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ABSTRACT

Let T be an operator defined on the subset U of a Banach space
X determined by equality or inequality constraints for a finite number
of functionals on X. We find necessary conditions that the solution of
the minimization problem inf{ ||Tu " :ue U} must satisfy. A case of
particular interest is when T has values in Lw . We analyze several
examples in detail to show how the necessary conditions yield detailed
information about the solution. We also introduce the notion of a t-point

and show how the information becomes complete at such a point.

AMS (MOS) Subject Classifications: 49A25, 49B30, 46B10

Key Words: extremal problem, dual extremal problem, constrained

minimization, calculus of variations, Frechet derivative of

£ A
an operator, isoparametric and subparametric problems [ trp f
/

Work Unit Number 6 (Spline Functions and Approximation Theory) ‘/'

N /
Sponsored by the United States Army under Contract No. DAAG29-, .-C-0024

and by the National Science Foundation, Grant MPS 75-0550].

o AN DOR HROHTl Ar . e —

S g

e iEsgendy




ISOPARAMETRIC AND SUBPARAMETRIC VARIATIONAL PROBLEMS

Stephen D. Fisher

Introduction

Let T be an operator defined on a subset U of a real Banach
space X with values in a real Banach space Y. We shall suppose that
U is determined by a finite number of functional constraints:

U

{x e X:lj(x)grj, =00 . B
or

U

{xeX:lj(x):rj, 1=0,..., N}

which we term the subparametric and isoparametric cases, respectively.
In Section 1 we give a theorem on the existence of solutions of the
variational problem

(0.1) inf{[Tull : ueU}.

In Section 2 we find necessary conditions that any solution of (0.1) must
satisfy. In Section 3 we show that the results of Section 2 can be applied
to solve some non-linear equations of the form Tu = 0. In Section 4 we
introduce the notion of a t-point and show how at a t-point we gain more
complete information about the nature of solutions of (0.1). In Sections 5
and 6 we analyze in detail the problem of minimum curvature in Lw,

first for real-valued functions and then for complex analytic functions.

Sponsored by the United States Army under Contract No. DAAG29-75~C-0024
and by the National Science Foundation, Grant MPS 75-05501.
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Throughout the paper a case of particular interest is when Y =L (,pu)
or some other dual space and indeed, this is a major point of difference
between our analysis of (0.1) and that say of [5] since here the functional

f(x) = [T I to be minimized is not Frechet differentiable.




§1. Existence

Let X and Y be real Banach spaces and let U C X. We distinguish
two cases:
Case I: X and Y are real Banach spaces with separable dual
spaces X* and Y*, respectively.
Case II: X and Y are each the dual of separable, non-reflexive
Banach spaces W and 2, respectively.

The main novelty and interest in this paper is Case II but since the
proofs work (with weaker hypotheses) for Case I as well, we include both.
The following is a simple sufficient condition for existence of

solutions to (0.1).
Theorem 1.1. Let T be weakly (respectively, weak-*) sequentially
cont.inuous on U. Suppose that U _is weakly (resp., weak-*) closed

and that there is a bounded minimizing sequence for the problem (0.1).

Proof. The conclusion is immediate. If {un} is a bounded minimizing
sequence, then {un} has a weak (resp. weak-*) cluster point u ¢ U.
Since X* is separable (resp. X is separable) we may assume that un
converges weakly (resp. weak-*) to u. Hence, Tun -~ Tu either weakly
or weak-* and thus a = " Tu " showing that u 1is a solution of (0.1).
Corollary 1.2. Let f,..., 10y be weakly (resp., weak-*) sequentially
continuous functionals on X and let




(1.1) Uz{xcx:lj(x)grj, j=0, , N}

or

(1.1)" U= {x«X:lj(x)=rj, RN P

I T is weakly (resp., weak-*) sequentially continuous and if there is

a bounded minimizing sequence, then there is a solution of (0.1).
Remark. We can clearly have U defined by some mixture of equality
and inequality constraints; this case will not be mentioned specifically
in the sequel. We may also drop the assumption of separability

on W,Z by assuming that T is weak-* continuous.
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§2. Necessary conditions for extremality

We assume in Theorem 2.1 that U is of the form (1.1) where

lo, LY ’N are Frechet differentiable functionals on X and that the

Frechet derivatives of ’O’ S IN are always linearly independent.
Theorem ¢.1. Let u_  be a solution of (0.1) and let ] be those indices

j for which £ (u )= rj. Let l; be the Frechet derivative of lj at

<
]

{veX:l;(v)SO forall j e J}

Yo

n

{veX:l;(v):O forall je]J}.

Suppose there is a bounded linear operator L with range in Y whose

domain contains V and for which

(2.1) T(uo+ev)=Tuo+eLv+o(e), veV, e -0.

Finally, suppose in Case I that LV0 is closed in Y and in Case II

that LV0 is of finite codimension in Y and L is weak-* continuous. Let

*
V ={feY :2(Lv)>0 forall ve V)

B

5«
\'

{meZ:mLv)>0 forall ve V)

for Cases I and II, respectively. Then

(2.2) a = inf{"Tuo +Lv"Y:ve vV}
and
(2.3) a = sup{ll(Tuo)l t L€ V*, lell <1}
or
(2.4) a = sup{lm(Tuo)l :m e *V, lmll <1}
-5
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where (2. 3) holds in Case I and (2.4) holds in Case II. In either Case I
or II, the supremum is actually a maximum.

Proof. Let x ¢ X satisfy l’!(x)<0 for je] (or l’,(x) 50 if Ij

is linear for some j). Then u0 + ex ¢ U for all sufficiently small € > 0
so that

a < "T(uo + ex) "Y = "Tuo + eLx"Y +o(e) .

1f ||Tu0 + Lx |l < a-0& for some & >0, then
a< “Tuo +elxll +o(e) < ell’l‘uo + x|l + (1 - e)”Txo I +o(e)
<a-¢eb+0(e)< a
for € small, a contradiction. Hence, I Tu0 + Lx||Y3 a and so by
continuity
a= inf{”Tuo + I.x”Y :xe V)
which is (2. 2).

