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ABSTRACT
Let X1,.. . ~

Xm i  and Y1, . . . ,Y~ be independent random samples from two
continuous distribution function s F and G re spectively on the real line. We wish
to test the null hypothesis that these two parent populations are identical. Let
X ’ < . . .  < X ’  be the ordered X-observations. Denote by the number of Y-
o~ servations~~thling in the interval [X’ 

~
, Xi), k = 1,. .. , m . This paper studies

the asymptotic distribution theory and ~fmiting efficiencies of families of test
statistic s for the null hypothesis, based on these numbers 

~~~~ 
. Let h( S ) and

k = 1, . .. , m) be real-valued functions satisfying some simple regularity
conditions. Asymptotic theory under the null hypothesis as well as~ j nder a suitable
sequence of alternatives, Is studied for test statistic s of the form ~ h(S ), based

rn k= l k
symmetrically on Sk’ S and those of the form 

~~l 
hk (Sk ) which are not symmetric in

{S1, } . It is shown here that tests of the symmetric type have poor asymptotic
pefformance in the sense that they can only distinguish alternative s at a “distance ”
of n~~ fro m the hypothesis. Among this class of symmetric tests , which includes
for Instance the well known Run test and the Dixon test , It is shown that the Dixon
test has the maximum asymptotic relative efficiency. On the other hand , tests of
the nonsynj metric type can distinguish alternatives converging at the more standard
rate of n~~ . Wilcoxon-Mann-Whitney te st is an example which belong s to this
class. After investigating the asymptotic theory under such alternatives, method s are
suggested which allow one to ~ elect an “optimal” test against any specific alternative ,
from among tests of the type 

~ 
h
~,

(Sk) . Connections with rank tests are briefly ex-
plored and some illustrative ~S~Amp~ies provided .
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ASYMPTOTIC THEORY FOR SOME FAMILIES O1\ .•~
TWO-SAMPLE NONPARAMETR IC STATISTICS \ .

~~~~

‘
‘

t ~~~~~Lars Hoist and J. S. Rao~

1. Introduction and notations

Let X1, . . . 
~

Xm l  and Y1, . . . , Y be ind ependent random samp es

fro m two populations with continuous distribution functions (d. f. s) F(x)

and G(y) respectively. We wish to test if these two populations are

identical i. e., the hypothesis that the two d. f . s. are the same. A simple

probabil ity integral transformation carrying z -
~~~ r (z )  would permit us to

assume that the support of both the probability distributions is the unit

interval [0, 1] and that the first of them is the uniform d. f . on [0, 1]

For the purposes of our discussion, this probability transformation can be

done without loss of any generality as will be apparent soon. Thus from

now on , we will assume that this reduction has been effected and that the

first sample is from the uniform distribution U(0 , 1) . Let G* = G . F 1

denote the d. 1. of the second sample after the probability transformation .

The null hypothesis we wish to test , specifies

(1. 1) H0: G (y) = y, 0 < y < l

Let 0 < X .~ < ... < X  < 1 be the order statistic s from the first— 1 —  — m-l-

sample. The sample spacings (D1, . .. D )  for the X-values are defined by

t Mathematic s Research Center , University of Wisconsin , Madison on
leave from the Department of Mathematic s, Uppsala University, Sweden.

~ Department of Statistics, University of Wisconsin, Madison.
Sponsored by the United States Army under Contract No. DAAGZ9-75-C-
0024.

11 
_ _  

_ _ _ _ _ _ _ _ _

~~~~ ~~~~~~~~~~~~~ ~~~~~~~ If



(1 .2)  Dk = X ~~
_ X

~K l ,  k = l , .. . , m

where we put X~ 0 and X = 1 . Tests based on these sample spacings

have been considered in the literature for the goodness-of-fit problems.

See for instance Darling (1953), Pyke (1965) and Rao and Sethuraman (1975).

Define for k = 1, . . . , m

~~~. 3) 5k = number of y~’s in the interval [X~K 1 ~ X ’k ) .

Our aim is to study various test stat istics based on these numbers

{s1, .. Sm } for testing H0 . Since the numbers {Sk )

as well as the statistics based on them remain invariant under proba-

bility transformations , there is no loss of generality in making such a

transformation on the data , as was done earlier. It may be remarked here

that we take (m-l) instead of the usual m observations in the first sample

since this yields m numbers {s1, . . ~ 
S }  instead of (m+l),  leading to

slightly simpler notation.

Our aim is to study the asymptotic theory as m and n tend to in-

finity. We will do this through a nondecreasing sequence of positive in-

tegers {m } and {n } . We will assume throughout, that as v -~~ 0O
V V

(1.4) m ~~~~~~~~~~ n -‘~~~~~ and rn /n = r  -~~p, O < p < Q C
V V V V V

Note that {Dk ) defined in (1. 2) depend on m the number of X-values

and it is more appropriate to label them as {Dk } . Similarly the numbers

{sk } defined In (1. 3) depend on both m and n and should there fore

-2-



be denoted by {S ) . Thus we are dealing with triangular arrays of
4 kv

random variables {Dk ,  k = 1, . . . , m )  and {Sk ,  k 1, . . ., m )  for

V > 1 . Corre sponding to the v (v > 1) array , let h ( ~ ) and

k 1, . . .  , m )  be real-valued functions satisfying

certain regularity conditions (see Condition (A) of Section 2). We now

define

m

(1. 5) T = 
I~~l 

h k (Sk )

and m

(1.6) T* =~~ h (S
~ V kV

based on the (m -l) X-values and the n Y-values. Though T* is a

special case of T when {h ( • ) )  do not depend on k, we will dis-v kv

tinguish these two cases since their asymptotic behavior is quite different

in the non-null situation. We may point out here that the Wald-Wolfowitz

(1940) Run test and the Dixon (1940) test are of the form T while the

Wilcoxon-Mann-Whitney (1947) test is of the form T . In fact , any linear

function based on the X-ranks In the combined sample, can be expressed as

a special case of T . We will discuss more of this in Section 7.
V

A few words about the notations: Though the quantities m, n , r, Dk,Sk

as well as the functions h( .) ,  {hk
( . ) )  depend on V~ for notational con-

venience we shall suppress the suffix v , except where it is essential .

Thus for instance, T = 
~~~

, hk (Sk ), T* 
~~~

h(Sk) and r will stand for

(rn/n ) etc. We will also indicate the probability law of a random variable

(or random vector) X by t(X)

— 3 —  



N(~ , 2~) will represent a normal distribution with mean ~i. and covariance

matrix ~ throughout while N(0 , 0) stands for the degenerate distri-

bution at the point zero. For 0 < x ~~~~~ P0(x) will represent the Poisson

distr ibution with mean x and

( 1.7) i~ ( x) = e X 
. x~/j !, J = 0, 1, 2 , . . .

the Poisson probability of j . For ~ = (p1, . . pm), mult(n , ~ ) will de-

note the rn -dimensional multinomial distribution with n trial s and cell

probabilities (p 1, . . ., p ) .  Let r(a , b) denote the Gamma distribution

with density

(1. 8) e~~~’b . ~~~~~~~ . n a )  for 0 < x  <

A negative exponential i. e., a r(l , 1) random variable will be denoted

throughout by W. ,
~ 

will stand for a geometric random variable with pdf

(1. 9) P(~ = J) = p/(1+p)~ 
~~~~

, j = 0, 1, 2 , . . .

fo r 0 <  p <

Also for any random variable X , we write Xn = o (g(n)) if

X /g(n) -. 0 in probability and we write X = O (g(n)) if for each € > 0

there is a K < ~ such that P {I X  /g(n) I > K ) < E  for all n sufficientlyn
large. Final ly [x) will denote the largest integer contained in x

We shall consider a sequence of alternatives specified by the d. f. s.

(1. 10) G~~(y) = y + (L (y))/rn 6, 0 < y  < 1

-4-



where L (O) = L (l) 0 and 6 > ~ . In terms of the original d. f. s

F and G, the null hypothesis specifies G = F, while under the alterna-

tives we have a sequence of d. f. s G that converge to F as the sample

size increases. Indeed

(1. 11) L (y) = m 6 (G (F 1(y)) - y)

We assume that there is a func t ion L(y) on (0 , 1) to which Lm (y) con-

verges. For the other assumptions on L ( ~ ) and L ( • )  refer to Theorems

3. 1 and 4. 1. This sequence of alternatives (1. 10) is smooth in a certain

sense and has been considered be fore. See for instance Rao and

Sethuraman (1975) or Hoist (1972).

The organization of this paper is as follows: In Section 2 , we

establish some preliminary results. Theorem 2. 1 give s asymptotic distri-

bution of functions of multinomial frequencies while Theorem 2. 2 establishes

a result on the limit distributions of non-symmetric spacings statistic s,

which is of independent interest. These results are combined in Theorem

3. 1 to obtain the limit distribution of T under the alternative s (1. 10)

with 6 = 3 . It is clear that putting L (Y) 0 in this theore m, gives the

asymptotic distribution of T under H0 . Section 4 deals with the symmetric

statistics T .  Theorem 4.1 gives the asymptotic distribution of T * under

the sequence of alternatives (1. 10) with 6 = . Again putting L (y) 0

g ive s the limit distribution of T~
’ under H . It is interesting to note that

the symmetric classes of tests T* can only distinguish alternative s

-5-



converging to the hypothesis at the slow rate of n 4 unlike the non -

symmetric statistics which can discriminate alternative s at the more usual

distance of n ’
~ . Similar result s hold for tests based on sample spacing s

depending on whether or not one considers symmetric statistics. See for

instance Rao and Sethuraman (1969 , 197 5) . Some further asymptotic theory of

spacing s statistics is currently under investigation by the present authors.
Asymptotic efficiencies and applications are discussed separately for the
non-symmetric and the symmetric cases , in Sections 5 and 6 respectively.
Section 7 contains some further remarks and discussion.

2. Some preliminary results:

The following regularity conditions which limit the growth of the func-

tions as well as suppl y certain smoothness properties, will be needed in

connection with the results of this and the next section.

