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ABSTRACT

In Feller (1968), An Introduction to Probability Theory and Its Applica-
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tions, Vol. 1, the following urn model is discussed. " Consider, m urns and
distribute n indistinguishable balls among the urns such that the distinguish-

able distributions of the balls all have the same probabilityp.l/( n+m1 1 -

—> Let Sk denote the number of balls in the k‘g, urn. Clearly S1 ... % Sm =" n.
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In this paper, random variables of the type Z = h(S i ), especially S

= Sl . 4 Su‘: m o
,S\ ) = I(S ) +... +h (Sm) are studied when m,n -.Loo 1n such a way
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SOME LIMIT THEOREMS FOR THE INDISTINGUISHABLE BALL PROBLEM
WITH APPLICATIONS IN NONPARAMETRICS

Lars Holst

1. Introduction

In Feller (1968) the following problem is discussed. Consider m
urns and distribute n indistinguishable balls into the urns in such a manner
that all distinguishable distributions of the balls have the same probability.
What is the probability for each distinguishable outcome ? A solution is:
place n+m-l balls into a row and pick out m-1 balls at random (without
replacement) and think of the '"gaps'' as the ''walls' of the urns. In this way
we obtain a distribution of the balls over the urns which is of the type above.
As there are ( n:\n-\l-l) ways of picking out the m-1 balls the probability for
each outcome is l/(n:;‘"_‘l'l

in the urns, we have thus found the joint distribution of (Sl, i ,Sm). Note

). Ifwelet S,...,S denote the number of balls
1 m

that Sl +... + Sm = n sothe S's are dependent random variables. In this
paper we will consider random variables of the type Z = h(Sl, ot ,Sm),
especially h(Sl, e ,Sm) 2 hI(Sl) +... + hm(Sm), and limit theorems for
such random variables when m,n —= @ such that m/n = p, 0 <p<o ,

The above urnmodel has been used in physics in connection with
Bose-Einstein statistics, see Feller (1968), p. 39,

The urnmodel is also of relevance for the two sample problem in
statistics. Let Xl, ¢ o ’xm-l(Yl" #54 ,Yn) be m-l (n) observations from a
continuous distribution Fx (FY). The problem is to test the hypothesis

H0 : Px = FY , i.e, the samples have come from the same parent distribution,

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,
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Let the X's be ordered Xi < X'2 ST X;n 1 (they are different with proba -

be the number of Y's in [XL’l, XL), S IR

with Xb = 00, X;n = 4+, If both samples have come from the same contin-

bility one) and let Sk
uous distribution then (Sl,. B ,Sm) has the same distribution as in the urn-
model. Tests based on statistics of the form hl(sl)+' & +hm(Sm) are investi-
gated in Holst and Rao (1976). Such statistics are connected with many non-
parametric tests.

We also note that the random variable (Sl’ e ,Sm) can be constructed
in the following way. Take m-l points at random in (0,1), order them, and let
Dk be the distance between the k-l:th and k:th point (the k:th spacing from
uniform (0,1)), k=1,...,m (k = 0(m) corresponds to 0(l)). Given the D's
consider m urns and throw n balls independently into the urns such that

the probability of hitting the k:th urn is D If Sk is the number of balls

K
in the k-th urn, then the (unconditional) distribution of (Sl’ e ,Sm) is as
above.

In Park (197 3) another formulation is given and a limit theorem is

derived for the case hk()) = h(j), where h(j) = 0 for j>K.

In order to properly state limit results sequences of functions hkv's
etc. are considered. But in order to facilitate the notation we suppress the
index v. We use the notation .t(Un) - f{{U) for convergence in distribution.
N(m,Z) stands for the normal distribution with mean m and covariance I .
Po(\) denotes the Poisson distribution with mean X\ .

