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ABSTRACT

Let Xl’ .,Xm 1 and Y1 Y be independent random samples from two
continuous distribution functions P and G respectively on the real line. We wish
to test the null hypothesis that these two parent populations are identical. Let

b LR SIETRE - dh be the ordered X-observations. Denote by S, the number of Y-
ohservationsmfé)lling in the interval [X' X ), k=1, This paper studies
the asymptotic distribution theory and )ifmitlng efficiencles of families of test
statistics for the null hypothesis, based on these numbers {S,}. Let h(-) and
{h,(*), k=1,...,m} be real-valued functions satisfying some simple regularity
conditions. Asymptotic theory under the null hypothesis as well as Ml’)der a suitable
sequence of alternatives, is studied for test s;natistics of the form k}31 h(Sk), based
symmetrically on S 's and those of the form X hk(Sk) which are not symmetric in

k k=1
{8} It is shown here that tests of the symmetric type have poor asymptotic

pekformance in the sense that they can only distinguish alternatives at a "distance"
of n~% from the hypothesis. Among this class of symmetric tests, which includes

for instance the well known Run test and the Dixon test, it is shown that the Dixon
test has the maximum asymptotic relative efficiency. On the other hand, tests of

the nonsymmetric type can distinguish alternatives converging at the more standard
rate of n"2 . Wilcoxon-Mann-Whitney test is an example which belongs to this
class. After investigating the asymptotic theory under such alternatives, methods are
suggested which allow one to ﬂelect an "optimal” test against any specific alternative,
from among tests of the type h, (S,) . Connections with rank tests are briefly ex-
plored and some illustrative &(Jmp es provided.
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ASYMPTOTIC THEORY FOR SOME FAMILIES O
TWO-SAMPLE NONPARAMETRIC STATISTICS

Lars HolstT and J. S. Rao1

1. Introduction and notations

Let Xl, .y xm-l and Yl’ &

from two populations with continuous distribution functions (d. f. s) F(x)

P ’Yn be independent random samples

and G(y) respectively. We wish to test if these two populations are
identical i.e., the hypothesis that the two d. f.s. are the same. A simple
probability integral transformation carrying z — I(z) would permit us to
assume that the support of both the probability distributions is the unit
interval [0,1] and that the first of them is the uniformd.f. on [0,1].

For the purposes of our discussion, this probability transformation can be
done without loss of any generality as will be apparent soon. Thus from
now on, we will assume that this reduction has been effected and that the
first sample is from the uniform distribution U(0,1) . Let G* =G e IP-1

denote the d. f. of the second sample after the probability transformation.

The null hypothesis we wish to test, specifies

%
(1. 1) Hy: G (V) =, 0<y<l

Let 0<X <... <X |

sample. The sample spacings (Dl’ whoin Dm) for the X-values are defined by

_<_l be the order statistics from the first

t Mathematics Research Center, University of Wisconsin, Madison on
leave from the Department of Mathematics, Uppsala University, Sweden.
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(1.2) D =X -X ;, k=l...,m

where we put Xb =0 and X;n = 1. Tests based on these sample spacings
have been considered in the literature for the goodness-of-fit problems.
See for instance Darling (1953), Pyke (1965) and Rao and Sethuraman (1975).

Define for k=1,...,m

(1. 3) S, = number of y

K s in the interval [Xi(_l, X'k).

J

Our aim is to study various test statistics based on these numbers
{Sl’ >y Sm} for testing H, .  Since the numbers {Sk}
as well as the statistics based on them remain invariant under proba-
bility transformations, there is no loss of generality in making such a
transformation on the data, as was done earlier. It may be remarked here
that we take (m-l) instead of the usual m observations in the first sample
since this yields m numbers {Sl’ vy Sm} instead of (m+l), leading to
slightly simpler notation.

Our aim is to study the asymptotic theory as m and n tend to in-

finity. We will do this through a nondecreasing sequence of positive in-

tegers {mv} and {nv} . We will assume throughout, that as v = ,

| m £ n - and = 0<p<o ,
(1. 4) V-. ’ ” mv/nv l'v"P, P

Note that A{Dk} defined in (1. 2) depend on m the number of X-values
and it is more appropriate to label them as {Dkv} . Similarly the numbers

{Sk} defined in (1. 3) depend on both m and n  and should therefore
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be denoted by {Skv} . Thus we are dealing with triangular arrays of

random variables {D T mv} and {Skv’ kel ..e, mv} for

kv’
v >1 . Corresponding to the vﬂ’l (v >1) array, let hv(') and

{hkv(. ki mv} be real-valued functions satisfying

certain regularity conditions (see Condition (A) of Section 2). We now

define
m
v
(1. 5) T = Z h (S,)
k=1
and
m
* v
(1. 6) 31 =kz_21 h (S, )

based on the (mv-l) X-values and the n, Y-values. Though T: is a
special case of Tv when {hkv(-)} do not depend on k, we will dis-
tinguish these two cases since their asymptotic behavior is quite different
in the non-null situation. We may point out here that the Wald -Wolfowitz
(1940) Run test and the Dixon (1940) test are of the form T: while the
Wilcoxon-Mann-Whitney (1947) test is of the form TV . In fact, any linear
function based on the X-ranks in the combined sample, can be expressed as
a special case of TV . We will discuss more of this in Section 7.

A few words about the notations: Though the quantities m,n,r, Dk’sk
as well as the functions h(-), {hk(- )} depend on v, for notational con-
venience we shall suppress the suffix v, except where it is essential.

m m
%*
Thus for instance, TV =,§1 hk(sk)’ Tv = E_lh(sk) and r will stand for

(m/n) etc. We will also indicate the probability law of a random variable

(or random vector) X by ¢(X) .
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N(n, Z) will represent a normal distribution with mean @ and covariance
matrix ¥  throughout while N(0, 0) stands for the degenerate distri-
bution at the point zero. For 0 < x <o, Po(x) will representthe Poisson

distribution with mean x and

(1.7) (%) = e ™. xj/j Lo fenl 2, ..

the Poisson probability of j . For p = (pl, iy pm), mult(n, p) will de-
note the m-dimensional multinomial distribution with n trials and cell
probabilities (pl, = ta s pm). Let rI'(a,b) denote the Gamma distribution

with density
(1. 8) e'x/b- xa-l/ba s T(a for 0 < x<

A negative exponential i.e., a TI'(],1) random variable will be denoted

throughout by W. =n will stand for a geometric random variable with pdf

(1. 9) P(n = ) = p/(1+p)j+l, j=0,12,...

for 0 <p<wo,

Also for any random variable Xn, we write xn = op(g(n)) if
xn/g(n) - 0 in probability and we write Xn = Op(g(n)) if for each ¢ >0,
there is a 1(t < o such that P{Ixn/q(n)l > K( } <e forall n sufficiently
large. Finally [x] will denote the largest integer contained in x .

We shall consider a sequence of alternatives specified by the d. f. s.

(1. 10) G =y + L _/m’,  0<y<l




where Lm(O) = Lm(l) =0 and & > % . Interms of the original d.f. s
F and G, the null hypothesis specifies G = F, while under the alterna-
tives we have a sequence of d.f. s Gm that converge to F as the sample

size increases. Indeed
1.11 L (v)=mG (P )
(1.11) ST =G (v)) -y

We assume that there is a function L(y) on (0,1) to which Lm(y) con-
verges. For the other assumptions on Lm(-) and L(+) refer to Theorems
3.1 and 4.1. This sequence of alternatives (l.10) is smooth in a certain
sense and has been considered before. See for instance Rao and
Sethuraman (1975) or Holst (1972).

The organization of this paper is as follows: In Section 2, we
establish some preliminary results. Theorem 2.1 gives asymptotic distri-
bution of functions of multinomial frequencies while Theorem 2.2 establishes
a result on the limit distributions of non-symmetric spacings statistics,
which is of independent interest. These results are combined in Theorem
3.1 to obtain the limit distribution of Tv under the alternatives (1.10)
with & = 1 . It is clear that putting L (¥)=0 in this theorem, gives the
asymptotic distribution of Tv under Ho . Section 4 deals with the symmetric
statistics T: . Theorem 4.1 gives the asymptotic distribution of T: under
the sequence of alternatives (1.10) with & = 1. Again putting Lm(y) %0
gives the limit distribution of T: under Ho . It is interesting to note that

%
the symmetric classes of tests TV can only distinguish alternatives

«5e
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o
converging to the hypothesis at the slow rate of n * unlike the non-

symmetric statistics which can discriminate alternatives at the more usual

1
N

distance of n Similar results hold for tests based on sample spacings

depending on whether or not one considers symmetric statistics. See for

instance Rao and Sethuraman (1969, 1975). Some further asymptotic theory of
spacings statistics is currently under investigation by the present authors.
Asymptotic efficiencies and applications are discussed separately for the
non-symmetric and the symmetric cases, in Sections 5 and 6 respectively.

Section 7 contains some further remarks and discussion.

2. Some preliminary results:

The following regularity conditions which limit the growth of the func-
tions as well as supply certain smoothness properties, will be needed in

connection with the results of this and the next section.

Condition (A): We will say that the real-valued functions {hk(- )} defined

on {0,1,2,...} satisfy Condition (A) if they are of the form

(2.1 h () = h(k/(m+]), §), k=L...,m §=0,1,2,...

for some function h(u,j) defined for 0 <u<l1, j=0,1,2,... with the

properties
(1) h(u,J) is continuous in u except for finitely many u and the
discontinuity set if any, does not depend on j .
(i1) h(u,j) #c - j + h(u) for some real number c .

