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ABSTRACT

We prove existence of “monotone trajectories ” for a class of discrete

and continuous systems sufficiently general to include problems of some

interest in economic and biological theory. We prove existence of critical

points which are Pareto minima . We study stability properties of Pare to

minima.
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MONOTONE TRAJECTORIES OF MULT IVALUED DYNAMICAL SYSTEMS

*Jean-Pi erre Aubtn , Arrigo Cellina and John Nohel

Introduction

In “micro systems ” one or several decision makers control the

evolution of the state of a dynamical system in accordance with the rules

of optimization or gam e theory. We define “rnacrosystems ” to be

dyn amical  systems which are not controlled (in the technical sense of

control theory), but for which the state evolves by improving the values

of several criteria. In our study of macrosystems we do not look for

optimal trajectorie s , but rather we seek sufficient conditions guaranteeing

the existence of “monotone trajectories ” for a class of dynamical systems ,

suff icient ly general to include problems of some interest in economic

a nd biological theory .

It is reasonable to describe the evolution of such macrosystems by

a dynamical system of the following type . Let U be a topological vector

space , and let X be a convex , compact subset of U. For I = 1 , 2 , . . . , n

let f~ : X -. IR be n given functions , called loss functions; the

values of the functions f1 should decrease as the state of the system

evolves. Let S be a multivalue d mapping fro m X into U. We seek a

*Sponsored in part by ARO Grant DAHCO4-74-60012 , and NSF MCS7 5-21868.

Sponsored by the United States Army under Contract No. DAAG29-75-C--0024. 
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function x : t x(t ) t X such that

(*) x’( t) — S(x( t ) )  (0 < t < ‘ =

where x(0) = x 0 Is a given point , and such that

(**) each function : t -. f (x (t ) )  (1 1 n; 0 < t <

is nonincreasing . Relation (*) state s that if at t ime t the state of the

system is x(t),  then ihe admissible velocities x ’(t) are constrained

to lie in the set -S(x( t)) ( thi s pen. 1ts uncertainty to be included in the

model). Relations (**) require that the evolution of the state of the system

does not increase ( “im prove s ”) the values of the n loss functions 1. .

We summarize our results as follows. In Section 1 , we establish ,

under reasonable assumptions linking the correspondence S and the

loss functions f ., the existence of monotone trajectories for the discretized

implicit system associated with (*) , (**): find a sequence t -~~ x~ ~ X

such that

(***) X X 
(0 ~ t < + ~~~, k > 0 )

where x° is given and such that (**) is sati sfied. We prove in Section 2

tha t the piecewise linear functions which interp&ate the solution of the

discrete system (***) , (*~ converge to a solution of the system (*) , (**).

In Section 3, we show that the same assumptions imply that for all x E X

there exists a critical point i~ of S ( i . e . ,  0 € -S(~~)) such that

f 1( i )  ~ f1(x) (I = 1 , . . .,  n).  In particular , this show s that if x is a

I~areto minimum ( i . e . , there is no y ~ X such that f1(y) .~~ ç(x),  i = ~, . .  . ,~~,
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wuh f (y)  1 (x )  Ic: a~. least one j ) ,  then there exists a critical

poi nt x of S with the propert y that f I x )  = f . ( ~~) for all 1, . . . , n .

We also show that the subsets 0 {x X : f (x) = f j x ) ,  i I n i ,

where x is a Pareto minimum , are weakl y stable in the following sense:

For any neighbo rhood M of 0 there exists a neighborhood N of 0

such that for every x° N there exists a traject ory of (***) , (~~~) passing

through x° which lies in M for all t .~~ 0. In Section 4 we introduce

the concept of Lyapunov function I for the correspondence S which

has the property that f(x t) does not increase whenever {x t }
1 is a

trajectory of the dynamical system . We obtain stability properties

analogous to classical results for ordinary differential equations . In the

last section , we extend the results of the first  section to other discreti zed

systems

(***~ ) X - X _ S( ext
~~ + (1 - e)xt

) ( 0  < 8 < i )

where x° is given and where the condition ( **) mu st  be satisfied

(wh en 8 0 , we obtai n the “explicit ’ scheme) . The assumptions needed

for the existence of a solu~~on of ( **** ) , (**) are stronger than those

needed for the implici t  scheme (8 = 1) .

Table of Contents

1. Existence of monotone traj ectories in the discrete case

2 . Existence of monotone trajectories in the continuous case

3. Stability of Pareto minima

4. Lyapunov functions

5. Other discre te dynamical systems
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Ly i s ~ ‘n mo no tone t r d)ec Lor le s  in the d iscre te  case

We ~n ai l  n i a k e  the follo wing assumption:

I X is a corivcx compact subset  of ~i H ausdor f f
( l (

1~ locally convex space U

W~ co~~ i i r  a correspondence S from X into U with nonempty closed

cenv ~ x 1 n ~~ j c~ S (x ) .  Then the Hahn-Banach theorem implies that these

im a ~ es are char actenzed by their support func t ions

( 2 )  i # ( S(x) ;p)  sup (p , Y1
y~ S(x)

*where p ranges over the topological dual U of U. We shall say

*that S is upp er hemi-cont inuo~ s if , for an y p ~ U , x -- o- (S(x) ;p)  is

upper semi-continuous.  Any uppe r semi-continuous correspondence is

upper hemi -con t inuous , the con verse being true when S(x) Is compact for

each x t X. We shall a ssume that

(s i s an upper h cmi -con trn uous  correspondence from
( 3 )

Lx into U with  nonempty closed convex images S(x) .

We introduce mt “loss func t ions ” I which sati s fy:

I loss funct ion s 1. : X IR are convex and lower
( -4 )

s em i-c o n t in u o u s  U I ,  . . . , n ) .

