) > a(r) . If we know that r0 is a t-point

for a , then clearly 10(u 0) = r0 . If we assume that the remaining
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constraints ire of the form 1 ( x ) = r ., j = 1 , . . . , N, then we must  have

~~r 0 ) = ~(r 0 ) and hence r 0 is d t -point  for isoparametric probiem as

well as for the subpara metric problem .

The following Prop osition give s a simple condition which guarantees

that a is continuous; it applies equally as well to ~ but we do not

give the details for this case. We consider only the setting of Case II.

Proposition 4 . 4 .  (1) a is upper seml-continuoi .is. (2)  fl T j~ weak_ *

continuous and if there j1 a constant C with flu H ~ C ~~ ~~ r ,

f r  - r0 < 6, where Ji Tu ll a(r) , ~~~~ a j~. continuo us ~~ r0 .

Proof. (1) Let a(r 0) j I Tu0 ll ;  let v U0 satisfy 1~ (v)  = 2. The n for

£ small , either positive or negative , we have

a(r0 + c) II T(u0 +

~ II Tu~ + €Lv Ij + o(c)

< a ( r
~

) + c j I L v j l + o(e)

=

(2 )  Since H u ll ~ ~~~, there is a subsequence u -
~~~~ u . Clearly

u c U(r) aid thus

a(r) < lIm II .~~ liuii ll Tu II = ilizi a(r )

Example. Let 0 < x 1 
< < XN < 1  be given points , let y1, . . . , y~ be

real numbers ari d let L0 be a positive number. Consider the problem

of finding a function f satisfying (1) f(x~) y~ for j = 1, . . ., N and

(2) the length of the curve (x , f (x ) )  is no more than (or is exactly) L0

and (3)  1” Is smallest in L
00

. Precisely, for the first case let
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U {f W~~ (0 , 1) : 1(x ) y . ,  j 1, .. ., N and f (1 + ( f , ) 2 ) l/2 < L0 )

~1 fl -

a.(L
0

) = inf{ llf” ll : f U)

For the second case replace the inequality in the definition of U by an

equ3iity. Suppo se L
0 is a t-point of a. Then the function h must satisfy

f  hg ” X f  f ’g ’(l + ( f S ) 2
) l/2

for all g c W2 ’ 
00 

with g(x .) z 0 , j 1, . . . , N. Integration by parts

shows that Ii is continuous on [0 , 1), h is in W ‘ on each segment

(x ., x .~ 1) and h satisfies

(4.13)  h’ = b . - xf’( l  + ( f ’) 2
11”2 on (x,~ x~~1)

If h vanishes on some segment (a , b) In (x~ x
~+1

)
~ 

then so does h’

ari d so

b
2 

= (f ’) 2(x 2 
— b~~~ )

If b , -s 0 , then f ’ is constant on (a , b) . If b . = 0, then since ).. � 0,

we must  have 1’ = 0 on (a , b). If h is positive or negative on some

segment , then we already know that f” =a or -a on that segment. Since

h ”  = -x f”(l + ( f l ) 2 )~~3/2

we see that h” is strictly bounded below (above) zero on any segment on

which h is positive (negative). Hence , if h is say positive on

(a , b) C ( x , x
÷1

) with h (b) 0, then h Is negative for x (b , b + c) .
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However , more is true . Since f”  = a when h > 0 and I “ = -a when

h < 0  we can use (4.13) to conclude that h ’ is even about  the point b

and hence h is odd about b. Thus, if there are points < <

in (x.,x ÷1
) with h(

~k
) = 0, h > 0  in 

~~~ ~~ 
and h < 0  in (

~~~~~, ~3)~

then 
~3 - = - 

~~~~

. Thus h can have only a finite number of sign

changes in (x .,  x ÷1) and there Is no segment in (x,,x.+1) on which h

vanishes identically. Thus , the graph of f is composed of f ini te ly many

sections of parabolas and , possibly finitely many straight line segments.

If a straight line occurs , then it must join successive points (x., y.)

and

For this problem it is Immediate that the hypotheses of Proposition 4. 4

(a) are fulfilled and hence a is continuous. To show that a has t-potnts

it suffices to show that a is not constant. Let L0 be the length of

the polygonal curve joining in succession the points {(x~ y .) : j = 1, . . . , N ) .

