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SPLINE S AS LINEA R COMBINATIONS OF B-SPLINES. A SURVEY

Carl de Boor

This paper Is intended to serve as a postscript to the
fundamental 1966 paper by Curry and Schoenberg on B-splines.
It is also intended to promote the point of view that B-splines
are truly basic splines: B-splines express the essentially lo-
cal, but not completely local, character of splines; certain
facts about splines take on their most striking form when put
into B-spline terms, and many theorems about splines are most
easily proved with the aid of B-splines; the computationa l de-
termination of a specific spline from some information about
it is usually facilitated when }~-splines are used in its con-
struction.

1. Introduction

The layout of the survey is as follows. Afte r a short

discussion of cardinal B-splines, i.e., of B-splines on a uni-

form knot sequence, in Section 2, B-splines for an arbitrary

knot sequence are introduced in Section 3 and shown to be a

basis for certain spaces of piecewise polynomial functions.

Various simple properties of B-splines are listed in Section 4,

and the relationship between a 3pline and its coordinates with

respect to a B-spline basis is explored in Section 5. This

leads naturally into the discussion of local spline approxima-

tion schemes, in Section 6. Results concerning existence and

uniqueness of interpolating splines and the related total posi-

tivity and variation diminishing properties of B-splines are

pres,ented in Section 7. Section 8 describes the connection

between splines and certain “best” interpolation schemes. Fi-

nally, Section 9 is devoted to generalized B-splines and ends

with a new definition of polynomial 8-splinea in many variables

due to I. J. Schoenberg.
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4
No claim of completeness is made , and the author would be

grateful to hear of any omissions.

The following notation is used throughout the paper , usu-

ally without further explanation:

~ denotes the set of integers , B the set of real numbers ,
Band A the set of functions on B into A. Thus, B is

the set of real bi-infin ite sequences.

m (B) is the linear space of bounded real functions on B,

normed by If L,8 :— supx€B i f(x)i. For 1 
~ P ~ ]L~(I) de-

notes the space of (equivalence classes of) functions f on

the interval I for which IfII~ : IIf~ ,1 :~ (f 1 I f  1P ) l~ P < ~~~
.

c
k(I) is the space of k times continuously differentiable

functions on I. ]L~(I) is the subspace of those f £ C
k_1

(I )

whose (k-l)st derivative is absolutely continuous and whose

kth derivative is in L (I). ~~ (I) is the subspace of c
k_2

(I)

whose elements have an absolutely continuous (k-2 )~ derivative

and a (k_l)st derivative of bounded variation. Finally, £ (~~
)

:- (a € R~ I Ik r I~ :- (
T a J ~~

h/ P < 
P

denotes the linear space of all polynomials of order

k (or , degree < k) with real coefficients. For a strictly

increasing sequence ~ ~~ 
(~~L~ 1F~~~ denotes the linear space

of all piecewise polynomia l (or, pp
~ 

functions of order k on

I :~ (inf 
~
, sup with breakpoint sequence ~~~. Explicitly ,

f € “k ~f f  f f (  € 
~k1 ,, all i. In addi—

tion, I c is taken to have two values at 
~~~
, i.e., the

val ues f (~~ ) and f (~~). If the reader finds it necessary

to think of I as a single-valued function , he should choose

some rule f(~~) :. af(~~) + (l-cx)f(~~) (e.g., a ~ 1/2) and

stick with it.

If v — (v 1
) is a sequence of nonnegative integers

-2—



4

corresponding to then 
~~~~~~ 

denotes the linear subspace

of I’ consisting of those f € for which
k,~

~~~~ 
~~~~~

f
(V) 

= 0 for  v < v~, all i.

The v-th  der iva t ive  of I is also denoted b y D
V

f as

well as by f~ ”/ )
• [~r~~~ . . ,r~J f  stand s for the k-th divided

difference of f at the points TO~
.. ‘Tk 

In particular ,

[loll f ( r 0) .

cona t d.~notes a constant which may depend on thea,...
quantities a , . . .

2. Cardinal Splines

B-splines made their first appearance in Schoenberg ’s

1946 paper on the approximation of equidistant data by analytic

functions. There is no doubt that ~-sp lines appear in earlier

literature. They play a prominent role already in Favard ’s
work [35J, and Schoenberg has always maintained that they were

already known to Laplace (see [70, p. 68]). But it is in

Schoenberg ’s paper that they were thought important enough to

be given a name , “basic k—th order spline curve.” Since this

is the same paper in which Schoenberg introduces splines , I

happily conclude that B-splines were there at the very begin-

ning.

Schoenberg introduces the B-spline , ne~ 
basic spline curve,

alias spline frequency function [291, alias fundamental spline

function [711, [301, via its Fouij~ier transform

(2.1) M.K(x) := 

~~ ~: 
(5~~,

~~2) 
~~~ du

and then observes that

(2. 2) Mk (x) = k ( - k / 2 , l-k /2 , ..., k /2 1( .  - x)~~~’, t
i.e., Mk(x) is k times the k-tb divided difference in y at 

.k2. t-a.n t4,u~ W f l E  ~~~~~~~  

-~~L~~ 
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the k-l points j - k/2, j = 0, . . .  ,k, of the function
k-I k-i(y- x)~ : (ma x (0 , v - x ) )  . These formulae show that M.K is

the k-th convolution power of the cha racteristic function of

the interva l [-1/2 , 1/2 1 ,

Ii, for x £ (- 1/2 , 1/2)
M
1

(x) = ,

(2.3) [0, for x ~ [-1/2,1/21

MK (x) = (M~*M.)(x) = fM i
(x_Y)M

j
(Y) dY for i~-j = k.

There fore , --and this is why Laplace must have known 8-sp lines--
Mk is the densi ty d is t r ibut ion  of the  error  conritted on the
sum of k independent real random variables if each variable

is replaced by its nearest integer value (70, p. 76 ) .
It is easily seen from (2.2) or (2.3) that

Mk € 
~ k~~~+k/2 ~ =: set of “ap line curves of or der W’

as Schoenberg calls them. The subject matter of the paper (70]

is the study oE approximations of the form

Af := : f(n)L(. -n),

and the B-splines come in because they offer a convenient way

of express tng, and thereb y anal yzing,  the various pp “basic ”
functions L considered in the paper.

In the 60’ s, Schoenbe rg ’ s results we re rediscovered and
considerably extended by those engaged in s tudying the mathe-
matical aspects of the f in i te  element method (see Aubin [1,2 1,
Babt~~ka [3), Bramble and Hu bert [19] , Fix and Strang (38 )
and Strang and Fix [80), Di c~.iglielmo [33], and others). Whe n

restricted to the one-dimensional setting of Schoenberg ’s pape;

these people are ,een to consider approximation processes of

the for m

_ 1 _

- 
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Af := ( \ f ( .  + n ) ) L ( .  -
~~)

for some convenient basic function L, e.g., L = M.~, and some
linear func t iona l \ € C*(]R) , and to s tud y the convergence be-
havior of

Ah := Si/h ASh, w i t h  (Saf) (x) f(c~x),

as h — .0. The results of this study are nicely suxiznarized by

Link [57] .
Schoenbe rg himse lf developed a part icular  aspect of his

‘46 pape r, viz. Cardinal spline interpolation, in considerable

detail in a sequence of seven papers which appeared in the late

60’ s and ear ly  70’ s. These papers have become the basis for
his beautiful monograph [76 ] on cardina l sp line interpolation.

Readers interested in the properties and use of B- splines on

uniform knot sequences are urged to consult that monograph.

3. B- splines Defined

It was apparently Schoenberg ’s colleagu e H. B. Curry who
observed tha t the formulat ion (2.2) of Mk as a k-ti-i order

difference generalizes naturally to a k-th order divided dif-

ference on arbitrary points,

(3.1) Mjk (x) := k[tj,...,ti+kl(. -x)~~
’.

The resu l t ing  paper [30 ] , though wri t ten  in 1946 (see [29]) , was
f ina l ly published in 1966 . The function M~ k is easily seen
to be a ~p function of order k with break~oints tj~~•*~

tj÷k~
and wi th  smoothness across each breakpoint t ,~ which depends
on i ts  m u l t i p l i c i t y ,  i .e . ,  on the frequency with  which the num-
ber t~ occurs in the sequence t

L~~~•~
ti+k• Further, one

readily sees tha t

(3.2) Mj,k
(x) �O with  equal i ty  if x ~ (t i,tjk )

~~~~~~~~ —Lr-~ 
—--—

~
—--= .. —- -

. -~~~ — —~~~ ———-—



in case t~ < ... < ~~~~~
Now let t := (ti)~ 

be nondecreasing, with

t := inf t
~~
, t := sup

and let (H k~- 
be the corresponding B-sp line sequence. Then ,

i,
the prescription

(
~~
a
~
H
~~k

) (x) := 
~~
a
~
M
~~k

(x), i.e., pointwise,

make s sense for  all  x £ ]R and all a £ JR since, by (3.2),

at most k of the term s in the second sum are nonzero for any

given x.

In a later publication [73 1 (but see already Curry ’s re-

view 1281 of (70J), Schoenberg gave these functions M~ 1€ 
the

name basic spline , or B- spline, for the following reason.