Let : jp~• L ’  ~hc mult i Io~.s operetor i f i tw d by FI x) {f 1(x) , . . f~( x) I .

We now n ’ .~d ~n a s sumpt ion  l i n k i n g  the ‘ s tate set ’ X. the correspondence

S and the rn u l t i l o ss  operator F.

t

- 
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t i ~~n I.

\Vc .~h i1l sJ~~ that S and F are “c on si s t e n t”  on X j,j

np U . ~~~~~, and ~ x X which m i n i m i z e s

y \ . 1( y) - p, y on X , the n o (S(x);p) > 0

Remarks  on ~he cons i s t ency  assumpt ic i)

Before s t a t i n g  the theorem , it is worthwhile to describe equivalent

s ta tements  of ( )  and give some examples.

L. be the indicator of X , defined by 
~~

(x)  0 when x ~ X

and ~~~x ) ‘ whe n x ~ X. If g is a function from U into J—- ’~, 
1

let dg( x) ‘~p U such that g (x )  - g (y)  ~ (p , x - y ’, for all y i U)

be ~he subd i f f e rentia l of g at x .  Recall that a~ x( x) is the nor ’n d

cone to X at x. If assumption (4)  holds , x X minimizes

y * ~\ . 1(y)’  - ~p, y ’ on X if  and only if p a(~ ~
‘ f~ 1 

~~~~ 
Hence ,

i t  we set

C(~~, x) inf #( S(x) ;p)

~~( a(~ k ’f . +~x )(x)

then S ~nd F are consistent on X if and only if

( 7 )  :\ ( IR”
~. ~x X, C(X ,x)~~, 0

In particular , if the interior X of X is not empty and if x c X, then

10~ and

(8)  :X  ( X , C(\ . x) = in! 
#( S ( ) )

P t  
~~~~ 

\ 1f .)( x)

- - - —~~~~~~~~~~~~~~~~~~~ —
— 
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Let us remark also that  when the images S i x )  t i r e  i n v e x  r n :  Corn pa r t ,

we can write

( ‘4 )  CR , x) - sup  in f  p ,  y
y e S ( x )  n

~‘( \~~f i

i = l

Assume for instance that the functions 1. are G~ tea ux d i f fe ren t iab le

at each poin t of X. Then we can write

(10) C(~ , x) inf a #( S(x) .q + ~~ \ ‘Df ( x ) )
q a~~

( x) i = l

where D f ( x )  denotes the gradient of 1. at x. If the correspondence

S is single-valued , then

(II) C(X ,x) m l  ~q 4 
~~~ \ 1Df .( x) , S(x ) ’~ .

i=l

Now let us consider the case where K is a convex compact set of

controls. De fine

( 12) S(x) = A(x) + B (K)

where A is a single valued map fro m X into U and whe re B is

linear. Then

C(X , x) inf sup ~q + ~~ \~Df 1(x) , A( x) + B ( v ) ’
v c K  i= l

(13) 

~ 

X~ Df .(x), A( x)~ + a ~(K , B ( ~~ \iDf .(x ))

+ m l  sup <q ,A(x) I Bv~ .
q c a~~(x) v K

--

~~~~~~~~~~
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By a ~monut on e  tra jec tory  of the discrete dynamical  sy stem we mean a

s~ quence of element s x~ X sati sfying

t~ lx - x  t+ l( 14) k —S( x

and

(1 5) F(x t~~) < F(x t )

where x 0 i s given , where k > 0 , and where the inequalit ies ( 15) are

interpreted in an obvious way. Our basic existence result is:

Theorem 1.

i~et the assumptions (1), (3) ,  (4) hold. If S and F are consistent ,

there exists a solution {xt ) t > o  of the discrete dynamical sy stem ( 14 ) ,

(15) for any ini t ial  condition x° t X.

In the proof we will use a theorem of Ky Fan which states that

if X is convex compact , if Vy  X, x - - a(x , y) is lower semi-continuous

and if vx  t X, y • a(x , y) is concave , there exists x X such that

sup a(x ,y ) < sup a ( y ,y ) .
y t X  y t X

Proof.

We have to prove the existence of x H
~ X sat isfying (14) and ( I S )

when x~ i s given .

Assume that no solution exists . Then , for any x X, either

x / x t - kS(x) or F(x) - F(x t ) is not positive. In the first case , by

*the Hahn-Banach theorem , there exists p U such that

—7—
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i~. x ’ k”~~ S x ~;p ~s in c ’ S x) is closed and convex). In

i~~~ . ~her,’ exists \ II~ such that ~ \ . 1(x) — F(x t
Y/ > 0.

Let us i n t r o u u c v  the subse ts

U ’ )  V {x t X such :h~ t p. x~~ > (p ,  x ’ kn ~( S ( x ) ; p ) )

u n i

17 ) V\ {x X such that ‘‘~, 1(x) — F(x t )s -
~ 

o }

Sui~~t ’ t he  ~un. t i ons  x - k S(x);p) ‘p, x’ and x -
~~~~~~, 

1(x) -

3(0 u p . r  Se::u- .~~ ntinUoUs by assumptions (3) and (4) ,  these subsets

are 
~~~~~~ The negation of the conclusion implies that X is covered by

t r e  en subsets V and V)1 . Since X is compact , we can extract
k p

a fi ni te cover ing . X Li V U U V
‘1 ) = i  P1

L~ t 
i < k  be a conti nuous partition of unity with respect

~o th i s  uin ~t i ’ . Y e r i n g .  Let a be the function defined on X X X  by

k I
( 18) a ( x , y)  

~~~ ~ . ( x )  \ ., 1( x) - F( y) \  - 
~~~ ~ .( x)~ p , x - y)

i = 1  j = l

Sin’:(: :hi fun~~t io ns I , are lower semi—continuous , we deduce that for

any y X . the function x I(x , y) is also lower semi-continuous,

The functions y - a(x , y) are concave because the functions f 1 are

conve x. Also , . u ly .  y )  0 for all y t X. Hence the assumptions of the

above Ky Fan theorem are sati s fied , thus , there exists x c X such that

( 19) ak, y) < 0 Vy X

-8—



Let us set \ und p 

~ 
~.(x)p, U~ . We can

write ( l~ ) in th. ’ form

~~0) • \ , 1~ x) - 1( y) ’ - .,,p , x -  y ’~ < 0  Yy X .