Then for each 6 > 0  there is a function g c W2,°°(0 1) g(x.) = y . ,  the

length of the curve (x , g(x)) is no more (or is exactly) L0 + 5 and

+ 6) = IIg ” l l . Clearly as 6 & 0 we must have a(L0 + 5) -.

Consequently, a is not constant.
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2jS. Curvature problems in IR

Let us consider the following problem: Let P {p1, .. p
~~} be

a set of distinct points in 1R2. We wish to pass a smooth curve

t i— (x(t), y(t)) through the set P whose curvature , measured in the L
00

norm , is as small as possible. We must Impose the constraint that the

lengths of the competing curves are uniformly bounded for otherwise the

infimum of the curvatures is zero (piece together arcs of very large circles)

and , except in the trivial case when all the points lie on a single straight

li ne , there is no smooth curve with zero curvature passing through all the

points . Once , however , we do impose this length constraint then there will

be a curve with minim al curvature . This is most easily seen by parametriz-

ing a competing curve by arc-length. In this case the curvature formula

(5.1) k(t) = (~c(t)~(t) — 
~(t)~(t))t~c

2
(t) +

reduces to

( 5 . 2 )  k 2 (t ) ~
2(t) +~~

2 (t)

since ~
2(t) + ç~

2
(t) 1, 0 ~ t < L  < L 0 . Hence , a uniform bound on k

produces a uniform bound on both ll~ (l
00 

and lI~ Il
00 

and since we have

x , y € L
00

(0 , L0) for a fixed L0, we may apply a simple compactness

argument to obtain a curve (x(t) ,  y(t)) , 0 ~ t .~~~ L, which passes through

all the points of P and for which I lk 
~~~~~ 

Is minimal . We shall prove

the follow ing resul t .

Theorem 5.1. j  distinct points 
~ ~N in ~~ given let

L be a number large enough Qj
~~~~~ 

there j~. some smoo th curve ~~ length L
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passing through all the points p
1 

Th~.~n the re is ~ C~ curve

cont ain i ng 
~~~~~~ 

points P1~ .. •
~~N ~~~ 

length ~~ more th~ n L and which

consists of a finite number of arcs of circles of some fixed radius or

strajgj~ line segments. This curve minimizes the ~~~ norm of the curvature

among all smooth curves of length not exceeding L which p~ ss through

the given points p
1. 

. . 

~~~

Proof. The existence of a curve minimizing JJk 11J
00 

has been given

above. We shall now determine the properties of such a curve . Fix

points 0 = t
1 

< t
2 

< < t N = L for which (x(t~)~ ~(t~)) = p., = 1, . . . , N.

Let 1 .(u , v) (u(t,), v(t.)) for j = 1, . . . , N an d u , v H2’ (0, L) and let

1
0(u,v) =

that is , 1
~ assigns to the curve (u , v) its length . With thi s notation

we are now in the context of Theorem 2. 1, Case II with
2 0 0  2 0 0  00X = H ‘ (0 , L) ~ H ‘ (0 , L), Y = L , and U consisting of all pairs

(u ,v) in X for which 10(u , v) < L 0, 1 .(u,v) = p, for j  = l, . . . , N ,

and T(u , v) = curvature of the curve t ‘-. (u(t) ,  v( t ) ) .  Note that the

solution (x , y) of the problem

a = inf{ II T( u , v) 11
00 

: (u , v) € U)

arrived at above has the pro perty that x 2 
+ c 2 i so that if (u , v) is

any element of X, then T((x , y) + c(u , v)) is well-defined for small

enough c. Hence, the operator L re ferred to in Theorem 2. .l Is j ust  the

Frechet derivati ve of T at (x ,y) :
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( S . 3) L(u , v) = -vx * vx + uy - uy - 3k(xu + , u , v € HZ , 00

(5 .  3) ’ = -2uy - uy + 2vx + vx

where k = T(x , y) and to derive (5. 3)’ we ’ve made use of the fact that

k~ ~ and kç~ = -
~~~ . The next thing to note is that L maps X onto

L
00

. To see that the equation L(u , v) = g, g € L00
, has a solution we

make the substitutions U = -
~~~~~~ and ~‘ = k~~q where w c H2 ’ 

