
A0 A031 945 WISCONSIN UNIV MADISON MATHEMATICS mrsnRcs CENTER Ffl S2fl
SP(CTRAL PROPERTIES AND OS~ LLLATION THEOREMS FOR MIXED BOUNDART——ETCtU

I uN~I.ASSIF1CD 
SEP 76 . 1 1*  PISWS QAAGZ9 75—C-002 44

I 
-

~~~~~~~~~~~ I

__N! _
1!!! I U

I

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I (~ 
L~ ~~~ ~~2 5

I ~Ill~~~~

________ 
2

1. 1 E
• _ _

• 
• 

~ .25 1Ill1~ llll~ 6

V I



MRC Technical Summary Report # 168 3

SPECTRAL PROPERTIES AND
OSCILLATION THEOREMS FOR M IXED
BOUNDARY-VALUE PROBLEMS OF
STURM-LIOUVILLE TYPE

J. W. Lee and A. Pinkus

Mathematics Research Center
University ot Wisconsin —Madiso n
610 Walnut Street —..

Madison , Wisconsin 53706 1c? :~T’~~~

September 1976

(Received May 14, 1976)

V

(
~\ ~ App roved for public s li ces

/ Distribution unlimited

Sponsored by

U. S. Arm y Research Office
~~P. 0. Box 12211

Research 1~iang1e Park
North CarolIna 27709

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~



_ _ _ _ _ _  _ _ _ _  -

UNIV ERS ITY OF WISCONSIN - MADISON
4 MATHEMATICS RESEARCH CENTER

SPECTRAL PROPERTIES AND OSCILLATION THEOREMS FOR MIXED
BOUNDARY-VALUE PROBLEMS OF STURM -LIOUV ILLE TYP E

* **J. W. Lee and A. P inkus

Technical Summary Report # 1683
September 1976

ABSTRACT

This paper present s analogues of the spectral and oscillatory

properties exhibited by classical Sturrn-Liouville systems for certain

mixed boundary value problems that include periodic boundary

conditions as a special case. These mixed boundary-value problems

have Green ’s functions which are sign consistent for all even and/or

odd orders.
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SPECTRA L PROPERTIES AND OSCILLATION THEOREMS FOR MIXED

BOUNDARY- VALUE PROBLEM S OF STURM - LIOUVI LLE TYPE

* **I . W. Lee and A. Pinkus

§ 1. Introduction

This paper presents analogues , for certain mixed boundary-value

problems , of the spectral and oscillatory properties exhibited by classical

Sturm-L 1ouvil le systems. The usual analysis of the Sturm-Liouville eigenvalue

problem is based on special ad hoc methods. In contrast , Garttmacher and

Krein showed in [ 3) (see also references therein) that these fundamental

spectral properties are direct consequences of the total positivity of the Green ’s

function for the problem. They further showed that the total positivity

of the Green ’s function is itself the mathematical expression of certain

basic physical properties of vibrating mechanical systems , which are

typically modeled by Sturm -Liouville systems. Subsequent to the work

in [ 3 ) ,  extensive studies have revealed several Important classes of

bound~iry-value problems with separated boundary conditions whose

Green ’s functions are totally positive or sign regular. As in the classical

Sturm-Liouville problem , these boundary-value problems exhibit a rich

oscillation theory. Some principal contributors in this area are

*Department of Mathematics , Oregon State University , Corvallis , Oregon
97 33 1.
**Mathematics Research Center , University of Wisconsin , Madison ,
Wisconsin S3705 .

Sponsore d by the United States Arm y under Contract No. DAAGZ9-75-C-0024 .
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Gantmacher and Krein [ 3 1, Karlln [6 1,  [7 J ,  1 8 ) ,  Karon [ i  ~ j ,  Kre in [ 1  3 1,

and Krein and Finkelstein [ i  4 1.

In [9 J, Karlin and Lee studied the sign consistency properties

for periodic boundary-value problems. These results were later used by Lee

in [ i s ]  and [ 16) to develop the spectral properties of these periodic

problems. The analysis in [ i s )  and [ 1 6 )  extends easily to the case o~

anti-periodic boundary-value problems. Recently, Kar l in and Pinkus [ 1 0 1

(see also Melkman [ 18 ] )  shc~”ed that an important class of mixed

boundary-value problems have Green ’s functions which are sign consistent

for all even and/or odd orders. Special examples of this correspond

to the above mentioned periodic and anti-periodic boundary-value prob lems.

In this pape r , the spectral pro perties and oscillation theorems associated

with the mixed boundary-value problems are developed .
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§ 2. Terminolog y and Preliminary Resul ts

For given w .(x) > 0 , x [0 , 1) ,  an d w 1 0n t [0~ 1j ,  1

define

(2.  1) L = D Dn 1

where

(D . u)(x)  = 

~
-[

~~~~)] J = i , . . . , n

Thus L is a di fferential form of Polya type W (disconj ugate)  on

[0 , i ] .  The differential equation Lu = 0 has a basis of solutions

u 1(x) = w 1(x)

u 2(x) = w 1(x) 
X

( 2 . 2 )

t t

u (x) = w 1
(x) 

X 
w 3(t 2

) • . .  f w ( t ) dt 1 dt~

which constitute an extended complete Tchebycheff (ECT) system on

[o , i J  ( s e e [ i i J ) .  Evidently,

D~~’u1(0) = w~(0) 6 1.~ I , i = 1,. . , n ,

where D = D . ... D 1, j = 1, . . . , n , and D0 I , the identity

operator. The function

0

t(2.  3) ~ (x ;~ ) = ( x 1 n— 2
~w 1(x) f w 2(t 1 ) f w3(t 2 ) f w ( t

1)dt
1 dt 1, ~ < x

S
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with 0 < x, ~ < I is the fundamental  solution for Lu = 0 determined

by zero initial data at zero , ani the characteristic jump discontinuity

D~~~~~ (~ +;~ ) - D n (
~

_ ;
~

) w ( ~ )