Ther e t er t ’ . by the c o n s i s t e n c y  a s s u m p t i o n  of S and F on X,

(2 1) 1 
#

(S (x ) ;p )  T~ 0

We obtai n a contradiction by showing that  a(x,x
t) > 0. Indeed , c~.(x )  > 0

for ut least one index i or ~3 (x) ~ 0 for at least on ,~ index j .  If

~ 0 . then x V~ and thus , 
~~ \ , 1( x) - F(x t ) > 0. Hence

‘ \.  f lx )  — I x t )’ “~ a ( ~~~”\ ., 1(x) — F(x t )\ > 0. If p (x) > 0, then

x V and this  i mplies that ~~~~~~ - xt ) > kcr 1’( S(x);p 1) . Therefore usi ng
J c I

( 17 ) and ~ (3 (x) = 1, we obtain - ,‘p , x - x~ ’ > k ~~,, 
p,(x)o #

S(x ),p J )
j - l

‘k c (S~x ) ; p ~ ’0 .  Hence a(x . x t ) f\ , F(x)  - 1(x t
Y~ — f p x ~~ xt \ ~ 0. •

Remarks on the existence of traj ectories

In the case where F = 0 , th e consistency assumption becomes

the so-called “Ky Fan boundary condition”. The Browder - Ky Fan theorem

states that  th is  assumption and assumptions (1) and (3) imply the existence

of a solution x X of the mult iva lued equation 0 t -S(x) (see Browder ,

Ky- Fan , Cornet [ l J  and [ 2 J  for instance).

Theorem 1 states that under the same assumptions , there exists a

solut ion {x t , 
~~ 

of the discrete dynamical  system (14).

_______________ 
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~~v n e r 0 1 !L 0 t L fl

Let us consider now n func t ions  c’ : X X X - ll~ sa t i s f y i n g

i. )  ‘
~ 

y ~~
,. x c. (x ,y )  is  lower s em i —continuous

(~~Z )  i i )  .‘x X, y - e .~x ,y )  is r r n c~ive

iii) sup ~(y, y) < 0
y X

We set.

p(x , y) = {p.(x,y)

Definition 2.

We shall say that S and 4) are “con sistent” if ~ p E U . Y\ E ll~~~,

for any x X sat isfy ing

( 2 3 )  sup ( f \ , 4 ) ( x , y ) ” i — f p,x — y ) )  < 0
y e X

then a ( S ( x ) ; p ) � 0 .

Theorem 1 bis.

Let us assume that ~ro~erties (1). (3) ~nci ( 2 2 )  hold and that  S ~~
4) are consistent .  For any ini t ia l  condition x

0 
e X, the re ex i s t s  a

solut ion of the dynamical  system (14) sat isfying

( 2 4 )  V i  1, . .  . , n , Q .( x~~~; x )  < 0 for all t 0

Proof .

The proof is exactly the same than the proof of Theorem 1 where

we replace 1(x) - 1(y) by 4 ) (x , y) .

-10-
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4 L x  i ip l e .

Let us consider n loss funct ions  f . : U • 
~~~~~~~~~ 

4~~’ such that

1, . . . , n , f . is convex , fi nite 3nd ~~nt i nuouS on X

Then f is d i f f e r e nt iab le  from the right  and the func t ion  
~~~

. defined by

cl . (x , y) —Df . ( x ) (y  — x)

f ,(x ~ O z ) - 1 (x)
satis :ies pro perties (22) [ where Df , (x ) ( z )  = lnf  is the

8 > 0

deri vative from the right , which is continuous with respect to x and z ] .

Corol1~~y (of Theorem 1 bis) .

Let us assume that  properties ( 1),  ( 3 )  and (25 )  hold. Suppose ~i~ o

that S and F are consistent on X. For each initial condition x° X,

there exists a solution {xt ) t o  of the discrete system (14) sa t i s fy ing

(26) V i 1, . . . , n , f ( x t ) - f ,(x t
~~ ) > Df .(x t~~)(X t 

- x
t+1) > 0 .

-Ii-
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,
~~ ‘ ~.x i nc~~ of rnr ~~oto n L r u J e r t ( I 1 -; 10 ~IIe untUluou S (23SC

We sh~ 1l dc (u ce from Thenri ru I of Section 1 the cx i  s ten c i  of

nici iuten t r i j e c t o~ ~( s  of a r n u l t i v a l u t ’d  dynamic a l  system in the cont inuous

case .  A t r aj ec to ry  is a con t inuous  func t ion  x ClO , T;JR1), whose

~“ r i v a t i c t  ( i n  th e  sense of d i s t r ibu t ions )  belongs to L’( O . T;I R ’) , s a t i s f y i n g

0 0i )  0 , TI .  X ( t )  X and x(0 ) x , where x X is given
(1) 

dfor a l mo s t  all t [0 . T~ . ( t )  — S ( x (  t ) )

i n a d d i t i o n , the trajecto!y x is monotone if

(2 )  tom all i n , t • f .(x(t)) is decreasing,

where f are give n loss function s.