THEOREM 3.1 [30]. If t :~ (t )
~ is nondecreasing~ with

< t
i+k 

and d . := card (j t~~ 
: t~~~ ),  all i, then the corre-

spondin~ sequence (Mjk)~~, 
of B-s~ 1ines is a basis for the

linear space ~~~~ of all functions f ~~ JR which vanish

off (t ,t) an~ which1 on (t ,t), satisfy

£ 

~ k (ti,
tj+i) ’  jump

~~
f
~~~

= O for  r <

all  1..

in the se~~;e that the map R~~~~~
—4 

~k t
: a p-4 L

I
a
L
MI k  is one-one

and onto.

This theorem motivates the def ini t ion

‘
~k t  

:= (Z
~
a
l
M
~~k 

cz~ £ R, all i)

for arbitra ry nondecreasing t. bi-infinite or not, with the

stan taken over all I. for which (tj,...,tj+k) is a segment

of t. In par ticu lar ,

-6-



I, ‘:~
if t = (t

i
)~~

k
, then = 

~~~~~~~~ I c~ € JR
fl~~

Further , we will call  ‘
~k t  

the collection of (polynomial)

gplines of order k with knot sequence t.

~~ROLL.ARY (Construction of a 8-spline 
basis for 

~k 
) .  Let

:= ~~~~~ be strictly increasing, v := (v
~
)
~~~~~

b; a cor-

responding sequence of integers in [0,kJ with v
1 

= v
1 

= 0,

and let P be the space of pp functions of order k on

with breakpoints 
~~~~~~~~ 

and continuous v- th

derivative at for v < v~, ~~~ 
i. .L~

:= (t~)~~~~ = 

~~~~~~~~ ~2’~~~ ’~ 2’”~ ’ ~ +l’
”’~ +l~ ’- 

‘—...--—.- ‘.—.#-——d %i___~._.~_J ~
v = k  v v =k1 2 p+l

then n = k + E
~
(k_v

i
) and the sequence (Mjk)~ 

of B-splines

(restricted to 
~~1’~ p÷1 1

~ 
of order k for the knot sequence

t is a  bas is for P
=

For k even, k = 2m, it is customary to single out the

subspace 3 of so-called “natural” splines in P . . This

subspace consists of those f in 
~k 

for which f
~ ~

and are both of degree < m (see Section 8 be low

(8.8)). Greville [44] has described the following B-spline

like basis for S,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

with the special functions 
~
tj,k 

define d as follows :

-7-.

.1 _ i , - ~~~~~~~ ~~~~~~rir ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Mi k (X) := k[tk+l,...,ti.~k
) (
~
_x)

~~~ 
for i < k

(3.3)
A k k-I
Mn_ i ,k

(X) := (- ) 
~~~~~~~~~~~~~~~~~~ 

for i < k.

For a different generalization of M.~ to a “B- spline ”

with multip le knots (which are otherwise uniformly spaced), see

Schoenberg and Sharma [771 and Lecture 5 of Schoenbe rg ’s mono-

graph [76]. Certain technical assumptions made by them in

their construction have recently been removed by Lee [561.

4. Simple Properties of the B-spline

In this section, we list some simple properties of the B-

spline, some of which are enlarged upon in subsequent sections.

The def in i t ion  of M~ k as a divided d i f fe rence  together wi th

Taylor ’s formula  wi th  integra l remainder readily imply that ,

for t~ < tj~~

(4 .1) [ti,.. ., ti+klf = 
~ 
Mi k

(s) f (k) (s) ds /k ,

all f c L~~
[t j , t i+k 1.

In particular,

(4 .2) 1 Mj,k(s) ds = 1.

This shows tha t , on [t j,tj+kJ ,

x
(4 .3) 0 (x) : — J. N. k (5)d5

-~~ 1.~

is a spline of order k-l with knots 
~~~~~~~~~~ 

and r ises
strtctly monotonely from a value of 0 at t~ (and to left of

t~) to a value of I at ti k  
(and to the righ t of t

i k ).

This function is therefore usefu l in construc ting piecewise

monotone epline interpolants as is done in Passow [66), but

without having to resort to multiple knots as he does. O’e



c

obt ains his cons t ruc t ion  as a specia l case by le t t ing half  the

t . ’ s equal t~ and the other half equal t i+k~ 
Use of 0 also

p roduces a very  quick proo f that sp lines have property SAIN

with respect to interpolation at a given set of points and the

uniform norm (see Chui, Rozema, Smith. and Ward [24], who use

(4.3) in the form (4 .11)) . Because of its local and monotone

character, 0 has also been instrumental in DeVore ’ s successful

investigation [321 of the order of approximation to smooth mono-

tone funct ions by monotone splines.

It seems more convenient in computations to use the nor-

malized B-spline

(4.4) Njk (x) := ([t.41,...,tj+k) - [t i,...,tj÷kl ]) (-x)~~~

= (tj+k
_ t
j)Mi,k

(x) 1k,

since it insures (see (5.8) below) that

(4 .5) 
i:i

Nj,.tc 
= 1 Ofl [tk,t ll.

Note that then

(4.6) Ne?,, = Mj,k_l 
- M

j+l,k_l

- 
k-i N - 

k-i
— 

ti+k_ l 
- t~ i,k-l t

i+k
_ t

i+l 
Nj+I,k_l

.

If one fol low s [81 and applies Leibniz ’ formula

(4.~~ [t~ , . . . , t
1

) ( fg)  = 

r~i
ttj

~~ 
, t l f

for the divided difference of a produ ct to

j i— i(. -x)~ = (. -x) (. -x)

and no te s that  a l l  d ivided d ifferen ces of (~ -x) of order > 1

_ J  
— ~~~~~~~~~~~~~
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vanish, then one obtains the r ecurrence relation

‘4 8’ l(
• I L ~~~~~~~~~~~~~~ X J~~ -

tj:k ti
i+l L+

k )

which in turn implies that

(4.9) k
;
J
1
lN~i~ (X) = t

i+k l~
tj l 

+ 
t t ~~ 1

N
~~~,k l (x) .

For j = 0, this recurrence was found by the author [81 and by

L. Mansfield , and by Cox [271 who proved it by a diffe rent

argument and for  distinc t knots only, and gave a backwa rd error

analysis in that case for the evaluation a lgor i t hm based on the

recurrence. The recurrence provides a scheme for the stable

evaluation of B-splines since, on the interval (ti,
t
i k
) of in-

terest, i.e., on the support of Ni k’ both wei gh t s  in (4 .9)

are positive. This observation also allows us to establish , by

induction on k, that

(4 .10) Ni k  
>0 on (tj,ti+k).

Similar recurrence relations for the integra l of a B-sp line

have been given by Gaffney [39], and for the integral of pro-

ducts of 5-splines by Lyche , Schumake r , and the author [171.

In this connection, we note chat

x j+r
(4 .11) 1 M~ k(5)ds = 

~ 
N~~~~1

(x) f or x 
~ 

t~~~~~1
.

-~~~~ j=i

B-splines are convenient for relating splines with multi-

ple knots to splines with simple knots and vice versa (e.g.,

( 7 ) , Rice [68], Burchard [231, also the paper by P. Smith in

these proceedings), since a B-spline is a coutinuous function

of its knots, within reason . Specifically, writing

I:~j 
~~~~~~~~~~~~~~~~~~
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N
t
i~ •~~~

t
i+k 

i,k

to stress the dependence of N on its knots t ,...,t
i,k i i+k

the map

k
(t )

~ ~~~~ N

~~

is continuous as a map from Cr c JR
k41. Fr~ < . . .  <

< t
J~~~ 1

) to C(]R); it is also continuous as a map from

(r € JRk+l~~ ~ ... r~, ~r0 < tk) to L~~R) f or eve ry l < p <c~.

The precise behavior of N~ k near the boundary of i ts

support can be read off directly from its definition as a di-

vided difference. Since

k-I k k-l k-i
(y-x)4 

- (-) (x-y)~ = (y-x) ,

and the k-th divided difference of a polynomial of order k

vanishes, one can write N also in the form

(4 .12) N
ik

(x) = (_)k((t i:...,tik l - [tj,...,ti+k l
J)(x_.)

~~
’

From this, one infers at once that, e.g., for x near

(4.13) N i k (x) = (X~~~~)~~~
r i~~

r 

~~ 
k_ i

t
j=l i+k-j i

if t = t < t ,hencej  i+r- I. i+r

O((x-t )N k
(x)) for j > i as x —~ t

(4.14) N 
~~~ 

= ~ ~~‘

O((x_t
j÷k)N

j,k
(x) ) f or .i < i as x -~~ ti+k~

If t~ < •.. < t~÷~ then N i k  has a zero of order k-I at

t~ by (4 .l~ and also a k-I fold zero at ti+k by syninetry . This

implies that

— ii —

- - .-~.=~~~~_
-—- 

~~~~~

r .
~rr.,

. -
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-
~~~~

-- -
~~~~~~

—-
~~~~~

-—
~~~~~~~~~~~~

-- — - —

ti+k
(4.15) 0 N~

J
k
r) ( t )  = 

~ 

(t
i k

_s) r-lN(J) (s) ds/ ( r I) ~~,

r = l,...,j; j =

showing that ~~~~ is orthogona l to P. on [t
i~

ti+k
) ,  

~ =

,k-l. (This fact was poin ted ou t to me in 1973 by H. G.

Bu rc hard.)