Condition (A) : We will say that the real-valued functions {hk (
~ 

)} defined

on {o , 1, 2 , . . .  ) satisfy Condition (A) if they are of the form

(2. 1) hk(J) = h(k/ (m+1), .1), k = 1,...,m j 0, 1, 2, . . .

for some function h(u , J ) defined for 0 < u < 1, j = 0, 1, 2 , . . .  with the

properties

(i) h(u , J) is continuous in u except for finitely many u and the
discontinuity set if any, does not depend on j

(ii) h(u , J) ~~~ c . j + h(u) for some real number c
(iii) For some 6 > 0, there exist constants c1 and c2 such that

-6-



( 2 . 2 )  l h (u ,1) 1 < c 1
. [u(l~ u) i2~~.(J 2 +1) for all 0 < u < 1  and j = 0 , 1, 2, . . .

Condition (A ’) : We will say that the real-valued functions {~~( )} de-

fined on [0 , ~~) satisfy Condition (A’) if they are of the form

= g(k/(m+1), x), k = l, .. . , m and 0 < x < o o

for some function g(u , x) defined for 0 < u < I and 0 < x < oo with the

properties

(1) g(u , x) is continuou s in u except for finitely many u and the
discontinuity set if any, does not depend on x .

(ii) g( u , x) ~ c • x + g(u) for some real number c

and (iii) for some 6 > 0, there exist constants c1 and c2 such that

(2. 3) Ig(u,x)I < c 1 • [u(l u)]~~~
6 

. (x 2 +l) for all 0 < u < l  and 0 < x < ~~

We require the following simple lemma.

Lemma 2. 1. Let h(u) defined for 0 < u < 1, be continuous except for

finitely many u and have the property: for some a > -1, there exists a

constant c such that

(2 .4)  Ih (u) I  < c  [u(l~ u)]a

Then

m
(l/m)~~ h(k/(m+ 1)) -, f  h(u)du as m -~~ ~o

0

Proof: Define the step function

-7 -
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hm(U) = h(( [mu ]+1 )/ (m÷ l)) ,  0 < u < 1

Then clear ly  h (u) -. h(u ) as m — °~ except for finitely many points.

Observ e

Ih (u)l < 2c [u( l_ u) ] a

for m su f f i c i e n t ly  large and f  [U(l_ U)] a 
<~~ for a > -l . Thus by the

Lebe~ gue Dominated Converge~ice theorem ,

m 1 1
(1/rn) ~ h (k / (m+l ) )  = f  h (u)du -

~~ 
f  h(u)du

k= 1 0 0

which proves the assertion.

Turning to the main problem , we will obtain the distribution of T

defined in (1. 5) essentially in two steps. First we consider the statistic

T for given values of the X-spacing s D = {D1 ,. . D }  . Since the

numb~’rs {S , .  • . ,  S } given D have a multinomial distribution , we needm =

a result on the multinomial sums. We formulate this part of the result in

Theorem 2. 1. The expressions for the asymptotic mean and variance of

this conditionci distr ibution of T given D , are functions of D . In
V = =

Theorem 2. 2 , we formulate a general result on the limit distributions of

functions of spacings , which allows us to handle in particular , these

expressions for the asymptot ic mean and variance. Theorem 3. 1 of the

next section combines these results along with other lemmas given there ,

thus giving the required asymptotic distribution of T

-8-
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It is clear that the conditional distribution of the vector of occupancy

numbers S = (S1, ‘~~m~ 
given the spacing s vector D = (D 1, . . . , D )  is

mu lt (n , D1., . . D )  . Therefore the test statistic T , conditional on D

has under the nul l hypothesis the same distribution as the random variable

m

(2. 5) Z = ~ 
hk ( W k )

where 
~~~~~~ 

is Mult(n , p1, .  . . , 
p )  with cell probabilities

being equal to the spacings (D 1,.. Dm ) • Since the

asymptotic mean and variance of Z can be more simply stated in terms
V

of Poisson random variables , we introduce a triangular array of independent

Poisson random variables ‘c m v  }, v > 1 where 
~k is Pp(n pk )

• and set

(2. 6) = 

~~~~

2
= E( k 1,), 

~~ 
= Var(~~ )

(2. 7)

The following theorem on the asymptotic distribution of the multinomial

sum Z is due to Hoist (1976a).

Theorem 2. 1. Let ~~~ ~~~ 
be mult(n , p1, . . ~ ~~~ 

and z~ ~~
and ~

. be as defined in (2. 5), (2. 6) and (2. 7). For 0 < q < 1 , set
V 

—

M = [ m q l  and

-9-
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(2.8) 
~vq = h k (

~ k )

Assume that there exists a q
0 < 1  such that

(2. 9) 
~~1~~k~~~~q’ 0 < P q < l  for q 0 < q < 1

and

(2. 10) 
~ ~~~~~~~~~~~~~~~~ 

N (
~ ~~ ~~k - twk )/

~ ~

where A , B and P are such that as q - 1-
q q q

(2.11) A - ~~k , B - ” B and P - ” l .q I q 1 q

Then as v — b oo

(2. 12) £ ((Z V
_
~
L ) / cr ) _1 N(0 , A1 - B ~ ) .

From (2. 6) and (2. 7) an explicit expression for the asymptotic mean

is given by

(2. 13) = 
) l  J~ 0 

h k (J) 
~~~~~~

using the notation (1.7). Under the null hypothesis, we have = Dk

k = 1,. .. , m where D are the spacings from TJ( 0 , 1) . Thus we consider

-10-



(2 . 14) FL(nD) = 

~~ 

h k (J ) 
~
r

J
(nD

k
) ~ g~ (m D ~ )

where

(2 . 15) = h k (i ) Tr~(x/r)

Random variables of the type (2. 14) have been considered by Darling (1953),

Lecam (1958 ) and Pyke (1965). For the symmetric case i. e.,  when ~~ (x) =

g(x) for all k , Darling (1953) obtained some limit theorems for certain

special cases and ~e Cam ( 1958) gave a complete characterization of the

limit laws. See also Rao and Sethuraman (1975) for some results in the

symmetric case and their asymptotic efficiencies. Pyke (1965) pointed out

(cf. Section 6 .2)  that Le Cam ’s method could be used to study the non-

symmetric case. Since no complete result or its proof Is explicitly given

there in a form useful  for our purposes , we state and prove such a limit

theore m (Theorem 2. 2) for non-symmetric functions of uniform spacings.

An especially useful form of Theorem 2. 2 is given in Corollary 2. 1.

The method of proof we adopt is a mixture of the method s used by

Le Cam (1958) and Darling (1953) and this result on spacings is of some

independent interest. Let W1, W2, ... be ind ependently and identically

— 11 —



d i s t r ibu ted  (i. 1. i . )  r~I , ~ r dndo m variables i. e. , with a negative exponential

di str ibuti on ( l -e~~~), w > 0 . Let {g~~~), k = 1, . .  . , m) be real-

valued me asurable  functions.  For 0 < q  < 1, let M = [m • qJ . Define
— V V

M
(2 . 16) G = g (W~ ) -qv k i~

Theorem 2. 2: Assume that the variance of G exists and is positive
qV

for all q and v i. e. ,

(2.  17) 0 < Var(G ) (G ) < ~ for all q and vqv qV

Assume further that for each q E (0 , 1]

(2. 18) 
(G qy ~ • EGqV )/cT( GiV ) 

— N (
~
) ( A

q B )
q

with A and B such th atq q

(2. 19) Aq — A1 = 1 as q -. 1-

(2. 20) Bq 
-

~ B1 as q -‘ 1-

Then , as v~~~~~

(2. 2 1) 
k- 1 

~~(mD~ ) - EG1 )/~(G 1 )) — N(0 , l-B~~)

where D1, . . Dm are spacings fro m U(0 , 1) .

Proo f: Choose 0 < q < 1 . For z > 0  consider i. i .d. random variables

V1, . . Vm wit h r(l , l/z) distribution i. e., exponential with mean l/z

-12-
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P.-

The sum (V 1 + ... + V )  has r ’(m , l/ z) distribution , whose density is

denoted by f ( . )  below. Using ideas of conditional expectation , the
M

cha racteri st ic function of ~ ~~ (mV ) at u can be written as
k= 1

(2 .22)  GM(z , u) = E(:xP(iu ~ ~l,~(mV~))) 

M
= f  E{exp(iu g~ ( m V ~ ) ) J ~~ Vk = t)} f(t)dt

0 1 1

= ~~~~~~~~~~~ e~~
t /(m~ l) !dt , say.

Since the conditional distri bution of (V1,. . V )  given 
~ 

Vk = t is the

same as that of (tD 1, . . t D )  which doe s not depend on z, it follows

that neither does 4 ( t , U)  . Observe that

4 ( u) = ~ (l , u) = E(exp (iu ~ ~~ (mV~)~~~ Vk =

(2 .23)  M
= E(exp(iu

On the other hand the function defined by

00 M M
G~~(z , u) = f  • . .  f  exp(iu ~ ~~(mv ~))z M exp(-z 

~ 
vk ) dv 1. . .dv M

is ar ~alytic in z for all complex z such that Re(z) > 0 . This

— 13—
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function coincides with GM(z , U) on the positive real axi s and hence

for all z in the right half plane. Consider

G~~(m+iy, u) = (m+iy) M 
~ 

• .  exp(iu ~ ~~(mv~ ) - iy 
~ 

vk )

exp( ..3~ mvk )dvl .. .  dv M
(2 . 24)

= ( 1+ iy/m) exp( -iyM/m)

E(exp(iu ~ g~ (W~ - iy

where W1,. .  ., W~~ are t. i .d. r( 1, 1) random variables. It Is easily

checked that the conditions for using the complex Laplace inversion

formula (see for instance Courant and Hilbert (1962) p. 536) on (2 .22)  are

satisfied. On doing this inversion, we obtain for c > 0

c +iz
~(t , U) • ~

m_ l 
= (rn-I) ! (1/Zid ) f  elt 

~
_ m 

G~~(z , u)dz

Putting c = m and t = 1 in this formula and using (2. 23) and (2. 24) we

get

4’(u) = E(exp(iu ~

(2. 25) = m !/(Znm) f  em
~~~(m +iy) m (l+iy/m ) M exp (-lyM/m)

M
E (ex~ (iuGq - iy 

~ 
(Wk 

-1)/m))dy

_ _ _ _ _ _



II

Putting x = y/m 2 and using Stirling ’ s formula for m !  we obtain

4(u) = e~~
’
~ (Z1T )~~~ f  exp(ix (m-M)/m 2 ) -  (l+~X/&) M m

E(exP(iuGq 
- ix 

~ 
(Wk~

l)/m 2)dx

From this , it follows that

m

E(exP(iu(~~ ~~~~~~~~~ - EGqV )/0 (GlV )))