Let us assume that

(3)  X is a convex compact subset of JR 1

tha t

S is an upper semi-continuous corre spondence fro m X into
( 4 )  s

JR wi th nonempty convex compact images

m i  that

(5) tho n functions 1. : X - IR are convex and continuous

If the orrespondonc e S and the mult i loss operpto r F ~~~ consistent

on < , for  ,ij T 0 there exists a monotone tra .iectory of the

~;y.~~ern ( 1),  ( 2 )  ~~ [ 0 , T J .



oe~~.

i t  N H .i posi t iv e integer ( 
~ n s ider  the discrete dynamic a l

sy s te n : l~~) . i 1~~) of Section 1 wtth k ~~~~~ . Wi th a n y  monotone trajec tory

ci ~n is  d i sc r ete  system we associate the piecewi se—linear

f u n c t i ~ ri x j r )  .vhich interpolates the values xt at the nodes tk(l  < t < N ) :

we h~ vc

t 4 1  tx - x
k 1 t K i  X if lJ  

~~ 
x~~( T )  = k 

— e jk t , (k + l)t [

Since X is compa ct  and S is upper semi—cont inuous , S(X) U S(x)
X E  X

is compact. 1le nce , there exists a constant a ~‘ 0, i ndependent of k

an T, such tha t

17 )  Sup ~x (~~) < a and sup ~~~ x ( r )  < a for all k
- [ 0 , fl T e 10 , T j

This impl i e s  t n i t  the functions X k are uniformly Lipschitzian and thus ,

r e m a i n  in a bounded equico ntinuous subset of 6(0 , T;JR 1) which is rela-

t ively compact accordi ng to Ascoli ’s theore m. Hence we can extract a

subsequence ( aga in  denoted x k ) which converges uniformly to a function

x C~0 ,

Since for all T E [ 0 , T J .  we have

(8)  f ~~ 
x~ (n)da  xk

(T )  - x° converges to x ( T )  -

We ( i e i U C C  tha t  the sequence x converges weakly in L1(0 , T;P 1) todt k

the ~~r i v a t i v e  ( i n the sense of d is t r ibut ions )  of x , which belongs to

L~~0 , T ;U ~
’).

I

_ _ _  
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Since the correspondcnc:e S is upper s em i - c o n t i n u o u S ,  we u a m

associate  to an y  ball B(c) of r a d i u s  c > 0 a ball 81 i) of radius

such that

(~~ ) S(y) S(x( t ) )  B( c ) when y e  x( t )  ‘ B(~~)

On the other hand , si nce X k lies in an equic ont inuous  set and converges

uni f o r m l y  to x , there exist a > 0 and k 0 0 such that , for any

k and c — < a, we ha ve xk
( T )  - x( t )  < g. There fore

(10) S(x k
( T ) )  C S(x(t)) + B(€ ) when k < k0 and T -

d d 1 ISince the sequence — x converges weakly to — x in L (0 , T;IR ),

there exists some sequence of convex combinations 
~~ k~~k 0

’ ~~

which converges strongly to x in L (0 . T; IR ) .  Let ‘- [0 , T j .  Since

I I t~ +l t k~ k d  
~~~
‘ k x  — x

k - k 1 cft X k ( T )  
k - k  

a
1 k where ~ - t~ k~ < a_

0
tk +l tk

and since k _ S(x
k (t

k
k ) ) ,  for some integer t k we deduce

from (10) th a t for an y I > k 0,

~ a kS(x (t k ) )  C ~ a~~ ( S(X( T ) )  B ( c ) J  S X (T ) )  B (C )
k - k 0 k = k 0

for the la t ter  subset  is convex. It is also closed . There fore , since some

subsequen ce of 
~~ 

con verges almost  everywhere to x , we deduce

that - ~‘~ (t) belong s to S(x( t ) )  B(c)  for a lmost  all t .  Thus , by

letting t converg e to 0, we deduce that  
~~~~ 

i t )  i - S ( x ( t ) )  for almost all ~~.

It remains to prove that the functions t • f
1
(x(t)( are decreasing .

-14-



Let t ‘. s. Since X k •  l ies  in an e q u i c o n t i n u o us  subse t, we

can associate with any q a number u such that  ix k
( T )  - x ( t ) , <

and ~Xk (a )  - x (s)  Ii < r~ when ~T - t~ < a , ~a — S I  < a and k ‘- k 0

Since the functions are continuous , we ca n associate with any c ‘ 0

a numb er  ‘ such that f ( x ( t ) )  ‘ f . ( y )  + and 1( z )  < f (x ( s ) )

when ~x i t )  - y~ < q and ( ix ( s)  - z 1~ < i~. There fore , for any £ > 0 ,

we can find k0 such that , fo r an y k < k0, there exist integers tk

and S k sa t isfy ing t < t kk < skk ~ s and j t  - tkk I < a, ~s - < a.

Since xk (s k k) < xk (t k k), we ded uce that f ( x ( s ) )  ~ f .( x ( t ) )  + ~ for all

By letting c go t3 0, we ded uce that f .( x ( s ) )  ~~, f,(x(t)). a

Remark.

We refer to papers by Antosiewicz-Cellina, Brezis, Castaing-Valadier ,

Clarke , Henry [ 1 ) ,  [ 2 ) ,  Valadier , for the study of mult ivalued ordinary

differe ntial equations (but without the subsidiary condition ( 2 ) ) .  a

Generalization.

In Theorem 2 (continuous case) , we can drop the convexity assumptions ,

since it is not necessary to approximate the would-be solution by exact

solutions of the discrete scheme. We ca n extend the Na gumo theorem

(see Nagumo) to the case of monotone trajectories of mult iva lued d i f fe ren t i a l

equations , by adapting the proof of Crandall [ see Cranda l l ) .  We obtain
p

Theorem 2 bis.