(iii) For some & > 0, there exist constants ¢, and c, such that

-6~
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a2,

c
2

-1
2.2) Ihty, hl < e« [ud-u)] PGPl for all ‘e<uciond §= 8 O N
F il

Condition (A'): We will say that the real-valued functions {gk(- )} de-

fined on [0,») satisfy Condition (A') if they are of the form
9,(x) = g(k/(m+l), x), k=1...,m and 0<x<

for some function g(u,x) defined for 0 <u<1 and 0 < x <o with the

properties
(1) g(u,X) is continuous in u except for finitely many u and the
discontinuity set if any, does not depend on x .
(1) g(u,x) # c . x + g(u) for some real number c .

and (1ii) for some & > 0, there exist constants cl and c.2 such that

-1+8 2
(2. 3) lg(u, x)| <cp v [ul-w)]™?"" - (x “41) for all 0<u<land 0<x<w .

We require the following simple lemma.

Lemma 2.1. Let h(u) defined for 0 < u <1, be continuous except for
finitely many u and have the property: for some a > -1, there exists a

constant ¢ such that
a
(2.4) Ihw)l <c - [ut-w]® .

Then

m 1
(l/m)E h(k/(m+1)) = [ h(u)du as m =
=l 0

Proof: Define the step function

-T-




hm(u) = h(([mu]+l)/(m+])), 0<u <1

Then clearly hm(u) -~ h(u) as m —= »© except for finitely many points.
Observe
Ih_l < 2cfu-w]®

1
for m sufficiently large and f [u(l-u)]a <o for a > -1. Thus by the
0

Lebesgue Dominated Convergence theorem,

m 1 1
(1/m) ' h(k /(m+1)) = [ hm(u)du-f h(u)du
k=1 0 0

which proves the assertion. a
Turning to the main problem, we will obtain the distribution of TV
defined in (1. 5) essentially in two steps. First we consider the statistic
Tv for given values of the X-spacings D = {D1 I Dm} . Since the
numbers {Sl, Siiay Sm} given D have a multinomial distribution, we need
a result on the multinomial sums. We formulate this part of the result in
Theorem 2.1. The expressions for the asymptotic mean and variance of
this conditional distribution of TV given 2, are functions of 2 + In
Theorem 2.2, we formulate a general result on the limit distributions of
functions of spacings, which allows us to handle in particular, these
expressions for the asymptotic mean and variance. Theorem 3.1 of the
next section combines these results along with other lemmas given there,

thus giving the required asymptotic distribution of Tv ¢

-8~




It is clear that the conditional distribution of the vector of occupancy

numbers § = (Sl’ alstany Sm) given the spacings vector I=) = (Dl’ aials Dm) is

=

mult(n,D., ..., Dm) . Therefore the test statistic Tv, conditional on D,

3
has under the null hypothesis the same distribution as the random variable

m
Vv

(2.5) Z = h, (o)

v J

k=1
where (<p1, §ons <pm) is Mult(n, pl, s pm) with cell probabilities
(pl, Sl pm) being equal to the spacings (Dl’ Vi ey Dm) . Since the
asymptotic mean and variance of Zv can be more simply stated in terms
of Poisson random variables, we introduce a triangular array of independent

Poisson random variables {glv, AR gmvv }, v >1 where £, s Po(n p )

and set
m
(2.6) =), B D
k=1
v = E(\) 0'2= Var(\ )
2.7) v v’? v v

The following theorem on the asymptotic distribution of the multinomial

sum zv is due to Holst (1976a).

Theorem 2.1. Let (¢l, vey ¢m) be mult(n, pl, vieg pm) and ZV, B

and ¢ be as defined in (2.5), (2.6) and (2.7). For 0<qg<1, set
v

M = [mg] and

" 9w

B o



gf
(2.8) A = h (§,)
vq K21 k" 7k

Assume that there exists a q_. <1 such that

0
M
. s P
(2.9) :élpk Pq, 0<q<1 for q0_<_q<l,

and

O ~EX )/m*
4 s 0 q q
(2.10) [ -+ N ) p

M 1

% 2
where Aq, Bq and Pq are such that as q - 1- ,
(2. 11) Aq e Al’ Bq - Bl and Pq - ]

Then as v -

2 fos
(2.12) S((ZV"PV) /o'v) - N(o, Al = Bl) . e

From (2.6) and (2.7) an explicit expression for the asymptotic mean

is given by

T

(2.13) po=
Y k=1 §=0

h, () 7 (np))

T3

using the notation (l.7). Under the null hypothesis, we have pk = Dk "

k=1...,m where D are the spacings from U(0,1) . Thus we consider

-10-




(2.14) p(nD) = h (J) m.(nD,) = g, (mD, )
‘ k=1j§ok bk o¥ kz=lk .
where
o0
(2.15) 9, (%) sz'o hy () m,(x/r)

Random variables of the type (2.14) have been considered by Darling (1953),
Lecam (1958) and Pyke (1965). For the symmetric case i.e., when gk(x) =
g(x) for all k, Darling (1953) obtained some limit theorems for certain
special cases and iLe Cam (1958) gave a complete characterization of the
limit laws. See also Rao and Sethuraman (1975) for some results in the
symmetric case and their asymptotic efficiencies. Pyke (1965) pointed out
(cf. Section 6, 2) that Le Cam's method could be used to study the non-
symmetric case. Since no complete result or its proof is explicitly given
there in a form useful for our purposes, we state and prove such a limit
theorem (Theorem 2. 2) for non-symmetric functions of uniform spacings.
An especially useful form of Theorem 2.2 is given in Corollary 2.1.

The method of proof we adopt is a mixture of the methods used by
Le Cam (1958) and Darling (1953) and this result on spacings is of some

independent interest. TLet W

1 WZ’ ... be independently and identically

ol «




distributed (i.1.d.) v(1,i} random variables i.e. , with a negative exponential
distribution (l-e-w), w>0. Let {gk(' ) k=1l,...,m} be real-

valued measurable functions. For 0<qg<1, let Mv = [mv - q] . Define

M
(2.16) Gy, = ]zl g, (W)

Theorem 2.2: Assume that the variance of qu exists and is positive

forall g and v i.e.,
2
= <
(2.17) 0<Var(qu) o (qu) o forall g and v

Assume further that for each qe (0, 1]

(G. -EG_ Vo(G, ) A
(2.18) il = av v -]

e

M
Z(Wk- 1)/m

with A and B such that
q q
(2.19) Aq-Al=l as q-1-

(2.20) Bq oy Bl as q-=-1l-

Then, as v = o |

m
2
(2.21) £ ((k?_,l 9,(mD,) - EG, )/5(G, ))= N(0, 1-B)
where Dl’ ok Dm are spacings from U(0,1) .

Proof: Choose 0<qg<1. For z >0 consider i.i.d. random variables

TEREY \ with (1, 1/z) distribution i.e., exponential with mean 1/z .

«}P




The sum (Vl T snca Vm) has TI'(m, 1/z) distribution, whose density is
denoted by f(-) below. Using ideas of conditional expectation, the
M
characteristic function of gk(mvk) at u can be written as
k=1
M
(2.22) G (2 u) = E(exp(iu ? g, (mV, )))
20 AQ M
= [ Efexp(iu ), g, (m vk))lz V, = 0} f(t)dt
0 1 1
. m m-l -zt
=[ {ot,wlz t e /(m-1)1dt, say.
0

m
Since the conditional distribution of (Vl, el Vm) given z Vk =t is the
1

same as that of (tDl, a ) tDm) which does not depend on z, it follows
that neither does ¢(t,u) . Observe that

M m
$(u) = ¢(l,u) = E(exp (iu z' gk(mvk”;‘ Vk =1)
(2.23) M
= E(exp(iu ; g, (m Dk)))

On the other hand the function defined by

% 00 L M M M
GM(z, u) = f S f exp(iu ; gk(mvk))z exp(-2z ; vk) dvl. ..dv
0 0

is analytic in z for all complex 2z such that Re(z)> 0. This

-13-
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function coincides with GM(z, u) on the positive real axis and hence
for all z in the right half plane. Consider

» M 00 00 M M
G p4(mHy, u) = (m+y) fo. ) fo exp(iu ; g, (mv,) -y 21: v,)

M
exp(-; mvk)dvl S de
(2. 24)

= (1+1y/m™M exp(-tyM/m) -
M M
E(exp(iu ; g, (W, -ty ;(Wk-l)/m)))

where Wl’ e ’WM are i.1.d. Tr(l,1) random variables. It is easily

checked that the conditions for using the complex Laplace inversion

formula (see for instance Courant and Hilbert (1962) p. 536) on (2.22) are

satisfied. On doing this inversion, we obtain for ¢ >0

ol C+ico
o(t,u) + t 0 = (malyt (1/2wi) [ e
C ~joo

zt -m _*
z GM(z, u)dz

Putting ¢ =m and t =1 in this formula and using (2.23) and (2. 24) we

get
M
$(u) = E(exp(iu z/ 9, (mD,)))
* me M
(2.25)  =mi/@wm) [ e V(miy) " (Lly/m) " exp(-iyM/m)
-~00

M
E (exp(iqu - iyz:(wk -1)/my)dy .

ol4.