which corresponds to the requirement that the ordinary (n - 1)-st

derivative of ~~ (x;~ ) exhibits a jump of 1/p 0(~ ) at x = ~,, where

L = p0(x ) (d /dx ) +

Let A be an m )< n matrix and r < m , n. Then Al
= 

~~~~~ 
• ‘~ r

denotes the determinant of the matri x obtained from A by deleting the

rows and columns except for those labeled i 1 , . . . , i and j 1, . . . ,
respectively. The matri x A is said to be sign consistent of order r

(SC r ) if

> 0r 
~l’ ”~~’1 r =

for all I < I < . . •  <. i < m and 1 < < n , where c = +1
= 1 r =  = 1 r =  r

or -1 , dependent only up on r.

The following notation will be used. Given a matr ix

C II A , B I I~~~
with both A and B n X n matrices , define

n , Zn
( 2 . 4 )  ~~~~ = II c~

P ) l l
~ i= l ,j=l

by
.

I

i
-4-
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= 
[a~~ _ i~ 

+P 
= 1~ . . n ;  I .

~ ( b . , I 1 , . . .  n ;  j n + l  . . .  2n
—~ \- i, Z n + l — j  ‘

where p 1 0 or 1.

The matrix C = 1k, B H  is said to sat isfy Postulate j  w t i ~ re spect

to p i f

( i )  A and B are n )( n matrices , and

( i i )  C~~ has full rank and is S C .

Let K(x , s) be a real-valued kernel defined on J ) <  J, where

1 is a real interval , and let

{x : x = (x1, . . . , x), X
1 

< . . < X , X . J , j = 1, . . . , r}

The function

K
[r](~~~

) = K(;
1 :“: r 

= det llK(x~, s~) II~

defined on J x I is called the compound kernel of order r induced

by K. The kernel K(x , s) is said to be SC if e K 1 1 (x ,& > 0

for ~~ ~r ’ where £ = * 1 , dependent only on r.

Let f 1, .. ., f be defined on J. Then

(f ‘. . . “ f rX~
) = det Ii f1(x~) II =

for x E Under suitably mild measurability and integrability assumptions ,

In particular when •

~~ 

f are bounded and continuous on J and

K(x , s) is bounded and continuous on J X J, the basic composition

— 5 —
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formul a [ 7 , p. 17) yields

(2. 5) K~ r ]~
ti ~~~ ~~ 

= Kf 1 ~~~ 
. 

~~
‘ Kf r

where

( Kf)(x) = f K(x ,s)f(s)ds
I

(K 1 1 g)(~.) = f K [ J (x ,~ )~ (~Jds ,

for g de fined on J and ds = ds1 
. . .  d s .

A family of real , continuous functions ff 1, . . 
~ ~~ 

Is a

Tchebycheff (T) system on J If ... 
‘~

. I maintains a fixed

strict sign on 1r’ or equivalently, never vanishes on J .  Linear

combinations of f1, . . . , I are called f-polynomials. If f Is a real

continuous function on J, an isolated zero x0 of I in the interior

of J is called a nodal zero or node if f changes sign at x0 . All

other zero s, including zeros at the endpoints of J, are called nonnodal

zero s. We shall use thi s concept for J = (0 , 1), the open interval ,

and thus endpoints will not in fact concern us. Let Z( f) denote the

number of zeros of f in J where nonnodal zeros in the interior of I are

counted twice and all other zeros are counted once. Let N( f) denote the

number of (distinct) nodes of f in I . If {f1, . . 
~ 

is a T—system on J,

then any f-polynomial satisfies Z( f) < r - 1.

— 6-
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The following version of Jentzsch’ s theorem will be used. We

are concerned with the eigenvalue pro blem

( 2 . 6 )  0(x) = x f K(x , s)o(s)d~ (s)
J

for the kernel K(x , s) where dp.(s) w(s)ds with w(s) > 0 and

continuous on J .

Theorem A. Assume the kernel K(x , s) in (2.  6) is nonnegative and

continuous on J X J and that K(x , s) > 0 for all (resp.. almost all)

points (x , s) in some neighborhood of the diagonal {(x , x) : x E J }.

Then the kernel K(x , s) has a positive eigenvalue which is a

simple root of the Fredhoim determinant and which is strictly smaller

in modulus than all other eigenvalues of K(x , s). Furthermore, the

corresponding elgenfunction may be chosen positive (resp .. positive

almost everywhere) on J.

Remark 2 . 1 .  Jentzsch’s original proo f in [ i ]  may be modified in a

straightforward manner to obtain Theorem A. The reasoning in [ I )  is ,

however , simpler.

Remark 2. 2. Jentzsch’s theorem (Theorem A) generalizes directl y to

kernel s defined on the simplices J ,  r = 2 , 3 

There is a fundamental relation , Schur ’s theorem (Theorem B below),

see [2 1J . or [ 3 J ,  between the eigenvaiue problem (2 .6 )  for the kernel K(x , ~~~~

and the corresponding eigenvalue problem

(2 .7 )  ‘~(~ ) = i~ f  ~~~~~~~~~~~~~~~~

-7—
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for the rth compound kernel K[ r J~~ ’~~ ’ where d~ (~ ) d 1i(~ 1) d~ (s ) .

Theprem B. J~~ K(x , s) be cpntinupus~~n I X I .  Let

be the setipossibly empty) of eigenvalues of K(x , s) where each eigenvalue

is listed accord ing to its multip licity as a root of D (X) ,  the Fredholm

determinant of K(x , s).  Then

x. x. . . . x .  , 0 .c.~ A < j  < . . . < I
i i  1 = 1  2 r1 z

~~e the totality of eigenvalues of I(~ r J ~~ ’~~ ’ and each such eigenvalue

automatically occurs to its mult iplici~y a s  a root of D[ r J~~~’ ~~~
Fredholm determinant of

Remark 2. 3. The assumption that K(x , s)  be continuous on J X I

can be substantially relaxed; however the result as stated is adequate for

our purposes.

. 1

—8-

S ------ . 5



§ 3. Sign Consistent Green ’s F~ n ctions

Kar lin and Pinku s [10 ] consider an important  class of boundary

value problems with mixed boundary conditions. Examples of these

boundary condition s include the separated boundary conditions commonly

used in Sturm-Liouville problems as well as periodic and antiperiodic

boundary conditions. In this s~ ction we summarize  the sign consistency

results of (10 ) for certain Greei~i ’s functions and present some refinements

necessary for our analysis of the associated eigenvalue problem . As sume

henceforth that n > 1.

Consider the di f ferential ppera tor (L , 1&) specified by a differential

form L of Polya type W, see (2 .1) ,  and a set of mixed boundary

conditions

(3.1) U (u) = ~~ a , D~~~u(0) + ~~~ b , D~~~u( 1) = 0, i 1, 2 , . . .  , n .
. j = 1  ~ j = l  ~ 

I

Subsequently, ~ will denote either the set of boundary

conditions (3 .1) ,  or the set of functions in ~
n i0 , I )  satisfying these

conditions. It is a well-known fact (see e.g. [2, Chap. 7] or [20, Chap. 1])

that the differential operator has a Green ’s function G(x , s) iff

= det ll U~(u~) Il ~’~~ 1 � 0

where {u ,)~’
1 are as given in ( 2 . 2 ) .  If ~~ � 0 , then

n
~ f t U j [ o ( .  ; s ) ]

( 3 . 2 )  G(x , s) = det r 1 f
~

j — 

~1~;;r ~fl (n+ 1)X (n+1)

-9—
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- -

and an application of Sylve ster ’s determinant identi ty (cf .  [7 , p. 3 ) )

to (3. 2) yields

~~~~~ 
;s~)] 

~

“‘

( 3 . 3 )  G (x ,~~) = ‘det — — -
[ r J  r n  r

u ( x  ) ‘ , ~~~~ 0 (x ;s .)
i I l= i , J — ’ i  n I j  1, J — L  (n# r)X(n+ r )

for 
~~~ ~r ’ ~ [o , i J .

Let C = h A , B il  be the n x 2n matrix defined by adj oining

I in n
A to B where A = ia . j .  and B = b . ,  . are from (3.1)

iJ i , j l  1) 1 , J — l

and de fine C(0) , c( 1)  as in Section 2. In addition , given indices

1 < j < . . .  < j  < n and 1 < k < . . .  <~~~~ < n let M denote
= 1 s = = I n—s =

the number of indices in the set {j ~, ~~~~~, 
k 1, . . ., k } which are

less than or equal to 
~~
.. The next two results are re formulations of

Theorems 2 and 3 in [10] and follow from the proofs therein.

Proposition 3. i. A necessary condition for the differential operator

(L , ~) to have a Green ’s function Is that there exist an integer s,

0 < s < n , and indices 1 < J < • . .  < j < n , 1 < k < • . .  < k <
= — = I s =  = I n—s =

such that

(0) 1, . .

( 3 . 4 )  C 
(~ 1,. . .

‘ 
j~ , Zn + I - k , . .. , Zn + 1 - k1) 

~

and M > ~~~, ~ = 1 , . . . , n. Furthermore, these conditions are also

sufficient provided that C~°~ is sc~.

The main result in [10 1 necessary for this work is the following

theorem.

4

-10- 1
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Theorem 3.1.  11 the Green ’ s funcflQfl G(x , s) fo r ( L , .’3) exists and

