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ABSTRACT
A general duality theory is given for smooth nonconvex optimization
problems, covering both the finite-dimensional case and the calculus
of variations. The results are quite similar to the convex case; in
particular, with every problem (f) is associated a dual problem (P*)
having opposite value. This is done at the expense of broadening the
framework, from smooth functions R" - R to Lagrangian submanifolds

of R" xR" xR.
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DUALITY IN NONCONVEX OPTIMIZATION AND
CALCULUS OF VARIATIONS

Ivar Ekeland

§0. Introduction.

Duality methods are nowadays an important tool in the study of
convex optimization problems. A systematic treatment within the frame-
work of convex analysis can be found in the books of R. T. Rockafellar [14]
and I. Ekeland - R. Temam [8]. However, it is easily forgotten that
duality methods have been in use for quite a long time in classical
mechanics, where people are used to stating a problem either in terms
of x-phase variables -~ or of p-momentum variables-, the mapping x = p
being the Legendre transformation. A major difficulty lies in the fact
that the Legendre transformation need not be one-to-one, except, of
course in the convex case.

This paper aims to provide people used to convex optimization
problems with a systematic and updated treatment of duality theory for
the smooth nonconvex case. The first two sections set up the general
framework. It turns out that the framework of functions is not broad enough
to cover our needs, because the Legendre transform of a smooth nonconvex

function need not be a function. So we define Lagrangian submanifolds

Sponsored by the United States Army under Contract No. DAAG29-~75-C-0024.
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of IRrl X an x IR as the good concept to work with, because the Legendre
transform of a Lagrangian submanifold is still a Lagrangian submanifold,
and because a Lagrangian submanifold comes very close to being a
function from an to R. Section I investigates the local properties

of Lagrangian submanifolds, and Section II studies the Legendre transform
in this framework.

The duality theorems then follow quite easily, either in Section III
for the finite-dimensional case, or in Section IV for the calculus of
variations. They are exactly what one would expect from the convex
case. References to the bibliography are relegated to Section V.

The author wishes to acknowledge long and numerous conversations

about this matter with J. -P. Aubin and F. Clarke, and the expert typing

of Mrs. Sally Ross.
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§1. Lagrangian submanifolds.

0
Let f bea C real-valued function on IRn. We can associate
n n
with f the following n-dimensional submanifold of R X R X RR:

(1.1) Vf = {(x, f'(x), f(x)) ] x ¢ an} J

This submanifold has the property of annihilating the differential

form « defined at any point (x,p, z) of Rn X ]Rn X R by the formula

n
Indeed, the restriction of w to \/f reduces to df - L ga;i—dxi
i=1 i

which is identically zero. This motivates the following definitions:
Definition 1.1. A Lagrangian submanifold of R* xR xR is a closed

o0
n-dimensional C -submanifold V such that

P

t1.3) 1vw =

v n n ; : N >
where K V+R X R XIR is the canonical injection and

e

1V - ’1“*(IRn X IRn X R) - T*V the induced map of differential 1-forms. We
shall say that x¢ R isa critical point of V and that ze¢R is

a critical value whenever:

(1. 4) (x,0,2) € V.

We shall associate with V a multivalued mapping Pv from R to R:

(1.5) Fv(x) = {zldp e i : (x,p,2) € V}

and call it the chargcteristic map of V.
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In the following, we shall denote by L and w respectively
Xz
the restriction to V of the projections (x,p,z) - x and (x,p,z) = (x,2).
The analogous notations ﬂp and "pz will also be used. These maps

+
send V intc Rn and IRnl respectively; note that:

(1. 6) graph FV = wxz(V) :

Particularly simple situations arise wiien these projections are proper.
Recall that a continuous map m : V = Rk is proper at ¢ e Rk iff every
sequence «_ in V such that "(“’n) - £ 1is bounded. It is proper
iff it is proper at every point § ¢ le; this amounts to saying that n-l(K)
is compact in V whenever K is compact in Rk.

As a fundamental example of a Lagrangian submanifold, take the
set Vf associated with a Cw function f : Rn -+ R by formula (1.1).
Note that in this case v is a diffeomorphism from V on IRn, and
hence proper.

As a variant, consider a Ca0 function f defined on an open
subset Q of Rn, and assume that |f(x)| - © whenever x converges
to some point in the boundary of €. Then the set Vf defined by:

(1.7) Ve = {(%, £'(x), f(x) | x « @)
is a Lagrangian submanifold. Note that in this case =  is a diffeo-

morphism from V on £, but no longer on an. Hence "x is no

longer proper, but wxz is.

b R




In both cases, the critical points /values of Vf are the critical

points /values of f, and the characteristic map Fv of Vf coincides

with f:

(1.8) ¥x e R, Fy(x) = {f(x)} .

We now seek a partial converse: describe, at least locally, a

given Lagrangian submanifold V, in terms of a smooth function f : an - IR.

= n
For that purpose, we introduce the set ® of points x ¢ R such that

b b
the 1-forms ivdxl, oo s ivdxn are linearly independent at every point

(x,P,2) of V projecting on ;

Proposition 1.2. The subset Rn\ﬁ‘ has Lebesgue measure zero in R".

For every point ; € R there exist a (possibly empty) countable set of

indices A, a family ua,a € A, of neighborhoods of x in an, a

family fa :va - R of smooth functions, such that:

(1.9) n;l(;) CcU v cv
a€c A
where:
(1.10) r, = (x, f"’(x),fa(x))lx €U, Al

Note that (1.9) implies that Fv(;) = {fa(;)la < A}. Intuitively,
the part of Fv lying above ; is decomposed into smooth branches
f, acA with z =f (;) and p = f'(;). Two branches may intersect,
a [+3 a (43 o

but they must do so transversally: if fa(;) = § (;) with a # §,

p

then f("(;) # (;).

p
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Proof of prop. 1.2. To say that the l-forms i;;dxl, P i;;dxn are
linearly independent at (;, ;, ;) ¢ V means that (_;, ;, ;) is a regular
point for the projection L V- ]Rn. The set IRn - @ 1is just the set
of critical values for L and it follows from Sard's theorem that it
has measure zero.

Take x e R, and let {(;, ;a, ;a) [« ¢ A} be the (possibly empty)
set of points of V projecting on ; By the definition of ®, each

(x, P, za), a € A, is a regular point for L By the implicit function

theorem, there are neighborhoods 'L{a of x and ?/a of (x, P, Za)

such that e :7/a -+ is a diffeomorphism. In other words, there are
Q@

real-valued CJo functions fa and 9,1 1 <i<n, defined over ‘Z/a,

such that:

(1.11) (x,py2) ¢ ¥ <=>{xeU, z={(x),p = 9,4} -
s
The vanishing of ivw means that:
n
(1.12) dfa - 1%‘1 gm(x)dxi = 0 over ?,(a o
which yields:
afa
(1.13) gai(X) = o (X ¥xey .

i
Writing (1.13) into (1.11), we get formula (1.10), with formula (1.9) being
satisfied by construction. It only remains to prove that the set A is

at most countable. For this, notice that:
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(1.14) LR Ny = (=2 )

and hence that a # p => (X, pa’;p’ ¥ 'lfa. This shows that all points in

m (x) are isolated, hence any compact subset of V can contain only
= g g 2n+l ;
a finite number of them. As V is a closed subset of R < 3t can
be written as a countable union of compact subsets, and the result follows.
In the special case where the map Lo is proper at x, it is easily
seen that the set A has to be finite. Setting % = () U, we get
a €A
the following corollary:
Corollary 1.3. Assume moreover the map . is proper. Then R 1is
open in IRn, and for every point X ¢ R there is a neighborhood %

of ; and a (possibly empty) finite family of smooth functions fa =R,

a ¢ A, such that:

(1.15) n;l('u) = U {1 (x), € ()] xcvacal.

]
a
aeh

We now have a description of n;l(;) which is valid whenever
x e R, 1i.e. for almost every point X € Rn. Points in an\s? form a
negligible subset, but they may nevertheless turn out to be important,

so we will attempt a partial description in that case also.

Proposition 1.4. Let t+ (x(t),p(t), z(t)) be a C1 map from 0, T]

into V such that x{(t) ¢ R ¥t >0. Assume that, when t - 0:

(1.16) x(t) = x and %f (t) - &
(1.17) z(t) ~ z
(1.18) lim inflip(t) - pll = 0,




; ~1
with (X, p, z) an isolated point of " (x,z). Then:
z

(1.19) p(t) = p
dz —
1. 20 == -
) - () =p - §

Proof. As p 1is an isolated point in w_ (X, z) there is a compact
Xz :

neighborhood % of (x,p,2z) in V such that:
(1.21) (X,p,2) €% =>p=p.

