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ABSTRACT

This paper is intended to serve as a postscript to the
fundamental 1966 paper by Curry and Schoenberg on B-splines.
It is also intended to promote the point of view that B-splines
are truly basic splines: B-splines express the essentially lo-
cal, but not completely local, character of splines; certain
facts about splines take on their most striking form when put
into B-spline terms, and many theorems about splines are most
easily proved with the aid of B-splines; the computational de-
termination of a specific spline from some information about it
is usually facilitated when B-splines are used in its construc-
tion.

The paper was delivered at the Approximation Theory
Conference at the University of Texas at Austin, January 1976,
and will appear in the proceedings of that conference as edited
by G. G. Lorentz and L. L. Schumaker.
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SPLINES AS LINEAR COMBINATIONS OF B-SPLINES. A SURVEY
Carl de Boor

This paper is intended to serve as a postscript to the
fundamental 1966 paper by Curry and Schoenberg on B-splines.
It is also intended to promote the point of view that B-splines
are truly basic splines: B-splines express the essentially lo-
cal, but not completely local, character of splines; certain
facts about splines take on their most striking form when put
into B-spline terms, and many theorems about splines are most
easily proved with the aid of B-splines; the computational de-
termination of a specific spline from some information about
it is usually facilitated when E-splines are used in its con-
struction,

1. Introduction

The layout of the survey is as follows. After a short
discussion of cardinal B-splines, i.e,, of B-splines on a uni-
form knot sequence, in Section 2, B-splines for an arbitrary
knot sequence are introduced in Section 3 and shown to be a
basis for certain spaces of piecewise polynomial functions.
Various simple properties of B-splines are listed in Section &,
and the relationship between a spline and its coordinates with
respect to a B-spline basis is explored in Section 5. This
leads naturally into the discussion of local spline approxima-
tion schemes, in Section 6. Results concerning existence and
uniqueness of interpolating splines and the related total posi-
tivity and variation diminishing properties of B-splines are
presented in Section 7. Section 8 describes the connection
between splines and certain '"best'" interpolation schemes., Fi-
nally, Section 9 is devoted to generalized B-splines and ends

with a new definition of polynomial B-splines in many variables

due to I. J. Schoenberg.




No claim of completeness is made, and the author would be
grateful to hear of any omissions.

The following notation is used throughout the paper, usu-
ally without further explanation:

Z denotes the set of integers, R the set of real numbers,
and AB the set of functions on B into A. Thus, Rz is
the set of real bi-infinite sequences.

m(B) is the linear space of bounded real functions on B,

normed by ||f|lm'B 1= supxeBIf(x)l. For 1< p< =, mp(I) de-

notes the space of (equivalence classes of) functions f on
the interval 1 for which Hf”p = Hf”p g O (& ]flp)l/p &
’

Ck(I) is the space of k times continuously differentiable
functions on 1I. n;(l) is the subspace of those f ¢ Ck-l(I)
whose (k-1)st derivative is absolutely continuous and whose

kth derivative is in L (I). Mk(l) is the subspace of Ck-z(I)
whose elements have an gbsolutely continuous (k-2)nd derivative
and a (k-1)St derivative of bounded variation. Finally, 2 (Z)
= (@ e K [l 2= (o PP < ). 4

Pk denotes the linear space of all polynomials of order
k (or, degree < k) with real coefficients. For a strictly

increasing sequence { I= (gi), P denotes the linear space

k,t
of all piecewise polynomial (or, pp) functions of order k on
Explicitly,

In addi-

I := [inf ty» SUP gi] with breakpoint sequence

felP i€ £ e P , all
ks oty < el

gE.
i.

tion, f ¢ Pk £ is taken to have two values at gi, i.e., the
’

values f(g;) and f(g:). 1f the reader finds it necessary

to think of f as a single-valued function, he should choose
- +

some rule f(gi) ‘= af(gi) + (lqa)f(gi) (e.g., @ = 1/2) and

stick with it.

If y»= (vi) is a sequence of nonnegative integers




corresponding to £, then TP denotes the linear subspace

k3o
of Pk'i consisting of those f € Pk,g for which
jump gif(v) =0 for v< Vi all i.

The v-th derivative of f 1is also denoted by DVf as

wall 2% by 10

. [ro,...,zk]f stands for the k-th divided
difference of f at the points TgreeesT

(10]f = f(To).

K In particular,

const o d:notes a constant which may depend on the
PR

quantities Q,...,w.

2. Cardinal Splines

B-splines made their first appearance in Schoenberg's
1946 paper on the approximation of equidistant data by analytic
functions. There is no doubt that B-splines appear in earlier
literature. They play a prominent role already in Favard's
work [35], and Schoenberg has always maintained that they were
already known to Laplace (see([70, p. 68]). But it is in
Schoenberg's paper that they were thought important enough to
be given a name, "basic k-th order spline curve." gince this
is the same paper in which Schoenberg introduces splines, I
happily conclude that B-splines were there at the very begin-
ning.

Schoenberg introduces the B-spline, ne€ basic spline curve,
alias spline frequency function [29], alias fundamental spline

function [71], [30], via its FOu‘}er transform
o
sin u/2 iux

e - sin u/2
2.1) M (x) i= 2#'{,,( oot ) e du

and then observes that

2.2 M = k[-k/2, 1-K/2, ..., K/2](- - 0,

s e

i.e., Hk(x) is k times the k-th divided difference in y at

g




the k+1 points j-k/2, j =0,...,k, of the function

(y-x)‘:-1 := (max {O,y-x})k-l. These formulae show that M is
the k-th convolution power of the characteristic function of

the interval [-1/2,1/2],

1, for x € (-1/2,1/2)

M () =
2.3) 0, for x ¢ [-1/2,1/2]
Mk(x) - (Mi*Mj)(x) =f Mi(x-y)Mj(y)dy for 1+j = k.

Therefore,--and this is why Laplace must have known B-splines--
Mk is the density distribution of the error committed on the
sum of k independent real random variables if each variable
is replaced by its nearest integer value [70, p. 76].

It is easily seen from (2.2) or (2.3) that

Mk € Pk,2+k/2 n Ck-2 =: set of "spline curves of order K'
as Schoenberg calls them. The subject matter of the paper [70]
is the study of approximations of the form

Af := L f(n)L(- -n),

neZZ
and the B-splines come in because they offer a convenient way
of expressing, and thereby analyzing, the various pp '"basic"
functions L considered in the paper,

In the 60's, Schoenberg's results were rediscovered and
considerably extended by those engaged in studying the mathe-
matical aspects of the finite element method (see Aubin [1,2],
Baby®ka (3], Bramble and Hilbert [19], Fix and Strang [38]
and Strang and Fix [80], Di Guglielmo [33], and others)., When
restricted to the one-dimensional setting of Schoenberg's papeg
these people are seen to consider approximation processes of

the form

TSR




Af := L (M (- +n))L(- -n)
neZ
for some convenient basic function L, e.g., L = Mk’ and some
linear functional A € C*(R), and to study the convergence be-
havior of

A, =8

" L/bAS, with (S ) (0 := £(),

as h - 0. The results of this study are nicely summarized by
Link [57].

Schoenberg himself developed a particular aspect of his
'46 paper, viz. Cardinal spline interpolation, in considerable
detail in a sequence of seven papers which appeared in the late
60's and early 70's, These papers have become the basis for
his beautiful monograph [76] on cardinal spline interpolation.
Readers interested in the properties and use of B-splines on

uniform knot sequences are urged to consult that monograph.

