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SUMMARY

The development and preliminary characterization of the Life Systems' Modified
Torricelli Ozone Contactor system as a post-Reverse Osmosis treatment process
for the Water Processing Element in the Medical Unit, Self-Contained, Trans-
portable complex were successfully accomplished. The ozone contactor employs
six totally mixed contacting stages with a precontactor stage. The off gases
from the six stages are sparged through the precontactor stage for efficient
ozone conversion. About 96 to 100% ozone conversion resulted for ozone dosages
between 2.8 and 7.9 mg/min/1 (0.033 and 0.095 1lb/day/gal) of wetted reactor
volume.

This report describes the ozone contactor experimental hardware, methodology
and results for the various Medical Unit, Self-Contair=d, Transportable waste
waters. Methanol, ethanol, phenol, formaldehyde, acetic acid, acetone, urea,
O-toludine and N,N-diethyl-m-toluamide are some of the organics present in the
waste waters. The effectiveness of ozone oxidation as a function of various
operating parameters, including temperatures from 303 to 333K (86 to 140F), pH
from 7 to 11, ultraviolet light activation, carrier gas flow rate, and ozone
dosage are discussed. Comparisons are made between the ozone contactor experi-
mental results and those obtained with other reactor types.

Post-treatment of laboratory and composite reverse osmosis permeates with the
ozone contactor resulted in a final effluent with total organic carbon and
chemical oxygen demand values below the required specifications of 5 mg/1 and
10 mg/1, respectively. The composite waste reverse osmosis permeate was
effectively treated in the contactor without elevated temperatures or elevated
pH in less than two hours of residence time. The laboratory waste permeate
was effectively treated in approximately four hours of residence time. In
direct comparison with other reactor types, the Life Systems' Ozone Contactor
reduces ethanol to below 5 mg/l1 total organic carbon with 50% of the power
required by the others.

The design and development of a minicomputer-based control and monitor instru-
mentation for the Ozone Oxidation Unit Process were successfully accomplished.
Major instrumentation functions were fabricated, implemented, assembled and
checked out. The instrumentation is capable of controlling and monitoring the
process parameters, detecting component failures, sequencing actuators for
mode transitions and reducing operator errors. An electronic Ozone Oxidation
Simulator was developed to enable the instrumentation to be tested, debugged
and checked out in parallel with the ozone contactor development and testing
effort. Computer control/monitor programs for advanced instrumentation were
successfully developed and demonstrated on the Ozone Oxidation Unit Process
Simulator.

A study of the size of the expected Medical Unit, Self-Contained, Transportable
Water Processing Element instrumentation in the pilot plant phase was conducted.
The study included the investigation and estimation of the pilot plant instru-
mentation cost, maintainability, reliability, volume, power and weight.
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The fabrication, assembly, checkout and shakedown testing of a Reverse Osmosis
Unit Process were successfully accomplished to produce water which simulates ®
the Medical Unit, Self-Contained, Transportable waste water influent to the
Ozone Oxidation Unit Process. Two DuPont B-10 modules were used in the Reverse
Osmosis Unit Process. Provisions were made for expansion to include two more
B-10 modules. With four B-10 modules, the Reverse Osmosis Unit Process will
have a capability of producing at least 15 1/min (4 gpm) permeate from Medical
Unit, Self-Contained, Transportable waste water. Over 100 hours of continuous
shakedown testing were accumulated on the Unit Process without a shutdown.
Permeate flows of 6.6 1/min (1.75 gpm) to 8.3 1/min (2.2 gpm) were achieved
with a single B-10 module. A sodium chloride rejection rate of 98% or higher
was achieved for the shakedown testing period.

INTRODUCTION

The U.S. Army has a requirement to provide a mobile mission-oriented medical
treatment system which is designed and equipped to facilitate rapid establish-
ment and disestablishment. This flexibility permits immediate response by
medical support units to any tactical, environmental or geographical change.
The system will provide a contamination-free and controlled environment in
which medical, surgical and other supporting functions can be performed. The
mobile medical treatment f{item is termed the MUST: Medical Unit, Self-
Contained, Transportable.

Associated with the MUST is a Water and Waste Management Subsystem (WWMS).
This subsystem is required to treat and dispose of {without degradation of the
environment or danger to personal health) all toxic and contaminated waste
materials generated within the functional areas of the MUST medical complex.
In addition to the waste treatment and disposal, the WWMS must be capable of
producing potable water from a fresh or brackish water source, and reuse water
from the MUST medical complex waste water effluents. Waste treatment and the
production of reuse and potable water is ?Yhiived within the WWMS by a self-
contained Water Processing Element (WPE).“™’

MUST WATER PROCESSING ELEMENT

The MUST WPE consists of six unit processes and an integrated control and
monitor instrumentation system. The WPE block diagram is shown in Figure 1.
The six unit processes within the WPE are: Equalization/Prescreening (EP),
Ultrafiltration (UF), Ion Exchange (IE), Reverse Osmosis (RO), Ultfgyiolet
light activated Ozone Oxidation (03/UV) and Hypochlorination (HC).

The function of the EP Unit Process is to settle and screen suspended solids
and equalize hydraulic loading and concentration variations to vesult in a
more uniform feed to the UF Unit Process.

The function of the UF Unit Process is to separate the suspended and dissolved
solutes above a molecular weight of 500 to minimize plugging and fouling of
the RO Unit Process downstream of the UF.

(1) References cited in parentheses are listed at the end of this report.
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The IE pretreatment is required to prevent the precipitation of calcium and
magnesium carbonate, bicarbonate and sulfate salts in the RO Unit Process when
hard, brackish water feeds are used.

The function of the RO Unit Process is to remove most of the organic and
inorganic solutes from the UF Unit Process permeate, natural fresh or brackish
water feeds.

Water containing 5 mg/l Total Organic Carbon (TOC) and 10 mg/1 Chemical
Oxygen Deggnd (COD), or less, is considered suitable for nonconsumptive
reuse.("

The 0,/UV Unit Process is required to reduce the concentration of organic
solutés in the RO permeate to meet water reuse specifications.

Army policy requires that all produced water carry a free available chlorine
(C1,) (FAC) residual. The HC Unit Process provides 5 mg/l residual Cl, for
reuge and potable waters and 2 mg/l1 residual Clz after 20 minutes of cgntact
time for surface discharge waste waters.

Program Scope

The objectives of the current program were to (a) design, fabricate and test a
breadboard O, contactor more compatible with use in the WPE than others, (b)
develop the instrumentation for the 0,/UV Oxidation Unit Process and (c)
assemble an RO Unit Process to producé water that simulates MUST WPE 03/UV
Oxidation Unit Process influent.

The characterization of the Life Systems' Modified Torricelli Ozone Contactor
(LMTOC) was made with the MUST RO permeates of composite and laboratory waste
waters with emphasis on the composite waste water RO permeate. The instrumen-
tation design emphasized the development of an 0,/UV Oxidation Unit Process
simulator and a minicomputer-based control/monitgr instrumentation system
capable of being integrated with the IMTOC for fully automated operation. As

a part of the program effort, a RO Unit Process using DuPont B-10 modules was
designed, fabricated and tested. The RO was designed and packaged to be a
semiautomatic unit process with provisions for future upgrading in its control/
monitor instrumentation.

Ozone Contactor Background

This section includes a review of prior efforts in the study of O, oxidation
of refractory organics, a survey of available O, contactors and a“brief discus-
sion of the Torricelli O, Contactor. Some design concepts of the Torricelli

0, Contactor were incorpérated into the 0, contactor developed under this
rZSearch program by Life Systems, Inc. (L§I).

Prior Efforts

Ozone oxidation data from earlier MUST WPE development efforts indicate that

4
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the O oxidat%gg7?f refractory organics in the MUST waste waters is reaction
rate iimited. Power expended in some O, contactors in stirring the water
to increase the rate of 0, mass transfer in éhe aqueous phase is not effective
because the oxidation ratg is limited by kinetics instead of mass transport.
The stirring in these contactors resulted in higher 0, dissociation rates due
to the shearing effect on the O, bubbles. Further, tﬁe studies indicated that
60 to 75% of the power allocatea to the WPE (30 kW) was needed for the 0,/UV
Oxidation Unit Process alone. Because of these results, Life Systems in;tiated
a study of alternative O, contactor designs to determine if a more optimal O
contactor was available éhich could oxidize the organics at a lower power
expenditure.

Available Ozone Contactors

A review of available contactors revealed that a variety of systems have been
used or suggested for the O,/water contacting process. However, no design
investigated met the specif?c needs of the MUST WPE. The de{§g9§)studied were
categorized into four main groups and are listed in Table 1.

Based on the review of these contactor types, the sparged column dispersing
tower (gas bubbles dispersed in a liquid) contactor appeared to offer the best
opportunity for reducing the organics at the lowest possible power expenditure.
All the parameters which were shown to affect the reaction rate could easily

be controlled and monitored with this type. Effective mass transfer of 0

could be achieved by selecting stainless steel spargers having the necesséry
pore diameter to result in bubbles with a diameter of less than 0.25 cm (0.1 in).
Near equilibrium quantities of O, could be transferred to the aqueous phase by
providing sufficient rise height for these bubbles and adequate water residence
times. Thus, with this design, the organics could be oxidized at the maximuT

rate while saving power consumed by stirring in the other contactor designs. 5,8)

Torricelli Ozone Contactor

Further review of the literature indicated that a specific type of the spargeig)
dispersing tower contactor had been developed by Alfred Torricelli in Europe.
This contactor was very effective in the disinfection of waste waters with a
very high O, conversion. This contactor had the added advantage beyond the
normal sparged dispensing tower contactor of effectively using all of the
residual O, in the carrier gas to pretreat the processed water. As such, it
acted as ag 0, absorber to eliminate O, from being vented with the carrier

gas. A schemitic of the Torricelli 03 Contactor is shown in Figure 2.

Major modifications were made to this basic concept to develop the LMTOC. The
water inlet and outlet colunng were moved down adjacent to the base contactor
to meet the 3.5 x 2.0 x 2.1 m"~ (11.50 x 6.50 x 6.75 ft) dimensional constraint
of the MUST ward containers. This modification required incorporation of a
pump to replace the liquid head. In addition, provisions were made to allow
(1) heating and controlling the process water temperature, (2) pH adjustment
with monitor and (3) UV light activation. These modifications make the LMTOC
a uniquely efficient and compact 03 contacting system.

5
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TABLE 1 AVAILABLE 03 CONTACTOR TYPES

Spray Towers (liquid dispersed in a gas)
Bubble Plate or Sieve Plate Towers

- Gas introduced as bubbles of desired size or as
bubbles which grow to desired size

- Massive bubble stream disintegrated in liquid
Packed Beds

Dispersing Towers (gas bubbles dispersed in a liquid)
- Sparged column

- Sparged column with mechanical mixing

- Diffusers

- Positive pressure injection

- Flooded packed bed
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LMTOC DESIGN AND DEVELOPMENT

The LMTOC is designed to transfer near equilibrium levels of O, from the gas
phase to the aqueous phase in a contacting system with high raéios of gas
volume flow rate to liquid volume flow rate. High ratios of gas to liquid
volume flow rate are dictated by the presence of refractory organics in the
MUST waste waters. For the most refractory waste water (laboratory), O
dosages of approximately 7.9 mg/min/1 (0.095 1b/day/gal) of wetted reacéor
volume are required. The LMTOC is particularly suited for reducing the levels
of these refractory organics to below the level of 5 mg/l1 TOC at a high 03
conversion efficiency with a minimum power expenditure.

Development Considerations

A number of considerations must be given to the design of any 0, contacting
system. A list of considerations tailored to the IMTOC design are given in
Table 2. The number of stages, column height, bubble size and distribution,
gas-liquid ratios and mass transfer versus reaction rate considerations will
be covered in this section. The remaining items will be covered in the hard-
ware design section.

Reaction Rate Versus Mass Transfer Limitation

Effective use of 0, in waste water treatment is dependent upon two factors:
(1) the mass trans%er of 0, from the gaseous to the liquid phase where the
reaction occurs and (2) thg reaction rate of the dissolved O, with the oxidiz-
able species in the waste(g ter. In a series of experiments conducted in
earlier research efforts, it was found that mass transfer limitations
became increasingly predominant as the O, concentration was reduced from 2 to
0.3%. The corresponding O, dosage variea between 2.85 to 0.43 mg/min/1 (0.034
to 0.005 1b/day/gal) of weéted reactor volume.

These experiments were conducted with a laboratory waste RO permeate in a
l4-1liter stirred glass reactor. The Os/oxygen (02) flow rate was maintained
at 23.6 1/min (50 scfh).

The data indicated that the MUST laboratory RO permeate contained both easily
oxidizable and refractory organics. Initially, when O, was dispersed through
the reactor the easily oxidizable constituents rapidly consumed the O, as it
transferred from the O, bubbles into the liquid phase. During this tfansient
phase the reactor was iass transfer limited. After the O, demand by the
rapidly-oxizable constituents was fulfilled the refractory organics were
oxidized. The oxidation of these organics was reaction rate limited. Reaction
rate limitation was indicated by the stable, aqueous 0, concentration and the
similar reaction rate constants obtained at the low Toé end (<40 mg/1) in
experiments with different O, dosages. The same conclusiont6’ere reached by
Sierka when studying the 03 xidation of MUST waste waters.

Chian(7) and Hewes(s) have shown that volatile organics (e.g. ethanol) can be
stripped from the MUST waste waters with volume of gas per unit volume of
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TABLE 2 LMTOC DESIGN CONSIDERATIONS

Contactor type

Number of stages

Column height

Bubble size and distribution

Gas-1iquid ratio

Mass transfer versus reaction rate
Method of gas dispersion (e.g., gas in liquid)
Contactor flow compartment configuration
Catalytic effects on gas]liquid contact
Co-current/counter-current flow
Materials of construction

UV light activation
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liquid per minute (VVM) levels higher than one. The significance of the
stripping mechanism on the rate of TOC reduction in prior ozonation efforts
has yet to be determined.

Number of Ozone Oxidation Contactor Stages

In a plug-flow reactor the concentration of reactant decreases progressively
as fluid passes through the system. In a totally stirred, mixed-flow reactor,
the concentration drops more rapidly to the low effluent value. A plug-flow
reactor is more efficient than a totally stirred, mixed-flow reactor for f?B?‘
tions in which the rate is dependent only on the reactant concentrations.

The 0, oxidation rate of(gbg)MUST waste water has been shown to be reactant
concegtration dependent; hence, the plug-flow reactor is theoretically a
more optimum design.

For the MUST WPE an engineering trade-off study between system complexity and

volume minimization indicated that a six-stage reactor was the most practical

design. With the six-stage, mixed-flow reactor, the volume can be expected to
be 1.3 times greater than the plug-flow reactor design for a 95% organic level
reduction.

Free Ozone Sparging as an Ozone Transfer Mechanism

As discussed above, the 0, oxidation of the laboratory RO permeate was shown
to be mass transfer limitgd in the initial stage. However, once the easily
oxidizable organics are oxidized, the process becomes reaction rate limited.
Under reaction rate limitations a system which can minimize power expenditure
for mass transfer of O3 into the aqueous phase and maximize O, conversion is
clearly superior. The LMTOC is designed for better than 90% 8 mass transfer
into the aqueous phase without any stirring power expenditure.