(2. 26) 
= e° (21T) f  exp(ix(m - M)/m 2 )( 1+

E(exP( iu(G
qv 

- EGqv ) /O•(Glv ) - Ix 
~ 

(Wk - l)/m 2 ))dx

The integrand in (2. 26) is dominated by

2 (M -m )/Z 2 1 ~2h (x) = (1 + x / m )  V V — h(x) = e x -q), as v —~°

and it is easily verified that

f h ( x ) d x -.f h(x)dx as v - 0 0

Thus using the extended Lebesgue dominated convergence theorem (see for

instance Rao (197 3), p. 136), it follows from assumption (2. 18) and the

formula (2. 26) that as v -,

1 00

4 (u) — (2i~’)~~ f e x p (_ (l_q)x2/z)

(2. 27)

exP(-(A qu
2 +ZBqUX + qx

2
)/Z)dx = exP(-(Aq-Bq)u2/2)

p - 4 ~*~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ L S~ 
-



The continuity theorem for characteristic functions gives

(2. 28) ~(( ~ ~~(mD~) 
- EGqv )/~

(Giv))) — £(Xq) = N(0, Aq~B~) as v —

Using an analogou s derivation , we can show

(2. 29) ~~~ (gk
(mD

k) 
- ~~~~~ ) )/q- (G

1
)) — £(X~) = N(0, l~Aq~ (B

1~Bq)
2
)

as v °-0

Combining (2. 28) and (2. 29) with (2. 19) and (2. 20), we get

(2. 30) Z(Xq) — N(0,l-B~) as q — 1-

and
(2. 31) ~(X~) — N(0, 0) as q — 1-

Hence using the argument on pp. 13-14 of LeCam (1958) the assertion of

the theorem follows.

The following corollary gives a simple sufficient condition on the

functions 
~~~~ 

in order that Theorem ( 2 . 2 )  holds.

Corollary 2. 1. The asymptotic normality asserted in Theorem 2. 2 holds

for any set of functions {~~ ( ) )  which satisfy condition (A ’)

Proof: To prove this corollary , we need to check that the assumptions

(2. 17) to (2. 20) hold when cond ition (A’) is satisfied . It can be easily

checked that if g(u , x) satisfies condition (A’),  then

-, 00
-x 2 -x -xf  g(u , x)e dx , f  g (u , x)e dx as well as f  g(u , x)(x-1)e dx

0 0 0

-16-
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satisfy conditions of Lemma 2. 1 in u . Thus from the definition of G
qv

and Lemma 2. 1, as m — 00
,

[~ q1 q
(2. 32) E(G )/m = (1/rn) ~ Eg(k/(m+l), Wk

)_1
1 Eg(u, W)duqv 

k=l 0

[mql q
(2. 33) Var(G qv )/m = (I/rn) ~ Var(~ (k/ (m+l) , W~ ))~. f  (Var g(u,W))du

k=l 0
and

M [mq]
(2. 34) COV(Gqv~ ~ 

W
k)/rn = (1/rn) ~ Cov(~ (k/ (m+1) , W~), W~ )

1 k=l

q
-

~~ 
f  Cov(g(u,W),W)du

0

where W is a r’(l , 1) random variable. Again from (2. 3) of condition (A’),

all these limits are finite. These are also continuou s In “ so that (2. 19)

and (2. 20) are satisfied.

Finally to check the asymptotic normality in (2. 18) or equivalently

of

[mq~ [mq j 
*( 2. 35) 

k l  
{a(~~ (W~ - E~~ (W~)) + ‘k~~~ 

= 
k i  ~~~~~~ say

for all real a, we have only to verify the Lindeberg condition for the

non-identical case. It is easily seen that if 
~~~~ ) } satisfy condition

(A’), so do {g (. )}  defined in (2. 35). Let

2 *~ 2 ~mq] 
~(2. 36) = Eg 

k (Wk
) and 5

[m ql = 
k~

’i 
° k

-17-
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Since {g~~ )} satisfy condition (A’), we have as in (2. 33) that

[mq] 00 2
(2. 37) s

[m q]~
m = (1/rn) 

~ ~ ~~ 
g~ (w)e W dw

converges to a finite non-zero constant from Lemma 2. 1. Now consider

2 [mq] ~
2

~ f  ~~ (x)e dx
I. qj  k=i lx l> E S

[m q]

[mq] 6
5 (m/s~~~~) (1/rn) 

~ 
f  c1 [(k/(m+1)~~l-k/(rn+1)i

’ +2

k=l l x i  >E S[mq~
c2 2 -x(x +1) e dx

~ 
{mc

~ /s~mqi
}{ l/m) ~~ [(k/ (m+l ))( 1 - k/ (m+1))Y ’

~
26 }

c2 2 -x{j  (x +1) e dx)
lx i >€ s[mq ]

as m — ~~~, the quantities in the first two parentheses remain bou nded

because of (2. 37) and Lemma 2. 1 while the integral in the third parenthesis

goes to zero for any c > 0 since 5[mq] is of order ( ‘ J r n )  from (2. 37).

Thus the Lindeberg condition is satisfied for (2. 35) and thu s the Joint

asymptotic normality required in (2. 13) holds for functions satisfying

conditio n (A ’). 0

3. Asymptotic distribution theory for nonsymmetric statistics

As mentioned in Section 1, ,~ will denote a geometric random van-

able def ined In (1. 9) while W will represent a r (l , 1) random variable.

-18-



Where confusion is likely to arise, we will denote the expectations with

respect to ,
~ 

and W by E and E respectively. Then it is easy to
ti W

veri fy that for J = 0, 1, 2 , . . .

(3. 1) P( 1=J) = ~ /(14p)J+l= Ew
( 1T~(W/P))

If h(u , j ) is a function satisfying condition (A), we define for later use,

the following additional functions.

(3 .2 )  g1(u , x) =~~~~h(u~ J ) 1T~(x)

(3. 3) g
2(u, x) = h

2
(u, J)

and

(3 .4 )  g
3

(u , x ) =  
~~~~~~ 

h(u~ J ) ( J -x)~~ (x)

When h(u , J) satisfies condition (A) , these are all well -defined and

finite for all p > 0 . Let

(3. 5) H(u) = E h(u , ti) = h(u, J ) /(1 J+ 1

= Y~ h(u , J)E W (Tr j (W/P)) = E~~~ 1(u , W/P )

for 0 < u < l  and

1 1
(3. 6) a-~ Var(h(u ,~~))du - (f Cov(h(u , 1), 1)d u) 2 /Var( 1)

= 
~ 

f  (h(u, J ) - H(u))
2 
du /(1~~)

J+l

J= 0 0

-( ~ f  (h(u, J) - H(u))du j p/(l+p)~~~)
2 . p2/(l+p)

j=0 0

-19-
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Also from the Cauchy-Schwarz inequality

1 1 1 1(f  Cov(h(u , ti ) ,  t i )dU )2 
< (f  (Var h(u , t i ) ) 2  (Var ti) 2 du)

Z

0 0

1 1
< (f  Var h ( u , n)du)(f Var( 1)du)

0 0

1
= Var( ti ) (f  Var h(u, ti)du)

0

with equality if and only if h(u , J ) c • J + h(u) for some real number c

and some function h(u) . Thus o-~ > 0 for any function h(u , J) satisfying

condition (A) . For x = (x1, . . , x~ ), we also define

m

~3.7) 
~~

( )  = V g1(k/ (m+l) ,  xk) = 
~~ 

h
k (J ) 

~ 
(x

k
)

- 

k=1 k=1 J=0

and write W =  (W1, . . ., W )  where the components are i. i .d. r (1, 1)

random variables.

Before we proceed to state the theorem which give s the asymptotic

distr ibut ion of T under the alternatives , a few word s about the sequence
V

of alternatives. Consider the Y-observations fro m the distribution function

given in (1. 10), (1. 11) with 6 = 
~ 

i. e.,

(3. 8) A~~ 1 G~ (y) = G~~(F 1(~ ))

= y + L (y) /rn 2 , 0 < y < l  .

-20-
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Assumption (B) : We will assume that there exists a continuou s function

L(y) such that for 0 < y < 1,

L (y) = rn 2[G (F~~(y)) - yJ — L(y) as m — ~~

We also suppose that the derivatives L ’ (y) and L’ (y) I (y) exist arid are

continuous outside some fixed finite set D C [0, 1] and that finite left and

right limits of the derivatives exist on the open interval (0, 1)

Given the X-sample , the probability of a Y-observation falling inside

under the null hypothesis is given by the un iform spacings

{D
k
) . On the other hand, under the alternatives (3. 8), this probability

is given by

* -1 -.1
= G(F (Uk)) - G ( F  (U~~ 1))

(3. 9) 
1

= Dk (l + A
k
/rn 2)

where U~, k = 1, . . . , m are order statistics fro m U(0, 1) with
U ’ = 0, U’ = 1 and0 in
(3. 10) A k = [ L U ~~ - Lm(U’k l )l/Dk

Note that Dk > 0 wIth probability one so that A 
k 

is a well -defined

random variable. We now state the main theorem of this section , whose

proof will be completed in Lemmas 3. 1 to 3. 7. The conditions of this

theorem are not in the most general form but are adequate to cover all the

cases of interest discribed in Section 5.
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Theorem 3. 1. Let

(3. 11) V =~~~(h(k/(m+l), Sk) 
- H(k/(m+ 1)~/m~~.

with H(u) and o defined in (3. 5) and (3. 6) respectIvely. Assume that

(3. 12) Ih(u, J)l < c1(u(1-u))~ (1 
2

In addition to Assumption (B) assume that for some small € > 0

(3. 13) I L (t) - L (s ) i <  c3(t°’ - 5a) for 0 < S < t < E and for (1 -E ) <s  <t  :1

where 7 / 8 < a < l , ~~ > - and (a +~~) > 1  . Then under the alternatives

(3. 8),

(3. 14) t(V ) — N(b , 1) ,

where

b = f  Cov(h(u , t i ) , t i )  I (u)du

Proof: As explained in Section 2 , the vector (S 1, . . - 
‘ ~~~ 

given D* j~

mult (n, D*) where the rn-vector D
* has the components D given in (3. 9).