~~~ j~ SC , ~jj~11 G(x , s) Is SC 2~ .Lc~ I 1, 2 Further-

more G[ 2 I - p J ~~ ’~~ 
� 0 iff  the following holds: There exists at

least  one set of indices 1 < j < ..  < j < n , 1 < k < . . .  < k < n— —  = 1 s =  = I n—s =
such th at

) l , . . .
+ 1 — k 1

~12~
(a) if min{s , n - s } > 2 1 — p, then

M + ( 2 1 — p ) > ~~ 1=  2 I — p + l , . . . , n

while

(b) min{s , n - s} < 21 - p, then

x < s  < x  , ~~= l , . . .  2 1 - p
~j . S  ~.L l~L + f l 5

wherever these inequalities are meaningful.

Remark 3.J . Kalafaty in E s ]  obtains results bearing on Theorem 3.1. It is

essentially shown in [ ~1 that if ~~~ Is SC then G(x , s) is SC~ 1 ,

1 1, 2 , . . . ;  however , the precise conditions determining when

G (x , s) � 0 are not treated.[2 1-pJ  —

The next result Is a consequence of Pro position 3.1 and Theorem 3.1.

PropositIon 3. 2. Assume (L , ,~) has a Green ’s function G(x , s), C~~

Is SC , and
— n —

( 3 . 5) c~~( . ” . . . + ~ 
- kn s ~ 

.

•

, Zn ~ 0

for some 1< s< n - I , and some cho~c~ (i , )1, {k 1}
1 as above. Then

� 0.

— 1 1 —

- — ~_TU, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Proo f. Since the Green ’s function exists , ( 3 . 4 )  is val id for some
4

0 < s < n and M ‘ ~ for ~ = 1, . . . , n , by Proposition 3.1. if

s � 0 or n , then the result follows from Theorem 3.1 , (a ) and (b) .

Assume this  is not the case. Thus ( 3 . 4 )  is valid only for s = 0 or

s n. Assume its validity for s = 0. Since (3.  5) mu. t hold for

some 1 < s < n - I , it is easily shown that (3.  5) is mainta ined for

s = 1. Appealing again to Theorem 3.1 , the result follows .

B~mark 3. .~~ Assume that the Green ’s function G(x , s) exists and

is S C .  By Theorem 3.1 , r
21 G

1 21-p 1
(x , .~ ) > 0 where

ff 21-n = ± ~ independent of x and S.  In fact , from [10 , Remark 3] ,

we see that o- 21..~ is also independent of 1. Explicitly,

° 2 1-p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

where i f ( C~~~) is the constant sign of the n )( n minors of C~~~.

If c(0) 
is SCM , then this further reduces to if

21 
= + 1. If both

and are SC , then

° 2L-p = (_ 1 ) nP~T ~~~~~~~~~~~~

S

-12-



§ 4. Existence ot E igenva lu es

Consider the eigenvalue problem

L u = X u ,  0 < x < l
(4 .1 )  

W
1

L
where w 1(x) ~ 0 and continuous on [0 , 1], and ~ is specified

as in (3 .1) .  Assume (L ,~&) has a Green ’s function G(x , s). Then (4.1)

is equivalent to the eigenvalue pro blem

I
(4.  2) u(x) = X - f  G(x , s)u(s)w~~ 1( s)ds

0

The boundary conditions ~& whose matrix is denoted by C = h A , B h i ,

as in Section 3, may be equivalent to a set of initial conditions. In

this case the Green ’s function always exists , is a Volterra kernel , and

hence has no eigenvalues. This situation is exceptional for boundary

co~;dit ions satisfying Postulate J: If the Green ’s function for (L , .&)

exists and the boundary conditions sati sfy Postulate J for p = 0 or 1,

then G(x , s) has an Infinite number of elgenvalues provided ~ is not

equivalen t to a set of initial conditions. Thus we shall exclude below

the case when i~ is equivalent to a set of initi al conditions . The

following easily proven result is pertinent.

Proj, osltion 4. 1. A set of boundary conditions /~ wi~th matrix C = h A , B 11
of rank n Is equivalent to a set of initial conditions 1ff A 0 ~~ B = 0 .

Thi s result  should be considered with Pro position 3. 2.

-13-
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The main result of this section follows .
‘4

Theorem 4 .1 .  As sume that the boundary conditions ,~~ ~~~isfy  Postulate I
f~~ some p, 

~~~~~ not equivalent to a set of initial conditions, and that

(L , &) has a Green ’s function G(x , s). Then the eu~enyalue problem (4.1) ,

~q~ ivalently (4. 2) , has an infinite number of eigenvalues ‘O’~’I~~ Z 
Furtherm ore. if Ix~ I < k1 I < lx~ I < ..., where each eigenvalue is

listed according to its multiplicity as a root of the Fredholm determinant of the

kernel G(x , s), then the following holds.

I . If C~°~ j~ SC , ~~~
( 1) 0 < k 0 I < IX I I < Ix~ I < 1x 3 I < .. . < 1X 21 I < IX ZI+ l  I <

(2) 
~~~~~~~ 

> 0 , 1 z 0, 1, 2, . . .

(3) ~~~~ is not real 1ff X 21~ 1 = K 21
.

II. If C~~ is SC , iJ2~n
( 1) 0 < < 1X 1 I < 1x 2 I < . . . < Ix 2, ~I < b x 2, I < ... where

= sgn G(x , s )w~~ 1(s)

(2) X
21X 2 1 1 > 0, 1 = 1, 2 , . . .

(3) ~~~~ is not real iii X 2 , l  = K u .