Let us assum e that

3 b(s) X is a compact subset of

— Is —

.,- —— _ —I-— — ,um 1U~~ ~~~~
— - —

~~~ 
‘ -

~A .  - _ _ _ _ _ _ _ _ _ _ _ _ _ _



(s  is an uppe r semi-continuous correspondence fro m X
t 4 b i s )  

~ i nto JR with nonempty convex compact images

( S  bis)  the multiloss operator F is continuou s fro m X into IR
n

and that S and F are consistent on X In the sense that

(11) ~x e X, u r n  j~ f Atx . k) 
= 0 uniformly over X

k — 0 +

where we set

( 1 2 )  A( x , k) - in f  In ! li x — ku — v~~.
u e S ( x )  F ( v ) < F ( x )

v e X

Then, for ~ny T >  0, there exists a monotone traj ectory of the syste m

( 1), (2 )  on [o , T J .

___

Indeed , if we set 1(k) = sup equation ( 12) allows us
x(  X

to construct an approximate solution of the explicit discrete scheme ,

by as sociating with any x~ e X an elemen t ~t+l c X satisfying

F(x t
~~) < F(x~) and an element y~ S(x t ) such t ha t

X + yt~ < ~1(k) for any t

i.e., such that, for any t,

t+i t

k 
X _S(xt) -+

( 13)
ii)  F(x t

~
l ) ~ F(x t )

where B is the unit  ball of ~~~ The convergence proof of Theorem 2

—16-



sh ows i t  ~~ p i e c ew i s e — l i n e a r  func t i on  which  interpolate s the solution
4

ot i1 3 ) converge s to a monotone trajectory of the sy stem ( 1) , (2 ) .  a

vvc sa n prove that ( 1 1 )  follows from the fol lowin g property

S is continuous and

X X, p 1R 1
. f or any v X which minimizes

( 1 4 )  - p - y i  under the constraint F(y) < F(x) .

then sup ~x - p - v , z~~> 0
Z E  S(x)

by adapti ng the proof of Lemma 1 of Crandall. a

— 17—
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~~. Stability of Pareto_minima

The solut ions x of the multiva lued equation 0 c S(x) are called

the cr i t i c a l  points ” of the correspondence S (or “equi l ib ria ” of S) .

If x is such a critical point , the constant traj ectories {x . x , . .  ., x ,

are obviously solut ions  of the dynamical  systems (14) of Section 1 and

( l )  ~ t S _ ior l 2 .

Let us recall that  x X is called a “Pareto mini mum ’ of F if

the m . - is no y X such that F (y) < F (x ) and F (y)  � F (x ) .  In other

words , if we set

(1) P (x) {y c X such that F(y) < F(x ) }

we see that x is a Pareto minimum if and only if

(2) P (x ) = F 1F(x)

There exist points which are both critical points and Pareto minima under

the assumptions of Theorem I of Section 1.

Theorem 3.

Let us suppose that assumptip~~ of Theorem I of Section 1 hold. For

~~~ x X , the subset P (x) co~nta1ns a critical point i ~~ S. In

particular. if x X is any Pareto min imum of F, there exists a critical

point X Qj S &ucI~ that F(x) F ( x ) .

Proof.

The proof is analogous to that of Theorem I of Section 1. Assume

that the theorem is false.  Then , for an y x X, either there exists

—18- 4 



S e T h  tha t  ~~~~ . F x) - F ( x ) ’  -, 0 or 0 p’ S(x ) , and ~~~~~~ :k tc e

*exists p U such that 0 ~ (S~x ) ; p ) .  Hence X can be c o v er e m ~

by the union of the sub .~ets V~ = ~x X such that  \ .  1’~x ( - F ( x )~ 0 )

an d V
P 

( x i X such that  0 u ~~S ( x ) ; p ) ) ,  which a re open due to a s s i n  p-

tions ~3) and (4) of Section 1. Since X Is compact , we can extract a t i n t ’

cover ing a r a  choose a continuous partition of u n i t y  subordinate to tn is

covering.

We introduce the function a defined by (18) of Section 1. The

assumptions of the Ky Fan theorem are satisfied : there exists ~ e X

such that sup a(x, y) ~~~. 0, i .e . . such that
y e  X

( 3 )  ‘k.  F (x)  - F(y ) )  - ( p, ~ - y) < 0  Vy e X .

The consistency assumption implies that ff #(S(~~);p) > 0. Now, if ~~~~ > 0

for at least one index j .  then ~ e V an d th u s, a #(S(~~);p 1) < 0. Hence

— 
I - — . 

J
< 

~,, ~3 ( ~~)~ ( S(~~);p ) < 0. Thi s is impossible. Hence
j = l  I

0 for all indices j .  Therefore , a .(~~) > 0 for at least one

index I: then x V>, and thus , (\ .. F ( x )  - F(x ) ’ ~ 0. Since \ ~ 0

and p 0 In this case , we ded uce that ~\ , F(x)  - F(x ~ ’ ~ 0 and , f rom

~). th at ~\ , F ( x )  - F (x) ”  0. Again , we obtain a contradiction.

Hence p ( x  contains a critical point of S.

Furthermore , if x is a Pareto minimum , i (x) F 1flx) contains

a cr i t ica l  point x .  a

Let us consider the discrete a:id continuous dynamical systems

( 1 4 ) of Section 1 and ( 1) of Section 2.

-19—
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~k ’ f in t t i o n  ‘, .

W~ sha l l  ay tha t  a subse t  L~ is ‘ weak l y  st able” for the discrete

sy~ tem 1 4 1  e: Section 1 (resp . for the continuous system (1) of Section 2)

i t  for  any neighborhood M of Q, there exists a neighborhood N ~~

Q such that ,  for any initial value x0 N , there exists a traj ectory

s t ar t i n ~~ at  x° of the discrete system ( 14) of Section 1 (resp . of the

COfl t1nU OU~ sy stem ( 1) of Secti Qfl 2) lyIng in M.

Theorem 3.