Using conditional expectations , we may write

E(e~~~’v )  = E 
*

E(e i
~~~,l D* )

(3. 15) —

* *= E 
~(T

(D )K(D ))
D ~ V

-22-
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c

where

* 
_ 1 *(3. 16) ) exp( itm ~ (i4 n~~ ) - E~( W/p ) J)

(recall the defini~i n 3.7) and thc- relation (3. 5)) and

m
(3. 17) K ( P *) = E(ex : tm ~~~~ h k (Sk ) ~~ j n _~

*
] I _ ~

*

Now Ir rn Lemma 3. 4 , i’ follows that

L --  J (D )) — exp( ibt  - ct 2 /Z)

with b and c defined in (3.  38) and (3. 39) respectively. Hence by the

continuity theorem for characteristic functions

(3. 18) £ (m 2[~~~~~~~~~~~~~~~~~~ - Eii~W/p ) ]) -. N(b , C)

so that J ( D *) converges in distribution. By Lemma 3. 5, with probability

one I. e., for almost every random vector D

* -dt 2
/2(3. 19) K ( D  — e

with d as defined in (3. 44). Combining (3. 18) and (3. 19), with probability

one , the product J ( D *) K ( D *) converges in distribution. But since

~ K ( D  ) i  5 1, this also implie s the convergence of the moments

so that

20) E 
*0~v (~~

*) K ( D *
) — exp(ibt - (c+d)t 2

/2)  .

-23-
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Using the cont inu i ty  theorem for characteristic functions and Lemma 3.7 ,

the asse rtion of the theorem follows. 0

Lemma 3. 1. If the conditions (3. 12) and (3. 13) of Theorem 3.1 hold , then

m 00 
*

m~~ 
‘

~~~ ~ h(k/ ( m -4-l ) , J )  [Tr
J
(nD k ) - Tr

J
(nD k )}

k=l j = O
( 3 . 2 1)

= in A k 
~~~ 

h(k/ (m+l) ,  J) (J - nD k ) 
~J

(nD k
) + o~ (l)

whe re A k is as defi ned in (3. 10).

Proof: Apply ing the Cauchy-Schwart z inequality on the difference of the

two sides in (3.21), we have

m~~ V 
~ 

hk(J) [~ 
(nD ) - 

~J
(nD

k) {l + (J
~

nD
k
) A k/m )J

k~1 j=0

m ~
< m~~ )~

‘ 
~ I h~(J)I I exp {J log(l+ A k /m ~) - nD kA k /rn 2

k= i j = o

( 3 .22 )  - 1 - (j ~ nD k )A k /rn 2k
J
(nD k)

< m~~ ~ [V , h~ (J ) ~ (nD
k

) J +  {~~ exP {i lo~(l+A~ /m
2)

k= 1 j = O J= 0

~nD k A k /m + ) - 1 - (J~ nD k )A k /m + i
2 1r

J
(nD k )]+

After  some elementary calculations , we see that the term in the second

squ are brackets is

-24-



2 2(3. 23) exP(Dk Ak/r) - 1 - Dk ~

Since h(u, x) satisfies condition (A’), using Theorem 2. 2 and (3. 23), it

is clear that  the r ight hand side of (3. 22) can be estimated by

c
m 2 

~ c1 ~( k / m + l ) ( l + ( m D ~ ) 2 ) Op( D k A~~
)

k=l
(3 .24 )  

1

= max (A~~/m
2
) . 0 (1)

Now we show that this max(A ~/m~ ) goes to zero in probability when a > 7/8 .

Observe that by (3. 13)

IA k An 4 i  = iL~~
(U

~
) - L (Uj( 1) l / m~~. Dk

(3 .25 )  < (U ’ - U ’~~ 1)/m~~. Dk

< D ~ /m~~. Dk

a a asince (t - s ) <  (t-s) for 0 <  s < t  < 1 and a < 1 . Also from Darling

(1953) for any E > 0~ we have

1/ mm (m
2
~~ Dk

) = 0 (1) -

l<k< m 
p

Therefore from (3. 25)

(3 . 26) max I A k /Tfl~~l <  0 (rn~
2
~~~~~~~~~)

1 <k < m  p

-25-
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- -~~~~ - - --~~~~

Since a > 7/8, by choosing 0< £ < 3(1_a) - 2, maxlA k/m
41 — 0 in

probability . This prove s the lemma. C

Lemma 3. 2. If the conditions of Theorem 3. 1 are satisfied then , for any

E~~~~O ,

[ m J
( 3 .27)  lim sup m ’ 

~ 
A k ~ 

h (k / ( rn+ l ) , J ) ( J_ nD
k ) IT

J
(nD k ) 5

m-’-~~ k= l j = 0

with probability one.

Proof: We have

J~0 
hk(J) (J~

nDk) 
IT

J
(nD k )

= 

~~~~~~~ 
?I

k
(J) In l (nD k ) - (nD k )

~~ hk ( J )  lr
J
(nD k )

= (nD k ) [hk(J+l) 
- h

k(J)} InJ
(nD

k)

= nDk 
g4 (k/ (m+l),  nDk ), say

where

(3 .28)  g
4(u,x) = ~~~~ [h( u, i+ l) - h(u ,J )] ir

1
(x)

J=0

satisfies condition (A ’) - Hence the expression in (3. 27)

(m c] 00

m ’ ~ A k ~ 
h(k/ (m+l) ,  J )( J - nD k) -rr

J
(nD k)

k=l J=0
( 3 . 2 9) [me]

= 

k~i 
[L (Uk) - L (Uj ~~1)1 g4 (k/ (m+l), nDk )

-26-
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Using condition (3. 13) , and writing M = [mc J, this is

0 <  I~ [L~~(U~ ) - L ( U ~~ 1)J g4 (k/ (rn+ l) , nD k ) I

(3. 30) 
M c

< c1 c~ ~ (Uj ~ - U ’ 1)(k/ m)~ [l+ ( n D k
) ~] -

We now make use of the representation of the spacings In terms of
k

i. i.d. exponential r .v . s W1, W2, .. with mean 1 . Writing Wk =

the RHS in (3. 30) is

= C .  [W~(k/ M) a 
- ~~~~1((k~ l)/M) a

1(k/M) ~~. (Wk
2 ~~~~2 )

(3. 31) M c +1 c
= . - ~ ,-(a+c 2 ) 

- M 1 
~ W~~ ’ (k/M)~~~~~

(Wk
2 

+ Wk •

[(1 - (1~Wk /k .Wk ) a )/(Wk/k~~k ) ] .

Now by the strong law of large numbers — 1 a. s. as k — oc and

hence

(3. 32) (1 - (l_W ~/kW~)
a
)/M1

k
/kW

k) — a as k — oc -

Using the Hölder inequality ,

~ W
a
~
l
(k/M)a+~

3_ l
W

2
[{l (1W/k~,)

a
)/(W /k~,)1

M lip M (a+~3-l)p 1/p
(3. 33) < ~~~~~~~ ~ ~~~~-.l)P1 

~ 
1 

(k/M) 2
j 

2

M (c2 +l)p 3 I/p 3 ~ 
M l~ ( l_ ~~ /kW~)a 

~~ 
1/P~

M 4k.’ k M Wk/(kWk)

-27-
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Usin g the fact that  if a k — 1 as k — so, n 1 
~ 

ak 
-, 1 as n — 00~ the

RHS in (3.  33) converges a. s. to the finite limit

1 (a+~3 - l )p 2 l/p2 (c2 +1)p 3 1/p 3115 u du] fE W  } a
0

Similar ly  the other term involving Wk~ ~~rn
2 in (3. 31) can be handled so

that we get the desired re sult. 0

Lemma 3. 3. Under the conditions of Theorem 3. 1,

m 00

A k 
V h(k/ (m+1 ), J )( J  - nDk) In

J
(
~~~k

)
k = l  j = 0

1
— 5 f ( u ) C o v ( h ( u , 1]), fl )d u . (p/ l+p)  in probability .

0

Proof: As we have seen in ( 3 . 2 9 ) ,

in
’ 

~~ ~~~ 
h ( k / ( m + l ) , J ) ( J

~~
nD k

) ~~(n Dk )

(3. 34) m
= m ’ A

k
(nD

k) 
g4 (k/ ( rn+l) , nD k )

where g4 (u , x) is as defined in (3. 28) . For any fixed c > 0, we may
[me ]  [m(l-e) ]

consider the sum in (3.  34) as consisting of 3 parts viz. ~ , )
~ and

m k= 1 kt [me ]
Lemma 3. 2 shows that the first sum is negligible. A similar

k = [m ( I - c  ) ]

analysis  can be used to demonstrate that the third term is also bounded

a .s.  by K E
a

~~~~.

Now it remains for u ’~ to show that in probability

-28-

A ... — ___________ 



i-c
V A~~(nD~ )~~4 (k/ ( m+l) ,  nD k ) - f  1 ( u )  . E(g 4 ( u ,W/p)W/p)du

k~ 1me ]

1— c
= 5 1(u)  E( V h(u , J)( j -W/p )

( 3 . 4 5)  J = 0
1-c on’

= f 1(u) “ h(u ,J )(J - (J+ l )/ ( l +p ) ) P (t i = J )du
C ~~~~ 1— c

= f 1 (u) . Cov(h(u , ti), ii)d u p/ (l+p)

The pro of ~ f Lemma 3. 3 will then be completed since we can choose c

irb i t r a r l i y  small .

By our assumption L ’ (y) = 1 (y) exists and is continuou s except

possibly for a fi nite number of points on (e , 1-c ) . If 1m~~ 
is con-

tin uous , then boundedness of 1 (y) along with the fact [xg 4 (u , x)]

sa t i s f ies  condition (A’) allows us to apply Theore m 2. 2 as follows: From

the Glivenko-Cantell i  theorem,

max A
k 

- I (k/m+l)  -. 0 with probability 1
k m

Also fro m Theorem 2. 2 ,

1 [m( 1_ c ) 1
m nD~ g4 (k/ (m÷ l) , nDk =

k=lme I

Hence the sum In (3. 35) has the same probability limit as

1 [m~l - e ) ]
(3. 36) m 1 (k/ (m+ 1)) nDk

. 94 (k/ ( m.
~l), nDk )

k= [mc ]

which from Theorem 2. 2 is the required limit given in (3. 35).