We will always suppose in the following that m,n =% such that

r=m/n-=p, 0<p<omo,




2. The characteristic function.

Let UEMIEAPYRRE be i.i.d. random variables with the geometric

distribution

yH,

P(n = j) =r/(r+l BT B SO

where r =m/i1., It is well known that
2
B(n) = 1/r, Var(n) = (r+l)/r" .
Let M <m and consider for a given function h(.) the random variable

8., = h(Sl,...,S

M M)'

Theorem 1. The following representation of the characteristic function of ZM

holds:
itZ
Be 9 = 29 % “*:"1)‘1(”1)“*“‘ 5 g
M
J T E(explithin ;. .. ,my) + 10 E(qk-l/,,,)_((m_eie)ete/r/r)m-mde :
- 1

Proof. It is well-known that " s SRR m has a negative-binomial

distribution, i.e.

P(ny ... +n_=n) = [“*m")rm(r+l)-(n+m)

m n
- N1 K So-len )
\ i e ¢ i Swie 0O
E(exp(it Z ("k ~1/r)) = ((r+1 - eie)e e/r/r)M g UNARLD 505D O
M+1 JUSTIFIGATIEN ?
Therefore the assertion can be written 3
DISTRIUTISE ZAVRILIT N T £E71S
ltZM 1 — Oist. Ak .'
= 6 i KR el o v
E(e ) = (ZRP(nl R nm =n)) ‘
; . A |
. _f'r E(exp(ith(n, .., ny,) + 10 Z_’, (n, = 1/0)))de . 1




Hence it is sufficient to consider the case M = m.

We also have for j, +... +j =n, jk:O,l,Z,

, , +m-1
P(ql=llo'°'9'\ :J ﬂl""--*"\m:n):l/(n - ),

or the conditional distribution of (ql, s qm) given " +... % R

is the same as the distribution of (Sl’ L Sm). Therefore we have

ith(jl, can g jm)

e P(nl=)l,---,qm=jm)e /P(ql+...+nm=n)=
+...4 =n
ith(Sl, ...,Sm)

= E(e ) .

Now we can write

o™ m

.[" E(exp(ith(n;, ..., n_) + 19% (m, = 1/r)de =
H b E -ién

E f L ; exp(n.h(jl,...,)‘m)+iGij)'e “P(my =y ooy =) )do
sl ITRRRTY =0 1

m
158, o531 ) ™ m
= 1’ ’

B e ™P(m =dy.eeon =4 ) [ exp(i6(), i, -n))de =
. . S | m ‘m k
Jypeeey =0 - 1
1 m

ith(j ., ...,j )

5 1 m 5 % z =

_j+ : :ne P(nl-jl,...,nm—jm) 2w
et

uh(sl, g Sm)
= E(e )'P(ql+...+nm=n)'2w.

The above interchange of summation and integration is allowed because

of the absolute convergence of the series.

Combining the above results proves the theorem.




In the following lemmas we consider the '"non-random parts'' of the

representation in Theorem 1. Recall r=m/n = p, 0<p< o, when m,n =,

Lemma l. When m,n -+ © we have

(2“)-1 n+m-1 -1

1 1

sy (r-i-l)m’m r’™/m? = ((r+l)/r221r)"' - (1 +O(1/m) .
Proof. By Stirling's formula
(“":"l L oatmel! fném-l)t =
L 1
= n" e M2m)? m™ e ™ (2rm)? - e
1

PR (n+m)-(n+m) en+m cawliinah ¥ eO(l/m) =

(nzm /eyt - f® ™. it O/

from which the assertion follows. .

Lemma 2. Let M, m—= ® sothat M/m - a, 0<a <1, and set
£(0) = ((r+l - ol®) ¢10/1/M-m

Then for each fixed real number

H , 2 2
f(W/m#)= f(4) = exp(-(1-a) (pr1)/2p") ,

and
i w Q0
m® [7 £, (0)|de ~ [ |f(y)|dy .
- -00
Proof, By expanding into Taylor series we find

l ot - -
f (y/m?) = (1 + y%(r41)/2r%m + O(m 3/2)) m(1-M/m)

= £(y) = exp(-(1- al2(pH)/26%), n = @ ,

which proves the first statement.