Figure 3 shows the LMTOC test stand schematic. The IMTOC is a six-stage, gas-
sparged contactor with each stage being a vertical vessel of liquid having a
gas disperser at the bottom without stirrers or other moving parts. The gas
bubbles flow upward through a co-current or counter-current flow of liquid so
that the liquid phase is continuous. The reaction proceeds in the liquid
phase with 0, transferred from the gas phase. For higher 0, conversion the
off gases frgm the six stages are collected and sparged thrgugh the precontactor
stage. The configuration of the precontactor stage is similar to the other
six stages as described above. Using the mass transftflsoefficients for such
gas-sparged O, reactors obtained by Hill and Spencer, it was found that
with bubble dfameters of 0.25 cm (0.1 in) nearly 90% of the equilibrium amount
of 03 absorbed into the aqueous phase in 1.8 m (6 ft) of liquid height.

UV_Light Activation

Utilization of UV light to increase the 0z oxidation reaction rates has been
demonstrated in prior research efforts.(5,8,12) The presence of UV light is
believed to have caused the increase in decomposition rate of dissolveg 0
molecules to form free radicals. The reduction rates of TOC showed drastic
increases in some cases with UV activation.

10
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LMTOC and Test Support Accessories Hardware Design

As the primary goal of the current program, the LMTOC and its Test Support
Accessories (TSA) were designed and fabricated. Figure 4 shows the IMTOC test
stand. The LMTOC basically consists of a precontactor and six stainless steel
contacting stages, an 0,/0, supply and sparging subsystem, a process water
control subsystem and the 3rocess parameter control/monitor instrumentation.
The development can be divided into mechanical, electrical and TSA designs.

Mechanical Design

The heart of the LMTOC is the contacting chamber. As stated earlier, the
sparged column was selected after an evaluation of a variety of different O
contactors. This section will discuss and outline the mechanical design of
the LMTOC to meet the development considerations and program objectives dis-
cussed above.

Hardware Description. In the IMTOC, O, is sparged through the six-stage,
mixed-flow contactors and the off gaseg are collected and sparged through a
precontactor stage. Process water is passed from the source water holding

tank through a pump into the precontactor where it contacts the off gases from
the six stages. As the processed water leaves the precontactor it is passed
through a heat exchanger to raise the temperature to a desired level and then
passes sequentially through the six stages. In the six stages the water comes
into contact with the UV-activated O,. Ultraviolet lamps are placed vertically
through each stage. Makeup heaters gre provided on the six stages toc maintain
the water temperature at the desired level. A flow control flow meter is
provided in the process line between the precontactor and six stages to maintain
water flow rates at the desired level. Sample ports are provided for sampling
at both the inlets and outlets of each stage of the LMTOC. In addition,
septums are provided at each stage for the addition of acid or base for pH
adjustment.

The 0, generator is supplied with dry, compressed 02. The 0, generator is
calib%ated and monitored using a standard potassium“iodide (il) technique.
Control flow meters are provided in the 0,/0, gas lines to each of the six
stages. This provides flexibility for vagyi the 0, dosage profile to each
column. An O, analyzer is attached to the off gas lgne from the precontactor.
The 03 analyzgr is used to monitor the amount of 03 leaving the system.

LMTOC Materials and Characteristics. The contactor design characteristics and
materials of construction are shown in Table 3. The baseline design configu-
ration has a contactor volume of about 35 liters (9.2 gal) of process water
which results in a water residence time of 26 minutes per stage at the design
flow rate of 1.32 1/min (0.35 gpm). Figures 5 and 6 show the end views of the
assembled contactor column indicating the UV lamp connectors in their assembled
state. For lamp removal the screws are simply removed from the connector
retaining ring and the connector removed with the lamp. A disassembled LMTOC
column is shown in Figure 7. The column housing, sparger, UV lamp quart:z

12
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TABLE 3 LMTOC DESIGN CHARACTERISTICS AND MATERIALS

Characteristic Descriptions
Overall Size, H x W x D, m (Ft) 2.3 xe e R
(7.5 x19.5 % 4}
Column Volume, 1 (Ft3) 35 {1:2)
Column Heights, m (Ft) 2.0 (6.5)
Column Cross-Sectional Area, cm2 (Inz) 202.6:(31.4)
Column Diameter, cm (In) 16.8 (6.6)
0ff Gas Manifold Diameter, cm (In) 1.3 (0.5)
Process Water Inlet/Outlet Line
} Diameter, cm (In) 3.5 (1.4)
i Sparger Surface Area, cm2 (Inz) 95.5 (14.8)
Sparger Pore Size, microns (In) S° (197 % 10-4)
Materials Description
Stainless Steel Contactor housing

Gas and liquid lines
Heat Exchanger

Pumps

Contactor endplates
Spargers

Fittings

Teflon Column connectors
Septums

Quartz UV lamp housings

Glass Flow control flow meters

14

SEE AN




Life Systems, Jnc.

MAIA dOL - NWNT0D

39130 SBH 3130

Jatuy (2o/

O0OLWT (dTdWASSV S FUNOIA

JUTUTEISY J03DdUUO)

15

ad oae



Life Systems, Jnc.

M3IA WOLLOE - NWNT0D DO.LWT Q4T4WISSY 9 FdNII4

I031d9uuo) dwe An

Suty SuTuTEIdy I03103UUO)H

1IN0 W04 o1dues

16

e g e

P RN,



NWNNTOD DOIWT Q3TWISSYSIA L FWNOIA

Life Systems, Jnc.

J10333UU0)
I3UTE1IY JOIDAUUO) dure7 An

I01%2uuo) dureq

@ 1eag :on.ﬁl\
-mv dwe] An
I 93erdpugy

\Ihon..“:f_ oA9a1s zagemd duey An/

QUTT dTU] .Su.ﬂma,f‘l\.

3uTsnoy 101de3U0)

r - - - = B - - - — —_—

17

AP TS

ISR SR ar



Life Systems, Jnc.

sleeve, UV lamp, seals, lamp connectors and endplate are illustrated. Figure 8
is a detailed drawing showing the basic dimensions of the assembled contactor
column housing.

Operating and Hardware Configuration Flexibility. Certain operating and
hardware configuration flexibilities were designed into the IMTOC to achieve

the objectives of the LMTOC program. These operating and hardware configuration
flexibilities are outlined and listed in Table 4.

Electrical Design

The IMTOC test stand was designed with laboratory-type instrumentation to
control and monitor critical process parameters. A photograph of the control
and monitor panel is shown in Figure 9.

A pH monitor with two sensors (multiplexed) is provided with selection switches
to read out the pH level in the contactor effluent or between Stages 1 and 2.
Two potentiometers are provided for the calibration of the sensors.

Two temperature controllers with readouts are provided to allow selection,
readout and control of the process water temperature going into Stage 1 and to
maintain the temperature level throughout the contactor stages (1 through 6).

Manual override switches are provided for the UV lamps, makeup heaters, pumps
and solenoid valves. These manual overrides provide flexibility in operation.
The features of the LMTOC/TSA instrumentation are shown in Table S.

LMTOC Test Stand Interface Definitions

There are four LMTOC test stand interfaces to consider: power, drain, vent and
product water. These interface requirements for the LMTOC test stand are
defined in Table 6.

The test stand requires both a 208V and 120V supply. A standard 10.2 cm

(4 in) floor drain is needed to handle the processed water effluent. A vent,
free of combustible gases, is required to remove the 0,/0, off gases. A
supply pump is designed into the LMTOC test stand as igdieated in Figure 3.
The supply pump is capable of supplying up to 2.9 1/min (0.76 gpm) of process
water.

EXPERIMENTAL METHODS AND PROCEDURES

Various analytical techniques were evaluated for the experiments to characterize
the LMTOC. Experiments were carried out using RO permeates from synthetic
composite RO feeds, synthetic RO permeates of laboratory waste waier and
ethanol. The LMTOC was tested under both batch (single stage) mode and inte-
grated (continuous process water flow in all six stages) mode.

18
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TABLE 4 IMTOC OPERATING AND HARDWARE
CONFIGURATION FLEXIBILITY

Operating Flexibility

Single versus Multi-Stage
Pressure

Process Water Flow Rate
Carrier Gas Flow Rate

UV Light On/Off

UV Light Intensity

Process Water Temperature
Process Water Make-Up Heat
pH Adjustment

Carrier Gas

Hardware Configuration Flexibility

Sparger Interchangeability

Number of 03 Injection Points

Number of Process Water Sample Points
Number of Gas Sample Points

UV Lamp Interchangeability

Foam Traps

20
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FIGURE 9 LMTOC CONTROL/MONITOR INSTRUMENTATION PANEL
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TABLE S LMTOC/TSA INSTRUMENTATION FEATURES

Temperature control and monitor of contactor
influent water

Temperature control and monitor of contactor
water to make up heat loss

Precontacfor water level control

Contactor water level control

Manual override switches for all actuators
Manual pH sensor multiplexing to monitor pH at

the second stage or in the process water
effluent

22
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TABLE 6 LMTOC TEST STAND INTERFACE DEFINITIONS

Interface Definitions

Power 208V, 3 Phase with Neutral,
60 Hz, 3 kW

120V, Single Phase, 60 Hz, 2 kW
Drain Standard 10.2 c¢m (4 In) Floor Drain

vent (&) Standard 8.9 cm (3% In) 8.5 x 10°
1/Min (300 Cfm) Exhaust Fan

Process Water Variable(b) 1.3 to 2.9 1/Min
(0.35 to 0.76 Gpm)

.(a) Exhaust line must be free of combustible gases
(b) Function of influent waste water type

23
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Methods

The analytical techniques for the various analysescls) used for the LMTOC
system characterization are listed in Table 7. On key experiments, head space
analysis for volatiles, urea, nitrate and nitrite analyses were conducted by
the U.S. Army Medical Research and Development Command (USAMRDC), Fort Detrick,
MD. The results are shown in Appendix 1.

Waste Water Formulations

Synthetic RO feed constituents for the MUST medical composite waste water are
listed in Table 8. The TOC level of the RO feed was found to be 45.5 mg/1.
The RO feed was made in an 835 liter (221 gal) batch and concentrated to 20X
(90% recovery) to obtain 793 liters (210 gal) of RO permeate (LMTOC MUST
composite waste feed). The TOC of the RO permeate varied between 14.2 mg/1
and 16.2 mg/1.

A synthetic RO permeate was prepared for the laboratory waste. The constituents
for this waste are listed in Table 9. The approximate TOC of the laboratory
simulated RO permeate is 105 mg/l. Refractory low molecular weight organics
like methanol and acetone account for 99 mg/l1 (94%) of the TOC.

Sample Port Locations

The locations where samples were taken during the experimental efforts are
defined in Figure 10. These sample locations are referenced throughout the
experimental results discussion.

Experimental Program

The experimental program for the characterization and comparison of the LMTOC
is summarized in Table 10. The experimental program has centered around the
shakedown and checkout testing of the LMTOC, ethanol comparison experiment
and the study of five parameters with the MUST composite waste water. The
five parameters and ranges studied are outlined in Table 11.

LMTOC EXPERIMENTAL RESULTS

During the course of the LMTOC development and testing, O, conversion tests,
experiments of LMTOC with MUST composite and laboratory wzters, experiments
with ethanol and experiments with pH, temperature and UV intensity were
conducted. These experiments were designed to study the feasibility and
characteristics of the LMTOC and the effects of various process parameters in
reducing the organic compounds in the process water.

Ozone Conversion Tests

A series of five tests were conducted to study the 0, conversion in the absence
of any 03 demand by organics in the waste water. In"these tests the LMTOC was

24
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TABLE 7 ANALYTICAL TECHNIQUES FOR VARIOUS
ANALYSES USED FOR THE LMTOC

Analyses

Nitrate - Nitrite as Nitrogen
Total Organic Carbon (TOC)
Chemical Oxygen Demand (COD)

Ambient Ozone

Method/Instrument

EPA Automatic Cadmium Reduction Method
Dorhmann TOC Analy:zer

EPA Chemical Analysis Protocols

(a) McMillan Chemiluminescent

Analyzer
(b) Wet KI Technique

Conductivity (a) Balsbaugh On-Line Analyzer
(b) Beckman Conductivity Bridge
pH (a) Uniloc In-Line pH Sensor
(b) Markson Lab pH Analyzer
25
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TABLE 8 SYNTHETIC RO FEED CONSTITUE g)FOR
MUST MEDICAL COMPOSITE WASTE WATER

Concentration,

Compound pl/1 TOC, mg/1
Methanol 29.8 8.8
Acetone 6.3 3.1
Acetic Acid 3.4 1.4
Diethyl Ether 0.6 0.3
N,N-Diethyl-m-toluamide 0.8 0.6
Ethanol 0.5 0.2
Oleic Acid 0.5 0.3
Phenol 1.3 mg/1 1.0
Urea 18 mg/1 3.6
Kodak X-Omat Developer 942
Kodak X-Omat Fixer 942 ii;i

Total 45 .4

(a) Result of joint discussions between Life Systems, Inc.
and USAMRDC (3/26/76)
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TABLE 9 SYNTHETIC RO PERMEATE CONSTITUENTS
FOR LABORATORY WASTE WATER(a)

Concentration,

Compound wl/1 TOC, mg/1
Methanol 285.0 84.0
Acetone 30.0 15.0
2-Propanol s 9 0.72
Diethyl Ether 0.3 0.15
Methyl Ethyl Ketone 0.6 0.33
Formaldehyde 1.5 0.48
Ethanol 1.5 0.63
Phenol 1.2 0.93
0-Toluidine 0.3 0.24
N,N-Diethyl-m-toluamide 0.6 mg/1 0.45
Acetic Acid 3.4 mg/1 1.12
Triton X-100 1.58 mg/1 1.0

Total 105.05

(a) Result of joint discussions between Life Systems, Inc. and
USAMRDC (3/26/76)
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TABLE 10 LMTOC EXPERIMENTAL SUMMARY

Checkout (Integrated)

- Mechanical/Electrical

- Overnight Sparging

- Blank ATOC and ACOD

- LMTOC Autodecomposition with and without UV

- Stirred Contactor Autodecomposition with and
without UV

Ethanol Comparison (Batch)

Laboratory Waste (Batch)

Composite Feasibility (Integrated)

Composite pH Effects

- pH 11 (Batch)

- pH 7 (Batch)

- Best (Integrated)

Composite Temperature Effects

- 303K (86F) (Batch)
- 333K (140F) (Batch)

Complete pH, temperature, power and expendable,
trade-off study

Composite Ozone Dosage
Composite UV, Last Three (Integrated)
Composite Gas Flow Rate

Laboratory, Best of All (Integrated)

29
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TABLE 11 LMTOC EXPERIMENTAL PARAMETERS AND RANGES

Parameter

05 Dosage, mg/Min/1 process
water (Lb/Day/Gal)

pH
Temperature, K (F)
uv

03/02 Gas Flow Rage, 1/Min
(Scfh)

30

Range

2.8 to 7.9 (0.034 to 0.095)

7 to 11
303 to 333 (86 to 140)
On/0ff, 2, 4, or 6 stages

4.7 (10), batch
28.3 to 37.8 (60 to 80), integrated
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run in the continuous mode with well water at 1.3 1/min (0.35 gpm). The
results for these tests are shown in Table 12. Ozone conversion is defined
as:
Percent 0, Conversion = 96—1%*:fg5—925 x 100
3
An 03 mass balance equation is shown below:

Rate 03 In = Rate O3 Out + Rate O3 Dissolved

+ Rate 03 Dissociated + Rate O3 Demand
The rate of 0, In was obtained from the ozonator calibration curve. The 03
Out rate was Tead with the McMillan 0, Analyzer. The amountlgf 0, dissolved,
in the absence of UV light, is known éo follow Henry's Law. ﬁo known data
exist for Henry's constant in the presence of UV activation. However, at
neutral Y§4?nd 318K (113F), the solubility of O, in aqueous solutions is less
than 1%. The rate 03 dissociated and the rate 03 demand are interdependent.