00 
is to

be found. The equation L(u , v) = g then reduces to the equation ~~‘ = g

which surely has a solution . Hence , we have shown the hypotheses of

Theorem 2. 1, Case II , are satisfied. Thus , according to Theorem 2.1

there is a function h € L’ with norm I and

( 5 . 4 )  0 h L(u , v) whenever 0 ~ i~ (u , v)

and u(t
1

) = v(t .) = 0 for j = 1, . . . ,N . Further , h and k have the

same sign and 1k I = a a .e.  where h � 0. A simple computation gives

t~ (u , v) = f (~u~ +~~~)

Taking u E 0 and v to be in C~~(I~)~ I~ = (t i, t~~1)~ we integrate by

parts and find that

0 < f  ~(h. c + P) whenever 0 < f  ‘x —

where P = hx + 3kyh . Hence , there is a non-negative scalar x . and

real numbers a , A , with

hx

Likewise , taking v E 0 we find

h r + Q = ~~ 1
x + B ~~+ b ~t~ 

~j~~
- °

t

____________  
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where Q = h~ - 3kxh . Since 
.2 

+ ~2 1 we find h is differentiabl e

on I and we obtain the two equations

(5. 5) 2c h  + + 3kcth = + a~ on I .

(5 .6)  Zjrh + lii’ - 3k t h  = + b~ on I
~ 

.

Returning to the fundamental relation (5. 4) we find

N N

~ f (ux + v y ) < O  implies ~ (~~~~~ 
f  x u - X ~ f  ~‘~ ) �0

1 I~

It follows that = —X~ = X for all j .  (If x or ‘ is constant on

some I~, this may involve changing a , or b~). Hence , the equations

(5. 5), (5 .6 )  become

(5 .7 )  2~h + hx + 3kyh = -X~ + a~

(5. 8) 2~’h +li~’- 3k*h = Xx + b
1

We also find fro m (5 .4)  that h is continuous on [0 , L) and h(0) = h(L) 0.

Multiply (5 .7 )  by x, (5 .8)  by y and add the resulting equations

to yield

(5 .9 )  ii = a~x + b
1
y

Multiply (5 .7)  by ~ and (5.8)  by -x and again add the resulting

equations to get

(5.10) X + kh - b
1
x

Applying a similar technique with x and ~ yields the two equations

(5.11) Xk + k 2h -a
1
i~ — b

1
j

and

(5.12) hk = ~~~ — b~x

-26-
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Comparing (5.  9) and (5 . 11) we find that

“ 2  m(5. 13) h + k  h = —Xk on [o , LJ —

Suppose first that L is a t-point of a. Then K can not be zero . For

referring to (5 .  4) we see that h would be orthogonal to LU 0 if x = 0;

but this can be specifically ruled out by Theorem 4. 2. Hence , If

(a , b) is an interval in (t 1, t . +1) on which h vanishes identically,

then k must also vanish identically. The same is tru e of any set of

positive measure in some (t i, t1+1) on which h = 0. If h is positive

(or negative) on some interval (a , b) in (t i, t1÷1) then k a (or k -a)

on (a , b) and , further , (5.13) yields

h -X/k + A cos kt + B sin kt

on (a , b) which , together with the fact that -K/k has the same sign as

h on (a , b) implies that either

(5.14) (b — a) a > 1 1  if h(a) = h(b ) = 0

or

(5.15) there are at most 2 arcs and 1 line segment between the

successive points p
1 and p~~1

Note that the arcs are all of the same radius , namely R = 1/a .

If  L is not a t-point of a , but is in the closure of the set of

t-points , then a simple limiting argument shows the validity of Theorem 5.1.

Finally, if L is not in the closure of the set of t points of a then L can

be reduced without altering a to a point L’ in the closure of the set of t

points . (A simple argument shows that a has t-points all the way down

to the minimum possible length.)
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N ote~ th at  the i soparametr ic  pro blem here is basically no different

than the subparametric problem for the simple reason that the curve can

be extended linearly to increase its length but not change the norm of

the curvature . Hence if

= inf{ 11k 111 : I
o

( f )  = L)

then ~3 is monotone decreasing and continuous. In fact , ~3 ~ a in this

case. For we know that ~3 = a on the closure of the set of t—points;

if (a, b) Is a maximal interval in the complement of the closure of the

set t-points , then a is constant on (a , b) and ~(a) = a(a) = a(b) = ~(b)

so that ~3 = a on (a , b) as well.