B ——
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Let d >0 be fixed, then

1 1
m? f |fn(9)|de = m? f (142(r+1)(1-cos®) /r

w>|e| >d m>[8]>d

-(m-M)/2

1
< 2w m2(1+2(r+l)(l-cos d)/rz) 0.

For d sufficiently small and m sufficiently large there exists

and C >0 such that for |8| <d

2-C-m
|fn(e)| < (1+ Kde )

Therefore for A = {6; m_l/2 t l/7< 8] <d}

1

1 20 o

m® [ £ (0)d0| < [ (14K %/m) Colapinn:
A m2A

-1/2+41/7

In B={8;|8]<m } we can use Taylor expansion and find

N

m? [] (0)|de - [Py |dy <o,

B -0

which completes the proof. L]

2)-(m-M)/2d6

Kd>0
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3. Some limit theorems,

First we give a general theorem,
Theorem 2. Suppose that M,m - ® such that M/m = @, 0<a <1, and

that the sequence {hM(- )}, for each fixed real numbers t and s , satisfies

M 1
E(exp(ithy (n), ... ,ny) + is kz=:1 (n, = 1/0)r/((r+1)m)?))

2
- H(t:,s,)e.as /Z . m- © ,

where H(t,s) is continuous and H(0,s) =1 . Then with Z_ = hM(Sl,.. g ]

M

M

we have
U2y, ) ~ 2Z)

where Za's characteristic function is

itZ 1 2
Ee %) = (2m)°2 f°° H(t,s)e ® /2 ds .

-00

Proof. By Theorem ]l and Lemma 1 we have

itZ 1
L(e M) = o HE, {3y} %

1
ﬂmz(r M 1 3

f% E(exp(ithy (n),. .. ,ny ) +is ; (nk-l/r)/«m‘nfnw/m‘a)dq,
-Tm o

using the notation of Lemma 2 and 0_2 = Var(n) = (r +l)/rZ . By the extended
Lebesgue dominated convergence theorem (see Rao (1973), p. 136) and Lemma

2 it follows from the assumptions that

itz 2 2
B Mo any? [ Tune) 0 /2ot 2,,
-00
&/
= (21!)'% fw Hit,s) e™® /%ds,
~00




As H(t,s) is continuous the last integral is a continuous function of t .

Thus the assertion follows by the continuity theorem for characteristic

functions, =
Of particular importance is the special case
m
M8, ... 8 ) = 12 h(S)
where hl(- ) I ,hm(- ) are given functions.

Theorem 3. Suppose that M,m - ®© such that M/m—=a, 0 <a <1, and

for some @, <1 we have for a, <a &3

M

iy

/ kz=:l Bi(my) A B
£ l - N ’

M 1
2, (ny =Voor/((r+1)m)? /
k=1

where as a~ 1-

a 1 a 1
Then
o 2
£ 21‘, h(S,) = N(0O,A -B)).
Proof. For @y <a <1 the assumptions of Theorem 2 are satisfied and
therefore
itZ 1
E(e M) - (2m)°° f°° exp(-(Aatz + ZaBats+sz)/2)ds

-00
122 2
= exp(-(A - a B,)s /2) .

So :(Za) is N(O,Aa - aZB:) . In the same way we find

"Z‘ 2 2
) =2 ( h,(8,)) - N(0,A,-A - (l-a) (B,-B ) ).
M+l k'k 1 Ta 1 a

£( ZM

i . S B T A5
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Now when a —+ 1 -

2
1 ’

2 2
AI-AQ—(l-a)(Bl-Ba)-—O.

A =asz- A -B
a a 1

Using an argument by Le Cam (1958) p. 13-14 it follows that

m
. % o
$(Z, 42 = :(k; h (S,)) = N(O,A -B). .

