" AU=AD31 945  WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/6 12/1 ~

|4 SPECTRAL PROPERTIES AND OSCILLATION THEOREMS FOR MIXED BOUNDARY==ETC(U)
SEP 76 J W LEEs A PINKUS DAAG29=75=C=0024
UNCLASSIFIED MRC=TSR=1683 NL




o

I

Nﬂ-

.
122

e
< s



MRC Technical Summary Report #1683

SPECTRAL PROPERTIES AND
OSCILLATION THEOREMS FOR MIKED
BOUNDARY-VALUE PROBLEMS OF
STURM-LIOUVILLE TYPE

J. W. Lee and A. Pinkus

A031945

4
A

AD

Mathematics Research Center
University of Wiscon§in—Madison
610 Walnut Street

Madison, Wisconsin 53706

September 1976

(Received May 14, 1976) \

2

Approved for public release
Distribution unlimited

Nl

Sponsored by

U. S. Army Research Office
_P. O. Box 12211

Research Triangle Park

North Carolina 27709




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

SPECTRAL PROPERTIES AND OSCILLATION THEOREMS' FOR MIXED
BOUNDARY-VALUE PROBLEMS OF STURM-LIOUVILLE TYPE

% % %k
J. W. Lee and A. Pinkus

Technical Summary Report # 1683
September 1976

ABSTRACT
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SPECTRAL PROPERTIES AND OSCILLATION THEOREMS FOR MIXED
BOUNDARY-VALUE PROBLEMS OF STURM-LIOUVILLE TYPE

% kK
J. W. Lee and A. Pinkus

§1. Introduction |

This paper presents analogues, for certain mixed boundary-value
problems, of the spectral and olscillatory properties exhibited by classical
Sturm-Liouville systems. The usual analysis of the Sturm-Liouville eigenvalue
problem is based on special ad hoc methods. In contrast, Gantmacher and
Krein showed in [ 3] (see also references therein) that these fundamental
spectral properties are direct consequences of the total positivity of the Green's
function for the problem. They further showed that the total positivity
of the Green's function is itself the mathematical expression of certain
basic physical properties of vibrating mechanical systems, which are
typically modeled by Sturm-Liouville systems. Subsequent to the work
in [ 3], extensive studies have revealed several important classes of
boundary-value problems with separated boundary conditions whose
Green's functions are totally positive or sign regular. As in the classical

Sturm-Liouville problem, these boundary-value problems exhibit a rich

oscillation theory. Some principal contributors in this area are
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Gantmacher and Krein [ 3], Karlin [6], [7], [8], Karon [ 12], Krein [ 13],
and Krein and Finkelstein [ 14].

In [ 9}, Karlin and Lee studied the sign consistency properties
for periodic boundary-value problems. These results were later used by Lee
in [ 15] and [ 16] to develop the spectral properties of these periodic
problems. The analysis in [ 15] and [ 16] extends easily to the case of
anti-periodic boundary-value problems. Recently, Karlin and Pinkus [ 10]
(see also Melkman [ 18]) shced that an important class of mixed
boundary-value problems have Green's functions which are sign consistent
for all even and/or odd orders. Special examples of this correspond
to the above mentioned periodic and anti-periodic boundary-value problems.
In this paper, the spectral properties and oscillation theorems associated

with the mixed boundary-value problems are developed.
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§2. Terminology and Preliminary Results

For given wi(x)>0, xe[0,1], and w, ¢ Cn—l[O,l], R E QPG S

define

{2.1) L s ++~D

where

(Du)(x) - —d—[—”ﬂ] TG e

dx wj(x)

Thus L is a differential form of Polya type W (disconjugate) on
[0,1]. The differential equation Lu = 0 has a basis of solutions

(ul(x) = w (x)

1
X
uy(x) = wi(x) [ wy(t))dt
0
(Ze2) <
X tl tn-Z
2 un(x) = wl(x) .(/)‘ wz(tl) _(f; w3(t2) { wn(tn—l)dtn-l dtl

which constitute an extended complete Tchebycaeff (ECT) system on

[0,1] (see[11]). Evidently,
Dj-lui(o) = wi(o)au, AT e
where Dj = Dj Dl’ | BE e SRRNENTE TEEE T D0 = I, the identity
operator. The function
0 s+ X X§
t t

n-2

(2.3) ¢ (x:§) = X 1
Wl(x) f Wz(t]) f w3(t2) L5, f wn(tn-l)dtn-l rdt, € <x
S 3 3




with 0 < x, £ <1 is the fundamental solution for Lu = 0 determined

by zero initial data at zero, and the characteristic jump discontinuity
n-1 =1
4+ . -t =
D" ¢ (E+€) - D" "¢ (£-i€) = w ()
which corresponds to the requirement that the ordinary (n - 1)-st
derivative of ¢n(x;§) exhibits a jump of l/po(g) at x = ¢, where
n n
L = py(x)(d"/dx") + -

) (e
Let A bean mXn matrixand r < m,n. Then A(. jr)
3 At -

denotes the determinant of the matrix obtained from A by deleting the

rows and columns except for those labeled il, Liae ir and jl’ b B jr’

respectively. The matrix A is said to be sign consistent of order r

(SCr) if

e A
r

nv
o

dy ooy
11,---,1'

r

forall 1<4{ <° -+ <i <m and 1<j <:++»<j <n, where e = H
= ] r = S | r = r

or -1, dependent only upon r.

The following notation will be used. Given a matrix

C = lIa, Bl yom
with both A and B n Xn matrices, define

<7

g C(p) 3 n, 2n

i=1,j=1

by

| TH SRR S




jtptn
) _J 2yt

1 = o S : f . e e n
-~ bi,2n+l—j o lo y ) n lv ,2

where p ¢ 0 or 1.

The matrix C = ”A, B" is said to satisfy Postulate ] witl respect
to p if
(i) A and B are n Xn matrices, and

(1) A pay Bt ek andia sC,,-

Let K(x,s) be a real-valued kernel Jefined on JXx]J, where

] is a real interval, and let

L= {5:5=(x1,...,xr), X X, € i IR RS S

The function

Ky o000y
1’ '

Koy o) = K(ﬁ,---,sr

r
) - detllkix, s)IF |

1
defined on Ir X Ir is called the compound kernel of order r induced
by K. The kernel K(x,s) is said to be SCr if erK[r](5,§) >0

for x,s ¢ Ir’ where By 1, dependent only on r.

Let fl PR fr be defined on ]. Then

(fl T fr)(i) = det"fi(xj)":,j___1

for X e Ir. Under suitably mild measurability and integrability assumptions,
in particular when fl’ vl 5% fr are bounded and continuous on ] and

K(x, s) is bounded and continuous on ] X J,

the basic composition

ad e

B

%M4 Ao, T

F & e A
idaeed




ad o0

formula [7, p. 17] yields

(2. 5) K[r](fl/\---/\fr)=Kfl/\-“/\Kfr
where
(Kf)(x f K(x, s)f(s)ds ,
J
(K1 9@® = [ K (% 8)9(s)ds ,

]

r
for g defined on Ir and ds = dsl dsr.