Assume p(t) does not converge to -;; Then there is an open
neighborhood ¥ of (;, ;, ;), contained in %, and a sequence tn - 0

such that:

(1.22) (x(tn),p(tn), z(tn)) E¥-7.

Using (1.16) and (1.17), together with the fact that % - 7 is
compact, we can extract a subsequence conv rging to some point
(1.23) (x,p*, 2) €% -
contradicting (1. 21).

So p(t) has to converge to ;, yielding (1.20). Setting z(0) = z,
we define a continuous real-valued function te z(t) on [0, T}]. It

follows from Proposition 1.2 and the fact that x(t) ¢ ® for t >0 that

this function is derivable on ]0,T] with derivative:

(1. 24) gE(t) p(t)%;(t) :

When t -~ 0, the right-hand side converges to p * £, and so does

the left-hand side. .

g
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__ b

d
Note that EtB (t) need not converge. Note also that (1.16) and
d'x d - at
e : z < Py TR - W -
(1. 20) imply that at (0) = ¢ and St (0) =-p g, with o denoting

the right-derivative. Equation (l.20) can be written:

- d -
(1. 25) $E(0) = p- 5F(0)

which expresses the vanishing of dz - pdx above a point X notin R.

Let us give a more accurate picture in a simple case:

Proposition 1. 5. Assume L is proper and n;l(x) is finite. Let a

simply connected subset 2 of R be given in the following way:

(1. 26) Q= {R+ttlo<t<a, £e8)

2
with S an open subset of the unit sphere gl + 00+ gi = 1. There is
a (possibly empty) finite family of Cl functions fu : U {;} - R, a €A,

such that:

(1.27) B TR {(x, f;(x),fa(x))lx e U {x}, aeA).

By a derivative of fa at x we mean a linear functional f('r(x)
such that:
¥e > 0, dng >0 ¢ “x-;ﬂﬁn and x € Q

(1.28) k i s -
=> !fa(x) - fa(x) - (f('x(x),x - x| < ellx - x|l .

By a Cl function on Q U {;} we mean a function fa such that
f;(x) is well-defined and continuous on {x} U .

Proof of Proposition 1.5. The set n;l(x) has to be both compact (because

" is proper) and discrete (because x ¢ R), so it is finite. By




Proposition 1.2, the map L iw (R) - Q is a covering. As  is

simply connected, the restriction of L to each connected component

¥, 3 : - :
of L (2) 1is a diffeomorphism, hence the representation formula:

-]
™

(1. 29) (Q) = {(x,f;(x),ta(x))ix € Q,a ¢ A} .

Now fix a ¢ A andlet x converge to x in . As L

proper, (X, f;(x), fa(x)) has cluster points (;, P, Z) e nxl(x). As this

set is finite, all its points are isolated. As in the preceding proof, we

conclude that f{'(x) »p and f (x) =z . Setting f (x) = z and
a a a a a a

f;(x) = pa, we get a Cl function as desired. [ ]
Let us conclude this investigation of Lagrangian submanifolds by

the following remark, which throws some light on the case where L (x)

1s not discrete. Let t — (x(t),p(t), z(t)) be a Cl path drawn on V

along which x(t) is constant: x(t) = ;, 0<t<T. Then =z(t) has to

be constant also: z(t) = ;, 0 <t<T, soin factonly p(t) varies. This

sk
follows easily from the vanishing of i which yields in this case

Ve
dz f o
E(t) = L pi -cT A particular, if %7 is an open path-connected

subset of V projectingon x, i.e. ¥ C n;l(x), then 7 is also
contained in some hyperplane H = iR 0, z)‘x = ;, z = ;} as an open

path-connected subset (openness follows from the fact that dim V - n = dim H).

-10-
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M §II. The Legendre transformation.

The mapping § of IRn X an X R into itself defined by:
£&(x,p, 2) = (x',p', 2')
(2.1)

t=p p' =X z'=pxX~Z

is called the Legendre transformation. Note that:

Q0
Proposition 2.1. The Legendre transformation is a C involution:

(2.2) il o

Proof. Using notations (2.1), we set £(x',p',2') = (x",p",2"), with:

xH =z pt=x

p'=x'*=2p

z'z=p'xt -2t =px~(px~2) = z
hence the result. ®

The fundamental fact about the Legendre transformation is that it
preserves the l-form w, up to a change of sign:

5k
Theorem 2.2. § w = -w .

Proof. Using notations (2.1), we gt:

%
£ w=dz' - p'dx!

(xdp + pdx - dz) - xdp

pdx - dz
S =W ]
Corollary 2.3. If V is a Lagrangian submanifold of R" x R" x IR, then

so 1% - EV.

=

7




Proof. It follows from Proposition 2.1 that § is a diffeomorphism of

n

n
IR"- xR X IR onto itself. Hence

£V

is a closed submanifold whenever

is. There only remains to check that i_w=0. Todo that, we

write the following diagram:

(2. 3)
where !
injection.

Y

V—l—v-an leanR

|

lr.

fV—+R" x R x R

is the restriction of §

to

V and j is the canonical

This diagram commutes, and gives rise to another commutative

diagram relating 1-forms:

* *
i
I *

* i *
T (gV)«—T (R® x R” X R) .

(2.4)

Taking w

and Theorem 2.2, we get:

(2.5}

*
i

in the lower right-hand corner, and using formula (1. 3)

-w) = —i*(w) =0

going the other way around the diagram, we get:

(2.6)

As

=

is a diffeomorphism,

*
implies that j w=0, i.e. gV

* *
L oej (w) .
¥
2 is an isomorphism, and Equation (2. 6)
is Lagrangian. [

We now introduce a slight misuse of notations. Let V and W

= be Lagrangian submanifolds of R" x R" x R, with W = gV, andlet F

\Y

-12~-




T

- and I‘W be the associated characteristic maps. We shall write freely
iW S‘IV. and call )W the Legendre transform of FV. For instance,
n xn
if t: IR R isa C function, then ¢£f is the multivalued map

from an to IR defined by:

PR £f(x') = {z'] p' € an s AR pt, 20 e £Vf} 5

Using (l1.1) and (2.1), we get:
(2.8) £f(p) = {px - f(x)| f'(x) = p} .

Several remarks are now in order. First of all, if f, in addition
to being smooth, is convex, then the function x v px - f(x) is concave,
gnd the equation p = f'(x) simply means that this function attains its

maximum at X. Equation (2.8) then becomes:

(2.9) £f(p) = max{px - f(x) | x ¢ R*} .

Formula (2.9) shows that §£f is single- or possibly empty-valued.
In other words, £f is a real-valued function defined on some subset
of R". Itis to be compared with the classical Fenchel transform of
convex analysis:

ES n

(2.10) f(p) = sup{px - f(x)|x e R} .

Formulas (2.9) and (2.10) coincide whenever the function x - px - f(x)

n 3 ‘ *
attains i1ts maximum over R . Define the effective domain of f as

the set of points where it is finite:

5 3
(2.11) dom f = {plf (p) <w}.

=,

i AR O A e
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Proposition 2.3 . £f(p) = f (p) if and only if f is subdifferentiable at p,

i.e af Vn4p) # &. This is the case at every interior point p of dom £

e R
(2.12) pe«domf =>gf(p)=f (p).

Proof. Let us write down the definition of the subdifferential of £

W —_ n — Kk —
(2.13) af (p) xe R |px~-f (x)= max}
X
where the notation = max means that the left-hand side attains its
%

maximum at x. But, as f is continuous and convex, it coincides with

ek
its biconjugate f , hence

(2.14) 8f*(p) = {x ¢ IRnfp;- f(x) = max)
X

which proves the first part of the proposition.
It is a well-known fact from convex analysis that any convex func-
tion on a Banach space is continuous, and hence subdifferentiable, on
the interior of its effective domain. Hence (2.12). ]
In the general (smooth, nonconvex) case, formula (2.8) sets £f(p)
in one-to~one correspondence with the sets of tangents to f having slope p:

Proposition 2.4. z' ¢ £f(p, if and only if 2z = px - 2' is a tangent

hyperplane to graph f in an X IR.