Let us suppose th&t assumptions of Theorem 1 of Section 1 (r esp . of

Theorem 2 of Section 2) are satisfied. Let us assume also that

(4)  the functions 1, are continuous on the set of Pareto min ima

Then, for any Pareto m in imu_m x e X, t~ç subsets ~‘ (x) are weakl y

stable for the discrete system (resp . the continuous system) .

Proof.

The proof is analogous to the proof of Theorem 3-8 of Maschler-Pe leg.

Let M be an open neighborhood of P (x) .  Hence K {x e X such that

x ~ M }  is compact. For any y K, the re exists at least one index i

such that 1(y )  > 1 (x) + c(y)  where c (y)  > 0. Since the function 1 is

lower semi-continuous , the snbsets 8(y) (y c X such that

‘ f
1
(x )  d y ) ) are open; they form a covering of K , from which

we can extract a f ini te  covering K B (y
k

).
k~~1

Let t - mm 
~~~~ 

> 0 and N {y c X such that 11(y )  ~~, f 1(x) + c
k = l , . .  . ,m

fo r all t 1. . . , n } .  Hence N M. We al so know th at  if we choose

-20-



U
an : x N . t~ I t f l  ‘ X I I • N - ~ to t  i i i  i . Let us consider the

ca se C t  a :1S ( - ~ ‘to ~iy n a n i t c . i 1  system: there exists -3 solution

such th :. i 1 n, f (x t
) < f .~x0 ) ~ f , ( x )  + £ fo r all t , i .e. ,  such

th at  x ‘ N NI f or all t. Now, since the functions 1. are continuous

en ~~ s~- t  ~t i’ ir ” to  mini ma , the set N i s a neighborhood of i (x) r F 1F(x ) .

Iicn:e ‘~~~x) ‘
~~~ wea kly stable. In the case of a continuous sy5tem ,

Th~ cir~ .~ i i ’  ~ es the existence of a traj ectory such that

t x t ) )  < f x °) 
~ 

+ c for all I .  We deduce in the same way that

‘~~( x )  is weakly st able. a

-21-
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4. Lyapunov functions

Let us consider a func t ion  f : U - j _ ~ i , ~l s a t i s f y i n g

( 1) 1 is convex and f i n i t e  and cont inuous on X

It has a J e r i v a t iv e  l J f ( x ) ( z )  from the right at each point x e X. Let us set

(~~
) B f (x) inf  D f ( x ) ( z )

Z (  S(x )

D O E I L E I  l ion 4.

We shall say that f is a Lya.punov function for the correspondence

S if it sa t isf ies  (1) and

( 3 )  ‘lx X , Bf ( x ) > 0

With this definition we obtain the following result.

Proposition 
~ •

Let {xt j 
~ 

be any solutton of the discrete dynamical system 14)

of Section 1. Let f be a Lyppunov function for S. Thee, for all t

(4)  f( xt
~~) - f( xt ) ~ _kB1(xt~~) <0

Proof.

Since f is convex , we have

( 5 )  ~ ( f ( x~~~) - f(x t)) Df(x t+l ) ( _  X
t l _ X

) -

t -f-1 t
Since - 

X 
k 

X 
~ S(x t 4 i ), inequalit Ies (2 ) and ( s )  impl y

(6) f( xt
~~ ) - f(x

t) _ k B
f(x t

~~) .

Hence (4) follows fro m (6) and (3 ) . a 
V

— 2 2 —
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R e m a r K .

I f I i s a Lyapunov funct ion for S, the n th e  sequences t - 1

ii cr oaso for any t ra jectory of the discrete dynamica l  sys tem ( 14)  of

Section 1. If f f are n Lyapunov func t ions  for  S. then the
n

subsets  2 ( x )  are invar ian t ;  i f x is a Pareto m in imum , the subsets 2 ( x )  ar ’

stable in the sense that for any neighborhood M of 2 (x) ,  there exis t =  a

neighborhood N of c (x) such that , for any init ial  value x° e N , all

the trajectories starting at x° remain in M ( the proof is ana logous

to that of Theorem 3). For related results , see the book of Brauer and

Nohel , the papers of Champsa u r , Champsaur- Dreze-Henry , Lassalle .

Masch ler—Pe leg,  U zawa, Yoshi zawa , etc .

Remark.

We ca n extend these results by assuming only that f is locally

Lips chitz and by replacing the derivative from the r ight  by the general ized

directional derivative

( 7 )  t ) f ( x ) ( z )  u r n  sup f ( y  + Oz) - 1( y)

0 0 +
y ~ x

introduced by F. H. Clarke . a

Remark.

Since the inequality

(8) 
~ 

X ’B 1 (x) B (x) 

V

obviously holds when \ IR~ , then the funct ions  
~~~ ~~~ 

are Ly apun ov

functions for S 11 (and only i f )  the functions t are Lyapunov func t ions .

— 2 3 —
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R e m ar k .

W0 can also use Lyapunov  f u n  ti ~ n s  to s t u d y  a s y m p t o t i c  s t a o i l i t y .

• V V .. Vt be n Lyapunov lunctions. Let us assume that— - n — ____________________

N is :ompu c t  a ni  tha t

whenever x is not a Pareto minimum , there exist \ e
VI- ,

0 and e ~ 0 such that B (y) > c whenever
\ ‘ \ l f

i — i

f ( y )  f .(x )  for all i 1 n

Then, for an y sol ution {x t ) of the discrete dynamical  sys tem 14) of

Section 1 cluster points of ~x 
} are Pareto minima.

Proof.

Since the sequences f ( x t ) are bounded from below and decreasing,

t h e y  conv erge to scalars c . . Since X is compact , subsequences of
t — 

V V 
— 

V tx converge to elements  x sat isfying 1 (x) inf f I x  ) .
— 

t o ’
Let us assume that x is not a Pareto m in imum ~ Assumption (9 )

i mp l i e s  tha t  there exist ‘. ~~ , \ ~ 0 an d £ > 0 such tha t  B ( x t ) > C

-J

i 1

for all t .  By Prop osition 1, we obtai n:

( 10) L \i
f (

t+I
) - \

l
f (

t
) - £

By iei~iing these inequalitie ., from t 0 to t - s - 1. we deduce tha t

~ 
‘

1 f . (x 5 ) 
~ 

\~ f
1
(x °) - cs , which converges to -