Next, note that (2. 2) implies that the convex set Tuo + LV is
disjoint from the open ball in Y radius a. By the separation theorem
[5; p. 133] there is a continuous linear functional ! of norm | with
(2.5) sup{£(y) : llyll <a) _<_mf{t('mo +Lv) : v e V}
which gives conclusion (2. 3) in Case I. In Case II we note that Lv0
is closed ([ 4; p. 186]) and hence weak-* closed since L is weak-*
continuous. Further, since VO C V, the convex set (Tu0 + LV)/LV0 in
Y/LV0 is disjoint from the open ball of radius a in the finite dimensional
space Y/LV0 and hence there is an element m ¢ Z with [Im] = 1,

m(Lv) = 0 forall v e V0 and




supim(y) : "(Yl ”Y/LVO < al _<_inf{m(Tu0 + Lv) :v e V}

which gives conclusion (2. 4) in Case II.
Corollary 2.2. Let Uy be a solution of (0.1). Then a = “Tuo f is

the distance in Y from Tuj to LV if U =X, then ilTuoll is

the distance in Y from Tu0 to L(X).

o0
Corollary 2.3. Let Case Il hold with Y = L (2, p). Then under the

hypotheses of Theorem 2.1 there is a function h e Ll with |lh “l =1 and
(1) 0< [ hLv, all veV

Q

(2.6) (ii) hTu, >0 a.e. p

0
(iii) [Tu | = a a.e. where h # 0.
0 H

Proof. Conclusions (ii) and (iii) follow from equality in Holder's inequality.

The Isoparametric Case

The isoparametric case is almost the same as the sub-parametric
one; we do only Case II. Existence is covered by Corollary 1. 2; the

necessary conditions for an extremal are given below.

Theorem 2.4. Let 10, Vv v [N be Frechet differentiable functionals on
X and let

U = {xeX:lj(x)zO, §u 0, N,

Let T be an operator from U to Y and suppose u, ¢ U satisfies

0
(2.7) as= "TuO“ = inf{lTull :u e U} .
Let l('), o iy li\l be the F[eché; derivatives of ‘0’ e lN’ respectively,
at uy and suppose that there is a bounded linear operator L with
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range in Y whose domain contains @ neighborhood of VO:

Vs {x ¢ X:!;(x) 28, §3 0, .:., 8}
and for which
T(uy + v) - Tu, - Lv = of Ivll), Ivll -0 .
Suppose further that l"""li\l are linearly independent, L _is weak-*

continuous, and LV0 has finite codimension in Y. Then

(2.8) o inf{”Tuo +Lvll 1 v e Vo}
and there is an element z, ¢ Z with

M lzyl = 1
(2.9) (ii) (zo,Lv) =0, all ve VO

(it)) (zg, Tuy) = a.

Proof. We shall only show (2. 8); the rest is as in Theorem 2.1. Let

X = Xl & Vo
where VO is the intersection of the null spaces of f1!,..., I'N and
Xl is spanned by the N +1 vectors Xgr - e ,xN with

l;(xk) - ij, j,k=0,...,N.
Such vectors exist since 16, 5% li\l are linearly independent. Define
A:x =RV by
A(x) = (lo(x), & 0y IN(x)) y
Then the Frechet derivative, A', of A at Uy exists and is an
isomorphism of X, onto lRNH. If veV

| 0’ then the implicit function

theorem (for Euclidean space) assures us that there are continuous functions

PR el SR




9yr - -9y defined in some neighborhood of € = 0 such that 91(0) =0
and
§\
A ) B
y (uO vt} gj(e)xj) 0.
0
N\
Let y(g) = : g.(e)x,; then
0 ] J
0 = A(uo) + eNY(v) + A'(y(e)) + o(e) + o "y(e)") .
Since A' is invertible we find that ”y(e)” = o(e). Thus,
a < ”T(u0 +ev +ye)ll = ”Tu0 +eLvll + o(e)

and the rest follows as in Theorem 2.1.
b3
Remark. Consider an £ ¢ V ; then certainly
LIx) = O if Ij‘(x) sov fordo= R Tn o N

Hence,
o

(2.10) L(Lx) = Z clbn), xeX ¢ v, 0. %K.
oy -0 N

Similarly, for m e *V, we have

o
(2.11) m(Lx) = j;o cjl)!(x), X € X, Cor e+ 1 Cy ¢ R.
Suppose that Y = Lp(Q, w, 1< p<®; let p' be the conjugate exponent
of p. Then, assuming that the hypotheses of Theorem 2.1 or 2.4 hold
there is a function h e Lp'(Q, u) with

N
f hixdu = ), HOE
Q 1

J:




Now suppose that f£.,..., lr'l span the dual of kernel L; then
TRt & - P 0. Finally, suppose that for j =n +1,...,N, IJ_' has
the form
n
£1(x) = f Q Lxdp when xe€ (M) ker £!
j q 1D o j
i=1
L]
where Ql’ S QN-n are some LP functions. Since L is 1-1 on
n
() ker L', we have h ¢ span{Ql, e QN-n} modulo functions

i=1
orthogonal to the range of L. If L is known to be onto then h lies

in the span of Ql’ i G In particular if Ql’ i b G o is a subset

N

of a (weak) Chebyshev system of size r> N -n, then h has at most

N-n

r -1 zeros (sign changes) and, in particular, when p = o, Tu0 = %o
with r -1 or fewer sign changes (strong sign changes.)
Example. Let g be a bounded smooth monotone decreasing function

on R and let

Tu = u' + g(u)

o0
for u e WZ’ Lot P11 PN be a Chebyshev system on [0,1]
and set
2, % ]
U=z {us Wo’ :f e, = Y j=0,...,N}
0
where yo, “v oy yN are prescribed numbers. Let u, be any solution of

a = 1nf{ﬂ'1‘1.1||oo tue U}
and let h be the L1 function (assured by Theorem 2. 4) with h'mo 30,

Now L is given by

-]10~




Lv = v'' + Av
where A(t) = g'(uo(t)) is negative sothat L is 1 -1 and onto. Let
G(s,t) be the Green's function for L with homogeneous initial conditions.

Then

1 1
y, = £ (u) = f ue. =
O J

1 1
¥ G(s,t)(Lu)(s)dshpj(t)dt: f (Lu)(s)y,(s)ds
0 0

O—
—~~—

N form a Chebyshev

system since G(s,t) is totally positive and hence h has N or fewer

where q,j(s) = f G(S,t)«pj(t)dt. However, g, -+,
0

zeroson [0,1]. Thus, for any u_. with ||TuO [ = « we find that

0

u'' + g

o (..0) = 2o with N or fewer sign changes.