Due to the highly reactive and unstable nature of 0;, it is difigiiated to a
significant extent by the gas spargers. Perrich(15) and Chian have observed
30 to 80% dissociation of O, in fritted gas spargers. At elevated pH's,
temperatures and with UV acéivation, t?s)decomposition of 04 in the aqueous
phase, is expected to be significant.

The well water had a background TOC of 2 mg/l. Due to the standard uncertainty
(*1 ppm) of the TOC analyzer at low TOC levels, the TOC level of the well

water might equal an O, demand of less than 1% of the influent 03, based on

the average oxidation gtoichiometry of organic solutes.

The above discussion indicates that most of the O, conversion in the well
water can be accounted for by 03 dissociation at éhe sparger or in the aqueous
phase.

The results of Tests 1 and 2, presented in Table 12 and Figure 11, show that
without UV light activation, approximately 80% of the O, passed through the
contactor stages was converted. With UV light activatign (Test 3), the 03
conversion increased to about 90%.

In the precontactor where there was no UV activation in all cases, the O
conversion was lower (18%) in Test 1 with lower O, dosage (165 mg/min) cgmpared
against Test 2 (24% conversion and 165 mg/min 03 osage) .

In Tests 4 and 5 the entire flow was diverted through Stages 1 and 4, respec-
tively. With UV activation approximately 80% O, was converted across these
stages. The explanation for these results stilf remains to be studied.
However, there appears to be a correlation between the gas flow rate, the O
dosage, the UV light and the percent of O, conversion. At higher gas flow
rates (e.g., the precontactor and Tests 4 and 5), a lower 03 conversion was
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observed. Higher flow rates result in larger size bubbles and lower gas
residence times through the columns. The increase in 0, conversion with UV
activation was expected since UV acts as an 03 dissocia?ion catalyst.

These results support earlier findings that approximately 200% of the stoichio-
metric 03 dosage is needed to oxidize the organics in the MUST waste waters.

A series of 0, autodecomposition tests were run on the LSI stirred batch
reactor. The following are the conclusions from the tests.

° At 0, flow rates of 4.7 1/min (9.9 scfh), the average 03 dissociation
was §6% without UV and 63% with UV.

® At O, flow rates of 1.7 1/min (3.5 scfh), the average 03 dissociation
was 88% without UV and 80% with UV.

® Ozone dissociation as a function of O, reactor stirred power is
presented in Table 13. At 5.3 ku/1006 1 (20 kW/1000 gal), 80%
dissociation of 03 was observed under UV activated conditions.

MUST Composite Water Experiments

Several experiments were designed and conducted on the composite waste water
product from a RO B-10 Unit Process. In addition to an initial feasibility

experiment, parametric experiments were conducted to show the etfects of pH,
temperature, 03 dosage, UV light and carrier gas flow rate.

The feasibility experiment was conducted with the integrated LMTOC (continuous
water flow in all stages) with a composite waste water feed. The RO feed in
this experiment contained all the constituents in Table 8 except the X-ray
(Kodak X-Omat) developer and fixer. The parametric experiments were conducted
in both batch and integrated modes. All the constituents in Table 8, including
the X-ray developer and fixer were used in the RO feed for these parametric
experiments.

Composite Waste Water Feasibility

‘The experiment started with all stages full of RO permeate at the 11.6 mg/1
TOC level. During the transient period of the experiment, TOC samples were
taken at Sample Port 7 (Stage 4) and Sample Port 8 (Stage 5). The results are
shown in Figure 12. The data suggest that near equilibrium is reached after
about three hours of operation. The 04 concentration was maintained at 1.8
Wt% of 04 in feed 0,.

Six hours after startup the TOC concentrations of the effluent water from all
stages were monitored. The data are shown in Figure 13. From the actual TOC
readings the 5 mg/1 TOC level was achieved in two hours residence time. Since
the uncertainty of the TOC measurement was *1 mg/l, the actual residence time
to meet the 5 mg/1 TOC requirement in the effluent could be between 105 and
245 minutes.
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Variable
Transformer

Setting
10, 20

30
40
50
60
70
80
90
100

TABLE 13 0O, DISSOCIATION AS A FUNCTION OF

03 REAéTOR STIRRER POWER (SPEED)

Stirrer Stirrer UV Activation, Residual Percent O
Power, Power, 0, Conc., Ppm Dissociatfon
W kW/1000 Gal 93 Analyzer Actual UV Activation
0.0 0.0 >5000 (P) 5000 >62.4
24.0 8.63 4300 4225 68.2
38.0 13.66 3350 3300 75.2
2.5 19.87 2700 2700 79.7
69.0 24.80 2050 2175 83.7
87.5 31.50 1900 2060 84.5
108.0 38.80 1750 1950 85.3
130.5 46.90 1550 1825 86.3
157.5 56.60 1400 1750 86.8
Generator Conditions
Power, W 30
Pressure, kN/m2 (Psig) 100 (15)
02 Flow, 1/Min (Scfh) 13.5 (3.57)
03 Conc in Feed, % 1.33
03 Dosage, mg 03/Min 29

(a) At these settings no stirrer motion was observed.

(b) The 03 Analyzer reading fell outside the analyzer detection range.
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After the samples for the TOC profile were taken, the flow rate was reduced to
0.378 1/min (6 gph) to yield a 90 minute residence time through each stage.

The TOC of the precontactor and Stage 5 effluents are plotted in Figure 14.

The TOC components waste water data suggests that less than 5 mg/1 TOC can be
achieved in a single, mixed-flow reactor without UV activation at a temperature
of 303K (86F), a pH of 9 and 90 minutes residence time.

In the past, little oxidation of highly refractory cng?unds (ethanol and
acetic acid) has been observed without UV activation. Therefore, the
reduction in TOC in the precontactor under these test conditions may be a
result of organic(fgfipping at the 28.3 1/min (60 scfh) (0,/0,) flow rate in
the precontactor. Further studies must be conducted tg vgrify these
results and inferences.

Effect of pH

Batch experiments were run with a single stage (35 liter batch) at a temperature
of 318K (113F). The 0, concentration was maintained at approximately 3.3 Wt%

in the 0, feed. An 03 dosage of 205 mg/min (0.65 1b/day or 5.9 mg/min/1 of
wetted rgactor volume was maintained.

The results of the pH studies at pH 7 and 11 are shown in Figures 15 and 16,
respectively. Within the accuracy of the TOC analyzer at these low TOC levels
no difference in TOC reduction was observed at either pH level. Since the
decomposition of 0, is more rapid at pH 11, a lower O, off gas concentration

was observed. For an 0, dosage of 205 mg/min (0.65 lg/day) the average 0
effluent at pH 11 was 1550 ppm, while at pH 7 it was 2000 ppm. The lower™ 0

off gas concentration indicates a higher conversion of 03 under pH 11 condiéions.

Since no difference in TOC reduction was observed between pH 7 and pH 11, pH
control is not necessary with the LMTOC design for composite waste water
processing. Figure 17 shows the comparison of TOC profiles at each stage
under pH 7 and pH 11 conditions.

Effect of Temperature

Two batch experiments on composite waste RO permeate were conducted at 303 and
333K (86 and 140F). The results are shown in Figures 18 and 19, respectively.

The 0, dosage was maintained at 205 mg/min (0.65 1b/day, or 5.9 mg/min/1 of
wetteé reactor volume and an O, concentration of 3.3%. The pH was initially
adjusted to a value of 9 in thg feed and was uncontrolled during the experiment.

At 333X (140F) the TOC reduction was not as fast as at 303K (86F). The O
concentration in the off gases under identical conditions was lower (1200 ppm)
at 333K (140F). Consequently, a higher O, demand was observed at 303K (140F).
The TOC was reduced to below 5 mg/l1 after 90 minutes of operation at 333K
(140F) compared to 50 minutes at 303K (86F).

38




Life Systems, Jnc.

AQNLS MOTd HdD 9 JLSVM JLISOdWOD (HLVYOFINI +T FINOIA

‘WT] UoT3IdOEeY

0
i 0001
SR
00ST
= 0002
}Jr
00SZ
pue xadoraAag JewQ-X
snuty 3aisey a3t1sodwo)
I030B3U0D3I4 2d 000€
(9) L°zz : (yd9) y/1 ‘e3Ey MOT4 PIbE]
87 : T/uty/8u ‘sumyop prnbry xad a8esoq o
£69 : =ﬁz\ms “a8gsog o
48 AL our %9 4 3y
(09) €82 : (4398) uT/T @38y MOT4 SeH
330 S S it e
A Hd  EERa iER B
(¢2) 862 (4) X ‘eanjexaduaj T

N RS A

S

udqg ‘uorjzeajusduo) so
39

A ST T BTS¢

2aae




Life Systems, 'nc.

(£) 123443 Hd “ILSVM FLISOdWOD 40 NOILVAiXO HOLVE ST FuNoId

UTp ‘Swr] UOTIOEdY

0zt 06 09 0g 0

T ¥ -
T 3 H 0
3888 opses o bt o4
888 9 ve TTHUR d1
31 et ceat el Y i g L :
HHY H mz.xw i :.H gREHEEN
+ by 888 HIHS N 80 11241 3
351 ESRRRRRRas FRsaLESE IOTERE § 35 2sdditint. - o 0oot
1833 138818 Hiii £ & o Hti i ol
EH L : $HH
b8aesatsiact togssnast fes 3 i
s o3z es : = S3eEse e (arTsostar 021
..... Nwrﬂgmrx.m MN& &w it it SN
vwx : L.m Mx 1 Sess .m HiHE
t t ttis 00Sst e
iy B b
i 3t o
i S LR
{ .n--. Frast
g4t acdcg
4 B |2
- w00z e |
i . #
T -
=]
=
.

00sZ

u s

v

8

Tegevy
$es us

peoes s

i1

oL

SRPSS boeet

UOT1BIIUIOUOY *(Q : - =
S'Sp : 1/3u ‘uoTieIIUSIUO) PIa] : i
6°S ¢ \cﬂz\us sunyop pinby] 2ad a3esog o ; ;
S0z uTH Sw ‘ofeso( no i
£°¢ ¢ OUur "0 % I
(or) ¢y : (Y3o8) utW/1 ‘e3ey MOT4 sey
up : AN

L Hd
{(€11) 81¢ : (1) X ‘@xniexadmay

S s psdds iRttt b s re b e s fia s s pretipl

23ieiihs 4404 4 [REAEY | dilii]iegs




Life Systems, Jnc.

(11) 103449 Hd “ILSVM JLISOMWOD 40 NOILVAIXO HOLVE 91 FunoIyg

Uty ‘SwWr] uoTIdEedy

081 0ST 0zl 06 09 0% 0

: SRS 3383 iE8E31 o5t
- 38 ¥ H 3 3
T : 3 s i HH
1] H i R +
E s e St gl L 0001
1333 23 fitie st 3 8 1 | s tasassal,
5 sl : HH
THE HE 1353 2 g -
4331 5 i I i R s St HrH 3 igasadnasais s innst e :
HHH 2 st o T i i3t T
HHEHHRY disgEisaniatis $5153T1E88E: RNeE
523 s e s n 5 BEE oo 00ST o
HH sgssssatsdsisdsiaasalags § i } it w
HH HHHT e i 5 Beeet Eeosense: 1Y
it IR HH T SEEI I LI : 5 &
T HEHIE 2! 5§ st Bt H 333 ..u..
S i SEEEEE IR - o300 cheae S8
asesaas H HENT | B8 : .umm aases “
SIISIIEE . . 232320, 3208S - . e 22 . R S5l 0002 =
31 Hiiss aaatiitin attng: 3 fissizsiated a3t SR : -
fisiatin i : HHHEn et R sigis e,
344 e IS8 20! e bs ey
HTHHTHET S R R e 5 R SR R 5 T o3
4333208250002 23RE 28530 835 32383 apasadassssass pasd: R 3 M
: TH
- b 3 -
" i
Hd : v i 00SZ .W
um.—. : :
uotjeIjuUddUO) “Q w
S'Sy : 1/3u ‘uorierusduo) pesy QY i ik
6°S : T/uty/3um ‘sumyiop prnbry xad o3esoq *p i !
S0z : ut/3u ‘eBesog £y | H_
- . ¢ 2
£°¢ ¢ Zoutr €0 § M ;
L'y : (433s) ut/1 ‘e3ey MOT4 sey i :
i AN z. pazassbass e Bs3disacel B :
(pe11023U0d) 1T : pd R :
(£11) 81% : (4) X ‘ean3exedmey ifiiiiiifiiiifndiiiiiaEy :
H R 332
Tiiodqbarfiiiibasatdribegioaihiibidiiiadiitifaiiibiisidioiadiitidiidipiisiiosiibisitdiiditiiiititiitiiiiiiiiibitosbiiiitiisippaitiliil 3 L 3 b 1333

BRI, S o A




Life Systems, Jne.

103443 Hd

‘JLSYM FLISOdWOD 40 NOILVAIXO HOLVE /1 THNOI4

UT ‘Swr] uor3ide’dy

081 0Z1

11 Hd
L ud

S*Sy

6°S

s0Z

4

(o1) zL°¢

uo

(Pa11023u0d) T pue [
(g11) 81¢

1/uty/3u

1

‘aumyop pInbry xad a8esog

(

&l
O
/8w ‘uoTIBIIUSOUO) PId QY
mo
utp/Su .omnmon 0
Our 0% M

Y3ds) UTW/T ‘93ey MOT4 SEBY
AN

Hd

(4) X ‘@xniexadusy

1/8u ‘uoqae) orueldip 1e10]
42

R

e

AR




(N£0g) 103443 WNLVYIIWAL ‘ILSVM TLISOMWOD 40 NOILVAIXO HOLVE g1 THNOId

UTl ‘SWT] UOTIOEBdY

Life Systems, Jne.