-

L

Putting x = y/m? and using Stirling's formula for m! we obtain

g 1 1
$(u) = e (Zv)-zf exp(ix(m-M)/m?) - (1+ix/m?)

-20

M-m

M 1
E(exp(iuG, - ix ;(Wk-l)/mz)dx ¢

From this, it follows that

m

v
v, (u) = B(exp(tu(k}zj1 9, (m Dy ) - EG )/a(G) 1)

(2.26) M-m

o(l) wk » 1 %
e (2m 2 f exp(ix(m - M)/m?)(1 + ix/m?)

-00

M 1
E(exp(tu(G, -EG, )/o(G ) - ix ;(wk-l)/mz))dx :

The integrand in (2.26) is dominated by

(M -m )/2 Z
h (%) = (1 + xZ/mv) Y ¥ ahinee™ (1-a)/2 as v =

and it is easily verified that

00 o0

f h (x)dx-f h(x)dx as v-—=+ o ,
-00 ¥ -0

Thus using the extended Lebesgue dominated convergence theorem (see for
instance Rao (1973), p. 136), it follows from assumption (2.18) and the

formula (2. 26) that as v = o,

> o]
¢, (u) -~ (2m? [ expi-i-aix’/2)
(2.27) i
exp(-(A uZ +2B_ux + qxz)/Z)dx = exp(-(A -BZ)uZ/Z) R
q q 9" q

-15-
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The continuity theorem for characteristic functions gives

M
1 2
(2.28) u<§f 9, (mD,) -EG, )/5(G) )= £(X ) = N(0,A -B ) as v =,

Using an analogous derivation, we can show
m

T 2 e R i -A -(B.-B )2
(2.29) ﬂml(g"(ka) BgW, )V/o (G| )~ £(X;) = N(0,1-A_-(B,-B )")

Qs y =~ 0 ,
Combining (2.28) and (2.29) with (2.19) and (2.20), we get

(2. 30) g(xq) - N(O, l-Blz) as q—1-

and
(2. 31) NX;;) - N(0, 0) as q - 1-
Hence using the argument on pp. 13-14 of LeCam (1958) the assertion of
the theorem follows. O
The following corollary gives a simple sufficient condition on the

functions gk(-) in order that Theorem (2. 2) holds.

Corollary 2.1. The asymptotic normality asserted in Theorem 2.2 holds

for any set of functions {gk(')} which satisfy condition (A') .

Proof: To prove this corollary, we need to check that the assumptions
(2.17) to (2.20) hold when condition (A') is satisfied. It can be easily

checked that if g(u,x) satisfies condition (A'), then

o0 o0 0

f g(u,x)e'xdx, f qz(u,x)e-xdx as well as fq(u,x)(x-l)e-xdx
0 0 0
-16-
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d

satisfy conditions of Lemma 2.1 in u . Thus from the definition of qu
and Lemma 2.1, as m - o,
[mq] q

(2.32)  E(Gg )/m = (1/m) kg,l Eg(k/(m+1), W, )~ fo Eg(u, W)du

[mq] q
(2.33)  Var(G, )/m = (1/m) kgl Var(g(k/(m+1), W, )) ~ fo(Var g(u, W))du

and
M [mq]
(2. 34) Cov(G, , };wk)/m = (1/m) kz=:1 Cov(g(k/(m+l),wk),wk)

q
-~ [ Cov(g(u, W), Wdu
0

where W is a I'(1,1) random variable. Again from (2. 3) of condition (A"),
all these limits are finite. These are also continuous in 7 so that (2.19)
and (2. 20) are satisfied.

Finally to check the asymptotic normality in (2. 18) or equivalently

of
(ma] (ma]
(2. 35) kZ',l {a(g, (W) - Eg, Wy )) + (W, -]} = kzi g, (W), say

for all real a, we have only to verify the Lindeberg condition for the
non-identical case. It is easily seen that if {gk(- )} satisfy condition

(A'y, sodo {q:(-)} defined in (2. 35). Let

2 mq |
2 * 2 o [z 2
(2. 36) o = Eg K (Wk) and s[mq] = & Ty
all

R £ B P S o Joro Sl A A




%
Since {gk(- )} satisfy condition (A'), we have as in (2. 33) that

[mg] e .2
2 * -w
(2. 37) S[mq]/m = (1/m) lel fo 9, (w)e ~ dw

converges to a finite non-zero constant from Lemma 2.1. Now consider

[ma] g e
(I/S[mq] _2 f|x|>¢ 3 9y (x)e ~dx
[ma]
[ma] -1 +26
< (m/s[ P @/m Z J ¢, [(k/(m+1))(1-k/(m+1)]
- [x| >e S(ma]

C
- (x 2+1)2 e Xax

IA

ma]
{mclz/s[z ]}{(1/m)‘z [(k/(m+1)) (L - k/(mely)] " H28)

c
{f (x 2+l)2 e-xdx}
|x| >e s
[maq]

as m - o the quantities in the first two parentheses remain bounded
because of (2. 37) and L.emma 2. 1 while the integral in the third parenthesis
goes to zero for any € > 0 since S[mq] is of order (\I;) from (2. 37).
Thus the Lindeberg condition is satisfied for (2. 35) and thus the joint
asymptotic normality required in (2.13) holds for functions satisfying

condition (A'). O

3. Asymptotic distribution theory for nonsymmetric statistics

As mentioned in Section l, n will denote a geometric random vari-

able defined in (1. 9) while W will represent a T'(l,1) random variable.

-18-




Where confusion is likely to arise, we will denote the expectations with
respect to n and W by Eﬂ and Ew respectively. Then it is easy to

verify thatfor § = 0,1,2,...

S 2 1
(3.1 Pn=1) = p /(L4p)" "= By (m(W/p))

If h(u,j) is a function satisfying condition (A), we define for later use,

the following additional functions.

00

(3.2) g,(u, %) = Y, h(u, ) ™)
j=0
o o3

(3.3) 954, %)= 3, h7(u, ) my(x)
j=0

and
00

(3.4) g,(u, %) = j‘é‘o h(u, §)(J-) (%)

When h(u, j) satisfies condition (A), these are all well-defined and

finite for all p >0 . Let

o0
(3.5) H(u) = Enh(u, n) = Z h(u, j) p/(l+p)j+l
j=0

0

: F h(u, )Eyy, (v,W/p)) = E. g)(u, W/p)
=0

for 0<u<1l and

1 1
2
(3.6) ¢ = [ Var(h(u,m)du - (f Cov(h(u, 1), n)du)> /Var(n)
0 0
o 1
=Y [ (b, - Bun®du p/aeey !
=0 0

1
-(i fo (hy, 1) - H)du 3p/0+0) 2 L 02 /(14p)
j=0
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Also from the Cauchy-Schwarz inequality
1 1

i 1
(f Cov(h(u, n), q)du)z < (f (Var h(u, n))? (Var n)? du)Z
0 0

! 1
% (f Var h(u, n)du)(f Var(n)du)
0 0

|
= Var(n) - (f Var h(u, n)du)
0
with equality if and only if h(u,j) = c + j + h(u) for some real number c
and some function h(u) . Thus 0'2 > 0 for any function h(u,j) satisfying

condition (A) . For X = (xl, e ,xm), we also define

~1.3

{(3.7) B (X) =

m 0
g (k/(m+)), x) = 3, 3, h () mix,)

k=1 k=1 j=0

and write W= (W, ... ,Wm) where the components are i.i.d. 1°(1,1)
random variables.

Before we proceed to state the theorem which gives the asymptotic
distribution of Tv under the alternatives, a few words about the sequence
of alternatives. Consider the Y-observations from the distribution function

given in (1.10), (1.11) with 6§ = 1 j.e.,

(1)
(3.8) At

% -]
Gm(v) Gm(F (v))

1
y+L (v)/m?, 0<y<l

-20-
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Assumption (B): We will assume that there exists a continuous function

L(y) such that for 0 <y<]
1 =1
L (y)=m [Gm(F (v)) -y]=L(y) as m— »

We also suppose that the derivatives L;n(Y) and L'(y) = £(y) exist and are
continuous outside some fixed finite set D C [0,1] and that finite left and
right limits of the derivatives exist on the open interval (0,1) .

Given the X-sample, the probability of a Y-observation falling inside
[X"(_I,X]'(), under the null hypothesis is given by the uniform spacings

{Dk} . On the other hand, under the alternatives (3.8), this probability

is given by
* wlo =
Dy = G (F (U - G_(F Uy Y
(3.9) 1
- 2
= Dk(l + Ak/m )
where Ui{, k=1,...,m are order statistics from U(o,1) with

Uy=0, Uy =1 and
(3.10) &y =L U -L (U N/D

Note that Dk > 0 with probability one so that Ak is a well-defined
random variable. We now state the main theorem of this section, whose
proof will be completed in Lemmas 3.1 to 3.7. The conditions of this

theorem are not in the most general form but are adequate to cover all the

cases of interest discribed in Section 5.
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Theorem 3.1. Let

(h(k/(m+1), 5,) - H(k/(m+) /m? - o

3

(3.11) V =
* k=l

with H(u) and ¢ defined in (3.5) and (3. 6) respectively. Assume that

c
(3.12) Iheu, )l < e a-up® @a+5 %)
In addition to Assumption (B) assume that for some small ¢ >0,

(3.13) |L_®)-L ()< c (t* - s%) for 0<s<t<e andfor (1-e)<s<t ]

where 7/8<a<l, B > -IE and (a+@) >1 . Then under the alternatives

(3.8),

(3.14) g(V) = Nb, 1),

where

1
b= [ Cov(h(u,q),n) L(udu - p/(l+p)e
0

*
Proof: As explained in Section 2, the vector (S.,...,S ) given D is
1’ m =

%k

K given in (3.9).