5. The B-spline Series

In this section the relationship

(5 .1) ~~~~~~ .-~cx

between a sp line and the sequence of its B- spline coefficients

(with respect to the normalized B-splines) is discussed. Fur-

ther aspects of this relationship will be mentioned in subse-

quent sections. From here on, we suppress the subscript k

in and M
i k  

except when necessary . Also, we restrict

the knot sequence t to be bi-infinite in order to avoid

(mostly notational) complications . This is no essential re-

striction since any spline can always be extended to a spline

with a b i - in f in i t e  knot sequence merely by adding to its expan-

sion appropriate B-splines with zero coefficients.

A 8-spline series may be differentiated by d if f ~ rencing

the coef f ic ien ts .  Precisely, repeated app lication of (4.6)

gives

(5 .2a) (:.a
~
N
~~k
) ~~ =

with

Iai , j = 0

(5.2b) ~~~ := -I i i— I

L (tj+~~j_ t i)/(k.J) ‘
The recurrence relation (4.9) (with j = 0) allows one to

42-
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express a B-sp line series as a series of lower order, but with

po lynomial  c o e f f i c i e n t s .  P rec i se ly ,

(5.3a) ;.iai si k (x) =

with

( a~

(5.3b) a~~
1 (x) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
>0

i+k—j i

In particular, :~
1
~~~

1 is a polynomial of degree < k which

agrees with :
~

cr
~
N
~~k 

on [t~~~~, t
1

] . Hence, (5.3) can be used

to evaluate ijc~j
Njk ~t X € [t ,t~~ 1

] by repea ted formation

of averages, starting with the k numbers a
~~k÷l, 

.. . ,a~ (see

the f i r s t  a lgor i thm in [8])

The quasi-interpolant of Fix and the author [161 provides

an ofttimes convenient means for computing the B-spline coeffi-

cients of a given spline . The quasi-interpolant makes use of

the linear functional ?~ given by the rule

(5.4) ?~ f := f := ~ ( ) k_ l_ i
*
(k_l_i)

(T)f (i)(T ) •Ti,Wi k j<k ‘

Here,

*i,k
(x) :~ (t~~1

_x) . . . . . (ti÷k_ l
_x)/(k_ l)

and is an arbitra ry point in (t
i,

tj+k). Then, as one

verifies direc tly [16],

(5 .5) ?~1N1 
= all J.

Since has support at a point only, it fol low s tha t

?~~(Z1
cr~N~) = aj.

The usefulness of this functional was demonstra ted in [91.
For instance, it provides a quick proof of Theorem 3.1 and its

-‘3-
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corollary. As another instance, it provides a quick proof of

the fact due to Curry and Scho~nberg [301 that B-splines are

splines of minima l support: If f c 
~k t  

has its support in

(t ,t ) and s < k , then , for  each i, one can choose r
r r+s j

in (tj,ti+k
)\( t ,t + ), 

hence then k~
f = 0, all i, i.e.,

f = 0.

More generally, one obtains

LEMMA 5.1. If t~ < ~~~~~ al l  i, then supp(
~j
(
~j
N
i
) =

U supp N~ .
a~~0

In order to compute the coefficients of specific splines,

we observe that, for f, ~ c P , cz(r) := ?% f is constant ask t,41

a function of r, as is clear from the fact that cr’( r) =

- (-) i~~~(~r)f(r). Hence, with t = y, we get that

7~ ( )
k~l (y .)

k~~ = 
~~ 

~~~( ) k l
(~~1y

‘

This shows that

(5.6) (y_x) k l  
=

which is Marsden ’s identity [61]. More generally,

~~~~~~ 
.)~~~

1)
/ (k_ p) = (_)P l

4~
(P 1) 

(y) (_ ) k-P,

so

(5.7) (y_ x) ’~ 1’I (k_ p) : = (_)
k l

Z~V 1
(P;l) (y) N

i,k
(x),

and, in particular, with p =

(5.8) 1 = 
~i
N
i,k

.

Of course, all these identities hold on (t ,~,,t) only. One
ob tains simi larly that

~~~~~~~



(5.9) (y-x)~~~ = 
i
(y_ tj+I) ...

~~
(y_ ti+k j)+Ni k (x), 

for y€ t .

For the uniform knot sequence t=~~ and for k = 4, one can

find (5.6) and (5.9) already in Schoenberg [70J.

Identities (5.6) and (5.9) illustrate a point to be made

repeatedly in this survey, viz how closely a spline function is

modelled by its B-spline coefficients. To elaborate on this

point a little, note that, with r := (r~)~ any subsequence of

t , (5.9) implies that

(5.lOa) k[T
O
,...,r

k
](
~
_x)

~~
1 

= 
~~
a
T

( i)M
~~k

(x)

where

(5.lO b) a~(i) := (ti+k~
tj) E~o , . . ., Tk ](

~~ t i+l ) ;... .(
~~ t i~k_ l ) +

>0

This supplies the formula

(5 .11) [t
O,.••,

T
kJ = E1a (i) [tj,...,tjk l

for the k-th divided difference at some points in terms of the

k-tb divided differences at the points of a refinement of those

points, with the coefficients nonnegative . The existence of

such a formula with nonnegative weights a
r was alread y known

to Favard [351. The formula is clearly a discrete analog of

(4.1), and a deserves to be called a discrete 8-spline with

knots r .  Indeed , a has been called Just tha t by Schumaker

[79) in the special case when t is uniform , t . = t
0 ~- ih .

all  i. In tha t case , if f 
~ c,-~ has only the active knots

t~ ,...,t~ and f = E~af
( i) N

1 k,
=
then a~ is a discrete

0 r
spline of order k with knots i

0~ • • •~ i in the sense o f
Mangasarian and Schumaker [601. This means that , for each j,

af
(i) is a polynomial of orde r k in i on i

1 
- k < i < i

1~ 1.
It should be said , though , that Mangasari an and Schumaker did

1 - — . .-~. .- -I - ~~~~~~~~~~~~~~~ -



not view discrete splines in this light as B-spline coefficients

of cont inuous sp 1in~ s. They arrived at discrete splines as the

solution of certain discrete minimization problems .

The size of the i-th B-spline coefficient of a spline is

closely tied (at least for moderate k) to the size of that

spline “nearby,” i.e., on (ti,
t
i k ), 

as can be proved [9] with

the aid of the linear functiona l (5.4). Slightly more refined

arguments produce the following explicit result.

THEOREM 5.1 [13). Let D
k 

be the smallest numbe r wi th  the

property that for every t , every i, and every a < b with

< a < t~~1, ti+k_ l 
< b <

there exi sts h e L such that
i

(5.12) supp h~ [a , b ] ,  
~
h i~~~ < D

k
/(b_a) , I h~N . = 5.~ , all j.

Then (w12) k / 2  < Dk < 2k 9k-l

Numerical evidence presented in [13] strongly suggests
k

tha t actually D
k 2

The theorem implies that

(5. 13) ~~ I(tj+k
_t

i
) i/P 

~ 
r)
k~
:
~
a

~
NI~:

P [t i~
t i k ) ’ ~~~~~~~~

which leads to

THEORE M 5.2 [9]. Let E be the diagona l matrix

(tj~k
_ t

i
)/k, . . .J. Then

Dk E ”
~~

cz
~ 

< fl Z.~cZ~N~~J < 1E 1
~
’Pc~~~, all  a € l ( p <~~

In parti cular , ~~~~~~ c L if and onl y if E~~
’
~a € £ ( ~~) .

The proof of the upper bound for !I:~a~N~I makes use of

the fact tha t the N
i
’s are nonnegative and sum up to I while ,

by (4 .2) and (4.4), fN i k  = (tj.~k
_ t
j)/k.



COROLLA RY 1 (9]. Let N . := ( k/ ( t . - t  ) ) l/P N • For
— i,k,p i k  i i,k

I < p ~ , (N . ) is a Schauder basis  for L ~~) .
1, ,p ,— 

p

We note the est imates

(5 .14) k”1
~ /k < N . < 1.— 

~,k,p p 
—

COROLLARY 2 1121. Let t be finite, infinite, or bi-infinite ,

let C :- (r N~ k 2N . k 2~ ’ 
and let = (:~. ) .  Then, , ), , i.j

decays exponentiall y away from the diag~na1. E~plicitiy,

< const q~~~3~

with  q = ( l_ D
k
2
)
l
~

(2k 2) 
€ (0 , 1) and cons t = D~/qk l  

both

depending only on k and not on t .

This coro l la ry  was proved ear l ier  for  a f in i t e  un i fo rm t

by Docista [341, and then used b y Cielsielsky and Docista [263

in the construction of a basis for c
k_2

[o,ij which is, at

the same time, also a basis for L
k 2 [O l ] d for I < p < ~~ .