3. B-splines Defined

It was apparently Schoenberg's colleague H., B. Curry who
observed that the formulation (2.2) of Mk as a k-th order
difference generalizes naturally to a k-~th order divided dif-
ference on arbitrary points,

k-1
(3.1 Mi,k(x) $= k[ti""’t1+k](' -x)+ ’
The resulting paper [30], though written in 1946 (see [29]), was

finally published in 1966. The function Mi K
to be a pp function of order k with break;oints ti""’ti+k’

is easily seen

and with smoothness across each breakpoint tj which depends
on its multiplicity, i.e., on the frequency with which the num-

ber t occurs in the sequence ti""’ti+k' Further, one

j
readily sees that

)

(3.2) M L4k

) >0 with equality if x ¢ (ti,t

i,k

’gy}a——'} Boies




=

< .
in case B % e < €k

Now let t := (t )Tw be nondecreasing, with

i

t ¢= inf ¢ t :=8up t
-0 o«

L 3

and let (Mi k)fm be the corresponding B-spline sequence. Then,
2
the prescription

(zfziui k)(x) $= ZfJiMi,k(x)’ i.e., pointwise,
b

makes sense for all x € IR and all O e Egz since, by (3.2),
at most k of the terms in the second sum are nonzero for any
given x.

In a later publication [73] (but see already Curry's re-
view (28] of [70]), Schoenberg gave these functions Mi,k the

name basic spline, or B-spline, for the following reason,

g, St and d, := card {j| tj =t

THEOREM 3.1 ([30]. If t := (‘1):, is nondecreasing, with

i i+k =— i i]’ all i, then the corre-

sponding sequence (Mi k)fw of B-splines is a basis for the
)

linear space & of all functions f on R which vanish
;-

off (t_,t) and which, on (t_,t ), satisfy

(r)
fl ePI , jump £'7=0 for r < k-d,,
(trti ) ket y
all i,
o Z . 2 s
in the s¢nse that the map R ~»ak,s. o LiaiMi,k is one-one
and onto. 3

This theorem motivates the definition
ak,g 1= [ziaiui’k loz1 € R, all i}
for arbitrary nondecreasing t, bi-infinite or not, with the

sum taken over all 1 for which (ti""’t1+k) is a segment

of t. In particular,

b -
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n+k i ) n
i £ (ti)1 , then ék,g = : laiMi,k | « e R

C

Further, we will call 4 ¢ the collection of (polynomial)
s

splines of order k with knot sequence t.

COROLLARY (Construction of a B-spline basis for P Let

%,S;Z)' i~
g = (gi)li+1 be strictly increasing, vV := (vi)l;+ be a cor-

responding sequence of integers in [0,k] with v, = vp+1 =0,
and let Pk £,V be the space of pp functions of order k on
12 2
[§1’§p41] with breakpoints 52,...,§p and continuous v-th
derivative at &, for v <v, all 1., If
n+k
t = (t) = (Bypeeesbys Bopeoesboyeney B 1peeesb 1),
= i'l 1 1 2 2 <P+l p+1
v1=k vy vp+1=k

L 5P (1 " ™
then n = k + Lz(k vi) and the sequence (Mi,k)l of B-splines

1) of order k for the knot sequence

(restricted to [51’§p+1

t 1is a basis for P .
7 k,E,V

For k even, k = 2m, it is customary to single out the

o

subspace 3 of so-called '"natural' splines in Pk 5 v This
1392
subspace consists of those f in P for which f
P k,g,! (gl.’gz)
and f‘ are both of degree < m (see Section 8 below

(gp’ ;p+1)
(8.8)). Greville [44) has described the following B-spline
like basis for S,

A

-~ ~ A
L WORW REETL. W0 Ll WO EEETLNRWE L SRR IR LAY L Speas

with the special functions ﬁi Kk defined as follows:
s

7 e
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Mo 0 i= k[ ](--x)t-l for i <k

i,k G122 Sk

(3.3)

A

k k-1
Mn-i,k(x) = (=) k[tn_i,...,tn](x-.)+ for 1 < k.

For a different generalization of Mk to a "B-spline"
with multiple knots (which are otherwise uniformly spaced), see
Schoenberg and Sharma [77] and Lecture 5 of Schoenberg's mono-
graph [76]. Certain technical assumptions made by them in

their construction have recently been removed by Lee [56].

4, Simple Properties of the B-spline

In this section, we list some simple properties of the B-

spline, some of which are enlarged upon in subsequent sections.

The definition of Mi K as 3 divided difference together with
)

Taylor's formula with integral remainder readily imply that,

for ty < K’

RV CHRRSR S LR & O £ (g) ds/x!,

k
all f e lq[ti,t 1.

i+k
In particular,

.2 [ M () ds = 1.

1,

This shows that, on [ti,t1+k

X
4.3) P := [ Mi’k(s)ds

-

is a spline of order k+1 with knots ¢t ,...,t and rises

34 i+k
strfctly monotonely from a value of 0 at t1 (and to left of

:1) to a value of 1 at (and to the right of ¢t

14k 14
This function is therefore useful in constructing piecewise
monotone spline interpolants as is done in Passow [66], but

without having to resort to multiple knots as he does. Ore




obtains his construction as a special case by letting half the
tj's equal £y and the other half =qual t, . . Use of @ also
produces a very quick proof that splines have property SAIN
with respect to interpolation at a given set of points and the
uniform norm (see Chui, Rozema, Smith, and Ward [24], who use
(4.3) in the form (4.11)). Because of its local and monotone
character, § has also been instrumental in DeVore's successful
investigation [32] of the order of approximation to smooth mono-
tone functions by monotone splines,

It seems more convenient in computations to use the nor-

malized B-spline
k-1
(4.4) Ni’k(x) = ([t 1oeeenty ] = [e,0it 0 (D%

= TN

since it insures (see (5.8) below) that

¥

4.5) 3 Ni,k=1 on [tk’tn-rl]'

0

1

Note that then

(1) &
8 By Mo B
o il T SR e o, ORI
flgL g bl i+k i+l i

1f one follows [8] and applies Leibniz' formula

“.n [ti,...,tj](fg) = i

r=1[t1””’t"]f [tr,...,:j]s

A

for the divided difference of a product to

¢-0) = ¢t

and notes that all divided differences of (: -x) of order > 1

"'“ e




—~ —p—

vanish, then one obtains the recurrence relation

i
(4.8) [ti""’t1+k]('-x)+ =

x - €, X
1 i+k j-1
_____[t ,t * sfeeen . L javsshs o JLen%)
i+k i i* i+k-1 ti+k ti i+l i+k +
which in turn implies that
k11, () ok & rekT* ()
W9 TR O % W g BB
i+k-1 i i+k i+l

For j = 0, this recurrence was found by the author [8] and by
L. Mansfield, and by Cox [27] who proved it by a different
argument and for distinct knots only, and gave a backward error
analysis in that case for the evaluation algorithm based on the
recurrence. The recurrence provides a scheme for the stable
evaluation of B-splines since, on the interval (ti’ti+k) of in-
1,k both weights in (4.9)

are positive. This observation also allows us to establish, by

terest, i.e., on the support of N

induction on k, that

(4.10) N, >0 on (t,,t

i,k 14k *

Similar recurrence relations for the integral of a B-spline
have been given by Gaffney [39], and for the integral of pro-
ducts of B-splines by Lyche, Schumaker, and the author [17].
In this connection, we note that

x 1+r

(4.11) f Mi k(s)ds = for x

A 1 kel ® o PP

.
B-splines are convenient for relating splines with multi-
ple knots to splines with simple knots and vice versa (e.g.,
[7), Rice [68], Burchard [23], also the paper by P. Smith in

these proceedings), since a B-spline is a countinuous function

of its knots, within reason, Specifically, writing

=519

it M




-

s leartie,

N = N

Eyseeosty o i,k

to stress the dependence of Ni,k on its knots ti”"’ti+k’
the map

(rj)g » N

Tor+ e T

is continuous as a map from {7 e Rk+1|10 S .0 ST

T } to C(R); it is also continuous as a map from

55 Tl

fr « B, i g <1} to L R) for every 1<p<w,
0= = kK = p R

K 0

The precise behavior of N near the boundary of its

i,k
support can be read off directly from its definition as a di-

vided difference. Since
k-1 k k-1 k-1
(yom) o 7= ) gy e (e L
and the k-th divided difference of a polynomial of order k
vanishes, one can write N also in the form

i,k

k k-1
4.12) Ni,k(x)=(°) ([ti+1"“’t1+k]'[ti""’thk-l])(x”)-» :

From this, one infers at once that, e.g., for x near t

1)
kr B g k-r+l
%.13) N L0 = (-t T 5 o({x-t,) )
) s ."t i 4
g j=1 "i+k-j i
if By ™ By < ti+r,hence '
o((x-t )N, = (x)) for j >i as x =t
4.1 N () = 11,k B
’ “
7 o((x t1+k)N1,k(x)) for ] < iias = —’t1+k'
S o N8 then N has a zero of order k-1 at

i 1+k’ i,k
t, by (4.1 and also a k-1 fold zero at tlk by symmetry. This

wmplies that

&
A%

[
.