§$ 3. Solutions of some non-linear equations

There are certain happy cases when it is immediate that the operator
L in Theorem 2.1 maps Vo onto Y and in these cases we can directly
conclude from Corollary 2.2 that the equation Tu = 0 has a solution,
provided the minimization problem (0.1) has a solution. We illustrate
this below with several examples.

Example 1. Let F(t,x) be a C1 function on [0,1] x R and consider

the initial value problem

y(n)(t) + B W)y - ¥ i (t)) = 0, 0<t<l1

y(V)

(3.1)
(0) = Ay w2 O =i n=1.

The Frechét derivative of Ty = y

and hence L maps VO, which in this case is the space of functions
satisfying homogeneous initial conditions, onto Lp. It is easily verified
that if either

(a) IFt,x)] <(1-8)lxl +M , some §,M>0
or

(b) |F(t,X)|_<_Clxn||logxn|+M, some C,M >0

[* o]
then the minimization problem inf{ “'I'u “m Tu € Hn’ (0,1)} has a solution
and hence so does (3.1).
Example 2. Let Lo >0 be given and let g be a function in Lp(O, Lo).

We wish to show that there is a smooth curve t + (x(t),y(t)) of length Lo

]

] ‘P"' O
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or less whose curvature is g. That is, if X = {(x,y) : X,y ¢ Wz’ p(0, Lo)},

then we wish to show that there is an element of X with

I"0

(a) [ A e
(3..2) 0

(b) (%7 = w2 +90¥2 o g
Let

T(x,y) = (3% - %)GE + 79772 g, (x,9) € X

and
(3.:3) a = inft ”T(x,y) "p din. ) e X} .

-2 -2 - - 4
If xX“+y =1, then we have (T(x,y)+ g)Z = x2 + y2 so that both x

and y lie in a ball in LP of radius no more than the norm of T(x, y)
plus the norm of g. Hence, a weak compactness argument shows there
is a solution (x,y) of (3.3) which satisfies )-(2 + 92 =1 on [O,L],
L<Ly. If L<Lg, extend x,y linearlyon [L, Lol. According to
Corollary 2.2, a is the distance of T(x,y) to LVo where

L(u,v) = =20y = Uy + 2VX + vx
is the Frechet derivative of T at (x,y) and Vo is the null space of

the Frechét derivative of lo(u,v) at (x,y):

Lo

Vo={(u,v):{ Xu+yv=20}.

In deriving the formula for L we have used the fact that kx = y and
ky = -x where k is the curvature of (x,y). For w e Wg’ p’ define

u,v by

“]3=-

2oatid s
LTS g




u=-yw, u(0) =0

0.

"

v = xw, v(0)

p

func-

Then (u,v) ¢ V. and L(u,v) = w so that LV0 contains all L

0

tions and hence a = 0.
Example 3. Let g be a continuous monotone increasing function on RR.

Consider the boundary-value problem !

(1) w(t) +g(u(t) = (1)  0<t<l, feLi0,1)
(3.4)

(ii) u(0) = u(l)

a.

1
We shall show: (3.4) has a solution if and only if the number b = f f
0

lies in the range of g.
The necessity of this condition follows by integrating (3.4) (i) over
[0,1]. If b lies on the boundary of the range of g then either g(x) = b

forall x>x_ or g(x) =b forall x<x say the former. Let

l’
ub(t) = f(t) - b with uo(O) £ uo(l) = a and put ul(t) = uo(t) + ¢ where

0

c is some large constant. Then g(ul(t)) =b forall t and
ui = ub == fe g(ul). Hence, we may assume that b lies in the
interior of the range of g. By subtracting b from both sides and by
a translation we may assume that b = 0, g(0) = 0, and 0 is in the
interior of the range of g.
wh !
Suppose {uj} is a sequence of functions in (0,1) and the
00

functions w, = u' + g(uj) - f liein ball of L of radius C. Then

) J

we have

-14~
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(x) S%sz(X) + fx g(u,)u, = {X (f+w)u, <(llell; + € ”u) i
Hence, ”uj l,<c' forall j. Thus, "g(uj) l<c" forall j and
we have
|u},'(x)| < |f(x)| + C +C" forall x and all j.

Hence, {u].} is uniformly bounded and equicontinuous in C[0,1] so
that we may assume that uj - u uniformly. We may assume that wj
converges weak-* in Lw (and hence weakly in Ll) to a function w.
Thus, we get u)! - u' weakly in L1 and we find

u' +g(u) = f+w

u(0) = u(l) = a .
This shows that the following holds: if

a = inf{lu' + g(u) - f"w :u(0) = u(l) = a}

then there is a :1 € Wl’l with o = "G' + g(fx) - f”oo. (That o« is finite

4 I = = = . ! - =
is easy: let U, solve u £, uo(O) uo(l) a; then Uy + g(uo) f

Lw
g(ug) € L )

L 1o pnaivl ot
It v, = {v e :v(0) = v(1) = 0}, then Corollary 2.2 asserts
that o is the distance of u' + g(a) -f to LVo where L is the Frechet
derivative of Tu = u' + g(u) - f given by
Lv = v! + Av
and
A(t) = g'(u(t)) 20 .

However, it is obvious that L maps Vo both I - 1 and onto the space of ¥

functions with 0 mean-value. Thus, o = 0 and we are done.

o8-
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§4. Tight constraints

Suppose that one of the functicnals, say 10’ has the property

that a 1is not a constant function of To* Let us fix STRERERSY and

allow r =r to vary and consider the function

0
(4.1) o(r) = inf{[Tull : u e Ur)}
where
(4.2) U(r) = {xeX:lo(x)g_r, lj(x)grj, I 2 dss i}

in the subparametric case or

(4. 3) B(r) = inf{llTull : u e U(r)}
where
(4.4) U(r) = {xsX:lo(x)=r, lj(x)=rj, (TR PR

in the isoparametric case. We will be interested in values of r at which

@ (or P) has a definite change. We define a point To in the interior

of the domain of a continuous function f to be a t-point if there is a
A # 0 and a sequence en - 0 with

Aen>0, n=12 ...
(4.5)

e;l(f(ro te ) - flr,) - A.