A family of real, continuous functions {fl, s fr} is a

Tchebycheff (T) systemon | if fl Ao A fr maintains a fixed

strict sign on Ir, or equivalently, never vanishes on ]r. Linear
combinations of fl, Ve g fr are called f-polynomials. If f is a real

continuous function on J, an isolated zero Xy of f in the interior

of ] is called a nodal zero or node if f changes sign at Xq All

other zeros, including zeros at the endpoints of ], are called nonnodal
zeros. We shall use this concept for J = (0,1), the open interval,

and thus endpoints will not in fact concern us. Let Z(f) denote the
number of zeros of f in ] where nonnodal zeros in the interior of ] are

counted twice and all other zeros are counted once. Let N(f) denote the

number of (distinct) nodes of f in J. If {fl' bevig fr} is a T-system on ],

then any f-polynomial satisfies 2(f) ey,




The following version of Jentzsch's theorem will be used. We

are concerned with the eigenvalue problem

(2.6) #(x) = x [ K(x, s)g(s)du(s)
]

for the kernel K(x,s) where du(s) = w(s)ds with w(s) >0 and

continuous on J.

Theorem A. Assume the kernel K(x,s) in (2.6) is nonnegative and

continuous on -I— XT and that K(x,s) > 0 for all (resp., almost all)

points (x,s) in some neighborhood of the diagonal {(x,x) : x € J}.

Then the kernel K(x,s) has a positive eigenvalue \0 which is a

simple root of the Fredholm determinant and which is strictly smaller

in modulus than all other eigenvalues of K(x,s). Furthermore, the

corresponding eigenfunction may be chosen positive (resp., positive

almost everywhere) on J.

Remark 2.1. Jentzsch's original proof in [ 4] may be modified in a
straightforward manner to obtain Theorem A. The reasoning in [1] is,
however, simpler.
Remark 2.2. Jentzsch's theorem (Theorem A) generalizes directly to
kernels defined on the simplices Ir’ re 2,3, .0

There is a fundamental relation, Schur's theorem (Theorem B below),
see [21].or [ 3], between the eigenvalue problem (2.6) for the kernel K(x, <)

and the corresponding eigenvalue problem

(2.7) ¥x) = A [ K (% 8)8(s)du(s)
]

r

L T ik,




-

for the rth compound kernel K[r](é’ s), where du(s) = dp.(Sl) dp(Sr).
Theorem B. Let K(x,s) be continuous on 7 X—I-- Let \o? )‘1’)‘2’ s

be the set (possibly empty) of eigenvalues of K(x,s) where each eigenvalue

is listed according to its multiplicity as a root of D(\), the Fredholm

determinant of K(x,s). Then

are the totality of eigenvalues of K( r](gg,g), and each such eigenvalue

automatically occurs to its multiplicity as a root of D[ r]()‘)’ the
Fredholm determinant of K[ r](gc_,g).
Remark 2.3. The assumption that K(x,s) be continuous on %]

can be substantially relaxed; however the result as stated is adequate for

our purposes.

TR e wms
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§ 3. Sign Consistent Green's Functions

Karlin and Pinkus [10] consider an important class of boundary
value problems with mixed boundary conditions. Examples of these
boundary conditions include the separated boundary conditions commonly
used in Sturm-Liouville problems as well as periodic and antiperiodic
boundary conditions. In this section we summarize the sign consistency
results of [10] for certain Greel's functions and present some refinements
necessary for our analysis of tﬁe associated eigenvalue problem. Assume
henceforth that n > 1.

Consider the differential pperator (L,8) specified by a differential |
form L of Pélya type W, seé (2.1), and a set of mixed boundary
conditions
(3 Hfu)a Z DJ u(o)+Z b, DJ Sl s L.

j=1 [
Subsequently, & will denote either the set of boundary
conditions (3.1), or the set of functions in c"[o, 1] satisfying these

conditions. It is a well-known fact (see e.g. [ 2, Chap. 7] or [ 20, Chap. 1])

that the differential operator has a Green's function G(x,s) iff

n
o= detluu)l? v

where {uj}n_ are as given in (2.2). If A # 0, then

j=1

o, )ﬂ | fu,te i |

1 D B W e T
(3.2) G(x,8) =  det u(x), un(x): ¢n(x:5)

1
0
1
PR




and an application of Sylvester's determinant identity (cf. [7, p. 3])

o (3.2) yields

N e
(3.3) G[r](i,_s_) = det —-———r . - r__l‘_l_l 1
“\J(X)"i ) 44 1l"dbn(xi;s)” Lol

(n+r)X(n+r)
for x,8 ¢, J=1[0,1].
Let C = ||A, B" be the n X 2n matrix defined by adjoining

A to B where A= |a “n and B = "b“n are from (3.1)

ij 1,j=1 ij i,j=1

and define C(o), C(l) as in Section 2. In addition, given indices

1¢4 v ) < noand ] <k € LK <n let M denote
=1 s = =1 n-s = n

the number of indices in the set {jl, ceadg kl’ w50 kn-s} which are

less than or equal to p. The next two results are reformulations of

Theorems 2 and 3 in [10] and follow from the proofs therein.

Proposition 3.]. A necessary condition for the differential operator

(L,8) to have a Green's function is that there exist an integer s,

0< s<n, andindices 1< j, < -* <] Sy 1€ K< e ik < n,
= = i y————— = l s = = l n-s =
such that
(0) l’ . . . ’n
(3. 4) C ) v ; #0
Jp e .,js,2n+l kn_s,...,Zn'+l kl

and Mp, >py, p=1,...,n. Furthermore, these conditions are also

sufficient provided that C(o) is SCn.

The main result in [10] necessary for this work is the following

theorem.

-10-

S iz in

e




Theorem 3.1. If the Green's function G(x,s) for (L,B) exists and

C(p) is SCn, then G(x,s) is SCZ!-p for £ =12,... . Further-

more G[ Zl_p](é, s) # 0 iff the following holds:  There exists at

least one set of indices 1< j <:-+-<j <n,l<k <-:--<k < n
:1 S: - 1 n-—s_
such that
1 ‘ ¢ 3 n
it TRy 2041 =k 2n+1-,k e
]l""a]S) n n_sv"'v 1
and

(a) if min{s,n-s}>2¢ - p, then

Mp+(21—p)2p, p2el~ptl ...,n

(b) if min{s,n - s} <2t - p, then

x“_s<s“<x“+n_s, p=il .28 =-p

wherever these inequalities are meaningful.

Remark 3.1. Kalafaty in [ 5] obtains results bearing on Theorem 3.1. It is

’

[
essentially shown in [ 5] that if C‘p) is SCn then G(x,s) is SC“_p
t =1,2,...; however, the precise conditions determining when
_p](é,é) # 0 are not treated.

The next result is a consequence of Proposition 3.1 and Theorem 3.1.

