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ABSTRACT
It is shown that for an arbitrary strictly increasing knot sequence
L = (ti)iﬁu0 and for every i, there exists exactly one fundamental spline
all j), of order 2r whose r-th derivative is

(r)

square integrable. Further, Lir (x) is shown to decay exponentially as X
moves away from ti’ at a rate which can be bounded in terms of r alone
This allows one to bound odd-degree spline interpolation at knots on

bounded functions in terms of the global mesh ratio Mt i= sup,1

A very nice result of Demko's concerning the exponential decay away

At /At .
B )

from the diagonal of the inverse of a band matrix is slightly refined and

generalized to (bi)infinite matrices.
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Odd-degree spline interpolation at a biinfinite knot sequence

Carl de Boor.

l. Introduction, Let § := (ti):: be a biinfinite, strictly increa-

sing sequence, set

let kK = 2r be a positive, even integer, and denote by t.‘ % the collect=-
. ’
ion of spline functions of order k (or, of degree < k) with knot se-
quence t. Explicitly, ‘k t consists of exactly ‘those k-2 times contine-
- ’

uously differentiable functions on
I o= (t g, to)
which, on each interval (ti,thl),colncide with some polynomiel of
degree < k, i.e.,
1 k-2 *
‘k.;_ 3= Pk’gf\c on I = (t_g, tp) -
We are particularly interested in bounded splines

n‘k.; = ‘k.g n n(I),

i1.e., in splines s for which

=0

sl := sup |s(t)]

g

is finite. It 1s obvious that the restriction map
2 ®

Ryt & o —rFl: aresly t= (a(t) g

carries m‘k % into the space m(Z) of bounded, biinfinite sequences.
.—

We are interested in inverting this map, 1.e., in interpolation. We

consider the

Bounded Interpolation Problem: To construct, for given a em(Z),

some "“k,; for which s g =0 -

.Sponlond by the United States Army under Contract DAAG29-75-C-0024
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we will say that the B.I.P. is correct (for the given knot sequence
$) 1f it hasexactly onme solution for every aen(Z).

We consider under what conditions on i1 the B.I.P. is correct. We
also discuss the continulty properties of the map at—-na in case the

B.I.P. 18 correct. We establish the following theorem.

Theorem 1. If the global mesh ratio
tE __—— 3

ui 1= sup Ati/AtJ

is finite, then I = («@, @), and Rx aps ntk £ faithfully onto m(Z),

for every bou te u a, there exists ope and only
m_mnﬂ_auxn Sq €%,y for which s (ty) = a,, sll 1. Moreover,
(1.1) l'auw < const llalo. all a€en(z) ,

with const depending only on k and H1 .

We note in passing the following immediate corollary.

Qorollary, Denote by 3[:.!:] the space of continuoug (b-a)-periodic
functions on R, Given T := ('l:i)0 with @ =Tj < «e0 < T =), let ' =
(ti)-: be its "(b-a)-periodic extension", i.e.,

- 1+nJ s ‘r s 5(b-l) I_E 1=1,...0 M J‘z.

Denote by ‘k the (b-a)-periodic functions in $ T Then (u is well
known), for every f ¢G(s,b], there exists exactly one 8y t,‘ ¢ ¥hlch
agrees with £ 8% T,y Tys «eey T,e Purther, for some const nunnm_o.nu
on the global mesh ratio H: = max, J /Ar ’
lltlm < oconst |Ifll_, all f ¢O(a,b].

Indeed, 1if lfett’n agrees with f e C[a,b] at t, then so does its
translate l:(' « (b-a)) which ie also in ‘k Y and therefore must equal
8y by the uniqueness of the interpolating spline. This shows that 8, is

the interpolating spline in ‘k R for £, and so Il‘I < const [|f]] from (1.1).
For the case of uniform i+ % =Z say, the prodlem of bounded in-
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terpolation has been solved some time ago by Ju. Subbotin [17]. In this
case, the interpolation conditions lc % = a establish a one-to-one
end continuous correspondence between bounded splines and bourded se-
quences. Subbotin came upon the interpolating spline as a solution of
the extremum problem of finding & function s with 'II = a and smallest
possible (k-1l)st derivative, measured in the supremum norm. Later,
I.J. Schoenberg investigated the B.I.P. once more, this time as a spe-
clal case of cardinal spline interpolation,to sequences a which do not
grow too fast at infinity [15], [16]. b

Little is known for more general knot sequences. The simplest case,
k = 2, of plecewise linear interpolation is, of course, trivial. The
next simplest case, k = 4, of cublc spline interpolation has been in-
vestigated in [6] where the above theorem can be found for this case.