Now if ~ m~~ 
has a finite set of discontinuity points inside (c , 1-c )

th is  will not create any problems since the function is bounded fri this

interval .

-2 9-



Suppose now that 1 (y) is continuous in (0 , 1) except at y =

By our assumptions 1 (y) has finite left and right l imi t s  at this  point and

the point does not depend on m .  Take 6 > 0  so that 0 < y 0 - ó < y 0 + 6 < 1 .

From our assumptions and the Glivenko-Cantelli theorem it follows that with

probability one A k I is bound ed whenever 1 k/rn .y ~ I < 6 and m Is

sufficiently large. From this it Is easily seen by analogous arguments that

the contribution to the sum (3. 35) from such terms in the neighborhood of

y 0 can be made arbitrary small by choosing 6 sufficiently small. It is

obvious that the situation of a finite set of discorit inuities of the first  kind

can be handled the same way, if the discontinuity set does not depend on

m - This completes the proof of Lemma 3. 3. D

Lemma 3.4. Let

J ( D * 
= exp( itm 2 [~~(n D*) - E~ (W/p)])

be as defined in (3. 16). Then under the conditions of Theorem 3. 1,

(3. 37) E(J (D *)) -‘ exp(ibt - ct2/2)

where

(3.  38) b =5  Cov (h(u,1),1) 1(u)du p/(l#p )
0

and

(3. 39) C = f  Var g
1
(u ,W/p)du - (f Cov (~~ g

1(u ,W/p))d u) 2 
-

-30- 



Proof: We can write

* 
_ _I 

*(3.40) J(D ) = exp(itm 2 ([~L (nD ) - ~.L (riD) ] + [~~ (nD)  E~a (W/p ) ])

In Lemmas 3. 1 to 3. 3, we already established that the first part

[~~ ( )  - ~~(fl~J)] converges in probability to b . Thus we need only

show that

(3. 4 1) E(exp( itm 2 [,L (nD) - EIL (W,4’)]) -’ exp(-ct 2 /2)

From the Condition (3. 12) on h(u , J) , it follows using moments of

the Poisson distri bution , that

1g 1(u , x)I 
~ ~~ 

c
1(u(l-u)~ (l+x 2) w~(x)

(3.42) c’
< c~ (u(l-u))~ (1+x 

2
)

Thus g1(u , x) satisfies condition (A ’) - Hence Corollary 2. 1 of Section 2

hold s and the asymptotic normality of
m~,

= )~ g
1~ c/ m+ 1 , nDk )

k=l

is as sured by Theorem 2.2 .  Further Var(g 1(u ,W/p)) and cov(w , g1(u ,W/p))

as functions in u, satisfy the conditions of Lemma 2. 1, so that as v — on’

m~~ Var( E ~ 1 /(m , w~ h/~~ - rn
_ 2

Cov2 (~~~Wk, ~

(3.43) -.~
.f Var(g1(u , W/p))du - (f Cov(W,g1(u , W/p))du) 2

C

- 31—
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-
~ . ~ ‘ . Under  the assumpt ions  of Theorem 3. 1, with probability one

i . e . • ~~r almost  every D -vector ,

K ( D *) = E(exp( itm 2 [  ~~~ h k (S k
) - ~~ P

*) 1) l D*

— exp( -dt 2 /2) in probability

where

( 3 . 4 4 )  d = f E[g 2 (u ,W/p) - g1(u ,W/p) ]2 du - p(f Eg 3(u , W/p)du) 2

Proof: The lemma will be proved by verifying that the conditions of

Theorem 2. 1 hold and showing that d = A1 - . First we have by the

Glivenko-Cantelli  theorem that with probability one

M 
* 

1

( 3 .4 ~~ 
V Dk = U~~ + m 2 L (U ’M)

~
+ q Pq

where M = [mq} and is the k th order statistic from U(0 , 1) . Clearly

since Pq = q -. 1 as q -. 1-, condItions (2. 9) and part of (2. 11) of Theorem 2. 1

hold .

For real numbers a and b, consider

( 3 . 4 6 )  h 1(u ,j )  = ah(u , J)  + bJ -

It is easy to verify that  if h(u , J) sat isf ies  condition (A), then so does

h 1(u , J )  . Consider

-32-



(3. 47) ~~
‘ = m~~ ~ (h 1(k/( m+ 1), 

~~ 
- Eh 1(k/ ( m+ 1), 

~~~q 
k= l

where - - ‘ ~m are independent and is P0(nD ) - Fro m the

assu mptions , it follows that for some positive constants c1, c2 , . . .  we

have

M
V(s) = m 1 

~ Var(h 1(k/ (m+1) , 
~~~k=l

< m~
l c1 

~ 
[(k/ (m+1 ))(l - k/ (m+ l)) ]~ ((nD ) 2 

+ 1)

(3 .48 )  1 m
< m c~ ~~

‘ [(k/ (m+ 1))(l - k/ (m+l)) ]~ (nD k ) 2 
+ c 3k=1

< 

~~~

‘ 

)~~l 
(nD~) 4 /m) ~ + c3

by the Hölder inequality and Lemma 2.1. From the assumption (3.13) ,

nD = nDk + ri (Lm (U i~
) - Lm (U’j c i ))m

~~
I a

( 3 . 4 9) < n D k + K l Dk m + K Z Dk m

< K3(mD k
) + KZ (mD k )a 

~~~~ -

Using the representation Dk = ~~~~~ Wk 
where W1,W2,. - .  are i. I .d.

r(l, 1) random variables, It follows by law of larg e numbers that

for c > 0 ,

— 3 3 —
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lim m 1 
~ (mD k

) c

m — o c  I

is finite with probability one. As a > ~, we have , using the binomial

theo rem

m 4 
~ (mD~ ) 6 

< m 4i ~ (K 3 mDk + KZ (mD k )a 
~~~~ + 

6 
— 1(

4

with probability one. Thus with probability one

(3. 50) lim sup Var( c, ’)  < 00

Now we will verify that

(3. 51) lim inf Var(s) > 0  .

By assumption (A) , it follows that there exists an interval {a, bJ C (0 , 1)

and integers # such that h1(u , j~) # h1(u , J 2 ) for a < u < b . Again

from the strong law of large numbers and our assumptions , it is easily seen

that for any 0 < C < D < o c , with probability one

# {k ; a < k / ( m + l ) < b , C < n D ~~< D } / m — K 1 > 0  .

Therefore for n sufficiently large ,

Var(ç~) > 3~ Var(h 1 (k /(m+1), ~k ))/ m > K
2 

> 0
a(m+ l)<k < b(m+ 1)

with probability one. Hence (3. 51) is satisfied with probability one. In a
- 
isimilar fashion it follows that
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u r n  sup 
1 1  

E 1h 1(k/ (m+ l), 
~k ) I / m < 00 -

Therefore the Liapunov condition

~~E I h 1(k/ (m+l) , 
~k~

1 / (mVar(~~ ))
l
~~ /2

(3. 52) -c /2 
~ E I h l (k/ ( m+l) ,~~k ) I 2

~~ /(Var(~~ ))~~~
/2 . m

— O  as m — o o

is satisfied with probability one. Thus

-
~~ N(O , 1)

with probability one . By the next Lemma 3. 6, we have that in probability

Var(s) -‘ a
2 Aq + Z8b Bq P~~Z 

+ b2
q p~~)

where Aq — A1, Bq — B1 as q — 1- - This verifies that the assumptions

of Theorem 2.1 are satisfied with probability one. From the definition (3. 44)

of d as well as the expressions (3. 56) and (3. 57) for Aq and Bq~ It

follows

(3 54) d = A 1 -B~

which proves the lemma. 0

Lemma 3. 6. Given D , let 
~~l’ ~~~) be independent and 

~k 
be

lk (nD
k) . Under the assumptions of Theorem 3. 1

-35-

,
~ ~~-~ i3.’ ~~~~ ~~4T ~~~~~~~~~~~~~~~~~~~~~~~~~~~

.,~i
_.



M
(3.  ~5) m ’ 

~~

‘ Va r(h (k/ (rn+ l) ,  ~ )) — a 2 A + 2ab B p~~ + b2
q p ~~q q

in pr obability whe re

(3.  ~~) A
q = 1 E[g 2 (u , W/p) - g

1(u ,W/p )J 2 du

and

q
3. 57) Bq 

p 2 
5 

E(g 3(u , W/p))du
0

Proof: Recall from (3. 30) that h 1(u , J) = a h(u , J) + bJ - By calculations

similar  to those in Lemma 3. 1, it follows that , for instance

M 00

m ’ V ~ h 2 (k/ ( m+ l ) , J )  [1T~ ( n D ) - 7T

J
( n D

k
)] —

k= l j = O

in probability. Using Theorem 2. 2, we get

~~~~~ h 2 (k/ ( m+l), J ) ~~( n D ~ ) — f ~ ( E g 2 (u ,W/p))d u

in probability. Therefore

V E h 2
(k/( m+l), 

~~ 
(Eg 2 (u ,W/q))d u

The other terms can be handled analogously which prove s the assertion. 0

Lemma 3.7.

(3. 58) c + d = ~~
2

where c , d , o-~ are defined in (3. 39), (3 .44)  and ( 3 . 6 )  respectively.

Proof: Let W be a r( 1, 1) variable and let r~’ be a random variabl e

such that ~~
‘ given W is lb (W/p) . Then the unconditional distribution

of r~’ is given by 36



= e~~~ • ~AT/p )~ e~~~~~~ /J ! dw

(3. 59)
= p/(1~p)i+1 J = 0, 1, 2 .

Thus r~’ has the same distribution as the geometric random variable ~

defined in (1. 9). Let Ew, VW denote the expectation and variance over

W while £ V denote the conditional expectation and variance
fl W ,1 W

over r given W .  Then fro m the definition s of g1, g 2 , g
3

(3. 60) E h(u ,~~) = E
~~

E IW
h(u , n )  = E~~~ 1(u ,W/P )

(3. 6 1) L h 2 (u , ,~) = Ew E Iwh 2 (u
~n) E~~~ 2 (u ,W/P)

And after some elementary calculations ,

p(1+p)
1 Cov(h(u,1),1) E

~~
E j fh(u,Ti)(rl_W/P)]

( 3 . 62)
= Cov(g

1
(u,W/p), W) = E~~~3

(u ,W/p).