Proposition 3.2. Assume (L,8) has a Green's function G(x,s), C(p)

is SC_, and
is n' SBS

X : ‘ : ,n

(p)
3.5 C
Lok, jl,...,js,2n+l-kn_s,...,2n+l-k

#0,
1

for some 1< s<n-1, and some choice {j,lyy 4k,)] ° as above. Then

G.[u_p'(g,y #0.

-11~-




Proof. Since the Green's function exists, (3.4) is valid for some

0< s < n and M“>: g for uw= L. .00, by Proposition 3.1. If
s #0 or n, then the result follows from Theorem 3.1, (a) and (b).
Assume this is not the case. Thus (3.4) is validonly for s = 0 or
s = n. Assume its validity for s = 0. Since (3.5) must hold for
some 1< s<n-1, itis easily shown that (3.5) is maintained for
s = 1. Appealing again to Theorem 3.1, the result follows.

Remark 3.2. Assume that the Green's function G(x,s) exists and

C(p) is SCn. By Theorem 3.1, o G

21-p [Zl_p](5,§_) > 0 where

Ty +1, independentof x and s. In fact, from [10, Remark 3],

we see that UZl-p is also independent of f. Explicitly,

Trep (-2 ((Plyggn(a)

where an(C(p)) is the constant sign of the n Xn minors of C(p).

(0)

it C is SCn, then this further reduces to o_,, = +1. If both

21
(1)

C(o) and C are SCn’ then

_ (_1\DP (p) (0)
oZl-p- (-1) cn(C )an(C ) [

N R T AN L T Mo i
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§4. Existence of Eigenvalues

Consider the eigenvalue problem

Lu = \u, 0< x< 1}
wn+l = -
(4.1)

uep
where wnﬂ(x) # 0 and continuous on [0,1], and & is specified
as in (3.1). Assume (L,3) has a Green's function G(x,s). Then (4.1)
is equivalent to the eigenvalue problem

1

(4.2) u(x) = x{)' G(x, s)u(s)w_,,(s)ds .

+l(

The boundary conditions & whose matrix is denoted by 0= [ A, B”,
as in Section 3, may be equivalent to a set of initial conditions. In
this case the Green's function always exists, is a Volterra kernel, and
hence has no eigenvalues. This situation is exceptional for boundary
conditions satisfying Postulate ‘I: If the Green's function for (L,25)
exists and the boundary conditions satisfy Postulate | for p = 0 or i,
then G(x,s) has an infinite number of eigenvalues provided £ is not
equivalent to a set of initial conditions. Thus we shall exclude below
the case when £# is equivalent to a set of initial conditions. The

following easily proven result is pertinent.

l

Proposition 4.1. A set of boundary conditions ~ with matrix C = |la,B]
of rank n is equivalent to a set of initial conditions iff A =0 or B = 0.

This result should be considered with Proposition 3. 2.




ndase

The main result of this section follows.

Theorem 4.1. Assume that the boundary conditions £~ satisfy Postulate |

for some p, are not equivalent to a set of initial conditions, and that

(L,8) has a Green's function G(x,s). Then the eigenvalue problem (4.1),

equivalently (4.2), has an infinite number of eigenvalues xo,xl, xz, o ets
Furthermore, if lxol < lxll < |>\2, < ..., where each eigenvalue is

listed according to its multiplicity as a root of the Fredholm determinant of the

kernel G(x,s), then the following holds.

Pt C(O) is SC_, then

Y

uA 3

(1) o< Ixol lxll< lx_,_lg Ix3l<---< g T

21 = 21+]

(2) A,

a2u0 > % 2R OLE vt

(3) also \,, is not real iff Nopap = Nppe
g 3 c? g SC_, then

() 0<opn, < lelg Ile<--~ < lxu_llg lxul<--- where

o) = sgn G(X,s)wnﬂ(s) ;

(2) Xy pp> 0

(3) also \,, isnotrealiff X,, , =1, .

(p)
Proof. Assume C is SCn and w_ . >0. Thus UZl-pG[Zl—p](i’i)

£oa b vie's

0

nv

n+l

for all (x,8) ¢ IZl-pxIZI-p’ J=[0,1], for some o +1

21-p >
independent of x and s. Since A is not equivalent to a set of initial

conditicns, the hypothesis of Proposition 3.2 is easily seen to hold

and so cu__pG[u_p](g,y > 0.




s)

Jentzsch's theorem (Theorem A) implies that ch_pG[ zt—p](é’

has a positive simple eigenvalue, strictly smaller in modulus than all
' 1
other eigenvalues of aZ!-pG[ Zl—p](i’ s). Schur's theorem (Theorem B)
then implies that G(x,s) has at least 2! - p eigenvalues, ( =1,2,... .

Thus G(x,s) has infinitely many eigenvalues and again by Theorems A and B

0 RN 15 Ixox . 5

% . @
T20-p™0 21-p £ *eep-aiop

for £e Ll ek [ < I [ and A 0

20-p-1 2-p 28-p 2t-pil >

where we have used the fact that o 1 (see Remark 3.2).

20-p"21-p+2 -

Note that for p = 0, = +]1 and thus \ .\, >0. For p =1, olx > 4.

721 0™l 0
Thus both (1) and (2) of Cases I and II obtain. The fact that complex

eigenvalues occur in conjugate pairs follows from the fact that the
Fredholm determinant of G(x, s),
o r

b =1+ 5 6w
r=1 e B |
5
is an entire function with real coefficients. The proof is complete. (When
Wl <0 replace \ by =\ and apply the results just proven.)
The following examples illustrate the breadth of applicability of

Theorem 4.1.

Examples.

(a) Periodic Boundary Conditions. For the periodic boundary conditions

18-




Dju(O) = Dju(l), 2 R e R S

n+p+l

(-1)

n+p+2

(-1)
(p) _

(-)P

nxX2n

(0)

(1) is SCn and of full rank while C is

It is easily verified that C
not. Periodic boundary conditions are not equivalent to initial conditions,

and as shown in [9] and [10], (L,”) has a Green's function iff

n
1T (wi(l) - wi(o)) # 0. With this assumption, Theorem 4.1, Case II
i=1

is applicable.
(b) Antiperiodic Boundary Conditions. For the antiperiodic boundary
conditions

Dju(o) = -Dju(l), j el a-i,

0) (1)

C( is SCn and of rank n while C is not. Furthermore, it is
easily shown that the assumptions of Theorem 4.1 hold (see [9], [10])
so that Case I is applicable.

(c) Separated Boundary Conditions. Let C = ||A,B" specify separated

boundary conditions. Then C(p) has the form

j4+n+
a“('l)’np 1:1’_._,” l=l,-..,n
c(ijp)= b1,2n+1—1 fsrd+l...,08 Jra ¢l ,2n
0 otherwise .

s G i i i et
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A simple linear dependence argument implies that the only possible

nonzero subdeterminants of C(p)

(P B : : ' »HL
1

are

Jperadp2ntl-k _,...2n+l-k

(_l)r(pm)(_l)(n—r)(n-r-l)/Z R( i, oF ’B(r . g

Jppeeendp kl,...,kn_r
where 1<=)l<---<jr<=n,l<=kl<---<kn_r§n, and
il {5 2 (p)
A= "ah.( Dl s B= Mbij M(n_r)m. Clearly C'™ is SC_ for both

p=0 and p =1 and of full rank iff R is SCr of full rank and B

is Scn-r of full rank. Furthermore, the' separated boundary conditions
are not equivalent to initial conditions iff 0 < r < n.