The corolla ry was used in [12] for  a somewhat related purpose ,
viz in order to show that least-squares approximation from

considered as a map on L , can be bounded in terms of

the global mesh ratio

M
t := suPi,j

(t
i k

_ t
i
)/(tj÷k

*t
j
) -

CO ROLLAR Y 3 [7), [13]. .!~~~ 
m
~~~t 

:= f lc i~~~~~) be the

space of bounded splirtes o f o rde r k with knot sequence t.

Then the rule Ci .- -. 

~~
L
~i
N
i ~~~~ ~(~~)~~ii~~ ~~~~~ 

Furthe r,

~~~ 
0: £~ (~~) — #m~~~1: c~ ~~~ ~~j Ni , the condition (numbe)~~

cond
k~~ 

:= OIi ’ :0 1 ., of the basis (N
i
) 1~~ 

mt
~~~ 

is bounded

~~ 
Dk 

independent of t .

H _________



Since (D
1,
D2, D3,D4,...) (1, 2.5, 5.3, 10.1, . . . ) ,  thi s

show s the B-sp line basis to be well  condit ioned , independent of

t , for “small” k.

Finally,  for another illustration of the fact that B-sp line

coefficients “model” the function they represent , obse rve t hat ,

for the par t icu la r  choice

(5.15) i
~~ 

= ‘r~ := (t
1

~~~
1 

+ . . .  + ti+k_l)/(k l),

the coefficient of f~~) (r
i
) in (5.4) van ishes. Then

= f(r ~) + b
i

with

ibi = I 
k l j ( k l j) (ri) f(i) (t i)

< C O f lSt ~~ (max ~~ 
2 max 1f

(i) ~
r 2~j<k

Therefore, if, e.g., f is a fixed spline with ~~~~ IL <
for 2 < j < k, and we write f as a linear combination of B-

splines on a knot sequence t which refines the knot sequence

for f, then the resulting B-spline coefficient sequence a for

f satisfies

a1 = f(’v~) + O(max (.~t) 
2
)

6. Local Spline Approximation

Because of their local support , B-splines have been in-

strumental in the construction of local spline interpolation

and approximation schemes. In such a scheme, the approximation

is taken in the form

(6 .1) Af := Z
1C.~~f)N 1

with a linear functional with supp:rt in supp N~ = (ti, ti+k).



Since then (Af) depends only on fj 
~ ~ )‘(t~~ t~ 41

) ~ j+l—k’ j.k

such an approximation scheme is capable of reflecting, and tak-

ing advantage of, the local behavior of f.

LEMMA 6. 1. If A reproduce S 

~k 
~~ (t _ , t), then

(6.1) h f - A fc’ 
~ ) < (sup j~I~i1 ’i) dist~ (t t )

~~~, (ti, j+ i ‘ j~ l—k’ j+k

The condition that A reproduce 
~k 

is certainly satis-

fied in case A is a projector. This will happen iff (~~
) is

dual to (N
1), i.e., 

= 

~~~~~~~~ 

all i, ~~ . In such a case,

Af interpolates f at (
~~) in the sense tha t ~~~~ =

a l l  1. A linear functional 
~~

. sa t i s fy ing

(6.2) supp supp N1 
(t j , t j k ) ,  

~i
N
~ 

= 5.~~, a l l  j,

~seems to have been constructed for the first time in 15 .1 , for
the purpose of demonstrating the linear independence over an

interval of all B-splines which do not vanish identically on

that interval. Since then, such linear functionals have been
constructed in various ways and for a variety of jobs. A sum-

mary and detailed discussion is given in [13].

The first local splirte interpolation scheme seems to have
been Birkhoff’s local spline approximation by moments [41. A

corrected and extended version can be found in [6]. The scheme

was not given in the form (6.1). It was therefore somewhat of

a surprise to find that local spline approximation by moments

is a special case of the quasi-interpolant of Fix and the author
[16]., i.e., of the form (6.1) with = given by (5.4)
with = t

i+k/2~ 
all i.

The quasi-interpolant approximates well to f ~~~ its

first k-i derivative., but requires values of f and of its
derivatives for its construction . An earlier scheme [7]

- l.~ - 
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cons tructs involving only function evaluations , and satis-

fying even

(6 .3) supp  .

~~ 

( t~~~~~ 1,  ti k l
) , u1N . = 

~~~

. . ,  all  1,

and s~-’ that sup~ IL . < ~~~. This is possible since it can be

ihown that

:= sup sup hif(L~’ (.~cC*(tj+l,ti+k_ l1 , ~~~~~~~~~ all ~

(6.4)  = sup sup 1/dis t 
~ 1

(N
1, 

span(N )
i ~~~

‘ i+1’ i÷k-1 ~

is finite . In fact , it follows from Theorem 5.1 tha t D < I)
k, oo k

a.. there fore , one find s that , for thi s scheme,

(6.5) f-Af < D dist ‘f ,P ) .
— k,a. oo

~~
(t j + 2_ k~~

t j , k _ j) k

But i t  is not c lear  how well the derivatives of Af approximate

thoge of f. Also, A is not applicable to arbitrary fe L~.
The latte r objection can be overcome by choosing u.~ of

the form

= ffh~ ,

with Ii € L It ,t I chosen as in Theorem 5.1 to satisfy
I ~ i t+k

(5.12). The resulting linear projector F,

(6,6) Pf - ~(ffh 1
) N ~~

is local and is bounded as a map on L by Dk 
for each

p € [l , ool and independently of t [11]. But, in order to ob-

tain also good approximations to derivatives (regardless of t ,

i.e., without recourse to Markov ’s inequality), Lyche and Schu-

maker [59) found it necessary to give up the condition that Af

interpola te f and to revert to the weaker condition that A

merely reproduce 
~k

’ Such local approximation schemes have

been further investigated by Demko (31].

-2 0-
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An important local sp u m e  approximation sch~~~&’ (which only

reproduces P1) is S~ h~ cnhc rg ’s v a r i a t i o n  d i m i n i s h i n g  spl ine

approx ima t ion . It w i l l  be d i scussed  in the next  sect ion .

The use of local sp line approximation schemes for gauging

a c c u r a t e l y  the degree  of appr 3xirnation by ~plines is further

pu r sued in )c’~ 1re ’ s contributim to these proceedings.

We close this sectiL’n with the remark that the dua l to the

linear projector P in (6.6), i.e., the linear projector F’

given by

(6.7) P’g :=

is he lp fu l in s e t t l i ng  two quest ions  of “ smooth” inte rpola t ion .

The first, raised originally by Schoenberg [74) and partially

answered by Golomb [421 , concern s the existence of g c

which satisfies g(t
1
) = ii’ , a l l  i , for  a given a € and

a given t = (t~~) taken strictly increasing ~or simplicity.

Let [t
~
,..., tL k ]a be the k-th divided difference of the data

at ti~~ •~~
ti+k 

and recall the diagonal matrix E :=

(t -t )/k,...~ of the p receding section . Then it is easily

seen that having E ~~( [ t . t i k ]) in 
~ 

is a necessary

condition for the existence of such a g. To see that this is

also a su f f i c i en t  condit ion , observe [13) that the function g,

given by the conditions tha t ~(t~) = 
~~~~
, i = l,..., k and that

(6.8) g
(k) 

= (k-l)

is in by The orem 5.1 in case E~~
’P ( [ t j , . . ., t j +k )) € 2 ,

and agrees with :t at t since, by (4 .2), it has the same

k-th divided differences at the points of t as does a.
The particular inte rpolant g to the given data a at t

just constructed has the property that, on [t~~t3~11~ at most
k of the h~ in (6.8) are not zero, while , by Theorem 5.1,

Ihih ,,(t j ,k_ t
i) < Dk, all i. This proves (13) that, for given

- - -— 
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t and given a, there exists g € L
k so that = a and,

for all t < t  ,j j+l

1
<const max

~~, t
j~

t
j 1  [t

j~
t
j+l]E[tj~

tj÷kl

for some const < D
k
. This answers a question by H.-O. Kreiss

as to the existence and the size of such a const.

7. Total Positivity and the Variation Diminishing

Properties of B-spline s

The strict positiv~ty of N
i,k 

on (t j , t
i+k

) (see (4 .10))

is a particular instance of the Schoenberg-Whitney theorem and

the .ariation diminishing properties of B-splines, the subject

~r this section. A thorough discussion of these matters in

the more general context of Chebyshev splines can be found in

Chapter 10 of Karlin ’s book on total positivity [471.

Throughout this section, the knot sequence is taken to be

finite,

n+k
t = (t~)1 , nondecreasing with t

1 
< ~~~~ all 1,

and (N
i
)
~ 

is the corresponding sequence of 8-spline s of order

k. has then dimension n. We consider spu m e  interpo-
,=

lation at points T
1 
< ... < T .  This amounts to finding, for

given f, a € so that

n
(7.1) E a N (r

~
) = f(t

1
) ,  i =

j=1 ~

The question of existence and uniqueness of such an interpolant

was settled some time ago.

THEOREM 7.1 (Schoenberg-Whitney [78]). Let

1k  - 
n

(7.2) S = ~ a~x
i 1 

+ :~: a~(x_ t~)~~~
’ a £

(J=l j=k÷l

- 2 2 -  4
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with t < . . .  < t . If r < ...  < r , then S contains,
— k+l ii — 1
for arbitrary f, an s such that s(r

1
) = f ( r~), i =

~~~~~~ ~i-k 
< ~~ < T~~~, i = k~ l, . . .,  n.

In this connection, it is interesting to note the follow-

ing theorem published with an elegant proof in 1939, and pointed

out to me by Allan Pinkus.

THEOREM (Krein and Finkelstein [55]). Let G be a Green ’s

function for the k-th order linear differential operator

k
L =  E p D~

j=o
j

~~~~ Pj 
€ C[a , bJ , all j, and 

~k 
never zero on [a,b). ~~~

cifically, assume that G is of the form

0 (x)* (y) for x > y,
j=1.

j  j

G(x,y) =

A

? 0  (x)~V (y) for x < y,
j=l j i

with both (Ø. )~ and (
~~)

‘
~ 

linearly independent and in ker L.

