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ABSTRACT
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MONOTONE TRAJECTORIES OF MULTIVALUED DYNAMICAL SYSTEMS

%
Jean-Pierre Aubin, Arrigo Cellina and John Nohel

Introduction

In "microsystems' one or several decision makers control the
evolution of the state of a dynamical system in accordance with the rules
of optimization or game theory. We define "macrosystems'' to be
dynamical systems which are not controlled (in the technical sense of
control theory), but for which the state evolves by improving the values
of several criteria. In our study of macrosystems we do not look for
optimal trajectories, but rather we seek sufficient conditions guaranteeing
the existence of "monotone trajectories' for a class of dynamical systems,
sufficiently general to include problems cof some interest in economic
and biological theory.

It is reasonable to describe the evolution of such macrosystems by
a dynamical system of the following type. Let U be a topological vector
space, and let X be a convex, compact subsetof U. For i=1,2,...,n
let fl :X-R be n given functions, called lgss functions; the
values of the functions f, should decrease as the state of the system

i
evolves. Let S be a multivalued mapping from X into U. We seek a
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function x :t - x(t) ¢ X such that

(% x'(t) € =S(x(t)) (0 <t <oo; ' = d/dt)

where x(0) = x0 is a given point, and such that

(%) each function : t - fl(x(t)) {t=1,....0;0<t <m)

is nonincreasing. Relation (*) states that if at time t the state of the
system is x(t), then the admissible velocities x'(t) are constrained

to lie in the set =-85(x(t)) (this pen:its uncertainty to be included in the
model). Relations (**) require that the evolution of the state of the system
does not increase ('improves'') the values of the n loss functions fi.

We summarize our results as follows. In Section 1, we establish,
under reasonable assumptions linking the correspondence S and the |
loss functions fi’ the existence of monotone trajectories for the discretized
implicit system associated with (*), (**): find a sequence t — xt 5 X
such that

t+l _ t
k

(r3) «-86x"™) (0 <t <+m, k>0) |

where xo is given and such that (**) is satisfied. We prove in Section 2
that the piecewise linear functions which interpolate the solution of the
discrete system (**¥), (¥4 converge to a solution of the system (*), (**).
In Section 3, we show that the same assumptions imply that for all ; € X
there exists a critical point X of § 5.9, 0% -s(;)) such that

fi(;) = fi(;) (i=1,...,n). In particular, this shows that if x is a

Pareto minimum (i.e., there is no y ¢« X such that fl(Y) < fl(;)’ §8 Fysunstly




with fj(y) < fj(x) for at least one j), then there exists a critical
point x of S with the property that fi(;) = fi(;c) forall = 1 500
We also show that the subsets Q = {x ¢ X : fi(x) £ fi(;), i RS
where x is a Pareto minimum, are weakly stable in the following sense:
For any neighborhood M of Q there exists a neighborhood N of Q
such that for every x0 ¢ N there exists a trajectory of (*%**), (*%) passing
through xo which liesin M for all t > 0. In Section 4 we introduce
the concept of Lyapunov function f for the correspondence S which
has the property that f(xt) does not increase whenever {xt}t is a
trajectory of the dynamical system. We obtain stability properties
analogous to classical results for ordinary differential equations. In the
last section, we extend the results of the first section to other discretized

systems

Al t

(k%) . -S(BXH1 $.41 = e)xt) (0<e<1)

where x0 is given and where the condition (**) must be satisfied

(when © = 0, we obtain the "explicit" scheme). The assumptions needed
for the existence of a solution of (**%%) (*%*) are stronger than those
needed for the implicit scheme (6 = 1).
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1. Dxistence of monotone trajectories in the discrete case

We shall make the following assumption:

X is a convex compact subset of a Hausdorff

(1)
locally convex space U .

We consider a correspondence S from X into U with nonempty closed

convex images S(x). Then the Hahn-Banach theorem implies that these

images are characterized by their support functions

(2) rv"(S(x):p); sup (p,Y,
y € S(x)

where p ranges over the topological dual U* of U. We shall say
that S 1s upper hemi-continuous if, for any p ¢ U*, X - o#(S(x);p) is
upper semi-continuous. Any upper semi-continuous correspondence is
upper hemi-continuous, the converse being true when S(x) is compact for
each x ¢ X. We shall assume that

S 1is an upper hcmi-continuous correspondence from
& X into U with nonempty closed convex images S(x) .
We introduce n 'loss functions" fi which satisfy:

loss functions fi : X - IR are convex and lower

(4)

semi-continuous (i = 1,...,n).

Let F:X -+ R" be the multiloss operator defined by F(x) - {fl(x), ey fn(x)}.

We now need an assumption linking the ''state set' X, the correspondence

S and the multiloss operator FT.

—




Definition 1.