— 2 8 —
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~~m .  M~iu:n ~ ! u r v ~ ture, the analytic ca~~

1h’r ~ we consider the following variant of the ~-urvature problem of ~ 5:

Let chs t ln t - t points 
~~~~~~ ~N be give n in the complex plane.

a fu nct ion t holomorph ic in the open uni t  disc D { I z i  < 1) and

~ ni~ ~ th on the closure of D such that  the image of the unit  circle

1’ - { I z I z I } under I contains the points p
1 ~N 

and the closed

curv e tT ) has curvature as small as possible In the supremum norm .

The first major difference between this problem and the one considered

in § S is that existence is much less obvious. Here we can not reparametrize

the curve by arc-length and still remain in the class of holomorphic func-

tions. A second major di fference is that, once a solution f has been

found, we can only perturb it by holomorphic functions and hence we can not

use C0 functions to obtain local info rmation about f .

The existence question is handled in Proposition 6.1 (whIch uses a

lemma) and Theorem 6. 2. Necessary conditions that the solution must

satisfy are derived In the m atérial following Theorem 6. 2. For reference

we recall that the curvature of a holomorphic function I is given by

(6.1)  k f (z)  = I z l~~ I f ’(z) I ‘Re(l + z f ’ ’(z )/ f ’(z ) ) ,  I z i  .~~~ 1

in term s of the derivative with respect to z and by

(6. 2) k
1(e 10) I~(e 10) j _ l  Im(f( eiO )/f( e~~))

In terms of the derivative with respect to 0.

We recall that H~ Is def ined as the space of those functions h

which are holomorphic on D and which sati sfy
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2Tr
sup{~~~ f  Ih (re lt ) I P dt ) < 0 0  if 0 p
r < l  iT 0

or

sup 11(z) l <~~ if p = -~~~

I z i  ‘Zl

We shall use a number of facts about H~ ; good re ferences are [2 1 and [ 3 1 .

Lemma 6.1. (1) ~ g ~~ holomorphic 
~~~~ , 

D and 
~~f Qj~~~ ~~~~~ gj g ~~~

in {re
iO : -a <0 < a) ,  then g € H~’ ~~~ gj~j  p < f f/ a  if g( 0) = 1,

~P~Jl~ lIg II .~~ wh~r~ C~ j~ ~, constan t independent ~~ g.

(2) If g ~~~~ H1, g + 0  iii D, ~~~~~~~~~ g ~~~~~ continuous

extension~ Q~ D , ~~~~~~~~ 
g € H~ j~~ gj i p < ° ° .

Prooj . (1) The first part of (l) ts well-known; see [2; #2 , p. 131. To prove

the second assertion of (1), let • be the conformal map of D onto the

sector {z : l arg z i  < a) with +(0) = 1; then h = . g maps D

into D and h(0) = 0. Hence , g = • h Is subordinate to $ so that

Ii~ lI~~ tI~ ll~ = C ;  see [2;  Theorem 1 . 7J .

(2) Gi ven p < ~ choose points e
~ 

0 < 01 < < 9m+i 
=

and an r0, 0 < r0 <1 , such tha t the variation of arg g(z) for

z € = {re10 : r
0 
<r < 1, 0 < e~÷~

) Is no more than w/Zp . Then

I € H’~(D~) by (1). Putting the finite number of regions D0, . . ~~ 
D
m

together we see that I € ~~~ as desired.