Ix • . . . , x ‘~

If det G ~ r)> 0 for all nondecreasing (X.) r

Yl~
.•. Yr 

— 1. 1.

!! ~ (Y j )~ , S~i~ i

det c (t
;
r) >0 for an increasing (x

1
)~~, (y1

)~

if and only if x~ < y~, I = p+l,...,r, ~~~ ~‘i 
< X~~÷q~

I = 1,...,r- q.

Since S, as defined in (7.2), agrees with ‘
~k t  

°~‘

[t
k,

t
fl+1

], it is possible to translate Theorem 7.1 iñtc  a state-

ment involving B-ap lines provided we make the assumption tha t

-2 3-
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_______________________________

(7. 3) T
l~~~~~~

T
n 

C [tk,t l
] .

I t  is a lso poss ib le  to p rove d i r e c t l y

THEOREM 7 .2 .  If . ..  T then (N (T .))~ is invertible
— 1 fl j i l

if and only if . £ supp N
~
, ~~~~ N.(r~) 1 0, all i.

In other words, (N .(r .)) is invertible iff its diagonal

is invertible . Burchard [21, Chap. III. 2(3)) and Karlin [47,

Chap. 10, Lemma 4.11 both prove Theorem 7.2 explicitly in term s

of B-sp lines, with simple knots, but, on the other hand, more

generally for Chebyshev splines.

Karlin and Ziegler [531 remove the restriction in Theorem

7.2 to simple knots. They also allow for repeated or oscula-

tory interpolation and consider Chebyshev splines rather than

just polynomial splines . Straightforward translation of their

result to B-splines would require assumption (7~ 3),

We will now quit belaboring this minor point and state the

theorem d i r ec t ly  in term s of B-splines .

THEOREM 7.3 (Karlin-Ziegler [53] extension of Schoenberg-Whit-

ney). 
~~~~~~~ 

be such that

-r = ... = t . = t • = ... = t  implies r - - s < k ,i+l ~— r j-* l j+s —

and define linear f’.inctionals (p~Y~ by the rule

: f~~~~~(T  ) ;-:ith j :: max [r . = t I .
i i-r 1

~~~~~~~~~ 
is invertible if and only if N~ (t .) /0, i—1 ,...,n.

A simple proof of this theorem, using only elementary pro-

perties of B-spline s and Rolle ’s theorem, can be found in [151.

Theorem 7.3 states conditions under which it is possible

to interpolate by linear combinations of all B-splines for a

given knot sequence . A careful study of Karlin ’s proof [471 of

the total positivity of (Nj(Tj)) reveals the fact that

-24-
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Theorem 7.3 remains valid if we replac€ the sequence (N.) by

one of its subsequences .

T}~~OREM 7.-~ [15). Under  the same assumptions as those o f Theo-

rem 7.3, and for any subsequence (q1,...,q~
) of (1,...,n),

?O with equality iff , ror some i, Nq
(tj) = 0.

This theorem imp lies at once the total positivity of

(N
3

(r~))

THEORE M 7.5 (Karlin [47j). Let ... < r .  Then

is totally positive. i.e.. all its minors are nonnegative.

Karlin [47, p. 563] states that  this theorem was communi-

cated to him by Schoenberg .

COROLLA RY. (N
i
) is a weak Descartes system. ~~~~ any subse-

quence (N )~~ 
o f (N~)~ is a weak Chebyshev system.

q
1

The total positivity of (N.(t .)) provides bounds on the

effect of rounding errors when solving (7.1) by Gauss elimina-

tion without pivotir4 which are smaller than those obtainable

for genera l matrices even when using pivoting [181. This means

that it is reasonable to solve the banded system (7.1) without

pivoting with the attendant savings in storage and program com-

plexity.

The to ta l  pos it ivl cy of (N . (t .)) is used in an essential

way by Karlin and Pinkus (51] in their extension to splines and

to higher der iva t ives  of earlier results by C. Davis and Viden-

ski concerning the ex i s t ence  of a polynomial of degree n on

[0,11 with a prescribed sequence of n~ l extrema.

The total positivity of (N.(t1
)) leads to one of the

more striking spline approximation schemes, Schoenberg ’s

-z - 
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variation diminishing spline approximation , which has found

much use in computer-aided design (see, e.g., Riesenfeld (691).

We recall some notation . A real-valued function f on some

subset D of R has at least m strong sign changes if f

alternates (in sign) on sortie (t~ )~~ in D, i.e., if

f ( r 0
) / 0 and, in case m >0, f (t ~~ 1

) f ( - r
1
) <0 for i=l,...,m,

for some nondecreasing sequence (t~~ )~~~ in D. It is customa ry
to denote by

s (f)
the total number of strong sign changes of f on its domain.

It is well known (e.g., Theorem 5.1.4 of (473) that, for a to-

tally positive matrix A and any vector a,
S (Aa) •( S (a),

i.e., a totally positive matrix transformation is variation di-

minishing. Since (N~ (T~)) is totally positive , it follows

that the linear map V .1., given for some nondecreasing r by

(7 .4) V f := ~ f ( r  ) N  , all  f ,
•1. 

~~~~~ 
~

is variation diminishing, i.e., S ( V f) < S (f) . Recall  now
f rom Marsden ’s identity (see (5.6) and (5.7)) that, for any

straight line p and any -r with r~ £ (t i , cjk
) ,  ~ll j,

J1 [ J P’(tj)[:tj+r 
- (k- l)t]/(k-l) 

~~

on [t
k~

t
÷l
). Therefore, with the particular choice

(7.5) (t~~1 
-
~
-...-t tj+k..u

)/(k_1), j =

mentioned already in (5.15), V ,~ reprod uces P2 on [tk, t ll,
and we have

- 
_ _ _ _ _ _



F

(7 .6) S ( V T*
f_ p )  < S (f-p) on [tk)t +l

]) all p € F2, all f .

The resulting approximation V~~, f to f is Schoenbe rg s varia-

tion diminishing spu me approximation, introduced by Schoenbe rg

in [73] and further discussed in Marsden and Schoenberg [63].

We note the following result due to Marsden [62]: Write

k 
to stress dependence on k, and restrict t so that

t = ... = t = 0 and t = . .. = t = 1. Theni k n+l n+k

(7 .7) VT h k  —+1 ~~jntwise on C[O,lI 1ff max~ ~t~/k —+ 0,

as Marsden shows with the aid of the Bohman-Korovkin theorem

concerning strong convergence of positive operators to the iden-

tity on c(O,l1 .

It is possible to refine the proof that S (Aa) K S (a)

for a totally positive matrix A for the particular choice

A = (N~(T~)) so as to obtain the following theorem.

THEOREM 7 .6 [15]. f := ~ a.N , alternates on (t~~~)~~~~, then
~J 3

N (‘r
i
) >0, i = 0,.. .,m,q

~ ~~

for some subsequence q of (1, . . . ,n).

Theorem 7.6 illustrates the point made earlier that B-

spline coefficients “model” the function they represent. A

spline cannot change sign at a point wi thou t  i t s  B-spline se-
quence also changing sign “nearby. ”

As a specific app lication of this theorem, conside r thL

spline ~~~ which, by (5.2), is the linear combination of

j+l B-splines (of order k-j), hence cannot have more than j

strong sign changes, by Theorem 7.6. On the othe r hand, if

is continuous, hence absolutely continuous, then

is or thogonal to P~ on [t
i
,ti k l , by (4.15), therefore must

have a t least j strong sign changes.

-27 -
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.4

~X~ROLI.ARY [30). B-splines are bell-shaped. Precisely, if

is continuous for some j < k, then ~~~ has exactly j zeros

in (t j , t j~~k
) ,  all  simple, i . e .,  there exis ts  

~~r~O i~fl

ti = < < 
~j-’- l 

= C
i÷k 

so that (..)
r
N~
i) > 0  2~

r = O ,...,j.

Finall y, we record the relationship between B-splines and

P6lya frequency functions discovered by Curry and Schoenberg

[301. By definitior , a Pc~lya frequency distribution is any

di s t r i bution function F ( i .e ., any function of the form

F(x) = f f(s)ds with f nonnegative and F(c.) = I) whose bi-
-

lateral Laplace transform is of the form

= l/~,(s)

wi th
2

i~r ( s )  = e ’
~
’5 +SS 

~1~f (l+S s)e
5
v~

1

for some y >0, real, and ( 5 )  c 2~ . If *(s) = e
8
~, then

dF has its entire unit mass located at x = 8. If ~i(s) / e
8
~,

then

e SX A(x) dx = l / ;( s)

with -~~ a P~lya frequency function, i.e., a nonnegative inte-

grable  function on ~ (normalized to have f A  = 1) for which

the kernel

K(x ,y) := t.(x-y)

is totally positive of all orders.

Call F
k 

a spu me distribution function of order k if

Fk has a 8-spline of order k as its density, i.e., if

:~~~~~~~~~~~~~~
- -

~~



k-I
Fk
(x) - k E r 0

... 
~~~~~~~~~~ 

ds

for some 
~ 

with t~~ < 
k~ 

Note that F
k
(x) = 0 for

x < ro and Fk(x) - I for x 2 
~k’ 

by (4.2). Furthe r, say that

F converges to a distribution function F in case lim, F (x) =
k
F(x) for all points x at which F is continuous .