We shall say that S and T are 'consistent''on X if

" n
e B S W IR+ and 'x ¢ X which minimizes

(5) &

Y~ M\ Fy),~<p,y* on X, then o”(S(X):p)zO-

Remarks on the consistency assumption

Refore stating the theorem, it is worthwhile to describe equivalent
statements of (5) and give some examples.

Let be the indicator of X, defined by wx(x) = 0 when x¢ X

X

and uX(x)- +» when x ¢ X. If g is a function from U into |-, +x],

let 9g(x) = {p ¢ U:; such that g{(x) - g(y) < {p,x -y, forall ye U}

be the subdifferential of g at x. Recall that ag,x(x) is the normal

cone to X at x. If assumption (4) holds, x ¢ X minimizes
n

y - \,Fly) = (p,y) on X ifandonlyif p e 8( 2, \lfi + “’X)(x)' Hence,
i=1
if we set
(6) C(\, x) = inf a#(S(x);p)
e
pe 6(1;1)\ £, +y (%)

then S and F are consistenton X if and only if
(7) T € ]Rr:, yx e X, C(\,x)>0.

o °
In particular, if the interior X of X is not empty and if x ¢ X, then

ah,x(x) - {0} and

(8) VR ¢ ;(, C\, x) = inf a#(S(X):p) .
By
p e o l x fi)(X)
i-1

Gos
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Let us remark also that when the images S(x) are convex and compact,

we can write

(9) C(\, x) sup inf P, Y
y € S(x) no.
pe o :, 0 % 7 ux)(x)
i=]

Assume for instance that the functions fi are theaux differentiable
at each point of X. Then we can write

n ”
(10) cOux) = it o Ms(xia+ Y \'DE (x)

ge aq;x(x) i=1

where Dfi(x) denotes the gradient of fi at x. If the correspondence
S is single-valued, then
n

(1) . Ofnex)=  inf . s )
ge 8¢x(x) i=l

\IDfi(x),S(x)\ :

Now let us consider the case where K is a convex compact set of
controls. Define

(12) 8(x) = A(x) + B(K)

where A is a single valued map from X into U and where B is

linear. Then

n
Cix,x)= inf sup {(q + :_, \ini(x),A(x) + B(v)"
qea¢x(x) vek i=1
n; i # 3 n 1
(13) \ = ')_Jl N (DE(x), A(x)} + o (K, B ("\“1 \'Df (x}))
i= i=
+ inf sup {(q,A(x) + Bv). ®




By a "monotone trajectory of the discrete dynamical system’ we mean a

t ’ ¢
sequence of elements x ¢ X satisfying

(14) X k- X —S(x“l)
and
(15) Pt < Fixh) |

0 : . ERE
where x is given, where k >0, and where the inequalities (15) are
interpreted in an obvious way. Our basic existence result is:

Theore T_l

Let the assumptions (1), (3), (4) hold. If S and I are consistent,

¢ t ; ’
there exists a solution {x } of the discrete dynamical system (14),

t>0
0
(15) for any initial condition x € X.
In the proof we will use a theorem of Ky Fan which states that
if X is convex compact, if Vy € X, x - a(x,y) is lower semi-continuous

and if ¥x e X, y - a(x,y) is concave, there exists x ¢ X such that

sup a(x,y) < sup a(y,y).
yeX yeX

Proof.

We have to prove the existence of le ¢ X satisfying (14) and (15)
when xt is given.

Assume that no solution exists. Then, for any x ¢ X, either
x £ xt - kS8(x) or F(x) - F(xt) is not positive. In the first case, by

%
the Hahn-Banach theorem, there exists p ¢ U such that

.....
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P, X p.x" + Ko (8(x);p) (since S(x) is closed and convex). In

: n ’ L i
the second case., there exists \ ¢ IR‘ such that (\, F(x) -~ F(x)3 > 0.

Let us introduce the subsets

(16) X ¢ X such that 'p.xL\ > (p, X} + ko “(S(X):p)}
}.

and

(17) V_ = {x ¢ X suchthat '\,F(x) - F(x)} >0} .

Since the functions x -» knu«S(x);p) t ‘p,x) and x -» -/\, F(x) - F(y)\
are upper semi-continuous by assumptions (3) and (4), these subsets
are gpen. The negation of the conclusion implies that X is covered by
the open subsets \/p and V\. Since X is compact, we can extract

S p
a finite covering: X V. DRy

to this finite covering. Let a be the function defined on X X X by

\

<~

k
(18) a(x, y) L ui(x)"\i,F(X) - F(y)) -

ﬁj(X)(p.,x =
i-1 j J

Ln

1

Since the functions fi are lower semi-continuous, we deduce that for
any y ¢ X, the function x -« a(x,y) is also lower semi-continuous.
The functions vy - alx,y) are concave because the functions fi are
convex. Also, aly,y) 0 for all y ¢ X. Hence the assumptions of the

above Ky Fan theorem are satisfied: thus, there exists x ¢ X such that

(19) a(x,y) <0 Yy eX.




e

¢

g

= A n -— x — Vs

Let us set \ et ul(x)\I ¢ lR+ and p L B.(x)p. ¢« U . We can
it G g

write (19) in the form

(20) ALF(x) - F(y)' - (px-y <0 VyeX.

