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ABSTRACT

Let © be a bounded domain of RN . We consider the
2 2
equation gu(x) + f(x, u(x)) = \u(x), f [ul (x)dx = R >0,
Q
where 7 1s a second-order quasilinear elliptic operator
whose coefficients have polynomial growth and f essentially
satisfies a sign condition. The existence of positive and

b "o
negative solutions is proved.
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POSITIVE EIGENFUNCTIONS FOR A CLASS OF SECOND-ORDER
ELLIPTIC EQUATIONS WITH STRONG NONLINEARITY?

Philippe Clément

The aim of this note is to prove the existence of positive and negative
solutions of the eigenvalue problem;

(1 Au = \u with the L2 norm of u, "u" being a prescribed constant R>0 .
Here A 1is a second-order elliptic operator defined on a bounded domain  of
an, with a strong nonlinearity in its lowest order term. We assume that A has
a variational structure. The corresponding problem

(2) Au = f has been considered by several people [1], [2], [3], [4]. In
these papers, only a divergence structure condition for A 1is assumed, however
for the eigenvalue problem, such a hypothesis is too weak in general. Moreover
{1], [2], [4] also deal with equations of higher order. In such situations, one can
expect the existence of infinitely many distinct pairs of solutions with a prescribed

norm, provided that A is odd, but not necessarily the existence of positive or

negative solutions. Therefore it is convenient to consider the second-order case

in itself.

1. Statement of the results

Let @ be a bounded domain of RN 9

a: QXRXx RN - R  measurable for all (t,£) ¢ R XRN and Cl(R XRN;R)

for almost all x e , satisfying the following conditions:

t Supported by the Fonds National Suisse de la Recherche Scientifique.
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al) a(x, -t, -¢) = a(x, t, §) for a.a.x in @, all (t,€) in R XIRN ;
a2) a(x,0,0)=0 for a.a. x in Q.

If we denote by ai(x,t, g), i=1,...,N, the partial derivative of a with
respect to E”i and ay(x,t, £) the partial derivative of a with respect to t,
we assume:

a3) thereexists C >0 and 2<p< ® such that:

|aa(X,t,§)|§C(k(x) ;¢ lt'p_l * '&lp-l), where |§| %

N

p/p-l(

for as0,1,...,N, and Ke¢ L Q)

W1z
v
-t

a4) Leray-Lions conditions:

N
i) z‘l [ai(x, t) §) - ai(x,t, gu)] (gi fx gi) >0 for g 4 gn
i=1 2

N
W nmo () amt0e)/lel + 161 -
[g] =+ i=1

for a.a. x in © and |t| bounded.

Let f: @ X R - R be measurable for all te¢ R and continuous for almost all x in
Q, satisfying:

fl) ess sup sup |f(x, s)l < K(t), forall te R
xeq |s|<t

f2) f(x,t)t >0 for almost all x in Q.

Remark. If f doesn't depend on x, fl) is trivially satisfied and f2) is purely

a sign condition. Observe that by our assumptions on a, ¢(u) := f a(x, u, Du)dx=

Q
is cl(w:;", R) .
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We consider the following equation:

N
(3) z ai(x, u, Du) Div dx + f f(x, u)vdx = \ f uvdx
Q i=l Q Q

for all ve W‘:)’p(ﬂ)ﬂLw(Q) and f lulzdx=RZ>0
Q

By a positive (resp. negative) solution of (3), we mean a pair (\,u) e R X Wi)’ p(m
such that u is >0 a.e. (resp <0 a.e.), f(u) and f(u)u are in Ll(m , and

satisfy (3) and (4):

N
(4) f Z a, (%, u, Du)Diudx + f f(x, u)udx = \ R

Q izl Q

QOur main result is:

Theorem1l. If a and f satisfy al - a4 and fl - f2, and if lim ¢(u) = 40 |
u -+ 0

Wl,p

then for all R >0, (3) possesses at least one positive and one negative solution.

2. Proof.

Wl’ P + 1, p
a) First abserve that if u e 0 (), then u = sup(u,0) belongs to Wo (R2)
as well as |u| = sup(u, -u) . Let n+ C Q be the support (as a distribution) of u+.
We have ¢(|u|) = ¢{u) . Indeed ¢(|u!) = fna(x, |u|,D|u|)dx s 'f;#a(x,u, Du)dx +

f a(x, -u, -Du)dx = f a(x, u, Du)dx + f a(x, u, Du)dx = ¢(u), by al).
+

+ +
Q-Q Q Q-2

b) Since we are looking for positive solutions, without loss of generality we can

~

assume that f is odd. Indeed we can replace f by f defined by ?(x, t) =

f(x,t) for t >0 and ?(x, t) = -f(x, -t) for t < 0. The negative case is similar.