Proof. Assume ~~~~ is SC~ and W~~ 1 > 0. Thus o 21_~ G[ 21-p)~ -~’~~~
> 0

for all (~~ i) ‘Zl p ~ ‘Z I — p ’ ~ = [0 , 1) , for some 
~ 2 1—p =

independent of x and s. Since z~ is not equivalent to a set of initial

conditicis, the hypothesis of Proposition 3. 2 is easily seen to hold

and so o~21 G
1 21 1

(x ,& > 0 .  

~~~~~~~- .  ~~~~~ -:



— 5--

Jentzsch ’s theorem (Theorem A) implies that if
21 

G[ 2 f - p J ~— ’~~
ha s a positive simple eigenvalue , strictly smaller in modulus than all

other elgenvalues of ~ ) f _ ~ G[ 2 1-p j~~ ’~~~ 
Schir ’s theorem ( Theorem B)

the n implies that G(x , s) has at least 21 - p eigenvalues , I 1, 2 

Thus G(x , s) has infinitely many elgenvalues and again by Theorems A and B

0 < 
~2I p~ O < Ix ~x~ ... X 21~~~ 2X

21~~~I

for I = 1, 2 Thus , bx 21.~ ...1 1 ~ lx 21_~ i and )
~2 I _ p >~2 I _ p +l > 0

where we have used the fact that ~ a- = 1 (see Remark 3. 2 ).21—p 2 1—p + 2

Note that for p = 0, if
21 

= + 1 and thus X~ X 1 > 0. For p = 1, a-
1X 0 > 0.

Thus both ( 1) and (2)  of Cases I and II obtain. The fact that complex

elge nvalues occur in conjugate pairs follows from the fact that the

Fredholm determinani of G(x , s),

= ~ + 
(~~~) r 

G[ J (x ?~~ d~~~~~
r = l

is an entire function with real coefficients. The proof is complete . (When

W

+i <. 0 replace X by -X and apply the results jus t  proven.)

The following examples illustrate the breadth of applicability of

Theorem 4.1.

Examples.

(a) Periodic Boundary Conditions. For the periodic boundary conditions

_ _  

-15-
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D1u(0) = D~u( 1), j = 0 , 1 , . . . , n - 1

(—1)

( 1 ) n +P+2 (-1)

(— 1) i ( —1 ) nx2n

It is easily verified that C~’~ is SC and of full rank while C~°~ is

not . Periodic boundary conditions are not equivalent to initial conditions ,

and as shown in [9 )  and [10], (L , ,&) has a Green ’s function iff

n
TI (w (1) - w (O) ) � 0. With this assumption , Theorem 4.1, Case II
i = l  1

i s applicable .

(b) Antiperiodic Boundary Conditions. For the antiperiodic boundary

conditions

D~u(0) = -D~u(l) , j = 0 , 1, . . . , n - I

is SCn and of rank n while CW is not. Furthermore , it i s

easily shown that the assumptions of Theorem 4.1 hold (see [9 1,  [ 10] )

so that Case u s  applicable .

(c) Separated Boundary Conditions. Let C = ( I A , B II specify separated

boundary conditions. Then C~~ has the form

~ 
a~~(-1)~~~~~ i = 1, . . ., r; = I, . . . , ~~

b~ 2n+l-j  I = r + l~ . . .~~ n; J = n + 1, .. .~~ Zn

0 otherwise

-16-
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A simple linear dependence argumert implies that the only possible
I )nonzero subdeterminants of C’~ are

1, . . , n
~~~ =

~1’ ~r ’ Zn + 1 — k , . . . , 2n + I — k1

( 1 ) r( P +n ) ( 1 ) (n~ r)( n~ r_ 1)/2 
(

1~ . . . ,r ) B ( k  

+ 1, . . . , n

1’ ‘ n—r

where I < j < ... < j < n , 1 < k < . . .  < k < n , and

A = fI a j ,(_ 1)
~ II r~~, B = It b . .  ‘t (n r)~~~ 

Clearly C~~ is SC for both

p = 0 and p 1 and of full rank iff A is SCr of full rank and B

is SCn_ r  of full rank.  Furthermore , the separated boundary conditions

are not equivalent to initial conditions 1ff 0 < r < n.

Separated boundar y conditions satisfying these stipulations occur frequently

in mechanical oscillation problems and Sturm-Uouvllle problems (see

[ 3 ] ,  [ 7 ] . )  Assuming that A is SCr and B is SCn_ r  it follows

from Proposition 3.1 that (L ,~&) has a Green ’s function iff there exist

indices 1 < j < . . < j < n and 1 < k < . . . < k < n such that
= I r =  = I n—r =

I , . . . , r r + I , . . . ,n
A �0 , B k kl’ ” ’ n—r

and M ~.L, ~ = 1, . . . , n. If these conditions are met both Cases I
IsL-

and II of Theorem 4.1 apply. Thus ,

where a 1 = sgn G(x , s)W n+i
( S )
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(d) Consider the eigenvalue problem

( x d -2x d
i -e ( e ( e  ))u = X u

(4 3) dx dx

u(0) = u( l),  u ’( O) = u ’(l)

The differential equation simplifies to -u ” + u = Xu while

( 1 ) P41 0 0 — l
C~~~~=

(_j ) P (_ 1) P -l/e 1

C~°~ Is not SC2 but C(1) is. Furthermore the Green ’s function exists .

The eigenvalues for (4.  3) are

1, 1 + 4w 2 1 -f 4w 2 , . . . , 1 + 41T
2

n
2

, I + 4Tr
2
n

2

Thus equality can hold in X 2 1 1  < X 21 for each I in Theorem 4.1 ,

Case II. Replacin g the periodic boundary conditions by antiperiodic

ones provide s a similar example for Case I.

(e) Consider the eigenvalue problem

X u
( 4 . 4 )

1~ —u ’(0) + u( l) = 0 , u ’(O) + u ’(l) 0

Here

0 (_ 1) P4 ’ 0 i
C~~~~=

0 ( ....1) P 1 0

C~°~ Is SC2 while C~
1
~ is not. The characteristic equation determining

the eigenvalues of (4.  4) is

(4. 5) 1 + cos - ~Ix sin ~Ix = 0

-18—

- 

S -



Hence

~f X 
-

COS 
2 

cos 5 - ‘A sin = 0

cos(\\ /2) = 0 or ~Jx tan( \ \/Z)  = 1

The first  equation yields eigenvalues

v n = (Zn + 1) 2w 2 , n = 0 , 1, 2 

with eigenfunctions ,

(4.  6) v (x) = — ( Z n  + l)ir cos(2n + 1)ir x + sin(2n + l)n~

The second equation , “Jx tan( ”IX/2) = 1, has on ly real zeros becau se

it is the characteristic equation for the self ad j oint eigenvalue problem on [0 , ~ )

I

+ ~~
) = 0 .

The zeros 
~~ ~~~~~ 

. .. of Jx tan( \IX/Z) = 1 satisfy

Znw < ‘~4~ < (2n + l)ir , n = 0 , 1, 2 , . .

0 < ~ ,J~~~- 2nn -. 0 as n ?  ~ ,

and corresponding elgenfuncttons are

( 4 . 7 )  u (x) = ~ cosP1I~~x + sin ’Jr x

The totality of eigenvalues of (4.  4) is

0 < < V
0 

< 
~ 

< ‘
~
‘
l 

< < 
~n < V <

which shows that equality need never hold for Theorem 4. 1, Case I , even

when only C~°~ Is S C .

—19—
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Under the hypotheses of Theorem 1. 1 stronger results are obtained

when both C~
’
~ and C11

~ are SC , as is clear from Example (c)

(separate d bound ary conditions).  We now prove the rather surprising

result  tha t if both C~°~ and C~~~ are SCn of rank n , the n the

boundary conditions are , in fact , equivalent to separated boundary

conditions.