Therefore, by the consistency assumptionof S and F on X,

(21) o (S(x);p) >0 .

We obtain a contradiction by showing that a(;, xt) > 0. Indeed, ai(x) > 0

for at least one index i or B)(x) > 0 for at least one index j. If

ai(x) > 0. ‘then X e V\ and thus, (\i, F(x) - F(xt) > 0. Hence
K i

/\, F(x) - F(xt)‘* - _\_l

L5 f=1 Aol R

X € Vp and this implies that -{p’,x -x)>ko

J

a (VA F(x) - F(xY)) > 0. If pj&) >0, then
#(S(;);p]). Therefore using

/ ! .
(17) and L B.(x) =1, we obtain -{p, x - xt‘> > k L B.(x)o #(S(x),pJ)
j:l ) J:l )
> ko '#(S(;);Eg_ 0. Hence a(;, xt) = /:, F(;) - }"(xt)‘; - /;; - 0. L

Remarks on the existence of trajectories

In the case where F = 0, the consistency assumption becomes
the so-called "Ky Fan boundary condition'. The Browder - Ky Fan theorem
states that this assumption and assumptions (1) and (3) imply the existence
of a solution x € X of the multivalued equation 0 ¢ -S(;) (see Browder,
Ky-Fan, Cornet [1] and [ 2] for instance).

Theorem | states that under the same assumptions, there exists a

solution {xt; of the discrete dynamical system (14). »

>0

f




Generalization

Let us consider now n functions ?; : XXX - IR satisfying

3 i) Vye X, x ~:,ail'x,y) is lower semi-continuous
(22) ii) ixe X, vy~ wi(x,y) is concave
|
{ iii) sup e(y,y) <0.
b yeX
We set
®(x,y) = {wi(x,y)} -

D_gfinition 2.

We shall say that S and ¢ are ''consistent' if 7Tp e U":, YN € IRZ,

for any x ¢ X satisfying

(23) sup (O, ¢(x,¥)) - (p,x-Yy)) <0
y € X

then o #(S(x);p) > 0.

Theorem 1 bis.

Let us assume that properties (1), (3) and (22) hold and that S and

¢ are consistent. For any initial condition x ¢ X, there exists a

solution of the dynamical system (14) satisfying

.

(24) ) O R | '8 wi(xdl;x")go forall t>6¢.
Proof .
The proof is exactly the same than the proof of Theorem 1 where

we replace F(x) - F(y) by ¢(x,y). "




o

Example.

Let us consider n loss functions f : U = |-®,+»]| such that

{25) 4 TR PR 1 fi is convex, finite eand continuous on X .
Then fi ig differentiable from the right and the function @, defined by
wi(x,y) : —Dfi(x)(y = X}
fix + 0z2) - f(x)

satisfies properties(ZZ){where Dfi(x)(z) =" inf - o . 15 the
0>0

derivative from the right, which is continuous with respect to X and z].

Corollary (of Theorem Ihiz).

Let us assume that properties (1), (3) and (25) hold. Suppose also

: 0
that S and F are consistenton X. For each initial condition x € X,

there exists a solution {xt}t>0 of the discrete system (14) satisfying
(26) #1= 1.0, £(x) - fi(x“l) > Dfi(xtﬂ)(xt -0,

=lle
" o




2. Exastence of monotone trajectories in the continuous case

We shall deduce from Theorem | of Section | the existence of
monotone trajectories of a multivalued dynamical system in the continuous

» : d !
case. Alrajectory is a continuous function x ¢ C(0, T;R ), whose

!
derivative (in the sense of distributions) belongs to I.l(O. T;R ), satisfying

i} Yte [0, T], x(t) e X and x(0) xo. where xoe X is given

(1)
ii) for almostall te [0, T], ’ng(t) ¢ -S(x(t)) ;

in addition, the trajectory x is monotone if

(2) for @bl =l S b e fi(x(t)) is decreasing,
where fl are given loss functions.

Theorem 2. .

Let us assume that

L
(3) X 1is a convex compact subset of R

S 1is an upper semi-continuous correspondence from X into

(4)
- f
R with nonempty convex compact images
and that
(5) the n functions fi : X - IR are convex and continuous .

If the correspondence S and the multiloss operator I are consistent

IS

X, Lther for uay T >0 there exists a monotone trajectory of the

system (1), (2) on [0, T].