~~~~ when s -

This i s  imve~s l b J e . a



u s t e c i l l  :h a t  i t  is convex and c o n t i n u o u s , its subdifferential

kS  ~~ t o:: p:’j iii ~i a t  ) H x H z I  sup p, z) . Hence we can wri te
p a u i  x )

11) B ’  x )  i n :  sup p. 2 ’ S u p  m l  ‘p. z ’
V z t ~ x l  p a i t x )  p e r~ f ( x )  z c S(x)

s(nc- ’ S . : )  I S  close ~ and convex and af (x )  is compact and convex).  It

is v o r ~~.~~uti e to compare this fo r mula  wi th  formula  ( i )  of Section 1. a

Examples  o~ Lyapu nov fu n tions.

Let U be a H i l - r t  spac ’ .

L~ t us consi:ier the correspondence S &g g ~~~

continuous convex lunction Jefined on an open convex subset. Thenj h~

fu nctions - g ari d 1 2
( y )  ~ j~y - x~ where x minimiz g

are Lyapunov function s of S ag.

I V 1uer , ~ i . le t z & a g l x ) .  Since Dq (x)(z)  sup “ p. z ’ , we deduce
p c d g (x)

th at  z Dg (x)iz). Hence

B l x ) >  inf  j z 1t > Og 
Z (  dg(x)

a n i  ~j is a Ly apunov funct ion for ag.

Let us consider  now the case where 1(y) ~ JJ y - x J 1 2 . Since

Ut y ) i z )  ‘y — x , z ’ . we deduce th a i.

B
f
(X) m I  ‘x - x , z ’ - sup 1x — x, z~ = — D g (x) (x  — x)

z -igi x) z dq( x)

Sin e rj  is ~onvex , we know that

D q ( x ) I x  - xl g ix)  - g ( x )

-25 -
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H V f l L (V

B 1( x ) j~x )  - q I X )  -. 0

and I is  ~ i/ a p u n v funct ion for E g  when g i X )  . inf g (x ) .
- 

x e . X
More ge n ’ r  i i l y ,  le t  us assu rn ’  - 1: i’ x u i t i s  i1’ S

12 ) Y’(S (x) . x - x) ‘:0 for all x e  X

L~~ Cf l V j’~ the tunct ion I defined by 1(y) ‘
~~
‘ 

~I y  - x 11
2 is a Lyapunov

S. This kind of condition is used in mathemat ica l  economics

(se e Arrow-Hahn for instance).  a

The problem arises whether there exis t s  a solution x of ( 12 ) .  Such

a solution exis ts , not only  in the case of S ag, but in the more

general  case whe n , fo r example. S is a monotone correspondence:

Let S be a monotone correspondence and x X a solution of

the variational inequalities for S in the sense that

S( x) such that ‘p, x - y ” ‘- 0 ~y X

Then the  lun ct i on 1(y) = 1k’ - x 11
2 is a Lyppunov function for S.

Inu e( ’~~, since S Is monotone , we obtain for any q ~ Sl y),

‘q,x- ~~ < / p, x - y) < 0. Hence ff #(S(y) , x - y)~~ O for all y e  X.

Recall that a solution x of the variational inequalities exist when X

is convex compact and S is a monotone correspondence with nonempty

convex compact values whose restriction to all finite dimensional space s

is upp er h em i-c ontinuous ( ser r~rez ’ for instance) ,  a



J m ~~pos i t mor i  1 can he exte r i- ~~~i to the case of a continuous dynamical

sy st i ’m ( 1 )  of Section ~~~. 
!‘or tha t  purpose , we n i -ea

Lemma 1.

Let I be a lunction satisfy,n~ ( 1) .  Let x be a d i f f e r e n t i a b l e

fu n c t i o n  from 0 , T J  into X. Then the Din t  ieri /at ive  (
~

) [ f I x )  t ) )

II x~t + h)I  - f x ( t )  I 
s a t i s f i e s  for a lmost  ~l1 t the inequality

fl

f[x(t)j + Df(x it ) ) — ) < 0

Proof.

Indeed , the convexity of I impl i e s

( 14) D f(x ( t + h)){ 
x(t) ~ x(t i h) } f [x (U ) — f lx t h ))