Now from the definitions (3. 39) and (3. 44) of c and d and fro m identitie s

(3. 60), (3 .  61) and (3. 62), we get
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c + d = 
5 

Var (g 1(u ,W/p))du - (5 Cov(W, g1(u ,W/p))d u) 2

÷ 5 
E[g 2 (u ,W/p) - g

1(u ,W/p ]2 du - ~(f Eg 3 (u ,W/p)du)2

= 5 Vw
(E lw (h(u r 1~

)))d u + 10 
Ew

(V
Iw

(h (U
~

1)))dU

- (l+p) [5 Cov(h(u , ~) ,  ~) p~~l+ p)du]2

1 1
= 5 Var(h(u , ~))d u - [1 Cov(h(u , ~), t1)dU]2 p2

/(1+p)
O 0

2
= 0 ~ - 0

These lemmas 3. 1 to 3. 7 complete the proof of Theorem 3. 1. The

fol lowing lemma gives a simple sufficient condition for (3. 13) hold.

Lemma 3. 8. A sufficient condition for (3. 13) to hold in a neighborhood of

the origin is that

O < L ~~(U ) < C . U a
~

l for O < u < c

Proo f. We have for O < S < t < e

O <
~~: 

(cu~~~ - L’ (u))du

= c(t a 
- 

a)/ - (L~~(t) - L (s))

or

L (t) - L (S) ~ c(t a 
- sa)/a -

Since L
~~(O) = 0 and L~ (u) > 0, the assertion follows. 0
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Corollary 3. 1. Under the null hypothesis (1. 1), the asymptotic  dis t r ibu-

tion of V defined in (3. 11) is N(O , 1) -

This result  Is a direct consequence of Theorem 3. 1 and is obtained

by taking 1(u) 0, 0 < u  < 1 in (3. 14). This corollary regarding the nul l

distribution of V can also be reformulated in the following interest ing

form using Lemma 2. 1.

Corollary 3. 1’. Let 
~~~~~

, ~~~~~ , . . .  be a sequence of I . i. d. geometric

random variables with pdf given in (1. 9). Then the asymptotic null dis-

tribution of 
~ 

h k (S k ) is N (E (~~ hk (l k )) , Va r(~~ hk (l k ) - 

~ ~~~ 
where

1~ is the regression coefficient given by

= Cov(~~ h k (
~ k ), ~k )/V8r(

f ‘~k~

Remark: See also Holst ( 1976b) for a different proof of this re sult.

4. Asymptotic distribution theory for symmetric statistics

This section deals with the class of statistic s symmetric in

{s1, . . ., S }  i .e . ,  statistics of the form

(4.1) T = ~~ h( S1 )
~ k=l

for some given fu nction h( J )  . Clearly this class of symmetric statistic s

is also covered by the asymptotic theory discussed in the last section.

Indeed if the function hk (J ) does not vary with k i. e.,  the function

h(u , J) of the last section is a function only of J and is independent of u

then we obtain the symmetry in the numbers {s1, . .  . , 5 )  - But since
1

5 1(u)du = 0, it follows from Theorem 3.1 and Corollary 3.1 that the
0
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asymp totic distr ibution of T* under the sequence of alternatives (3 . 8) coincIdes

with that under the null hypothesis. Thus symmetric statistic s of the type (4.1)

can not d is t inguish  al ternatives that are at a ‘distance ’ of n~ ~ and have

power zero against  such close alternatives. Therefore in order to make

efficiency comparisons , we have to consider the more distant alternative s

with 6 = 3 in (1. 10). Let

(2) * * 1
(4. 2) Am : G (y) = y + L (y)/m~ , 0 < y  < 1

* I -lwith Lm(U) = m 4 (G (F (u )) - u) -

For this symmetric situation , we will make the following slightly

stronger assumptions:

Assumption (B *). Assume L* (u) Is twice differentiable on [0 , 11 and there

Is a function L *( u) , 0 < u < 1, whIch is twice continuously differentiable

a nd such th at

* * *1, *
a I

(4.  3) L ( 0) = L (1) 0, sup lL ~ (u) - L o(u) l = o(1)
0 < u < l

* * 1  *where I (u) ,  I (U ) are the first and second derivative s of L (u)

Notice that for such smooth alternatives , the following also hold :

(4 .4 )  sup I L * (u) - L*( u) I = 0(1), sup I L ~~(u) - ~~~ I 0(1) -

0 < u < l  0 < u < l

We def ine analogous to (3. 9) and (3. 10)
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* * _i. * * *( 4 . 5 )  Dk = Dk ( l +  A k / r n )  with A k = [L (U~ ) - L (Uj( 1)]/D~

We observe that under the above regularity conditions , we have

(4.6) max IA k i <  sup I 1 * ( u ) I < K < 3 o
l < k<m  0<u<l m

The following theorem gives the asymptotic distribution of the

symmetric statistics T * under the alternatives (4. 2). The proof of this

theorem will follow Lemmas 4. 1, 4. 2 and 4. 3.

Theorem 4 . 1 .  Suppose that there exist constants C
1 

and c2 such that

(4 .7 )  Ih( i )  I < c1(J 2 
+ 1) for all J

Let L (u) satisfy Assumption (B *) and let

* 
m 1

(4.8) V = 
~~~ 

(h(Sk) 
-

V k=l

where

(4. 9) cr 2 
= Var(h( 11)) - [Cov(h(~ ), ~)J

2 /Var(,1)

and ,
~ 

is the geometric random variable defined in (1. 9). Then under the

alternative s (4. 2)

(4. 10) Z(V*) -. N(A , I) as v - 00

where

1 2 2 2(4. 11) A = (f  I (u)d u) Cov(h(~~ ~(~ -l) - 4t~/p) p /2(I+p ) a- - 0
0
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Lemma 4. 1. Under the assumptions of Theorem 4. 1, we have

m 00 
1

m~~ V )
~ h( J ) - 1r

J
(nD k )[ ( l-4~ A k /m4)

~ 
exp (_nD

k
A
k/m 4)

k= 1 j = 0

(4.12)  -l - (j  
~

nDk) A k /m 4 - {J (J - l )  - ZJnD k + (nDk )2 ) A~~/m I r]

= 0 (1) -

Proof: Using the Cauchy-Schwarz inequality, we find that the differenc e

in (4. 12) can be estimated by

m~~ 
l~~l 

cl ( l + ( n D k ) 2 ) [B(nD k, A k /m 4 ) ] 2

where

B(x,y) = 

~ 

p
1
(x) [(1~ y) J exp( -xy/r) - 1 - (j - x/r)y

- {J(j-l) - 2Jx/r + (x/r)
1) y1/2]

2

= exp(xy /r) - 1 - xy 2 /r - x
2
y4/2r

2

Therefore for small (xy 2), B(x ,y )  = O((xy 2 ) 3) - As max A k = 0(1) and

max(mD~ /1o~ m) = O~ (l) , (cf. Darling (1953 , p. 251)) we can estimate (4.12)

by

m
- 5/4(4. 13) m ~ ~(nD~ )

k= 1

for some function g ( .)  satisfying the conditions of Theorem 2. 2. Therefore

(4. 12) is O ( m ~~ ) which proves the lemma . 0
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Lemma 4. 2. Under the assumptions of Theorem 4. 1, we have

(4. 14) m~~ ”~~~’ 

~~~ 
h( J ) ~

r
J
( nD k )( J - nD

k
) A k = 0 (1)

Proof: From the assumed continuity of 1 (u) , it follows that for some

Uk 
where Uj(1

< Uk ~ Uj~ 
that

~~~~ ~ ~ h(J) 1T
J
(nD k)(J 

- nD
k

)A k
k=1 j=0

(4. 15)

= m~~ ”~ 
~~~ 

1rn~~ k~ 
g 3(fl D~ )

where

(4.16) 

1 
* 

g
3(x) =~~~~ h( J )  ir~(x) (J -x)

Since 5 Im(U)dU = 0, we can choose 0k such that (k-l)/m < 0k < k/rn

and ~~~~~~~~~~~ ~~~ = 0 - Also since is continuous , we can write for some

such that min(Ok, Uk) ~ 
< max(9~, Uk)

3/4
m 

~~~~~
_

m 

~~l 
1m~~ k~ 

~3
(nD~)

(4.17) = m~~”~ f 1ni~
0k~ 

[~ 3( n D ~ ) - E g 3(W)]

m
+ m~~”~ 

~~ 

I*(Uk) ~~k 
- 0

k~ 
~3
(nD~)

Now max I
m

(U k) = 0 (1) and from the boundedness of the Kolmoqorov-

Smirriov statistic
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max m 2 j U  - 0 1 = 0 ( 1 )
k k k p

Using Theorem 2. 2 , we have

3/4 
m 

~~~~
,

(4. 18) m 

~~l m 
(U

k)(Uk 
- °k~ 

g
3( nD k ) = 0 ( m  4

) -

The- r~ m 2. 2 also gives

(4. 19) m 4 

k Cl  
1 rn 0k [~ 3( n D ~ ) - E g 3(W/ p) )  O~ (l) -

Combi ning the est imates (4. 1~ ) and (4. 19) in (4. 17) yield s the desired

resul t .  0

Lemma 4. 3. Under the issurnpt ions of Theorem 4. 1, we have

A ~ ~~~h~J) ~~
( nD~ ) Ij ( j ~ 1) - 2 inDk + (nDk)

2
)/2

(f  ~
2 ( u ) du )  Cov(h( ~ ), ~~~-1) - 4~/p) - p

2
/2(l+p)

2

in probability as v-~ ~ -

Proof: Using the assumed smoothness of I~~(u) , 0 < u < 1 and the

Gl ivenko- Cante ll i  theorem , It follow s that

2 *2max IA k 
- ~ (k /m+l) I — 0 with Probability 1.

l<k<m m

And from Theorem 2. 2 , we have j
m4 

~ J~~~ 
h(J) w j (nDk) {J(j - 1) 

~
2J m D k/ r  + (mDk/r)

2
)/21 = O~

(l)
k = 1 j = 0

44



ci 
-
‘

Hence It follows that it is sufficient to prove the stochastic convergence

of

(4. 21) m~~ 
~~~*2 / +1)) g

5(n Dk)

where

(4.22)  g5(x) =

~~~~ 

h(J)~~(x) {j(J-l) - 2Jx + x
2

)/2

to the l imit  In the assertion. Again Theore m 2. 2 gives that

m 1 

~~l 
1*~ k/(m+1) g 5( n D ~ ) — (f  1

t2 (u)du) Eg 5( w/p )

in probability. An elementary calculation shows that

Eg 5(W/p ) = E~~ h ( J ) w ~( W/P) {J (J -l) - 2j(W/p) + (W/p) 2 }/2

=Cov (h(~ ), ,-i(i-l) - 4i-i/c~ p Z /2(l+p) 2 
-

Thus the lemma is proved. o

Proof of Theorem 4. 1. Following the method used in the proof of Theorem

3. 1, it suffices to show that

m 2[~~~~( 
~~ *) - 

~~~
(n1

~~
)] A in probability.