(The terminology is derived from the fact that at a t-point for a the constant

(x) <r, becomes tight: f (x) = ro.) We have the following elementary

IO 0 0(

proposition which shows that any continuous non-constant function f
has (many) t-points.
Proposition 4.1. Let f be a non-constant continuous function on [a,b].

Then f has a t-point in (a,b).

~16-
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Proof. We may assume f(b) # f(a). Suppose that for each x ¢« [a,b) we have

lim spp h~Ye(x + h) - £(x)) <0.
h -0

Let € >0 be given and set F(x) = e¢(x - a) - f(x) + f(a). If t> x but
is close to x, then f(t) - f(x) < (e/2)(t - x) so that

F(t) - F(x) = e(t - x) - (f(t) - f(x)) >0 .
Hence, F is increasing so that F(b) > F(a) = 0. This implies
f(b) < f(a) + e(b - a). Let & -0 and conclude f(b) < f(a). Hence, if
f(b) > f(a), then there must be a point x. anda A >0 with

0

lim sup h-l(f(x +h) - f(x.)) = A.
h-0* . "

If f(b) < f(a), apply the reasoning to g(x) = f(a + b - x) which satisfies
g(b) > g(a).

Theorem 4.2. Let r, beat-pointof o« andlet x,e¢ U(ro) satisfy
Iyl = ry Let L be the Frechet derivative of T at x,, t} the Frechet
derivative of lo at Xy in Case II assume that l(') is weak-* continuous.
Set

Uoz {ch:l;(x)=0 e jul .., M.

A k3
Then there are elements y ¢ Y and ze¢ Z of norm 1 with

" * i * e "
S (1) v (txy) = It | and y (Lx) = cty(x), x € U,

(ll) Z(Txo) - "TXO " QQQ Z(LX) - clb(x)v X € Uo

for Cases I and II, respectively, where cA >0 and lel > ‘A‘“Txo If.

Proof. We shall do the case when A > 0; the case when A <0 1is entirely

similar. We first show that in UO’ the kernel of L lies in the kernel

-17-
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of l('). If not, then there is an x e UO with Lx = 0 but lbt‘x) = 2.

Hence, x, +&x ¢ U(r, +&) for € small and so, in the case A > 0,

0 0

eA<a(ry +e) - a(ry) < [T(xy +ex) |l - llTx, |

0

||Tx0 + eLx|l + o(e) - ”Tx0 |
= o(e) ’
a contradiction.

If lb(x) >6, then x, +&x e U(ro +eb) for & small enough and

0

hence we find for a sequence of € - 0

ta < e alry + €6) - a(ry))

de Ixy + elx|| - T, 1) + o(1)
Thus, 6A < lim s_l( It +erLxll - llTx_II) .
+ 0 0
€-0
Write yo = Txo; we make use of the formuia
- B
(4.7 Nyl vim  e7(lly, + etxll - vyl = max y'(La),
€0 y €C
where

%k 3k & *
C={y «¥Y :fly Il =1, y(yo)= ”yoﬂ):

see [1; Theorem V.9.5, p. 447]. Let Cl = {clb :ch"yOH} and

* % *
C2 = {Ly 1y ¢«C}. Than. C.. and CZ are closed convex sets and

1

CZ is weak-* compact. If Cl and CZ are disjoint, then there is an

N ¢ U0 which strictly separates C, and CZ:

0 1

* %
cl(')(x)_<_r<r+6_<_y (on), C_>_A||Yo" and y ¢ C.
' [ o
Hence, lo(xo)s_o. If lo(xo) n <0, then

*
-r < nA"Yo I .9 Tax y (L(-xo)) <-r=-2¢%8,
y €C

-18-
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a contradiction. If f('(x_ ) =0, then r>0 and
-r-56<0, all ¥ ¢C.
However, a continuity argument shows that

*
max vy (L(-x

)20,
y*eC

0

again a contradiction. Hence, there isa ¢ > A and a y' e C with

b3
cli(x) =y (Lx), x ¢ Uy .

This is the proof for Case I; for Case II the proof is done in Y/LV0 and
hence the functionals come from elements of 2Z.

I would like to thank C. Micchelli for pointing out (4.7) to me and
thus giving a proof of Theorem 4. 2 which is appreciably shorter than my
original proof.

An almost identical proof yields the following isoparametric version

which we state only for Case II.

Theorem 4.3. Let ro be at-point for the isoparametric problem (4.3) and

—

let xg« Ulr)) satisty lITx,ll = p(r). Let L and be the Frechet
derivative of T and lO’ respectively, at Xy and suppose l(') is
weak-* continuous. Then there is an element z ¢ Z of norm ! and a
number c, cA>0 and lcl> |A|“Y0" with

(4.8) 2(Tx,) = Il'rx0 | and cty(x) = 2(Lx), x ¢ Uy .
Remark. In the subparametric case a(r) 1is a monotone decreasing function

of r and we always have B(r) > a(r). If we know that r. is a t-point

0

for a, then clearly lo(uo) = r If we assume that the remaining

0

-19-
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constraints are of the form l)(x) = r}, j =1,...,N, then we must have

B(r.) = a{r.) and hence r is a t-point for isoparametric problem as

0 0 0

well as for the subparametric problem.

The following Proposition gives a simple condition which guarantees
that o is continuous; it applies equally as well to B but we do not
give the details for this case. We consider only the setting of Case II.

Proposition 4.4. (1) « is upper semi-continuous. (2) If T is weak-*

continuous and if there is a constant C with ”ur I <C forall r,

Ir - rof < 6, where ”Tur I = a(r), then a is continuous at Iy

Proof. (1) Let a(r satisfy lb(v) = 2. Then for

) = Ilruoll; let veUy

0

€ small, either positive or negative, we have

alr, + &)

1A

" IT(ag +ev)

A

”Tu0 + eLv] + o(e)
<alry) +e vl + o(e)

» a(r0}+ 0(e) .

*
(2) Since ”urlls’\:, there is a subsequence o W Clearly
n
u ¢ U(r) and thus

a(r) < llTull 5}._1mll'rur Il = Lim o(r ) .
n

Example. Let 0 _<_xl E et XN <1 be given points, let Yoo ¥y be

real numbers and let LO be a positive number. Consider the problem

of finding a function f satisfying (1) f(x,)) =y, for j=1,...,N and

j j
(2) the length of the curve (x,f(x)) is no more than (or is exactly) LO

and (3) f'"" is smallest in Lw. Precisely, for the first case let
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r(O,l): f(x)=y,j=1...,N and f (1+(f1) )1/2<L )
) ) 0 =49

U {f e W
and

a(Ly) = inf{”f"”m : feU).