0

wdg ‘uoyzeazueduo)

0g 0
ey 0
i 0002
i 00SZ o
erha.‘.x 000¢
: = 00S¢
Voo
S i o
uoT3BIIUIDOUO) “Q o)
SESy & 1/3m ‘uoTi1BIIUSIUO) PR35 OY T
6'S : T/uty/3u ‘sumyop pinbr xad a8esog *p T
S0z : utp/S8u ‘sgdesoq no 5231 22
£ ¢ OuUr 0% M :
(or) ¢°v : (4328) uTW/1 ‘@1BY MOT4 S®Y R
up : AN #
(parTOxI3UOOUN) ¢ Hd
(98) €o0¢g : (4) ¥ ‘eaniexradmay

43




(ggs) 103449 TYNLVYAIWIL “‘ILSVM TLISOdWOD 40 NOILVAIXO HOLVE 61 F¥NOId

U ‘SwWr] UOTIOEBY

ws, JKC.

lei

Sys

L

i : 38R ¢ 53353451 IE3 i i
: it : : i
7 3 T i e H
1 $e588 egsest 1 St o S sassss
2} b $323381 22 /3% T
1 i REH gt
f iisis sana H
j3is: 2 S38E 5L LoEELns 53
H T 23! it +
iy s isies aeacies Hi
iR H R He i
S ik 3t
i 3 : > 133335 i
1 i i
= o e o =
it PR H$HHE 3
it s e 5
HHit ¥ TR HiH 55
ity H B H 0002
55 3 HiH 14 :
1
ok
i il
UOTJIBIIUIIUOY mo - o
S°Sy 1/3u ‘uoT3IBIIUIDUOCY PIIJ QY 000¢
1/utW/3u ‘sumpop pynbry xad a8esoq g0
ut/3u ‘edesoq ‘0

§°%

(or) £°¥ (Y398) UTW/T “@18Y MOT4 S®9

umoys se 330/uQ AN
(pe110x3u0dUN) ¢ : Hd

(or1) €g¢ : (4) ¥ ‘saniexaduma]

Aaiddd A i i e Fesuent " e "

198 22084 12804 5003 $4 4 RS

SRS TSRS SR0ESEEEE 01

e
.

e

udg ‘uorieIzUedUO) to

44

BN 0 - £ T

ad e




Life Systems, Jnc.

These temperature experiments indicate that 303K (86F), the expected temperature
of the RO permeate, is adequate for the 0, oxidatien of the MUST composite

waste with the LMTOC. Therefore, these cgnditions should result in minimum
power and system complexity.

During the 333K (140F) experiment the UV lamps were turned off for the first
30 minutes of the experiment. Only a small reduction in TOC concentration was
observed during this period. This emphasizes the importance of UV activation
in reducing the organics in the MUST composite waste at 333K (140F).

Effect of Ozone Dosage

A composite waste integrated experiment was conducted at a 664 mg/min (2.7
mg/min/1 of wetted reactor volume dosage. The O, concentration was maintained
at 1.76% in the O, feed. The conditions of the éxperiment and the results are
shown in Figure 26. The steady-state effluent pH and 03 concentrations at the
six stages are also plotted in this figure.

Under 664 mg/min (2.7 mg/min/1 of wet*ed reactor volume) O, dosage conditions

the TOC of the composite waste water was reduced to below g mg/1 in approximately
a 70-minute residence time (at the end of Stage 1). These results compared

well with the batch test results at near the same pH and temperature conditions
shown in Figure 18.

The average 0, concentration in the off gases was observed at approximately
1500 ppm. The average O, concentration in the effluent from the precontactor
was 600 ppm. This constituted a 97% 0, conversion at an O, dosage of 2.7

. 3 3
mg/min/1 of wetted reactor volume.

The effluent from Stage 3 (see Figure 20) is well below the TOC specifications
of 5 mg/1. Hence, the O, feed to the last three stages is unnecessary. In
general, the results ind;cate that the composite waste water can be easily
reduced to below 5 mg/1 TOC in a one-hour residence time at an 0, dosage of
2.7 mg/min/1 of wetted reactor volume without pH and temperature control. A
two-hour residence time (three stages) will give a safety factor to ensure the
WPE effluent water TOC is below 5 mg/l.

Figure 21 shows the results of another experiment at a lower O, dosage of 534
mg/min (2.2 mg/min/1 of wetted reactor volume), 1.42 Wt% O, in"0, and a slightly
higher temperature of 308K (95F). The residence time to réduce ¥0C to below 5
mg/1 was much longer than the previous one shown in Figure 20. In this experi-
ment, 158 minutes residence time was required to meet the 5 mg/l1 TOC level
compared to the previous 90 minutes. However, the limiting factor to meet the
water quality specifications was the time required to reduce COD. As shown in
the figure, about 245 minutes residence time was needed to reduce the COD to
below 10 mg/1 at the 534 mg/min 03 dosage.

The parametric testing on the LMTOC indicates that for the MUST composite
waste water RO permeate, the most effective parameter levels are an 03 dosage
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of 2.7 mg/min/1 of wetted reactor volume, 303K (86F) feed temperature and pH 9
feed. Typically, the RO permeate has a pH value of 9 and a temperature of
303K (86F). Thus, no pH or temperature control in the LMTOC are needed for
this waste.

MUST Laboratory Waste Water Experiments

Experiments with synthetic MUST laboratory waste water were carried out in
both batch and integrated operations of the LMTOC.

Figure 22 shows the results of a batch oxidation experiment of laboratory
waste. The 0, dosage was maintained at 277 mg/min (7.9 mg/min/1 of wetted
reactor volumg). The 0, concentration was 4.4 Wt%, UV light on, temperature
at 308K (95F), and feed SH at 9, uncontrolled. The initial TOC was 94 mg/1
and the COD was 380 mg/l1. The TOC was reduced to less than 5 mg/1 in approxi-
mately 215 minutes of reaction time and the COD was reduced tc less than 10
mg/1 in approximately 230 minutes. Since the expected uncertainty of TOC
readings is *1 mg/1 and that of COD is +3 mg/l, the actual reaction time
required to reach the 5 mg/1 TOC and 10 mg/1 COD specifications may be in the
range of 225 to 235 minutes. This reaction time was longer t?gy what was
observed in a previous study with a 14-liter stirred reactor. ~’ Since the
experimental conditions were considerably different in the current program
from those in the previous research, care must be taken in direct comparison
of the experimental results. CongTison of the LMTOC test conditions with the
previous stirred reactor research shows that the LMTOC was operated at a
much lower gas flow rate (4.72 1/min versus 23.6 1/min) and a much lower O
dosage (7.9 mg/min versus 64.55 mg/min per unit reactor volume). The VVM }n
the stirred reactor experiment was high enough (2.35) that the TOC reduction
result obtained was probably a combination of physical removal by stripping
and chemical oxidation by O,. The kinetic equation developed for TOC removal
under such(16§igh VW condiéion cannot be used for the design of an O
contactor. The LMTOC experiments were conducted at a VVM of 0.13" (closer
to the actual WPE operating level). Chian ht§6i3§§cated that little or no
stripping will occur at the lower VVM level. .

Table 14 shows the comparison of the LMTOC with the l4-liter stirred reactor.
Notice that although the reaction time was longer in the IMTOC the ratio of 03
dosage/mg TOC oxidized was much less in the LMTOC (19.2 versus 78.60).

Figure 23 shows the results of three integrated laboratory waste experiments
conducted with the LMTOC. The following conditions were kept the same in all
three cases: temperature at 308K (95F), pH 9 (uncontrolled), O, concentration
2 Wt% of 0, in 0,, O, dosage 768 mg/min (3.1 mg/min/1 of wettea reactor volume)
and water ilow rate 3f 26.5 1/hour. In the first experiment the feed gas was
maintained at the typical 28.3 1/min (60 scfh) flow rate and the UV lamps were
on in all six stages. In the second experiment the gas flow rate was increased
to 37.8 1/min (80 scfh) with UV on. In the last experiment the gas flow rate
was returned to 28.3 1/min but the UV lamps in the first three stages of the
IMTOC were turned off.
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The results indicate that with UV activation in all six stages and a gas flow
rate of 28.3 1/min, the LMTOC has the best TOC reduction rate in the three
experiments. The higher gas flow rate has a significant impact on the TOC
reduction rate. Processing an influent laboratory waste water with 106 mg/1
TOC, the effluent water TOC from the last stage (560 minutes resistance time)
reached 6 mg/1 in the experiment of 28.3 1/min gas flow rate. For an influent
water with same TOC level of 106 mg/l1 the experiment with the higher gas flow
rate showed a TOC level of 26 mg/l in the effluent water. In the experiment
with no UV in the first three stages the TOC reduction rate showed little
difference in the first two stages and a significant difference at the third
stage of the LMTOC. The effluent water of Stage 3 (residence time 320 minutes)
had a 67 mg/1 TOC without UV instead of the 56 mg/1 TOC with UV. These findings
indicate the importance of UV activation and gas flow rate in the LMTOC when
treating laboratory waste waters.

The increased gas flow rate from 28.3 1/min (60 scfh) to 37.8 1/min (80 scfh)
had no significant impact on the VWM (0.13 to 0.18) ratio in the six stages of
the LMTOC. The VVM levels were well below the level (1.0) that Chian showed
stripping effects would occur. In the precontactor, the VVM increased from
0.8 to 1.1. If stripping had some effect on the reduction of TOC with the
laboratory waste it would be expected to see an increased TOC reduction in the
effluent of the precontactor under the increased gas flow rate conditioas. As
indicated in Figure 23, this does occur but it is almost insignificant. The
lower TOC reductions observed in the six stages at the increased flow rate are
attributed to larger bubble diameters and decreased 0, contact time with the
liquid in the stages. In other words, as the gas flow rate increases, the
bubble size will increase and the gas contact time decrease, thus reducing the
amount of O, being transferred into the aqueous phase. In summary, the stripping
effect at tie six contactor stages was not expected or observed since the VVM
level at the increased gas flow rate remained very low (0.18).

Ethanol Comparison Experiment

The UV light-activated O, oxidation batch tests were conducted with simulated
waste water containing oily ethanol. The objective was to check out the per-
formance of the LMTOC and coTBafs)it with experimental results available with
different types of reactors.‘ ’ Conditions similar but appropriately

scaled up or down were employed in the first of these tests. Figure 24 presents
the experimental results for the 0,/UV oxidation of ethanol in the LMTOC

reactor without pH control. In th;ee hours the TOC was reduced from approxi-
mately 58 mg/1 to less than 5 mg/l1. Comparison plots cf the ethanol oxidation
data with the LSI stirred reactor, LMTOC and two other reactor types are
presented in Figure 25. The test parameters and results are summarized in

Table 15. To achieve less than 5 mg/l TOC in the final effluent the LMTOC
consumed less than half the total energy to reduce each milligram of TOC. The
ratio of 0, dosage to milligram of TOC oxidized was 12.8:1 for the LMTOC.

This repregents a significantly higher 03 conversion (50%) than previously
experienced.
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A second LMTOC ethanol batch experiment was conducted at a lower initial TOC
concentration. Except for the initial TOC all the test conditions were kept
very close to the previous ones. The TOC was reduced to 5 mg/l in approximately
two hours. The results are shown in Figure 26. In comparing Figure 26 with
Figure 24 one can see very little difference in the pH and O, concentration
curves. However, the TOC versus time curves are significantfy different. In
the experiment with higher initial TOC at 60 mg/l, about 120 minutes reaction
time was required to reduce the TOC to 20 mg/l1 and only 60 minutes from 20
mg/1l to 5 mg/1. In the second experiment a reaction time of 120 minutes was
needed to reduce the initial TOC of 20 mg/l1 to 5 mg/l. This comparison illus-
trates the drastic difference in the results of the batch 0y oxidation experi-
ments with different initial TOC concentrations.

UV Intensity Experiments

The UV light intensity measurements were made as a function of distance from
the light source in synthetic laboratory RO permeate waste waters. The test
apparatus is shown in Figure 27.

A Blak-Ray shortwave UV meter (Model J-225) was Bsed in the experiment.

Rangei on the UV meter J-225 are 0 to 2400 uW/cm~ (A scale) and 2000 to 12,000
uW/cm“ (B scale). The meter is designed for measuring energy from wavelength
230 to 270 nm (peak sensitivity about 250 nm).

Figure 28 shows the curve of UV intensity versus distance from the lamp. The
results indicate that a 95% reduction of UV intensity was observed in about

13 cm (5 in) of synthetic laboratory waste water RO permeate. This suggests
that for effective utilization of UV the process water must be kept very close
to the lamp.

Actual O, oxidation experiments will have to be conducted at variable lamp
spacings and/or lamp intensities to determine the UV spacing and intensity
effects on TOC reduction.

Post-Experimental Analysis of the LMTOC Components

Post-experimental analyses were conducted on the LMTOC at two different times
in the course of the experimental activities. The first analysis was conducted
after the completion of four experiments (the O, autodecomposition experiments,
ethanol batch experiment, laboratory integrated waste experiment and a laboratory
batch waste experiment) and the second analysis after completion of the entire
experimental program (18 additional composite and laboratory waste water
experiments). The initial four experiments were conducted using raw well

water as the base for the synthetic wastes. The well water contained an
approximate hardness of 340 ppm. The remaining experiments were conducted

with well water which was first processed by the RO unit process (DuPont B-10
membranes) .

The post-experimental analysis after the initial four experiments was conducted
when one stage (No. 5) developed a leak at the UV lamp quartz and contactor

56




Life Systems, Jne.

TONVHLE 4O NOILvVAIXO >:\mo HOLVE 97 TiNOIA

Uty ‘aWT] UOoTIOEBIY

i "
it 00ST
0091
00LT
0081
0061
0002
0012
Hd : o 00z2
o el 0
UoTIBIJUIOUOD “Q : o)
0z : I/3w ‘0L TBTITYI
LL°E : T/UTW/3u ‘sumyop prnbr] Ied sB8esoq o
or :wzmua .omunon no
il Voig s our "o § M
T (o) L'y : (433S) utp/1 ‘°3ey MOT4 Sey
ates i5adl : up AN
(pe11013uUOdUN) § : nd
(98) gog : (1) ¥ ‘eaniexadusy
55 2 eghd L 1oud 15377 pos g 98 peestregegoen] teroapasas poghgasiyl IRCENTETPTLERRUEUTCT PRORET:

e

wdd ‘uoriexausduo)y g

57

_— 3 B



Life Systems, Jne.

Adjustable Stop

Height Adjustment Meter
Retaining Rod

Top Plate " .- o
™
4 O
;' Acrylic Housing
| e (15 cm (6 In) Diameter)
e
| : |
{ UV Intensity Meter
{ (Blak-Ray Ultraviolet
; Meter Model J-225)
UV Lamp e i
(Sylvania G15T8, 15 W) \

Laboratory Waste Water

At
/- A
eaiisal

ésif/____ Fitting/Seal
Water Depth —-

(Distance from Lamp) Lamp Electrical
Connector

1

P
-

T
;/;
T
]
i
- -
!
(
l
i

|
|

|
i
I
_]L

L 1

FIGURE 27 UV INTENSITY TEST APPARATUS

58

T TR




Life Systems, Jnc.

;
dAVT WO¥d FONVLSIA SNSYIA ALISNAINI AN 8Z TANOIA M
w> ‘dweT woxy adueISIQ W

S 0 ST 01 0
: 0

126 0s00eo0asnanceanns RS ID ORRS
13000 83500 annssPBORE
PR IINT
0002 ba s
ssce

{8532 5228

vyt

i

Tl
heiiieid

3
e Epas

ragkssnd soe

0001

i

PR E2et!