Theorem 6. 2. ~~j  S consist ~~ those ho1omorphi~ functions h in D

which satisfy
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(I) f ’  € H~ , some p < I

( i i )  I f ’l > v = ~..(f) >0 on D and arg 1’ is continuous on D

( 6. 3) 2ir
(iii ) j  If ’(e ’0) Id e < L

0

(lv) f( T) contains the points P1~ ..
Then S contains art element f~ which s&tisfies

( 6 . 4 )  a = IIk f 1100 
inf { Ilk 1 1100 

: f € S}
0

Proof. We shall show that if ( 1 )  is a sequence in S with

u r n  (I k f H Q0 = a

then there is a subsequence , again denoted by {f ~ ) , and a function f,

with I -. I uniformly, f1 -‘ f’ in H1, I f ’ I 
~~. v > 0 on D and

I I k
f 

11
00 

< a. This will establish the conclusion .

Let x + iy be the arc-length parametrization of the curve f (T)

so that

x (s) + iy (s) =

where

s = s(t) ~ j f ’(e t0 )j d O

Then

p ( e 10) = fn(e10)/k n(et0H = (ci/ds)(x + i~~ )

and (d 2/ds2)(x~ + i~~ ) lies in the ball of radius 1 + a In 1.
00

. Hence,



we may assume that (d/ds)(x + i y )  converges uniformly on [0,LJ . Hence,

p uniformly so that p -. p uniformly. Now we may also assume

that the measures {f’ do) converge weak_* to the measure gde where

g by the F. and M . Riesz theorem. Hence, I’ — g un iforml y on

compact subsets on D and h g hl~ 
< u r n  inf h i f ’ hI t . Hence ,

f  I f~ I = ~~~~ f  gp .~~ ~~~~ ill
Thus , III ~ II J -. u g h 1 so that I’ — g  in (see [6 J ) .  Consequently,

we may write g = f’ where 1n 
-. I un iformly and P - P in

Next , note that J Pp f  I f ’ I ana hence p = f’/ I f’ I a .e. If we

normalize f so that ar g ( f ’( f l )  = 0, then from the fact that { p )  is

equicontinuous we see that the sequence {arg f ’)  is equicontinuous and

uni formly bounded so tha t we may assume {arg f ’)  converges uni formly

on T and hence on D to arg 1’ and thus P t for all p < 0 0

by the lemma . Further , the second part of (1) of the lemma implies that

the H~ norms of f ’ are uni formly bounded since I ’  -
~~ f ’ uniformly

on compact subsets :f D. (Indeed , f~ 1’ in H~ for all p < 0 0 ) .

Hence , the functions

u Re(e~~f1e t0)/f’ (e10))

lie in a fi xed ball In L~ for each p < 0 0  and thus so do their harmonic

conjugate s

v = Im(e 10f”( e~
0)/f’ (e~

0))