* *
mult(n, D ) where the m-vector D has the components D

Using conditional expectations, we may write

E(e“"vv) - B *E(e“"vvlg*)

(3.15)

g

* *
=E (0 (D)K (D)

g

22«
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where

» " % *
(3.16) J (D) = exp(itm * [unD) - Ex(W/p)])
(recall the definition (3.7) of #, and the relation (3. 5)) and

m
% - 3 sk
(3.17) K (Iz) ) = E(exp(itm %[; hk(Sk) -p(n_I_? )])'2 )

v =l
Now from Lemma 3.4, it follows that

4 1'(IV(I_D,‘)) - exp(ibt - th/Z)

no

with b and c¢ defined in (3. 38) and (3. 39) respectively. Hence by the

continuity theorem for characteristic functions

(™

(3.18) £(m” *[u (D) - Ew W/p)]) ~ N(b, )

*
so that IV(Q ) converges in distribution. By Lemma 3. 5, with probability

*
one i.e., for almost every random vector D ,

2
(3.19) xvu:)*; Rl

with d as defined in (3.44). Combining (3.18) and (3.19), with probability
one, the product Iv(g*) Kv(l_)*) converges in distribution. But since

* *
|IV(Q ) K (@ )l <1, this also implies the convergence of the moments

so that

(3.20) E *(Iv(g*) Kv(p_*) - exp(ibt - (c+d)t2/2) .
B = =

=

«23-
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Using the continuity theorem for characteristic functions and Lemma 3.7,

the assertion of the theorem follows. O

Lemma 3.1. If the conditions (3.12) and (3.13) of Theorem 3.1 hold, then

3 m 20 ¥
m-2 V S h(k/(m+1), j) [Trj(nDk) - wj(nDk)]
k=1 j=0
(3.21)
13 ; h 1 D 1
=m L A, L (k/(m+1), §) (§ -nD, ) m(nDy) + o (1)

where Ak is as defined in (3. 10).

Proof: Applying the Cauchy-Schwartz inequality on the difference of the

two sides in (3. 21), we have

-4 e * 1
RO hy () [7,(nDy) - = (nDy) {1+(-nD)a,/m?}]
k=1 j=0
grogn~ o8 1
<m2 Y ) Ih ()l lexp{jlogi+a, /m?) -nD, A, /m?
k=1 j=0
X
(3.22) -1-4 -nDk)Ak/mZ‘-rrj(nDk)
4 BBl e 1
<m? ¥ [Y n'¢y)r(nD,)]? [E exp {j log(l+Aa , /m?)
i T LS S B

-nD, /m‘}} -] « {J=nD A /m§| ™ (nDk)]§

After some elementary calculations, we see that the term in the second

square brackets is

-24 -
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2 2
(3.23) exp(DkAk/r) -1a DkAk/r .

Since h(u, x) satisfies condition (A‘), using Theorem 2.2 and (3. 23), it

is clear that the right hand side of (3.22) can be estimated by

LN

i m C2 2
m }Zl ¢, g(k/m+l)(l+(ka) )Op(DkAk)
(3.24)
2 1
= max (Ak/m?) O .
K p

3
Now we show that this max(A i/mz) goes to zero in probability when o« >7/8
Observe that by (3.13)

1 1
4| ' o [ 4
la, m*l=1L_(up) -L (U, )Hl/m*. D

(3.25)

IA

.
'a- 'a 4 .
(U - Uy _p)/m* - D

A

- D

a
< Dk/m K

since (ta - sa)_<_ (t-s)a for 0<s<t<] and @<1. Also from Darling
(1953) for any € >0, we have

£/ i ime T D) =0 (1)
lf_kf_m P

Therefore from (3. 25)
1 (2+e)(l-a)-1
(3.26) max |Ak/m‘|§ Op(m

3
likﬁm

w2 8e

T A TN STy TRV -




1
Since « >7/8, by choosing 0< ¢ < i(l-a) - 2, max|a, /m*| - 0 in

k
probahility. This proves the lemma. O

Lemma 3.2, If the conditions of Theorem 3.1 are satisfied then, for any

¢ =6

_l[""] -
(3.27) limsup |m k‘él Akjzloh(k/(mu),j)(j-nnk)n

m~> 0

atp
j(nDk) < Ke

with probability one.

Proof: ~We have
0
,Zo h, () (J=nD}) m (nD,)

0
(nD,) - (nD,) }, h () =

(nD, )
j-1 o k

00
= (nD, ) 12'1 h ()« j

0
(nD, ) E’o (h (5#D) - by (] my(aD)

nDk 94(k/(m+l), nD say

k)’
where

MW
(3.28) 9, (u,x) = j}‘, [h(y, 3+1) - h(y, §)] 7 (x)

0

satisfles condition (A') . Hence the expression in (3.27)

_q(me] ©
%"l fy jz,o h(k/(m#1), )(J - nD, )  (nD,)
(3.29) (me ]
; kZ'l [L,(U}) - L_(Up )] g,(k/(ml), nD))

-26-
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o 0 i o I S50 50655 5.5

Using condition (3.13), and writing M = [me], this is

M
0< I? [Lm(U}'() - Lm(Ui(_l)] g4(k/(m+l), nDk)l
(3. 30)

C

3 u® U yk/mPpL+ (aD,) 4
5°1°3¥‘k * ¥k K 1

We now make use of the representation of the spacings in terms of

k
I.i.d. exponential r.v.s W,W,,... with mean 1. Writing Wk - yle/k ;
1

the RHS in (3. 30) is

‘a+ﬁ M \_Na = W = 8 C2 —CZ
=C-WQ+CZ Zj[ /MY - W (kM) Yk /M) WS W)
(3.3]) M 2 i
L Latp =-(atc)) -l —a-l at+p-1 %2 s
=C - ¢ . Al ;wk (k/M) WS W W 5

C [0 - QW kW))W, /KW )]

Now by the strong law of large numbers W. - 1 a.s.

K as k= o and

hence

(3. 32) A (l-Wk/k_Wk)a}/(Wk/ka) ~a as k-

Using the HOlder inequality,

L %‘4“”‘1 k/My*+8-1 "2 {1-1-w, /W, )*} /W, /kW,

l/pl (a+p-1)p, 1/ P,

M M
1 O =fa-l 1
(3.33) <[5 ;wg‘ "1y Y, (k/m) ]
M +1 1/p
;W(cz )93]/ ¥
r

M 1.1- k/ﬁ\f()" }94 1/p,
Wi/ (k%)

I
Z|-

«2T =
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n
Using the fact that if a - l as k-~ e, n'1 ; a = l as n -, the

RHS in (3. 33) converges a.s. to the finite limit

1 (a+p-1)p 1/p (c,+p, 1/p
1 [ u o " Bt ¢ gl el

0
c

Similarly the other term involving Wk . sz) in (3. 31) can be handled so
0

that we get the desired result.

Lemma 3. 3. Under the conditions of Theorem 3.1,

0
), h(k/(m#1),3)(j - nD) ) 7 (nD, )

- f f(u)Cov(h(u, n), n)du « (p/14p) in probability.
0

As we have seen in (3.29),

Proof.
-1 m 0
m” Y A, Y h(k/(m+l), 1) (j-nD,) 7 (n D, )
Lt dadd k j k
k=1 j=0
(3. 34)

m
TR a,(nD,) g, (k/(m+1), nD,)
k=1

where g4(u, X) is as defined in (3.28). For any fixed ¢ > 0, we may
[me] [m(l-¢)]

consider the sum in (3. 34) as consisting of 3 parts viz. A A and
m k=1 ke[me]

Lemma 3.2 shows that the first sum is negligible. A similar
k=[m(l-¢)]

analysis can be used to demonstrate that the third term is also bounded
a.s. by Ke ey A
Now it remains for u‘ to show thatin probability

-28-




1 [m(l-€)] 1-€
m % a,(nD,) g, (k/(m+l), nDk)-j; £(u) + E(g,,(u, W/p)W/p)du

l-¢ 0
[ @ ECY, b, HE-W/p i (W/e)du
€ j=0

i

(3. 35)
l-¢ 0
= [ 1@} h(y, HE-(+)/(1+p) P(n=))du

€ =0 dig

= [ t(u) - Cov(h(u,n), n)du p/(l+p)

€
The proof of Lemma 3. 3 will then be completed since we can choose ¢

arbitrarily small.

By our assumption Ll‘n(y) = lm(y) exists and is continuous except
possibly for a finite number of points on (e, 1-¢) . If lm(y) is con-
tinuous, then boundedness of lm(y) along with the fact [xg4(u, x)]
satisfies condition (A') allows us to apply Theorem 2.2 as follows: From

the Glivenko-Cantelli theorem,

max IAk - lm(k/m+l) I- 0 with probability 1 .
k

Also from Theorem 2. 2,
i1 [m(l“)]
m

nD,- g, (k/(m+l), nD, ) =0_(])
k=Tme] 4 k p

k
Hence the sum in (3. 35) has the same probability limit as

r [m(1-€)]
(3. 36) m { m(k/(m+l))- nD, - 94(k/(m+l), nDk)
k=] me ]

which from Theorem 2. 2 is the requirecd limit given in (3. 35).
Now if lm(-) has a finite set of discontinuity points inside (e, l-¢),
this will not create any problems since the function is bounded in this

interval.