e




By al), if f is odd, and (\,u) is a positive solution, then (\, -u) is a negative

one, so we can restrict ourselves to the case of positive solutions, with f odd.

c) We shall first prove the theorem under the additional assumption that f is
u(x) 1
bounded, let (u) := f dx f f(x,t)dt . It is known that e C (W 2R IRy

1,
Clearly «>0. By the compact imbedding of W (Q) in L Q) (p>2), if

u, 4 in Wl’ , then s in L and therefore ¢(un) - y(u) . We know

Y. s}
that ¢ € C (Wo’ p’ R). Moreover ¢'(u), the Frechet derivative of ¢ atu is bounded by
1
a3) and satisfies [see 5, p. 183]): u - u in WL’ p, o'(u )~ v in (Wo’ p)' and
lim ¢ w'(un), u ~u ) <0 imply v = ¢'(u) and lim( ¢'(un), un) = (v,u) ¥

1
It easily follows that ¢': Wo’ PV - (W:)’ p)’ is of type (P)t, [6] and therefore

1
@2 Wo’ P R is sequentially weakly lower semicontinuous. Hence ¢ + ¢ is also s.w.l.s.

For R>0, let a:= 1nfR¢(v)+ w(v), where SR:= {ue W:)’plf lulzdx=RZ}.
ve S Q

Clearly SR +dg, so a<» . Let u € SR such that ¢(un) +¢(un) {a.
Since & > 0 and by the assumption of the theorem, ||un" L p < C, for some
i ’
¢ >0.

We have ¢(|un|) +¢(|un|) = g(u ) +4(u ) and |||un|||W = Jlu ||wl 5

By the compact imbedding of w" P into Lz, and the reflexivity of wl’ P there

1
exists U e w;'p with f lulzdxz RZ and u >0 such that Iunl- u in W P

Q
and |un| - u in Lz . Therefore, by our previous remark, ¢(u) +J(u) < llmv(lunl)

+ L'.(Iunl) =a. But ue SR, so ¢(u) + y(u) = @ . Hence the minimum of

t (,) shall denote the duality between W:)’p and (w )'

Lp implies Iim ¢ ¢'(u), v 2 0 .

b ¢ un-u in Wo

-4 -




1 1 2
@ +L On SR. is achieved at u. Moreover ¢+ e CI(WO’ p, R), u-»-f |u| dx is

. Q
, R) and the Frechet derivative of the iatter function is # 0 since

1708

: 5
clw,

u# 0. Thus, by the well-known "Lyusternik principle”, there exists \e¢ R,
such that (\,u) is a positive solution of (3).
d) For ne IN, define fn(x, t) = f(x, t) if If(x, t) | <n, fn(x, t) = n if f(x,t)>n
and fn(x, t) = -n if f(x,t) < -n. Let ¢n(u) = f dx f utx) fn(x, t)dt . Since

Q 0 1, p

fn are bounded, we know that for each ne IN, there exists ()\n, un) € R xWO’

a positive solution of (3), where f is replaced by fn . We claim that

“u““wl’ p < C for some C >0 . Indeed as in c), we have: w(un) + q;n(un) =
y R 20
inf wgz) o L'n(V) . Let ug € S  NL (R . Then ¢(un) +¢n(un)§ ¢(uo) +

0
Un(uo) < c,o(uo) ¢f dx f f(x, t)dt < © ., By the coercivity of ¢ and the

1
positivity of y_ we get I un" < C . By the reflexivity of Wo’ P and the

whP
compact imbedding of W:)’ # into L% we can extract a subsequence, still de-
Lp 2 R

noted by un, such that un—‘ u in W and un-u in L. So ue S
and u is positive a.e.

We will prove that )‘n is bounded. Indeed, assume that there is a sub-
sequence xn { -», then we get:
2

l 3 _1_ -
(5) o ) (un), u )y + X f fn(x, un)un dx = R
n R ©

' “ l ' —
But ¢ (un) is bounded, zince u is, so \n (o (un), un) 0 . But then
-;‘-]— fn(x, un)undx <0 and RZ > 0 imply that for n big enough we get a con-
R

tradiction. Next assume now that )\n? o, for a subsequence. We have, for all
L p
Vo€ W0 :

-5
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oo X 1 :;
(6) g\ (un),v; ¥ f fn(x, un)vdx = f unvdx
n n . £ Q

In particular for v = un we get:

(7) j;, il_ fn(x, un)undx_<_ C for some C >0
n

By assumption fl) and f2), for each & >0, there exists Kb > 0 such that

lf(x, )] < Ks +f(x, )t . [2]. Hence Ifn(x, t)| < K+ 8f(x,t)t . By using (7),

6
this shows that the sequence rl- fn(x, un) is equiintegrable and since
n
1 : 1 1
T; fn(x,un) - 0 a.e. in @, by Vitali's theorem, W fn(x, un) 0 in L
and by (6), for ve W;’ l:’(ﬂ) f Lx(n), we get: f uvdx = 0 . Hence by density,
Q
f |u|2dx = 0, a contradiction. Thus )‘n is bounded and we can extract a
Q
subsequence xn ~xe R.
1 1 1

Since u is bounded in Wo’ P and ¢': wo' *a (wo’ p)' is bounded,

¢'(un) is bounded and we can extract a subsequence converging weakly to
L, p, 2 Lo, . ¢ Z

W € (Wo )'s ¢(un)— w in (W0 )' . We have fn fn(x,un)undx— an -
(¢'(un),un) < C. Byusing the same argument as before, there exists a sub-

1
sequence fn(x,un)*f(x,u) in L° . Moreover, since fn(x, un)unzo, by

Fatou's lemma, f(x,u)u e Ll . Therefore for all v e W:)’ Pn Lw, we have:

(8) (w,Vv) +f f(x, u) dx:\f uvdx .
Q Q

1
Now, we define i inf(u, n) . It is known that s Wo’ Pn Lw, P
in w:; P and by Lebesgue's dominated convergence theorem and the fact that
f(x,u)u e Ll, f(x, u)vn~ f(x, u)u in l.l . By putting v = vn and passing to the

limit we have:

-6-
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(9) (w,u) + [ f(x,u)udx = \R®
Q

Now, we are done provided that we prove that w = ¢'(u) . But un - u in

1
W:)’ p’ w'(un) - w in (WO’ p)’, so it is sufficient to prove that

————
——

im (q:'(un), un -u) € 0. We have lim { w'(un), un -u) = lim {«p'(un), un>
P 2 2
- {w,u) = lim [an - fg fn(x, un)undx] - [AR" - ‘{) f(x, uyudx] :js;f(x,u)udx

- lim f f(x, u)udx - lim L fn(x, un)undx_<_ 0, by Fatou's lemma. This completes
the proc?f of the theorem . :
Remark 1. With the same arguments, we can allow a more general right hand
side and consider the equation:

N
(10) f T ai(x, u, Du)Divdx + f f(x, u)vdx = f g(x, u) vdx

Q i=l Q Q

for all v e W:)’ P ILI;:O with the condition f lulzdx = RZ > 0 replaced by the
condition f dx f : )g(x, t)ddt=R>0. In tgis case if g: @ X R - R satisfies

Q

0
the Caratheodory condition, and

gl) g(x,t)t >0 for a.a. Xin Q

-1
g2) there exists 1<gq< ® and C >0 such that |g(x, t)l <C(l+ Ith )
and if we assume that p in the hypothesis a3) satisfies 1 <p<», we
can state the following generalization of Theorem 1:
Theorem 1', If a,f,g satisfy a - a, fl - fz, 9, - 9, and if we have
i) the injection of Wl’ P {nto Lq is compact

ii) lim f a(x, u, Du)dx = +»

llullwl,p Q

Ty
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u(x)
iii)  lim f dxf g(x, t)dt = 4+ .
flull q @ 0
L

Then the equation (10) possess at least one positive and one negative solution

1
Ovuy e W P@) with f(x,u) and £(x,u)u e L}, forall R>0.

Remark 2. In the simple case -Au + f(u) = \u, ue W:)’ Z(Q), our condition
on f reduces to: i) f(0) = 0 ii) lim -f%)—z-c for some c >0 . Ifwe
—400
assume further that f(u) = ?(u)u ,t -t;(’t) >0, ? € Cl(lR), it follows from [7],
that there exists. an unbounded connected set C+ of positive solutions in
R X Cl’a(ﬂ) (0<a <1), containing (xo, 0) in its closure, where )‘0 is the
first eigenvalue of -Ah + ?(O)h = \h, hlan = 0. If we suppose that tlim‘,o?(tt) = +00,
it follows easily that the projection of C+ on R contains the interval [xo, o) .,
Therefore in this case the above equation possesses positive solutions with

arbitrary norm in Lz(n) and for all \ >\ It can happen that all positive

0"
solutions are in C+; it is true, for example, if ?‘(t) >0 forall te R. For

the case ?'(t) >0, see [8]; the case ?'(t) >0 can be handled by using a
simiiar argument to [9]. In this particular situation ct isa Cl curve of
solutions in Cz’a(m, parametrized by A and unbounded in Lz(n) . Concerning
the regularity of the solutions, let us mention that if fe CO(R), f(0) = 0 and

f is monotone, then ue Cl’ a(ﬂ) . For a different approach of this case, see

[10].

-8-
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