For the second case replace the inequality in the definition of U by an
equality. Suppose L0 is a t-point of «. Then the function h must satisfy
1 1

[ gt =x [ g1+ (0)%)
0 0

-1/2

0
for all g e WZ’ with g(xj) =0, j=1,...,N. Integration by parts
o0
shows that h is continuous on [0,1], h is in WZ' on each segment

(x,,x. .) and h satisfies

i’ i+l

(4.13) Rt = b}, - nf'(1 + (f')2)~1/2 on (xj,x),H) -

If h vanishes on some segment (a,b) in ( ), then so does h'

X %541
and so

2

b),z IR 3

b R
If bj # 0, then f' is constanton (a,b). If b], = 0, then since \ # 0,
we must have f' =0 on (a,b). If h is positive or negative on some

segment, then we already know that f'' =a or =-a on that segment. Since

h' = -xf"'(1 + (f.)z)-3/2

we see that h'" is strictly bounded below (above) zero on any segment on
which h is positive (negative). Hence, if h is say positive on

(a,b) C (xj,x, ) with h(b) = 0, then h is negative for x ¢ (b,b +¢).

j+l

=2)e

N "L:.ff T




However, more is true. Since f'" = a when h >0 and f'" = -a when
h <0 we can use (4.13) to conclude that h' is even about the point b
and hence h 1s odd about b. Thus, if there are points gl < F,Z < g3

in (x,x ..} with h(¢

¥ 2y )=0, h>0 in (gl,gz) and h <0 in (§,,¢,),

k
then §3 - gz = gz - gl. Thus h can have only a finite number of sign

changes in (xj, xj Jrl) and there is no segment in (xj,x’_ +1) on which h

vanishes identically. Thus, the graph of f is composed of finitely many
sections of parabolas and, possibly finitely many straight line segments.
If a straight line occurs, then it must join successive points (x),, y),)

A

and (X,,,¥ 4
For this problem it is immediate that the hypotheses of Proposition 4. 4
(a) are fulfilled and hence a is continuous. To show that « has t-points

it suffices to show that « is not constant. Let L_ be the length of

0
the polygonal curve joining in succession the points {(xj, yj) 35S PR §
Then for each 6 > 0 there is a function ¢ e Wz’w(o,l), g(xj) = yj, the

length of the curve (x,g(x)) is no more (or is exactly) L0 + 6 and
a(LO +6) = ||g"“. Clearly as 6 {0 we must have a(L0 +6) - o,

Consequently, a is not constant.

.
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§5. Curvature problems in IR

Let us consider the following problem: Let P = {pl, . va }: be

’ PN
a set of distinct points in IRZ. We wish to pass a smooth curve
t = (x(t), y(t)) through the set £ whose curvature, measured in the L(Jo
norm, is as small as possible. We must impose the constraint that the
lengths of the competing curves are uniformly bounded for otherwise the
infimum of the curvatures is zero (piece together arcs of very large circles)
and, except in the trivial case when all the points lie on a single straight
line, there is no smooth curve with zero curvature passing through all the
points. Once, however, we do impose this length constraint then there will

be a curve with minimal curvature. This is most easily seen by parametriz-

1ng a competing curve by arc-length. In this case the curvature formula

(5.1) k() = () - KOVONEE() + 2(1) ">
reduces to
(5.2) k%(1) = x2(1) + y2(t)

since >'(2(t) + QZ(t) Bl 0t <L <] Hence, a uniform bound on k

0
produces a uniform bound on both ||x"Clo and "y"w and since we have
e e o0

> 900 Fl 0 Lo) for a fixed Lo, we may apply a simple compactness
argument to obtain a curve (x(t),y(t)), 0 <t <L, which passes through

all the points of P and for which "k”w is minimal. We shall prove

the following result.

Theorem 5.1. Let distinct points pl, ey Py in RZ be given and let

L be a number large enough that there is some smooth curve of length L

P J=

K P




Then there is a C1 curve

passing through all the points Ppr o1 Py

containing the points pl, 4% aCh Ty with length no more than L and which

N

consists of a finite number of arcs of circles of some fixed radius or

straight line segments. This curve minimizes the sup norm of the curvature

among all smooth curves of length not exceeding L which pass through

the given points pl, seey Py
Proof. The existence of a curve minimizing ”kf”go has been given
above. We shall now determine the properties of such a curve. Fix

N.

9 ¢y

points 0 = t1 Shy a0 <tN = L for which (x(tj),y(tj)) = pj, j=1

Let l],(u,v) = (u(tj),v(tj)) for . § =1 ... N and u,V € Hz’w(O,L) and let

L
T
lo(u,v)={ u +v ;

that is, 10 assigns to the curve (u,v) its length. With this notation

we are now in the context of Theorem 2.1, Case II with

X & Ho

o0 2. 00 00
(0,L)& H” (0,L), Y=L , .and U consisting of all pairs

(u,v) in X for which lo(u,V) <Ly lj(u,v) =P or j=1.....8
and T(u,v) = curvature of the curve t + (u(t),v(t)). Note that the
solution (x,y) of the problem

a = inf{ [ T(u, v) "ao : (u,v) € U}
arrived at above has the property that 5(2 + {/z 2] sothatif (u,v) fis
any element of X, then T((x,y) +¢&(u,v)) is well-defined for small

enough €. Hence, the operator L referred to in Theorem 2.1 is just the

Frechet derivative of T at (x,y):

rm




(5.3) Efv v} = -UX + VX + uy - ay - 3k()'<1'.| + ).'\'1), u,v e Hz’w

:&",4 PO - .- ..