Separated boundary conditions satisfying these stipulations occur frequently
in mechanical oscillation problems and Sturm-Liouville problems (see

[3], [7].) Assuming that A is SCr and B is Scn-r it follows

from Proposition 3.1 that (L,3) has a Green's function iff there exist

indices 1< j, €+~ dJ-<tu. and 1<K Xiter €k < n such that
% r = = 1 n-r =
RPN - g N PR |
A( ,)M, B( ):o
jl,...,)r kl"“’kn-r

and M > pu, u=1,...,n. If these conditions are met both Cases I
“ =
and II of Theorem 4.1 apply. Thus,

0<olxo<ol\l<cl\2<---

(s) .

where o, = sgn G(x, s)w

n+l




(d) Consider the eigenvalue problem

xS e—Zx(d_ci ex))u = AU
(4. 3)

u(0) = u(l), u'(0) = u'(l) .

The differential equation simplifies to -u'" + u = \u while

p+l
c(P) - l

(-1) 0 0 =1

(5T =B -t 1

1)

C(o) is not SCZ but C( is. Furthermore the Green's function exists.
The eigenvalues for (4. 3) are

2
1,1 +4n,1+ 41r2,...,1 5 41r2n2,l +4172n2,...

Thus equality can hold in TR RRY’ for each £ in Theorem 4.1,
Case II. Replacing the periodic boundary conditions by antiperiodic
ones provides a similar example for Case I.
(e) Consider the eigenvalue problem

_ull - ku
(4. 4)

-u'(0) + u(l) = 0, u'(0) + u'(l) = 0.

Here

_yptl
c(p) : 0 (-1 0 1

W £ $

(1)

C(o) is SCZ while C is not. The characteristic equation determining

the eigenvalues of (4. 4) is

(4.5) 1+cos ¥\ - W\ sinW =0.

e A Rt




Hence

N
2

M A

cos cos ‘z— - A\ sin =0,

cos(W\/2) = 0 or N\ tan(W/2) = 1.
The first equation yields eigenvalues

Q. .
L ,

v_=(2n+1) o« ) R SR
n

with eigenfunctions,

(4.6) vn(x) = -(2n 4+ 1)m cos(2n + 1)mx + sin(2n + L)wx .

The second equation, A~N\ tan(N\/2) = 1, has only real zeros becausa

it is the characteristic equation for the self adjoint eigenvalue problem on [O,L]
@' = \o
¢'(0) = 0
1 1
=)+ als) =0
e'(;) +e(3) =0
The zeros Hor By Hos @ - of W\ tan(N\/2) = 1 satisfy

2n1r<\/',:1<(2n+1)w, AR S e S

0<'\/un-2mr->0 a8 nt %o,

and corresponding eigenfunctions are

(4.7) u (x) = '\/p.— cos~/:nx + sin'\/p_nx .

n n
The totality of eigenvalues of (4. 4) is

0 < < < < L vve & < & oo
Yo Yol B o) ™ e

which shows that equality need never hold for Theorem 4.1, Case I, even

when only C(o) is SCn.

~19- \
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Under the hypotheses of Theorem 4.1 stronger results are obtained

) (1)

0
when both C( and C are SCn’ as is clear from Example (c)

(separated boundary conditions). We now prove the rather surprising

(0) 1)

result that if both C and C( are SCn of rank n, then the

boundary conditions are, in fact, equivalent to separated boundary

conditions.

(0)

Proposition 4.2. If the matrix C is of rank n and both C an

C(l) are SCn, then the boundary conditions /# are equivalent to

separated boundary conditions.

Remark 4.1. By the term ''equivalent to separated boundary conditions"
we mean that the boundary conditions may be rewritten as separated
boundary conditions. For example, the boundary conditions u(0) = 0,
u(0) + u(l) = 0 can be rewritten as u(0) = 0, u(l) = 0.

We prove Proposition 4.2 via two lemmas.

Lemmas 4.1. If the conditions of Proposition 4.2 hold, then there is

exactlyone s, 0 < s <n, such that

¥ - SISl |

4.8 C #0
(4-8) e eadgrkp ek

for some choices of indices {jl}is=1 and {ki};:f satisfying

J€ ) Crvir €} ERECR €rie €K < 2n.
= 8 = 1 n-s =

—

Proof. Since C has rank n there exists at leastone s, 0 < s < n,

and corresponding indices for which (4. 8) holds.




] ad I
Assume there exists an s' > s and indices Ui'}iszl’ {ki}?:ls

ordered as above such that

: " : g , N

(4.9) C ; #0 .
Ji"”')'s"ki’”"k;'l-s'

Let Cl denote the fth column vector of the matrix C, £ =1,...,2n.

Then (4.8) and (4.9) imply

s
{Cj,} espan{Cj,...,Cj,Ck,...,Ck |
m m=1 1 s 1 n-s
'
Since s' >s, and {C, is a linearly independent set, there
m m=1

exists an m ¢ {1,...,8'} such that

C. A span{Cj,---,C]. }

mo 1 s

and, hence, the matrix with column vectors

{c. 1? 1 G 4 (G gy

Yii=1 'm i i=1,i#

0 0

must be nonsingular for some 10 € {I,...,n - s}. Ordering and renumbering,

it follows that trlxere exist indices

1<= ;l< <;s+l<= n<l:l<--- <£n-s-l§ 2n
such that 3
1, < . » g0
(4.10) s R PR AR R

Then for £, = 3n+1 -k i=}...,n=-8, and 2 =3n+l-k

i n-s+l-i’

i=1...,n-8-1, we have

. JPRPPR—

-




1, . ) R’ (0) 1, g . o
C“)(j 1 =3 ] ('I)SC (j MY W TeR il ) '
Ittt igh 1 Ra gt Tay A N g

(1) -1' R, ,x: s+1_(0) P . ? ’ |
S, - £l = {ell O TR Aok SCTRe. SR
JURRRR PP Uis LU S | A Lt LIS R PN

with all determinants nonzero by (4.8) and (4.10). This shows that

cl® g ¢tV

cannot both be SCn and proves the lemma.

Lemma 4.2. If (4.8) holds for exactly one s, 0 < s < n, then the

boundary conditions & determined by C = ”A, Bl are equivalent to

separated boundary conditions.

Proof. Let {ji}is=l and {ki}?:—ls be ordered indices such that (4. 8) holds.

Since the interchange of rows and the addition of linear combinations of one row
to another in C in no way affects the boundary conditions 2, we may assume
that the matrix which gives rise to the determinant in (4.8) is the identity,

1.0, © = e i=1...,8) and Ck 8 0 (i=1,...,n-3s) where
i i

ei is the standard ith coordinate basis vector in n-space. Let
i £ {jl,...,js}, 1<j<n. Then
3 n-s
Cj = z‘ alc " o ZI ﬁick ’
=1 P =) i

and if ﬁi # 0 for some i, the uniqueness of s is contradicted.