)




t

14k
.15 0= 83

- “ g WL 1\ !
T I (Eg47®) Moy (9)ds/(r-1) 2,

£ w byosesdi § = Lyoooskel,

» i
showing that N;'\ 1is orthogonal to P, on e e, 00 3=1,
..., k=1, (This fact was pointed out to me in 1973 by H. G.
Burchard.)

5. The B-spline Series

In this section the relationship

(5.1) Z:ioziN1 ©Q

-

between a spline and the sequence of its B-spline coefficients
(with respect to the normalized B-splines) is discussed. Fur-
ther aspects of this relationship will be mentioned in subse-
quent sections., From here on, we suppress the subscript k
in Ni,k and Mi,k except when necessary. Also, we restrict
the knot sequence t to be bi-infinite in order to avoid
(mostly notational) complications. This is no essential re-
striction since any spline can always be extended to a spline
with a bi-infinite knot sequence merely by adding to its expan-
sion appropriate B-splines with zero coefficients.

A B-spline series may be differentiated by differencing

the coefficients. Precisely, repeated application of (4.6)

gives
& (G))
5.2a) (CaN, )T = DN, L
with
ai ’ j=0
.29 oP - ¢ G 6o
i 1‘1 ’ J >0
(ty . j-ti) / (k= 3)

The recurrence relation (4.9) (with j = 0) allows one to

=]2=




express a B-spline series as a series of lower order, but with

polynomial coefficients. Precisely,

v . rald!
(5.3a) Liaihi k(x) = 1 i (x)N g j(x)
with
ozi y =8
(3]
(5.3b) a7 (x) : (x_t)a[j ](xy+¢ b U 1
ds £ i+k i >0
t 4 J .
2 £+k-j i
[k-1]
In particular, a1 is a polynomial of degree < k which
+ -
agrees with ZfaiNi « °F [ti’ti+1]' Hence, (5.3) can be used
+ ‘%
to evaluate i iNi,k it x € [ti’t1+1] by repeated formation

a (see

of averages, starting with the k numbers ai-k+1""’ i

the first algorithm in (8]).

The quasi-interpolant of Fix and the author [16] provides
an ofttimes convenient means for computing the B-spline coeffi-
cients of a given spline. The quasi-interpolant makes use of

the linear functional %1 given by the rule

(5.6) Af t= A O a2 jw(k S L] el (M
Y1,k j<k
Here,
wi,k(x) = (b 0 (e 70 /(D)
and L is an arbitrary point in (ti,ti+k). Then, as one

verifies directly [16],

(5.5) Aiuj "8 o all j.
Since Ri has support at a point only, it follows that
A (ZaN) =«

333 i
The usefulness of this functional was demonstrated in [9].
For instance, it provides a quick proof of Theorem 3.1 and its

-13-




o

corollary. As another instance, it provides a quick proof of

the fact due to Curry and Schoenberg [30] that B-splines are

splines of minimal support: If f e dk . has its support in
)

(t ,t ) and s < k, then, for each i, one can choose T
r

r+s i

in )\(tr,tr+s), hence then Rif = 0.2l %, f1.8.,

(ty %5
£'e 0

» More generally, onme obtains

LEMMA 5.1. 1If ty < L all i, then supp(Z1 " 1) =
U supp Ni'
ailo

In order to compute the coefficients of specific splines,

we observe that, for f, ¥ € Pk’ a(t) := Kt Wf is constant as
b

a function of T, as is clear from the fact that Qa'(t) =
V(T)f(k)(r) - (=) w(k)(r)f(r) Hence, with T = y, we get that

k-1

k-1 k-1 .
Ri(y°-) A (y-*) = wi,k(y)(-) (k=1)! .

¥4,k
This shows that

5.0 -0 -t D Get L ON, 0,

which is Marsden's identity [61]. More generally,

M- Prent = OP NP ) 0,

8O

"

(_) (p 1)

6.0 0P/ eep ! 20T ON @,

and, in particular, with p = k,

(5.8 1-= Zi“i,k'

Of course, all these identities hold on (t-u,t‘) only. Ome
obtains similarly that




k-1
(5.9 (y-x)+ = Zi(y-ti+1)+"" (y't1+k-1)+Ni,k(x)’ for yet.

For the uniform knot sequence t=2Z and for k = 4, one can
find (5.6) and (5.9) already in Schoenberg [70].
Identities (5.6) and (5.9) illustrate a point to be made

repeatedly in this survey, viz how closely a spline function is
modelled by its B-spline coefficients. To elaborate on this
point a little, note that, with 3 = (ri); any subsequence of
t, (5.9) implies that

(x)

S e
(5.108) klty,..., 7 1(--0) -‘_ia;(i)Mi’k

where

(5.10b) aI(i) = (ty 4 "t,) [TO’”"Tk](’-ci+l)+"".('-ti'!‘k'l)*
>0

This supplies the formula

¢.11) [ro,...,rk] = Ziar(i) [ti""’t1+k]

for the k-th divided difference at some points in terms of the
k-th divided differences at the points of a refinement of those
points, with the coefficients nonnegative. The existence of
such a formula with nonnegative weights a? was already known

to Favard [35]). The formula is clearly a discrete analog of

(4.1), and aT deserves to be called a discrete B-spline with
knots T. Indeed, aT has been called just that by Schumaker

[79) in the special case when t is uniform, et ih,

all 1i. 1In that case, if f € dk ¢ has only the active knots
(3
1o,...,t1r and f = Zfaf(i)ni,k’ then af is a discrete

spline of order k with knots 10,...,1r in the sense of

Mangasarian and Schumaker [60]. This means that, for each j,

af(i) is a polynomial of order k in i on 1j°k<l<tj+l'
It should be said, though, that Mangasarian and Schumaker did

t

T




not view discrete splines in this light as B-spline coefficients
of continuous splines. They arrived at discrete splines as the
solution of certain discrete minimization problems,

The size of the i-th B-spline coefficient of a spline is
closely tied (at least for moderate k) to the size of that

spline '"nearby," i.e., on (ti’ti*k)’ as can be proved [9] with
the aid of the linear functional (5.4). Slightly more refined

arguments produce the following explicit result,.

THEOREM 5.1 [13). Let D, be the smallest number with the

property that for every t, every i, and every a < b with

<ac<t sSbSt

Y 1417 Siak-1 = 14k’

there exists hi € I%, such that

o) all

(5.12) supp hi E [a,b]; ”hii:cos Dk/(b-‘)’ IhiNj s 15’ o .

Then (1/2)%/2< 0D, < 2 971,

Numerical evidence presented in [13] strongly suggests
that actually Dk ~ Zk.
The theorem implies that

enP <p

14k 5 MR

171 17p, [t ,t 1205

(5.13) |a, |(t ’
i i+k]

which leads to

THEOREM 5.2 [9]. Let E be the diagonal matrix | ...,

(t1+k-t1)/k’ «eo]. TIhen
-1 1/p ! = { | l/p Z
D lIE ail, < lzja N i < e allp, allaeR", 1<p<w,

1/p
In particular, ZiaiNi € lLP if and only if E "o e lp(Z).