The basic tool of the investigation in [6] is the exponential de-
cay or growth of nullsplines. Nullsplines are therefore the topic of
Section 2 of this paper, if only to admit defeat in the attempt to ge-
neralize the approach of [6]. We are more successful, in Secticn 3, in
identifying, for each knot sequence % and each i1, a particular funda-
mental sgliné Ly, 1.e., a spline with Li(tj) = 013. which must figure
in the solution of the B.I.P., 1f there 1s one at all (see Lemmas 1 and
2). The argument is based on an idea of Douglas, Dupont and Wahlbin [12]
as used in [7]'tnd further clarified, <implified and extended by S.Demko
[10]. It 1s also shown (in Lemma 3 and its corollary) that the r-th de-
rivative of a nontrivial nullspline must increase exponentially in at
least one direction. The exponential decay of the fundamental spline
L1 1s used in Section 4 to prove Theorem 1. That section also contains
a proof of the fact (Theorem 4) that the B.I.P. is solvabtle in terms of
exponentially docuyin; fundamental splines, 1f it is aorrcct at all.
This fact is closely connected with S.Demko's results [10].




P ey

2. Nullaplines and fundamental splines. It is clear that the prob=-
)

lem of finding, for an arbitrary given biinfinite sequence a, some

spline s t‘k 't for which s|1 = a, always has solutions. In other words,
it 18 clear that R1 maps ‘k 't onto . To see this, start with a poly-
nomial p, of order k which satisfies po(to) = ags po(t ) = a,, and set

s =p, on [to. 11]. Now suppose that we have s already determined on
some interval [tl.tJ] and let Py be the polynomial which coincides

with s on [tJ_l.tJ]. Then

t - ¢t V=1

pa(t) = PJ_I(t) + (G#l-PJ l(tJOI))( s
J’l J

is the unique polynomial of order k which takes on the value °3+1 at
ti and agrees with P31 (k=1)=fold at t:..rhe definition

s = py; on [tj'tj+l]
therefore provides an extension of s to [ti't1+1]' and, in fact, the
only one possible. The extension to [ti-l't3+1] is found analogously.
In this way, we find a solution inductively.

The argument shows that we can freely choose the interpolating
spline on the interval [to.tl] from the k-2 dimensional linear mani-
fold

{p €P, : p(ty)=ay, p(t1)=a1S
and that, with this choice, the interpolating spline is otherwise uni-
quely determined. In particular, the set of solutions for a = 0, i.s.,
the kernel or nullspace of the restriction map RI' is a k-2 dimensio-
nal linear space, whose elements we call pullsplines. In other words,
nullsplines are splines which vanish at all their knots.

The difficulty with the B.I.P. 18 therefore not the construction
of some interpolating spline. Rather, the problem is interesting be-
cause we require an interpolating spline with certain additional chare
scteristics or "side .conditions", viz. that it de bounded. Nullsplines

R




can be made to> play a major role in the analysis of this problem.

Por irstance, the question of how many bounded solutions there
are 1s equivalent to the question of how meny bounded nullsplines there
are. More interestingly, a well known approach to the construction of
interpolants consists in trying to soclve first the special problem of
finding, for each i, z fundamental spline, i.e., & spline Lie'$k,1 for
which .

Li(tj) = 01-1. .11 'J» "
Such a spline consists (more or less) of two n&ilsplines Joined together

smoothly at ti. Therefore, 1f one could prove that both nullsplines de-

cay exponentially away from ti’ i.e.,

2 < const, A1-3l , an g,

f
LTI

at a rate A¢[0,1) which is independent of 1, then it would follow that

the series

®
(2.1) 8 = 2 a Il

a Pa— » P ¥
converges uniformly on compact subsets of I-and gives a solution s_ to

a
the B.I.P.. In fact, 8, thendepends continuously on a, 1i.e.,

s by, < const'k.x flall, » 8ll cen(z)
for some constk’k which does not depend on a.

The hope for such exponentially decaying fundamental functions is
really not that farfetched. Such functions form the basis for Schoen-
berg's analysis in the case of equidistant knots, and they occur impli-
citly already in Subbotin's work. Further, a very nice result of S.Demko
[10] ic be elaborated upon in the next section (see also C.Chui's talk
at this conference) shows that the bounded spline interpolant L to
bounded data a is necessarily of the form (2.1) with exponentially de-
caying L1 in case 8, depends continuously on a.