~

Proof. The hyperplane z = px - 2' in (X, z) - space is tangent to

graph f if and only if there exists Xxe R such that f(x) = p and

f(;) p; - 2'. This reduces to z' ¢ §£f(p) by Equation (2.8). .

il




From Proposition 2.4 one sees instantly that £f can be multivalued.
Indeed f£f is a function, i.e. £f(p) is emptyor a singleton for
every p, if andonlyif f has only zero or one tangent of prescribed
slope. In dimension n = 1, this means exactly that f 1is strictly
convex. In higher dimensions, this also happens in the nonconvex case:
take for instance f(x ,x.) = x2 - x2 tHeny ftxiln . i )b (2Zx.,~2%x.) i8
12 1 2 : Gl P 2
one-to-one. But the fact remains that, in contrast with the convex case,
in the general case we have to deal with multivalued Legendre transforms.
So let us attempt a description of $f. We denote by V the Lagrangian

submanifold (1.1) of an x R" X R associated with f, and by A(x)

the matrix of second derivatives of f at x:

2
(2.15) Alx) = (("‘Q—L‘(x))) 154 J <8

0X . OX,
i

)

Proposition 7.5. Assume A(;) has full rank n. Then there exists a

neighborhood % of (f'(;),;,;f'(;)-f(;)) in V projecting onto a
neighborhood % of f'(;) in an, and a local inverse ¢ for f' such that:

(2.16) 7 = A(ml s, 1) (0), 15, (N p € )

with [£7,f](p) = pe(p) - f o ¢(p). In particular, we have:

(2.17) [.s:,”f} (p) = x .

Proof. It follows from the implicit function theorem that the map x + f'(x)
has a local inverse ¢ defined on some neighborhood % of —p Setting:

(2.18) 7 = {(£(x), x, xE'(x) = £(x)) | x € o(u))

-15-
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and using the definition of ¢, we get:
(2.19) 7 = {(p, @(p), pe(p) - f » o(p)) I p e} .

Computing the derivative of f,,ff, we get:

' t !

t g
(2.20) £, £](p) = @(p) + ¢ (PP - @ (p) ' ¢(p)
4 A
= ¢(p) + ¢ (p)p - ¢ (PP
= ¢(p)
ind formula (2.19) reduces to (2.16). .

£, f 1s a smooth branch of §£f lying above ; Note that p is

: n
a regular value for f': R

- an if and only if it is a regular value for
LW sV - R". This is almost always the case, by Sard's theorem, and
the part of §£f lying above ; then is a countable union of smooth
branches such as £, f (this is a particular case of Proposition 1.2). If
moreover f' 1is proper at S, then so is LA and there is only a finite
number of branches of £f lying above ; (this is a particular case of
Corollary 1. 3).

We can of course apply Propositions 1.4 and 1.5 to get a description
of §f above critical values of f'. But, in this particular case, we
prefer another approach, which has the advantage of directly relating the
shape of the Legendre transform above f(;) to the degeneracy of the
matrix of second derivatives at ; We write the Taylor expansion of
I ‘&t ;:

(2.20) f(x +€) = £3) + b6 +3 (Mg, &) + g Py(xigy, ... 6 ) +0(lel?)

where Ps(;;') is a homogeneous polynomial of degree 3 in n variables.




e

Using the Euler formula, we may write:

ar, _ n

Moy AL LR G

= T
; i = a§ n i
i=1 ey i=]

i Ukl M (B()€, &)

= 3
where Bl(x} is the matrix with elements —; a f/axl.axjaxk, 1< ik <n.

Denote by (B(x)§, £) the n-vector with components (Bi(;)g, £y .

Proposition 2.6. Assume that A(;) has rank (n - 1) and that:

i P (xE,...,6£)#0
(2.22) ¢ Ker Al =>{ > * .

(B(x)§, &) ¢ Im A(x) .
Then (possibly after reordering the linear coordinates (pl, o i pn)
in R" and changing P, to -pr) there is a neighborhood % of
1

(£(x), %, £'(x)x - £(x)) in £V, a neighborhood % = %' Xy of

R e = i n o « Ol _y . .
(pl, seusPoys pn) in R, C functions kl' k2 U R and h:y~ R,
such that nxz')' is completely described by the set of conditions:

_ : ‘
{2.23) (pl, ""pn-l’pn) €Y X'un and pnzkl(pl, ""pn-l)
(2.24) z ¢« {z (p),z_(p)}, with

z (p) = k(P - -,pn_l) + (10n - kl)h(pl, cos ,pn_l,Vpn . "1)

} 2{p, - kl)h(pl’ seny pn_ly-“pn T kl) .

z_(p) = kz(pl,---,lon_l "
Moreover E)z/api = X 1 <i <n, along the hypersurface

Pn = k(P --,pn_l)-

Proof. The (xl, aey xn) are a system of coordinates in £V, formula

(2. 8) yielding (pl, ooy Py z) in terms of (xl, Yo xn). In particular:

-]7-
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(2.26) il = p. forl €ity.

The rank assumption on the matrix A(x) implies that one of its

(n -1) x(n~-1) minors is invertible, for instance the one defined by

the (n - 1) first rows and the (n - 1) first columns. Moreover, the nth

row then is a linear combination of the (n -1) first rows.
It follows from the implicit function theorem that the (n - 1) first

equations of system (2.26) can be solved locally for (xl, o, ’Xn-l)'

In other words, (pl’ PG ) can be used as coordinates in some

n—l’xn
neighborhood '!.fl of (E,;,;) in sV(l). Now consider the path
w(t) = (p(t), x(t), 2(t)) in %, such that p(t) = pl,---,pn_l(t) =p

’

n-1

X + t. There is some T >0 such that w(t) is well-defined

"

x ()

for =T <t <T. Obviously w(0) = (p, x,px - f(x)); we shall write §'

2
for 2—1‘(0) and £* for g—,ﬁ(O). Equations (2. 26) are satisfied along wi(t):
dt
{Z:27) p(t)z-éf—(x(t)...x(t)) for 00Xt <l ,
i axl l , ’ n -— fh—
Writing Taylor expansions into (2.27), we get:
-~ - tz i - 3
(2.28) p(t) - p = tA(x)E" +?[(B(x)g',§')+A(x)g"] +0(t7) . i

But pi(t) - Ei =0 for 1<i<n~-1, so that both sides of the (n -1)
first equations of system (2. 28) are identically zero on (-T,T). It

follows that the (n - 1) first components of A(;)g are zero, and, by

(1)

From now on we set ; = f'(;) and z = ;; - f(;).




the rank assumption, so is the last one:
(2.29) Alx)g* = 0 .

Assumption (2. 22) then yields:

(2.30) (B(x)E', ') + A(X)E" # 0 .

But again, both sides of the (n -~ 1) first Equations (2. 28) being
identically zero on (~T,T), the (n -1) first components of vector (2. 30)
must be zero. It follows that the nth component must be nonzero.

We summarize our results so far by stating that the nth equation of

system (2.28) can be written as:

3o 3
(2. 31} pn(t) ot ant + 0(t7), a %0 .

Similarly, we compute the Taylor expansion of z(t) at t = 0.
By definition, we have:
(2.32) z(t) = f'[ x(t)]x(t) - f(x(t)] .

Successive derivations yield:

(2.33) S2(0) = (A(x)E!, £")

(2. 34) g—zz(O)
t

d

"

2(A(X)E", 6" + P (i1, .., 61) -

But we have seen that A(x)¢' = 0, so that ‘STZ(O) = 0 and

7
%{;(0) = bn # 0 by assumption (2.22). Finally we get:

e T Bt
(2.35) 2{t) - 2 = ant + 0(t7), bnato.