R AR S
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Proof.
Let N be a positive integer. Consider the discrete dynamical

T
system (14), (15) of Section 1 with k KI. With any monotone trajectory

% :t\ 0 of this discrete system we associate the piecewise-linear

t
function x, (7) which interpolates the values x at the nodes tk(l <t < N):
~

we have

. d xt+l v a
(6) Xk!tk) x and a’t' xk(T) = '-"T(——' . oo Jkteoll = 104 .
Since X 1s compact and S is upper semi-continuous, S(X) = ' 8(x)

xe X

1s compact. Hence, there exists a constant a > 0, independent of k

and T, such that

xk(r)!j <a forall k.

&le

(7) sup .‘xk(f)ffg_a and sup |
Te[0,T] Te[0,T]

This implies that the functions x, are uniformly Lipschitzian and thus,

k
remain in a bounded equicontinuous subset of C(0, T;Rl) which is rela-
tively compact according to Ascoli's theorem. Hence we can extract a
subsequence (again denoted xk) which converges uniformly to a function
x € C(0, T;IR‘).

Since for all T ¢ [0,T]. we have

4
d - 0 0
(8) { it xk(n)dc 2 xk(-) ~ X converges to x(t) - x

1 !
we deduce that the sequence ag; xk converges weakly in L (0, T;R) to
the derivative (in the sense of distributions) of X, which belongs to

!
LI(O.T;IR ¥,

FETE T




Since the correspondence § is upper semi-continuous., we can
associate to any ball Bl(e) of radius € >0 a ball B(q) of radius n
such that
(9) S(y) — S(x(t)) + B(e) when vy ¢ x(t) + B(n) .

On the other hand, since xk lies in an equicontinuous set and converges

uniformly to x, there exist o« >0 and ko > 0 such that, for any

k<k, and [t -t|<a, we have fka(T) - x(t) |l < n. Therefore

0

(10) S(x, (7)) © S(x(t)) + Be) when k <k  and I*r<ti<a.
Since the sequence ft' xk converges weakly to dit X in Ll(O, T;]R’),

: : : s A
there exists some sequence of convex combinations Ry = L W <—i.t X,

K=k
0
!
which converges strongly to c?_tx in L](O,T;]R ). Let T e [0,T]. Since
‘ f tk+1 Lk
{7} = Y akix(f): Takx —= where [t -t k| <a

i ~ “1dt "k “ %y k : XKt =

k=k k=k

0 0
xtkﬂ ; xtk
and since e -S(xk(tkk)), for some integer t, we deduce
from (10) that for any £ > ko,
1 /4
N it R .
“u (t)e ) aS(x(tk)C ) a,[S(x() + Be)] = S(x(t)) + B(e)
[} ! k'k e !
k:ko k:ko

for the latter subset is convex. It is also closed. Therefore, since some

d
subsequence of B, converges almost everywhere to ; X, we deduce

that - :—?(t) belongs to S(x(t)) + B(e) for almost all t. Thus, by

letting €& converge to 0, we deduce that %? (t) € -S(x(1)) for almost all

It remains to prove that the functions t - fi(x(t)l are decreasing.

~ji=

T
¥k .JVP-

"k < it o8 X
RS L vl
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B eI ! g N e o S T

Let t < s. Since xk. lies in an equicontinuous subset, we
can associate with any n anumber o such that ?ixka) - x(t),) <n
and {{xk(u)—x(s)flin when it -tl<a, lo=sl<a and K<k,

Since the functions fi are continuous, we can associate with any ¢ >0

[

a number n such that fi(x(t)) < fi(Y) + and fi(z) £ fi(x(s)) +

o
~ o

when ffx(t) - yl.' <mn and ”x(s) - zh < n. Therefore, for any € > 0,

we can find ko such that, for any k < ko, there exist integers tk

and s satisfying titks_skkf_s and lt-tkl_<_a, ,:s-skk.'ga.

k k k
Since x, (s k) < x, (t k), we deduce that f (x(s)) < f (x(t)) +¢& for all i.
| i - k' k i i
By letting & go td 0, we deduce that fi(x(s)) < fi(x(t)). ®
Remark.

We refer to papers by Antosiewicz-Cellina, Brezis, Castaing-Valadier,
Clarke, Henry [1], [ 2], Valadier, for the study of multivalued ordinary
differential equations (but without the subsidiary condition (2)). 2

Generalization.

In Theorem 2 (continuous case), we can drop the convexity assumptions,

since it is not necessary to approximate the would~be solution by exact
solutions of the discrete scheme. We can extend the Nagumo theorem

(see Nagumo) to the case of monotone trajectories of multivalued differential
equations, by adapting the proof of Crandall [ see Crandall]. We obtain

’

Theorem 2 bis.