In a rather similar way, nullsplines also occur in the discuseion

R




of interpolation error, If f i3 sufficiently smooth, end 8¢ is 1ts

splire interpolant, i.e., srl& = flt y» then one gets, formally at
firet, that

t

» ()
(202) f(t) - Sf(t) = K(t's) f (S) ds .

)

Here, the Peano kernel K(t,+) 1s & spline function of order kx withn
knots t and‘an additional knot at the point t, and vanishes at all the
knots t. Hence, K(t,+) is again a function put together from two null-
splines. The exponential decay of these two nullsplines away from t is
desirable here, since only with such a decay can (2.2) actually be veri-
fied for interesting functions f. But, I won't say anything more about
thls here.

Based on my experlience with [6), I had at one time considerzble
hope that the exponential decay of nullsplines could be proved with the
help of the following considerations. A nullspline s e$k’§ is determined

on the interval [ti,t1+1] as soon as one knows the vector

~

31 = (8'(t1), ecey s(k-e)(tl)/(k-2)!)

since one knows that s(ti) = 8(t1+1) = C. One can therefore compute 31*1
from 31 in a linear manner. Specifically,

», A~

81+l - -A(Ati) si ’

with A(h) the matrix of the form

A(h) := dieg(l,b™},...,n"K*3) & dlag(l,h,...,n5">)

and A = A(1) the matrix
s o= (0)- (D5

This means that A(h) has many nice properties. For instance, L'l(h) =
A(-h), and A(h) 1s an oscillation matrix in the sense of‘Gantmacher and

Krein.

In the special cubic case, k = 4, A(h) has the simple form

-t -

X ;‘jr &




2 n)
A(h) =
(3/11 2

and allows therefore the conclusion that 31 grows exponentially either
for increasing or else for decreasing index i, at a2 rate of at least 2.
This observation goes back to a8 paper by Birkhoff and the author [1].
The transformation A(h) has been studied in much detail in the

case of equidistant knots in a paper by Schoenberg and the author [8],
and also, in more generality, by C. Micchelll [14]. But, such exponent-
ial decay or growth for nullsplines on an arbitrary knot sequence has

so far not been proved. S. PFriedland and C. Micchelll [13] have obtained
from such considerations results concerning the maximal allowable local

mesh ra%io

m t= su At, /At .
b1 |1-JT=1 i/ :

3. Exponential decay of the r-th derivative of fundamental splines

and pullsplires of order k = 2r, We base the arguments in this section

on the best approximation property of spline interpolation. To recall,
the r-th divided difference of a sufficiently differentiable function

£ at the points ti, eeey ¢t can be represented by

i+r

[tyeeeenty, d = [H(6) 2P (1) at/r!

i+r
with “1 = Ml.r.; a B-spline of order r,
Hl(t) = r[tirﬁocoti*r](' . t):hln

normalized to have unit integral. Further, {(s'¥) : s “2r.tk = $4

while, by a theorem of Curry and Schoenmberg [9],
by = {z,8,M, : peZ®} on 1,
where we take the biinfinite sum pointwise, 1.e.,
“1’1"1"" i= 2151)(10), all teR.

This makes good sense since

A AR e 2, Wi b e TR
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My(t) > O with strict inequality iff t, <t < %, . .
Lemna 1. Let £, :={Le$2r'§ t L(ty) = 640 811 3Y. Then X, has
exactly one element in common with Lgr)(l). We denote this element by

Ly

and call it the 1-th fundamental spline for the knot sequence t. Further,
with the abbreviations

(3.1) B := sup At,, b :=1inf at,,
d J

we have

(3.2) HLir)ﬂz < const, 51/2/3?

for some constant const  dpending only on r.

Proof. We first prove that 11 contains at most one element in
P————"—1 S
Lgr)(l) = it cc™(1) : g(r-1) abs.conte, f(r)emz(l)}. Since 11 - .f,1

= ker R., 1t 18 sufficlent to prove that the only nullspline in Lgr’ is

:l
the trivial nullspline. PFor this, let s €ker R& nlér)(l). Then, by the

introductory remarks for this section,
olT) =-L,8,M, for some g ex%, s(r)eLZ, and fMJa(r) = 0 for all J.