-29.
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Suppose now that tm(y) is continuous in (0,1) except at y = Yo
By our assumptions lm(y) has finite left and right limits at this point and
the point does not depend on m. Take 6 >0 so that 0 < Yo - 6 < y0+6 <1
From our assumptions and the Glivenko-Cantelli theorem it follows that with
probability one IAkl is bounded whenever |k/m -y0|< 656 and m is
sufficiently large. From this it is easily seen by analogous arguments that
the contribution to the sum (3. 35) from such terms in the neighborhood of

Yo can be made arbitrary small by choosing & sufficiently small. It is
obvious that the situation of a finite set of discontinuities of the first kind

can be handled the same way, if the discontinuity set does not depend on

m . This completes the proof of Lemma 3. 3. O

Lemma 3.4. Let

1
2

Jv(g*) = exp(itm~ [pv(n Q*) - Eu(‘g’/p)])

be as defined in (3.16). Then under the conditions of Theorem 3.1,

* 2
(3. 37) E(Iv(g )) = exp(ibt - ct” /2)
where

1
(3. 38) b=/ Cov(h(u,n),n) £(u)du p/(l+p)

0
and

1 1 2
(3. 39) c=[ var 9,(u,W/p)du - (f Cov(w g,(u,W/p))du)” .

0 0

-30-




Proof; We can write
0 v st ? D’ D En (W/p)
(3.40) J (D) =exp(itm * ([u (nD ) - p (nD)] + [k (nD) - En (W/p)]) .

In Lemmas 3.1 to 3. 3, we already established that the first part
-1 *
m Z[pv(ng ) - pv(ng)] converges in probability to b . Thus we need only

show that
1
(3.41) E(exp(itm™2 [k (nD) - Eu (W)}~ exp(-ct’/2)

From the Condition (3.12) on h(u,j), it follows using moments of

the Poisson distribution, that

0 CZ
lg w2l < 3, e u-wf asx %) ()

j=0
(3.42) (-

ci (u(l-u))ﬂ (1+x 2’)

)

IA

Thus gl(u, x) satisfies condition (A') . Hence Corollary 2.1 of Section 2

holds and the asymptotic normality of
m

A4
M (nD) = k?_,l g,(k/(m+1), nD,)

is assured by Theorem 2.2. Further Var(gl(u,w/p)) and cov(w, gl(u,w/p))
as functions in u, satisfy the conditions of Lemma 2.1, so that as v =

.1 m 3 , m m
m Var(z gl(k/(m+l), Wk/p) -m Cov (;W . 2 g(k/(m+l), Wk/p))
k=1 1

1 1
(3.43) = [ Var(g, (u, W/p))du - ( [ Cov(W,g, (u, W/p))du)’
0 0

e 8 . 0

«3le
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Lemma 3.5. Under the assumptions of Theorem 3.1, with probability one

%

i.e., for almost every D -vector,

where

(3. 44)

Proof:

Theorem

-3 l m 3% s
& ¥ 2 -5 Y‘ 2
kR Hmpain BLE B8 - wiap M| D)

- exp( & /2) in probability

1 1
2 2
d =f0 E[g, (4, W/p) - gl(u,W/p)] du - p(fo E93(u,W/p)dU) .

The lemma will be proved by verifying that the conditions of

2.1 hold and showing that d = Al - Bl2 . First we have by the

Glivenko -Cantelli theorem that with probability one

(3.45)

L IR, TR P
k}zlmk-UM+m L (Uy)—~a= 5

where M = [mq] and U'K is the kth order statistic from U(0,1) . Clearly

since P
q

hold.

qg-1 as g - 1-, conditions (2. 9) and part of (2. 1l) of Theorem 2.1

For real numbers a and b, consider

(3.46)

hl(u,j) = ah(u, j) + bj

It is easy to verify that if h(u,j) satisfies condition (A), then so does

hl(u,j) >

Consider

-32-
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M
(3.47) Ly =m k}‘ (h)(k/(m#1), &) - Eh (k/(m+1), £ )

where gl, i gm are independent and gk is P (nD*) . From the

assumptions, it follows that for some positive constants c c ce. We

l’
have
e M
Vg = m kz=l Var(h, (k/(m+1), £,))
M c
<me Y [k/maya-k/man]® (nDy) 2 + 1)
k=1
(3.48) m C
< m? ] '2" [(k/(m+l))(l-k/(m+l))]p (nD:) .
i k=1 .

C C

Y Vi |
o (kZ=l (nD,) ~/m)

IA

by the Holder inequality and Lemma 2.1. From the assumption {3.13),

* 3 -3
nD nD + n(L (U Lm(Uk-l))m

K " B

< nD, +K D, m?+K D m?
bl 2

(3.49) k
a -a
< K3(m Dk) + KZ(ka)
m
Using the representation Dk = Wk/?’ Wk where Wl’ W «» are i l.d,
r'(l, 1) random variables, it follows by law of large numbers that

for e >0,

«35
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ud cne

-1 oo c
lim m ;(ka)

m -+ 0o

is finite with probability one. As o >4, we have, using the binomial

theorem

-a 6

N
-+
ro—
~
¢
-

m [ m
YD) P a™ Y D s D
- ; S = §;3 ET TR

with probability one. Thus with probability one

(3.50) lim sup Var( L(‘q) <
Now we will verify that

(3.51) lim inf Var(g(':l) >0 .

By assumption (A), it follows that there exists an interval [a, b] C (0, 1)
and integers jl¢ j2 such that hl(u, jl) # hl(u,jz) for a<u <b. Again
from the strong law of large numbers and our assumptions, it is easily seen

that for any 0 < C< D < o, with probability one

%k

k<D}/m->K >0

#1{k; a<k/(m+l)<b, C<nD 1

Therefore for n sufficiently large,

Var(t;) > 3, Var(h(k /(m+1),£,))/m > K, > 0
a(m+l)<k< L(m+l)

with probability one. Hence (3. 5]) is satisfied with probability one. In a

similar fashion it follows that

-34-
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m
lim sup Z }:Ihl(k/(m+l). gk)lz“/m < ®
=1

k

Therefore the Liapunov condition

o 2+e¢
Y Elh (k/(m+1), €)1 /(mvar(g)))
1 q

l+e /2

/2

e /(Var(;;q))“‘ . m

M
(3.52) = m"/2 Z} E|hl(k/(m+l),§k)

-0 as m—-o ,

is satisfied with probability one. Thus
1
g(g(‘q/(Var(%))z) - N(0, 1)

with probability one. By the next Lemma 3.6, we have that in probability

2 e
+bqgp )

(M

2 N
Var(t') - a A + 2abB
a(Lq) " qP

where Aq e Al’ Bq s B1 as q = 1- . This verifies that the assumptions

of Theorem 2.1 are satisfied with probability one. From the definition (3. 44)

of d as well as the expressions (3. 56) and (3. 57) for Aq and Bq, it

follows

3.54 d=A BZ

gt ol By

which proves the lemma. O

Lemma 3.6, Given Q*, let (gl,...,gm) be independent and gk be

%
Fb(nDk) . Under the assumptions of Theorem 3.1

=35«
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23 M 2 4 2 1
(3.55) m ¥ Var(h (k/(m+l), £,)) ~a A +2abB p 2+b gp
i 1 k q q

in probability where

(3. 56) A f: E[g, (u, W/p) - 91(U,W/p)]2 du
and

1 4
(3.57) By = p 2 fo E(g,(u, W/p))du

Proof; Recall from (3. 30) that hl(u,j) = ah(u,§) + bj . By calculations

similar to those in Lemma 3.1, it follows that, for instance

<1 M o 2 e
) kE: E h™(k/(m+1), §) ["j(nDk) -

(nD,)]= 0
1 =0 5

i

in probability. Using Theorem 2.2, we get

-1
m

Hinek<

q
2
I Glemrl, [t »fo (Eg,(u,W/p))du

in probability. Therefore

oo a
m IT Eh"(k/(m+D), £,) = [ (Eg,(u,W/a)du
0

The other terms can be handled analogously which proves the assertion. O
Lemma 3.7.

L
(3.58) c+d=co

where c, d, o-Z are defined in (3. 39), (3.44) and (3. 6) respectively.

Proof; Let W be a TI'(l,1) variable and let n' be a random variable

such that n' given W is Po(W/p) . Then the unconditional distribution

of n' is given by .36




4
| *\q o

P == [ e Ve we e ™R 1 aw
0

(3. 59)
- TR el

Thus rn' has the same distribution as the geometric random variable

defined in (l.9). Let EW’ VW denote the expectation and variance over

W while E denote the conditional expectation and variance

\'
nIW nlW

over n given W . Then from the definitions of 9 9y 9,

(3.60) Enh(uy n) = EWEnlWh(u’ n = Ewgl(u’W/p)
3.61) Ehzu Y= B E 2(u )=E (u,W/p)
( . n ( s ) = w T]Iw yM) = wgz ’ P

And after some elementary calculations,

5
p(l4+p) " Cov(h(u,n),n) = E En IW[h(U, n)(n-W/p)]

(3.62)

COV(ql(U,W/p), w) = Ewg3(u,W/p).