We h ave
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m~~~[~~ (n D* 
-

m 00

= m 2
~~~~ ~~~h(J) [-rr

1
(nD ) _ 1T

J
(nD

k)]

1 m 30 
1

= m 2 V h(J) lr
J
(nD

k)[(l + A k/m
4)
~ 
exp(

~
flD

k A k/m
4

k= 1 j = 0

1 2 2 1
- 1 - J _ n D k A k/m

4 
- {j(J-l) - Zj nDk + (nD

k
) ~

+ m~~ ”~ 
~ 

h(J) 1T
J
(n D k ) (J~~~~k ) A k

+ m 4 
~ ~ h(J) 1r

J
( n D

k) {J J - ~~ - 2JnD~ + (nD k ) 2 ) A~~/2
k=l J= 0

Therefore the proof of Theorem 4. 1 is complete fro m the preceding Lemmas

4.1, 4 . Z and 4. 3. 0

Taking I *(u) ~ 0, 0 < u < 1 in Theorem 4. 1 or putting h k (J ) = h( J )  ~ k

In Corollaries 3. 1, 3. 1’ , we get the followi ng result on the asymptotic null

distri bution for the symmetric statistics.

Corollary 4.1.  Let V be as defined in ( 4 . 8 ) ,  Then under the null

hypothesis (1. 1) V~ has asymptotically a N(0 , 1) distribution if the

function h ( s )  satisfie s condition (4. 7).

5. Some further results and applications - the nonsymmetric case

We have the sequence of alternatives given by (3. 8) i.e.,

(5 . 1) G* (y) = y ÷L(y)/m+, 0 <y < 1



where

L(U) = m 2 (G (F 1(u))  - u) — L(u) as m — ~o

We now consider first the problem of finding the optimal choice of

the function h(u , j) for given alternatives G* (y) . We use a technique

analogou s to that in Holst (1972).

Theorem 5. 1. If the sequence of alternatives is such that the assumpt ions

of Theorem 3. 1 are fu l filled , then an asymptotically most powerful (AMP)

test of the hypothesis against the simple alternative (5. 1) is to reject H0
when

(5. 2) £ I(k/m+l)Sk >c

where 1(u) is the derivative of L(u) , mentioned in (5. 1). The asymptotic

distribution of this optimal statistic is given by

(5. 3) r ( m 2 
~~
‘ I(k/(m+1))(S - l/p)) -‘ N(0 , a-

2 )
k= 1 k

under H 0 with

1
(5.4) a-

2 
= (f  1

2
(u)du)(l+p)/p

2

wh ile under the al terna tives (5. 1)

(5. 5) £ (m 4 1(k/ (m+l)) (Sk /~~ — N(p
4
(f 1

2
(u)du , 

2 )

Proof: From Theorem 3. 1, it follows that the asymptotic power of the test

which rejects H0 when 
~

‘ h(k/(m÷ 1), Sk ) > c is given by

I - 
- -



1 

- -

= 
5 

Cov(h(u , r i) ,  ~) I (u)du/[f (Var h(u , ~))du
0 0

( 5 .6 )

- {f Cov(h(u ,~~),~~)du ) 2 /Va r(~ ) ] 2

U sing the same argument  as in Lemma 3. 1 of Holst (1972), we h ave that

this  q u a n t i t y  is ma ximized when

( 5 . 7 )  h(u , J )  = 1(u) - j -

The resul ts  on the asymptotic distributions follow directly from Theorem

3. 1 and ‘nr o l la ry  3. 1 for the above special case. 0

Fr~ rn this  result , it follows that the AMP test of level a is ex-

pl ic i t ly  given by :  Reject H0 if

m 1 1

( 5 .8 1 1 v 
~ (k / (m

~
I ) ( S k - l/ p)]/ [m( 

~0 
~ 

2 ( u)du) ( l +p) p 2 ] ~ > X

where ~ I s the uppe r a-percentile of the N(0 , 1) distribution. Also

fr r m Theorem 5. 1, we find that  the asymptotic power of this test in term s

of th e s t - ~n -~ ird normal cdf Is given by the expression

(5 .9 )  
~~~~~~ 

+ (5 I 2 ( u )d u / ( l +p ) )~~) -

Furthermore it is easily seen from Theorem 3. 1 that the Pitman

Asymptotic Relative Eff ic ienc y (ARE) In using h(u , j )  = d(u) . j instead of

t he opt imal  h(u , j)  = 1(u) - j is

-48- 
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1 1 1 1
( 5 . 10) e = (5 d(u) 1(u)du) 2

/ (f d 2 ( u)du - (fd(u)du) 2 ) {f 12
(u)du)

0 0 0 0

5. A Applications: Translation alternatives

We now consider some applications of the above result s on non-

symmetric tests. First we shall look at the translation alternatives. Let

~~~~~ ~
Xm l  be absolutely continuous L i  .d.  random variables with dis-

tribution function F(x) . Let Y1,. . - , Y be i. i. d. with d. f. G(x) . We

wish to test

H0: G(x) F(x)

against the sequence of translation alternatives

(5. Il) AW: G(x) = G (x) = F(x - e/m~ ) -

Let f(x) = F’(x) be continuous. Then as m — 30 ,

(5. 12) L
m(U) = m’[Gm(F

’(u)) - uj  — -Of(F
4(u)) = L(u), say.

And if f’(x) exists and is continuous except for at most finitely many

x ’ s then , at the continuity points of f ’ (F ’(u)), we have

(5. 13) 1 (u) — 1(u) = -e f ’(F~~(u))/ f(F 4
( u))

We now apply Theorem 5. 1 to the following special cases to obtain

the asymptotically optimal test statistics based on {Sk } -

-4 9-
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Ex. 1 (Wilcoxon test)

Consider the logistic distribution function

F(x) = l/(l+e~~ ), -30  < X  < 3 0  -

In this case , we get

-f ’ ( F~~( u ))/ f( F4(u)) = 1 - 2u

and the regularity assumptions are all satisfied. Therefore the optimal

statistic fro m Theorem 5. 1 is based on

m rn-i
(5 . 14) V (1 - 2k/(m+1)) 5k 

= 2 
~~~ 

Rk/ (m+l) - (m-l)m/ (m+1)
k= l  1

+ 2n/ (m+l) - n

where R1, . . . ,  R m 1 are the ranks of the X-values in the combined sample.
- 

rn-i
Observe that the Wilcoxon 2-sample test is also based on 

~ 
R~ . The

k=l
optimality of the Wilcoxon statistic for the logistic distribution is well -

known . See e.g. Lehmann (1959), p. 238. Theorem 5.1 give s the asymp-

totic distribution of the Wilcoxon test as a special case .

Ex. I (A van der Waerden or normal score type test)

For the normal d. f.

I 2F(x) = ~~(x) = (2 , r )
2 

5 
exp(-f t )dt , ~Q0 < x  < 0 0

w e f ind

-f’(F
4
(u))/f( F~~(u)) = ~ ‘(u) -

-50-
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It can be verified that the required regularity conditions of T h r r r e m

3. 1 are satisfied . Hence the AMP test is based on the statistic

(5 . 15) T = 

J~~l k

from Theorem 5. 1. Using the facts

30 m
5 (~ ~~(u ))

2du =5 x2 ç(x)dx = 1 and 1
(k/(m+l)) = 0

0 -00 k=l

we have under the null hypothesis that

1 2(5.16) £(T/m 2 ) —  N(0 , ( l+p) /p

From Theorem 5. 1, the asymptotic power for a one-sided test of level a

is ~ (-  X 4- 0( l+ p) 2 ), the same as that of the Student’ s t-test.

To find the Pitman efficiency of the Wilcoxon test with re spect to the

test based on (5. 15) (which is optimal) in this case , we only need to

calculate (5. 10). Since

1 30 00f  (2u-1)~~~~(u)du = f  2(~~(x) - 1)x q,(x)dx = 2 5 (qi (x)) 2 dx =

— 5 1-

~~~~~~~~~~~ - ~~~~~~~~~~~~~~ 1’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-I - .. - -



-

I 1
and 5 ( Z u - 1) ’ d u = 1/3 , 5 (~~ 

‘( u ))
2 du = 1, using formula (5. 10) the ARE

of Wilco xon test versus the normal score s type test

(5. 17) e = 3 /it -

The test  statist ic (5. 15) has the same asymptotic properties as the

Fisher-Y ates-Terr y -Ho effding and van der Waerden ’s rank tests.

Ex. 3 (A median test)

Consider the double exponential distribution with density

f( x ) = ~~~e~~~~ , ~ 30 < X < 3 0  -

We fi nd that the conditions of Theorem 3. 1 are satisfied and

for u < ~~
f ’(F (u ) ) / f ( F (u))  =<

for u > f -

He nce the optimal test is based on the statistic

[m/2 ] m [m12}
(5.18 ) V Sk

_ 
~ Sk = 2 

~ 
Sk~~~

n ,
k=l k=rm/2 ]+1 k=l

[ rn/2 ]
where Y S is the number of Y’ s below the median of the X ’ s . This

k~ l k

i s d i f fe ren t  from the usual  median test. We easily find that under the null

hypothes is ,

[rn/fl 1 2
(4.  19) i~( [2 

~~~ , 
Sk - n]/m 2 ) — N(0 , (l +p) /p )

k= i

The ARE under normal alternative s is obtained fro m
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1 1 1-f ~~ 
1(u)du + 

5 ~ ~~(u)dx = 2 5 ~ 
1(u)du = (2/ it)2

0 +

which give s

( 5 .20 )  e = 2/it -

Ex. 4 For the Cauchy distribution , we find

(5.21)  1(u) = 2 tan -TT(u-+)/ [1+ {tan -TI-( u - }) ) 2
J -

Notice that  1(0) = 1(1) = 0 and small weights are given to the Sk
i s in

the tai ls .  Heuristically this is appropriate since the Cauchy distribution

has heavy tails and hence random fluctuations are large.