Since Df(y ) (z )  inf + 9z)  - 
~~~~~~~ is the infinimum of the continuous

e e t O . l J  0
f (y  + Oz) — 1(y)f unction {y, z , o } 

0 when e ranges over the compact

set [ 0 , l J ,  we deduce that  {y, z . Df(y) (z )  is continuous.  Hence we

obtai n (13) by letting h converge to 0 in (14).  S

P~~p~ sitt on 2.

Let x ( ’ )  be any solution of the continuous dynamical  sy stem 11) 
~i

Section 2. Let 1 be a Lyapunov funct ion for S. Then, for almost all t

(l- ~) (
~

} f[ x(t ) J —B
1
(x(t)) 0

Proof.

Since — ( t )  S(x( t ) )  for almost all t , we deduce {!c) from

(2 ) ,  (3 )  and ( 13) .

-27-
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(I

. o ther amsc~~- : ’ ~1y n a m i c m1 ‘~~~~‘~~I~

I n  IL ,  ~ -~e • i y n a m n i c ~i l sys tem ~l4 )  of Section 1 is a par t icu l ar

‘x us p 1 ’  a tamily of I i  scr ete  dynami ca l  sys tems .

U) x~~ - x~ & -k S ex t ‘1 
- O)x t )

wh ’ - r .  0 t [ 0, I I .  For 0 - 1. we obt ain th “ implici t ’ d i s cr e t e  system

( 14 )  m Sectio n 1. When 0 0, i t  is the so— called exp licit dyn ami cal

sys tem

t~ l t t
(2 )  x — x e -kS (x

For 0 1/2 . we obtain the Crank-Nicholson sy ste m S In order to prove

the exis tence of monotone trajectories of the system (1) . we need a

consis tency assumpt i on  between S and F which depends upon 0:

Defini t ion ~~~.

*
We sh all say that S ~~~ F a re “0 -consistent” on X if ‘i p t U

\ IR~ . for any  x X which m i n i m i z e s  y - ‘ m,, F (y) ’ - ‘~‘ p , y ” we have

(3) ‘\ .  F) x) V 
- 

‘ p, x’ < in! ‘\ , I (y ) )  - ‘p, y ’ 1 k~ ~) S(Ox + (1 - 0)y;p) I
y e  X

Rem ark V

It is clear that the 8-consistency imp lies the consistency .

Theorem 4.

Let us assume that properties (1), (3) ~~~~~ 
(4)  of Section 1 hold. If

S ma F ~re 0-consistent, there exists a solution ~xt }t of the discrete

dy nar r i t ca l  s’jstem (1) satisfy ing

( 4 i  r (x t
~~) < F(x~) for all t 0

~~~~~~ any in i t i a l  condition x
0 c X.

—2l ~—
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-

ic ~I I ~~~ i s  am - s i lo mo u s  to the proo f of Theorem I an d  so w ’  only

5 ~
.- - ‘ ; : i t .  ~~~ - - ~~~ ‘ f l a t n - a~ lutIon xis ta . Then ( I  a n -  x • X , e i ther .

tn ~~m~ - ex i s t s  ~ U a u - h t h a t  :-: V ~~~
‘ X such  tha t

V n
/ ‘,~‘ • S ~e: 1 — a ) x ~ ) ;p) ) or there exists \ e IR such

V ~y e X su~~n that  •
~~\ .  F y I  — F x ~~) ’ 0} or both. Since X

is  coru ’i ~ t . t ’. c m  tx ’ covered by a f i n i t -  union of i h r s -  open subsets  

~, )  anu V j 1 1) .  We introduce a continuous
p

i r t i t i -  S c i  u m t ’ - ~~~~ 
, - subordinate to this covering and the

- 
1 J 1  1 K

I I

un t l C n  a ue : ine  by

K
~~V )  

\ a (x) ‘ k . .  1( x) - f ly) ’  - ~~ ~~l x ) ” P3 . 
X -

l~~l J = l

The assu~: p t Io ns of thI Ky Fan theorem are sa t i sf ied:  hence there exists
k I

:-- a u c -~ th at  su p  i x , y i  < 0. If we Set \ = ~ ~~(x )X . an d p = ~~

-; ( x i = l  j = l
we h ay ”

~~. 
r(~< l  — F( y)~ + f p, x - y ’ < 0 . y  X

j oe 0 — ’ c n s m s t e n c y  implies  that  ( 3 )  holds We shall contradict it .  Indeed ,

there ex i ct s  i such tha t  ~ , I x l  0 or there exists j such that

~ i x) > 0. 1! ( x l 0 , the n x V and ‘~~., F (x ) - r (x t )\ ~ 0. Hence
I 

— 

I 
- - —

~\ . 1(x) ~ ‘\ .  I x
t

) . I t ‘i x) 0, then x V
P 

and ‘ p3 , x t
~ >

- k m  (S~(,x 
‘ (1 - ~I ) x

t
) ;p1 ) .  Hence - p , x ’ k~ 

~(~ (0~ + ( 1 - O)x t );p ) - (p, x
t
~

l h o 1 0 r .

F



I—
’
— t .  — t _  U — t —

— I ’ . x - 
~ V ’ ( S ( Ox ( 1 — f i x  ) ; p )  ~

0 ( 7 )
‘ \ , D x )  - p. x - m t  f \ , D y ) ’  - 1p. y ’. J  . a

y e  X

k -ui a r k .

In the ( V
a s t  w h e r & ’  0 = 0 , we obtain  the fol lowing re su l t .

Pro~~~sit i . on_3.

Let us assume th~ t ( 1) , (3 )  a nd (4 ) of Section 1 hol d. For any t 0 ,

there exis ts a solution xt+l

t + l  t t t+1x - x e -kS(x ) and FIx ) f ix

if and only i f
p *( ~t \  JR . ‘~p e U , in! ( ‘ k , F(y ) ’  — ‘p ,y ’)

( )  
y X

< (\,F(x~~ - f p, X~~\ + ka (S(x ) ;p)

Proof.

Indeed , if ~~~ satisfies (8), we deduce that ~\ , r(x t
~~l\  < \~, f ix~ l ’

t 1- l t ~ t fl *
and that - (p .  x ~‘ < - ‘p, x ~ + koV (S(x );p) for any \ £ fl~ and p U

Hence (8) implies (9).

Conversely, the proof of Theorem 4 with 0 0 shows that the non-

existence of a solution of x~U of ( l ~ implies ( 7 )  with 0 0 , which

cont rad ic t s  ( ( f ) .  •

Reniar k.

In the case where 0 = 0 , we do not need to assume that S is

upper hemi-cont tr iuous in Proposition 3 (since the subsets

V { y X such that ~ p, ~~ ~ ~
p, y\ + ko ~(S(x t);p)) are always open).

The stabil i ty results of the impl ic i t  discrete ~y s t cu  rema n true for

the other discrete systems.
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