Hence , (f ~/f~ ) lies in a fixed ball of H~ for each p < 0o and so

~~~~~~~~~ ~~~~~-



{log f ’ )  lies in a fixed ball of the disc algebra . Thus , I f ~ I is

uni torm ly bounded away from zero . We may assume that f”/ f~ converges

weakly i n to f”/f ’  for each p < 00~~ Thus , for p < 00~

Il k II < u r n  inf Ilk II < u r n  m l  Ilk II < a and so Il k ii < a. Thisf p f p f 0 0  f o o
n n

concludes the proof.

To cast the analytic curvature problem in the mold required by

Theorem 2.1 we let f be a solution assured by Theorem 6.2  and let X

consist of all those holomorphic functions h on D for which

Re(z h”(z)/ f ’(z))

is bounded on D; we norm X by

II h ll x = lI Re(zh” (z)/f ’ (z)) 11
00 

+ Ih ’(O) I + Ih(o)i

X is complete with this norm . It follows immediately that among all

functions h in X which satisfy

(a) p1,. . ‘~~N lie in h(T)

Zir
(b) f  h’(e~

0) l d 0~~~L
0

(c) Ih ’ I > v = v (h) > 0 on D

f has the smallest curvature . Note that since If ’ I > 6 on D the

curvature of f + eh is defined and finite for each h € X as soon as c

is small enough. Thus the operator 1. in Theorem 2.1 is the Frechet

derivative of the curvature operator and is given by

Lg = —kRe(g’/f’) + (1/ I f ’I ) Re(z(f ’g ” — f”g9(f ’) 2)

where k = k 1 the curvature of the solution t.
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00
The operator L maps X into L ; we first show that L has closed

range. Suppose that {~~~~~ } is a sequence of elements in X all of

which are of distance 1 to the null space of L but for which

— 0. By altering ~~ by an element of the null space of L we

may assume that hJ~~ lJ,~ < 2. Hence ,

IIRe(zg~ (z)/f’(z )) 11
00 

< 2 .

This Implies that hlg~ It < A  for all p <00 ; by extracting a subsequence

we may assume that g~ g” weakly in H~ and g~ -‘g’ and — g

uniformly on D. But ~~~ -. 0 uniformly so tha t Re(et0g~/f’) — k Re(g ’/ f ’) 4

( 1/I f ’ I )Re (e t0 f” /(f ’) 2 ) Re(e m0g”/f’) uniformly. However, g € ker(L)

and so we’ve just established that — g in X, a contradiction.

Thus , the range of L is closed and since L is weak_* continuous , the

range of L Is weak_ * closed .

It is easier to work with derivatives taken with respect to t rather

than z = eit . We shall write ~(t) for the derivative of g(e lt ) with

respect to t . In this way we have

(6.5) Lg = —k Re(g/f) + ( 1 / I f I ) I m ( g / f )

and

(6.6) = f  I~~I

and X consists of those holomorphic functions g for which Im(g/~) is

bounded on D.

Let points 0 ~ t1 < < t N ~ 2w be selected with f(t~) = p~

for J = 1, .. ., N and let be the continuous linear functional on X
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given by

( 6 . 7 )  1 ( g )  = g(t .) , j = 1, . . . , N

To apply Theore m 2.1 we shall Investigate those (real)  functions h €

for whic h

(6 .8 )  0< fh L g

whenever

(6 .9 )  (a) 0 = 1,(g), j 1, . . . , N

(b) 0 � 1~ (g)

In particular we shall first show that the set P those functions h for

which equality holds in (6 .8)  whenever it holds in (6.9) (a) and (b) form

a finite dimensional subspace of L’ and hence LV0 has finite codimen-

sion in L , as required by the hypotheses of Theorem 2.1, Case II.

Integration by parts for smooth enough g yields the formula

fh L g  = Im fgP + Im[à( 2w)H( Zw ) J

where

(6.10) P = h ( u i f J )  — H

and

(6.11) H = — h ( u l f l )  ~[(f/ f)  + i lm(f/f)J

H(0) = 0

We have

1~ (g) = Re f& s

where

s = Ill/i .

—3 5—



Define , for a function h I’, a linear functional I on X by the rule

1(g ) = ~~ + ~(Zit)[H(2w)J

where P and H are related to h by (6.10), (6.11). We know that

Im /(g) = 0 if / (g) = 0 for = 1, . . ., N and Re /~ (g) = 0. Replacing

g by ig we see that /(g) = 0 when g lies in the Intersection of

the n ull spaces I~ ari d I , = 1, . . ., N. Hence , there are (complex)

scalars X~ , 
~ 

X N such that

(6.12) / = ~ X . /~ +x 01~

as linear functiorials on X. I now claim that ~~ is pure imaginary .

To see this , note again that Im 1(g) = 0 whenever I (g) = 0 for

= 1, . . . , m and Re 1~ (g) = 0. Hence ,

0 = Im / (g )  = Im(x 0 /~ (g)) = (Re x 0)(Im 1~ (g))

However , it is trivial to show that there is a g € X with 1~(g) = 0 for

= 1, . . . , m , and 1~ (g) = I . This implies that Re X~ = 0, as claimed .

Write = IX where X Is real .

We have the following representations :

/~ (g) = f~~F