Thus, ﬂi=0, Ea byeiign =g,

b e AN I e
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}

and hence c,, =0 for £ =s +1,...,n. Similarly if k/{kl,...,kn_s 2

£]

n+l< k< 2n, the first s components of Ck are zero. Hence the

boundary conditions £ are equivalent to boundary conditions specified

A1 0
—o-'}-él'“ with Al s Xn ofrank s and Bl

(n-s)Xn ofrank n-s, i.e., B is equivalent to separated boundary

by a matrix of the form

conditions.

Remark 4.2. Assume C = “A,B” is such that C(p) is SCn' Let

~(q)

6: “-A,B” and 6= “A,-B”. Then G(Q) and C are SCrl

where p +#4q, p,q € {0,1}. Furthermore, if C = “I,B“, then C(p)

is SCn iff (-l)pB is totally positive, i.e., S foratl k=1 .00
I I,

51; = alj(-l)lﬂ. Then C(p) is SCn iff (-l)pA is totally positive.

Cx
with ¢, =1L, k=1,....n. It C= a1, set A-

«23e

B R




§ 5. Oscillation Properties of Eigenfunctions

Throughout this section, we shall assume the hypotheses of
Theorem 4.1 hold for the eigenvalue problem (4.1). Let

NgrAphps e

be the eigenvalues of (4.1) enumerated as in Theorem 4.1, and

(5.1) Ugs Uy Upy v e

be a corresponding sequence of independent eigenfunctions and/or
generalized eigenfunctions. Suppose xl is a simple eigenvalue and

u a corresponding eigenfunction. If X\ is real, choose u, real.

! £ £

If )‘l is nonreal, then ;l is also a simple eigenvalue, and E‘ is

chosen for its eigenfunction. If X, is not simple, it must be real with

£

multiplicity two, say xl = )‘Hl' Either u, and u!+1 are both
eigenfunctions (chosen real) for xl = xul or, if a generalized eigen-
function occurs, u, and Uyl may be chosen real satisfying

& 1

N, ’g G(x, s)ul(s)wnﬂ(s)ds = ul(x)
e
1
3 N, _({ G(x,s)ulﬂ(s) wnﬂ(s)ds = ul(x) + ulﬂ(x)

(see [15, p. 597 eqn. (1.9)]). Throughout this section the sequence
(5.1) is assumed to satisfy the preceding conditions.
Theorem 5.1. Let the hypotheses of Theorem 4.1 hold. Then there is a

(complex) constant o such that
% qu—p uch that




UZI-p(uO A ulx\ el A uZl~p—l) > 0

O O

on IZl-p’ ]~ = (0,1). Furthermore, if )‘Zj-p is nonreal, let
Y Re(uzj_p) and Yoieps = Im(uzj_p)., while if \, is real
let Vi b Then

{vo,vl,...,v“_p_l}

is a T-system on (0,1) satisfying the boundary conditions £4.

Proof. By Schur's Theorem, the eigenvalue of G.. (x,8) of
[22-p]

minimum modulus is A\, - ** )\

oM By Jentzsch's Theorem this

21-p-1’

eigenvalue is real, simple, of sign “zt-p’

which does not vanish on Igl—p' Since

X\ ...\

oM 2i-p Mg Py U O sy gl 2 b

where G[Zl-p] denotes the integral operator with kernel G[ Zl—p](é’é)’

and  u, e

0 ~ uZ!-p-l # 0 because u are linearly

0""’”21—p—1
independent, it follows that '

-~

82 Pigug g Mg ot Dl il O
on I(zjl for some constant ;Zl-p' A short calculation using (5. 3)
yields
£ .. >
e T N T
where ,;21—p = (—Zi)r:;ZI-p, and r is the number of pairs of complex

conjugate eigenvalues in {xo, o }. Consequently

12 2p-p-1

{VO’VI’ SR le-p-l} is a T-system and the theorem is proven.

25

and has a real eigenfunction
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The real sequence VO’vl’ (see Theorem 5.1) of real and

Vo -
imaginary parts of the eigenfunctions uo, ul, uz, ... belonging to
the Green's function G(x,s) exhibits oscillation properties analogous

to those of the classical Sturm-Liouville eigenvalue problem. These

22-p-1

=0 is a T-system on (0,1)

properties emanate from the fact that {vj}
for £ =1,2,..., and from certain orthogonality properties of v, Vi

Let G*(x, s) = G(s,x) be the Green's function for the adjoint
problem to (4.1). Then G*(x, s) has precisely the same eigenvalues
(to multiplicity) as G(x,s), and the generalized eigenfunctions of

* % _ 00
G (x,s), say {ul}o , which we choose according to the same conven-

[* o]
tions set forth at the beginning of this section for (ul}o , must satisfy

1 -5
(5.4) '({ u!(s)u;(s) wm_l(s)ds =0 if Ny # xm "

*

% 00 Q0
Let {vj }  be obtained from {uj }0 just as {vj}0 was obtained

© 8

%
Since G (x,s) clearly has the same sign consistency

St

f '
rom U,, 0.

properties as G(x,s), the argument of Theorem 5.1 establishes that

{* * *
VO’VI""’VZI-p-l

the boundary conditions adjoint to #&. Also (5.4) and the fact that

}, £ =1,2,..., is a T-systemon (0,1) satisfying

nonreal eigenvalues occur in conjugate pairs yields the orthogonality
relation:
¥ I, l# I, then
1

(5.5) _(]; vl(s)v:‘(s)wnﬁ(s)ds =0

R s

2N




*
where vl(s) [resp., vm(s)] is the real or the imaginary part of an
*
eigenfunction of G(x,s) [resp., G (x,s)] belonging to X,
[resp., xm s

Theorem 5.2. Assume that the hypotheses of Theorem 4.1 hold. Then

the following obtain.
(0)

Casel. If C

is SC_, then
n

(a) for each 0 < k < 2f -1 the zeros of

v = av, (Z a.z >0, a, real
jead j j

satisfy
k
23] < N() < Zv) < 2t - 1 ;

have either 22 - 2 or 2f -1 nodes

consequently, VZI_2 and VZl-l

in (0,1) and no other zeros, and

(b) the nodes of v

Casell, &t SV g SC_, then

and VZl-l strictly interlace.

21-2

(a) for each O < k< 2t the zeros of
21 2
v=Za,v (X a, >0, a, real
jok 1 J j

satisfy
k

2[ 'l]+1§ N(v) < Z(v) < 2¢ ;

2

consequently Vyg.; @nd v,  have either 2f£-1 or 2¢ nodesin (0,l)
and no other zeros. Also Yo has no zeros in (0,1), and

27




i .
(b) the nodes of Vag-l and LY strictly interlace
Remark 5.1. In case G(x,s) has real spectrum, in particular if the
eigenvalue problem is self-adjoint, vj = uj for 1 =012 ... and
Theorem 5.2 describes the oscillation properties of the eigenfunctions of

G(x, s). See also Theorem 5.3 below.