But, by a theorem in [3], there exists a positive constant Dr which de=-
pends only on r so that, for 1l < p <o, and for all Yelg.

(3.3) vl s NEyry(Ct g -t /0 YR < g .

Here, [I7ll, := (!:Jl-(lp)l/l’, while, for £ on I, lifll, ==(f1|f|’)1/1’. This
shows that the sequence (ﬁj) glven by

(3.4) Wy, = \».J)/r)l/2 My, 8l 3,

J+xr”
A

is a Schauder basis for $r’§nL2. Therefore, EJTJHJ ‘converges 1.2 to

the spline function in 1.2 it represents. But this means that our part-

icular spline .(r) is in the L,-span of (Mi). yet orthogonal to every

one of the y‘i' which means that .(r) vanishes identically. But then,

since s vanishes more than r times,s itself must vanish ldentically.




Next, we prove that Li contains at least one element in Lgr)(l).
For this, we recall from [5] that there exists, for any given ael#.
a function g which is locally 1n.Lér)and satisfies 3|t = a, and whose

r-th derivative satisfies
]0)2)1/20
with Dr the same constant mentioned in (3.3). Here, the number

[tJ,...,t

(3.5) g™, < D5 (gt Tt goecnity,

JJ'r]cx stands for the rth divided difference at the points tJ,
wou s tJ+r of any function £ for which rli = a. In this way, we obtain

for the specific sequence a = (61 J)J-o a function ge]l’..(r) for which

while ng‘r’uz is bounded by the right side of (3.5). Note that, for

the specific sequence a = (!51 J)’ this bound becomes

e, < n,(az (ty,t J>[1/f‘"r<t1-t,,)12)1/2

< const, (h)*/h .

Now let § be any element in Lér) so that g(r) is the I.a-approximation
to g(r) from $

[tJ..oo,t8+r]§ - f /‘(r)/r' f“ g(r)/r = [tj'...’tj-#r]g'
all j, while [g 1')ll Ilg(r ll,» But this means that, for an appropriate

polynomial p of order r,
(8 + p)(ty) = glty) = 8 4, ally,

vhile still [|(g + p)(r)ll2 < llg(r)ﬂz < constrﬁl/a/gr. This shows that
L:=g +p 1s a function of the desired kind. |||

We continue to use the inequality (3.3) and the abbreviation
ﬁj = ((td’r-tj)/r)l/anj. and come now to what I consider to be the
main point of this paper.

Sexdige. ®
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Leome 2. If B 15 the sequence of coefficients for Lgr) with respect
A (r) Y A~
to the basis (Mj) for $r,§’ 1.e., it L1 = ZJBJMJ' and

{O s |3-1] <n
BJv IJ‘il 2n

’ n=0,l,2, ceey

then there exist oonstr and XrG;[O,l) depending only on r so that

(3.6) N8® M, < comst, lsll, AR , n=0,1,2, ... .

The inequalities (3.3) allow us to conclude from Lemma 2 the ex-

ponential decay of Lir) in the following form.

Corollary. For some conatr, and some )r ¢(0,1) depending only on r,

and for all 1 and n,

IIL{I‘)NE'(t‘O,ti-n) + "Lf(lr)"2,(t1,,n-tm) < cons‘tr lle(.l‘)uz )\"; -

Proof of Lemma 2. lLet

L= (fHyH)
be the Gram matrix for our appropriately normalized B-spline basis of
‘r.&' A proof of the lemma can be obtained directly from the fact that
the elements of the inverse matrlr for A decay exponentially away from
the diagonal at a rate which can be bounded in terms of r and indepen-
dently of t. This is proved in [7] with the aid of a nice inequality
due to Douglas, Dupont and Wahlbin [12]. But, between the time I proved
Lemma 2 this way and the delivery of this talk, S. Demko wrote & paper
(10] in which he demonstrated that such arguments use actually very
little specific information about splines. Using the inequality of Doug-
las, Dupont and Wahlbin, he proved the following nice

Theorem (S, Demko). Let A := (a,.,) be an invertible band matrix

(of finite order)._Explicitly, assume that, for some m, 84 = O whea-
ever [1-J| > m. and that, for some positive K and K, and some pe[lm],

El=ll, < lazll, < K lxl,, all x.

ol 11 L




Then the entries of the inverse Mt =3 (bij) satisfy
Ibijl < const Xli'Jl - s g S

for some const and some A\¢[0,1) which depend only on m, p, K and K. In

particular, these congstants do not depend on the order of the matrix A.