Let us assume that

L
(3 bis) X is a compact subset of R

-15=
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S is an upper semi-continuous correspondence from X
(4 bis) P
% into IR with nonempty convex compact images

: a . ’ 5 n
(5 bis) the multiloss operator F is continuous from X into IR

and that S and F are consistenton X in the sense that

(1) 7x € X, lim inf &ik‘y = 0 uniformly over X
k -0+

where we set

(12) A(x,k) = inf inf Ix - ku - vil.
u e S(x) F(v)<F(x)
veX

Then, for any T > 0, there exists a monotone trajectory of the system
(1), (2) on [0, T].
Proof.

sup M, equation (12) allows us

Indeed, if we set n(k) = K
xeX

N|r—

to construct an approximate solution of the explicit discrete scheme,
; t t+l .
by associating with any x ¢ X an element x ¢ X satisfying

F(x”l) < F(xt) and an element yt € S(xt) such that

t+l t
"x =5

" + yt < n(k) for any t,

i.e., such that, for any t,

Xt+l e xt
My gy, -8(x") + n(k)B
(13)
e r(x“l)si‘(xt)

where B is the unit ball of an. The convergence proof of Theorem 2




adane

shows that

‘he pecewise~-linecar function which interpolates the solution

of 113) converges to a monotone trajectory of the system (1), (2).

Remark.

-

We can prove that (11) follows from the following property

(

S is continuous and

{
“XeX, pe R, forany v ¢ X which minimizes

4 1 |
(14) < y - 'x = p -y under the constraint F(y) < F(x),
then sup (x-p=~-v,z)>0
. z € S(x)
by adapting the proof of Lemma 1 of Crandall. =3




5. Stability of Pareto minima

The solutions x of the multivalued equation 0 ¢ S(;) are called
the "'critical points'' of the correspondence S (or "equilibria' of S).

If x is sucha critical point, the constant trajectories {;. ; o, .,;, .
are obviously solutions of the dynamical systems (14) of Section 1 and
(1) of Section 2.

Let us recall that x ¢ X is called a "Pareto minimum' of F if
therc is no y ¢ X such that F(y) < F(;) and F(y) # I‘(;). In other
words, if we set
(1) P (x) = {y ¢ X such that F(y) < F(x))

we see that x is a Pareto minimum if and only if

(2) P (x) = F'F(x) .

There exist points which are both critical points and Pareto minima under

the assumptions of Theorem 1 of Section 1.

Theorem 3.

Let us suppose that assumptions of Theorem 1 of Section | hold. For

any X ¢ X, the subset P-(;) contains a critical point X of S. In
particular, if x € X is any Pareto minimum of F, th exi critic
point x of S such that F(x) = F(x).

Proof i

The proof is analogous to that of Theorem 1 of Section 1. Assume

that the theorem is false. Then, for any x ¢ X, either there exists

b

N S ARG,
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» « K| such that /\,F(x) - I(x)} >0 or 0y S(x), and thus, there
w
exists p ¢ U such that 0 > ¢ (S(x);p). Hence X can be covered
by the union of the subsets V\ = {x € X such that “\.F(x) - F(;)‘ > 0 |

#
and Vp - fx ¢« X such that 0 > ¢ (S(x);p)), which are open due to assump-

tions (3) and (4) of Section 1. Since X is compact, we can extract a finii

covering ana choose a continuous partition of unity subordinate to this

covering.
We introduce the function a defined by (18) of Section 1. The
assumptions of the Ky Fan theorem are satisfied: there exists x ¢ X

such that sup a(>:<, y) <0, i.e., such that
y e X

(3) ‘\,F(x) - F(y)) - (p,x = y) <0 Y¥yeX.

The consistency assumption implies that o#(S(;):;) > 0. Now, if B ():() >0

for at least one index j, then x €V and thus, o#lS(;);pJ) < 0. Hence
) J
# - 1\ D = j g
o"(8(x),p) < ), B,(x)a"(8(x);p’) < 0. This is impossible. Hence
ji=1

;3},():() = 0 for all indices j. Therefore, o (>:() > 0 for at least one

i
index i: then x e V, and thus, O, F(x) - F(x)' > 0. Since X %0
and ; = 0 1in this casle, we deduce that {:, F(;) - P(;),\ >0 and, from
(3), that ’:, F(f() - F(;)‘ < 0. Again, we obtain a contradiction.

Hence P-(;I contains a critical point of 8.

Furthermore, if x is a Pareto minimum, P‘(;) = F-l}"(;) contains

a critical point ; ®

Let us consider the discrete and continuous dynamical systems

(14) of Section | and (1) of Section 2.

o o e
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Definition 3.