Proof. We shall prove only Case I. The proof of Case II follows in an

entirely analogous manner. Recall that N and Z count zeros in (0,1).

The inequality Z(v) < 2f -1 holds because {vo, Vi }

APV}
is a T-system (Theorem 5.1) on (0,1). The inequality for N(v) follows

21-1
from the orthogonality relation (5.5): Suppose that v = L ajVj
j=k

2
(Z a,_ >0, aj real) has nodes

0<gl<---<gr<l, r = N(v) .

s
r = 2m - 1 say, form a nontrivial v -polynomial
2m-1
* %*
v (x) = L b v, (x)

%

*
which has nodal zeros (sign changes) at §1,. . Since {vo, .o ’VZm—l} is

v me—l'

*
a T-system, v has no other zeros in (0,1). By construction

1 W
{ v(s)v (s)wn+1(s)ds #0.

However, if k>r = 2m - 1, then since Ix (Theorem 4.1)

<
2m~l | Imel
the orthogonality conditions (5.5) imply that the above integral is zero,

a contradiction. Thus, k< r = N(v).

-28~




*
2. If r iseven, r =2m say, form the v -polynomial

2m+l
* ‘ ¢
v (n)(x) = L b(,n)v,(x)
O R
which has nodal zeros (n) (n)
at §0 ’ §l, cee ’€2m (0 < €g < 51) and satisfies
2m+l
}_, |b§n)| = 1. v*(n) has no additional zeros in (0,1) by the
i=0
* * (n)
Tchebycheff property of {vo, AP V2m+l}' Let £7°40 as nt ™.

35
A simple compactness argument implies the existence of a v -polynomial

2m+l . 2m+l
v (x) = b,v, (), 2, lbjl =1,
j=0 j=0

*
which has nodal zeros at gl, ey Since any sign change of v in (0,1)

*(n)

2m

is the limit of zeros of the v 's as n - o through an appropriate subse-

guence, and Z(v*) < 2m, it follows that v* has only the zeros gl, i 3 me in
(0,1). As above, a ?ontradiction follows if 2m +1 = r +1 < k. Thus,
k-1 < N(v).
Thus if N(v) is odd, N(v) > k, while if N(v) is even,
N(v) > k - 1. This is equivalent to N(v) > 2[k/2]. The remaining
part of Case I(a) follows from the first part and the fact that 2(v) - N(v)

is always a nonnegative even integer.

The proof of Cése I(b) is set forth as a sequence of lemmas. The argu-

ments follow those used by Gantmacher and Krein in [ 3, pp. 215-217] with suitable

modifications required by our weaker hypotheses. As an immediate

consequence of Case I(a), we have, since 2(v) - N(v) is always even,




Lemma 5.1. The zeros of the v-polynomial

2 2
v=av,, 5t bvu_1 (a  +b > 0)

satisfy

2t - 2< N(v)< Zv)< 2t - 1.

Hence, v has only nodal zeros in (0,1).

In what follows, let ¢ denote either Vay-2 or VZl-l while

denotes or

Y213 Yai-3"
Lemma 5.2. Let 0<§1<---<§r<l,r=N(¢), be the nodes of ¢

in (0,1). Then the function
h =4/

is strictly monotone on Ii = (gi, ng), O R F,o = 0, ng = 1.

Proof. From Lemma 5.1, h cannot be constant on any interval of
positive length. Thus, if h is not strictly monotone on Il’ h has a

relative extremum at some point xi of Ii' However, this would imply

that the v-polynomial y(x) - h(xi)¢(x) has a nonnodal zero at X

contradicting Lemma 5.1. Thus h is strictly monotone.

Lemma 5.3. h(x) has a zero in each Ii’ L &1 SR L B
Proof. Since h(x) is monotone in each Il’ i=0,1,...,r, the limits

lim h(x) = ¢ and lim h(x) = ¢ :
. i + i ,~
x-og1 x-—&i %

both exist as extended real numbers for i = 1,...,r. We shall show

that none of the {1 )" {og Is finite,

i H=1 and “1}




Neither l; nor l: is finite when gi is not a zero of .
We are concemed with one of the following four cases which may occur
only if gi is a zero of .

(i) Exactly one of Ii- and l: is finite.

- +
(ii) Both f, and li are finite and unequal.

L

(iid) li- (finite) and h is monotone near E"i'

t. (finite) and h is monotone in opposite senses for

-+'—‘4+~.

(iv) !1
x<§1 and x>§1 but near gi.

We show that (i) - (iv) are incompatible with Lemma 5.1. If (i) or (ii)

- +
holds choose c¢ in the open interval determined by l1 and li’
while if (iii) holds set ¢ = l; = l;. Then the v-polynomial v = { - cp

has a nonnodal zero at §i as is easily seen from the fact that

¢(§i) = ¢(§i) =0 and ¢ changes sign at §i.

To contradict (iv), assume h < c = =17 in

i i Ii—l and Ii'

Consider the polynomial b e ¢ - (c - €)p, € >0. The polynomial

v = §-c¢ has at least 22 - 2 nodes in (0,1) one of which is at ‘ix‘

Since ve =v+ep, for € >0 sufficiently small, ve must maintain
at least 2 - 3 nodes in (0,1) bounded away from gi. However,

by construction it is easily seen that for € > 0, sufficiently small, ve
has two 'new' nodes (one less than §1 and one greater than &1) as

well as the one at gi. Thus for € > 0, sufficiently small, ve has at

least 21 nodes, a contradiction.

——




Lemma 5.4. The nodes of Vag-2 and v“_l strictly interlace in (0,1).

Proof. If N(VU—I) # N(v ) then since 'N(vu~ ) = N( )| o= 1

24-2 2 el

the result is an immediate consequence of Lemma 5. 3. Assume

N( ) = N(v ) and 25d- M and v have a common

L 20-1 Y24=2 5ol

node ¢, then if n is an adjacent node of v (such a node exists

21-1

because f >1), v must have a node { between £ and n by

21-2
Lemma 5.3. But v‘“_l must then have a node between { and &,
contradicting the definition of n. Thus the lemma holds for f > 1.

Assume (£ =1 so that N(vo), N(v1)<: 1. 3¢ Yo and vi have a common
node ¢, then h = vo/vl has equal, infinite (see the proof of Lemma 5. 3)
left and right limits at £. Thus there exists a constant c¢ such that

¥ " cv1 has three nodes, a contradiction.

This completes the proof of Theorem 5. 2.

Examples.
(a) Consider the eigenvalue problem

-u'' = \u

u(0) +u(l) =0

u'(0) +u'(l) = 0.
These boundary conditions are antiperiodic and the problem has eigenvalues
K. » (2n + l)zwz, n=0,1,2,..., eachwith multiplicity two and
corresponding eigenfunctions cqs(Zn + 1)rx and sin(2n + l)vx. The
interlacing properties guaranteed by Theorem 5.2, Case I, are easily

verified in this case.