The interested reader will have no difficulty in proving this theo-
rem after a study of the following proof of Lemma 2, a proof which makes
essential use of Demko's ideas, even though the inequality of Douglas,
Dupont and Wahlbin fails to make an explicit appearance. In the bargain,
the reader will thereby obtain explicit estimates for const and A(which
Demko did not bother to compute).

We note that the specific matrix A = (fﬁiﬁj) is a band matrix, of
band width m = r-1 in the sense that Iﬁiﬁj =0 for |1-3| > r-1. Also,

we conclude from (3.3) that the sequence-to-sequence transformation
a~»Aa

induces a linear map on (2(2) to (2(2) which we also call A and which
is bounded and boundedly invegtible. Specifically, one obtains from
(3.3) that
(3.7) = Mal ™M, < p2.
Here, llBII2 := sup 4{|ch;|2/||¢le2 1 g€ (2(2)}, as usual,

We now claim that,
(3.8)  forsilmy2r, 082 < (k¥a))Us'™2)3
which, with the t-independent estimate (3.7) for K, establishes the
lemma (with A =(k/(1+2)/2)1/28 ), ‘

For the proof of (3.8), we consider without loss of generality only
the specific function L,. We note that

)y = [Rsf

r:( (ti‘r-ti)/r)1/2[t1 geee 't1¢r]L°

0O unless % < t5 <t ..




Therefore,

(3.9) supp Ag ¢ [-r,0] ,

where, for any biinfinite sequence a, we use the abbreviation

supp o := {1€Z : 31340\.

We cleim that, for n 2 m,

(3.10) supp Ap(® € (-p-m, nem) \ (-n+m, n-m) .

Indeed, supp (B(n) - B) < (-n,n), hence supp “a(n) - B) € (-n-m, n+m)

whth also contains supp AB = [-r,0], therefore

supp ‘s(n) C (-n-m, n+m) .

On the other hand, supp B(n) gz\(-n. n), therefore also

supp ‘B(n) € Z\(-n+m, D~ .

It follows from (3.10) that, for n > 2r,

(3.11) supp “(n‘) N supp “(n-an) =
therefore
lap®p2 < pap®N2 o a2 o gagel®)opln-2miy2
But then
tigtne®n, < mae®, < pacetople-2ly,
< Iapnst® - plm-2)y,
il.e.,
12 < k2™ - pla<imigs

Pl [ st T R

which proves our earlier olaim (3.8). ||

It is clear that the argument provides the exponential decay of




the form (3.€) and with A< (K/(1+k_2)1/2)1/2m for any sequence B in
L,(Z) for which Ap has finite support. In particular, one obtains such
exponential decay for the sequence T(i) for which AT(l) = (61-3). 1.e.,
for the i-th row of the matrix inverse of A, Purther, it 1s clear that
(3.11) implies uAs(n)ﬂg < HAs(n)"; + “Aa(n’zm)ﬂg forany 1 <p <o,
hence, the argument carries at once from 12(2) over to any (9(2) with

l < p <®. Demko obtains such exponential decay also for p = ® by con-

sldering the transposed matrix AT for which then automatically

1T a® My = Aty

due to the finite order of the matrix he considers. This switch requires
a8 word or two in the infinite case, as follows. As one eesily checks, 1if
a (bi)infinite matrix (‘ij) gives rise to a bounded linear map A on 40'
then its transpose gives a bounded linear map B on 11. and the adjoint
of B 18 then necessarily A itself. This implies that, if a matrix ('13)
gives rise to a bounded linear map on 4' which is boundedly invertibdble,
then its inverse can also be represented by a matrix, viz. the transpose
of the matrix which represents the inverse of the linear map on ll given
by the transpcse of (‘1J)° Of course, exponential decay away from the
diagonal is unchanged when going over to the transpose.