. pn_l’ xn

Now w'(0) is just the tangent vector 5%— (;1, oo )
n

associated with the new coordinate systems. In other words, P, and z,

_19-
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.
considered as functions of tpl, g pn-l‘xn) in ?/l, satisfy:
OB
- o i
& 3D Gt % =
l ) ax (pl‘ Ph-1e n) .
n
&
) P k! e
(2.37) 2 (PpoeeesP 0% )#0,
ax
n
—a—z iz o £t -
(Z- St") ;)X (ply 'vpn_l) n) - 0 ’
n
rlzz — —
“--39) ’ Z(plr )pnl’x)¢0
oX
n

But other points (p, X, z) in 7/1 enjoy the property that A(x) is
of rank (n - 1) and satisfies (2.22). Indeed, consider the Jacobian

determinant:

"’p_Lyp) l

D(p,, .
X )= L )()

1 Pparr*n D(p,, - -

(2.40) A(p
g pn 1’

@LQ:
o |

(px’ ot 1% (L,

by a simple computation. Clearly rank A(xl, b Foy xn) <n if and only if
2

aa P
( T = 0. & S .
Alp,, ’ pn_l,xn) 0. But A= 0 and s > #0 at point
n ax
n
(1) D(fl,...,fn)
recall that denotes the determinant ” "
D(xl, e

«20~




(Ppp e ey Py xn). By the implicit function theorem, there are neighborhoods

4 of (pl,...,p

o
n-l) and 21 of X and a C map g.'ul-’ﬁil

.

such that

(2.41) A(pl, : "’pn—l"x Y= 0 <=> xn = g(pl, A

n )V(ply"‘)xn)‘ulx%

Pl [ -

Conversely, 2 = g(pl, .«n,P. ;) implies rank ‘Alx.,.-. ,xn) <.

n-1 P

By a continuity argument, we can shrink ?/1 and 9&1 to ’uz and 2&2

so that rank A(xl, Bk e xn) is exactly n -1 and assumption (2.22)

is satisfied whenever xn = gip "pn-l) in '2/2 XWZ- We may even

°.
include in the bargain the fact that the first minor of A(x) is invertible,

sy g X}

2 2
By (2. 38) and (2.39), it follows that apn/axn = Q, 8 pn/axn #0,

so that \pl, #-s pn—l’ xn) enjoys all the properties of (;l’ .

L .
dz/ dxn =0, B z/dxn # 0 at every point (pl, uew ’pn-l’xn) € 'yz xaz-z

such that xn = g(pl, s ).

P
It follows that:

2.42 =k (
( )pn (P )

2
l’...,pn_l)+[xn—g(pl7"’)pn_l)l hl(pl"'

R LA

X )

(2.43) z = ky(p ' Poop %

: 2
1"""’n-1”["n = g(pyy -y Py ) hy(pp

with

(2.44) W g(pl, vkl pn-l) == hl(pl’ ey pn—l’xn) hz(pl, e P xn) #0 .

The point of V defined by (pl, e P _pp X = g(pl, T pn)) yields

P, = K(pyy+o+9p _,) and 2z = Kk (Pyy+:.,P ), SOthat k
{ ) | n-1 21 n-1

b and kz

1

o w
are C functions. It follows from the C  division theorem of Malgrange

(* o]
that h, and hZ can be chosen to be C functions also.

1
=]




P~

Assume that hl(gl, pRo pn-l’xn) > 0. Then we can define
yn = [xn 2 g]\JFI and use (pl, als "pn-l’ yn) as a new system of local

coordinates in some smaller neighborhood %z of (p,x,z) corresponding

o i .4 AN¢ g

to (pl, ’pn-l’yn) €Y 3 X%, Equations (2.42) and (2. 43) become
2.45) -k ( I £
#s Pn 1\Ppre-rPpy) = ¥y

2. 46) - ko o )
(2. 2 2pl,---,pn_l)-yn FUCTRRETY ST A

i ( 5 is i i -k
with (pl, ’pn-l) € b3 and yn € 7/3 This implies that pn \ be

nonnegative. Conversely, whenever pn > kl’ we can solve (2.45) by

yn = % '\/pn - kl’ getting two distinct values whenever the inequality is
strict; possibly shrinking ¥ 3 to 7/4, we can arrange that both those

values are in 7&3, so that Equation (2.46) becomes:

_

. - = - SPOr = N -

(2.47) Z kZ (Pn kl) h(pl’ ’ pn-l’ Vpn kl)

which, together with (pl’ his By pn—l) € 7,(4, completely describes "xz'lrz'
If hl(;l, ey pn-l’;n) should be negative, then we simply reverse

pn to -pn, and we are back to the preceding case. So formulae (2.23)

and (2. 24) are proved.

For commodity's sake, denote by £ the set of points (pl, &y pn)

and by Z its boundary, the equation of which is

>
such that pn kl’
Py kl' Formula (2. 24) yields along Z:
f
0z 0z _ akz
Ay R 2R~
op, 8p;  9p,
(2.48)
82&+ ; az_ B
gl firma
5 Py dPn
“fe
S




It follows also from formula (2. 4) that with any pe¢ Z and any

vector w' = (rrl', s wl'q) pointing to the interior of ©
n-1 ak1
(lv@: nt = Z‘ 5‘; m! > 0) we can associate two continuous paths
o R At
izl i

t - (p(t),x(t),z+(t)) and t - (p(t),x(t),z_(t)) in £V starting at (p,x, z)

and satisfying g‘tptt) = ' as t—=0. From Proposition 1.4 (taking care

that x- and p-coordinates are interchanged) it follows that, when t - 0:
dz+ dz_
C —_— o . 1 —_— By Y gL
(2.49) e (t) = x - # and o (t) = x+ =

But from formula (2.48) we get directly

d
(2.50) %(t)*g—g' m'  and ait_(t) *Z_;Z). m!
where Z—; denotes the common value of the n-vectors (2.48). This
yields Z—g n' = x - n' for every vector w' in some half-space, and
hence the desired formula x = 9z/0p. L]
In other words, §f is not defined locally for pn < kl(pl, s pn_l).
In the region P, > kl(pl’ PR pn-l)’ there are two well-defined branches

for gf. Along the boundary they coincide and have the same tangent
hyperplane, and their shape away irom the boundary is given by the
following result:

ng_rg_l}arz 2.7. We keep the assumptions and notations of Proposition 2. 6,

and we set qn = p - k(pl, .«.yP__,). Then §£f can be expanded near

n n-1

the boundary qn =0 as:




{2.5}) =z O I ST € & - % g o e by \———‘O
1) K, (F P talag(p P (P EPACTE RaC

) n- N

1

Q0
where the functions k., a a, are C . Moreover:
=

) S §
()IK)
\) _2 = . .. - (\. <‘ =
(Z.52) "pl (pl, 'pn—l) x, for 1 <i-<n =1
vE- o) T9\Pps Prugh * %

The proof consists simply of replacing h by its Taylor expansion
in formula (2.24). We see that the two branches only intersect at the

boundary P k., of the admissible domain p > k1 (this is true even

1

in the special case where a, = 0, because then the third order term
3/2
& asqn‘ takes precedence. This is the classical ''cusp' situation,

so that Proposition 2. 6 can be loosely stated as follows: a simple
inflexion point of f gives rise to a simple cusp of ¢£f.

Of course, more degenerate inflexion points of f given rise to
more complicated situations in £f. A classification can be attempted

along the lines of Proposition 2.6, but we are not going to conduct it

3/ 2

any further. Let us only point out that, for all functions f ¢ F, where 3

o
is a dense Gé subset of C (an) in the Whitney topology, the space
R" can be partitioned as 2:0 U Zl U Z‘.Z where:
EO consists of all points x where A(x) is nondegenerate; it is
n
an open subset of R
2;1 consists of all points x where A(x) has rank (n -1) and

satisfies (2.22); it is a codimension one submanifold.

-24~
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.‘.22 consists of all other points; it is a stratified subset of
codimension > 2.

Without going into details, this follows from Thom's transversality
theorems. So, for most functions, the analysis performed thus far
describes everything up to codimension two. In the one-dimensional
case, n = 1, that means precisely everything. Let us conclude by a
simple example.

Define a function f on the real line by:

(2.54) fix) = (% 4 xz)‘2 -

We want to know what §f looks like. We need some data on f

which are summarized in the following:

f'(x)

1]

4x(x + 1)(x + 'ZL) = 4x3 + 6x2 + 2x

ftiise) = 12x2 +12x + 2

X f(x) D =) £1'(x) z = fY(x)x - f(x)
-0 +o - * +o
=] 0 0 * 0
-0.7887 1/36 0.19245 0 -0.1796
- 1/16 0 -1/16
=g, ZE1 3 1/36 -0.19245 0 0.0129
0 0 0 " 0
4w + o0 4 o * + w
_25_




SRR

e

We now can draw the graphs of f and gf (Figures | and 2.) Note
that the z-axis p = 0 intersects £f atthe simple point 2z = -1/16 =
and the double point z = 0. This means that there are two distinct
tangents to f with slope p = 0: the first one is tangent to f at
x = -1/2 only, the second one is tangent to f both at x = -1 and

x = 0. From formula (2.17), the tangentto £f at (p = 0, z = -1/16)

has slope -1/2, and the two branches of £f which intersect at

(p =0, z=0) have distinct tangents of slopes -1 and 0 respectively.