'i;.“ P LAY e L TOUT—————————
B yo
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(b) Consider the eigenvalue problem

Then (see example (d) of Section 4)

() (Pt 0 ¥l
C p = p p l l ’
(-1) (-1) ol
and so C(l) is SC2 but C(O) is not. The eigenvalues of this
2fn + 1 ; 2
problem are )‘n =1+ 4n ‘—2‘] , n =0,1,2 ... . The eigenvalue

XO = 1 has eigenfunction uo(x) = 1 and the double eigenvalue

)‘Zn B xZn-l’ n > 1, has an eigenfunction and generalized eigenfunction

given, respectively, by

cos 2mnx

(x)

uZn-l

n

uZn(x) (x + 1)sin 2mnx .

The interlacing properties of Theorem 5.2, Case II, are easily confirmed.
This example also shows that generalized eigenfunctions can occur in
Theorem 5. 2.

(0) is SCZ while C(l) is not.

(¢) In the eigenvalue problem (4.4), C
The eigenfunctions given in (4. 6) and (4.7), when properly ordered,
must have interlacing zeros as in Theorem 5.2, Case I. In this case,

Theorem 5.2 seems to be the easiest way to verify the interlacing of the nodes.

-33~
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For completeness, we include the following consequence of

Theorems 4.1, 5.1 and 5.2 which pertains to the case of separated
boundary conditions (Proposition 4.2), (see [6], [12], and [13]).

Theorem 5.3. Assume that the hypotheses of Theorem 4.1 hold for both
p=0 and p =1l Then the eigenvalues of G(x,s) are all real and

simple, and the eigenfunctions {ul }:)l7 satisfy:
(1) {uo, UTRERE ul} is a T-system on (0,1) satisfying the boundary

conditions # for each £ = 0,1,2,...

(2) Eor 0< k<t, the zeros of
¢ 3
u = L au, (X a, >0, a, real)
Fens 0ol & j j
i=k
satisfy
k < N(u) < Z(u) < L.
(3) The eigenfunction u, has exactly ! nodes in (0,1) and no other 4
zeros there, and the nodes of u ‘ and u 041 strictly interlace in '
L
(0,1).
{
3
2
;.




§6. Composite Differential Operators

Many important differential operators are naturally expressed as
compositions of lower order operators. The applicability of the results

of Sections 3-5 to such composite operators may be inferred by an

examination of its factors, as is shown in Theorem 6.1. Theorem 6.2

refines the results of Theorem 6.1 in the important special case where
the differential term is self-adjoint.

Let (L,B) be an nth order differential form of Pc;lya type W

with boundary conditions specified by the matrix C = ”A, B“, as in the

previous sections. Moreover, we shall also assume that

n+m+l-j v
j€C He. 1k sl .00

+ +
Likewise, let (L ,B ) be an mth order differential form where

1" = o} - b}, (Dfuw = 2 [M’—] P

+

st (x)

+ +1-j,
and w (x)>0 xe[0,1], w, € o j[0,1], with associated

boundary conditions determined by the matrix

+ + 4+
= A", B IImXZm

of rank m.

+
Let N=L L, and B+6 be the set of boundary conditions

Z D’u(o)+ZbD w(1)=0, i

"
—
=

"
=
+

-
=
+
3

m
o DO, n+j -1 n+j -1
0 B
J%Il ai-n’j ( ) ! ’Z b 'j (1) 0’ 1

I A SRl




specified by the matrix

E= g
0 A+ 0 BF
(n+m)x2(n+m)
b N =
where Dn+j:Dj,):l,...,m, and -Dj Dl’ e e
(p) +(p)
Theorem 6.1. Assume C and C satisfy Postulate ] for the

+
same p and that either A or A~ is not equivalent to a set of initial

conditions. If (N,B+B) has a Green's function, then the conclusion

of Theorems 4.1, 5.1 and 5.2 obtain for the eigenvalue problem

o N
wNu—\u

+
uepBnps

where w(x) is continuous and non-vanishing on {o,1}]. Also,

(N,BJ'B) has a Green's function H(x,s) iff both (L,”) and (L+,,3+)

+
have Green's functions, say G(x,s) and G (x,s), respectively, in

which case

1
(6.1) H(x,s) = [ G(x,)G'(t,s)dt .
0

Proof. The proof is a result of the application of the basic composition

formula [7, p. 17]. From (6.1),

+ o
Hl2g-p) @8 = { G 24-p) (B BG[ 5y p )LDt .
21-p
Since G(x,s) and G+(x,5) are SC2£~p" 21,2,..., 80is H(xs).

The fact that H 1(5,5) # 0 follows in a similar fashion.

[22-p

%&?‘}‘ e



<

e A &

Remark 6.1. It should be noted that one can also prove directly that

(p)

under the above assumptions, E is SCn and of rank n + m.

+m

+ * + %
An important case of Theorem 6.1 iswhen L =L and B =78,

the adjoint differential form and boundary conditions to L and #5,
respectively. Let C = ”A, B“ denote the boundary conditions associated
with (L,8), and C_ = ”A*, B*” denote the adjoint boundary conditions
associated with (L*,/:?*). While the analysis is rather lengthy, an
explicit form of C* may be exhibited and, as is shown in [17] (see

also [19]), if C(p) is vSCn and of rank n, then C(*p) is SCn and of
rank n. From Theorem 6.1 we obtain the following.

Theorem 6.2. Assume (L,3) has a Green's function G(x,s), and C(p)

satisfies Postulate J. Then the self-adjoint differential operator

. »
(L L,” #) has a Green's function H(x,s) which is SCZ!-—p for

t =12,... . Thus the conclusions of Theorems 4.1, 5.1 and 5.2 apply

and since H(x,s) is symmetric and positive definite, the spectrum of

the associated eigenvalue problem is positive.

w""ﬂb‘ S




§7. Extensions

The spectral results for the eigenvalue problem (4.1) developed
in Sections 4 and 5 can be cast in a more general setting as described
below. No proofs will be given because the reasoning used in Sections 4
and 5 can be applied with inessential changes.

Let J = (0,1) and K(x,s) be a real, continuous kernel on 7 x?

for which

621—pK[21-p](5’§-) 20 for x,s¢ Iu_p
{.1)

Ezl_px[ 21_p](.’£,2<_) >0 for Xx e JZl—p
where p =0 or 1, eu_p = 41 or -1 dependentonly on 2{ - p, and
t =1,2,... . Consider the eigenvalue problem
(7.2) (x) = [ K(x,s)¢(s)du(s)

J

for the kernel K(x,s) where du(s) = w(s)ds and w is a positive,
continuous weight function gn T

Theorem 7.1. Assume (7.1) holds for p = 0 or 1. Then the eigenvalue

problem (7.2) has an infinite sequence of eigenvalues )‘o’)‘l’)‘z’ o
Moreover, if lxol £ lxll s lx?_l g where each eigenvalue is listed
c i ici f Fredholm determinant of K(x, s),

then the following holds.