Particularly simple is the symmetric case hk(~) = hn(- Yook =2, .,

Theorem 4. Suppose that

m

2, h(n)

k=1 5
) - 2 y)

L 1
Y, (ny = 1/0)r/((r+1)m)2
\ k=1
for some random vector (U,V). Then

2 2
qu + 1sV) - Glt) - e-(At +2Bts+s“)/2

E(
with G(t) having no normal component and
m
£ zl‘j h (S,) = £(2)
with

22
E(enz) - Gt e-(A « BN /2 i

Proof. By classical limit theorems for independent identically distributed

random variables the first assertion follows (cf. Le Cam (1958), p. 8). It

is also easily seen that the function H(t,s) of Theorem 2 is given by
-a(At2+ZBts)/2

H(t,s) = (G(t)" e

erhin AN S SN SR Al L.
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Therefore

itZ
a

3 o 2 2
E(e ) = (2m° % (aen® f°°e (aAt"+2aBts+s”)/2 B

-00
2-2. .2
(o) 71 - B/

By the same argument as in Theorem 3 the assertion follows [ ]

m

If the limit distribution of Zhn(nk) has no normal component then
1

we get:

Theorem 5. Suppose that

m

2 k};l h (n,) = £U)

where the infinitely divisible distribution £(U) has no normal component
then

m
£ ), h(5,) ~2(U).

k=1
Proof,_ Set
m
Up = 2 Bl
and

m
Vo= ) (n - LAl + Dm)Y/2 .
n pad k

As £(Un) -+ £(U) and £(Vn) - N(0,1), we can select from any sub-

sequence of .c(Un, Vn) a convergent subsequence x(Un,, Vn') using

Helly's theorem. Thus by Theorem 4

itUn,HsV y

E(e n) ~G(t) - e-(At2+ZBts+sz)/Z '




U) = G(t).

But U has no normal component so A= B =0 and El(eit
As the limit is the same for any subsequence it follows that .t(Un, Vn)
converges. By Theorem 4 the assertion follows. B

In the remaining part of this section we consider the statistic

h(S,, - .-

»
n
—_

for a fixed function h(:), which does not depend on n. We also
suppose that m,n - ® so that m/n = r = p is fixed. Let n as
in Section 2 be a geometric random variable with mean 1/p. We use

the notation

# = Eh(n)
o), = Var(h(n)
o5 = Cov(h(n), n)
o,, = Var(n) = (p +l)/pz

2 1/2
W T AL T A

o
The following local limit theorem holds.
Theorem 6. If h(n) is an integer valued l-lattice random variable with

finite variance and o). 2 >0 then

-1

ng exp(-j,_l(v » mu)z/mcf, ) =0,

3 0 -1
m P(:L: h(S,) = v)=(2m)% - o

uniformly in v when m - o,

Proof. Using Theorem | with M = m and Lemma 1l we get




e

itZ

Ee ™= E(exp(iti h(S,))) = (mo /Zw)% « (1 +0O(1/m)) -
1 k 22

/ . )
4 E(exp(it h(n, ) + 16 )) - exp(-in@)de .
-n 1 & 1 &

It is well-known that

1th) -ivt

PZ_=v)=(/2n) [ Ee e " dt.
-m

Hence we obtain

1
P(Zm = ) = (vaZZW)Z(l + O(1/m)) -
3 ¥ % m m
(1/2m)” [ [ Eexp(it ), h(n) +i0 2, n)) -
-7 -7 1 1
- exp(-ivt - in@)dt de6 .