Moreover §f features two cusps at (0.1945, -0.1796) and
(-0.1945, 0.0129). By Proposition 2.6, the tangents at those cusps are
well-defined, and have slopes -0.7887 and -0.2113 respectively.

Note the parametric equations for £f:

p = 2x(x +1)(2x + 1)

(2+55)

2 = x(x + l)(3x2 + X)
so that the graph of §f is the semi-algebraic set obtained by writing
that the two algebraic Equations (2.55) have a common solution in X~

i.e. by eliminating x between the two equations.
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§ lII.  Extremization problems and duality.

Whenever V is a subset of IRn X IRn X R, we shall denote by:
(P) ext V
the problem of determining all couples (x, z) ¢ an X IR such that
{3.1) (%,0,2) ¢« V.

() will be termed an extremization problem, and any couple (x, 2)
satisfying (3.1) will be called a solution of (). The value of (P), denoted
by {extf}, will be the setof all z ¢ R such that there is an x ¢ R
with (3.1) satisfied.

An important special case occurs when V 1is the Lagrangian
submanifold associated with some C‘Jc function f : R - R:

(3.2) V=i {ix f'(x),f(x))lx € IRn) 3
In that case formula (3.1) becomes:
(3.3) f'(x) = 0, z = f(x)
so that () is simply the problem of determining the critical points and

values of f. We shall write it

() ext f(x)
x

and call it an unconstrained smooth extremization problem.

Another important special case occurs when:

(3.4) V= {(x,f'(x) -

" 3=

NCHEN f(X))Igj(X) =0, A\ ¢ R 15 s k}

j=1

o
where f and the gj, 1 <j<k, are C functions on RrR". We set:




(3. 5) S=nV={xlg(x) =0, 15j<k}.

I;C.E‘L“.a_é;-,l;' If the g;(x), 1 <j <k, are linearly independent at every

x € S, then S is a closed submanifold of IRn and V is a Lagrangian
submanifold of R® x R" x R.

Proof. The fact that S and V are closed (n - k)- and n-dimensional
submanifolds follows easily from the implicit function theorem. We

check condition (1. 3) for V:

s

(3.6) ivw

df(x) - (f'(x) - E\Jg;(x))dx

= (df(x) - f'(x)dx) + Z\jg;(x)dx ;

The first term vanishes identically, and along V we have g;(x)dx =0
since g](x) is a constant. .

The solutions of (p) are all couples (X, f(x)) such that:

k
{3.7) xe€S and 3\ A, 3 f'(x) - 2, \.g

it
Saie o g .
1 k -1 ) )

If the g;(x), 1 <j <k, are linearly independent at every point

x € S, condition (3.5) means that x is a critical point of fls, the

restriction of f to S. For that reason, we shall write (P) as:

ext f(x)
(R)
gj(X) =0, 158k
and call it a constrained smooth extremization problem.

Any critical point of a smooth convex (or concave) function is a

minimum (or a maximum). For that reason, the various extremization




problems we stated reduce to optimization problems when f i{s convex
(or concave) and the g. linear. So extremization is a natural generaliza-
)

tion of optimization to the nonconvex case. Now it is a well-known fact that

”~

there is a duality theory for convex optimization problems, and we want

to extend it to nonconvex extremization problems.

n m
From now on we are given a linear map A: R - R . We shall

denote by x,p,y,q the vectors of IRn,(IRn)"\, ]Rm, (IRm)m respectively.

n+m n+m
With any subset V of R X R X R we associate the subset VA

of R' xR" xR defined by:

(3.8) Vi o {(x,p + A q,2)| (x, Ax;p, q;2) € V} .
} A T 3 m E 3 n *x 1
Applying this definition to the transpose A :(R) - (R) (),
+ +
and to any subset V of IRn i IRn gl R, we get:
3 3§ b3 m m
(3.9) v _+ {(q,y+Ax,z)'(Aq,q;x,y;z)eV}CIR XR X R.

A
We now state the main result of this section:

Theorem 3.2. Let A: R" - R" be a linear map and V any subset of

n+m n+m
X

R R x IR. Consider the extremization problems:
{
P) ext VA
(P) ext(gV)
-A
(1) .
From now on we shall omit the star.

3=
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The formulae
(3.10) (x, Ax;-A*q,q;z) N Bt B ~2
(3.11) 1—A*q,q;x,Ax;z') £ $V, z = -2
are equivalent. Whenever (x,z) is a solution of (f), the setof (q,z')
satisfying (3.11) or (3.12) is nonempty, and all of them are solutions of
(P ). Whenever (q, 2') is a solution of (P*), the set of (x, z)

satisfying (3.11) or (3.12) is nonempty, and all of them are solutions of ().

Proof. To say that (x,z) is a solution of () means that there exists

(p,g) such that:

(3.12) (x, Ax;p,q;z) € V, p + A*q =z 0

which we may write in a more symmetric form:

(3.13) (x,¥:pP,q32) € V, y - Ax = 0, p+A*q:0.
Applying the Legendre transformation, this becomes:

(3.14) (P, qiX,yiPX +qy - z) € £V, y-Ax = 0, p+A q =0 .
The last two equations imply that:

(3.15) z':px+qy-z:-A*q-x’rq-Ax-z:-z

and formula (3.14) becomes:

(3.16) (P, qiX,yi-2z) ¢ £V, y ~Ax = 0, p+ A q = 0 .
Breaking the symmetry, we get:

(3.17) (-A*q,q;x,y;-z) eV, y-Ax =0

which means precisely that (q,-z) is a solution of (P*). Since the

Legendre transformation is an involution, formulae (3.12) and (3.17) are

* 32 =

ji"g&}‘"x. .
s ‘r?‘%f-f»‘




equivalent, and set up a one-to-one pairing between solutions (X, z)
of (P) and (q,-z) of (® ). But (3.12) is just (3.10), and (3.17) is (3.11).
The following is an easy consequence of the fact that the Legendre

E 3
transformation § and the operation A - -A  are involutions:

Corollary 3. 3. ® ) = (P).

Problems (f£) and (P:':) will be said to be dual to each other.

Another easy consequence of Theorem 3.2 is the following:

Corollary 3.4. f{extp! = -{ext e )

Theorem 3.2 is more readily understandable in the case of
unconstrained smooth extremization problems. It reads:

+
Proposition 3.5. Let A: IRn - ]Rm be a linear map and f : an " R

a0
a8 © function. Consider the extremization problems:

°) ext f(x, Ax)
X
b3 *
(P ) ext £f(-A q,q) .
q

The formulae:
(3.18) -Aq-= (%, Ax), @ = £(x,A%), 2! = ~f(x, Ax)

set up a one-to-one pairing between solutions (x,f(x,Ax)) of (P) and
(q,2') of (P"'). Whenever the matrix of second derivatives f'" has

%k
rank (n +m) at (x,Ax), there is a neighborhood % of (-A q,q) and

a Cm selection 't?/f of §f over % such that:

(3.19) (%, Ax) - -(.cum-A*q, a)
(3.20) X = (.t.uf);)(-A q,q), Ax = (&uf);](-A q,q) -
«33s

—

TR




adase.

This follows easily from taking V = Vf, the Lagrangian submanifold
associated with f, in Theorem 3.2. The last part is a consequence
of Proposition 2.5. Note that relations analogous to 3.20 hold whenever
(£f)' can be defined in a consistent way at (p,q;z'); this would be
the case for the cusp points described in Proposition 2. 6.

Let us give an important special case:

£
Corollary 3.6. Let ¢: =" - R and Yoo R" R be C functions,

and consider the extremization problems:

(P) ext ¢(x) + U(Ax)
X

®) ext .w(—A"fq) + £0(q) .
q

Then. {extp) = {ext P*}, and there is a one-to-one pairing
between solutions (x,¢(x) + U(Ax)) of (P) and (q*,z') of (P*),
described by the reiation:

(3. 20) “Aq = o'(x), g = $(AX), 2' = e(x) + U(AX) .