These comments establish the following

Theorem 2. Let M be & finite, infinite or biinfinite "interval" in
e ————— ]
Z, letl <p <o, and let q := min {p. p/(p-1)}. I_ﬁ (‘13)1.31)( be a
matrix with band width m := sup {li—Jl : n“ F ‘)}. and assume that (lu)
induces a bounded linear map A on CP(H). If A is boundedly invertibdle,
then A~} 1s also given by a matrix, (blj) say, and

lbij' < const Al1-31 » 8ll 1,3,

th

-13=-

ARG 3K e M U T : TN PR SR e s et e
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= (/e 2/ oney < /N3, K= A IR

We add one more remark, With the appropriate interpretation of
"bandedness", the above argument carries through even for matrices which
are not banded in the straightforward sense, As a typical example, con-
sider the Gram matrix for a local support dasis of some space of funce
tions of several variables. Then, there i1s no ordering of that basis for
which the corresponding Gram matrix is appropriately banded. But, if we
follow the geometry of the underlying problem and think of the Granm
"matrix" as acting on functions on some multidimensional index set M
having an appropriate metric |.| (instead of on Z), then the statement
and the proof of Theorem 2 go through otherwlise unchanged. We do not
pursue this point here further, but alert the reader to Descloux's fine
peper [11] in which such considerations can be uncovered once one knows

what to look for. S s Hatn iy
We finish this section with the observation that the r-th deriva-

tive of a nontrivial nullspline must increase exponentially in at least

one direction. The argument is rather similar to the proof of Lemma 2,
A

We continue to denote by A the specific matrix (Sxiﬁj) and recall

-1 2
(3.7) = “‘"2" "2 < D!‘ .

Lemze 3. If L,B,M, 1s the r-ih derivative of & nullspline in 32:.;
and 1 < J are arbitrary indices, then
J J+2m
Aexty LIt s & 8 I
v= v=i-2m

Proof. Define B', B" by

: { By» 1svs) . {s... 1-2m<v<i+2m
g e= = ]
i 0 , otherwise y " 0 , otherwise
80 that the inequality to be proved reads
(3.12) 2+ k20805 < &2 18"13 .
-1 4=




We have

supp A8' < [1-m, j+m]
while

supp (B - B") ¢ Z\[i-2m, j+2nm],
therefore, with A8 = 0,

supp Ag" = supp A(B - B") € Z\[i-m, Jem] < Z \supp 4B'.

Consequently,

Iz, < Mas'l, < UAC8' - 8", = lANE' - p7I,
or, with K= [lAll 4",
ne'u3 < K%' - 83 = K2 (HB"3 - MB'UD)
which implies (3.12). |||

Qorollary, Let Z,8,M, be the r-th derivative of a mullspline s in

‘21,'; and set

8y 1= £ 8y 1%, al1 3ez ,
2mj<i<2m( 341)
with m := r-1, ags before., Then
(3.13) L a, < k2 (a, +8,), for all 1 < »
tebey * Rl e 4

Therefore, for all j+» and either for all 1> M or for all 1 <M,
8, 2 const, Ni=pl

¥ith

A= (1 K/ >1.

;_r.gof. Assertion (3.13) follows st once from the lemma. The second
assertion of the corollary is less obvious. For its proof, assume with-

out loss that p= O Prom (3.13),
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A .0 < -1<§<1.°. 121.2.3' see o
Therefore,
(3.14) Ne < i TORE B R
=i<y<i
with

e 1= uo/I\.

Let now consto = % c/kz. as defined above, and assume that the inequal-
ity

a, > const Nt

1
is violated for some 1 > O while also

(3.15) a_y < con-tal\3

for some positive J which we assume without loss of generality to be no
less than 1. Then, we can also assume that ] 1s the smallest index > 1
for which (3.15) holds. We obtain from (3.13) that

(3.16) £ & = gz(a +8,) < kecona J + I\") =3 e(l\J + Ai).
agegn ¥ B Tag vy YA 3
On the other hand, by (3.13) and by the cholce of J,
L s, = L a8, + L ay
- J<v<i - J<vs-i =i<u<i
constf A1 = (A'-1))/(A=1) + oA

=3 (N-AD & oM = Fo(N+AY

Iv

which contradicts (3.16), and so finishes the proof. In the second last
equality, we used the fact that A-l = (l’."ol.)/'t2 -1l= 1/&2. 111

Remark, It 1s easy to see that, in the corollary, n,_l ‘8, £0
for any p in case the nullspline s is not trivial, Por 1f, e.g., 8, =
= (r)
8g = O, then 8'" ' would vanish on [t-ad.o(n-l)' 1.2._(’_1)] = [ty oto,y )

-,(,-
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hence s would be a polynomial of degree < r on that interval and vanish
2(r-1) times there, therefore would have to vanish identicelly there.
But then, we would have 8 = O by the considerations in Section 2., We

can therefore conclude from the corollary that, for & nontrivial null-

spline s,
&, > const Al

either for all 1 > 1 or else for all 1 < =1, with a, and N as in the

corollary and const := % max{a_l. IO\/(K A)z> 0.