The proof of the upper bound for ”:fziuinp makes use of
the fact that the Ni'l are nonnegative and sum up to 1 while,
by (4.2) and (4.4), fNi,k = (tiék.ti)/k'

i«
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1/pN

COROLLARY 1 [9]. Let N, , . := (k/(ty o tgd) "By e BoE
1<p< s (Ni,k,p) is a Schauder basis for ék,g ’fEPOR).
We note the estimates
1/p :
S.18) 'k e < 1IN | S |
( 5] i,k,p"p —

COROLLARY 2 [12]. Let t be finite, infinite, or bi-infinite,

), and let ¢l- (). Then c'

et G = N Ny k2 i
decays exponentially away from the diagonal. Explicitly,
[i-7 |
< i
Iaijl < const q
2.1/(2k-2)

with q = (1-D; ) € (0,1) and const = Di/qk-l both

depending only on k and not on t.

This corollary was proved earlier for a finite uniform ¢t
by Domsta {34], and then used by Cielsielsky and Domsta ([26] y
in the construction of a basis for Ck-2[0,1]“ which is, at
the same time, also a basis for ]Ll;'z[o,lld for 1 <p <o,
The corollary was used in [12] for a somewhat related purpose,
viz in order to show that least-squares approximation from
ak ¢’ considered as a map on L o’ can be bounded in terms of

the “global mesh ratio

M )/(t

T T b T bt Wl
COROLLARY 3 (7], [13]. Let m«!ik,E ‘= dk,g T m@) be the sub-

space of bounded splines of order k with knot sequence t.

Then the rule G Z J ‘11 maps [/ (Z) onto m.gk Further,
with @: 2 _(Z) —-nndk t: aHLiJiNi’ the condition (number)

T | !
t;omlk,t e= || MG | of the basis (Ni) for mdk’i’ is bounded

Dk independent of t.
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Since (Dl’DZ’Dj’Dé"") < €hy 2oy 5.3 WLL, Soa), ol
shows the B-spline basis to be well conditioned, independent of
t, for "small" k.

% Finally, for another illustration of the fact that B-spline
coefficients '"model'" the function they represent, observe that,

for the particular choice

(5.15) 7, = T3 a= (£, o + oso + 0 )/ (k-1),

i i
the coefficient of f(l)(ri) in (5.4) vanishes. Then
*
Rif = f(Ti) + b1
with
lb ! o kil(_)k-l-jw(k-l-j) (T*)f(j) (T*)
Lt ik i - |

3=2

< const, (max Atl_)2 max I!f(j) "m
2sj<k
Therefore, if, e.g., f 1is a fixed spline with “f(j)”m < o
for 2 < j <k, and we write f as a linear combination of B-
splines on a knot sequence t which refines the knot sequence
for £, then the resulting B-spline coefficient sequence & for

f satisfies

a1 = f(f:) + O(max (Atr)z).

6. Local Spline Approximation

Because of their local support, B-splines have been in-
strumental in the construction of local spline interpolation
and approximation schemes. In such a scheme, the approximation

.

is taken in the form

(6.1) Af := 21(“1f)N1

with Wy @ linear functional with support in supp Niz (ti,ti+kL

-8~
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Since then (Af) depends only on f 5
l(tj’tj+1) l(c )

j+l-k’ F ek
such an approximation scheme is capable of reflecting, and tak-

ing advantage of, the local behavior of f.

LEMMA 6.1. If A reproduces Pk on (t ,t), then

- 00 o0

(6.1) |I£ - Af]| < (sup flu; b dist

“’(‘j’°j+1) “”(tj+1-k’tj+k

The condition that A reproduce P is certainly satis-

k

fied in case A 1is a projector., This will happen iff (“i) is
dual to (Ni)’ R R - 5ij’ all i, j. 1In such a case,

f,

“iNj
Af interpolates f at (pi) in the sense that "iAf = uy

all 1. A linear functional satisfying

g |
(6.2) supp g S supp My » (ti’ci+k)’ “iNj = Sij’ all j,

-seems to have been constructed for the first time in [5]), for
the purpose of demonstrating the linear independence over an
interval of all B-splines which do not vanish identically on
that interval. Since then, such linear functionals have been
constructed in various ways and for a variety of jobs. A sum-
mary and detailed discussion is given in [13].

The first local spline interpolation scheme seems to have
been Birkhoff's local spline approximation by moments [4]. A
corrected and extended version can be found in [6]. The scheme
was not given in the form (6.1). It was therefore somewhat of
a surprise to find that local spline approximation by moments
is a special case of the quasi-interpolant of Fix and the author
[16), i.e., of the form (6.1) with = A, given by (5.4)

& . i
with Wy t1+k/2’ all {1,

The quasi-interpolant approximates well to f and its
first k-1 derivatives, but requires values of f and of its

derivatives for its construction. An earlier scheme [7]
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constructs ., involving only function evaluations, and satis-

fying even
(6.3) supp 4y ;'(ti»l’tivk-l)' uiNj = Sij’ all j,
and so that Sup, [y < =, This is possible since it can be
shown that
) : * -
Dy, o = oup oup WECllluecle, pie, 41, uiy=8, p; all
(£.4) = sup sup l/dist (N,, span(N,)),,.)
3 pLLYTLIPSE 1iH

is finite. In fact, it follows from Theorem 5.1 that Dy o < Dk
s

< =, Therefore, one finds that, for this scheme,

(6.5) | £-Af]] <D, dist (£,P).
m (€4, ) k, o °°’(tj+2-k’°j+k—1) P

But it is not clear how well the derivatives of Af approximate

those of f. Also, Ais not applicable to arbitrary fe ]Lp.

The latter objection can be overcome by choosing 4y of
the form
Hif » ffhif

with h € Lm[ti’ti+k] chosen as in Theorem 5.1 to satisfy

(5.12). The resulting linear projector P

$]

(6.6) Pf :- I ([fh )N,

is local and is bounded as a map on L_ by Dk for each

p € [l,»] and independently of t [11]. But, in order to ob-
tain also good approximations to derivatives (regardless of t,
1.e.: without recourse to Markov's inequality), Lyche and Sc;u-
maker [59] found it necessary to give up the condition that Af
interpolate f and to revert to the weaker condition that A
merely reproduce Pk' Such local approximation schemes have

been further investigated by Demko (31].

-20-
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An important local spline approximation scheme (which only
reproduces P,) is Schoenberg's variation diminishing spline
approximationt It will be discussed in the next section.

The use of local spline approximation schemes for gauging
accurately the degree of approximation by splines is further
pursued in DeVore's contribution to these proceedings.

We close this section with the remark that the dual to the
linear projector P in (6.6), i.e., the linear projector P'

given by

(6.7) P'g '= Zi(ffNi)h

is helpful in settling two questions of '"smooth" interpolation.
The first, raised originally by Schoenberg [74] and partially
answered by Golomb [42], concerns the existence of g e]L R)
which satisfies g(t ) = ui, all i, for a given « e ll and
a given £ = (ti) taken strictly increasing for simplicity,
Let [t "ti+k]a be the k-th divided difference of the data

at

{0

Eirennrty
(t1+k't1)/k:'-;J of the preceding section. Then it is easily

seen that having El/p([ti,...,ti+k]) in ﬁp is a necessary

and recall the diagonal matrix E := T:..,

condition for the existence of such a g. To see that this is
also a sufficient condition, observe [13] that the function g,

given by the conditions that S(ti) =@, £ =21,...,k and that

1’
(6.8) s(k) = (k=1): Z ([t t, . Jooy(e, .-tk
g I | A et | 5 i+k 1
is in & by Theorem 5.1 in case Ellp([t o0 €4
p . 1’.0.’ i+k p’

and agrees with « at t since, by (4.2), it has the same
k-th divided differences-ac the points of t as does Q.

The particular interpolant g to the ;iven data «a at t
just constructed has the property that, on [tj,tj+1], at most
k of the h1 in (6.8) are not zero, while, by Theorem 5.1,

Hhillw(t1 at) S0, all i. This proves (13] that, for given

e

“2l<

P e 5 R———




k
t and given @, there exists g e L  so that gIt = (X and,

<
for all tj tj+1,

lls(k) ”w <const max k!l[ti,...,thkbl
[ep ey (egsty0clen e, ]

for some const < D This answers a question by H.-0., Kreiss

K
as to the existence and the size of such a const,

7. Total Positivity and the Variation Diminishing

Properties of B-splines

The strict positivity of Ni,k i+k) (see (4.10))

is a particular instance of the Schoenberg-Whitney theorem and

on (ti,t

the variation diminishing properties of B-splines, the subject
of this section. A thorough discussion of these matters in
the more general context of Chebyshev splines can be found in
Chapter 10 of Karlin's book on total positivity [(47].