where F = -s and

= f  (t - t
1
)~ g(t)dt + (t

1 
- 2w)~ (2w ) + g(2 iT) .

Hence , from (6.  12) we obtain the following

N
(6 .f l)  x (t - t j~ + IXF = P + G

I i
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for some C H1. We also find

N
(6 .14 )  ~~~ X .(t . — 2f f )  = H (2iT )

1

and

N
(6.1S) X = 0

i i

However , it ~~‘ (6.13) which will yield the information we want about h .

Fro m (6.13)  we see that h I f i ’ - fG lies in W1’ ’ and , in particular ,

is bounded. Now fG = o- + i~r is analytic and both T and c + h i l l ’

00 q
are real and in L . Hence, a lies In L for all q < 0 0  (as the

harmonic conjugate of the bounded function T) and hence h lies

in ~~~~~~ q <~~~~. Thus , h € This implies that H € W1’~ and once

again (6 .13)  implies that h i f i ’ — IG lies in ~~~~~ Thus , r €

so that a ~~~~ also. Finally, this implies that h € ~~~~ Since p

is a closed subspace of L1 all of whose elements are bounded (Indeed ,

in Lip( l - 1/q)) we see immediately that P Is finite dimensional . More-

over , we can differentiate both sides of (6. 13) to obtain

N —

(6.16) - iX s = h ( flf i ) ’ - h ( f I f I )  ‘( f/f) + G
I

where is the characteri stic function of [t
1
, 2w 1. Multiply (6.16) by f

and separate real and imaginary part s to obtain the two equations

(6.17) Re(~ f) = h i l l 1 
— h i l l  1Re(f/ f) + Re(fG)
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a rid

(6.18) Im(~~f) = hk + X i f  I + I m ( f G)

N
where ~ = X .~~, and k Is the curvature of f. Consequently we find

I
t

(6 .19)  h(t)  = jf(t) kRe f (x 
— G)f + c), c ll~

0

(6 . 20) kh = - x J f j  + Im(x - G)f

We next claim that G = 0. To see this note that if h is positive

on a segment (a , b) C [ t ., t~~1J then k a on (a , b) so that we can

m ultiply the right side of (6. 19) by a and equate this to the right side

of ( 6. 20 ). After dividing by i f  I we differentiate with respect to 0.

Since ( d / d G ) ( f / i f  I) = ilk we find that Im(Gf ) = 0 on every segment

where h is positive or negative. If h 0 a.e. on a set £ of positive

measure in some [ t~~ ~ ~~~ then (6. 19) implies

Re(~ - G)f = 0 a .e.  on E

arid (6. 20) yields , after dividing by i i i  and differentiatin g ,

Im(Gf) = 0 a .e.  on E

Hence , Gf is a purely real constant. But Gf has mean-value 0 so

that Gf E 0 which Implies G and G are identically zero . Thus , we have

t
(6.19) ’ h(t) = lf ( t ) I { Re f  ~~ + c)

0

(6. 20) ’ kh(t) = —X Ill + Im~~
Assume first that L Is a t-p oint of a; then X ~ 0 as in § 5. Suppose
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that h = 0 on some set E of positive measure ; then by (6. 19)’ and

(6 .20 ) ’  we find

(6 .21) x f = ix l i i  a .e .  on E

which implies that arg I Is constant on E. Thus , k 0 on E. Hence ,

if L is a t-point of a , then the curve f(T) consists of arcs of

circles of radius R = 1/a or straight line segments . We also note that

formulas (6.19)’ and (6.20)’ show that If E~a,b] is a subset of Et 1~
t~~1l

and h( a) h(b ) and h > 0 on (a , b), then (b - a)a > w. Hence ,

conclusions (5.14) and (5.15) hold as well for the analytic case. Next ,

a limiting argument shows that if L is in the closure of the set of

t-points, then there is a solution consisting of arcs of circles (of the

same radius) or straight line segments. The general case is solved

by decreasing L until a point in the closure of the set of

t-points is reached. The final point to be touched on is the existence

of critical points for a (or ~); equivalently, we just  have to show that

a is not constant. A brief sketch goes like th is. Let L0 be the infimum

of all the lengths of f(T) where f is holomorphic in D, smooth on D,

f’ � 0 on D, and p1, . . p~ € f ( T) . Let { f }  be a sequence with

f  I f ~i — L0 and IIk f 11 00 
= a(L0 + 6~~), b

~ 
-. 0. If lIk f 11

00 ~ C for all n ,

then as in Theorem 6. 2 we would have f -. f uniformly and I’ -. f’ in

Thus there would be a smooth curve f with minimal length passing

through p1, . . ~~~ 
But a simple variational argument shows that for this I
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0 = fgIiI~T
1k.

for all holomorphic g with g(t
1
) = 0. Thus , Im( f/f) = If 1k1 = 0

a.e. which Implies that I Is constant, a contradiction.

I

I
I
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