Proposition 4 . 2 .  If the matrix C ~~~~ rank n and both C(0) 
~~~

C~’~ are SC , then the boundary conditions 19 are equivalent to

separated boundary conditions.

Remark 4 . 1 .  By the term “equivalent to separated boundary conditions ”

we mean that the boundary conditions may be rewritten as separated

boundary conditions. For example , the boundary conditions u(0) = 0 ,

u(0) + u(l )  = 0 can be rewritten as u(O ) = 0 , u( l) = 0.

We prove Proposition 4.2 via two lemmas.

Lemmas 4.1.  If the conditions of Proposition 4 . 2  hold, then there is

exactly one s , 0 < s < n , such that

1 , . . .
(4 .8 )  C . k k

n—s

for some choices of indices {j
1

)~~~ 1 
and (k 1)~~~ satisfying

1 < ~~ < . - < j  < n < k  <~~~~~< k  < Zn .
1 5 = I n—s =

Proof. Since C has rank n there exists at least one s, 0 < s < n ,

and corresponding Indices for which (4.8) holds.

-20-
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Assume there exists an s’ -
‘ s and indices 

~~~~~~~~~~~ 

(k ~ ) ’~~~

ordered as above such th at

I , . . . , n
( 4 . 9 )  C , • ‘  k ’ k ’ � 0

I i~ . . ‘i s ’, 1, ‘ n—s ’

Let C1 denote the Ith column vector of the matrix C, I = 1 , .. . , Zn.

Then ( .8)  and (4. 9) imply

{C~, )
5 ’ 

~ span {C . , • . . , C . , Ck , .. ., Ck ~m m = l  1 s 1 n—s

Since s ’ > s, and (C ., j
S is a li nearly independent set , there
m = l

exists an m 0 
E ~l , ... , s ’} such that

C., / span{C . , . . . , C . )
1 s

and , hence , the matrix with column vectors

(C , , c., , {C k }
fl_ S p

i= l  ~m 0 i i = l , i�10

must be nonsingular for some i0 E {l , . . . , n - s }. Ordering and renumbering,

it follows that there exist indices

l < j 1 < ’ • ~ < J  ~1 < n < k 1 <~~.. < k n_s _~~ 
Zn

‘S

such that

I , • . .
(4.10) C~~ � 0 .

1’ ‘ n — s — i

Then for 1~ = 3ri + 1 — kn_s+i ~ 
I 1, . . . , n — s, and = 3n + 1 -

i = l , . . . , n - s - 1 , we have
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(1) 1, . . . , n 
~ 

(0) 1, . . . , fl

C 
‘i s , ‘i, . . , ‘n - s)  

= (- I )  C 
. ,~~~~~~ , I I , .  . ‘n_ s)

1, . . . , fl I , . . .

‘~ s+l’ 11, 1n-s-l 11, ‘3 s+l’ ~l,

with all determinants nonzero by (4. 8) and (4.10).  Thi s shows that

and C~~ cannot both be SCn and proves the lemma.

Lemma 4. 2. If (4. 8) holds for expctl y one s, 0 < S < n , then the

boundary con ditions 8 determined by C = (IA , B h I  are equivalent to

separated boundary conditions.

Proof. Let { j } ~~ 1 and (k 1)~~~ be ordered indices such that (4 .8)  holds.

Since the interchange of rows and the addition of linear combinations of one row

to another in C in no way a ffects the boundary conditions 19, we may assume

that the matrix which gives rise to the determinant in (4 .8 )  is the Identity,

I .e . , C~ = e~ (i = I , . . . , s) and Ck = e
÷~ (i = 1, . . .  , n — s) where

e
~ is the standard ill coordinate basis vector in n-space. Let

j / {j1, . . . ,j ) , 1 < j < n .  Then

C) = a~ C~ + 
~~~~~~~ ~~~ k1 

‘

and if � 0 for some I , the uniqueness of s is contradicted .

Thus , p~ = 0, 1 = I, . . .  , n — s, 0

0 
C

1 
= 

1=1 
a~C . = a1e1 ,

-22- 
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and hence c,, = 0 for I s + 1, . . ., n. SimilarI y~ if k v {k1, . . k n s  
}~

n + 1 < k < Zn , the first  s components of Ck are zero . Hence the

boundary conditions 19 are equivalent to boundary conditions specified

by a matri x of the form j~~
l 

I B~ 
~ with A1 s x n of rank s and B1

(n - s) x n of rank n - s , i .e . , 19 is equivalent to separated boundary

conditions.

Remark 4 . 2 .  Assume C = h A , B hI  is such th at C~~ is SC . Let

= ILA, B hi  and C = h A , - B i l .  Then and ~ (q)  
are 

n

SCn
where p � q, p , q  {0 , l ) .  Furthermore , if C = ih I , B hI , the n ~~~

is SCn i ff  (— 1)~ B is tota lly positive, i. e. , SCk fo r all k = 1, . . . , n

with = I , K = I , . . . , n. If C = h A , i l l , set A = hI~ 1 ~
= a .( -l) ’~~. Then ~~~ is SC ~ff ( 1)~ A is totally positive.

-23—
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S . Osci l l a t ion  Propert ies of E t g e n fu n c t i o n s

Throu ghout this section , we sh all assu m e the hypoth eses of

Theorem - 4.1  hold for the eigenvalue problem ( 4 . 1 ) .  Let

X 0, ~~~~~~~

be th e eigenvalues of (4 .1)  enumerated as in Theorem -1.1 , and

(s . l )  u0, u 1, u 2, . . .

be a corresponding sequence of independent eigenfunctions and/o r

generalized elgenfunctions.  Suppose X 1 is a simple eigenvalue and

U
1 

a corresponding eigenfunction . If X 1 is real , choose u 1 real.

If X 1 is nonreal , then is also a simple eigenvalue , and u1 is

chosen for its eigenfunction . If is not simple , it must  be real with

mul t ip l ic i t y  two , say = X
1~ ,1 . Eithe r u 1 an d u 1~ 1 are both

elgenfunctions ( chosen real ) for X~ = X
141 

or , if a generalized eigen-

fu nction occurs , u 1 and u ,÷ 1 may be chosen real satisfying

[ \ f  G(x , s)u 1( s )w  ~1( s)d s  = u 1(x)

(~~.2 )

X 1 G(x , s)u 1÷ 1(s) Wn+i (5)ds = u 1(x) + u 1~ 1(x)

(see [15 , p. 597 eqn. ( 1 . 9 ) ] ) .  Throughout thi s section the sequence

( 5 .1 )  is assumed to satisfy the preceding conditions .

Theorem 5.1. Let the hypotheses of Theorem 4. 1 hold. Then there is a

(comp lex) constant a-
~~ 

such tha t

-24-
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(I

“ u 1 ~ ‘~ ‘ u 2~ j ) . 0

~n ~~~~~~~~ 
~o 

= (0 , 1) .  K.~ -thermore. if is nonreal. i~t
v Re(u ) and v - = I m( u  0 ) while if \ is r e i 1 ,Zj -p ~j - p  — 2 j — p + l  ~j - p  — k
let V k = u . Then

(v 0, v1, . . . , v2 1 1 }

is a T-system on (0 , 1) sa t isfying the boundary conditions 8.

Pioof. By Schur ’s Theore m , the eig envalue of G 121 1
(x ,~~) of

min imum modulus is X~ X 1 x 2 1 1 ~ 
By Jentzsch ’ s Theorem this

eigenvalue is real , s imple , of sig n ° 2/ ,,” p ’ and ha s a real eigenfunct ion

whic h doe s not vanish on J ° . Since
21-p

x x ~~~~~x G ( u ’ ~~~~~ ” u0 1 2 1 — p — I  [ 2 I — p J ’  0 Z V — p — l  0 2 1 — p — I

where G
[21 1 

denotes the integral operator wi th  kernel G
1 2 1-p

and U
0 ~~ • ~ u 2 1 1  ~ 0 because u0, . . . , U

2 1 1  
are li nearly

independent , it follows that

(5 .  3) ~21 (u 0 u 1 ~ u 2 1 1 ) > 0

‘21-p for some constant °‘2I-p~ 
A short calculation u sing (5.  3)

yields

“~ v1 ~~~ ~~~~~~ ~~ v 2 1 1 ) > 0

where a’21.,.~ = (_ 21) r ; and r is the number of pairs of complex

conjugate eigenvalues in {x 0, .. . ‘‘2 , l ~~ 
Consequently

(v 0, v1, . . . , v21 l~ 
is a T-system and the theorem is proven.
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The real sequen ce v 0 , v 1, v 2 , . . .  (see Theorem 5.1) of real and

imaginary parts of the eige nfunct ions u0, u 1, u 2, . . .  belonging to

the Green ’s function G(x , s) exhibi t s  oscillation properties analogous

to those of the classical Sturm -Liouvi lle eigenvaiue problem. These

properties ema nate from the fact that  (v .)
21

0~~~
1 is a T-system on (0 , 1)

for 1 = 1 , Z , . . . , and from certain orthogonality properties of v0, v1,

Let G ( x , s) = G(s , x) be the Green ’ s function for the adj oint

problem to (4 .1) .  Then G*(x , s) has precisely the same eigenvalues

(to mult ipl ici ty)  as G(x , s), and the generalized eigenfunctions of

G ( x , s), say {u ’ )~~ , which we choose according to the same conven-

tions set forth at the beginning of this section for {u 1 )~
‘ , must satisfy

( 5 . 4 )  

* 

f u ,(s)u (s) W 1(s)ds = 0 If x 1 �x

Let {v . 
~~ 

be obtained fro m {u . just  as {v . 
~~ 

was obtained

fro m {u , )~ . Since G (x , s) clearly has the same sign consistency

properties as G(x , s), the argument of Theorem 5.1 establishes that

{v~ , v~
’ v , 1 ), 1 1, 2 , . . . , is a T—system on (0 , 1) sati s fying

the boundary conditions adj oint to 8. Also ( 5 . 4 )  and the fact that

nonreal elgenvalues occur In conj ugate pairs yields the orthogonailty

relation:

If ix I � lx I , thenI m

(5. 5) 5 v,(s)v *( s ) w 1(s)ds = 0
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where v1(s) [ resp. , v *(s) J  is the real or the Imaginary part of an

0 
eigenfunction of G(x , s) [resp . , G*(x , s)J belonging to

[ resp. , x J .

Theorem 5.2.  Assume that the hypotheses of Theorem 4.1 hold. Then

the following obtain.

Case I . If ~~ SC , ~~~~

(a) for each 0 < k < 21 - 1 the zeros of

2 1— 1
v = a , v , (~ a2 

> 0, a. £~~i)j = k  ‘~~~~~

sa t isfy

• 2[~~ j < N(v) < Z (v )  < 2 1 - 1 ;

çQflseguen~ y, V
2 1 2  ~~~~~ v2 1 1  have either 21 - 2 or 21 - 1 nodes