Whenever ¢' hasrank n at x and (' hasrank m at Ax,
there are neighborhoods ul and uz of -A*q and q, selections

$ o and £,y of f£¢ and £y over Y, and 'uz, such that:

% % 1
(3.21) .r.uw(-A*q) + Svhb(Q) = ¢(x) + Y(Ax)
(3.22) X = (.\‘.uw)'(-A*Q), Ax = (5, 4)'(@) -

We now give two examples of applications of Theorem 3.2. They

are both related to the problem of finding the eigenvectors and eigenvalues




of a self-adjoint operator: we write it as an extremization problem in
two different ways, and dualize both of them.

Let us start with the constrained smooth extremization problem:

ext llax [1©
= Il < 1.
A solution to (f) is a couple (x,2z) such that:
(3.23) <l =1, 3x ¢ R: A Ax ~ax = 0
(3.24) z = laxl® = »

i.e. x 1is an eigenvectorof A A and 2z is the corresponding eigenvalue.

4 -
Consider the subset V C )Rn ol an ™ x R defined by:

2
(3.25) V= {(xyi-2a, 2ys iy 19 ]l = 1, x € RY .
By Lemma 3.1 it is a Lagrangian submanifold. It is clear that

problem () is simply extV For commodity's sake, we will cut

A
out part of V; indeed, it is apparent from formula (3.24) that A > 0
for any solution (x,z) of . So we introduce the ''Lagrangian sub-
manifold with boundary'":
(3.26) Vo= {(x, yi-2ax, 2y iy 1)1 0% = 1, x 2 0)
and we state problem (P) as:
P) ext Vi .

The Legendre transform of V' is again a Lagrangian submanifold

with boundary. Going through the computations, we write it as a disjoint

union §V = Q U I, where I is the boundary:

-35~
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(3.27) > = {(p,ai~p/llpll,q/2;-llpll + llq ”zv/"*) (p#0)
(3.28) r= g0, qit,az2: g e eyl el = 1) .

£V is clearly associated with the function (p,q) = - lpll + llqll 2/4'
The function p - - i|p [ is not differentiable at the origin, but let us
agree that:

(3.29) el o= e e B Mgl® = 1)

%
This being agreed upon, we can now state the dual problem (£ ) in

the following way:

®) ext - la"qll + llql®/4 .
q

Theorem 3.2 implies that whenever (q, - “A*q Il + llq ”2/4) is

»

a solution to (P ), all couples (x, ”Ax”z) given by:

(3. 31) x=Aqzia’qll 1 A'qgr0, Ax = q/2, Ixl® <1
(3. 32) Iaxl? = lIa%qll - llqll®/4
are solutions to (P); in other words x is an eigenvector of A*A with
norm one, and ”A*q | - ||q ”2/4 is the corresponding eigenvalue. For
instance, formula (3.29) shows us that (0,0) is a solution to (P*)
provided there exist & ¢ R° with € =1 and Af = 0. Formulae (3.31)
and (3. 32) then yield the trivial fact that every such £ 1is an eigenvector
of A*A with eigenvalue 0. Note as a conclusion that -{ext P*} is just
the spectrum of A:::A.

We now treat the same probiem in another way. We define a subset

W of an+m X an+m x R by:




whase

(333 W= {xy-exly 2/0x 0, 29/ 0% Iy 12 /10 | x # 0)
U (0,00, n;0) | n « rR™) .
It can be checked that W 1is a Lagrangian submanifold. We
associate with it the extremization problem:

(2 W
) ext A

which we state somewhat loosely as:
(®) ext flaxl®/llx 1.

Of course, solving () is just looking for the eigenspaces of A*A.
We now construct the dual problem (P*). A simple computation yields:
(3.34) W = {(p,a-2p/llall?, 2allpl®/llal - I %/lal?) q  0)

U {(o,0;m, 0;0) | m ¢ -t O

The dual problem (P*), which is ext W _, will be stated
somewhat loosely as: %
(3.35) ext - la*a[1%/llqll? .

We leave it to the reader to see what becomes of formulae (3.10)-(3.11).
They tell us essentially that the eigenvalues of A*A and AA* coincide -
a trivial fact.

We conclude this section by pointing out a technicality: even if V

n+m

+
is a Lagrangian submanifold of R X IRn v

X R, the set VA need

not be a Lagrangian submanifold of Rn X ]Rm X R. Indeed, it need neither

be closed nor be a submanifold. As a simple example, take

(3. 36) V= {(x, y:-y/xz,l/x;y/X) [x #0)}




: 2 2 ‘
a Lagrangian submanifold of R X R X R. Setting A : x - mx, we get:

m"‘

(3.37) V, = {(x,0,m)|x # 0}

which is not closed in R X R X IR.
However, we have the following:

Lemma 3.7. If V 1is a Lagrangian submanifold and if VA is a closed

submanifold, then V_ is Lagrangian.

A
Proof. We check condition (1. 3) for VA:
X

o
(3. 38) ivw = dz - (p + A q)dx

dz - pdx - qd(Ax)

1]

which is zero since (x,Ax;p,q;z) € V, and the restriction of w to V
vanishes. "
‘ Note also that if V 1is the Lagrangian submanifold associated with

o0
a € function f :]Rn b IRm - R, then V is the Lagrangian submanifold

A
00
associated with the C function x + f{x,Ax) from an to IR - a fact

we have ugsed repeatedly in this section.
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§IV. Applications to the calculus of variations.
n . , @ :
From now on, IR will be an n-dimensional C -~submanifold
: N / n
with boundary I We set Q2= Q - TI, an open subsetof R, we
endow € with the Lebesgue measure dw and I with the induced
(n - 1) dimensional measure dy.
; : \ & m
We consider a continuous linear map A:V - E, where E =L (2;R )
. ; 2 k : .
and V 1is some Hilbertian subspace of H = L (2;R7) (i.e. V is a
linear subspace of H endowed with some Hilbertian structure such that
the inclusion mapping V - H is continuous). We assume that there

is some Hilbert space T and some continuous linear map 7 :V - T

such that T is surjective and V0 = T_I(O) is dense in H. In practical

examples, A will be some differential operator, VO will be £(82),

the closure in V of the set of Coo functions with compact support in
2, and T will associate with every function in V its '"trace'' on the
boundary I'. We shall state an abstract Green's formula for later use:
Theorem 4.1. There exist a Hilbertian subspace V* of E;  and
continuous linear maps A* : V* -~ H and T* s V* - T', the topological
dual of T, such that, for every xe¢ V and q e V*, we have:

(4.1) (q, Ax) - (A*q,X) - <T*q,T><>

2
where (-,+) denotes scalar productin L~ and (+,-) denotes the

duality pairing between T' and T.
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We now turn to extremization problems in the calculus of variations.

From now on, we are given a family W , «w ¢ @, of Lagrangian sub-
w

k+ k+
manifolds of IR oW x IR, and we denote by F (x,y) the
w

associated characteristic maps. Moreover, we are given a conveX lower
semi-continuous function ® : T - R U {+x}; as usual in convex analysis,

its subdifferential will be denoted by 8®. We now state:

Definition 4.2. The calculus of variations problem (l):

() ext [ F (x(w), Ax(w))dw + ®(TX)
xeV Q *

consists in looking for all mappings w —=(x(w), p(w), a(w), z(w)) from Q

IRk+m X le+m x IR such that:
% 1
(4. 2) eV gV 2¢l
*
(4. 3) (x(w), Ax(w);-A q(w),q(w);z(w)) ¢ W for a.e. e @
s
(4.4) T qe -9%(TX) .

sk
Any pair (x,2z) ¢ VX Ll such that there exists q ¢ V  satisfying
(4.2)-(4.4) will be called an extremal of (?). The number ¢ defined by:

(4.5) { = f z(w)dw + ®(TX)
Q

will be the associated value of (f). The set of values of problem (P)

will be denoted by {extp}.

The motivation for this definition is clear. In the case where

0
F (§,n) = Hwi§, n), a function whichis C in (§, n) for almost every

“)Henceforth denoted by C.V. problem.
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k m
w € 2, and measurable in w for every (£,n) ¢ R" XR ', then
Equations (4.2)-(4. 6) become:

(4.6) £ (wix(w), Ax(w)) + A*f'n(w;x(w),Ax(w)) =0 a.e.

(4.7) T £ (x, Ax)] € -0®( x) .
Equation (4. 6) is the Euler-Lagrange equation on £ associated
with the integral:

(4.8) f flw;x(w), Ax(w))dw
Q

and formula (4.7) yields the so-called transversality conditions on the
boundary I'. In the case where f is convex in (§,n) for every w,
those are necessary and sufficient conditions for optimality. If f is
na convex, but satisfies some growth condition of infinity, we get the
first-order conditions for stationarity.