113

IS

1255

Tt
g3 So3ee

59

1222323

wd /M ‘A3TSULIUT AN

<
¥

Tos
b

4

0002

she

£
AT

1Yy

[S228 o84
josae
[SSSREE8s]

EESSe son st
[ R Res

i1
333
3=

D ]
Pegsess

PR See

+

pies

3
Siafiasasis
S

S Sesessss

000¢€

3Tt
I

1T
11

= O

I ‘dwre] woxy 8due3sI( ,

ad ma



Life Systems. Jnc.

housing seal at the base of the contactor stage. While correcting the leak in
the stage the contactor was disassembled and inspected. Upon inspection a
gelatinous white precipitate was found at the base of the column. Subsequently,
all of the stages, including the precontactor, were opened for inspection.

The following observations according to stage were made at the completion of
the first post-experimental analysis:

Stage 1

The first stage was relatively clean after the completion of 0, autodecomposition,
ethanol batch, integrated laboratory waste water and batch labgratory waste

water experiments. Due to the frequent draining and filling which followed in
each batch test there was no precipitate and only a slight amount of rusting
found in this stage. Most rusting occurred at the welds.

Stage 2

A small amount of precipitate was found on the spargers of Stage 2. No appre-
ciable oxidation was observed at the welds.

Stage 3

A significant amount of gelatinous white precipitate was found at the base of
Stage 3 and on the surface of the sparger. At some points this precipitate
was almost 0.32 cm (0.12 in) thick. There was also a significant amount of
other sticky matter found at the base.

Stage 4

The sparger at the base of Stage 4 was relatively clean. This stage was
significantly cleaner than Stage 3.

Stage S

This stage again had significant precipitation. The sparger was covered with

a whi“e gelatinous precipitate. At various points on the sparger this precipi-
tate .as approximately 0.32 cm (0.12 in) thick. Also, white granular precipitate
of possibly calcium and magnesium carbonate was found at the base of this

stage. This precipitate presumably appeared when the pH controlled experiment
was conducted with the integrated laboratory waste.

Stage 6

This stage was again found to be relatively clean. No significant amount of
white precipitate was found on the spargers. However, the fitting from the 0
feed line to the sparger was found to be corroded. It appeared that the tube
fitting was faulty.

3

A brownish, sticky precipitate was present in all the Teflon tubes which
connect the various stages. The source of this sticky matter is not readily
known.
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The following observations were made at the completion of the final post-
experimental analysis.

The first stage was in a considerably different condition from what was observed
in the previous inspection. A considerable amount of oxidation had taken

place at the waste water exit port and at the bracket welds. The ethylene
propylene O-ring at the upper end of the quartz tube was found to have undergone
oxidation. Products of this oxidation were present as a brown film on the
surface of the quartz sleeve. (The O-rings were later replaced by Teflon

ones.) A slight amount of white precipitate was found at the base of the
column. This precipitate was not found on the sparger.

Stages 2 to 4 were similar to what were observed before with the exceptions
that oxidation of bracket weld points was observed and the ethylene propylene
O-rings at the upper end of the quartz tube were found in the same condition
as the one in Stage 1. Again, a brown film was found on the surface of each
quartz sleeve.

Stages 5 and 6 were not opened because the O-rings at the ends of the quartz
sleeves were already made of Teflon.

The white gelatinous precipitate found in the stages is probably due to the
high pH water experiments (pH 9) conducted with the synthetic waste waters
made up from the raw well water with a high harness. After the first post-
experimental analysis findings and the subsequent preprocessing of the well
water with the RO unit process, the amount of gelatinous precipitate was
reduced significantly. Small quantities of precipitate were found in the
first stage when the final post-experimental analysis was conducted. However,
ten of the 18 experiments conducted after the first post-experimental analysis
inspections were batch experiments conducted in the first stage alone. Two of
these experiments were at pH 11 where precipitation is enhanced. It is not
anticipated that precipitation will be a problem in the firal design since
brackish and natural fresh waters will be passed directly through IE, RO and
HC, bypassing the 0,/UV Unit Process and reuse water will be treated by RO
prior to O oxidatign and maintained at a pH 9 or below. However, the
formation 8f precipitation should be watched for in the pilot plant studies

of the MUST WPE.

LMTOC Experimental Problems

Several problems were encountered during the LMTOC testing period and were
resolved in the course of the program activities.

Sample contamination and TOC analyzer stability problems were encountered
during the experiments. Sample contamination was later avoided by using glass
sample bottles and caps with Teflon liners. Procedures and consistency in the
TOC analyzer operation must be strictly adhered to in order to ensure accurate
and consistent TOC results.
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The water pressure drop and gas pressure drop in the contactor and the gas

line created a problem in water overflows in the earlier phase of the experiments.
This problem was solved by modifications of the contactor inlet/outlet lines.
Water seals also presented another problem at one time.

If water gets into the gas lines and the system is operated at a relatively

low gas flow rate (4.7 1/min (10 scfh)), there is a possibility that the
process water might backflow through the check valve to the generator. Since
the 0, generator is normally operating at a flow rate of 28.3 1/min (60 scfh),
this Sroblem does not exist in normal operation. However, during shutdown of
the LMTOC test stand the problem of water flowing into the gas line was encoun-
tered. This problem can be avoided by opening an off gas manifold valve
before shutdown to depressurize the contactor before the gas flow is shut off.

The 0, analyzer also requires a dry gas feed for proper operation. Moisture
in thg contactor off gas must be removed before the off gas is fed into the
analyzer.

INSTRUMENTATION

In parallel to the LMTOC development, the instrumentation for the 0_,/UV Unit
Process was designed and major functions of the design were selectea for
fabrication and checkout on a minicomputer controlled 0,/UV Unit Process
Simulator. Because the instrumentation in the WPE is exXpected to be an inte-
grated system which controls and monitors all six unit processes of the MUST
WPE, certain instrumentation design decisions, such as the instrumentation
approach, its architecture, and the operator/system interface design, have to
be made at the overall WPE system level rather than the unit process level.
The rest of the instrumentation functions, including individual control loops,
mode control, transition control and fault detection and isolation analysis,
will be discussed at the 03/UV Unit Process level.

Background

Instrumentation is used to control and monitor a process. Effective instrumen-
tation results in the minimization of operator man-hours, operator skill

level, operator error, system failures, downtime, maintenance, and the maximi-
zation of system anilgyrsonnel safety. The functions of instrumentation are
shown in Figure 29.

In general, instrumentation can be divided into control and monitor fhnctions.(zo)
Control functions include operating mode control, mode transition, maintenance
of set points, implementation of set point modifications and automatic optimi-
zation of set points. Monitor functions are defined as Fault Detection,
Isolation and performance Analysis (FDIA). There is an overlap between the
control and monitor functions which includes instrumentation functions necessary
to achieve personnel safety, system safety (e.g., automatic shutdown), system
component fault correction and elimination of operator errors.
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FIGURE 29 FUNCTIONS OF INSTRUMENTATION

63

B e . ——— . ot i8R s Lk




Pr P

Life Systems, Jnc.

Instrumentation Development

Before an instrumentation design can be initiated, it is important to under-
stand and define the development areas which ung be addressed. Nine instrumen-

tation development areas have been identified. These areas include:
1. Evaluate unit process operation and parametric performance requirements
- {2 Evaluate the integrated unit processes
3. Develop operator/system interface
4. Develop system maintenance aids
5. Develop instrumentation's interior architecture
6. Incorporate developer's knowledge of system operation
7. Develop the TSA control interface
8. Incorporate advanced instrumentation concepts
9. Develop the instrumentation packaging

The relationship of these areas is shown in Figure 30. Seven of the nine

areas directly or indirectly support the interior architecture of the instrumen-
tation design. Packaging supports and encompasses all aspects of instrumenta-
tion development.

Selection of Instrumentation Approach

In general, there are six design alternatives in instrumentation implementation;
namely, hardwired logic, programmable logic, microprocessor or microcomputer,
low-level minicomputer, high-level minicomputer and large-scale computer. The
selection of one of these instrumentation implementation alternatives for the
WPE was based on (1) system complexity, (2) flexibility and (3) cost. The
instrumentation complexity and cost are determined at the first level of
design by the system design philosophy. Typically, the system can be designed
as a semiautomatic, automatic or automatic system with maintenance aids.

Since the MUST medical complex, including the WPE, is a mission-oriented
system, it is critical that the system be designed for rapid establishment and
disestablishment (rapid startup and shutdown), reliable operation and minimum
downtime. These objectives can only be achieved if the WPE (consisting of
over 100 actuators and 100 sensors) is designed as an automatic system with
maintenance aids.

Instrumentation complexity and cost is further determined at the second level
of design by the number of parameters monitored and controlled, the number of
operating modes, the number of allowable mode transitions, the level of fault
detection, fault isolation, fault prediction and fault correction, and the
parameter controllability. In order to quantify the instrumentation complexity,
the number of small-scale integrated circuit packages needed for hard-wired
implementation was used as a complexity index.

System Complexity

The current industrial instruncntatif,li!!iclant-tion practice as a function
of complexity is shown in Figure 31.""°’ Random logic implementation is
used whenever the complecxiiy is low enough. As the complexity increases,
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programmable logic and microprocessors are selected. Minicomputers and sometimes
large-scale computers are used in cases where the complexities are too high to
be implemented with microcomputers. For the WPE instrumentation design with
advanced maintenance aids, the complexity is high enough that a low-level
minicomputer is needed.

Flexibility

Flexibility is an inherited characteristic in a computer-controlled system.
Control and monitor set points can be changed easily in such a system. The
number of operating modes can be changed. Operating mode transitions can be
altered, timing sequences changed, and scaling factors updated with little
hardware modification. Since the WPE is at an early stage of development, a
number of system and unit process changes can be anticipated. To handle these
changes in the most cost effective manner, an instrumentation design with
maximum flexibility for change is desired. This flexibility can only be
achieved with a computer design.

Cost

Two types of cost must be considered in instrumentation design; namely, hardware
cost and development cost. These costs are difficult to establish on an exact
basis since they are functions of production quantity and the organization
developing the instrumentation. In spite of these factors, certain cost
quantifications can be made to develop an understanding of the hardware and
development cost trade-offs.

Hardware Cost. Hardware cost per implemented function as it is related to
instrumentation complexity and approach is shown in Figure 32. The costs per
function are based on a production quantity of 1 to 25 WPEs/year.

Large-scale or small computers have a high initial cost compared to random
logic. Thus, the hardware cost per function is typically very high. Since

the computer hardware cost is fixed, the cost per increasing number of functions
decreases. This trend continues until the capacity of the computer is exceeded.
Then the cost per function increases.

Random logic has the advantage of initial low and variable hardware cost.
However, the hardware cost per implemented function starts to increase almost
immediately. This increasing cost trend continues with increased instrumenta-
tion complexity.

The hardware cost per function indicates that for the WPE instrumentation
design with maintenance aids, the low-level minicomputer has the lowest hardware
cost.

Development Cost. The development cost is mostly software programming time in
a computer-based system and is mostly logic design and circuit design time in
a random logic or programmable logic implemented system. Development cost per
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Hardware Cost/Function, Dollar
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FIGURE 32 ESTIMATED INSTRUMENTATION
HARDWARE COST VERSUS COMPLEXITY
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implemented function versus instrumentation complexity is shown in Figure 33.
The logic and circuit design cost per function increases with increasing com-
plexity because of the more complicated electronic interfaces among different
functional modules. Development cost per function in a computer-based system
decreases as complexity increases. This is because the cost of system software
and the number of subroutines can be shared by more functions. This decreasing
cost stops when the system complexity exceeds the computer capability. An
increasing development cost per function begins as soon as this limit is
reached. In general, program development cost per function is higher for a
microcomputer than a minicomputer because of better software support in the
minicomputer industry. Similarly, program development cost for a minicomputer
system is higher than a larger-scale computer system because the latter has
even better software support from the computer manufacturer.

Computers have the advantage that in production the primary electronic hardware
is the printed circuit (PC) boards of the computer. The basic minicomputer is
produced in high quantities and used throughout the industry; hence, a well-
debugged hardware design with low component infant mortality can be expected.

Instrumentation Architecture
Once the minicomputer instrumentation approach has been selected the archi-

tecture or functional areas of the design can be established. Instrumentation
architecture is typically influenced by:

1. Speed of controlled process

2. Performance goals

3. System safety requirements

4. Fault tolerance requirements

5. Reliability

6. Size goals

7. Number of sensors and actuators involved
8. Characteristics of the controlled parameters
9. Modularity

10. Expendability

11. Cost

Three possible WPE instrumentation configurations are shown in Figures 34, 35,
and 36. The single processor (uniprocessor) system employs a dedicated mini-
computer for the control and monitor of the WPE system. This configuration
has the advantage of simplicity, small size and low cost. The dual processor
configuration may be designed so the second processor is an identical replica-
tion of the first for a true redundancy, or so the second processor is a
simple shutdown processor to perform a safe shutdown operation. The dual
processor has the advantage of high reliability and fail-safe shutdown capability.
The multiprocessor configuration employs three or more computers in the design.
There are a number of different types of multiprocessor designs. For example,
each computer can be assigned for a specific function and all computers are
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linked to one another directly. This is called a distributed function instru-
mentation design. Another type of multiprocessor design would be to tie local
controllers to a central computer to form a supervisory hierarchy control
system. The advantages of a multiprocessor configuration are higher modularity,
higher reliability, fail-safe and pocsibly fault correction operation.

The WPE is a typical chemical process where there is no demand for high-speed
computation. The number of sensors and the number of actuators both approximate
100. The implementation of all required and desired control modularity of the
instrumentation is not a required feature in the design. The WPE system will
have a scheduled four-hour maintenance period for every 20 hours of operation;
therefore, the need for instrumentation redundancy is unlikely. The uniprocessor
architecture using a single dedicated minicomputer for the entire control and
monitor function is more than adequate.

A detailed block diagram of the minicomputer-based WPE instrumentation design

is shown in Figure 37. The actuators and sensors of all the unit processes

are tied through signal conditioning circuits to an analog and digital interface.
This interface module, in turn, is connected to the central processor. The
control/monitor panel is connected through another interface to the computer.
The functions of the instrumentation are implemented as software programs and
stored in the control memory.

Instrumentation Design

The instrumentation design discussed in this section includes (1) operator/
system interface, (2) control functions, including operating mode control,

mode transition sequencing and maintaining set points and (3) monitor functions,
including fault detection, isolation and performance trend analysis. In this
report the operator/system interface design will be discussed at the WPE

system level while control and monitor implementation will be discussed at the
OS/UV Unit Process level.

Operator/System Interface

The operator/system interface requires simplicity on one hand and versatility
on the other. These two features are sometimes mutually exclusive. Simplicity,
such as a one-button startup of the WPE system, is required for easy operation.
Versatility is required for easy maintenance and for control flexibility.
Versatility requires extensive information exchange between the operator and
the system such as a message display, new set point inputs and operator

control override capability.