Throughout this section, the knot sequence is taken to be
finite,

n+k
t = (ti)l , nondecreasing with c1 S ti+k’ all i,

and (Ni)? is the corresponding sequence of B-splines of order

k. dk ¢ has then dimension n. We consider spline interpo-
£

lation at points 12 Sohoe K L This amounts to finding, for

given £, e R" so that

n
(7.1) jglajuj(ri) = £(r), 1=1,...,n
The question of existence and uniqueness of such an interpolant

was settled some time ago.

THEOREM 7.1 (Schoenberg-Whitney [78]). Let

k n
7.2 s {Tapdt s T a@ey*t jacs®
j=1 j jek+1 j ]

2

E T e b

L4 T . i
.;v.-mm ety

i

R S




<
with tk+1 R . tn. £ T

1 AR < T then S contains,
such that s(ri)

s
i i = k+l,

for arbitrary £, an
iff 7

f(!.)J 1 1’0 ,n
< t < T n.

In this connection, it is interesting to note the follow-

ing theorem published with an elegant proof in 1939, and pointed
out to me by Allan Pinkus.

THEOREM (Krein and Finkelstein [55]).

Let G be a Green's
function for the k-th order linear differential operator
L
L= 24 ij
j=0
with »p

j € C[a}b]) i].'.];

j, and p  never zero on [a,b]. Spe-
cifically, assume that G is of the form
Eﬁj(x)ﬂfj(y) for x >y,
=1
G(x,y) =
A A
ge’ ®V,.(y) for x<y,
=14 3

with both (¢j)g and (8j)§ linearly independent and in ker L.

X ..-.,x
1f det c( 3 :
Vyreees¥o

and (y,)], then

)2 0 for all nondecreasing (xi);

xl,...,xr
det G ( ) >0 for an increasing
yl,...,yr
if and only if
i=

X

r )
(xi) 1’ (yi) 1
i~

g Y =Pl F, 208 Y, <R o
SRR L A

Since S, as defined in (7.2), agrees with dk,t on
[tk’tn+1]’ it is possible to translate Theorem 7.1 intc a state-
ment involving B-splines provided we make the assumption that
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]

7y ¢ sl

preeeaTy € [tk,c

It is also possible to prove directly

- 1
if and only if T, € supp Ni’ i,e,, Ni(ri) # 0; all “1:

THEOREM 7.2. If 7, < ... < T, then (Nj(ri))'l1 is invertible

In other words, (Nj(ri)) is invertible iff its diagonal
is invertible. Burchard [21, Chap. III, 2(3)] and Karlin [47,
Chap. 10, Lemma 4.1] both prove Theorem 7.2 explicitly in terms
of B-splines, with simple knots, but, on the other hand, more
generally for Chebyshev splines.

Karlin and Ziegler [53] remove the restriction in Theorem
7.2 to simple knots. They also allow for repeated or oscula-
tory interpolation and consider Chebyshev splines rather than
just polynomial splines. Straightforward translation of their
result to B-splines would require assumption (7.3).

We will now quit belaboring this minor point and state the

theorem directly in terms of B-splines.

THEOREM 7.3 (Karlin-Ziegler [53] extension of Schoenberg-Whit-
ney). Let T B oevelS 5 be such that

T 2 S e LR SO S 8, TV implies r+s < k,

and define linear functionals (pi)T by the rule

A s | T : v - N
uif fic £ ('i) with j := max{r I'i-r = .i).

Then (uiNj) is invertible if and only if Ni(ri) £0, =1} oot

A simple proof of this theorem, using only elementary pro-
perties of B-splines and Rolle's theorem, can be found in [15].

Theorem 7.3 states conditions under which it is possible
to interpolate by linear combinations of all B-splines for a
given knot sequence, A careful study of Karlin's proof [47] of
the total positivity of (Nj(ri)) reveals the fact that

24 -

£ 3
v el

v NI e B

= [':.‘Cé'.r- b

¥ s

o




Theorem 7.3 remains valid if we replace the sequence (Nj) by

one of its subsequences.

THEOREM 7.4 [15]). Under the same assumptions as those of Theo-

rem 7.3, and for any subsequence (ql,...,qm) of . 1.0

m ; 3 . . : - A
det(“iqu)i,jzl >0 with equality iff, for some i, Nqi(;i) = 0,

This theorem implies at once the total positivity of

(Nj(Ti)).

THEOREM 7.5 (Karlin [47]). Let T £ sen S T Then (Nj(‘ri))

is totally positive, i.e., all its minors are nounnegative.

Karlin [47, p. 563] states that this theorem was communi-

cated to him by Schoenberg.

COROLILARY. (Ni
quence (Nq )T of (Ni)? is a weak Chebyshev system.
i

) is a weak Descartes system. i.e,, any subse-

The total positivity of (Nj(ri)) provides bounds on the
effect of rounding errors when solving (7.1) by Gauss elimina-
tion without pivoting which are smaller than those obtainable
for general matrices even when using pivoting (18]. This means
that it is reasonable to solve the banded system (7.1) without
pivoting with the attendant savings in storage and program com-
plexity.

The total positivicy of (Nj(ri)) is used in an essential
way by Karlin and Pinkus [51] in their extension to splines and
to higher derivatives of earlier results by C. Davis and Viden-
ski concerning the existence of a polynomial of degree n on
[0,1] with a prescribed sequence of n+l extrema.

The total positivity of (Nj(ri)) leads to one of the

more striking spline approximation schemes, Schoenberg's

«w28a
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variation diminishing spline approximation, which has found
much use in computer-aided design (see, e.g., Riesenfeld [69]).
We recall some notation, A real-valued function f on some

subset D of R has at lecast m strong sign changes if f

alternates (in sign) on some (ri)g in Dy LLe-1E

f(TO) # 0 and, in case m >0, f(ri_l)f(ri)'<0 for dirl, .o 0,

for some nondecreasing sequence (ri)g in D. It is customary

to denote by
s (f)
the total number of strong sign changes of f on its domain.

It is well known (e.g., Theorem 5.1.4 of [47]) that, for a to-

tally positive matrix A and any vector Q,

S () < s (@,
i.e., a totally positive matrix transformation is variation di-

minishing. Since (Nj(ri)) is totally positive, it follows

that the linear map VT, given for some nondecreasing T oy

n
7.4 f :=
7.4 v, jZ.llf(rj)Nj,

all f£,

is variation diminishing, i.e., S-(Vrf) < ST(f). Recall now
from Marsden's identity (see (5.6) and (5.7)) that, for any
straight line p and any 7 with T, € (ti’ti+k)’ all g

n k-1
=z *p' e L - (k- -1y N
P b p(Tj) P (TJ)[rzltj” ( l)rJ/(k 1) hj
on [tk’tn+1]' Therefore, with the particular choice
(7.5) 1? .= (tj+1 teaot tj"'k-l)/(k-l), j . 1’---’“,

mentioned already in (5.15), V.. reproduces Pz on [tk’tn+1]’

and we have

«26 -
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(7.6) 8 (V_ £-p) < S (f-p) on [t ], all p e P, all f.

k’tn+1

The resulting approximation V,*f to f 1is Schoenberg's varia-

tion diminishing spline approximation, introduced by Schoenberg

in [73] and further discussed in Marsden and Schoenberg [63].
We note the following result due to Marsden [62]: Write

Vo Kk to stress dependence on k, and restrict t so that
e =

By ™ can e BLE 0 and Cong ™ san® B ™ 1. Then

@.7 VT*,k — 1 pointwise on C[0,1] iff max, Ati/k -0,

as Marsden shows with the aid of the Bohman-Korovkin theorem
concerning strong convergence of positive operators to the iden-
tity on cC[0,1].

It is possible to refine the proof that S-(Aa) < S™ (@)
for a totally positive matrix A for the particular choice

A= (N (11)) so as to obtain the following theorem.