Now from the definitions (3. 39) and (3.44) of ¢ and d and from identities

(3.60), (3.61) and (3.62), we get

3T«




1 1
e +d= [ Var(g,(w,W/eNdu - (f Cov(W,g, (s, W/p)du)’
0 0

1 1
2
+ fo E[g,(u, W/p) - 9,(u,W /p)]* du - p(fo Eg,(u, W/p)du)

1 1
fo V(E, |, mdu + fo EW(VnIW(h(u’ n)))du

1
- (1+p) [f Cov(h(u, n), n) pAl+ p)dU]2
0

1 1
2
f Var(h(u, n))du - [f Cov(h(u, n), ﬂ)du]2 p /(1+p)
0 0

2
=0

These lemmas 3.1 to 3.7 complete the proof of Theorem 3.1. The

following lemma gives a simple sufficient condition for (3. 13) hold.

Lemma 3.8. A sufficient condition for (3.13) to hold in a neighborhood of

the origin is that

OgL;n(u)ic-ual'1 for 0 <u<e
Proof. We have for 0 < s <t<e
: a-l1
< - ]
o_fs (cu Ll (u)du

a a
=28t -8 }/a .- (Lm(t) - Lm(s))

or

L -L_(s) <ct”-s%/a

0

Since Lm(O) = 0 and L;n(u) >0, the assertion follows.
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Corollary 3.1. Under the null hypothesis (1.1), the asymptotic distribu-

tion of VV defined in (3.11) is N(O,1) .

This result is a direct consequence of Theorem 3.1 and is obtained
by taking f{u) =0, 0<u<1l in (3.14). This corollary reqgarding the null
distribution of Vv can also be reformulated in the following interesting

form using Lemma 2. 1.

Corollary 3.1'. Let LITRPTREE be a sequence of i.i.d. geometric

random variables with pdf given in (1. 9). Then the asymptotic null dis-
g m m m
B e
tribution of thk(sk) is N(E(El‘! hy (n,)), Vanr(z1 hy (n,) - ) n,)) where

B 1is the regression coefficient given by

m m m
B = Cov(z h () Z qk)/Var(; )
1 1

Remark: See also Holst (1976b) for a different proof of this result.

4. Asymptotic distribution theory for symmetric statistics

This section deals with the class of statistics symmetric in

{s,,...,8_}i.e., statistics of the form
1 Y
mV
*
(4.1 . =kz_1 h(s, )

for some given function h(j) . Clearly this class of symmetric statistics
is also covered by the asymptotic theory discussed in the last section.
Indeed if the function hk(j) does not vary with k i.e., the function

h(u, j) of the last section is a function only of j and is independent of u,

then we obtain the symmetry in the numbers {Sl, $ob v Sm} . But since

1
f £(u)du = 0, {t follows from Theorem 3.1 and Corollary 3.1 that the

0
-39.
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3
asymptotic distribution of TV under the sequence of alternatives (3,8) coincides
with that under the null hypothesis. Thus symmetric statistics of the type (4.1)

1
2 and have

can not distinguish alternatives that are at a '‘distance' of n_
power zero against such close alternatives. Therefore in order to make

efficiency comparisons, we have to consider the more distant alternatives

with 6 = 1 in (1.10). Let

2). a® et < . :
(4.2) At G () =y+L (y)/m*, 0<y<l

n1¥ = méG (Fln
wit Lm(u)_m (Gm( (v)) - u)

For this symmetric situation, we will make the following slightly

stronger assumptions:

Assumption (B*) . Assume L:(u) is twice differentiable on [0,1] and there

is a function L*(u), 0 < u <1, which is twice continuously differentiable

and such that

sk £ 3 Fl *u
(4. 3) L()=L (1) =0, sup le (u) - L o(u)| = o(l)

O0<uc<l
#*¢ *! *
where f (u), f (u) are the first and second derivatives of L (u) .

Notice that for such smooth alternatives, the following also hold:

3 * %! %
(4.4) sup L (w - Ll =o@), supll (-2 @l=oq.
Oiuil Oiuﬁl

We define analogous to (3. 9) and (3.10)
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(4. 5) D,

* 1 * * %
4 % ] Ae [
D, (1+ Ak/m ) with A, = [Lm(Uk) Lm(Uk-l)]/Dk
We observe that under the above regularity conditions, we have

* *
(4.6) max IAk[_<_ sup |« (| <K<

l<k<m Oiu_<_l

The following theorem gives the asymptotic distribution of the
*
symmetric statistics Tv under the alternatives (4.2). The proof of this

theorem will follow Lemmas 4.1, 4.2 and 4. 3.

Theorem 4.1. Suppose that there exist constants cl and c2 such that

i
(4.7) Ihl < e “+ 1) forall

* *
Let Lm(u) satisfy Assumption (B ) and let

o 1
(4. 8) V. =3 (h(S,) - Eh(n)/m’¢
v k=l
where
2 2
(4.9) o = Var(h(n)) - [Cov(h(n), n)] /Var(n)

and n 1is the geometric random variable defined in (1. 9). Then under the

alternatives (4. 2)

(4.10) :(V:) -+ N(A,l) as v =+
where
¥.3 2 2
(4.11) A= ([ 1%u)du) Cov(h(n) n(n-1) - 4n/p)p /2(1+p)°c . O
0
-4]-



Lemma 4.1.  Under the assumptions of Theorem 4. l, we have

. 2= 1 1
ey 5‘, h(l)ﬂ’(nDk)[(HA /m‘)j exp(-nD, A /m*)
i
(4.12) L= (=D Ay /mE - {30-1) - 2inD, + (nD)*) A% /mE ]
= 0. (1)

Proof: Using the Cauchy-Schwarz inequality, we find that the difference

in (4.12) can be estimated by

o | m cz o g ¢
or 3 c;(1+(nD,) %) [B(nD,, &, /m*)]?
=1
where
“ j
Bix,y) = ), m(x) [(1+y)" exp(-xy/r) - 1 - (§ - x/r)y
J=0

- (0= - 29x/r + (x/n)%) y2 /2
2
= exp(xy/r) - 1 - xy2/r - x y* /2c

Therefore for small (xyz), B(x,y) = O((xy2)3) . As max A, = O(l) and

k
max(ka/log m) = Op(l), (cf. Darling (1953, p. 251)) we can estimate (4. 12)

by

m

-5/4
m / ' g(nDk)
k=1

(4.13)

for some function g(-) satisfying the conditions of Theorem 2.2. Therefore
-1
(4.12) is Op(m *) which proves the lemma. .

-42-

e




REERRLLE T o SO R S T PRI 7

Lemma 4.2. Under the assumptions of Theorem 4.1, we have
m

0
-3/4 %
(4.14) m k}‘_:,l 120 h()) m (D) - nD )&, = o (1)

E3
Proof: From the assumed continuity of lm(u), it follows that for some

Uk where Uk-1-<- Uk £ U]‘< that
3/4 ©
s " h(j) m(nD,)(j-nD )a
(4. 15) o
__-3/4 * ~
=m kz=:1 { (U))g,(nD,)
where
00
(4.16) 9,(x) =ij0 h() m,(x) (J-x)

1
*
Since f lm(u)du = 0, we can choose ek such that (k-1)/m < ek < k/m
m 0

and ? * (ek) = 0 . Also since 1* is continuous, we can write for some
kg ™ m

= ~ = 24

Uk such that min(ek, Uk) < Uk < max(ek, Uk)

m
-3/4 s S
m Z;l t (U )g,(nD,)
m
-3/4 sk
(4.17) =m / Z lm(ek) [93(1’1Dk) » 593(W)]
k=1
m
-3/4 s | N
+m kf;l £ (U) (U, -8,)g,(nD,)
* =
Now max lm(U k) = Op(l) and from the boundedness of the Kolmogorov-

Smirnov statistic

-43-
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1 ~
max m2|U

s 5 ekl =0 (M

k
Using Theorem 2.2, we have

m
m-3/4 Y g

[ ~ ~ _l
L (Uk)(Uk - 6,) 9, nDk) = Op(m 4)

(4.18)

Theorem 2.2 also gives

m
m-]/Z Y l*

(4.19)
k=) =

(8,) [93(nDk) - Eq3(W/p)] = Op(l) .

Combining the estimates (4. 18) and (4.19) in (4.17) yields the desired

result,
Lemma 4.3, Under the assumptions of Theorem 4.1, we have

h(j) =

o
Y (nD,) {§(j-1) -2jnD, + (nD )Z}/z
f A k k

I w2 2 2
= ([ 1 "(udu) Cov(h(n), n(n-1) - 4n/p) - " /2(1+p)
0

in probability as v-+ o .