As shown in Table 16, there are a total of 26 possible operating modes for the
WPE system. These modes include the selection of water products and sources,
auxiliary modes for UF cleaning, RO cleaning, IE regeneration and system
drainage, and the selection of system commands (SHUTDOWN, STANDBY or NORMAL).
At initial startup when the power is first turned on, the system enters the
SHUTDOWN mode automatically. Product/source water selection must be made
before any system command can be requested by the operator.
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TABLE 16 WPE OPERATING MODES

WPE System Operating Mode EQ UF 1E RO 00 HC
Power Off off Of f Off Off Off Off
Shutdown (SD) SD SD SD SD SD SD
Standby (SB)

(F) Fresh - Potable SD SD SD SB SD SB

(K) Brackish -+ Potable SD SD SB SB SD SB

A®) ., pischarge SB SB SD SD SD SB
B -+ Discharge SB SB SD SD SB S8
C -+ Reuse SB SB SD SB SD SB
D -+ Reuse SB SB SD SB SB SB

FoA{irisgi;c;:;ZZIe RS S TR R

K+A{:rifg;:2h:r::‘“bl° TSR T i R S S

7 Mg o 2 o als B B 6

B -+ Discharge

BH<{Bmckish + Potable e - e - - 22
Normal (NM)

Fresh + Potable SD SD SD NM SD NM

Brackish -+ Potable SD SD NM NM SD NM

A -+ Discharge NM NM SD SD SD NM
B -+ Discharge NM NM SD SD NM NM
C -+ Reuse NM NM SD NM SD NM
D -+ Reuse NM NM SD NM NM NM

F+A NM NM SD NM SD NM

K+A NM NM NM NM SD NM

B+F NM M SD M NM NM

B+K NM NM NM NM NM NM
UF Clean SD Clean SD SD Sb SD
RO Clean SD SD SD Clean SD SD
IE Regeneration SD SD Regen SD SD SD
System Drain Drain Drain Drain Drain Drain Drain

(a) A = kitchen, shower, operating room, laundry
B = composite, lab, x-ray
C = kitchen, shower, operating room
D = composite, lab, x-ray, laundry
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There are four system modes and seven allowable system mode transitions for
the WPE as shown in Figure 38. These four modes are POWER OFF, SHUTDOWN,
STANDBY and NORMAL. POWER OFF and NORMAL modes are self-explanatory. In the
STANDBY mode there is no water production. However, actuators and sensors
which require warmup time or startup time are activated. For example, water
temperatures, water levels and air dryer refrigerant loop temperatures must be
maintained which require related unit process heaters, pumps and compressors
to be activated. In the SHUTDOWN mode the instrumentation and sensors are on
with the valves in shutdown positions and the actuators off.

Figure 39 shows the WPE control/monitor panel design. The control panel is
designed to eliminate possible operator errors. If mode transitions which are
not allowable are requested, the system will send out warning messages to the
monitor panel and take proper actions. For example, if the transition from
the SHUTDOWN mode to the NORMAL mode is requested the system will inform the
operator that direct transition is not allowed and a STANDBY request is auto-
matically generated. When the steady-state STANDBY mode is reached the system
automatically implements the transition from the STANDBY to NORMAL. If a
change of source or product water is requested when the WPE is in NORMAL or
STANDBY mode the request will be rejected and an error message displayed on
the monitor panel. Change of the product/source water selection and requests
for auxiliary modes are allowed only in the system SHUTDOWN mode. .

Multiple-colored lights are used to indicate steady-state and mode transitions.
Amber indicates a mode transition is in progress and that the system has
acknowledged the request for a new operating mode. A green light indicates
that the system is currently in the requested mode. A number of manual over-
ride switches are provided in a recessed panel behind the water source descrip-
tion panel. These manual overrides include the primary actuators and the ones
needed for system maintenance.

The monitor panel includes a system status summary, a monitor message display,

a monitor command keyboard and timers required for scheduled maintenance. The
system status summary has four lights: NORMAL, CAUTION, WARNING and ALARM.
Except for the NORMAL status there will be messages displayed on the gas
discharged dot matrix display panel indicating the cause of the CAUTION,

WARNING or ALARM. Through the monitor command keyboard the operator can

examine and modify a control or monitor set point. On-line display of parametric
data can also be requested.

Figure 40 is a photograph of the WPE control/monitor panel. The monitor
message and command functions were implemented on a CRT/keyboard terminal not
shown in the photograph. Table 17 summarizes all components of the control/
monitor panel and their functions.

Ozone Oxidation Unit Process Control Instrumentation

The objective of the 0, Oxidation Unit Process is to oxidize the organic
compounds in the process water to a level below 5 mg/1 TOC and 10 mg/1 COD.
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Power Off

® Instrumentation and
Sensors on

e Valves at shutdown
positions (off)

® Actuators require
warmup/startup times
are enabled wherever
allowed

e No product water

e Ready for transition
to normal

Standby

® Running

® All control units
enabled

e Producing water

FIGURE 38  OZONE OXIDATION UNIT PROCESS
MODE TRANSITION DIAGRAM
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TABLE 17 WPE CONTROL/MONITOR PANEL COMPONENTS

Control Panel

Component

Function

System Command

On/Off
Shutdown

Standby

Normal

Product/Source Water Selection

e Natural Fresh Source

e Brackish Source

e Source A
e Source B

e Source C

e Source D

Pushbuttom switches for mode
transition request. Light
displays indicate current mode
(in green) or transition in
process (in amber).

Power on/off request/indicator.
Shutdown mode request/indicator.
Standby mode request/indicator.
Normal mode request/indicator.
Pushbutton switches activated in
shutdown mode for product and
source water selection. Green
lights indicate current selection
which may be cancelled by a second

push or by selecting another mode.
Validity is automatically checked.

Produce potable water from fresh
source.

Produce potable water from
brackish source.

Treat source A for waste discharge.
Treat source B for waste discharge.

Reuse source C for non-consumptive
purposes.

Reuse source D for non-consumptive
purposes.

Auxiliary Activated in shutdown mode for
auxiliary maintenance modes.
i e UF Clean UF module cleaning.
e RO Clean RO module cleaning.
continued-
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) Table 17 - continued

Component Function

Auxiliary - continued

e IE Regeneration IE module regeneration.
e System Drain Drain all water tanks.
Lamp Test Lamp test pushbutton.
Manual Overrides Switches and potentiometers on

recessed panel for override.

e Override On Indicator 1it if any override
switch is on.
e Switches and Potentio- For manual override.
meters

Monitor Panel

Component Function

WPE Status Summary Summary of system status as
indicated by the four lights.

e Normal System normal.

e Caution Cause of this status is
explained on the monitor
message panel.

e Warning Cause of this status is
explained on the monitor
message panel.

e Alarm Cause of this status is
explained on the monitor
message panel.

Monitor Messages Display panel for system/operator
communication. Total of 256
characters.
continued-
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Table 17 - continued

Component

Function

Monitor Messages - continued

e Next Display

Monitor Commands

e Examine

e On-line Display
® Scan
e Reset

1 e Other Switches

Timers

e Elapsed Time Since
Cleaned

e Elapsed Time Since
Coating

e Elapsed Time Since
Regeneration

e Operating Hours
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Light on indicates there are
more than 256 characters to
output. Push the switch to
update the display to the next
256 characters.

Operators command to monitor
for setpoint modifications
within allowable ranges and

for display of data.

Examine a parameter or setpoint.

Display up to 16 parameters and
update them every minute.

One button scans and displays
data of key parameters.

Clear panel display and previous
commands.

For selection of sensor,
actuator and setpoint numbers.

Monitors elapsed times for
scheduled maintenance.

For UF clean.
For RO clean.

For IE regeneration.
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The ultimate controlied process variable is, therefore, the water TOC and COD
concentrations. To achieve the optimum O, and water organic reaction rate a
number of process parameters have to be cgntrolled within limited ranges. The
controlled process parameters and ranges selected for allowable changes are
listed in Table 18. Each parameter is controlled and maintained in the desired
range by a software control program. A description of the control programs
selected for the O3 Oxidation Unit Process is given in Table 19.

A recessed manual override panel is provided under the Water Source Description
panel. Actuators with high power consumption (heaters, O, generator, pumps,
etc.) and actuators related to maintenance (drain valves, filter select, etc.)
are provided with manual overrides.

Ozone Oxidation Unit Process Monitor Instrumentation

This section discusses the aspect of monitor instrumentation which is used for
component fault detection and isolation. Fault detection refers to the function
of detecting a component failure or failures from the observations of system
symptoms. Fault isolation is the diagnostic function which analyzes the
detected symptoms and isolates the cause to a specific fault or to a limited
number of faults. Figure 41 shows the relationships among probable faults and
their corresponding symptoms. In general, faults can be detected as long as
sensors for detecting the symptoms are available. On the other hand, fault
isolation or diagnostics present a rather complicated problem mainly because
faults and symptoms are no: on a 1:1 correspondence. There have been 130
faults and 27 symptoms identified for the LMTOC. A detailed study of the
fault detection in the 03 Oxidation Unit Process is given in Appendix 2.

A flow chart describing the fault diagnostic and isolation steps for the O
Oxidation Unit Process high TOC/COD symptom is given in Figure 42. The
diagnostics begin with a checking of the O, flow rate and the O, generator
feed gas pressure to isolate the fault to g few most probable cguses. If
both the 0, flow rate and the feed gas pressure are low, either the air
compressor or the desiccant dryer select has failed. If the symptoms are
TOC/COD high, O, flow rate low and O, generator feed gas pressure normal,
then the most p%obable cause will be the solenoid valves which control the
03/02 to the contactor or precontactor.

3

The fault isolation level is a dependent variable of the number of monitor
sensors. The cost/performance ratio is the key factor in determining where to
stop in fault isolation level. It is felt that if failures can be isolated
down to three or less most probable causes in the WPE, trouble-shooting can
then be done within the allowable system downtime.

Ozone Oxidation Unit Process Simulation

Major instrumentation functions for the LMTOC were selected, fabricated and
assembled. An electronic LMTOC simulator was developed to enable the checkout
and debugging of the instrumentation functions. Figure 43 shows the simulation
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EE)

TABLE 18 OZONE OXIDATION UNIT PROCESS

CONTROL AND MONITOR PARAMETERS

Controlled Parameters

(a)

Parameter Normal Set Point
TOC, Effluent, mg/1 4.5
pH, Precontactor 9
pH, Contactor 9
Temperature, Water, K (F) 316K (110)
Temperature, Contactor, K (F) 316K (110)
Dew Point, Air Supply, K (F) 233K (-40)

Monitored Parameters

Point

Allowable Range

0 to 20

2 to 12

2 to 12
294 to 339 (70 to 150)
294 to 339 (70 to 150)

210 to 239 (-80 to -30)

Low Alarm Set Point

Parameter High Alarm Set
Temperature, 03 Gen, K (F) 305 (90)
Temperature After Cooler, K (F) 300 (80)
Temperature, Refrig, Dryer, K (F) 283 (50)
Pressure 03 Gen.,kN/mz (Psig) --

Flow O, Gen., 1/Min (Scfh) --

3
Flow, Product Water, 1/Min (Gpm) --

69.9 (10)
472 (1000)

11.4 (3.0)®)

(a) All controller parameters are also monitored for performance trend

analysis
(b) Root mean square value
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TABLE 19 OZONE OXIDATION UNIT PROCESS CONTROL PROGRAMS

Parameter

TOC/COD

Process
Water
Temperature

Contactor
Water
Temperature

Precontactor
Water pH

Contactor
Water pH

Precontactor
Water Level

Contactor
Water Level
Air
Temperature

Air Dew
Point

Description

Proportional control of O, dosage to process water
utilizing both feedback and feed forward water TOC/COD
signals. The goal is to maintain effluent TOC/COD less
than required set points. Only feed forward control is
activated during dry start up since a feedback signal
will not be available. If effluent TOC/COD doesn't
meet the specifications, water will be recycled back

to the contactor.

Proportional control to maintain temperature at set point.
A hot water heat exchanger with variable orifice diverter
valve is the actuator.

On/off control to make up the heat loss.

On/off control of acid and base additives to process water
to maintain pH at 9.

Same as above; maintain pH at 9 during entire Ozone
Oxidation Process.

In reuse mode, high level sensor will stop influent water
from previous unit processes. In discharge mode, high
level sensor will open the effluent solenoid valve and
output water intermittently.

In reuse mode, high level sensor opens effluent valve and
low level sensor closes it. Effluent water is intermittent.

Open loop control with high temperature shutdown monitor.
Air passes through a cooler and a refrigerant loop. Air
temperature should always be 40F or lower.

Dew point feedback signal controls selection of desiccant.

When not selected, the desiccant is regenerated by a
heater.
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Fault Detection

Fault Isolation

-
Fault 1
‘i:::::::::::j=<j'Synptom A )
Fault 2 ~
Symptom B
Fault 3
Symptom C
Fault 4 ymp
Fault § Symptom D
e
e Symptom E
Fault m
. 3 Symptom F
. ’_4/’ Kk
Fault n

:
3

FIGURE 41 FAULT DETECTION AND
ISOLATION RELATIONSHIPS
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Figure 42 - continued
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OZONE OXIDATION UNIT PROCESS SIMULATION PANEL

FIGURE 43 OZONE OXIDATION UNIT PROCESS SIMULATION PANEL
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panel. The analog sensors (linear type) are simulated by a potentiometer with
panel meter readouts; the digital sensors (on-off type) are simulated by
toggle switches; the analog actuators such as O, generator and heaters are
simulated by panel meters; and the digital actugtors by light-emitting diode
(LED) indicators.

Table 20 shows the summary of 0, Oxidation Unit Process control and monitor
programs implemented on a LSI-2"minicomputer. Table 21 presents a detailed
description of the programs. These programs include a control/monitor panel
service routine, an operating mode and mode transition control module input
and output modules, individual control modules for pH, temperature, water
level, TOC, O, dosage and desiccant dryer control, a fault detection and trend
analysis module, a message output module and miscellaneous tables and utility
programs.

The instrumentation features incorporated in the simulation are operating mode
control, mode transition control, operator/system interface simplicity, elimin-
ation of operator error, fault detection and trend analysis, system and personnel
safety, direct digital control of various process parameters and flexibility.

WPE Pilot Plant Instrumentation Size

In the course of the LMTOC instrumentation development activities the MUST WPL:
instrumentation size was estimated. The study of WPE instrumentation size was
necessary because it had an impact on the LMTOC instrumentation and vice
versa. The size study included cost, maintainability, reliability, volume,
power and weight estimates. As prerequisites the WPE instrumentation perfor-
mance goals, its system protection requirements, the level of maintenance
aids, design approach, required flexibility and instrumentation features were
evaluated.

The expected WPE development will include a pilot plant, prototype, and pre-
production models before full production. In the pilot plant phase, the
instrumentation can be characterized as a fully automatic system with maintenance
aids, extensive data acquisition capability, flexibility in design to allow
testing of various control schemes and simple operator/system communication.

The electronic hardware will be mostly off-the-shelf with only a basic packaging
effort. In the prototype phase the data acquisition and testing flexibility
features can be minimized and the electronics will be repackaged with custom-
made components to reduce the size. In the pre-production phase, military
specification electronics will be used and semiconductor memory be incorporated
into the instrumentation. This evolution of WPE instrumentation is summarized
in Table 22.