~~~ (0 , 1) ~pd no other zeros, and

(b) the nodes of v 2 1 2  and v2 1 1  strictly interlace.

Case II. j~ C~~ j.~, SC , ~~~
(a) for each 0 < k < 21 the zeros of

21 2v = ~ a
1
v

1 
(E a

1 
> 0, a .

j=k

satisfy

2[
k _ 1

] + 1~~ N(v) < Z(v) < 21

consequentl y v 21_ 1 and v21 have either 21 - 1 ~~ 21 nodes in (0 , 1)

and no other zeros. Also V
0 

has no zeros in (0 , 1), ~~~

I
-27—

~ Is ’~~.’ 4  ~~~~~ — - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



(b) the node s of v 2 1 1  and v 2, strictly interlace.

Remark 5 .1 .  In case G(x , s) has real spectrum , in part icular  if the

eigenvalue problem is sel f-adj oint , v , = u . for j = 0 , 1, 2 , . .  . and

Theorem S . 2 describes the oscillation properties of the eigenfunctions of

G(x , s) .  See also Theorem 5. 3 below .

Proof. We shall prove only Case I. The proof of Case II follows in an

entirely analogous manner. Recall that N and Z count zero s in (0 , 1).

The inequality Z(v) < 21 - I holds because {v0, v1,. . . , v 2 1 1 }

is a T-system ( Theorem 5. 1)  on (0 , 1). The inequality for N(v) follows

21—i
fro m the orthogonality relation (5. 5): Suppose that v = a . v .

j = k
2(~ a . > 0 , a . real) has nodes

r z N ( v ) .

*1. If r Is odd , r = 2m - 1 say, form a nontrivial v -polynomial

2m—1 
*v (x) ~~, b , v , (x)

j = 0

which has nodal zero s (sign changes) at 
~~~~

, . . • ‘~~Z m l ~ 
Since {v~ , . . •~~

v m_ j } is

a T-system , v has no other zeros in (0 , 1). By construction

1 
*

f  v(s)v (s)w 41
(s ) ds � 0

0

However , if k > r = Zm — 1 , then since 1X 2 ~I < IX Zm I ( Theorem 4 .1)

the orthogonality conditions (5. s) imply that the above integral is zero ,

a contradiction . Thus , k < r = N(v).
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p.-

*2 . Ii r is even, r = Zm say, for m the v - polynomial

2m+ l -*(n) \ (n)  *v (x) = - b , v . ( x)
j = 0

which has noual zero s at 
~~ ~~ ‘~~~m (0 < ~(n)  

< 

~~ and satisfies

Z m +l

~ j b~’~’~ j ~ 
~,*( n) has no additional zeros in (0 , 1) by the

j = 0

Tchebycheff property of {v~
’, . . . , v 41 ) . ~~~~~~ ~ o as ii t ~~~~~.

A simple compactness argument  implies the existence of a v -polynomial

2 m + l  2m+l
v (x) = ~ b . v ’

~
’(x) ,  ~, lb . = 1

j = 0  ‘~ 1=o

which has nodal zero s at 
~l ’ • • • ’ ~2 • Since any s ign change of v~ In (0 , 1)

i s the l imi t  of zero s of the v ‘s as n -. ~ through an appropriate subse-

que nce , and Z(v *) ~ 2m , it follows that v * has only the zeros 
~

, in

(0 , 1). As above , a contradiction follows if 2m -
~ I = r + 1 < k.  Thus ,

k - 1 ~~ N(v) .

Thus if N(v) is odd , N(v )  > k , wh ile i t N(v)  is even ,

N(v)  ‘> k - 1. This is equivalent to N(v) > 2[ k / 2 J .  The remaining

part of Case 1(a) follows from the first part and the fact that Z(v) - N(v)

is always a nonnegative even Integer.

The proof of Case 1(b) is set forth as a sequence of lemmas.  The argu—

ments follow those used by Gantmacher and Krein in [ 3 , pp. 215-217 J with suitable

modifications required by our weaker hypotheses. As an immediate

consequence of Case 1(a), we have , s ince Z (v) - N(v)  is always even ,
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‘54
Lemma 5. 1. The zeros of the v-po lynomi~ j

2 2
V = av 21 2 

by
2 1 1  ( a + b 0)

sat is fy

21 - 2 <  N(v) < Z(v) < 2 1 - 1 .

Hence, v has only nodal zeros in (0 , 1).

In wh at follows , let ~ denote either v 2 1 2  
or v 2 1 1  whil e

denotes v
2 1 1  

or

Lemma 5 .2 .  j~~ 0 < . . .  < 1, r = N(~ ), be the nodes of 0

in (0 , 1). Then the function

h =

is strictl y monotone on I i = ( Eq, 
~j +l~’ i = 0, 1, . . . , r; = 0 , 

~r+l =

Proof. From Lemma 5.1 , h cannot be constant on any interval of

positive length. Thus , if h is not strictly monotone on I~, h has a

relative extremum at some point x~ of I~. However, this would imply

that the v-polynomial 4 (x) - h(x )Ø(x) has a nonnodal zero at x .,

contradicting Lemma 5.1. Thus h is strictly monotone .

Lemma 5. 3. h(x) has a zero in each I~, I = 1, . . . ,r - 1.

Propf. Since h(x) is monotone in each I~, i = 0 , 1, . . , r , the limits

lim h(x) = 1~ and 1im~ h(x)
x-.

~ i

both exist as extended real numbers for I = 1, .. . , r. We shall show

that none of the 
~~~~~~ 