We now state the duality theorem:

Theorem 4.3. Consider the C.V. problems:

(P) ext [ F (x(w),Ax(w))dw + ®(Tx)
xeV @ “

®") ext [ g Fw(‘A*Q(w),Q(w))dw to'(-rq) ().
qe V* M

Let (x,z) be an extremal of (P) with value {; then, for any q

% £
satisfying (4.2)-(4.4), (q,-XA g +gAx - z) is an extremal of (P )

(1) 3%
® is the Fenchel conjugate of @ in the sense of convex analysis:

o (6') = sup{(6,6') - ®(b6) 16 ¢ T}, ¥6' ¢ T' .

~dl-
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with value =-¢. Conversely, let (q,z') ¢ V*xL1 be an extremal of (P';‘)
with value ('; then, for any x ¢ V satisfying:

(4.9) (-A*qw),q(w):X(w).AX(w);Z'(w)) ¢ §W fora.e. we@
(4.10) G TX € 8¢*(-T*q)

(3, 2" + xA'sq - qAx) is an extremal of () with value -{'. Hence:

(4.11) {extp} = -{ext p*} -

Proof. The pointwise equation:

(4.12) (x(w), Ax(w)i=A"q(w), alw)iz(w)) ¢ W_

can be written:

(4.13)  (-A q(w), q(w)ix(w), Ax(w)i-x(©)A q(w) + Ax(w)a(w) - 2(w)) « £V, -
Moreover, formula (4.4) can also be written:

(4.14) TX € 80*(—T*q) 2
But Equations (4.13) and (4.14), together with x ¢ V, q ¢ V*, Z ¢ Ll,

simply mean that (q, -xA*q + AXq - z) is an extremal of (P*). The

associated value is:

(4.15) 0 = [ (-x(@)A q(w) + Ax(w)a(w) - z(w))ds + & (=7 q) .
Q

Using Green's formula:

(4.16) ' = - [ z(w)dw + (T*q,Tx) +O*(-T*q) .
Q

Making use of Equation (4.14), this becomes:

(4.17) ' = - [ z(w)de - ®x) = -L .
Q

Hence the first part of the theorem. The converse is proved along

the sames lines. ]
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Typical instances of such a mapping A:V - E are

(4.18) el B(a) = o™
(4.19) A HY(Q) - L3R .

In the first case, T is HI/Z(I"), and Green's formula reads:

(4. 20) f(gradx-5+x-div&.)dm= f ff&’x dy .
Q 3

3/2

In the second case, T is H (I'), and Green's formula reads:

(4.21) f(Ax - g +x+ Aq)dw = f(qﬁ.- grad x +xn - grad q)dy .
Q Q

In both cases, we could define @ as:
(4.22) G5y = 0 4f &= 60, +00 otherwise
which gives a Dirichlet condition (fixed boundary values). We could

also define:

(4.23) ®(6) =0 if [6 =0, +o otherwise
1 i

which is a kind of periodicity condition.

Let us give an example,

ext f f(w;x(w), grad x(w))dw
Q

x ¢ H(@), [ x(y)dy = 0
r

has the following dual:

ext fxf(w;-div q(w), g(w))dw i
() e |

q ¢ H(Q;div), q = constant on [

A I i e Y




where H(Q,div) = {u ¢ LZ(‘.), an) l div u ¢ LZ(Q, IRn) }. The task of
rewriting (4.2)-(4.4) and (4.9)-(4.11) is left to the reader.

We are now going to show that we can get simultaneously the
extremals (x,z) of () and the extremals (q,2z') of (P*) from the
extremals of a single C. V. problem:

Proposition 4.4. Consider the C.V. problems:

e - * %k
(2) ext | FA q(w) + x(w) + q(w)y(w) - F (x(w), y(w))] + @ (-7 q)
(x,v,0) ¢ @
VXE XV
*
(2) ext [[plwx(w +aq(w) - Ax(w) - £F (p(w), a(w))] + o7x) .
(x,p,q)e Q
V XE xV*

The following are equivalent statements:
(a) (x,y,q,2') is an extremal of (2)
(b) (x,p,q,2z) is an extremal of (D*)
(c) (x,q,2z) satisfy (4.2)-(4.4)
(d) (g,x,2') satisfy (4.9)-(4.10) and 2z' ¢ Ll
with 2z + 2! = -A*q * x+q -+ Ax. In particular (x,z) is an extremal

5
of (P) and (q,z') an extremal of (P ).

Proof. We have already shown that (c) and (d) are equivalent. We shall
be content with proving that (a) and (¢) are equivalent; the proof that
(b) and (d) are equivalent goes along the same lines.

Problem (2) can be written as:

() ext [ 3 (x(),y(w), -A"q(w), lw))de
(X,y,9) ¢ Q
VXExXV"
~44-
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where 3 1s the characteristic map associated with the Lagrangian

+ 2k +
submanifold % of IRZk ~m le'Zk &n X R defined by:
w

(4.24) ')/w & {(gi W, pim=o,p~T,E mnE + pn - g)l

e B, p ¢ B, (6, mio,730) < W)

We now apply Definition 4.2 to the Hilbert space % = V X E X V’k
and the map &@:% - E defined by &(x,vy,q) = -A*q; its adjoint will
be the map d* :V+HXEXH defined by a*(x') = (0,0, -Ax").
Conditions (4.2)-(4.4) then become:
(4.25) er,yeE,qev*,x'ev,z'(Ll
(4. 26) (x(w), y(w), -A*q(w),q(w);0,0,x'(w),Ax'(w):z'(w)) «<¥, a.e.
(4.27) TX' € atb*(—fq) ;

S0 (%, ¥ 9,2" ¢ VXEX V* X Ll is an extremal of (2) if and

only if there exists x' ¢ V such that (4.26) and (4.27) are satisfied.

Now, comparing (4.26) with (4.24), we get:

(4. 28) “Aqw) = o

(4.29) q(w) = 7

(4.30) x'(w) = x(w)

(4.31) Ax'(w) = yl(w)

(4. 32) z'(w) = -A*q(w) * x(w) + qlw)ylw) -
(4.33) (x(w), y(w);o, ;L) € W

All this boils down to:

(4. 34) (x(w),Ax(u);-A*q(u),q(u);z(w)) € Wm a.e.
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*
with z(w) + 2'(w) = -A q(w) * x(w) + glw) + Ax(w). Taking (4. 30) into

account, (4.27) becomes:
(4. 35) ke % (=1 Q)
which can be inverted to:
(4. 36) -1 q € B®(TX) .
But (4. 34) and (4. 36) are just (c), and we have proved our claim.
Proposition 4.4 can be considered a smooth version of the saddle-
point property for Lagrange multipliers in convex optimization. Note
that in the case where Fw(g, n) = f(w;§, n), measurable in w, c” in
(£, n), problem (P*) involves §f(w;§, n) which typically is multivalued
and cusped; working with problem (2) is a way of circumventing this
inconvenience at the cost of increasing the dimension.
We now apply this idea of ''smoothing out’ Legendre transforms to

another example.

[ o]
Proposition 4.5. We are given a C function ¢ : [0, T] X e R,

a measurable function f:[0,T] - an, and a point go € an. We

consider the differential equation:

e) Stoutx) < £ ae on [0,T], x(0) - §

dt 0

and the C.V. problems:

T
d
ext { [o(t, x) + So(t;f - af') + x(%:'(' - f)]dt

x « H(0, ;RY), x(0) = &

0




T

ext [ [o(t,x) - o(t,y) ¢+ (gté - f)(x - y)]dt
0

x (0, TIRY,y ¢ H(0, "), %(0) = y(0) = & -

If Equation (&) has no solution, then problems (p) and (9)

have no extremals. If Equation (&) has a solution ;, then problem (p)

has a unique extremal (x,0), and problem (2) has a unique extremal

(x, x%,0).

dx

Proof. Problem (D) arises from problem () by replacing fe¢(f - d—t) by

dx
y(f - d—t) - ¢(y), i.e. by smoothing out that part of the integrand which
is a Legendre transform. Proposition 4.4 does not readily apply to this
case, so we give a direct proof.