]
- m
THEOREM 7.6 [15]. If f := ZajN_ alternates on (7,),, then
j=1
f(ri)aq Nq (11) 20y L =0zt

e - )

for some subsequence q of (1l,...,n).

Theorem 7.6 illustrates the point made earlier that B-
spline coefficients "model" the function they represent. A
spline cannot change sign at a point without its B-spline se-
quence also changing sign ''nearby.'

As a specific application of this theorem, consider the

»
i

spline N which, by (5.2), is the linear combination of

j+1 B-splines (of order k-j), hence cannot have more than j

strong sign changes, by Theorem 7.6. On the other hand, if

N{j-l) is continuous, hence absolutely continuous, then N{j)
is orthogonal to P

on [ti’t ], by (4.15), therefore must

j i+k
have at least j strong sign changes.
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COROLLARY ([30). B-splines are bell-shaped. Precisely, if ij-D
(i)

is continuous for some j < k, then Ni has exactly j zeros
j+l
in (:i’ti+k)’ all simple, i.e., there exists (gr)O with
A 2 A Xt
€, = go S - §j+1 0% PO that (=) Ni >0 on (gr,§r+1),
(i ) PRI, 15

Finally, we record the relationship between B-splines and
Polya frequency functions discovered by Curry and Schoenberg
[30]. By definitior, a Pdlya frequency distribution is any
distribu%ion function F (i.e., any function of the form
F(x) = [ f(s)ds with f nonnegative and F(x) = 1) whose bi-

-0

lateral Laplace transform is of the form
® -sx
[ e TTdF(x) = 1/¥(s)

with
-ysz+63 - -5 s
Y(s) = e T (148 s)e v
1
If ¥(s) = o™, then

bs

2

for some y >0, % real, and (&) € £,.
Py b v 2
dF has its entire unit mass located at x = 8, If Vy(s) # e
then
w -

[ e SXA(x) dx = 1/4(s)

-
with A a PSlya frequency function, i.e., a nonnegative inte-
grable function on R (normalized to have [A = 1) for which

the kernel
K(x,y) = A(x-y)

is totally positive of all orders,

Call Fk a spline distribution function of order k {f

Fk has a B-spline of order k as its density, i.e., if




F o0 - kI r (-9t
SCONE e [Tgree s s), ds
5 SR =
for some Tg S &' with o T Note that Fk(x) 0 for
xS % and Fk(x) =1 for £ > T by (4.2). Further, say that

Fk converges to a distribution function F in case limk_’ka(x)z

F(x) for all points x at which F is continuous.

THEOREM 7.6 [30). The distribution function F is a Pdlya fre-

quency distribution iff F is the limit of a sequence (Fk) of

spline distributions, with Fk of order k, all k.

8. '"Best'" Interpolation

In this section, I finally discuss an aspect of splines
which many consider to be the primary characteristic of splines,

viz. the fact that splines are solutions to interesting variation-

al problems. This property of splines is closely related to the

fact that the B-spline Mi represents a k-th order divided dif-
s

k

ference. As mentioned already in (4.1), if a < ti < r'i+k5b’ then
b

8.1) [ti""’ti+k]f = [ Mi k(s) f(k)(ds)/k!
a b

for every fe'wk[a,b] = (£ eck-z[a,bllf(k-z) it

Details for the material in this section can be found in

abs.cont., €BV}.

[14) and its references.

Consider the problem of minimizing Hf(k)Hp

over
.o s . k -
(8.2) F_ := F (5,%K [a,b]) := (f e L [a,b]l f|I = a)

n
for given 3 1 (ri)1 in [a,b], nondecreasing with T < ti+k’

all i, and given @ € R", with [a,b] finite, positive k < n and
pe [l,»]. Here, £ - is the sequence (fi); given by the rule

fl i= f(j)(ri), with j := max ( r ITi-r = 11].

FP is not empty. It contains, e.g., exactly one polynomial of

degree < n. Therefore,

29




k
b (f el.p[a,b] |£lz - fat(}

for some fixed fa € Fp. Favard [35] already knew and used the

fact that
tnf €M) - 1nf [g]
feF P geG P
P P
with
' ot allk) =2 -
8.2) c:p := (£ Ifer] = (g eLp |fui,kg = k.[ri,...,11+k]fa,

i=1,...,n-kl.

Let now 1<p< o and 1/p + 1/q = 1. Then, following
Krein [54], we recognize that minimization of ngif over Gp
can be viewed, dually, as the construction of an extension
Ae L, = L’; of minimal norm to all of Lq[a,b] of the linear

n-k

functional )\a, given on ak’; = spanmi, k)l

1L [a,b] b

=M\ y
. . L

A ﬂ‘:I—’R. Ziaini,k Hzieik.[ri,...,thklfa.

This is so since Gp, as a subset of L:, coincides with the

set of all extensions of ?\a. Therefore
®.3 inf £ < ainlA]]A e L¥, y s A)= Y,
feF P q dk,r x: -
p =

by the Hahn-Banach theorem, settling existence of a minimal f
in Fp as well. Further, a minimal f must agree with f‘a

at Tl""’Tk while its k-th derivative satisfies

b ;
@8.4) [ £ (s)v(s) ds = Hf(k) Il
a P q

for any ]Lq-exc:-eml ¥ of 7\a, i.e., for any V¢ with

8.5) Ve dk,r and Hw”q =1 and Ay = H?\aH.
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1f N& = 0, then there is a polynomial of order k in Fp

and it is the unique minimizer for all p. Otherwise %a F 0,
But then, for 1 < q < «, )d has exactly one extremal and the

£ ()

equalicy (8.4) in Holder's inequality then forces to sa-

tisfy

(8.6) f(k) = H)aﬂlwlq-l signum V.

It follows that Hf(k)Hp is uniquely minimized on rp, and the

minimizer is the unique element fp of the nonlinear family

@®.7n (fe l&[a,b] |f(k) - leq-lsignum y for some v € & g
*3

for which gplr = Such functions have been called Ib-

qﬁlz'
splines by Golomb [42] who was apparently the first to describe
their structure.

For p = 2, the family (8.7) is linear and consists of all

f e l: with f(k)e 8 . To describe the corresponding mini-
LA

mizer, let t be the extension of T to a nondecreasing se-

quence having both a and b occurring exactly 2k times., Then

the minimizer in F_, 1is the unique £ ins which, in ad-
2 2 2k, t

dition to the condition f ‘ = f I , also satisfies
2|z ajt

@8 G-tV - er

The minimizer has been called by Schoenberg [73] the natural

spline interpolant, of order 2k with interior knots Tyreer Ty

for qz in case a < L and e < b, in which case all the

constraints (8.8) on ?2 are active, At the other extreme,

when' none of the constraints (8.8) on f

2 is active, i.e.,
when a = S = waem T and T T T b, the mini-

mizer has been called by Schoenberg (see, e.g., Lecture 7 of
[76]) the complete spline interpolant for Qa of order 2k

with interior knots cap't The word "spline" itself

k+l’ n-k’

a3l

Ca(2ke1) .=
N i s, 9 L e

ST V.ﬂ:&‘ o




was chosen by Schoenberg [70] because in the case k = 2 the
resulting interpolating cubic spline approximates (for small
slopes) the position of a mechanical or draftman's spline forced
to go through the given data points. This connection between
(2k-1) st degree spline interpolation at knots and least-squares
approximation to the k-th derivative has remained for many the
ma jor reason for using splines.

For p = =, (8.4) fails to pin down the minimizer uniquely
since it only implies that

k

@.9 £% - A |signum v off N, := {x ¢ [a,b] |v(0) = 0]

17
for every Ll-extremal y of %1. Of course, if N  has mea-
sure zero, then it follows that the minimizer £ is unique and
its k-th derivative is absolutely comstant, with < n-k break
points, by Theorem 7.5, since ¢ 1s a nontrivial linear com-
bination of n-k B-splines. In the language of Glaeser [40,41],
f isa perfect spline of degree k, i.e., a pp function of

order k+l1 in Ck.1 with absolutely constant k-th derivative.