The argument for this corollary would have been simpler had I been
able to prove that every P with AB = O can be written as a sum B = B'+8"
. 1(2 2

with ’:1_>_o|91' |

A minor variation of the arguments for Lemma 3 and its corollary

<o and ziﬁola{ <o, and AB' = AB" = 0.

allow the following conclusion of independent interest in the study of

linear difference equations.

Theorem 3. Let A = (a.1 ) be a biinfinite matrix which represents
_———u —— J
8 linear map, also denoted by A, on (v(z) for some p £[1, ®) which is

unded a LA e Kand K go that
Elall, < NMall, < Efall, forsll acg@).
If A is 2 band matrix, i.e., if

m = mp{li—Jl : -“;éo} < ®,

then any nontrivial sequence B for which Ap = O must increase exponent-
1ally either for increasing or for decreasing 1. Explicitly, there
exist an index m and a positive oonlt”r go_that, elther for all 1>M
or elge for all 1 <M,

P 11=p]
zquzn(un" x °°“t’-r‘A
vith

A= (1+&P)/kP pgnd Ki= R/K.

Thanks are due to Allan Pinkus for questlioning the necessity of an addit-
ional assumption in an earlier version of this theorem,

-] 7=

— B
b ‘b—




4, Exponential decay of the fundamental spline. Assume that the

knot sequence is such that the B.I.P. 18 correct, i.e., has exactly one
solution s em& 't for every a em(Z). This means that the restriction
map R&, when restricted to m‘k &' is one-one, onto, and clearly bounded
with respect to the sup-norm. One verifies directly (else see (4.2)
below) that m&.i is a closed subspace of m(I), hence complete. The Open
Mapping Theorem therefore provides the conclusion that R& 1s boundedly

invertible. This means the existence of some const so th;t
(4.1) flslly < const llall, , 81l cen(Z).

Let Nl = N1 ok-_i'g

ence ;. normalized so that

be the 1-th B-gpline of order k for the knot seque-

k-1
N0 i= (L gaeenntyyd = [8geensty ) DO = 0

and so , comparing with the B-splines introduced at the beginning of
Section 3,

Uy g = ((lyguemty)/E) My g -
From (3.3), or already from [2],
(4.2) o gMely < M58y El, < Nl » el pem(@),
for some positive constant & depending only on k and not on .

Since (Ni) ® 45 a basis for ‘k (in the sense described in the pre-
ceding ssction), it follows that s “k o satisfies -|§ =a Aif and
only if its B-spline coefficlent sequence B satisfies
(4.3) !:Jl;(tj_)a1 = 6y, all 1 ,

while s “k,; is bounded if and only if its corresponding B-spline se-
quence B 1is ;aundod, by (4.2). We conclude that the B.I.P. has exactly
one solution for every a em(Z) 1ff the matrix

maps ¢. faithfully onto l.. We collect these facts in the following

-|H_
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Theorem 4. The bounded interpolation problem is correct if and only
if the matrix

A = (NJ(tl))

provides a faithful linear map from (0(2) onto (D(Z). If one or the other

of these conditions holds, then A, being trivially bounded, 1s boundedly
invertible, Since A is also a band matrix, of band width m :=r-1, it

then follows from Theorem 2 that the inverse of A is also given by a
matrix, (b“) say, and that
Iby 41 < oconst Ni=30 an 4,9,

)\:=(K/(1+K))1/2m. const 5&/)\2’", Ki= lll'lllm
since |A|0 = 1. In particular, for all i, the function
I'i 3= ZJ bij 'j

is then a fundamentel spline which decays exponentially at the rate )\,
and the solution s, of the B.I.P, for given aem(Z) is given by

.a = 210353 ’ |
8 series which converges uniformly on compact subsets of I.