THEOREM 7.6 [30). The distribution function F is a P~lya fre-

quency d i s t r i b u t i o n  i f f  F is the l im i t  of a sequence (Fk
) 

~~
spline distributions , with F

k 
c~f order k, all k.

8. “Best” Interpolation

In this section, I finally discuss an aspect of splines

which many consider to be the primary characteristic of splines,

viz , the fact that splines are solutions to interesting variati~-

al problems. This property of splines is closely related to the

fact tha t the B-spu me M . k 
represents a k-th order divided dif-

ference. As mentioned already in (4.1), if a < t~ < ti÷k
<b , then

(8.1) [t j , . . . , t
i+k

]f  r
b
M (s) f (k)

(ds)/k:

for every f c ~~~[a ,b] := Cf eC~~
2[a,bflf~~

’2
~ abs .cont., f~~~

1
~ €BV).

Details for the materiaL in this section can be found in

[14) and its references.

Consider the problem of minimizing f(~~ over

(8 .2) F~ := ~~~~~~~~~~~~~ C f  € lk [a,bfl 

~l 
=

for given :~ (~~~)~~ 
in [a,bJ , nondecreasing with -

~~~ 

<

all i, and given a e ]R~, with [a,b) finite, positive k < n and

p C [l,o’J . Here, is the sequence (f~)~ given by the rule

~~~~~~~~ with j :- max (r I 
~i—r 

=

is not empty. It contains, e.g., exactly one polynomial of

degree < n. Therefore,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~ - - -



4
F~ = Cf CLk [a,b) II = 

~cx I~
for some fixed f € F . Favard [351 alread y knew and used the

L~ p
fact that

inf jjf
(k) 

= j~~f Yg i

fcF geGp p

with

(8.2)’ G~ := (f
(k) I f e F ) = (g eL I f M ik g =

i = l,...,n-k).

Let now I. < p < ~ and 1/p + 1/q = 1. Then, following

Kre in [54 ], we recognize that minimization of over

can be viewed, duall y, as the construction of an extension
e L = L* of minimal norm to all of L [a,bl of the linear

functional ?
~a
, given on 

~k,t 
= sPan (M

~~k
)
l 

]L
q

[a~bi by

~~~~~~ 

J,~,1.—.R : Ei~i
M
i k  ~~~

This is so since C , as a subset of L*, coincides with thep q
set of all extensions of Therefore

(8.3) inf II f~~ = rnin(jI?,’ !I \ CL*, ~~~ 3 = ‘\ 1
feF q 

~k,r ~p =

by the Hahn-Banach theorem, settling existence of a minima l f
in F as well. Further, a minimal f must agree with fp
at T

l
,...,r

k 
while its k-th derivative satisfies

(8.4) J . f(k) (s)
~v(s) ds = ~f

(k) 
p~~~q

for any L
q~

extrema1 ~ of A , i.e., for any ~
- with

(8.5) * € ‘
~k,t 

and IN/ llq = 1 and Aa~ = 
~~~~~

..30..



If = 0, then there is a polynomial of order k in F

and it is the unique minimizer for all p. Otherwise / 0.

But then, for I < q < ~~, k~ 
has exactly one extrema l and the

equalicy (8.4) in Hglder ’s inequality then forces f~~ to sa-

tisfy

(8.6) f
(k) 

= ~~~~~~~~ signum ~,i .

It follows that jIf
~~ ~ 

is uniquely minimized on F , and the

minimizer is the unique element f of the nonlinear family

(8. 7) C f  £ L~ [a,bJ f
(k) 

= ~ I~
’1signum ~, for some ~ e

for which = f . Such functions have been called IL -p c  a~
splines by Golomb [421 who was apparently the first to describe

their structure.

For p = 2, the family (8.7) is linear and consists of all

f £ L~ with f~~)~ ~~~~~~ To describe the corresponding mini-

mizer, let t be the extension of t to a nondecreasing se-

quence having both a and b occurring exactly 2k times. Then

the minimizer in F
2 

is the unique 
~2 

in ê
2kt 

which, in ad-

dition to the condition f = f , also satisfies2 t  a t

(8.8) (t~~_a) 2k’
~O(a~~) = ~~~~~~~~~~~~~~~~~ ( b )  = 0, i = 1,.. .,k.

The minimizer has been called by Schoenberg [73) the natural

spline tnterpolan4 of order 2k with interior knots

for f in case a < t and t < b, in which case all thea 
~
l n

constraints (8.8) on f
2 

are active. A t the other extreme,

when’ none of the constraints (8.8) on f
2 

is active, i.e.,

when a = -r = ... = t and -r = = -r = b, the mini-I k n-k-i-I n
miser has been called by Schoenberg (see, e.g., Lecture 7 of
(76)) the complete spline interpolant for of order 2k

wi th interior knots r , . ., r . The word “spu me” itselfk+1 n-k

— 3 1-

- - -~~~~~~~~~ ~~~~ - -~ 
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was chosen by Schoenbe rg [70 ) because in the case k = 2 the

resulting interpolating cubic sp line approximates (for small

slopes) the position of a mechanical or draftman ’s spline forced

to go through the given data points. This connection between

( 2k - l ) s t  degree sp u m e  in t e rpo la t ion  at knots and least-squares

approximation to the k-th derivative has remained for many the

major reason for using splines.

For p = ~~, (8.4) fails to pin down the minimizer uniquely

since it only implies that

(8.9) f
(l
~ = ll7-~~L signum ~ off  N

* 
:= Cx £ [a,b ] I ~, (x) = 0)

fo r every L
1
-extremal of A . Of course, if N has mea-

sure zero, then it follows that the minimizer is unique and

its k-th derivative is absolutely constant, with < n-k break

points , by Theorem 7.5 , since ~ is a nontrivial linear com-

bination of n-k B-splines. In the language of Glaeser [40 ,41 1,

is a p~ r fect  ~p1ine of deg_ree k, i.e., a pp function of

orde r k+l in ck l  wi th  absolute l y constant k - th  derivative .

Whether or not N has zero measure, supp , = [a,b1\N
~

must contain the support of some B- spline of order k for the

knot sequence ~~, by Lemma 5 .1, i.e., some interval (t j , t
i+k

)

on which then , by (8 .9) , all minimizers must agree. This is

the “core interva l of uniqueness” of Fisher and Jerome [36].

In particular, the minimizer is uniquely dete rmined in case

n = k+l. It is also uniquely determined in case n = 2k and

a = t
l 

= k’ 
t
k l  = — 2k = b,

as was found by Glaeser [40,411, since now 
~kJ [a,bP

For the specific data fa (x) : = J~ (s-a)
1
~~
’(b-s)

1
~
”1ds, Louboutin

[58 ) (see also Schoenberg (75 ,76 1) found ? explicitly in this

case: is evidently orthogonal to E ‘
~~, -r on [a,b],

therefore must be a step function with < k Jumps and

c.



orthogona l to on [a,b). But, since is a Chebyshev
A (k)

system, this pins down signuni f uniquely up to mult ipl icat~~n

by a sign c~ ~ (-1 ,1),
*(k) (I)signuni f = o signuni Ck

with C
k
(x) = (~ ) k l C ( 2 ~_.! - 1) and C

k 
the Chebyshev polyno-

mial of degree k. It follows that f(l
~ is a B-spline of

order k with simple knots at the k+1 extrema of C
k 

on

[a,bJ (see (4.15)). But, in general, there will be several

distinct minimizers. Karlin [48] was the first to see that

among these has to be at  least one perfec t  spline ~ of degree

k with < n-k interior knots. Its derivative can be

constructed [101 as a limit point of the net (g
~)~~>0, 

with

the unique minimizer of ~ in

:= (g £ L ( a ,bJ 11
b
08 f

b
Øf
(k) all 0 € S~)

where

S~ := ~~~~~~~~ (K~0) (x) :=fexp(- (y-x)
2/(2C2)0(y)dy/(c/~~).

The minimizer  g
~ 

is in fact uniquely determined, absolutely
constant and has < n-k jumps, since the total positivity of

(N 
~~~~~ 

for increasing 0 (see Theorem 7.5) impl ies [47]
1~ —

that (K EN , 
~~~~~ 

is strictly totally positive for strictly

increasing 0; the refore any nonzero element ~
- of S~ van-

ishes on < n-k points. Finally,Favard [35) constructed a min-

imizer f which is a spline of degree k with < n-k interior

knots, all simple, with the additional property that, for any

f £ ,F
~~ 

tf~
’
~ < ~~ I implies tha t f = ~~~. This minimality

of “Favard ’s solution” is further underlined by the fact that

it is, for any r € [l , oo) , the L~-limit of as p ~~~~~~~ [25].

For p = 1, matters are least satisfactory since IL now

fails to be the dual for L
q 

Ther efore , al though (8.3) still
holds for this case, it may happen that none of the norm

.3 ~~
..