Because the WPE is mission oriented, both maintainability and reliability are
very critical. Maintainability is defined as a characteristic of design which
is expressed as the probability that an item will be retained in or restored
to a specific condition within a certain period of time. Maintainability can
be defined by the mean system downtime, which in turn includes mean service
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TABLE 20 SUMMARY OF 03 OXIDATION UNIT
PROCESS CONTROL™PROGRAMS

Program Size (Words)
Control/Monitor Panel Service Routine (CMSRV) 258
Operating Mode and Model Transition Control (OPCON) 679
Input (ADIN) 58
Output (OUTIN) 45
Control Modules (CNT) 461
Fault Detection and Trend Analysis (FTDT) 257
FTDT Monitor Set Point Table %%
Message Output (MSG) 61
Message Vectors and Buffer 1,056
Control Set Point Table and I/O Buffers 48
Other Utility Programs and Tables 256
TOTAL 3,275
92
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TABLE 21 DESCRIPTION OF O3/UV UNIT PROCESS
CONTROL/MONITOR SOFTWARE

Control/Monitor Panel Service Routine (CMSRV)

® Read Pushbutton Commands from the Front Panel
€ Verify Command Validity

[ Allow Product/Source Selections and Auxiliary Mode Selections
in SHUTDOWN Mode Only

® Allow UF Clean, RO Clean, and IE Regeneration Modes Concurrently

® Allow One of the Potable Water Product Selections Rumnning
Concurrently with One of the Wastewater Treatment Selections

. Verify System Mode Transitions
] Generate Intermode Transitions Whenever Necessary

Operating Mode and Transition Control (OPCON)

® Select Unit Processes for Current Product/Source Mode (e.g., Select
Ozone Oxidation Unit Process Only in Discharge B Source Mode or
Reuse D Source Mode)

] Implement Steady State Operating Mode Control: Power Off,
Shutdown, Standby, and Normal

(] Implement Mode Transition Sequences: (1) Shutdown to Standby
Transition, (2) Standby to Normal Transition, (3) Normal to Standby
Transition, (4) Normal to Shutdown Transition, (5) Standby to
Shutdown Transition, (6) Shutdown to Power Off Transition,

(7) Power Up Transition (Power Off to Shutdown Mode)

Input and Output Modules (ADIN and ADOUT)

. Set Up Automatic Input Instructions at Interrupt Locations
and Digital Data to Input Buffer (INBUF)

(] Read in Analog

] Separate Digital Data from Analog Data and Store all Sensor
Data in Sensor Table (SENTBL)

] Get Process Output Commands which include Digital and Analog
Actuator Set Points
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Table 21 - continued

° Manipulate and Store the Output Commands in Predetermined Format
at the Output Buffer

. Set Up Automatic Output Instructions at the Interrupt Locations

Control Modules (CNT)

@ Pre-Contactor pH Control (PPHC)

° Contactor pH Control (CPHC)

® Water Temperature Control (WTC)

® Contactor Temperature Control (CTC)

® Pre-Contactor Water Level Control (PWLC)
. Contactor Water Level Control (CWLC)

. Desiccant Dryer Control (DDC)

] TOC/COD Control (TOC)

. TOC/COD Control Feed Forward Control (TFF)

Fault Detection and Trend Analysis

e Get Current Sensor Data

° Scan the Monitor Set Point Table, Check High and Low Set Points
for Performance Trend

[ Get Summary of Faults and Update System Status

® Output Message to the Display Panel whenever a Fault is
Detected

@ Request System Shutdown if ALARM Situation is Detected

° Provide Flexibility for Enable/Disable All or Portion of the Fault
Detection and Trend Analysis Functions

® Provide Flexibility for Set Point Changes
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TABLE 22 EVOLUTION OF MUST WPE INSTRUMENTATION

Pilot Plant

Fully Automatic Operation with Maintenance Aids
Extensive Data Acquisition Capability

Flexibility in Design to Allow Easy Changes of
Control Schemes During Test Period

Use Core Memory

Use off-the-shelf Electronics, Basic Packaging
Effort Only

Fully Automatic Operation with Maintenance Aids

Operator/System Communication through a Control/
Monitor Panel Only

Use Core Memory
Custom-made Electronics to Reduce Size

Repackaged Electronics

Pre-Production

Semiconductor Memory

Military Specification Electronics
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time for scheduled maintenance, mean fault isolation time, adjustment-calibration
time, cleanup time, fault correction time, checkout time, inspection time,
turn-around time for scheduled/unscheduled or preventive/corrective maintenance,
and required tools and skill level for maintenance. Among these, the fault
isolation and correction time and the required skill level are most critical

for the WPE. Therefore, the instrumentation should incorporate self diagnos-
tics and fault prevention features.

Reliability is usually measured by mean-time-between-failures (MTBF). With
integrated circuit electronics, differences in instrumentation reliability are
largely a function of the number of PC board interconnections. The industry
trend has been in the direction of using more and more large-scale integration
components and/or micro- and minicomputers to improve reliability. Such an
approach would certainly have the best performance/cost ratio in achieving the
maintainability and reliability goals in the WPE instrumentation.

The estimated volume of the pilot plant WPE contrgl/monitos instrumentation is
about 53 x 53 x 66 cm (21 x 21 x 26 in) or 0.19 m™ (6.6 ft°). The memory size
will be about 8K words, the weight will be about 90 kg (200 1b) and the elec-
trical power consumption about 750W. These estimates do not include the
sensors or actuators nor the TSA data acquisition unit. It does, however,
include the capability for communnication with a TSA computer which could be
designed for data acquisition, TSA control/monitor, program modifications and
conversational mode operator/system communication.

REVERSE OSMOSIS UNIT PROCESS

The RO Unit Process is needed in the MUST WPE to remove organic and inorganic
solutes from the UF Unit Process permeate and brackish water feeds.

The mechanical and electrical hardware design, fabrication, checkout and
shakedown testing of a RO Unit Process employing DuPont B-10 RO Modules were
successfully accomplished in this program. The objectives were to (1) develop
a semiautomatic RO Unit Process to produce RO permeate waters for the LMTOC
testing and (2) make provisions for upgrading the RO to an automatic system
capable of being integrated into the MUST WPE.

Hardware Design and Development

The RO Unit Process hardware design and development includes mechanical design,
electrical design and unit process interface definitions. The RO Unit Process
is shown in Figure 44.

The RO tank has level sensors and controls for maintaining levels. It is
provided with a low level and a high level shuteZf for its effluent and influent,
respectively. A po!itive displacement piston pump provides the necessary
pressure (5500 kN/m~ (800 psig)) for the B-10 RO modules. The influent to the
RO modules flows through parallel in-line S5p and lu basket-type filters.

Pressure drops across the filter and modules are monitored for predicting

96

LT e Y



Mechanical

FIGURE 44

LIFE SYSTEMS'

97

Control/Monitor Panel

RO UNIT PROCESS




Life Systems, Jnc.

routine maintenance. The pH of the RO feed tank contents is maintained at
desired levels by an immersed pH sensor and a pH controller operating acid and
base metering pumps. Facilities for metering known quantities of polyphosphate
into the RO feed tank for scaling prevention is also provided. The basic
instrumcutation for the RO Unit Process consists of a pH monitor/controller, a
temperature monitor/controller, a RO feed pressure indicator, a filter pressure
differential transducer, a conductivity meter to monitor permeate water quality,
a flow meter for monitoring permeate flow, a low pressure switch to prevent

the recirculation pump from running dry and a high pressure switch to prevent
the system pressure from exceeding a safe limit.

The system's mechanical controls consist of a backpressure regulator, check
valves and manual valves needed for proper and safe system operation.

Mechanical Design

The DuPont Model 6440-015 10.2 cm (4 in) diameter B-10 modules were selected
for the RO Unit Process. The B-10 module specifications and drawings are
included in Appendix 3 of this report.

Figure 45 shows the schematic of the RO Unit Process. The RO Unit Process was
designed to operate in a batch, semicontinuous or continuous mode, with daily
production of at least 8,000 liters (2,100 gallons) permeate water when two
B-10 modules are employed in series.

Mechanical design considerations for the RO Unit Process include:

safe system operation

minimum power, weight and volume

easy access to controls, monitors, interfaces and servicing
system pressure regulation and pressure relief

H LN -

Table 23 presents the primary mechanical features of the RO Unit Process.

The RO Unit Process specification is given in Appendix 4. This specification
outlines the operating conditions, physical characteristics, material character-
istics, electrical characteristics and interfaces.

Electrical Design

The RO Unit Process instrumentation was designed to be a semiautomatic system

to meet the functional requirements for system operation, performance, safety,
reliability and maintainability with minimal cost. Automatic control was em-
ployed in controlling the water pH, water level, pumps and water temperature.
Manual controls and/or overrides of pumps, chemical tank (acid/base/polyphosphate)
valves and process stream solenoid valves are provided. An automatic shutdown
feature is incorporated to protect the system. The shutdown conditions include:

1. feed tank water level high or low alarm
v conductivity over-range alarm
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TABLE 23 RO UNIT PROCESS MECHANICAL FEATURE LIST

» DuPont B-10 Module (Flexibility for One to Four Modules)

° Positive Displacement High Pressure Pump (Minimum Power,
Weight and Volume)

] Compact All Welded Pallet Constructions

® All Servicing on Two Sides (Modules, Filters, Chemical
Tanks, etc.)

® All Process Interfaces on Single Panel (Rear Side)

@ All Mechanical Controls and Monitors on Single Panel (Front)
® Concentrate Flow Rate Readout

® High Pressure Readout (Upstream and Downstream of Modules)

° Module Pressure Regulation from 1,000 to 6,900 kN/n2 (150 to 1000 Psi)
] Permeate Flow Totalizing

o Concentrate Bleed Flow Control

@ Chemical Tanks (Acid, Base, Polyphosphate)

° Feed Tank for Batch or Semi-batch Operation, and Module
Cleaning and Membrane Coating

® In-line Filters (5u and 1lu)

o In-line Heat Exchanger for Temperature Control
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3. low pressure alarm
4. high pressure alarm

Electrical monitor readouts are provided for feed tank liquid level, pH,
temperature, filter bank pressure differential, high/low pressure, and conduc-
tivity.

Table 24 summarizes the RO Unit Process electrical instrumentation features.
Figure 46 is a photograph of the RO mechanical and electrical monitor/control
panels,

Reverse Osmosis Test Stand Interfaces Definitions

Figure 47 shows the block diagram of the RO unit process interfaces. The
definitions of the interfaces are listed in Table 25.

The interfaces primarily include influent water, product water, drain, brine
bleed, chemical additives, electric power, coolant supply and maintenance
supplies. The chemical additives include the chemicals necessary to produce
synthetic waste water for running the experiments, the acid and base solutions
for pH control and the polyphosphate for prevention of calcium sulfate (CaSOd)
scaling. The maintenance supplies are filters, RO module cleaning and coating
solutions (PT-A, PT-B), lubricants, etc.

Reverse Osmosis Experimental Results

A series of experiments were conducted to test the operational characteristics
of the RO Unit Process. These experiments included:

1. Checkout tests of mechanical and electrical components.

2.  Shakedown testing which included experiments of RO productivity,
sodium chloride (NaCl) rejection rate and temperature effects on
permeate flow rate.

3. Measurement of noise level and electrical power consumption.

Checkout Tests

Tests were conducted to ensure that all components of the RO Unit Process met
the operational requirements. These tests included the pump capacity tests,
high pressure line checkout, sensor calibration and tests with artificial

alarm conditions. All components checked out as designed. During the checkout
tests it was determined that a positive pressure is required at the inlet to
the positive displacement high pressure pump. The manufacturer of the high
pressure pump specified that }t can operate without cavitation with an inlet
pressure as low as -47.2 kN/m” (-8 psig). With a negative inlet pressure,
tests revealed that pump cavitation occurs and results in excessive pressure
fluctuations (517.1 kN/m? (%75 psig)).
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TABLE 24 RO UNIT PROCESS ELECTRICAL FEATURE LIST

® All Controls and Monitors on Single Panel (Front)

® Automatic High Pressure Shutdown and Readout

[ Automatic Low Pressure Shutdown and Readout

® Automatic Permeate High Conductivity Shutdown and Readout
® Automatic pH Control (Acid and Base) and Readout

® Filter AP Readout

® Water Level Control

. High and Low Water Level Shutdown and Readout

e Automatic Process Water Temperature Control and Readout
® Polyphosphate Metering

@ Manuai Overrides on All Pumps and Valves

® Motorized Filter Bank Selection

® All Electronics Hermetically Sealed in Cabinet
® All Wiring Contained in Frame or Conduit
102
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TABLE 25 RO UNIT PROCESS INTERFACE DEFINITIONS

Interface Definitions
pT-A () 80 Ppm Polyvinyl Methyl Ether
PT-B(b) 80 Ppm Tannic Acid and 1% Citric Acid
Acid 2§_HZSO4
Base 2N NaOH
Polyphosphate Sodium Hexametaphosphate, [N8P03)6
Coolant Water, 23 1/Min @ 286K
(6 Gpm @ 55F)
Power 208V, 3 Phase With Neutral,
60 Hz, 7 kW
Filters Cartridge Micro-WYNDII D-PPTY
and D-PPTB
Oil(b) Standard, Non-Detergent
PreServative(c) Technical Grade Glycerin and

Cleaning Solutions,
Organic Fouling

Cleaning Solutions,
Inorganic Fouling

Drain

Brine Bleed

Product Water

(a) DuPont trade name (Post Treatment)
(b) Used for high-pressure pump (1% quarts/500 operating hours)

(¢c) Used for B-10 module preservation (17.5% Wt glycerin and 1.5% Wt)
(d) (pH of solution should be maintained between 10 and 11, but should

not exceed 11)

Formaldehyde
NAOH/NZO(d)

0.25% Biz and 1% Citric Acid

Standard 10 cm (4 In) Floor Drain

variable(®) 0.038 to 1.5 1/m
(0.1 to 0.4 Gpm)

Variable(e) 3.79 to 13.25 1/m
(1 to 3.5 Gpm)

(e) Function of the number of RO modules on line

BAgE TS
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Shakedown Testing

Figure 48 shows the results of a continuous RO productivity and its NaCl
rejection test for a single B-10 module for more than one hundred hours of
operation. The permeate flow was maintained between 6.6 1/min (1.75 gpm) and
8.3 1/min (2.2 gpm) and the NaCl rejection rate was 98% or higher over the
entire testing period.

Figure 49 shows the effect of temperature on the RO permeate flow rate. An
increase in the permeate flow rate from 9.5 1/min (2.5 gpm) to 13.6 1/min (3.6
gpm) was observed when the temperature of feed water increased from 294 to
310K (70 to 98F). The permeate flow rate data was corrected for the change in
water viscosity. The results correlate with the theory that the increase in
permeate flow rate was attributed to the change in process water viscosity.