We shall say that a subset Q is "weakly stable' for the discrete

system (14) of Section | (resp. for the continuous system (1) of Section 2)

if for any neighborhood M of Q, there exists a neighborhood N of

s 0 . .
Q such that, for any initial value x « N, there exists a trajectory

0
starting at x of the discrete system (14) of Section 1 (resp. of the

continuous system (1) of Section 2) lying in M.

Theorem 3.

Let us suppose that assumptions of Theorem 1 of Section 1 (resp. of

Theorem 2 of Section 2) are satisfied. Let us assume also that

(4) the functions fl, are continuous on the set of Pareto minima

Then, for any Pareto minimum X ¢ X, the subsets P-(;) are weakly
stable for the discrete system (resp. the continuous system).

Proof .

The proof is analogous to the proof of Theorem 3-8 of Maschler-Peleg.
Let M be an open neighborhood of P~(;). Hence K = {x ¢ X such that
X 4 M} is compact. For any y ¢ K, there exists at least one index 1
such that fi(Y) > fi(;) + e(y) where €(y) > 0. Since the function t‘i is
lower semi-continuous, the subsets B(y) = {y ¢ X such that

fi(y) > fi(;) + ely)] are open; they form a covering of K, from which

m
we can extract a finite covering K '/ B(yk).
k-1 L
Let & = min e(yk) >0 and N = {y ¢« X such that fi(y) gfi(x) +e
k2lyoueym
forall - 1,.. ,n}. Hence N M. We also know that if we choose

#
i




™0 0

any X ¢« N, then zlx.\;! fix) - ¢ forall 1. Let us consider the
1

. : : t
case of a discrote dynamical system: there exists a solution {x }t

such that, 1+ L. .% fi(xt) < fi(xo) £ fi(;) +¢e forall t, i.e. such

t .
that x ¢ N M for all t. Now, since the functions fi are continuous

on the set of Pareto minima, the set N is a neighborhood of P-(x) = F:IF(x).

Hence 9 (x) ‘= weakly stable. In the case of a continuous system,
Theoren 2 inulies the existence of a trajectory such that

0 —
fi(x(t)) < fl(x F< fi(x) + ¢ for all i. We deduce in the same way that

0—«;) 1s weakly stable. ]
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4. Lyapunov functions
Let us consider a function f : U « J-o, +»] satisfying
(1) f is convex and finite and continuous on X .

It has a derivative Df(x)(z) from the right at each point x ¢ X, Let us set

(2) Bf(x) =z inf . Di{x)(z) .
z € 8(x)

Definition 4.

We shall say that f is a Lyapunov function for the correspondence

S if it satisfies (1) and

(3) ¥x € X, Bf(x)zo.
With this definition we obtain the following result.
Proposition 1.
Let {xt}t>0 be any solution of the discrete dynamical system (14)

of Section 1. Let f be a Lyapunov function for S. Then, for all t

(4) i(x") - f(x") < "ka(le) <0.

Since f is convex, we have

(5) £ () = 1) < pr - -"—ti;(—‘—’¢>
t+l t

Since -~ 2(—;:—5- ¢ S(xtﬂ), inequalities (2) and (5) imply

(6) et - 1) < -ka(xt”) .

Hence (4) follows from (6) and (3). El

§
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R«\ma_rk. 5
If f is a Lyapunov function for S, then the sequences t -- f‘xlj
decrease for any trajectory of the discrete dynamical system (14) of
Section 1. If fl' Ay fn are n Lyapunov functions for S, then the
subsets P (x) are invariant; if X is a Pareto minimum, the subsets P (x) arc
stable in the sense that for any neighberhood M of P_(x), there exists a
neighborhood N of P (x) such that, for any initial value x0 e N, all
the trajectories starting at xo remain in M (the proof is analogous
to that of Theorem 3). For related results, see the book of Brauer and
Nohel, the papers of Champsaur, Champsaur-Dreze-Henry, Lassalle,

Maschler-Peleg, Uzawa, Yoshizawa, etc.

Remark .

We can extend these results by assuming only that f is locally

Lipschitz and by replacing the derivative from the right by the generalized

directional derivative

(7) f?f(_x)(z) = lim sup fly + Og) = fv)
0 +0+
y+X
introduced by F. H. Clarke. ]
Remark.
Since the inequality
B .
(8) \'B, (x) <B (x)
‘ n
i=1 i 5 if
&d S i
=1 n
\\

i
obviously holds when \ « IRr:, then the functions \ fi are Lyapunov

ol
i=]
functions for S if (and only if) the functions Ii are Lyapunov functions.




Remark.

I

We can also use Lyapunov functions to study asymptotic stability.