*
Proof; Using the assumed smoothness of lm(u), 0<u<1 and the
Glivenko-Cantelli theorem, it follows that

%
max |Ai -1 Z(k /m+l)| - 0 with Probability 1.
m
I<k<m

And from Theorem 2.2, we have
1@ e 2
m™ Y IV h()w(nDy) {J0-1)-2imD, /r + (mD, /n)“}/2] =0 _(1) .
k=1 j=0 ] . X . P

e

O, s




Hence it follows that it is sufficient to prove the stochastic convergence

of
3 kD
(4.21) m kfz,lzm (k/m+1)) g (nD, )
where
< 2
(4.22) 95(x) = §, h()m(x) (J4-1) - 2% + x7}/2
j= 0

to the limit in the assertion. Again Theorem 2.2 gives that

o %2 b w2
m™ Y, £ (k/(m+l) g (nDy) = ([ £ “(uydu) Eg (W/p)
k=1 0

in probability. An elementary calculation shows that

0
Eg (W/p) = E . h) m(W/p) (33-1) - 25(W/ ) + (W/p)7}/2
=0

2
=Cov (h(n), nin-1) - 4n/p) * p°/2(14p)°

Thus the lemma is proved. 0

Proof of Theorem 4.1, Following the method used in the proof of Theorem

3.1, it suffices to show that
-4 *
m z[pv( nD ) - p,v(n D)] = A in probability.

We have

B




i *
m “[p (nD) -p (nD)]

1 é‘n b %
=m * ) h(j) [*(nD,) - = (nD, )]
& g ey e,
_f 1 1
=m 2 kZ Z h(j) wj(nDk)[(l+ &, /m*) exp(-nDkAk/m‘)
=1 j=0
1 -V TR
=1- j-nD Ak/m‘ « H3-1) » 2jnD,  + (nD, ) }Ak/m
m 00
-3/4
+m : h(§) = (nD, ) (j-nD, ) A
kf__-l j-_-zo S k' Tk
oF PSR e 2 2
+m kél j;o h()) = (nD,) {34-1) - 24D, + (nD, ) Ya, /2 .

Therefore the proof of Theorem 4.1 is complete from the preceding Lemmas

4.1, 4.2 and 4. 3. 0

&
Taking £ (u)=0, 0<u<1 in Theorem 4.1 or putting hk(j) =h(j)v k
in Corollaries 3.1, 3.1', we get the following result on the asymptotic null

distribution for the symmetric statistics.

sk
Corollary 4.1. Let VV be as defined in (4.8 ), Then under the null

*
hypothesis (l.1) Vv has asymptotically a N(0,1) distribution if the

function h(<) satisfies condition (4. 7).

5. Some further results and applications - the nonsymmetric case

We have the sequence of alternatives given by (3. 8) i.e.,

3

*
(5.1 G (V) =y+ Lm(v)/m g 0 <yl
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where

1 -
Lm(u) = m’(Gm(P 1(u)) -u) = L(u) as m-=»

We now consider first the problem of finding the optimal choice of
*
the function h(u,j) for given alternatives Gm(y) . We use a technique

analogous to that in Holst (1972).

Theorem 5.1. If the sequence of alternatives is such that the assumptions
of Theorem 3.1 are fulfilled, then an asymptotically most powerful (AMP)

test of the hypothesis against the simple alternative (5.1) is to reject HO

when
m
(5.2) kzl t(k/m+]) S, >c

where 12(u) is the derivative of L(u), mentioned in (5.1). The asymptotic

distribution of this optimal statistic is given by

m
(5. 3) g(m~¥ Y (k/(m+))(S, - 1/p)) = N(0,¢°)
k=1
under Ho with
2 1 2 &
(5.4) o = ([ 1%udu) (1+p) /p
0

while under the alternatives (5.1)

1

(5.5 £m™ Y 2k/me) (s, -1/e0 = NN [ Pdu, o)
k=1 0

3

Proof: From Theorem 3.1, it follows that the asymptotic power of the test
m
which rejects H, when z\ h(k/(m+1), S,) > ¢ is given by

¢ k=1
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1 1
P, = fo Cov(h(u, n), n) t(u)du/[fo (Var h(u, n))du

(5.6) 1
1

» {f Cov(h(u,n),n)dU}Z/Var(ﬂ)]2 .

0

Using the same argument as in Lemma 3.1 of Holst (1972), we have that

this quantity is maximized when

(5.7) h(u,j) = £(u) - §

The results on the asymptotic distributions follow directly from Theorem

3.1 and Corollary 3.1 for the above special case. O

From this result, it follows that the AMP test of level o is ex-
plicitly given by: Reject Ho if

1

m 1
(5.8)  [Y t(k/(m+1)S, -1/p)]/[m( [ 2 (uydu) (140)p™%)7 > g

k=1 0

where xa is the upper a-percentile of the N(0,1) distribution. Also
from Theorem 5.1, we find that the asymptotic power of this test in terms

of the standard normal cdf is glvein by the expression

1 1
(5.9) ® (-1 + (folz(u)du/(l+p)) %

Furthermore it is easily seen from Theorem 3.1 that the Pitman
Asymptotic Relative Efficiency (ARE) in using h(u, j) = d(u) - j instead of

the optimal h(u,j) = f(u) - §j is

-48-




1 1 1 1
(5.10) e = (f d(u) l(u)du)z/{f dz(u)du A (fd(u)du)z}{f lz(u)du}
0 0 0 0

5.A Applications; Translation alternatives

We now consider some applications of the above results on non-

symmetric tests. First we shall look at the translation alternatives. Let

Xl’ iy Xm 1 be absolutely continuous i.i.d. random variables with dis-
tribution function F(x) . Let Yl’ P ,Yn be i.i.d. withd.f. G(x). We

wish to test

Hy: G(X) = F(x)

against the sequence of translation alternatives
() 3
(5.11) A G(x) = G_(x) = F(x - 8/m?)

m

Let f(x) = F'(x) be continuous. Then as m — %,

1 - -
(5.12) Lm(u) = m’[Gm(P l(u)) - u] = -of(F 1(u)) = L(u), say.

And if f'(x) exists and is continuous except for at most finitely many

x's then, at the continuity points of f'(F-l(u)), we have
-1 -1
(5.13) 2 (u) = 2(u) = -6 £(F “(u)/f(F ()

We now apply Theorem 5,1 to the following special cases to obtain

the asymptotically optimal test statistics based on {Sk} :

-49.
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Ex.l (Wilcoxon test)

Consider the logistic distribution function
-X
F(x) =1/(l+te "), -0 <x<w»

In this case, we get
-1 -1
-f(F (uw)/K(F () =1-2u

and the regularity assumptions are all satisfied. Therefore the optimal

statistic from Theorem 5.1 is based on

(5.14)

Tts

m-1
: (1 - 2k/(m+l)) S, = 2 1?' R, /(m+]) - (m-I)m/(m+])

+2n/(m+l) - n

where Rl’ ot Rm-l are the ranks of the X-values in the cc:nmklnned sample.
Observe that the Wilcoxon 2-sample test is also based on Z-: Rk . The
optimality of the Wilcoxon statistic for the logistic distribtﬁziin is well -
known. See e.g. Lehmann (1959), p. 238. Theorem 5.1 gives the asymp-

totic distribution of the Wilcoxon test as a special case.

Ex. 2 (A van der Waerden or normal score type test)
For the normal d. f.

X

-1 2
F(x) = @& (x) = (2m) 2 f exp(-3 t)dt, -o <x<»

-0
we find

= -1 -1
£ F /ey = o Y

-50-
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It can be verified that the required regularity conditions of Theorem

3.1 are satisfied. Hence the AMP test is based on the statistic

m
(5.15) T kZII Q-l(k/(m+l))Sk

from Theorem 5.1. Using the facts

0

S 2 5 ol
@ ndu=f x“gxdx=1 and ) & (k/(m+l) =0 ,
0 k=1

-0

we have under the null hypothesis that

i
(5. 16) £(T/m2) = N(O, (1+p)/p")

From Theorem 5.1, the asymptotic power for a one-sided test of level «

3
is @ (- )\a + 0(l+p) °), the same as that of the Student's t-test.

To find the Pitman efficiency of the Wilcoxon test with respect to the

test based on (5.15) (which is optimal) in this case, we only need to

calculate (5.10). Since

1 0 00
=) ¢ 1
[ (2u-1® ~(u)du = [ 2@ -1x g(x)dx = 2 f (@) dx = v ?
0 =20 «00
.51-
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1 1
2 -1 2
and f (2u-1) du = 1/3, f (@ (u)) du =1, using formula (5.10)the ARE
0 0
of Wilcoxon test versus the normal scores type test

(5.17) e=3/n

The test statistic (5.15) has the same asymptotic properties as the

Fisher-Yates-Terry-Hoeffding and van der Waerden's rank tests.

Ex. 3 (A median test)
Consider the double exponential distribution with density

f(x):%e-ixl, -0 < X<®

We find that the conditions of Theorem 3.1 are satisfied and

1 for u <

N

e /8 ) =

L

=1 for u >

Hence the optimal test is based on the statistic

[r§q/2] ;{1 (m/2]

(5.18) S, - 3 S, = Z S

k21 K kefms2pm * kel K
[m/2]

where E Sk is the number of Y's below the median of the X's . This
k=1

is different from the usual median test. We easily find that under the null

hypothesis,

[m/2] 1 2
(4.19) e[z ), 8, -n)/m?) = N, (1+p)/p")
k=1

The ARE under normal alternatives is obtained from
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2 el : -1 : -1
- @ (u)du + f @ (wdx =2 [ @ (u)du = (2/m)
0 1 1

1
2

N
L

which gives

(5.20) e =2/n
Ex.4 For the Cauchy distribution, we find
(5.21) £(u) = 2 tanm(u-3)/[1+ {tanm(u- g)}"]

Notice that £(0) = £(1) = 0 and small weights are given to the Sk‘s in
the tails. Heuristically this is appropriate since the Cauchy distribution

has heavy tails and hence random fluctuations are large.