Whether or not N _  has zero measure, supp | = [a,b]\Nw
i

must contain the support of some B-spline of order k for the

)

knot sequence 7T, by Lemma 5.1, i.e., some interval (Ti,Ti+k

on which then, by (8.9), all minimizers must agree. This is
the '"core interval of uniqueness' of Fisher and Jerome [36].
In particular, the minimizer is uniquely determined in case

n = k+l, It is also uniquely determined in case n = 2k and

& m RIS w R T ® e, T

k’ k+1 2k

as vas found by Glaeser [40,41], since now dk,j - Pk'[a,b]'

x k-1 k-1
For the specific data f_(x) :=‘& (s-a)  “(b-s) 'ds, Louboutin

(58] (see also Schoenberg [75,76]) found £ explicitly in this

L0 .
case: ﬁa is evidently orthogonal to Pk-l < d&,: on [a,b],

g(k)

therefore must be a step function with < k jumps and

32«

-




on [a,b]. But, since P is a Chebyshev

k-1 a (k)
system, this pins down signum f

orthogonal to P k-1
uniquely up to multiplication
by a sign o e {(-1,1},

a(k) (1)
3 Cp

signum = O signum

with Ck(x) = (-)k‘lck(Z%fg =1) snd C the Chebyshev polyno-

mial of degree k. It follows that f(1¥ is a B-spline of
order k with simple knots at the k+l1 extrema of Ck on
[a,b] (see (4.15)). But, in general, there will be several
distinct minimizers. Karlin [48] was the first to see that
among these has to be at least one perfect spline t of degree

200

k with < n-k interior knots. 1Its derivative can be
constructed [10] as a limit point of the net (gc)€:>0, with
g, the unique minimizer of I ﬁm in

b b
G e :={geL [a,b] |[ Bg =] ¢fo(‘k), all e s}

@, €

€

S 1= K@ ) KB 09 1= [ exp- (700" @eH0( dy/ (/7).

The minimizer 8, is in fact uniquely determined, absolutely
constant and has < n-k jumps, since the total positivity of

5
that (Kch’k(Ci)) is strictly totally positive for strictly

k(ci)) for increasing 0 (see Theorem 7.5) implies ([47]

increasing ¢; therefore any nonzero element YV of S van-
ishes on < n-k points. Finally,Favard [35] constructed a min-
imizer £ which is a spline of degree k with < n-k interior
knots, all simple, with the additional property that, for any
feF, |£(k)| < |?(k)| implies that f = f. This minimality
of "Favard's solution" is further underlined by the fact that
it is, for any r € [l,x), the lt-limit of Ep as p - » [25],
For p=1, matters are least satisfactory since lb now
fails to be the dual for ll.q . Therefore, although (8.3) still

holds for this case, it may happen that none of the nomm

AR




preserving extensions of ﬁa to all of lw is representable as

integration against an L, -function, in which case the infimum

1

over F1 is not attained. In this situation, one may be satis-
fied to follow the lead of Fisher and Jerome [37] and consider

the slightly different problem of minimizing
Hf(k)n := var £&°D

over

F, = (f eMk[a,b] | f'l = falg)

instead, which always has solutions. If Ty < Ty rke1? all i,
then among these solutions is a spline of order k with < n-k
interior knots, all simple.

We close this section with yet another B-spline property,
this one connected with perfect splines, optimal recovery

(alias best class estimators) and Ll-approximation by splines.

LEMMA 8.1 (Micchelli [64)). If 1 = (r;)] is nondecreasing in
(a,b) with n > k, then there exists (up to multiplication by
some o e {-1,1)) exactly one sign function h with < n-k
jumps which is orthogonal to 4 . on {a,b]. 1f &= go <
) &
_ Sake
il §r+1 = b, and, for this h, (-)"h = 1 on (gi,§1+1),

1 =205...,0, then r = n-k apd Yy dkim Ly evyte

fp ¢ poTine

Micchelli's lemma is not entirely unrelated to the follow-
ing fact about B-splines useful, e.g., in the characterization
of best Lp-approximations by splines.

LEMMA 8.2, If

t
<
t, <t g 2l 1, and f el [a,b] 1is orthogonal to 8, ¢ &8

= (ti)T*k is nondecreasing, in [a,b], with

[a,b], then there exists - (§1)2+1 strictly increasing in
[a,b] with t

1 S &St ., (any equality holding iff ¢, -

i=1,...,n+l, so that f is also orthogonal to S
)

tsek-1"
Indeed, since, for appropriately chosen p e'Pk, the

%
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b .
function F := p *-Q (~-y)t 1f(y)dy/(k-l)! vanishes at

" ey

!a,b],

Rolle's Theorem proves the existence of strictly increasing
n+l
<
(51)1 in [a,b] with £ < gi - PPTRET #1141, 8% Yhich

(k-1) I ks
F = const +.& (+-y) f(y)dy vanishes, which proves the

. k
(counting multiplicities) by assumption, and F is in C

lemma. In particular, if f is continuous, then it must vanish

at the n points of some strictly increasing sequence (qi)T with

€ Sag Sin o wll d

9. Generalizations

The trend started by Schoenberg [71] and Greville [43] to-
ward ever more generalized splines continues unabated but has
failed to bring with it a corresponding wealth of generalized
B-splines. Schoenberg [71] actually described trigonometric
B-splines and later, Burchard [21] and Karlin [47] independently
constructed Chebyshevian B-splines with the aid of Popoviciu's
[67] generalization of the divided difference notion. Yet an-
other account can be found in Marsden's thesis, eventually pub-
lished in [61], in which the generalization of Schoenberg's
variation diminishing spline approximation for Chebyshev splines
is given, but without a proof of its variation diminishing char-
acter, Such a scheme had already been described and proven to
be variation diminishing by Karlin and Karon [49], and their
assertion in [50] that Marsden's B-splines are essentially dif-
ferent from Karlin's is incorrect,

Here are some of the details of the construction.

' Let Pf be the polynomial of degree < k which agrees with
f at the distinct points Tyseens Ty 1f ¢j(x) = xj-l, i .
then

T o T . h c e r
1’ ) k’ 1) ’ k
9.1) £ -Pf= d ( ) //d ( ) .
( ) P et Gl,...,gk, f . Ql,...,gk
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Therefore, since [t ,...,tk,x]f is the leading coefficient in

1
the polynomial of degree <k which agrees with f at Tyseees

T Xy we have

(9.2) £ - Pf = (“1""’Tk"m(°k+1'P¢k+1)

with
[11,...,Tk,-]f - (f-Pf)/(¢k+1-P¢k+1)
T,,..’T’ ® T,-o.,‘r,‘
= det( 1 k )/éet( 1 x s
bl ¥ hioak't

If now, more generally, (ﬁj)¥+1 is a Chebyshev system (on some

T

ety
interval I), then det (¢1 it

# .0 1) # 0 for distinct Tyreees
RETL

Tsl in I and the following definition makes sense: The
k-th divided difference of f at the distinct points Tyseees
Tesl in I with respect to the sequence @ := (GJ)‘{+1 is [67]
% T T T
¢ AR ) i | : ek o |
9.9 DPiscasate dal i 68 ( ) /éet( ).
17 kel g O - R

Then, with Pf denoting, more generally, the unique element in

k
span (@ ), vhich agrees with f at Tyreeer Ty We have

3

§ Pl ([11""’Tk"]0f)(¢kfl - P9

k*l)

which is the formal analog of (9.2). The definition shows the
generalized divided difference (9.3) to be a symmetric function

of the ri's. The definition even allows for some confluence

among the 7,'s provided the @, 6's are sufficiently smooth

i b

and one defines (for nondecreasing 1)

. T L K
1’0..’ k+1 1’...,%*.1
det ( ) t= det( ) = det(pn,@,)

LOUREETL L SERRETL e 1)

with pf := f(j)(ri) and j := max (r |7 1.}, in the manner

T S |
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of Theorem 7,3,

differences are provided by Popoviciu [67], and see also Muhl-

bach [65].