I. If p=20, then

M o<hglshl<hlchla<h,lsh,,,

L
4

e ———



(2) A O fapc b =50.0.2. ... ‘where &, =+l ;

>
€e82042M 21N 2401

= .
(3) also )‘Z! is nonreal iff )‘ZHI )‘zt

. H p=]l,- then

A B reag <Rk Mol S s i, o1 o TR
>0 £ =

(2) s?_I-IeZIH)\Zl-l)‘Zl . bosy g

(3) also N,, Is nonreal iff )\21_1 = )‘Z_l'

Parts (2) and (3) of Cases I and II yield the following interesting
result guaranteeing that the spectrum of the kernel K(x,s) is real.

Corollary 7.1. If in Theorem 7.1 - I, e g =052, .

€21%2142
(i.e., if successive compounds in (7.1) alternate in sign) then K(x, s)

‘ ‘ £ =
has only real spectrum. Likewise if eu_lezul <@ for-L =12, ..
in Theorem 7.1 - II, then K(x,s) has only real spectrum.

On the basis of Theorem 7.1 and the reasoning of Section 5, we

can establish the analogues of Theorems 5.1 and 5.2 for the kernel

> o}
K(x, s). Let {ui}o be the set of eigenfunctions of K(x,s) correspond-
o0 o0
ing to {xi}o and chosen as in Section 5. Let {vi}o be the real

sequence constructed from the real and imaginary parts of the eigenfunction

o0
{ui}0 as in Theorem 5.1. Then

{vo,vl, i }

Bls vZl-p-l
is a T-systemon (0,1) for £ =1,2,..., and when p = 0 (resp.,
p = 1) the conclusions of Theorem 5.2 - I (resp., II) hold for the sequence

o

-39-




-

[2]

(3]

(4]

[5]

(6]

(7]

[8]
(9]

REFERENCES

Anselone, P. M., and J. W. Lee, Spectral Properties of Integral

Operators with Nonnegative Kernels, Linear Algebra and Appl. 9

(1974), 67-87.

Coddington, E. A., and N. Levinson, The Theory of Ordinary

Differential Equations, McGraw-Hill, New York, 1955.

Gantmacher, F. R., and M. G. Krein, Oszillationsmatrizen,

Oszillationskerne und kleine Schwingungen mechanischer Systeme,

Akademie Verlag, Berlin, 1960.

Jentzsch, R., U'ber Integralgleichungen mit positivem Kern,

J. Math. Crelle 141 (1912), 235-244.

Kalafaty, P., Surles fonctions de Green des equations differentialles
ordinaires, C. R. (Dokl.) Acad. Sci. URSS 26 (1940), 526-530.

Karlin, S., Total Positivity, Interpolation by Splines, and Green's

Functions of Differential Operators, J. Approximation Theory 4

(1971), 91-112.

Karlin, §., Total Positivity, Vol. I, Stanford University Press,

Stanford, Calif., 1968.

Karlin, S., Total Positivity, Vol. II, in preparation.

Karlin, S., and J. W. Lee, Periodic Boundary-value Problems and
Cyclic Totally Positive Green's Functions with Applications to Periodic

Spline Theory, J. Differential Equations 8 (1970), 374-396.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE arriEAD NSTRUCTIONS
Lv.-nmvml 7, GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER s
1683 /
4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
reporting period

6. PERFORMING ORG. REPORT NUMBER

SPECTRAL PROPERTIES AND OSCILLATION /
THEOREMS FOR MIXED BOUNDARY-VALUE

PROBLEMS OF STURM-LIOUVILLE TYPE

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(e)

DAAG29-75-C-0024 /

J. W. Lee and A. Pinkus

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Mathematics Research Center, University of / S W
610 Walnut Street Wisconsin
Madison, Wisconsin 53706
11, CONTROLLING OFPCE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office September 1976
P.O. Box 12211 3. NUMBER OF PAGES
Research Triangle Park, North Carclina 27709 42
‘ MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Olfice) | 15. SECURITY CLASS. (of thie report)
UNCLASSIFIED
1%a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, Il different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse aide Il necessary and Identily by block number)
Mixed boundary conditions

Green's function

Tchebycheff systems

20. ABSTRACT (Continue on reverse aide If necessary and Identity by block number)
This paper presents analogues of the spectral and oscillatory properties

exhibited by classical Sturm-Liouville systems for certain mixed boundary value
problems that include periodic boundary conditions as a special case. These

mixed boundary-value problems have Green's functions which are sign

consistent for all even and/or odd orders.

DD ., 5n'ys 1473  eoimion oF 1 nov 68 18 OBsOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)




REPORT DOCUMENTATION PAGE a.,gﬁbmg%g";o“
Y KUPGRT NUMBER / —— N NOJ| 3. RECIPIENT'S CATALOG NUMBER ]
S TNRE TSk =765
4. TITLE (and Subtitie) Husier 8. TYPE OF REPORT & PERIOD COVERED
(_| SPECTRAL PROPERTIES AND ©8CILLATION W S“"‘:"‘"" rge"m iy specitic
THEOREMS FOR MIXED BOUNDARY-YALUE i Bl
/ 6. PERFORMING ORG. REPORYT NUMBER
PROBLEMS QF;TURM -LIOUVILLE TYPE , _~
y A AUTHOR(e) ONTRACT OR GRANT NUMBER(s)
% — &
|7 W/Lee - A /PlnkuL/ ?DMGZ"'”‘C'/W“
"'"luronnme onoan.i;; S AGT AND AOORES
Mathematics Research Center, University of
610 Walnut Street Wisconsin
Madison, Wisconsin 53706
11. CONTROLLING OFMCE NAME AND ADDRESS \‘
U. S. Army Research Office // Se p CunEUN—E. 7 6
P.0O. Box 12211 13, R OF PAGES
Research Triangle Park, North Carolina 27709 42
YT MONTTORING AGENEY RAME & ADORESSI! different from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
1%a. DECL ASSIFICATION/DOWNGRADING
i SCHEDULE
8. DISTRIBUTION STATEMENT (of thie Report)
Approved for public release; distribution unlimited.
|_7_.7“_DIS1’.I.UTION STATEMENT (of the abetrect entered in Block 20, if different from Report)
\ - ; ' /.‘ k .y
f eTkﬁzéyuw/C AL /?ﬂé o
[ B .
R —— e ——— T ———— +
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse aide il necessary and identity by block number)
Mixed boundary conditions
Green's function
Tchebycheff systems
20. ABSTRACT (Continue on reverse eide If necessary and Identify by block number)
~——>This paper presents analogues of the spectral and oscillatory properties
exhibited by classical Sturm-Liouville systems for certain mixed boundary value
problems that include periodic boundary conditions as a special case. These
mixed boundary-value problems have Green's functions which are sign
ronsistent for all even and/or odd orders.
DD , 5n'5s 1473  eoimion or 1 nov 68 1s oRsoLETE E ;UNCLASSIPIBD = B | é L0 L
SECURITY CLASSIFICATION OF THIS PAGE Dete Entered)

ol e

UNCILASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

3