(5. 3)! = =2uy - uy + 2vx + vx

where k = T(x,y) and to derive (5. 3)' we've made use of the fact that

kx = y and ky = -x. The next thing to note is that L maps X onto
Q0 [* e}

L . To see that the equation L(u,v) = g, g € L , has a solution we

make the substitutions U = -yw and v = xw where w ¢ H> > isto
be found. The equation L(u,v) = g then reduces to the equation w = g

which surely has a solution. Hence, we have shown the hypotheses of

Theorem 2.1, Case II, are satisfied. Thus, according to Theorem 2.1

there is a function h e L1 with norm 1 and

(5.4) 0< f h L(u,v) whenever 0 > lb(u, v)
and u(tj) = v(t),) =0 for j=1,...,N. Further, h and k have the
same sign and |k] = a a.e. where h # 0. A simple computation gives

iy, v) = f @k 4 )
Taking u=0 and v to be in C:(Ij), Ij = (tj’tj+l)’ we integrate by
parts and find that

0< f\';(h;c + P) whenever 0 < f\./x

where P = hx + 3k§'h. Hence, there is a non-negative scalar )‘j and

real numbers aj,Aj with

h. + P = +A +at.
e o il it
Likewise, taking v =0 we find

h9+Q=pjx+Bj+bjt, b <0

w25
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. - ’ : i3
where Q = hy - 3kxh. Since x2 +y =1 we find h is differentiable

on IJ, and we obtain the two equations

(5.5) 2xh + hx + 3kyh )\j)" + aj on I

)

(5. 6) 2vh + hy - 3kxh

P e S k. O
¥ j j

Returning to the fundamental relation (5. 4) we find

N N
Y, [ (ux + vy) <0 implies Y (u [ xu-x [yv)20.
I 1 1 ’1j ’1j

It follows that p.j = -xj =\ forall j. (If X or y is constant on

some Ij, this may involve changing a,6 or bj). Hence, the equations

j

(5.5), (5.6) become

(5.7) 2xh + hx + 3kyh = -M}+aj

(5.8) : 2yh + hy - 3kxh = \ic+bj.

We also find from (5.4) that h is continuous on [0,L] and h(o) = h(L)
Multiply (5.7) by ;c, (5.8) by y and add the resulting equations

to yield

(5.9) h = aj;ubj{(.

Multiply (5.7) by y and (5.8) by -x and again add the resulting
equations to get
(5.10) A +kh=ay-bx.

j j
Applying a similar technique with X and y yields the two equations

(5.11) xk + K°h » -ajii - b

and

(5.12) hk = aj; - bj§.
-26-
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Comparing (5.9) and (5.11) we find that

(5.13) h+k% = -k on [0,1] - (¢ .

Suppose first that L is a t-pointof a«. Then X\ can not be zero. For
referring to (5.4) we see that h would be orthogonal to LU0 i x =0
but this can be specifically ruled out by Theorem 4.2. Hence, if

(a, b) 1is an interval in (ti’ ti+l) on which h vanishes identically,
then k must also vanish identically. The same is true of any set of

positive measure in some ( ) onwhich h=0. If h is positive

ti’ ti+l

(or negative) on some interval (a,b) in (ti’ t. ..) then k=a (or k = -a)

i+l
on (a,b) and, further, (5.13) yields

h = -\/k + A cos kt + B sin kt
on (a,b) which, together with the fact that -\/k has the same sign as

h on (a,b) implies that either

(5.14) (b-a)a>n if h(a) = h(b) = 0
or
(5.15) there are at most 2 arcs and 1 line segment between the

successive points pi and le.

Note that the arcs are all of the same radius, namely R = l/a.

If L is nota t-pointof @, butis in the closure of the set of
t-points, then a simple limiting argument shows the validity of Theorem 5. 1.
Finally, if L is not in the closure of the set of t points of o then L can
be reduced without altering o to a point L' in the closure of the set of t
points. (A simple argument shows that o has t-points all the way down

to the minimum possible length.)




Note that the isoparametric problem here is basically no different
than the subparametric problem for the simple reason that the curve can
be extended linearly to increase its length but not change the norm of
the curvature. Hence if

p(L) = inf{llk ll = 2 (9 = L}

o'
then B is monotone decreasing and continuous. In fact, B =a in this
case. For we know that B = o on the closure of the set of t-points;

if (a,b) is a maximal interval in the complement of the closure of the

set t-points, then o is constanton (a,b) and B(a) = a(a) = a(b) = B(b)

so that B = o on (a,b) as well.

-28-
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§6. Minimal curvature, the analytic case

Here we consider the following variant of the curvature problem of §5:
Let distinct points P« -y Py be given in the complex plane.
Find a function f holomorphic in the open unit disc D = {lz] < 1} and
smooth on the closure of D such that the image of the unit circle

T = {lzl =1} under f contains the points P+ - and the closed

g pN
curve f(T) has curvature as small as possible in the supremum norm.

The first major difference between this problem and the one considered
in §5 is that existence is much less obvious. Here we can not reparametrize
the curve by arc-length and still remain in the class of holomorphic func-
tions. A second major difference is that, once a solution f has been
found, we can only perturb it by holomorphic functions and hence we can not
use C: functions to obtain local information about f.

The existence question is handled in Proposition 6.1 (which uses a
lemma) and Theorem 6.2. Necessary conditions that the solution must

satisfy are derived in the material following Theorem 6.2. For reference

we recall that the curvature of a holomorphic function f is given by

(6.1) ky(z) = lz17 £(2) | 7 IRel + 26(2)/0(2)), 2] <1
in terms of the derivative with respect to z and by
(6.2) kde'®) = e 1™ mm(ie'®) /f(e"®)

in terms of the derivative with respect to 6.
We recall that HP is defined as the space of those functions h

which are holomorphic on D and which satisfy

Sl U ISR A2 PO Nt o 018 ANk e
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2w .

sup{'—',l f lh(relt)lpdt} <w if 0 <p<wo
2w

r<l 0

sup lf(z)] <o if p=o.
lz| <1

We shall use a number of facts about Hp; good references are (2] and [3].

Lemma 6.1. (1) If g is holomorphic in D and if the range of g lies

in {re'®:-a<0<al, then ge¢ H® forall p<w/a; i 9(0) =],

then "g“ 5Cp where Cp is a constant independent of g.

P
(2) If g is in Hl, g#0 in D, andifarg ¢ has a continuous

extension to 5, _t_!_'x_g_gger forall p<®™.