Assume that,

k-th order linear ordinary differential operator

(9.4) a

with a; € Cj(I),

0.5 Lw (0 ¢ Lt

is an operator of the same kind.

the initial value

can then be constructed as

(9.6a) G(x,y) =

More detail about these generalized divided

¥ =D +

o B
ey, L8,y
3=1

in addition, (¢j)¥ spans the kernel of a

o«

& a.DJ
j<k 3

all j, so that the formal adjoint

L O Y

*)
j<k 3

j<k J

Green's function G(x,y) for

problem 1*f - g, £ P @) =0, §=0,...,k1, |

\

6]

j

with (vj)t the basis for ker L adjunct to (ﬂi)t, i.e.,

K
@.60) L o Py

j=1

With £ - (ti)1

function
(9.7) Mi,L(y) $=

is then piecewise

k-2

in C in case

ville [43], Mi,L

to ker L.

n+k

Coincidences among the

(x) = 8

I ik i=1,0..,k %€ I,

nondecreasing and t, < ti+k’ all i, the

i

[ti’.'.’ti‘klgc(.,Y)

in ker L with breakpoints

b
TR i

is a generalized spline function with respect

Eipevesty o and
In the language of Gre-

t,'s reduce the smoothness

i
of M across t, in the usual way. Further,
iL,L 3
(9.8) Mi,L vanishes off (ti’ti+k)
3T
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since, for > £ G(* = 0 while, for < t.
P y {+k’ (»y) (ti’ t1+k) ) y {2
G(,y) @wise, € ker L* by (9.6). One also has the analog
1? "i+k
t1+k

(CRL T P N . =,&1 Mi,L(y)L*f(y) dy.

1f, in addition, (¢1)t+1

shev (or, ECT) system, then Burchard [21] and Karlin [47] have

is an extended complete Cheby=-

shown the analog of the Schoenberg-Whitney Theorem 7.1 that,

for strictly'increasing t and strictly increasing 1 = (Ti)?,
> i i T
det(Mj’L(Ti)) >0 with strict inequality iff Mi,L( i) ¢0,
all i, Further, Karlin [47] showed that (Mj L(ri)) is to-
)

tally positive in this case, as was mentioned earlier, Few

facts beyong these are known for Chebyshev B-splines. While

the analog of Marsden's identity (5.7) can be found in [61],

the analog of the linear functional (5.4) has not been described,
although that should be fairly easy. More importantly for com-
putations, a recurrence relation like (4.9) has been searched

for in vain so far.
k

1 is

It is actually quite unnecessary to assume that (¢j)
a Chebyshev system in order to construct L-splines (in the
sense of Greville) of local support. Continue to assume that
(dj)T is a basis for the kernel of the differential operator
L* of (9.4) with L of (9.5) its adjoint and G the Green's
function given by (9.6). If t= (ti)? is strictly increasing,
then, for each i, the span of ([tjl)§:§ contains a nontrivial

B 4 ker L* since ker L* has dimension k., But then

(9.20) M .(x) :=uG(°,x)

KL
defines an L-spline with knots ti""’t1+k and support in

(ti,ti+k). Clearly, MlsL represents M with respect to the

pairing (f,g) := [fL*g, If now (@ )T fails to be a Chebyshev

J
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system on [ti’ ], then there exists a nontrivial p in the

ti+k
i+r

i and orthogonal to ker L* for some r <k,

span of ([tjl)

i.e., the corresponding Mu,L has even smaller support. More
explicitly, let (ui)2+2k-2 be the sequence

SN R LR R TR R T TR VR T

of linear functionals and, for each i, let vy be the linear
o
= A
functional of the form LR T L1+1’juj which is orthogonal
to ker L*, with r as small as possible., The corresponding
sequence (Mv L);+k-2 of basic L-splines is then a basis for
1)
the space of all L-splines on [tl,tn] with simple interior

knots tz,...,tn_l.
A construction like this was used by Jerome [45] under the

additional assumption that, for each 1, t -t  is small

j t

Earlier, Jerome and Schumaker [46] had used such considerations

enough so that (@ )T is a Chebyshev system on [ti,

in connection with Lg-splines, i.e,, when the linear functionals
(ui) above are, more generally, of the form lﬁ.:zfaij[tilbj-l.
Related developments of great generality can be found in Brown
[20].

We close this section with yet another B-spline property
discovered by Curry and Schoenberg [30].

LEMMA 9.1 [30]. Let M,  Dbe the B-spline defined by (3.1),
s

and let -~ be any k-simplex in R of unit volume with ver-

1) (1)
tices v'', i =0,..., k and so that ¥t 1 =0,...,k,

Then, for all x,

k
"O,k(x) = lon {veR .v1=x]|,
i.e,, Ho’k(x) gives the (k-1)-dimensional volume of the in-

tersection of the simplex o with the hyperplane in Rk which

intersects the vl-axis at v, =x and is orthogonal to it.

«39-
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In a letter [72] to P. Davis, Schoenberg recalls the

Hermite=-Genocchi formula

s (k)
(9.11) [zo,...,zk]f = ft{.ff (v0z0+vlzl+...+vkzk)dvl...dvk

n
with Vo = 1l -~ W e W and where the integration is to
be carried out over the complex

TnIVIEO, ceey v, 20, <L

- M=
<

k

and points out that Lemma 9.1 follows from this on comparison
with (4.1). Schoenberg further recalls that the Hermite-Genocchi
formula remains valid if ZgseeesZy are points in the complex
plane not all on one line and if f 1is a complex-valued func-

tion regular in the convex hull TT of z The formu-

07 Bt
la (4.1) now becomes

0.12) fry,...,2 ) =ﬁ M(x,y,-zo,...,zk)f“‘) (x,y) dxdy/k! .

At the point z = (x,y), M(x,y;zo,...,zk) is therefore the
(k-2) ~dimensional volime of the intersecticn of the plane
k

(veR :v, =x, v, =y} with a simplex of unit volume whose
LT @ )
i-th vertex v satisfies (v1 »Vsp ) = z;. In particular,

M is positive on 77 and zero off TT and is a cpline of
order k~1 along any straight line, with knots only at the points
where such a line intersects a segment [zi,zj]. Schoenberg's
letter even contains a drawing of such a B-spline in two vari-
ables for k = 4,

This suggests the following definition,

DEFINITION. Let o be a nontrivial simplex in R°'%, on R°,

define the B-spline of order k from o by

Mk,cr(xl""’xs) = |crﬂ(veRs+k:vi=xi, g T

-40-

e N A

i By ol




all x cRs.

Then Mk o is unimodal, nonnegative, piecewise polynomial of
)

k-1

total order k, and in C v in general. Its support is the

projection of o onto ]Rs, i.e., the convex hull of the pro-

(i).s k
jections ((vj )j=1)i=0

At this point, I have no idea how useful these B-splines

of the vertices of o to ]Rs.

might be, even only for the writing of papers., It is easy to
visualize how such B-splines can be made to give a partition of
unity: One takes some suitable convex set C in IJ( of unit
volume and then subdivides the cylinder 'R?x C in R§+k into
nontrivial simplices. The corresponding B-splines will then
add up to one. But it is unlikely that these B-splines will
become very useful unless one finds some means of evaluating
them such as a recurrence relation like (4.9).

In any event, I think these B-splines ar~ very beautiful,
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It seems a shame to waste this almost empty page, so here
is yet another reference to work concerning B-splines: 1In
Phillips, J. L., and R. J. Hanson, Computing integrals involv-

ing B-splines by mears of specialized Gaussian quadrature
rules, TR #CS-73-001, Comp. Sci., Washington State U.,
Pullman, WA., 1973,
one finds a discussion of the procedure for generating the
three-term recurrence relation for the polynomials orthogonal
with respect to a B-spline as weight function, as well as the
abscissae and weights for the corresponding Gauss quadrature
rule. For orders 2 and 4, and for a uniform knot sequence,

specific numbers are on microfiche in

Phillips, J. L., and R. J. Hanson, Gauss quadrature rules with
B-spline weight functions, Math. Comp. 28 (1974), 666,
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