and {I~~)~~~ is finite .

- 30-
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Neithe r I . nor 1~ is finite when ~~~, is not a zero of ~~~ .

1 1 1

We are concerned with one of the following four cases which may occur

only if  is a zero of 4.

( i )  Exactl y one of I • and 1~ is finite .

(i i)  Both I~ and 1~ are finite and unequal .

( i i i )  1. 1~ ( finite ) and h is monotone near 
~~~~~

.

(iv) 1~ = I~ ( finite) and h is monotone in opposite senses for

x < and x >  but near

We show that (i) - (iv) are Incompatible with Lemma 5. 1. If ( i )  or (ii)

holds choose c in the open interval determined by 1~ and 1~~,

while if ( i i i)  holds set c = 1~ = 1~~. Then the v-polynomial v = 4 - CO

has a nonnodal zero at as is easily seen from the fact that

= ~j ( ~~~) = 0 and 0 changes sign at

To contradict (iv), assume h ’  c = 1~ = I~ in I~~ and I~.

Consider the polynomial v~ = 4 - (c - € )Ø, > 0. The polynomial

v - c~ has at least 21 - 2 nodes in (0 , 1) one of which is at

Since v~ = v + t.~~, for e > 0 sufficiently small , v~ must  maintain

at least 21 - 3 nodes in (0 , 1) bounded away from 
~~ 

However ,

by construction it is easily seen that for c > 0, sufficiently small , v

has two “new ” nodes (one less than and one greater than ~ ) as

well as the one at 
~~~~~

. Thus for e 0, sufficiently small, v has at

least 21 nodes, a contradiction .
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Lemma 5. 4. The nodes of v2 1 2  ~nd v
2 1 1  

strictly interlace in (0 , 1) .

Proof. If N(v , 1 1 ) � N(v 2~~ 2 ) then since J N ( v
2 1 2

) — N( v
21 j ) I  1,

the resul t  is an immediate consequence of Lemma 5. 3. Assume

N(v
2 1 2

) = N (v 2 1 1 ) and I ;-
~ 1. if v 2~~~2 and v2 1 1  

have a common

node ~,, then if i~ is an adjacent node of V
2 1 1  

(such a node exists

because I 1), v2 1 2  must have a node r~ between ~ and r~ by

Lemma 5. 3. But v 2 1 1  must  then have a node between t, and ~,

contradicting the defini t ion of r~. Thus the lemma holds for 1 > I .

Assume I = 1 so that N(v 0), N (v 1) < 1. If v0 an d v1 have a common

node ~~~, then h = v0/v1 has equal , infini te (see the proof of Lemma 5. 3)

left and r ight  limits at ~~~. Thus there exists a constant c such that

v0 
- cv

1 
has three nodes, a contradiction .

This completes the proof of Theorem 5. 2 .

Examples.

(a)  Consider the eigenvalue problem

-u ” =

u(0) + u(l) = 0

u ’(O) + u ’( l) = 0

These boundary conditions are antiperiodic and the problem has eigenvalues

= (Zn + 1) 2
71

2
, n = 0, 1 , 2 , . . . ,  each with mul tiplicity two and

corresponding eigenfunctions cos(Zn + 1)fl x and sin( Zn + l),irx. The 0

interlacing properties guaranteed by Theorem 5. 2 , Case I, are easily

veri fied in this case.
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(b) Consider the eigenvalue problem

I 

-u ” + u = X u

u(0 ) - u ( l ) = 0

L 

u’(O) - u’(1) = 0

Then (see example (d) of Section 4)

( _ j ) P~~ 0 0 — l

C~~~~~=
( j ) P (_ 1 ) P ~~ .1

Ze 2

and so CW is SC but is not . The eigenvalues of this
2 

2Z Ini  -~ I iproblem are X n 1 + 471 [~~~J , n = 0 , 1 , 2 The eigenvalue

1 has eigenfunction u0 ( x) = 1 and the double eigenva lue

X 2 ~‘2n-l’ n > 1 , has an eigenfunctlon and generalized e igen func t i on

given , respectively, by

u (x) = cos 271nx2n-l

u 2 (x) = (x + l)sin 271nx

The interlacing properties of Theorem 5. 2 , Case II , are easily confirmed.

Thi s exam ple also shows that generalized eigenfunctions can occur in

Theorem S . 2 .

(c) In the eigenvalue problem (4.  4) , C~~ is SC2 while is not.

The eigenfunctions given in ( 4 . 6 )  and ( 4 . 7 ) ,  when properl y ordered ,

must  have interlacing zeros as In Theorem 5. 2 , Case I. In this case ,

Theorem 5. 2 seems to be the easiest way to verify the interlacing of the nodes.
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For completeness , we include the following consequence of

Theorems 4 .1 , S .j  and S. k~ which pertains to the case of separated

un iary ~ondit ions ( Pro position 4.  2) , (see [ 6 1, [ 12 J ,  and [13 1).

Theorem 5. ,~~~ Assume that the hypotheses of Theorem 4.1 hold f~~i ~~~~

p = 0 and p = 1. Then the eigenva1ues~~~ G(x , s) are all real and

simple, and the eigen functipns {u 1 )~ satisfy:

~l) {u 0, u15 . . . , u 1) i s a  T-system on (0 , 1) satisfying the boundary

conditions ~ for each I = 0 , 1, 2 

( 2 )  ~~~~ 
0 < k < 1, the zeros of

I 2
u = ~ a~u~ (~ a . > 0, a . real)

j=k

satisly

k < N(u) < Z(u) < 1

(3) The eigenfuncti~~ u , has exactl y I nodes in (0 , 1) and no other

zeros there , and the nodes of u 1 and u 1~ 1 strictly interlace in

(0 , 1) .

- -  
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§ 6. Composite Differential  Operators

Many important differential  operators are naturally expressed as

compositions of lower order opera tors . The applicability of the results

of Sections 3- to such composite operators may be inferred by an

examination of its factors , as is shown in Theorem 6. ~~ . Theorem 6. 2

refines the results of Theorem 6. 1 in the important special case where

the differential term is seif-adjoint.

Let (L , &) be an nth order differential form of Polya type W

with bound ary conditions specified by the matrix C z 1k, B lI , as in the

previous sections. Moreover , we shall also assume that

n + m + l —j
c C [o , 1], j = 1, . . .  , n.