As above we have

m m
P_(v,n) = p(; h(n) = v, ; n = 1) =

2 o™ ™ m m
= (1/2m)° [ [ Elexp(it 2, h(n) +10 ), n)) * exp(-ivt - ine)dt do .
I

-r -w 1
By a multi-dimensional local limit theorem for lattice distributions by
RvaEeva, see RvaZ:eva (1954) theorem 6.1, we have uniformly in v when

m-.ao’

-1 2 .-
um(v,n) - (2m) (cuazz 12

- exp(-((v - mp.)z/wum +0 +0)/2(1 - wlzz/cuczz)) -0,




-

or using the results above

m%P(Zm v) = (1+ O(l/m))(ZH)-% : “1-.12 :

((exp(~(v - mu)/20] m) +o() =

-1 -1 22
= (2n) “al_ 2exp(-(v - mu) /261- 2m) +0o(1) ,
with o(l) uniformly in v.

Remark. The above approach to limit theorems for h(S.,...,S ) transforms
———— 1 m

the problem to study essentially h(nl,. el ,nm), a function of independent
random variables. Of course other theorems than those stated above could be

derived in an analogous manner, e.g. using limit theorems for 2-dependence

to study ; h(Sk,Sk+l)

S SR AR o R Se 1
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4., Some applications in nonparametrics,

Using Theorem 3 limit distributions, under the null hypothesis, for

several nonparametric statistics for the two sample problem can be ob-

tained; e.g. the Wilcoxon-test and the run-test is of the above type. Such

applications are considered in Holst and Rao (1976). In that paper ''close

alternatives'' are also studied. To obtain limit distributions under such

alternatives seems to require a different method of proof than that used above.

Applications of Theorems 4, 5 and 6 are given in the following examples.

Example 1. For the geometric distribution

Pln=j) =
we have

P(n >a) = 1/(r+)?,

t/(e41y B W v S

a=0,1,2,..

Letting I(-) be the indicator function we have

m

E ) Un, >e ) =
k=1 k m
where

m

a
mP(n>a ) = m/(r+l) T = A

m

a = Iog(m/km)/log(nl).

If )‘m - X\, 0< X< o, then it follows by the poisson approximation of the

binomial distribution that
m

& ), Uny >a ) = Ro(N).

k=1
By Theorem 5 it follows that

m

£( ) US, >a_)) = Po(A)

k=1

-14-

i,




From this we have

A
’

m
P( ), US, >a ) = 0)~ e
k=1

which is the same as
-\
P( max (Sl" o ,Sm) < am) - e
With A = e X this can be formulated as

P(max (S,...,S ) < (log(m e™))/log(r+l)) =

-X
= P(log(r+]) max (§;,...,8 ) -logm<x) - e ®

Thus we have proved that the random variable log((m+n)/n) max (Sl, b e ,Sm) -
log m converges in distribution to the usual extreme value distribution,

cf. David and Barton (1962), p. 231, and Hill (1974), Theorem 1.

Example 2, Using Theorem 4 and similar calculations as in Example 1 we
find that the statistics max(Sl, . v ,Sm) and Zkzr: I (Sk #0) (i.e.
essentially the number of runs in the combined sar—nple) are asymptotically
independent. The asymptotic distribution of max (Sl ye+-28,) is given above.

m
The asymptotic distribution of 2 E I (Sk # 0) is the same as that for the run
k=1

statistic or N(2mn/(m+n), 4m2n2/(m+n)3) .

Example 3. In Holst and Rao (1976) it is proved that among statistics

of the form considered in Section 3 the Dixon-statistic
m|[S
2= 5[]
m T \2

is in a certain sense optimal. After some elementary calculations we find

1
S
o
!
= % R L




adase

=) v

.5 = Var((3)) - [Gov([3): n)) ert = @ o1si?

As (2) is integer valued and takes the values 0 and 1 with positive
probability, the assumptions of Theorem 6 are fulfilled and therefore

1 |m S 1 2

3 k 2 2 2
mZp{L ‘Z ) % ") - (p"/(1 + p)2m)* - exp(-(v - m/p") p"/2m(1 +p)) =0,
1

uniformly in v when m - o,
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