Let e 'fn be n Lyapunov functions. Let us assume that

X is compact and that

; B : n
(" whenever x is not a Pareto minimum, there exist \ ¢ 1R+_,

) \#0 and € >0 such that B (y) > € whenever

£9)

flty)zfi(x) for'all + s .05

: : T
Then, for any solution {x } of the discrete dynamical system (14) of

4 ¢ T
Section ] cluster points of {x } ar r inim

Proof.

t
Since the sequences fi(x ) are bounded from below and decreasing,

they converge to scalars Ci' Since X 1is compact, subsequences of

xt converge to elements x satisfying f (x) = inf f,(xt).
i t>0
Let us assume that x is not a Pareto minimum: Assumption (9)
implies that there exist x ¢ IR:I, A\ #0 and €& >0 such that B " (xt) > e
<t 1
LA fi
i=l

for all t. By Proposition 1, we obtain:
5 S ' G
+ \
(10) ¥ x‘fi(xt o .\‘fi(xt)g Se
i=1 i=]

By adding these inequalities from t = 0 to t = s -1, we deduce that
n

n
. : T 4 O
L \If,(xs) < _L \lfi(x ) - €s, which converges to -© when s = w0,
] i-1
This is impossible. [ ]




ﬁ‘* Re 1
Let us recall that if { is convex and continuous, its subdifferential
ofix) is not empty and that Df(x)(z) SUpP: CpiTYs Hence we can write
p ¢ af(x)
(11) B.(x) \n f sup s b sup faf  Tp, )
. z¢ S(x) pe af{x) pedf(x) ze S(x)

(¢ince S ) 1s closed and convex and 9f(x) is compact and convex). It
is wortnwihile to compare this formula with formula (9) of Section 1.

Lxamples of Lyapunov functions.

Let U be a Hilbert space.

Let us consider the correspondence S = 8g where g is a

continuous convex function defined on an open convex subset. Then the

Foh A far
functions fl = g ' and fz(y) = '2‘ hy-—xll where x minimizes g

are Lyapunov functions of S = ag.

Indeed. let z ¢ 8g(x). Since Dg(x)(z) = sup p,2}, we deduce
5 p ¢ 8g(x)
that 1z < Dg(x)(z). Hence

B (x) > inf 2> 0
z € ag(x)

and g is a Lyapunov function for dg.
=g
Let us consider now the case where f(y) = _21- “y - x” . Since

DE(y Nz} =y ;, z), we deduce that

|

Bf(x) : inf ’x-x2z'= - sup ‘x-x2)==Dg(x){(x-x).
z ¢ 9g(x) z ¢ 9g(x)

Since g is convex, we know that

Dg(x)(; - X) < g(;) - g(x) .

S

I ”




R

Hence
Bf(x) >g(x) -g(x)>0,

and f is o Lyapunov function for o9g when gi(x) = inf g(x).
2 xeX
More gencrally, let us assume that x satisfies

(12) s"(S(x).x - x) <0 forall xeX.
hience the function f defined by f(y) - % Ny - ;“2 is a Lyapunov
function for S. This kind of condition is used in mathematical economics
(see Arrow-Hahn for instance). ]

The problem arises whether there exists a solution x of (12). Such
a solution exists, not only in the case of S = 3g, but in the more
general case when, for example, S is a monotone correspondence:

Let S be a monotone correspondence and x e X a solution of

the variational inequalities for S in the sense that

E; ¢ S(;) such that {;,; -yY<0 vyeX.

Then the function f(y) = -;— ||y - ;“2 is a Lyapunov function for S.

Indeed, since S is monotone, we obtain for any q ¢ S(y),

#(S(Y),; -y)<0 forall yeX.

/’q,x - yy<{p,x-y)<0. Hence o
Recall that a solution x of the variational inequalities exist when X
is convex compact and S is a monotone correspondence with nonempty

convex compact values whose restriction to all finite dimensional spaces

is upper hemi-continuous (ser "rez’ for instance). [ ]

..Zb—
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Proposition | can be extended to the case of a continuous dynamical

system (1) of Section 2. For that purpose, we need

Let f be a function satisfying (1). Let x be a differentiable

function from [0, T) into X. Then the Dini deri/ative (i) [ f(x(t)] =

flx(t + n)] - fix(t)]

lim surg h satisfies for almost all t the inequality
n-0
4 dx
(13) (dt)+ flx(t)] + Di(x(e)(- £¥) <0
Proof.

Indeed, the convexity of f implies

x(t) - x(t + h) f(x(t)) - f(x(t + h))
(14) De(x(t + b)) d | < &

fly + 62) - fly)

Since Df(y)(z) = inf 0 is the infinimum of the continuous
0cl0.1]
fly + -
function {y,z,0} - (v + 82) - fly) when 6 ranges over the compact

0

set [0,1], we deduce that {y,z} - Df(y)(z) is continuous. Hence we
obtain (13) by letting h converge to 0 in (14). "
Proposition 2.