We do not know conditions which are both necessary and sufficient

for the correctness of the B.I.P. . Since correctness inplies bounded-
ness of the map ar>s_, we obtain from (4; Lemma Of Section 2] the nec-

essary condition that the local mesh ratio

m, = sup At,/at
R Vit IO
be finite. If the local mesh ratio is indeed finite, then a simple suf-

ficlent condition for uniqueness of the interpolating bounded spiine is
the condition that

(4.4) gl I=(o,®) .
5
-19- 3
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This is connected with tke fact that, with k = 2r, the r-th derivative
of any nontrivial nullspline grows exponentially in at least one direct-
ion, as described in Lemma J and its corollary. Precisely, we have the

following

2 11=13]=
pontrivial nullspline s in

Proof. Let s = 2171101 X be the nontrivial bounded nullspline in
& 1 e (1)
tk’&. Its j=-th derivative 1s then s =LYy “1,k—3' with

Y(J) . { Yy » =0 5
. (o= ) (r§ 1)y {10y o 1)y 350

Lemma 4, If m, := su Ati/At <®, and there exists a bounded
AR & i;l J pe—

Tt then either t > -® or % <.

This implies the estimate

(4.5) i1 < iy 2% mex {lvy_yloeens Iy 108y ot

(see, e.g., [4], for similar considerations). Write now the r-th deriv-
ative of s in terms of the somewhat differently normalized B-splines
il := (r/(thr'ti))l/zli.r,i introduced iy Section 2,

l‘r) s ’:1’131 .

Then B, = ri"’((thr.tl)/r)l/a, so that, from (4.5),

(4.6) 'Bi' < const, Iﬂ!./(t,"_x.-‘ti)r”']‘/2 “

By the corollary to Lemma 3 (in Section 3), we may assume, without loss

of generality, the existence of a positive const so that, with m = r-l,

> 18,12 2 comst NI, 3=2,3,...
2m j<i<2m( J+1)
2

wvhere A:= (14 K?)/K2 >1 eand K< D7, the latter a certain constant in-
dependent of t . In conjunction with (4.,6), this implies that

const AJ < comst. max{(t ti)l'zts a:q_gznuu)}

Y 1+1°

2
< comst, . (né)r li.n{(thr-ti)l’zr ¢ 2mj<i<2m( ek,

where we have used the fact that

-20-




-1-31 1=
By S (g, mt )/ (g, =ty < "'1' *,

It now follows that

t -0k = constl\"‘/(er). 1=2r, 2r+l,cee

i+r b

and therefore

®
% = tzr + 120(“(1‘1)1' - tir) < ® . lll

We note in passing that the argument also establishes uniqueness
in case either t-m or tw is finite as long as the local mesh ratio is
<Q for some Q which is greater than 1 and depends on Ne

We are now ready to prove Theorem 1.

Proof of Theorem 1l. Since the global mesh ratio Hi =

m.q>1’:,At.j_/AtJ is finite, then, in particuler, I = (@, 07 and Lemma 4
implies that RI maps m$k'& one-one to m(Z).

Next, we prove that, for each i, the fundamental spline function
1.1 introduced in Lemma 1 decays exponentlially away from tl.' i.e., for

all J and all xc(t,0t, ],

(4.7) L, (x)| < const xll-il
for some const depending only on k snd M,, and some Ae[0,1) which de-

pends only on k. It suffices to conaider-J >1. We havse Li(tn) = 0 for

n £ 1, therefore

Ll(X) (x"3¢1)‘"(x"tj-or)[x'tjﬁl""’td#rh'i

E
Q(htj#n) It[xvtj‘,lo.--otJ’r]('-t)f‘l L,(_')(t)dt/r! .
By H8lder's inequality,

fr[xotj’lo---ntj‘r]("t)?l L{r)(‘) dt

1/2 )
< (2/(ty,=x)) g "I‘i(.r '2.[:.%,,] 4

making use of (3.3), so that, from the corollary to Lemma 2,

- " Sladers o R prs— . AL e A M N 5 e AT Lo b R Rl
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iLy(x)| < const, (Hr/g}/z) const Ile(_r)!l2 AJ'i
with A¢[0,1) depending only on k, and

B := sup, 8t,, b := inf At .
But now, from Lemma 1,

HLj(_r)I2 < const, 5'1/2/!_1r .

and (4.7) follows.
The exponential decay of all fundamental splines L1 at a rate .
which does not depend on 1 now allows us to construct an interpolant

8, in &,2 for arbitrary a €m(Z), in the form

which satisfies

s ll, < const [lall,
and therefore is in n‘k.§ o
It is clear that the argument for Theorem 1 shows the existence of
a number ¢ > 1 (which depends on k and on the A\ of Lemma 2) so that the
conclusions of Theorem 1 hold even if we only know that the local mesh

ratio is less than Q. A quick apalysls of the constants involved shows

this provable Q to converge to 1l very fast es k increases.
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