- - c - - - - ~~ ~~~~ - 
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preserving extensions  of -
‘ to all of IL is representable as

integration against an L
1-

function, in which case the in f imum

over F
1 

is not attained . In this situation , one may be satis-

fied to follow the lead of Fisher and Jerome [371 and consider

the slightl y different problem of minimizing

11f
(k) II := Var f (k— l)

over
F
1 := Cf € I.~k[ b J  I 

~~~~ 
= 

~aI -r

instead, which always has solutions. If r~ < i k l ’  all  i,

then among these solutions is a spline of order k with < n-k

interior knots, all, simple.

We close this section with yet another B-spline property,

this one connected with perfect splines, optimal recovery

(alias best class estimators) and L
1
-approximation by splines.

LEMMA 8.1 (Miechelli [64)). If t = (‘r~)~ is nondecreasing in

(a,b) with xi > k, then there exists (up to multiplication by

some o c (-1,1)) exactly one sign fun~~i~n h ~~~~ 
< n-k

j~mps which is orthogonal to ,!~~~ - on (a,b ] .  If a =

‘ “  < 
~r +i 

= b, and, for this h , (_ ) ih = I ~n 
~~i’~ i+l~’

i 0,...,r, ~~~~ r = n-k ~~ ~~, c (-r~,-r .~~), i = l,...,r.

Micchell i ’s lemm a is not entirely unrelated to the follow-

ing fact about B-spline s useful, e.g., in the characterization

of best IL -approximations by splines.

LEMMA 8.2. If t = (t
~)?~

’
~ 

is nondecreasing, in [a,b), w i t h

< ~~~~~ a l l  i, and f e L
1

[a ,bJ is orthogonal 
~~

[a,b), then there exists ~ = (~~)~ 4i strictly increasing in

Ia , bI wi th  t~, < 
~~~ , 

< ~~~~~~~ (any equali ty holdin.g i f f  t~~
, 

=

i = l,...,n+1, so that f is also orthogonal to ~~~~

Indeed, since, for appropria tel y chosen p £ 

~k’ 
the 



b k-i
function F := - 

•~~ (‘-Y)~ 
f ( y ) dy/(k-l) : vanishe s at t

(counting multip licit ies) by assumption, and F is in ck

Rolle ’s Theorem p roves the existence of s t r i c t l y  increasing

in [a,b] 
b 

K < ti,k_l) al l  i, at which

= const j (.-y)
0f(y)dy vanishes, which provcs the

lemma . In particular, if f is continuous, then it must vanish

at the n points of some strictl y increasing sequence 
~~~~~~~~~ 

with

t~, 
< Ili 

< ~~~~ all i.

9. Generalizations

The trend started by Schoenberg [71] and Grevilie [43] to-

ward ever more generalized splines continues unabated but has

failed to bring with it a corresponding wealth of generalized

B-splines . Schoenberg [71] actually described trigonometric

B-splines and later, Burchard (21] and Karlin (47] independently

constructed Chebyshevian B-splines with the aid of Popoviciu ’s

[67) generalization of the divided difference notion . Yet an-

other account can be found in Marsden ’s thesis, eventuall y pub-

lished in [61], in which the generalization of Schoenberg ’s

variation diminishing spline approximation for Chebyshev splines

is given, but without a proof of its variation diminishing char-

acter. Such a scheme had already been described and proven to

be variation diminishing by Karlin and Karon [49), and their

assertion in [50) that Marsden ’s B-splines are essentially dif-

ferent from Karlin’s is incorrect.

Here are some of the details of the construction.

Let Pf be the polynomial of degree ( k which agrees with

f at the distinc t points r
l,...,

rk. If 0
1

(x) = x1’’ , all j,
then

‘ l’”’’ k’ ‘‘~ / fr ,...,r
(9.1) f - Pf det I~,1 ,

~ ~) 
/ det ,~

k

— 3~ —

- - -- ,--,.. ——-~—~~~-.. - 

~T. 
- -L~_.~~-t~~ ~~~~~~~~~~~ 



Therefore, sinc e [:l,...,tk,x]f is the leading coefficient in

the p~~lyn cimial of degree s— k  which agrees wi th  f at

T
k~

X
~ 

we have

(9.2) f - P1 = T
l, .,

t
k

, ]
~~~

Ok+l k+l)

with

~~~
‘
~~~~

0k÷l~~
0k+l~

• / t
l~~~~~

Tk) a
= det /det

0I’~~”’
0k’ ~ 0l’” ’0k+1

If now, more generally, (O~)~~
i is a Chebyshev system (on some

interval I), then det (
~~
‘ ‘

~~~
‘
~~) 

~ 0 for distinct
“I’

in I and the following definition makes sense: 
~~~

k - th  divided d i f f e rence of f at the distinct points

in I with respect to the sequence 0 := (O~)~~’ is [67 ,)

(9.3) (r
I,~~~

.,tk 1 ]
O
f := det (

~~~~~~

‘

~~~
‘
~) ,/det(~~~~~~

’
~

1
~~1).

Then , with  Pf denoting, more generally, the unique element in

sPan(O~)1 
- -h i c h  agrees with f at rl,...,’rkl, we have

f — I -  = (Er
1
,.. •

~~ k’ ~~~ ~
0k—l 

—

wh ich is ~ ie forma l analog of (9.2) . The definition shows the

generali4ed divided difference (9.3) to be a symmetric function

of the r
1
’s. The definition even allows for some confluence

among the -ri
’s provided the Oj

’S are sufficiently smooth

and one defines (for nondecreasing -r)

det 
~ 

) := det 
~ 

) = det(p 0 )i 3

with ~~ := f
~~~~

(-r i) and 3 := max (rN i_~ 
= r~,

), in the manner

- - - —~



of Theorem 7.3. More detail about these generalized divided

differences are provided by Popoviciu (671 , and see also M~1hl-

bach [651.

Assume tha t, in addition, (0.)~ spans the kernel of a

k-th order linear ordinary differential operator

(9.4) L* := D
k 
+

j<k ~

with a
3 
c C3 (I) , all j, so that the formal adjoint

(9.5) L := ()
k
D
k 

4~ ~~ (-)
3D3 (a ,~) = (_)

k (Dk -~ ~ b D3)
j<k -~ j<k 3

is an operator of the same kind . Green ’s function G(x,y) for

the initial value problem L*f = g,f(~
)(a) = 0, 3 = O,...,k-l,

can then be constructed as

k
(9 .6a) G(x,y) = (x-yY~ 

~~ 
(x) ~ (y)

3=1

with (v
3
)~ the basis for ker L adjunct to (0~~)~~~ i.e.,

(9.6b) ~ O
(i_l) (x)~. (x) = ~ k’ ~ = 1,...,k, x € I.

j = 1 j  i

With t = (t
~ )?~~ 

nondecreasing and t~ K t
44~, 

all i, the

func t ion

(9.7) :-
~~~L

(y) := [t i, .. .,ti k )OG(.,y)

is then piecewise in ker L with breakpoints tjI••~~~
t
ii-k~ 

and

in c1
~
2 

in case t. < • . •  < t~~~~. In the language of Gre-

yu le [43], M~ L 
is a generalized spline function with respect

to ker L. Coincidences among the t
1
’s reduce the smoothness

of M across t in the usual way. Further,i,L 3

(9.8) Mj,L 
van ishes off (t

j,
t
jk)

-3.’-
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since, for Y > ~ +k’ 
G(~,y) (t t 

~ 
= 0 while, for y K

i’ i+k 
£

G(’,y) 
~ ~ 

e ker L* by (9.6) . One also has the analog
i’ i-s-k

‘s-k
(9.9) [t

i,..., tj+kJ
O
f = ]~ M~~~ (y) L*f ( y )  dy.

If , in addition, (0~)~~~ is an extended complete Cheby-

shev (or, ECT) system, then Burchard [21] and Karlin [47] have

shown the analog of the Schoenberg-Whitney Theorem 7 .1 that ,
for strictly increasing t and strictl y increasing t = (‘r~~)~~,

de t (M 
L

(u
i

) )  
~ 
0 with strict inequality iff M~ L~~i~ 

~ 0,

all 1. Furthe r, Karlin [47] showed that (M . L
(T
i
)) is to-

tally positive in this case, as was mentioned earlier. Few

facts beyoxig these are known f or Chebyshev B-sp lines. While

the analog of Marsden ’ s iden t i t y  (5.7) can be found in [61 1 ,
the analog of the linear functional (5.4) has not been described ,

although that should be fairly easy. More importantly for com-

putations, a recurrence relation like (4.9) has been searched

for in vain so far.
kIt is actually quite unnecessary to assume that 

~
0j~ l is

a Chebyshev system in order to construct L-splines (in the

sense of Greville) of local support. Continuc to assume that

(O~~)~~ is a basis for the kernel of the differential operator

L* of (9.4) with L of (9.5) its ad joint and G the Green ’ s

function given by (9.6). If t = (t .)? is strictly increasing,

then, for each i, the span of ( [t
3

] ) ’ 1 ~ contains a nontrivial

p i. ker L* since ker L* has dimension k. But then

(9.!0) M
p,L(x) :=k G(~,x)

defines an L-spline with knots ti,...,tj+k and support in

(tj,ti÷k
). Clearly, M

L 
represents p with respect to the

pairing (f,g) := ffL*g. If n~~ (0~)~ fa ils to be a Che byshev

-38-
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system on Et i,ti k ], then there exists a nontrivial p in the