Let x(-) be any solution of the inuous dynamical system (1) of

Section 2. Let f be a Lyapunov function for S. Then, for almost all t

(15) (E";L flx(t)] < -B(x(t) <0 .

Proof.

Since ~ gi's (t) « S(x(t)) for almost all t, we deduce (15) from

(2), (3) and (13).
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3. Other discrete dynamical systems
The discrete dynamical system (14) of Section 1 is a particular
example of a family of discrete dynamical systems.

(1) xt'l - xt € -kS(Gx“l + (1 - e)xt)

where 0 ¢ [0,1]. For © = 1, we obtain the "implicit' discrete system
(14) of Section 1. When 6 = 0, it is the so-called explicit dynamical
system:

(2) o ks .

For 6 = 1/2. we obtain the Crank-Nicholson system. In order to prove
the existence of monotone trajectories of the system (1), we need a

consistency assumption between S and F which depends upon 6:

Definition 5.

We shall say that S and F are '"0-consistent''on X if ¥p e U"",

ch IR?, for any x ¢ X which minimizes y =~ '\, F(y)’ - /p,y", we have

(3) O P = fp, %) & Anf [N, FW)Y = (pyY) ¢ k«#(S(ex +(1 - o)ysp)] .
yeX

Remark .
It is clear that the §-consistency implies the consistency.

Theorem 4

Let us assume that properties (1), (3) and (4) of Section 1 hold. If

;. &
S and I are ©-consistent, there exists a solution {x }t of the discrete

dynamical system (1) satisfying

(4) rxtt) < F(xb) forall t20

fi initi ion xotx.

-28-
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Ihe proof 15 analogous to the proof of Theorem | and so we only

sketch it. Assume that no solution exists. Then for any X ¢ X, either,

there exists p ¢ U such that x ¢ V {y ¢ X such that
p
L. ' 2 L - n
p,x > dp y: + Ke (SI0y 341 = Oix );p)| or there exists \ e ]R+ such
that x ¢ V, = {y¢ X such that “\.F(y) - F(x)" >0} or bcth. Since X

is compact. it can be covered by a finite union of these open subsets

\"\l. | RTINS 4 Rl - Vp«] l.....1). We introduce a continuous
1 )

partition of unmty {ul,pj }1 | subordinate to this covering and the

PSRN
=k s B
function a defined by
¢ '.
(3) alx,y) = g, a (€)IN, T(x) - Fly)) - }J ﬂj(x)/p].x -y .
i=1 j=1
The assumptions of the Ky Fan theorem are satisfied: hence there exists
2 - O - - ! e
x such that sup a(x,y)<0. If we set \ = ‘\_‘ evi(x)vxi and p = 2, B.(x)p.,
\!r( X i:l ,:l J )
we have
(6) N F(x) = F(y)) + {p,x -y <0ty e X.

The 6-consistency implies that (3) holds We shall contradict it. Indeed,
there exists 1 such that ai(;) > 0 or there exists j such that

pj(;) >0. If a(x)>0, then XV, and N\, F(x) - F(x)Y > 0. Hence
i d
- — — — — t —
% FhR i R axy F(xt)‘_ L Bj(x) >0, then X ¢ Vp and 7 pj,x A > P, x)
= g " e # | - $ocisy el
« ko (S(ox + (1 - 8)x );p’). Hence ='p,x' > ko (S(6x + (1 -0)x )ip) ~ 'pyX .

Therefore,

A s o e



5 gy Pesitrm, © # 3 g
LER) = fpox s ke {8082 + (L~ 8)x Nip) <

~

CFIX) = pux inf [ '\, F(y)) = /p,y"] . .
yeX

St

Remark.

In the case where 6 = 0, we obtain the following result.
Proposition 3.
Let us assume that (1), (3) and (4) of Section 1| hold. For any t >0,
. . t+l
there exists a solution x of

(8) xt“ - xt € —kS(xt) and F(xtﬂ) < F(xt)

if and only if

AR, vpe U, inf (O F(Y)) - (p, )
(9) 8

< O F(XYY - (p, xby + ke "(S(xt)ip) .

Proof.

+ -+
Indeed, if xt : satisfies (8), we deduce that ¢\, I'(xt 1)‘ < \.F(xt)‘

and that - {p, xtHF < ~{p, xt\ + ko#(S(xt);p) for any \ ¢ er: and p ¢ U*.
Hence (8) implies (9).

Conversely, the proof of Theorem 4 with 6 = 0 shows that the non-
existence of a solution of xt+l of (1) implies (7) with @ = 0, which
contradicts (9). .

In the case where 6 = 0, we do not need to assume that S is

upper hemi-continuous in Proposition 3 (since the subsets

3
4
3

\.'p = {y €« X such that (p, x> p,y\ + ku#(S(xt);p)} are always open).
The stability results of the implicit discrete system remaian true for

the other discrete systems. a
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