Likewi se, let (L + ,~~~) be an mth order differential form where

L~
’ = D~ 

. .  . D , (D~u)(x) = ~~ [u ( x )  ] , j = i , . . . , m
w~ (x)

and w~ (x) > 0 , X E  [0 , i J ,  ~~ E Cm + 1 _ J [ O  1 ) ,  with associated

boundary conditions determined by the matrix

C~~ = I lA ’
~, B~ D mX2 m

of rank in.

Let N = L+ L, and ,?L9 be the set of boundary conditions

~ 

a~~d~~u(0) + 

~~ 

b
1~
D~~

’u( 1 ) = 0 , 1 = 1 , . . .  , n

~ a Dn+ J_ l u( O) + ~~, b~ D~~~~’u(l) = 0 , i = fl + 1 , .. . , fl + m
j = l  ‘ j = l  ‘

_________________ ______________ 
t

~~~0~~ - ~~~~~~~~~~ 0~ - .O1.. . . 5 o o ..,Sm,.,-- ~.r ,_ ~~_~~~~~~~S _55.OOOO ~~ -



specified by the matri x

A 0 B 0

+ IS

0 A 0 B (n + m) X2 ( n +m)

where D + . D~ , j = 1, . . . , m , and = D . D
1

, j = 1, . . . , n + m .

Theorem 6. 1. Assume ~~~ and ~~~~~ satisfy Postulate J [or the

same p and that either i~ or is not equivalent to a set of Initial

conditions. j~ (N ,~&t9) has a Green ’s function, then the conclusion

of Theorems 4 . 1 , 5 . 1  and 5 .2  obtain for the eigenvalue problem

[
~~~~N u = ~~ u

u c ~~~8

where w(x )  is continuous and non- vanishing on [0 , 11.

(N ,~~~4~) has a Green ’s function H(x , s) 1ff both (L , &) ~~~ (L 4’, 1?)

have Green ’s functions ,  say G(x , s) and G4 (x , s), respectively, in

which case

1
(6 . 1) H(x , s) = f G(x , t)G~ (t , s)dt

0

Proof. The proof is a result of the application of the basic composition

form ula [7 , p. 17]. From (6.1) ,

H[2J J
(x ,~~) f G[ Zj pJ (

~
,,

~)Gt2 _ p J (L, ,
~)dt

21-p

Since G(x , s) and G ’
~(x , s) are ~~~~~~~ I = 1, 2 , . . ., so is H(x , s).

The fact that H[21~~~J
(~ ,~ ) � 0 follows in a similar fashion .

- 

-~~~~~~~~~~~~~~~ I



Remark 6.1.  It should be noted tha t  one can also prove directly that

under the above assumptions , ~~~ is SC and of rank n + m.n+m
f * + *An important case of Theorem 6.1 is when L = L and -‘~ =

the adj oint d i f ferent ia l  form and boundary conditions to L and t~ ,

respectively. Let C = H A , B II denote the boundary conditions associated

with (L , .&), and C~ = IIA ~, B~ II denote the adjoint boundary conditions

* *associated with (L , , & ) .  While the analysis  is rather lengthy, an

explicit form of C~ m ay be exhibited and , as is shown in [l7~ (see

also [19 ] ) ,  if ~~~~ ~ OSC
n 

and of rank n , then ~~~ is SCn and of

rank n. From Theorem 6.1 we obtain the following .

Theorem 6.2. Assume (L , 13) has a Green ’s function G(x , s), and

satisfies Postulate J. Then the self-adj oint differential operator

(L *L, ,~*8) has a Green ’s function Fl(x , s) which is SC
21 for

I = 1, 2 Thus the conclusions of Theorems 4.1 , 5 . 1  and 5. 2 apply

and since H(x , s) is symmetric and positive definite , the spectrum of

the associated eigenvalue problem is positive.

_ __ _ _ _  
A
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§ 7 .  Extensions

‘rhe spectr al results for the eigenvalue problem (3 .1)  developed

in Sections -4 and 5 can be cast in a more general setting as described

below . No proofs will be given because the reasoning used in Sections 4

a nd 5 can be applied with inessential changes.

• Let J (0 , 1) and K(x , s) be a real , continuous kernel on I x I

fo r which

£ 21~~ K
1 2 I -p ]~~ ’~~ ~ 0 for ~~~ ‘21-p

(7 .1 )
t~ ~~2I~~p

X
[ 2 1 — p  

~~~~~~~ 
> 0 for ~

where p 0 or 1, E 21_ p = +1 or -1 dependent only on 2 1 - p, and

1 = 1, 2 Consider the eigenvalue problem

( 7 . 2 )  0(x) = )~, f K( x , s) 0 (s)d i.i.(s)
J

for the kernel K(x , s) where d~ (s) w(s )ds and w Is a positive,

continuous weight function qn J .

Theorem 7 . 1 .  Assume (7.1)  holds [or p = 0 or I. Then the eigenvalue

problem (7.2)  has an infinite sequence of ejg envalues X 0, X
1

, X
2 

Moreover, if Jx ~ I < 1x 1 I < Ix
~ I 

< . .  . where each elgenvalue is listed

~ccordtng to its multip licity as a root of the Fredhoim determinant of K(x , s) ,

then the following holds.

I .  j~ 
p = O , !ti~n

(1) 0 < Ix
~ 

I < 1x 1 I < 1x 2 I < 1x 3 I <- . .  . < Ix~, I ~ 
Ix 21~1 I < . . .

-38-
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(2 )  
~~~ ,~~ ‘2,’2 , + l  > 0  for I 0 , 1, 2 , . . . where = +1

(3) ~~~~ X 21 Is nonreal iff  =

II. If p 1, then

( 1) 0 < 1x 2 1 < . . .  < 1x 21 ~
l < Ix ~ , I

(2) e 2 1 1 e 2 1 1 X 2 1 1 X
21 

> 0, 1 1 , 2 , . .

(3) ~~~~ ~~~ is nonreal iff  ‘~~I —l  = 
~~21~ 

-

Parts (2)  and (3) of Cases I and II yield the following interesting

result guaranteeing that the spectrum of the kernel K(x , s) is real .

Corollary 7 .1 .  If in Theorem 7.1 — I , c 21c 21~~2 < 0  fo r 1 = 0 , 1 , 2 , . . .

( i . e . , if successive compounds in (7 .1)  alternate in sign) then K(x , s)

has only real spectrum. Likewise if 
~21~ 1e 21+1 <0 1 = 1, 2,

• in Theorem 7.1 - II , then K(x , s) h~~~only real spectrum .

On the basis of Theorem 7.1 and the reasoning of Section 5, we

can establish the analogues of Theorems 5.1 and 5. 2 for the kernel

K(x , s) . Let {u 1) 0 be the set of eigenfunctions of K(x , s) corre spond-

ing to and chosen as in Section 5. Let {v .}~
’ be the real

sequence constructed from the real and imaginary parts of the eigenfunction

as in Theorem 5.1. Then

{v0, v1, . . . , v 2 1 1 }

is a T-system on (0 , 1) for I = 1, 2 , . .  . , and when p = 0 (resp. ,

p 1) the conclusions of Theore m 5. 2 - I (resp. , II) hold for the sequence

tv~)~~. 

t

_ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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