span of ([t.])~ and orthogona l to ker L* for some r <

i.e., the corresponding M p,L 
has even smaller support . More

n+2k-2
explicitly, let (p.)1 

be the sequence

[t
1

]D~~
1
,..., [t1

]D, [t
1

] , [t
2

] , . . .,  [tn l ) 
~~~~~~~~~ 

[t 1D
k
~~

of linear functionals and, for each i, let be the linear

functional of the form v~= pi ~J~~P3 which is orthogonal

to ker L*, with r as small as possible . The corresponding

sequence (M
~ L~L of basic L-sp lines is then a basis for

the space of all L-splines on [t 1,t ]  with simple interior

knots t 2 , .  ..,t~_1 .

A construction like this was used by Jerome [45] under the

additional assumption that, for each i, ti÷k t
i 

is small

enough so that (0~~)~~ 
is a Chebyshev system on [tj,t j

÷k
] .

Earl ier, Jerome and Schumaker [46] had used such considerations

in connection with Lg-splines, i.e., when the linear functionals

(p
1
) above are, more generally, 0 F the form

Related developments of great generality can be found in Brown

[201.

We close this section with yet another B-spline property

discovered by Curry and Schoenberg [301.

LEMMA 9.1 [30]. i~! 
MO k  be the B-spline defined by (3.

~~ L

and let ; be any k-simplex in R of unit volume with ver-

tices v ’~~ , i 0,..., k and so that ~~~ = t
i,
, I = 0,...,k.

Then, for all x,

MO k (x) = 1o fl Cv £ : v
1 

x)  I,

~~~~~~~~~~~ 
M
o,k

(x) &ives the (k-l)-dimensiona L volume of the in-

tersection of the simplex o with the hyperplane in IR which

intersects the v
1-axis at v

1 x and is orthogonal to it.

-39- 

- M~u~~-: —-S ~~~~~~~~~~~~~~~~ _-~~~~~~_~~~~~~~~~~
- - 

_ _ _ _



In a letter 172] to P. Davis, Schoenberg recalls the

Hertnite-Genocchi formula

(9.11) [zO,...,zklf = f ...Jf 0’
~~

(v
O
z
O
+v

l
z
l
+...

~
v
k
z
k
)dv

l
...dv

k

with v
0 = 1 - v

1 
- ... - v

k 
and where the integration is to

be carried out over the complex

v
i � 0, ..., vk ? 0, v

1 ~ 
1,

and points out that Lemma 9.1 follow s from this on comparison

with (4.1). Schoenberg furthe r recalls that the Hermite-Genoc±i

formula remains valid if ZO,~~ •
~~~

Z
k 

are points in the complex

plane not all on one line and if f is a complex-valued func-

tion regular in the convex hull fl of 
~~~~~~~~~ 

The formu-

la (4.1) now becomes

(9.12) [zo,...,zk
]f =

,.
~~~~ M(x ,y;z0,...,z~ ) f (l

~~(x,y) dxdy/k

At the point z = (x,y), M(x ,y;zo,...,zk) is therefore the

(k-2)-dimensiona l vokine of the intersection of the plane

v ~ ~
k : v

1 
= x, v

2 = y) with a simplex of unit volume whose
(i) - (i) (I)

i-rh vertex v satisfies (v
1 ,v2 

) z~,. In particular,

M is positive on H and zero off H and is a spline of

order k-i along any straig ht line, with knots only at the points

where such a line intersects a segment [z~,z3
i. Schoenberg ’s

letter even contains a drawing of such a B-spline in two vari-

abl es f or k = 4.
This suggests the following definition.

DEFINITION. Let c be a nontrivial simplex in i~
54k

. ~~

define the B-spline of order k ~~~ 0’

M
k,0’

(x
I
,...,x5

) :~ Ia f l ( v C Rs+k :v
~
=x
~
, i=l,...,sfl

-40-
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Sall x cR

Then M,~ - is unimodal . nonnegative, piecewise polynomial of

total order k, and in C~~ in general. Its support is the

p roject ion of -~ onto IR
S
, i.e., the convex hull of the pro-

jections ~~~~~~~~~~~~ of the vertices of ~ to IR
S
.

At this point, I have no idea how useful these B-splines

might be, even only for the writing of papers. It is easy to

visualize how such B-splines can be made to give a partition of

unity: One takes some suitable convex set C in of unit
s s+k

volume and then subdivides the cylinder JR x C in R into

nontrivial simplices. The corresponding B-splines will then

add up to one. But it is unlikely that these B-splines will

become very useful unless one finds some means of evaluating

them such as a recurrence relation like (4.9).

In any event, I. think these B-splixies arr’ very beautiful.
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It seems a shame to waste this almost empty page, so here

is yet another reference to work concerning B-splines: In

Phillips, 3. L., and R. J. Hanson, Computing integrals involv-
ing B-splices by means of specialized Gaussian quadrature
rules, TR IPCS-73-OO l, Comp . Sci., Washington State U.,
Pullman, WA., 1973,

one finds a discussion of the procedure for generating the

three-term recurrence relation for the polynomials orthogonal

with respect to a B-spline as weight  funct ion , as wel l  as the
abscissae and weights for the corresponding Gauss quadrature

rule. For orders 2 and 4, and for a uniform knot sequence,

specific numbers are on microfiche in

Phillips, 3. L., and R. 3. Hanson, Gauss quadrature rules with
B-splice weight functions, Math. Comp. 28 (1974), 666. 

- .~~~~ -~~~~~
- — 

—



U ‘.c\~~SIF1Ei~

~ECuRIY ’ ,  C L A $ $ I ~ I”~CN O~ Y MI S PA G E  /IP1OI D s •  SM.r.~ )

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE B*POR E COMPLETI?4G FORM

~a a~~M!~~~ç,ç~~ssION wo . I RICIPIENI,$ CATA LOG NUMSIR‘ •V ~ o o’ ~ M5 pm 

— 
-

~

-

~~~~~ 
~~~~~~~~~~~~~~~ 

~~ 
7j ________________________________

S TY PE OF REPORT A PER IOD C O V E R E OI .d I A,uS

Summary Report - no specific
reporting period

$ PERFORMING ORG. REPORT NUM6E~~0 1

C O N T R A C T OP G R A N T NuMB~~~~~~
T

6~ ~~~DAAG 29-7 ‘~ - C

S PIN ORM~W G  O R G A N I Z  A T OM NAM E AN D A DDRESS 10- PROGRAM ELEMEw1~ PRQ .IECT TASK
A REA A WORK U N I T  NUMS,Lfl&~Mathematics Research Center , University of ./

‘

~ lñ W a lnu t  Street Wisconsin
Mad1son~ W iscons in ~37O6 

___________________________

‘ I  CONTROLLI NG O’PICI NA M E ANO A D D R E S S  I~~~~54PORT_~~ 3_5~~
U. S. Army Research Office (~J J A ug ---’~e7~JP.O. B’-x 12211 ~~~~~ U N S E R O P PA G C S  

——

Researct~ Tria~~~~ Park 1 North Carolina 27709 47
14 MO NIYORiN ~~~T~ N V IAAMC I A DDRI$$(ll dflt.o. t Ito. Co~ Irollln 4 OIfIc.) IS. SECURITY CLASS (of tAb r.po,b ~

UNCLASSIFIED
IS.. OEC LA SSIPICATt ONf DOWNGRA D,N~~~~~

’
SCM COULE

IS D$StU, Su~~ION 3 T A Y EMENT (Of 11,1. R porI)

Approve-i for public release; distribution unlimited .

‘? ~~L3T* I Su Y f O N  S T A T E M E N T  (of ffi . .b.Ir.ct .mt tod In Block 20. II dlli iwf  Ito. Rspovf)

• ~~- - - -~~~~.- .-
~~~~~

•

5 S~j PD~.. E M E N T A ~~~ WO ’~ES

‘~~ K E Y  0O°DS - ~~~~~~ .do f ,,.. . ..y . i d id n h t l y  by block ,i~~b.,)

Splines , B - sp l in e s

• 

ZO~~~~ I~~~IIIAC? fCantIn~. ~~u ~~~~~~ .14. If ~~~~~~~~~~~~~ Id.flUfy by block u~~~b.,)

his pa per is intended to.~serv~~~~ .a postscript to the fu ndamental 1966 pape r
by Curry and Schoenberg on B -sp l ines .  It is alio intended ~~~promote the point
of view tha t  B -sp f lnes  are t ru ly  b i sic  sp l ln cs :  B -- spline s express the essentially
local , but not completely local , character  of splines;  cer tain facts  about splines
take on the i r  most s t r i k i n g  form when put in to  B -spl ine  terms , and many theorems
about spl ines  are most r’i is ily proved with the aid of B-splines; the computational
determinat ion of specific spline from some in format ion  about it Is usua l ly
fasflht1ls~ 

-
~~n [1 s~ I4nn s ..r.s j i n i  In tin onnplru.ltsfl.

‘~~~ 1473 E D I T I O N  OF wOV AS IS OSSOt.ET E UNCLA SS~~l~ t~ ~~~~~~~~~~ 
I ~~QO ,,;

-‘~~‘~W  I J A N  71

- • -.-.~ ~~~~~~~~~~~~~~~~~~~ -. -k’- m1 -rn~m~AT  
- JJ1J._

~’ 
— ~~~ 

- A  

- __ _____