Proof. (1) The first part of (1) is well-known; see [2; #2, p. 13]. To prove
the second assertion of (1), let ¢ be the conformal map of D onto the
sector {z: Iarg zl < a} with ¢(0) =1; then h = ¢-l ¢« g maps D
into D and h(0) = 0. Hence, g = ¢ «h is subordinate to ¢ soO that
"g"pﬁ "¢"p = Cp; see [2; Theorem 1.7].

(2) Given p < ®© choose points 90 = 0< 91 < .- < em+l = 2%

and an T 0 <r. <1, such that the variation of arg g(z) for

0
z:Dz{reie:r <r<l, 0<06<86, .}
j i SN Lol ol |

f e Hp( Dj) by (1). Putting the finite number of regions Do, “ ey Dm

is no more than w/2p. Then

together we see that f ¢ Hp, as desired.

Theorem 6.2. Let S consist of those holomorphic functions h in D

which satisfy

-30-

i oy e ——— <
e T Wi 4L
AT e




(1) $rry Hp, some p <l

(ii) [ >y =y(f)>0 on D andarg f' is continuous on D
(6.3) 2m

(i) [ Iee'®lde <L
0

(iv) f(T) contains the points Ppree Py -

Then S contains an element fo which satisfies

(6.4) - "kf “co = inf{"kf“w sfa 8} .
0

Proof. We shall show that if {fn} is a sequence in S with

timllk, I, = o
n

then there is a subsequence, again denoted by {fn}, and a function f,
with fn - f uniformly, f;l - f' in Hl, £ >2v>0 on D and
”kf "oo < a. This will establish the conclusion.

Let xn + iyn be the arc-length parametrization of the curve fn(T)

so that
& it
xn(s) + iyn(s) = fn(e )
where
. i6
s = s(t) = - f If'(e )lde .
0
Then

pn(eie) = f.n(em)/lf'n(ew)l = (d/ds)(xn + tyn)

and (dz/dsz)(xn + iYn) lies in the ball of radius 1+ a in L . Hence,

e AR 4T " . L&




we may assume that (d/ds)(xn + iyn) converges uniformly on [0,L]. Hence,
Mok uniformly so that En - ; uniformly. Now we may also assume
that the measures {f;lde} converge weak-* to the measure gd6 where

g € H‘l by the F. and M. Riesz theorem. Hence, f;\ -~ g uniformly on

compact subsets on D and "g “l < lim inf" f;l ”l Hence,
Jlel=fep ~[op<lgll .

Thus, || f;l ”1 o "g ”l so that f"I - g in I-l’l (see [6]). Consequently,
we may write g = f' where fn - f uniformly and f;l - f' in H’1

Next, note that f f’; = f |f'] ana hence p = f'/,f" a.e. If we
normalize fn so that arg(f"‘(l)) = 0, then from the fact that {pn} is
equicontinuous we see that the sequence {arg f;)} is equicontinuous and
uniformly bounded so that we may assume {arg f;l} converges uniformly
on T and henceon D to arg f' and thus f' e HP forall p<w
by the lemma. Further, the second part of (1) of the lemma implies that
the Hp norms of fr" are uniformly bounded since fx; - f' uniformly
on compact subsets of D. (Indeed, f"_‘ - f' in Hp for all p <),
Hence, the functions

u = Re(eief"'"(ew)/f;l(ew))

lie in a fixed ball in LP for each p <® and thus so do their harmonic

conjugates

v Im(eief;"(ew)/f;‘(ew)) .

Hence, {fr'{/fr'x} lies in a fixed ball of Hp for each p < ® and so




{log fl'_l} lies in a fixed ball of the disc algebra. Thus, 'f;xl is
uniformly bounded away from zero. We may assume that fl:l'/fl{l converges
weakly in HP to f"/f' foreach p< . Thus, for p< =,
ka”p < lim inf”kfn”p < lim inf"k'f l ,<a andso ”kf"00 < a. This
concludes the proof. g

To cast the analytic curvature problem in the mold required by
Theorem 2.1 we let f be a solution assured by Theorem 6.2 and let X
consist of all those holomorphic functions h on D for which

Re(zh'(z)/f'(z))

is bounded on D; we norm X by

Ially = lIre(zh'(z)/e(z) |, + In(@) | + In(o)] .

X is complete with this norm. It follows immediately that among all
functions h in X which satisfy

(a) Pp -2 Py lie in h(T)

(b) fzw Int(e'®) lde < L

0

(¢) Ih'l>v =v(h)>0 on D
f has the smallest curvature. Note that since |f'| >6& on D the
curvature of f + eh is defined and finite for each h ¢ X as soon as ¢
is small enough. Thus the operator L in Theorem 2.1 is the Frechét
derivative of the curvature operator and is given by

-2

Lg = -k Re(g'/f') + (1/| |)Re(z(f'g" - f"g')(f') *)

where k = kf the curvature of the solution f.

<33
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The operator L maps X into Lw; we first show that L has closed
range. Suppose that {gk} is a sequence of elements in X all of
which are of distance 1 to the null space of L but for which

|ngk llm - 0. Byaltering g, by an element of the null space of L we
may assume that ”gk ”X < 2. Hence,

IRe(zgi(2)/ (2l < 2.

This implies that "gl’;"p < Ap for all p <%°; by extracting a subsequence
we may assume that g,’(' - g" weakly in Hp and gL -g' and gk ~-g
uniformly on D. But Lgk - 0 uniformly so that Re(eieg}'c'/f') - k Re(g'/f') +
(l/lf'I)Re(eief"/(f')Z) = Re(eieg“/f') uniformly. However, g € ker(L)
and so we've just established that gk - g in X, a contradiction.
Thus, the range of L is closed and since L is weak-* continuous, the
range of L is weak-* closed.

It is easier to work with derivatives taken with respect to t rather

than z = eit. We shall write g(t) for the derivative of g(eit) with

respect to t. In this way we have

(6.5) Lg = -k Re(g/f) + (1/]f1)Im(a/6)’
and
(6. 6) 1,09 = [ lg|

and X consists of those holomorphic functions g for which Im(a/f) is
bounded on 5

Let points 0 <t <-.-: <t . <2r be selected with f(tj) = p

1 N J

for j=1,...,N and let lj be the continuous linear functional on X




given by

(6.7) qm:gm» ¥ LSRN

To apply Theorem 2.1 we shall investigate those (real) functions h e L:

for which

(6.8) 0< [hlg

whenever

(6.9) (a) 0 = 2(g), j=1...,N

(b)  0214(g) .