5. B Applications: Scale alternatives

Next we consider absolutely continuous positive random variables

under scale alternatives. Let X1, ... , X,~~1 be 1. i.d. F(x) and Y1,. . -

be i. i. d. G(y) with F(0) = G(0) = 0 - We wish to test

(5 .22 )  H0: G(x) = F(x)

against the scale alternatives

(m) I
( 5 . 2 3 )  H1 : G(x) Gm (X) = F(x( l+ 8/rn 2 ))

If the density f(x) = F’(x) is continuous, then as m — oo

.1 -1 -l -1(5. 24) L (u) = m 2 (G (F (u))-u) — L(u) = -Of(F (u)) F (u)
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And if f’(x) exists and is continuous except for finitely many points,

then analogous to (5. 13),

(5 . 25) 1m~~ 
— 1(u) = -8[1 + f ’ ( F~~(u)) . F 1( u)/ f( F 1( u))]

where P exists. Opt imal statistics based on {Sk } can be derived just

as in the case of translation alternatives.

Ex. 5. (Savage or exponential score test)

For the exponential distribution F(x) = (1 - e x) for x >  0 we find

(5. 26) 1( u) = - 8(1 + log(l - u))

The assumptions of Theorem 3. 1 can be verified and hence an optimal

statistic is given from Theorem 5. 1, by

(5. 27) T = ~~ 1og(l - k/ (m+l)) (Sk 
- i/p ) -

Since f (1 + log(l - u)) 2 du = 1 we get that

(5.28) 1(T/m 5) — N(0, (1+ p)/p
2 )
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and that the asymptotic power is

(5 .2 9) 
~~(- X + 8(l+p) ~~~) -

The ARE of Wilcoxon statistic relative to T in (5. 27) above is 3/4
The statistic T is an approximation to the Savage statistic (see Lehmann
(1975) p. 103). The UMP test for the above situation Is the test based onrn-I n

~ 
xJ~/Y’ 

~k which has the same asymptotic power (5. 29) as the statist ick=l k= l
T in (5 .2 7 ) .

Ex. 6. (Capon and Klotz test)

Consider the folded normal distribution with distribution function

(5. 30) F(x) = 2~ (x) - 1 for x > 0 -

The assumptions of Theorem 3. 1 can be verified and we find the optimal te st
statistic using the function

1(u) = l~~[~~~
l
(( l÷ u) / 2) J 2 

-

From Theorem 4. 1, the statistic

(5. 31) T = (~ ~ f( 1 + k/ (m+1)) / zJ ) 2 
Sk

has under the null hypothesis, the distribution given by

(5. 32) 
~ ( T/m +) — N(0, 2( 1+p)/p 2 )

and the asymptotic power
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+ 0(2/ ( l+p)) ~ ] -

Again this  asymptotic power is the same as that of the conventional F-

test .

6. Some further result s and applications - the symmetric case

In this section, we consider the sequence of alternatives given by

(4. 2) and symmetric test statistics of the form

* 
m

(6.1) T = ‘S’ h(S ) -
V k = l  k

As in Section 5, we first consider a result on the optimal cho ice of

the function h( . ) -

Theorem 6. 1. For the sequence of alternative s given by (4. 2), satisfying

the conditions of Theorem 4. 1, the asymptotically most powerful (AMP)

test is of the form: Reje ct H0 when

(6.2) 
J~~l 

S
k(Sk

_ l )>c -

Proof: From Theorem 4. 1, it follows that the asymptotic power of a test of

the form (6. 1) js a maximum when the quantity A given in (4. 11) is maxi-

mized. Observe that
(6. 3) Cov(1, ~(i- l) - 

~i/p ) = 0
and

(6. 4) Var (h( -~)) - Cov2 (h(r 1), r~)/Var(t 1) = Var(h(,-1) -

where p is the usual linear regression coefficient

(6. 5) = Cov(h(~), ,~)/Var(i.1) -
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_ _ _ _ _ _ _ _ _ _ _ _

Therefore we can rewrite

2p~~(1 +p) 2 
A/ f  I 

*Z (u)du = Cov(h(~ )-p~ ,

(6.6)  
- Cor (h( 1)-p 1, ~~~-l) -4~ /p) - [Var(n(~ -l)-4 n/p)1 2

< [Var(ii(~ -l)-4 i/p)]~ = 2p 2
(l + ~)

with equality in (6. 6) if and only if

h (1) -~~~~~ a[y~(i-i) -4 i/p ]  + b

for some real numbers a and b . Thus A is maximized by h(1) =
and

- (6.7) max A = f  I *Z (u)du/ ( 1+p)  . 0

Using Theorem 4. 1, we further have that under H0

(6. 8) £(E 
~~l 

Sk(Sk
_l) - Zm/p 2 ]/m 2[Zp 2 (1 ~)1) — N(0 , 1)

and that the asymptotic power for a test of level a is
1

+ (f 1 2(u)du)/(l+ p) ] -

Further , from the above proof we see that the ARE in using h(Sk
)

instead of S
k(Sk

l) is

(6.9) e = Cor2(h(vi) -~ i, ~(i-1)-4,i/p) -

The statistic 3’ S~ which is equivalent to 
k~ l k k  was proposed
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by Dixon ( 1940). Slumenthal (196 3) and Rao (1969) discuss the ARE of

this test while Blum and Weiss (1957) consider the consistency properties.

Blum and Weiss (1957 ) also show that the Dixon test is asymptotically

LMP agains t “l inear” alternatives with density {i + c(y - ~)), 0 < y < 1

( I c I < 2) but we have shown that Dixon test is indeed AMP against

al terna tives of the form (4. 2).

For a nonnegative integer r , if we define

Ii for
(6. 10) h(x) =

0 otherwise

then

* 
m

T = ~ h(S
~ k= 1 k

is the statistic Q
m(r), the proportion of values among {S

k
} which are

equal to r - This statistic - t as been discussed in Slum and Weiss (1957)

from the point of consistency. Our re sults establish the asymptotic norm-

ality of Q (r) under Fl0 as well as under the sequence of alternatives (4. 2).
After some computations we find from Corollary 4. 1 that under the null

hypothe sis

(6. 11) 1 ( m1 
~~~~~ 

- /(1 ) r+1
J) — N(0, 

2)

where

( 6.12) a-
2 = {~ /(1~~ ) r+1 ) [1 - (~/(1~~)r+1) {l + (r-1/p)

2 
(p

2/(l+p) }] -
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The Waid-Wolfowitz run test (1940) is related to 
~~~~~ 

- Let U be the

number of runs of X’ s and Y’s in the combined sample. The hypothesis

H0 is rejected when U/rn is too small. From the definition of

it follows easily that

(6.13) I ( U/ r n )  - 2 (n/ rn)  (l
~~

Qm( 0 ) ) J <  1/rn

Thus the asymptotic distribution of U/rn is the same as that of

and we thus have, under H 0

(6.14) 
~~( m2 [(U/rn) - 2/ ( 1+p)]) — N ( 0, 4p/( 1+p) 3) -

Therefore the ARE of the run-statistic against the Dixon ’ s std tistlc is

p/(l+p) as has been shown in Rao (1969).

7. Further remarks and discussion

It is interesting to note that the theory developed in this pape r gives

tests based on {Sk } which are asymptotically equivalent to the correspond-

Ing rank tests in all the known situations discussed in Section 5. For a

unified approach to the theory of rank tests see Chernoff and Savage (1958)

or Hajek and Sidak (1967). We conjecture that this property is true in gen-

eral 1. e. , given any rank test , one can construct a test of the form (5. 2)

which has asymptotically the same null distribution and power. If this is

the case, then the theory presented here seems to lead to much simnier test

statistic s as compared to the corre sponding optimal rank tests. It is inter-

esting to note that the optimal test s considered in Section 5 are linear in
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{Sk
} while this is not the case with the ranks.  Further relationships be-

tween thes -~ two groups of tests is under investigation. It may also be re-

marked that the theory presented nere covers the asymptotic theory of many

tests  that are not based on ranks as for instance , the run test, and the medium

te st.

The theorems presented here can also be applied to study similar test

statistics when the samples are censored . For instance , suppose that the

samples are censored at the right by X
~(m.. l)ql I the [ m-i qi th order

statistic in the X-sample. Under the same assumptions as In Theorem 5.1,

we obtain in the same way that optimal test statistic is given by

[(m-l)q]
(7. 1) T = I (k/(m+1))(Sk 

- l/p )
k=l

Under H0
q q

~‘(T/rn 2) -‘ N(0, [5 I 2 (u)du - (5 I(u)du))
2
] (p+1)/p2)

0 0

and the asymptotic power Is

q q q 1
(7.2) 

~~
( X

a 
+ (5 12(u)du)/{[f 12(u)du - (5 1(u)du) 2 ] (l+ p) )- 2 )

0 0 0

On the otherhand censoring in rank theory can not be treated as simply as

this. See for instance R3o, Savage and Sobel (1960).

Resul ts on the asymptotic theory of genera l statistics based on {Sk )

have been obtained , under the null hypothesis, by Holst (l976b) using a

different a pproach. However the approach used there does not seem to yield

the asymptotic theory under the alternatives, of the kind derived here.
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Throughout the paper we formulated the alternative s in terms of the

sample size m of the first sample. But a symmetric way of formulating

the alternatives would be to express it in terms of N = (rn+n) . We then

have

1 -1 +N ? (G N(F (u)) - u) -
~~ L(u) (1 + l/p ) = L1( u), say -

1
In terms of L~( u) = 11(u) = 1(u)( l+l/p) 2 , we see that the asymptotic power

of this alternative can be expressed as

~ [-X + (f I ~( u)du/ (l+p) ( l+ p~~~ )) 2]  -

If I 1(u) does not derend on p, then p = 1 maximizes the power I. e.,

In large samples, choosing m n or equal sam ple sizes is optimal.
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