An extremal (x,y,z) of (D) is defined by the Euler equations:

dx d

(4.37) w'g(t,X)+d—t-f=§[x-y]
(4.38) -o4(t,y) - g—f +E=0

and the boundary conditions x(0) = y(0) = x.. Together, they yield the

0

system of differential equations on [0, T]:

gl ] = =
(4.39) at * ot x) = & ¥(0) = x,
(4. 40) dx | Si(t,y) = £, x(0) = x.. .

g e ’ 0

Now this is to be compared with equation

A < E

e) At :pg(t, x) = f, x(0) = Xg *

w7




The assumptions on ¢ imply that both system (4. 39)-(4.40) and

equation (€) have at most one solution. If x is the solution of (¢),

obviously (x,x) 1is the solution of (4. 39)-(4.40). Conversely, if (x,y)

1s a solution of (4. 39)-(4.40), then so is (,;, ;); from the uniqueness,

1t follows that X = )—/, obviously the solution of (£). Writing x = x = ; =Y
in the integrand, we see that it is identically zero. We have proved the
equivalence of equation (£) and problem (2).

The equivalence of problems (P) and (2) goes along the lines set

up in Proposition 4.4. Indeed, equation (4.38) means simply that:

‘ : d .dx ; dx
‘4' 4}\ e e~ —_— = . - —
i oity ¥) AT = 1Y £ ot f e )

and the integrands in (P) and (2) become equal. With x = y, formula (4.4l)

yields, with a slight misuse of notations:

dx

4 ' Tx

(4. 42) [ml'g(t,f-

and the Euler equation for () turns out to be exactly equation (€). ]
Note that we have defined directly the extremals of a problem in the

calculus of variations, without reference to any extremization problem.

This is because the natural extremization problem involved is infinite-

dimensional, and the results of the preceding sections do not extend

readily to this case; indeed, smoothness assumptions which are natural

in finite dimensions become preposterous in this new setting. In some

particular cases, however, it can be made to work. Let us give an example,

which will be recognized as an infinite-dimensional version of the

example concluding Section III.
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We consider the space V = Hé(ﬁz) and the function:

(4. 43) f:v\{0} xL%@)® -~ R
2 2
(4.44) f(x,y) = lyl“/lxl
)
with |- ! denoting the L“-norm. Obviously f is a " function, with:
= 4 2
(4.45) p=f(xy) = -2x|yl/1x]" € L(9)

(4. 46) g = f;,(x, y) = .Zy/!xl2 € LZ(Q}n y

We now set:
(4.47) y = grad x
to get the extremization problem:
(ext lgrad x|2/|x|2

() ¢ |
X HO(Q), x#0.

Let us write out the equation for a critical point, taking into account
the fact that the transpose of grad : H;(Q) - LZ(Q)n is =-div : LZ(Q)n - H-l(ﬂ):
2
(4.48) 0 =p=divgs= -2(x|grad xlz/]xl2 + div grad x)/]x] g

Note that lgrad x| cannot be zero unless x is, so (4.48) becomes:

i
(4.49) X = —'L*'L'—ZAX,X#O.

: Igrad xf

In other words, the solutions of (P) are the pairs (x,1/A\) where
-\ is a nonzero eigenvalue of the Laplacian under homogeneous boundary
conditions, and x any nonzero eigenvector.

To get the dual problem, we note that (4.45) and (4. 46) are

invertible whenever y # 0, vyielding:

R s




: 2 o2 4

(4.50) x = -2p/lql , ¥ = 2qlpl®/lal”
so we are in the particularly simple case where the Legendre transforma-
tion is one-to-one. Equations (4.48) and (4.47) become:

; s
(4. 51) p=divge L

2 2 2
(4. 52) 2(qlpl®/lal® + grad div q)/lql® = 0 .
But this means exactly that q # 0 is a critical point of the

2
function q - - ldiv qﬂ /lq ‘2 over the space:

: 2
(4.53) H(Q;div) = {q e L (Q)nfdiv q e LZ(Q)} s
Finally, we get the dual problem:
2
* ext—‘divq, /,qlz

(P )

q € H(Q;div)
with the usual relationship (4. 45)-(4. 46) or (4.50). Note in particular that:

(4.54) {ext P} = -{ext p*} :
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§V. Comments .

The notion of a Legrangian submanifold is central to the theocry of
Fourier integral operators. It is attributed to V. Arnold [1] or V. Maslov [13],
and has been painstakingly investigated ([ 11], (16], [9]). However,
these authors define a Lagrangian submanifold of a symplectic manifold
(dimension 2n, fundamental 2-form ) as an n-dimensional sub-
manifold on which @ pulls back to zero. In our framework, this would
mean an n-dimensional submanifold of an X an on which Q = i dpi - dxi
pulls back to zero. Noting w = dz - 2 pidxi as in (1. 3), we ls;:e that
Q= dw. It follows that if V¢ IRrl X IRln-lx IR is a Lagrangian submanifold
in the sense of definition 1.1, if the projection "xp 1V - an X an is
proper and if its tangent map T"xp : TV - T(IRn X ]Rn) has rank n
everywhere, then nxpv is a Lagrangian submanifold of an X an in the
preceding sense. Our definition has the advantage of incorporating 2z,
which is very useful for practical purposes.

For basic information about proper maps, we refer to any book on
general topology, e.g. [ 4]. Sard's theorem in the c” case, as well
as basic information on submanifolds and the implicit function theorem,
can be found in [12].

The definition (2.1) of the Legendre transformation is given in [6]

as a particular case of a contact transformation. The contact transformation

w0
associated with a given C  function H(x, z;x',2') on R' xR xR xR

p}




. , : 3 , n n
is the mapping which associates with any point (x,p,z) ¢ R* X R X R
the point (x',p',z') defined by the formulae:
Hixt, 2%, z) = 0

aH/ox' + p'oH/0z'

I
o

oH/0x + p 0H/0z O s

From the two last equations it follows (formally) that p = 9z/9x
and p' = 9z'/ox'. It follows (still formally) from the first one that
dz' + p'dx' = 0 if and only if dz + pdx = 0. In other words, if we
have no trouble with cusps or closedness, a contact transformation will
send a Lagrangian manifold onto a Lagrangian manifold. It need not be
involutive. In the special case where H(x',z';x,2z) = z + 2' - xx', we
get the Legendre transformation.

Also related to the Legendre transform is the notion of dual varieties
in algebraic geometry. Let a projective variety C be given by its

equation P(X Xn) = 0, where P is a homogeneous polynomial

l’...,
-~

of degree d. The dual variety C 1is the set of tangents to C; its

equation P(u “y un) = 0 has as zeroes all (ul, S un) such that the

P
2
hyperplane u X, + *** +u X 1is tangentto C. In particular, C = C.
11 nn X X
+ i
For instance, if f :R” =R isa polynomial, setting z = _n__l_, X, =

fast " Theg

as is usual in projective geometry yields:

Xn+1 Xl Xn
graph f :{(Xl,...,xn+2) X = f(x * . }
n+2 n+2 n+2
2w




The dual variety is simply the graph of the Legendre transform:
gr/a;m = graph £f .

A particularly interesting case arises when n =1 and complex
numbers are used. It can be shown that, if C (resp. 6) is a complex
algebraic curve of degree d (resp. 8), having r (resp. ﬂ double points
and s (resp. g) cusps, with no other singularities, then we have the
following symmetric relationship (Plﬁcker's formulae):

d=d(d-1)-2r- 3s
&= dfd ~i) = 2r - 38
; -5 = 3(& w'd) .

I am indebted to P. Deligne for this elementary algebraic geometry.
Now let us proceed to providing Sections II, III, IV with bibliographical
references.

Fundamentals of convex analysis are given in [14] or [8]. Modern
tools of differential topology, included the Malgrange division theorem,
Thom's transversality theorem and notions on stratifications, will be
found in [15]; see [10] for a textbook on the subject. Note that the proof
of Proposition 2.6 for n = 1 does not require the Cm division theorem.

Condition (3.7) can be interpreted as a necessary condition for
optimality in a much broader context than indicated, i.e. the space needs
not be finite-dimensional and the gj! need not be linearly independent;

see [7]. Duality theory for finite-dimensional convex optimization

problems will be found in [14].

“53=




Theorem 4.1 is due to J.-P. Aubin. Its proof will be found in [ 2]
or [ 3]. Duality theory for convex problems in the calculus of variations
is treated in [ 8], but here we follow rather the approach of [ 3]. Proposi-

tion 4.5 is a nonconvex analogue of [5]. I am indebted to R. Temam

for suggesting to me the eigenvalue examples concluding Sections III and IV.
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