5.B Applications: Scale alternatives

Next we consider absolutely continuous positive random variables

under scale alternatives. Let Xl, “is ,X'n 1 be i.i.d. F(x) and Yl, A ,Yn

be i.i.d. G(y) with F(0) = G(0) = 0. We wish to test

(5.22) HO: G(x) = F(x) ,

against the scale alternatives

(5.23) H:m): G(x) = Gm(x) = F(x(1+ e/m%))

If the density f(x) = F'(x) is continuous, then as m - o ,

(5. 24) L, (u) = m%(Gm(F-l(u))-u) - L(u) = -Bf(F Yu)) - r‘l(u)




And if f'(x) exists and is continuous except for finitely many points,

then analogous to (5.13),
R -1 -1
(5.25) £ (u) = £(u) = -0[1 + £'(F () * F (w)/{(F (u)]

where f' exists. Optimal statistics based on {Sk} can be derived just

as in the case of translation alternatives.

Ex. 5. (Savage or exponential score test)

-X
For the exponential distribution F(x) = (1-e ") for x>0 we find

(5. 26) £(u) = - 98(1 + log(l -u))

The assumptions of Theorem 3.1 can be verified and hence an optimal

statistic is given from Theorem 5.1, by

m
(5.27) T= 2 log(l - k/(m+1)) (S, - 1/p)
k=1
1 2
Since f (1 + log(l -u)) du =1 we get that
0
H 2
(5.28) £(T/m?) = N(0, (1+p)/p )
54 -
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and that the asymptotic power is
ik
(5.29) @(-xa + 8(l+p) 2?)

The ARE of Wilcoxon statistic relative to T in (5.27) above is 3/4 .

The statistic T is an approximation to the Savage statistic (see Lehmann
(1975) p. 103). The UMP test for the above situation is the test based on
:%"-11 Xk{fl Yk which has the same asymptotic power (5.29) as the statistic

T in (5.27).

Ex.6. (Capon and Klotz test)

Consider the folded normal distribution with distribution function
(5. 30) F(x) =2®(x) -1 for x >0

The assumptions of Theorem 3.1 can be verified and we find the optimel test

statistic using the function
-1 2
L(u) = 1-[@ “((1+u)/2)]" .
From Theorem 4.1, the statistic
ik 2
(5. 31) T= ) @ [(1+k/(m+l))/2]) S,
k=1
has under the null hypothesis, the distribution given by

(5. 32) e (T/m*) - N(o, 2(1+p)/pz)

and the asymptotic power

«85.
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1
®[- Nt 8(2/(1+p))?] .

Again this asymptotic power is the same as that of the conventional F-

test,

6. Some further results and applications - the symmetric case

In this section, we consider the sequence of alternatives given by

(4.2) and symmetric test statistics of the form

i m
(6.1) T = kz=1 h(s, )

As in Section 5, we first consider a result on the optimal choice of

the function h(-) .

Theorem 6.1. For the sequence of alternatives given by (4. 2), satisfying
the conditions of Theorem 4.1, the asymptotically most powerful (AMP)

test is of the form: Reject Ho when
m
-y>
(6.2) f §,(8,-1)>¢c
k=1
Proof; From Theorem 4.1, it follows that the asymptotic power of a test of

the form (6.1) is a maximum when the quantity A given in (4.1l) is maxi-

mized. Observe that

(6. 3) Cov(n, n(n-1) - 4n/p) = 0
and
(6. 1) Var(h(n)) - Cov’(h(n), n)/Var(n) = Var(h(n) - Bn)

where p 1is the usual linear regression coefficient
(6.5) p = Cov(h(n), n)/Var(n)
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Therefore we can rewrite
1
-2 2 *2 1
2p""(14p)" A/[ 1 “(u)du = Cov(h(n)-Pn, n(n-1)-4n/p)/[Var(h(n)-pn)] 2
0

(6.6)

1
Cor (h(n) -Bn, n(n-1)-4n/p) - [Var(n(n-1)-4n/p)] 2

i

[Var(n(n-l)-‘*n/P)]% = Zp-z(l +p)

IA

with equality in (6. 6) if and only if

h(n) -Bn = a[n(n-1)-4n/p] +b

for some real numbers a and b. Thus A is maximized by h(n) = n(n-1)

and
Vo
(6.7) max A= [ ¢ “(udu/(l+p) . O
h 0
Using Theorem 4.1, we further have that under Ho ’
& S,
(6. 8) s([; 5,(8,-1) - 2m/p")/m*[2p" (14 p)]) = N(O, 1)
e |

and that the asymptotic power for a test of level ¢ is
|
*2
®[-2 + (f £ “(udu)/(1+p)] .
0

Further, from the above proof we see that the ARE in using h(Sk)

5 instead of Sk(Sk-l) is

(6.9) e = Corz(h(n) -Bn, nln-1)-4n/p)

, m m
! The statistic 7‘, Si which is equivalent to 7\ Sk(Sk-l) was proposed
k=1 k=1
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by Dixon (1940). Blumenthal (1963) and Rao (1969) discuss the ARE of
this test while Blum and Weiss (1957) consider the consistency properties.
Blum and Weiss (1957) also show that the Dixon test is asymptotically
LMP against “linear" alternatives with density {1 +c(y- })}, 0<y<1
(lcl < 2) but we have shown that Dixon test is indeed AMP against
alternatives of the form (4. 2).
For a nonnegative integer r, if we define

} for x=r
(6.10) h(x) =

0 otherwise ,
then

h(S

18

T4 )
v P | k

is the statistic Qm(r), the proportion of values among {Sk} which are
equal to r. This statistic has been discussed in Blum and Weiss (1957)
from the point of consistency. Our results establish the asymptotic norm-

ality of Qm(r) under H_ as well as under the sequence of alternatives (4. 2).

0
After some computations we find from Corollary 4.1 that under the null

hypothesis
% r+l 2
(6.11) £(m® [Q () - p/(14p) ) = N(O, ¢")
where
(6.12) o = {p/(l'rp)m] [1 -(p/(1+9)”1) {1+ (r-l/p)z (pz/(l+P)}] .
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The Wald -Wolfowitz run test (1940) is related to Qm(O) . Let U be the
number of runs of X's and Y's in the combined sample. The hypothesis

Ho is rejected when U/m is too small. From the definition of Qm(r) ;

it follows easily that

(6.13) lu/m) - 2(n/m) (1-Q (0] < 1/m

Thus the asymptotic distribution of U/m is the same as that of Zp(l-Qm(O))

and we thus have, under Ho »

1 3
(6.14) ¢( m® [(U/m) - 2/(1+p)]) = N(O, 4p/(1+p)")

Therefore the ARE of the run-statistic against the Dixon's statistic is

p/(1+4p) as has been shown in Rao (1969).

7. Further remarks and discussion

It is interesting to note that the theory developed in this paper gives
tests based on {Sk} which are asymptotically equivalent to the correspond -
ing rank tests in all the known situations discussed in Section 5. For a
unified approach to the theory of rank tests see Chernoff and Savage (1958)
or Hajek and Sidak (1967). We conjecture that this property is true in gen-
eral i.e., given any rank test, one can construct a test of the form (5.2)
which has asymptotically the same null distribution and power. If this is
the case, then the theory presented here seems to lead to much simpler test
statistics as compared to the corresponding optimal rank tests. It is inter-

esting to note that the optimal tests considered in Section 5 are linear in
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{Sk} while this is not the case with the ranks. Further relationships be-
tween thes= two groups of tests is under investigation. It may also be re-
marked that the theory presented here covers the asymptotic theory of many
tests that are not based on ranks as for instance, the run test and the medium
test.

The theorems presented here can also be applied to study similar test
statistics when the samples are censored. For instance, suppose that the

samples are censored at the right by X['(m the [(m-l)q]th idlie

-1)q]’
statistic in the X-sample. Under the same assumptions as in Theorem 5.1,

we obtain in the same way that optimal test statistic is given by
[(m-1)q]
(7.1) T= ) 2(k/(mih)S, -1/p)
k=1

Under HO p

1 T d 2 2
®(T/m?) = N, [[ £%wdu - ([ £(wdu)] (p)/p%)
0 0
and the asymptotic power is

T, q, q 2 1
(7.2) @(-xa+(f 5 ydu)/{[f t%du - ([ 2dw)®] (1+p)} 7 .
0 0 0

On the otherhand censoring in rank theory can not be treated as simply as
this. See for instance Rao, Savage and Sobel (1960).

Results on the asymptotic theory of general statistics based on fSk}
have been obtained, under the null hypothesis, by Holst (1976b) using a
different approach. However the approach used there does not see.m to yield

the asymptotic theory under the alternatives, of the kind derived here.
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Throughout the paper we formulated the alternatives in terms of the
sample size m of the first sample.

But a symmetric way of formulating
the alternatives would be to express it in terms of N = (m+n) .

We then
have

S }
N (GN(F (u)) -u) = L(u) (1+1/p) =L1(U), say

1
In terms of Li(u) = ll(u) = f(u)(1+1/p)2, we see that the asymptotic power

of this alternative can be expressed as

1
2 SE. (o -
®[-x  + (fo‘uu)du/(l+p)(l+p .

1f ll(u) does not derend on p, then p=1 maximizes the power i.e.,

in large samples, choosing m = n or equal sample sizes is optimal.
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