In particular we shall first show that the set # those functions h for
which equality holds in (6.8) whenever it holds in (6.9) (a) and (b) form

a finite dimensional subspace of Li and hence LV0 has finite codimen-~
sion in Lw, as required by the hypotheses of Theorem 2.1, Case II.
Integration by parts for smooth enough g yields the formula

Jhig = Im [ gP + Im[g(2n)H(2n)]

where
(6.10) p-=nilih)t-H
and
(6. 11) H = -h(£l£]) 7 (E/0) + 1Im(E/D)]
H(0) = 0 .
We have

th(g) = Re [gs

where
s = |fl/f.
=35




Define, for a function h ¢ £, a linear functional f on X by the rule
t(g) = [ gP + g(2m)[ H(2m)]
where P and H are related to h by (6.10), (6.11). We know that

Im £(g) = 0 ({f lj(g) =0 for j=1,...,N and Re f!'(g) = 0. Replacing

o

g by ig we see that f(g) = 0 when g lies in the intersection of

the null spaces l'o and lj, j=1...,N. Hence, there are (complex)
scalars Ao )‘l' A 'XN such that
N
) 2 L
(6.12) t ‘IL SR AP

as linear functionals on X. I now claim that xo is pure imaginary.

To see this, note again that Im £(g) = 0 whenever lj(g) =0 for

jzl.00,0 ahd Re lb(g) 0. Hence,

0 = Im £(g) = Im(xol;)(g)) = (Re x()(Im 14(g)) -

However, it is trivial to show that there is a g ¢ X with 11(9) =0 for

y=1,...,m, and f!(g) = i. This implies that Re \

0 = 0, as claimed.

0

Write \0 = ix where \ is real.

We have the following representations:
t1(q) = [ oF

where i."= -s and
2w

,(g) = [ - tj)+5(t)dt +(t - 2m)g(2m) +g(2m) .
0

Hence, from (6.12) we obtain the following

N
(6.13) Zx’(t-tj)++1xf‘= P+G
I

-
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for some G e Hl. We also find

N
(6.14) 2 A(t, - 2m) = H(2m)
I
and
i
(6.15) i A= 0.
I

However, it i- (6.13) which will yield the information we want about h.
From (6.13) we see that hlf-rl - fG lies in W'l’l and, in particular,
is bounded. Now fG = o +iT is analytic and both v and o + hlf'l'-l
are real and in il Hence, o lies in LY for all q <o (as the
harmonic conjugate of the bounded function T) and hence h lfl-l lies
in Lq, q <o, Thus, h e L. This implies that H e W‘l'q and once
again (6.13) implies that hlfl-l - fG lies in W'l’q. Thus, T e Wl’q
so that o ¢ W'l’q also. Finally, this implies that h e W'l’q. Since ¢
is a closed subspace of Ll all of whose elements are bounded (indeed,
in Lip(l - 1/q)) we see immediately that # 1is finite dimensional. More-
over, we can differentiate both sides of (6.13) to obtain

(6.16) %, AjX, - ks = hilf) ™ - neelih D) + 6

where (j is the characteristic function of [tj, 2w]. Multiply (6.16) by f

and separate real and imaginary parts to obtain the two equations

(6.17) Re(xf) = hlfl™! - nlfl ™ Re(E/f) + Re(fG)

«3]=




and
(6.18) Im(xf) = hk + [f] + Im(fG)

N\
where x = L x,,(j and k is the curvature of f. Consequently we find

1

. t . .
(6.19) h(t) = [f(t)[(Re [ (x - G)f +¢c), c ¢ R
0

(6.20) kh = -x |[f] + Im(x - G)f .

We next claim that G

"

0. To see this note that if h is positive

on a segment (a,b) C [tj,tj+ then k=a on (a,b) so that we can

N
multiply the right side of (6.19) by a and equate this to the right side
of (6.20). After dividing by lfl we differentiate with respect to 6.
Since (d/de)(f/lfl) = ifk we find that Im(éf.) = 0 on every segment
where h» is positive or negative. If h = 0 a.e. on a set E of positive
measure in some [tj, tj+1], then (6.19) implies

Re(x - G)f =0 "y, 6. 00 E
and (6. 20) yields, after dividing by Ifl and differentiating,

Im(éf) =0 a.e.on E.
Hence, éf is a purely real constant. But Gf has mean-value 0 so

that Gf =0 which implies G and G are identically zero. Thus, we have

t

(6.19)" h(t) = [f(t)[{Re [ xf +c}
0
(6.20) kh(t) = -\ [f] + Imyf .

Assume first that L is a t-point of a«¢ then X\ # 0 as in §5. Suppose
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that h = 0 on some set E of positive measure; then by (6.19)' and

(6.21) xf = i) 'fl a.e. on E
which implies that arg f is constanton E. Thus, k = 0 on E. Hence,
if L is a t-point of «, then the curve f(T) consists of arcs of

circles of radius R = 1/a or straight line segments. We also note that

(6.20)" we find ,
formulas (6.19)' and (6.20)' show that if [a,b] is a subset of [tj, t), +l]

and h(a) = h(b) and h>0 on (a,b), then (b - a)a > n. Hence,

conclusions (5.14) and (5.15) hold as well for the analytic case. Next,

a limiting argument shows that if L is in the closure of the set of

t-points, then there is a solution consisting of arcs of circles (of the |
same radius) or straight line segments. The general case is solved |
by decreasing L until a point in the closure of the set of

t-points is reached. The final point to be touched on is the existence

of critical points for o« (or PB); equivalently, we just have to show that

a 1is not constant. A brief sketch goes like this. Let L0 be the infimum

of all the lengths of f(T) where f is holomorphic in D, smooth on B,

f'#0 on 5, and Py es Py € f(T). Let {fn} be a sequence with

; If;ll ~ L, and "kfn"w= a(Ly +6 ), 6 —~0. If llkfnllwgc for all n,

then as in Theorem 6. 2 we would have fn - f uniformly and f;) - f' in
l-l1 - Thus there would be a smooth curve f with minimal length passing

through pl, §voay pN. But a simple variational argument shows that for this f
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0= [olili’k,

for all holomorphic g with g(tj) = 0. Thus, Im(i'/f) 2 lflk

a.e. which implies that f is constant, a contradiction.

f

0
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