Noise and Power Measurement

The RO Unit Process sound level was measured in a 9.5 x 10.5 (31 x 34 ft) room
with hard walls and a 6 m (20 ft) high ceiling. The sound levels of the unit
process were measured from two locations about 1.8 m (6 ft) from the high
pressure pump (the primary noise source) as shown in Figure 50. The readings
of location A and B were 87 dbA and 86 dbA, respectively, when the RO Unit
Process was in normal operation. Because the RO Unit Process was located very
close to two hard walls when the readings were taken, the actual sound level
without the reflections would be lower in a "soft' room. However, the sound
levels measured are probably representative of the levels in a MUST ward
container without any noise suppression. Since these measurements exceed the
allowable level (85 dbA) some noise suppression will most likely be needed for
the WPE pilot plant and future developments.

The RO electrical power consumption of each major electrical component was
measured and the results are shown in Table 26. The total RO Unit Process
power consumption under normal operation is approximately 6 kW.

The problems identified in the testing period included:

1. High pressure pump flexible line fatigue.

2. Pressure gauge oscillations due to high pressure pump feed pressure
fluctuations.

3. Cavitation at high pressure pump inlet.

4. Leakage and plugging of the flow totalizer.

S. Electrical relay failure.

These problems were resolved during the course of the program activities.

Modifications of the RO Unit Process were made according to the results of the
checkout and shakedown testing.
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Feed Temperature, F
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TABLE 26 POWER CONSUMPTION OF MAJOR
RO ELECTRICAL COMPONENTS

Component Power Consumption, W(a)
High Pressure Pump 4,800
Feed Pump 585
Instrumentation 75

; (b)
Solenoid Valve (each) 20
Total 5,460

(a) Operating under normal conditions
(b) Does not consume power under normal conditions
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CONCLUSIONS

The primary goal of this research was to develop an LMTOC system to be a

post-RO treatment process for the MUST WPE. A secondary goal was to study and
design the instrumentation which would be required for controlling and monitor-
ing the LMTOC under fully automated operation. In the course of developing

the LMTOC it was necessary to design and fabricate an RO Unit Process to

produce RO permeate for the testing of the LMTOC. These goals were successfully
achieved and the following conclusions are drawn from this research:

b I

The LMTOC has succeeded in reducing the organic solute concentrations
in the RO laboratory and composite waste water permeate to meet the
required water quality specifications of less than 5 mg/1 TOC and 10
mg/1 COD.

The COD is the limiting factor in meeting the water quality speci-
fications. In the experiments conducted, a longer residence time

was required to reach the 10 mg/1 COD specification than the 5 mg/1
TOC specification. This implies that COD sensing instead of TOC
sensing should be used in the feedforward/feedback loops to control
the O, generator. A practical on-line water quality sensor for the
automitic control of LMTOC is still not available today. The control/
monitor algorithms, however, would remain nearly the same regardless
of the choice in the water quality sensors.

In the UV activated IMTOC no pH or temperature control is needed for
treating the composite waste RO permeate. A typical composite RO
permeate, at pH 9 and temperature 303K (86F), can be readily and
directly reduced to below 5 mg/1 TOC at an O3 dosage of 1.04 mg/min/1
of process water. The 5 mg/l TOC specification was met in the third
of the six LMTOC stages in less than two hours of residence time.

High O, conversion was observed with the LMTOC. Under typical
operating conditions of the IMTOC the 03 conversion rate is between
96 and 100%.

In treating MUST laboratory waste RO permeate a much longer residence
time is required compared to treating composite RO permeate. To

meet the TOC and COD specifications, approximately 3-3/4 hours are
required at an O, dosage of 7.9 mg/min/1 (0.095 1b/day/gal) of

wetted contactor volume.

In the ethanol oxidation experiment with the LMTOC, the TOC can be
reduced from 58 mg/l to less than 5 mg/l in approximately three
hours at an O, dosage of 3.77 mg/min/1 (0.045 1b/day/gal) of wetted
contactor volime. This represents a significantly lower power
consumption than previously experienced. In direct comparison with
two other 03 reactors the LMTOC consumes 50% or less total energy.
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24 7. The UV intensity in the process water reduces rapidly as the distance
from the lamps increases. Test results showed that the UV intensity
reduced 95% in a distance of 13 cm (15 in) in synthetic MUST laboratory
waste water. For effective utilization of UV the water must be kept
very close to the lamps.

8. Precipitation of salts assumed to be calcium and magnesium sulfates
and carbonates was observed in the LMTOC during the post-experimental
inspection. However, in the WPE this problem could be eliminated by
use of sodium polyphosphate or the IE Unit Process.

9. The oxidation of the LMTOC contactor welds indicate that heat treat-
ment is needed. In future development stainless steel with lower
carbon (e.g., SS 316L) should be investigated.

10. The feasibility of advanced control and monitor instrumentation for
the 03 Oxidation Unit Process was demonstrated in the minicomputer-
based”instrumentation. Considering the maintainability, reliability,
cost, weight, volume and power consumption, a minicomputer or micro-
computer based instrumentation will have the best cost/performance
ratio in controlling and monitoring the O, Oxidation Unit Process as

well as the WPE for fully automated operation.

11. The RO Unit Process B-10 module maintained a NaCl rejection rate of
% 98% and a permeate flow between 6.6 1/min and 8.3 1/min during a 100
hour continuous shakedown test.

12. A flexible line fatigue problem was encountered in the shakedown
testing of the RO Unit Process. Further investigation of this
problem is needed in future programs.

13. The power consumption of the RO unit process is approximately 6 kW.
The sound level is close to the 85 dbA maximum level recommended by
the MUST WPE specification. Therefore, noise suppression is likely
to be needed for the WPE pilot plant and future development.

RECOMMENDATIONS

The experimental data of this program showed promise for the LMTOC in meeting
the water quality criteria for the MUST WPE. The feasibility of advanced con-
trol and monitor instrumentation for the automation of the O, Oxidation Unit
Process has been demonstrated by the minicomputer controlled”simulation panel
developed in this program. In summary, this research program has dealt with
essential issues in engineering technology relating to reduction of organic
compounds by O,/UV oxidation. Future studies relating to or growing out of
this research hould include technical improvement in the LMTOC test stand,
additional experiments for further optimization of the unit process and
additional work to completely implement and demonstrate the advanced instru-
mentation capabilities for the 03 Oxidation Unit Process as well as the WPE.
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The following items are recommended by Life Systems, Inc. for further study:

1.

Extend the LMTOC testing to increase the data base for studying the
effects of operating parameters on different MUST waste waters

(e.g., pH, temperature, O, dosage, UV light intensity and O, flow
rate on the reduction of §0C and COD). Not all parametric éffects
have been studied on the MUST laboratory waste organic solute concen-
tration reduction. No studies have been conducted on waste waters
other than MUST composite and laboratory waste water.

Modify the LMTOC pre-contactor to introduce a supplemented compressed
air supply into the pre-contactor for the studies of physical removal
of organics by gas stripping. The stripping effect is believed to
take place when volume of gas per unit volume of liquid per minute

is high enough (e.g., >1). Stripping may be an effective means of
reducing the organic solute concentrations as a pretreatment step to
the UV/O3 Unit Process.

Establish best sparger material identified as one able to provide
the small bubble size for good 0, mass transfer and avoid 0, auto-
decomposition. Sparger materialg to be studied include epoXy-coated
fiberglass and sintered polyethylene. Different sparger materials
will result in a better O, utilization and lower power requirement
for the 03/UV Unit Procesé.

Establish the 0,-in-water concentration as a function of column
height, includifig studies to establish the oxidizing specie (0,) as
a function of waste water and not another oxidant. Carry out O3
mass balance to arrive as a complete O, utilization picture to
determine areas where 03 is not efficigntly used.

Establish UV light requirements as a function of distance between
lights, frequency of wave length relative to contaminants adsorption
frequency and type of contaminant.

Perform experiments to study the effect of organic solute concentra-
tion reduction with the addition of catalysts. Catalysts may increase
organic solute concentration reduction rates on the initial stages

of the LMTOC.

Carry out endurance testing of the LMTOC to determine the areas
where maintenance will be needed to maintain efficient operation.

Complete the implementation of the advanced control and monitor
instrumentation, including on-line set point modifications, conversion
of data into engineering units and fault diagnostics, including
dynamic performance trend analysis, fault detection, fault isolation,
fault correction instructions and fault tolerance.

Include system maintenance data into the operator/system display to
simplify training.
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10. Establish the operator/system keyboard interface for communicating
with the system's control/monitor instrumentation.

11. Implement the next step in the development sequence to convert the
current instrumentation into a custom-packaged design based on
microprocessor technology.

12. Expand the testing of the RO Unit Process to gain extended operating
experience and identify problems with system components exposed to
long periods of operation.
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APPENDIX 1
HEAD SPACE, NITRATE, NITRITE, UREA,

CALCULATED TOC AND MEASURED TOC RESULTS
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APPENDIX 2
LMTOC FAULT DETECTION

AND ISOLATION ANALYSIS
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INTRODUCTION

The purpose of a Fault Detection and Isolation Analysis (FDIA) is to establish
the required sensors in the Ozone (0,) Unit Process to allow complete and
rapid fault detection and isolation éo the Line Replaceable Unit (LRU). This
report covers the study of 0, Oxidation Unit Process component failure symptoms,
interface failure symptoms agd performance trend analysis. The component
failures include sensor failures, actuator failures and mechanical failures
such as spargers, flow regulators, etc. The interface failures include the
mechanical interfaces and process stream interactions between the Oz Oxidation
Unit Process and the other five unit processes of the Water Processing Element
(WPE) system. For example, shortage of influent water from a previous umit
processes or shortage of a hot air supply or coolant supply to the heat ex-
changers are typical interface failures.

The relationship between failures and symptoms is shown in Figure A2-1. It is
unusual for a 1:1 correspondence relationship to exist between a failure and a
symptom. In other words, a failure typically results in a number of symptoms,
and a certain symptom can be the result of a number of failures. A thorough
study of all possible component failures and interface failures and their
associated symptoms is needed for the FDIA. As shown in Figure 1, fault
detection is the process of detecting the existence of a failure or failures
in the unit process by sensing the presence of their associated symptoms.

This process is considered easier than visa versa, namely, fault isolation.

The symptoms of O, Oxidation Unit Process component failures are listed in
Table A2-1. In tﬁis study, only single failure cases are considered. Multiple
failure cases are unlikely to happen and, therefore, are excluded in the study.

Unit process failure symptoms can be caused by unit process interface failures.

Therefore, these interface failures must be considered in any unit process
FDIA. Possible interface failures are shown in Table A2-2.

A2-2
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Fault Detection

Fault Isolation

-

Fault 1

Symptom A
Fault 2

Symptom B
Fault 3

S tom C
Fault 4 gl
Fault 5 Symptom D

e

Fault m
Fault n

FIGURE A2-1 FAULT DETECTION AND
ISOLATION RELATIONSHIPS
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TABLE A2-2 SYMPTOMS OF OZONE OXIDATION

UNIT PROCESS INTERFACE FAILURES

Description of Interface

Influent water supply to
Ozone Unit Process

Hot air supply to process
water heat exchanger

(oo0lant supply to post-
rompressor cooler

Coolant supply to
desiccant dryers

Coolant supply to ozone
generator

_Type of Failure

Shortage

Supply shortage or
temperature low

Supply shortage or
temperature high

Supply shortage or
temperature high

Supply shortage or
temperature high

A2-19

Symptom

Precontactor and
contactor water level
low

Temperature of process
water low and even-
tually TOC high

Air temperature high;
dew point high

Dew point high

Ozone generator over
temperature shutdovn
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DUPONT PERMASEP PERMEATOR
MODEL NO. 6440-015
B-10 PERMEATORS
PRODUCT SPECIFICATIONS

Membrane Type, cm (In) B-10, 10.2 (4) diameter

Membrane Configuration Hollow Fiber

Shel. Dimensions, cm (In) 14.0 OD x 11.7 ID x 119.4 Long
(5.5 x 4.625 x 47)

Shell Material Filament-wound Fiberglass Epoxy

End Plates Fiberglass epoxy

Snap Rings 15-4 PH-MO Stainless Steel

Connections, cm (In) Feed and Permeate 1.3 (0.5)

female, NPT Concentrate, 1
(.375) female, NPT

Permeator Weight, filled with water, 227 (50)
kg (Lb)
Initial Product Water Capacity (a)’ 5700 (1,500)

1/day (Gpd)

Salt Passage (b) 2 1.5%(8)

Rated Operating Pressure, kN/m” (Psig) 5500 (800)
Temperaturs)kange, K (F) 273-303 (32-86)
pH Range ’ co?E}nuous exposure 5-9

Conversion Range 10-50% (for soluble salts)
Operating Position (c) 5 Horizontal or vertical
Permeate Back Pressure , kKN/m~ (Psig) 345 (50 max)

(a) Based on operation with a feed of 30,000 ppm NaCl at 5500 kN/mz, 298K
(800 Psi, 77F) and 30% conversion. For operation at other conditions
consult Permasep Products.

(b) Dependent on water analysis and conversion.

(c) For operation outside this range, consult Permasep Products.

¢
8
n
1
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FIGURE A3-1 CUTAWAY DRAWING OF PERMASEP PERMEATOR(a)

Permasep

T(a) From DuPont Permasep Technical Bulletin 125.
is a registered trademark of DuPont.
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L’lfc’ Syslc'lll&', . SPECIFICATION NO. RO
CLEVELAND, OHIO 44122 N 5 OF 5 DATE

TITLE

RO UNIT PROCESS SPECIFICATIONS

RO MODULES

One to four DuPont 10 cm (4 In) B-10 hollow fine-fiber permeator

NOMINAL OPERATING CONDITIONS

1. Full-size permeator product rate:

2. Total membrane requirement for 16,000 1/Day or 16 mS/Day (4200 Gpd)
three and one-half modules in a series arrangement

MUST system:
3. Mode of Operation: continuous
4., B-10 module inlet pressure:

5. B-10 module inlet temperature:
6. Feed recovery: 90%

PHYSICAL CHARACTERISTICS

Weight
Basic System Dry, Kg (Lb)
Spares, Kg (Lb)
Total, Kg (Lb)

Volume
Basic System, m (Ft )
Spares, m (F§ )
Total, m3 (Ft”)

Basic Dimensions (LxWxH), m (Ft)

MATERIAL CHARACTERISTICS

Nonmetallic

Metallic

ELECTRICAL CHARACTERISTICS

Supply Voltage, VAC

Line Frequency, Hz

3.8 1/Min (1 Gpm)

5500 kN/m® (800 Psig)

302 K (8SF)

680 (1500)
136 (300)
820 (1800)

1.2 x1.4x1.5
(4 x 4.5 x 5)

Nylon, polypropylene, teflon,
fiberglass, epoxy

316 SS, 304 SS and other
compatible ferrous and
nonferrous alloys

(i) 208
(ii) 110
60
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Electrical

Connector

Environment

Laboratory Atmosphere
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TIME  po UNIT PROCESS SPECIFICATIONS
INTERFACES
Mechanical
RO Feed Tank Drain, cm (In) 0.6 (1/4) tube
RO Concentrate Drain, cm (In) 1.0 (3/8) tube
RO Permeate, cm (In) 1.0 (3/8) tube
RO Makeup Water, cm (In) 1.3 (1/2) tube

Amphenol MS Type
(MIL-C-5015D)
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4 copies

12 copies

1 copy

1 copy

25 copics
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