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ABSTRACT

~ecent developments in the theory of the sine-Gordon equation

are used to analyze the appearance of a “displaced linear branch ” in

the volt-ampere characteristic of a large Josephson junction . Internally

the Junction is divided into a flux annihilation domain near the center

and flux flow domains near the edges. The displaced linear branch is experi-

mental evidence for the existence of flux flow domains. In the flux annihilation

domain , an ac voltage component is induced by the continuous formation

and decay of sine-Gordon breathers . Whitham’s nonlinear WKB method

is used to analyze the flux flow domains while the inverse scattering

transform method is used as a qualitative guide to the study of breather

formation in the flux annihilation domain.
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MAGNETIC FLUX ANNIHILATION IN A LARGE JOSEPHSON JUNC TION
Alwyn C. Scott

I. INTRODUCTiON

The physical phenomenon to be discussed in this paper is the

“displaced linear branch ” in the volt-ampere characteristics of Josephson

tunnel Junctions having dimensions large compared with the Josephson

penetration length (— 0.1 mm). This effect was reported several years

ago [1 - 3] and an explanation ba sed on a continuous flow of magnetic

flux quanta (fluxons) was suggested. Since that time , several striking

advances have been made in the understanding of the analytic behavior

exhibited by solutions of the underlying nonlinear partial differential

equation , the sine-Gordon equation

+xx 4,tt 5
~”~ 4~~ 

(1.1)

Parti cularly importa nt have been i) the development of an inverse

scattering transform method (ISTM) for (1.1) [3 - 6) , ii) the application

of Whitham ’s method (WM) , of slow perturbation of a single phase

(periodic traveling wave) solution , to a dissipative version of (1.1) [7 , 8]

4)xx - - = sin 
~~, 

(1. 2)

iii) Ablowitz ’s discussions of the extension of Whitham ’s method to

multiple phase (multiply periodic) solutions [9 - 121 , and iv) demonstrations

Sponsored by the United States Army under Contract No. DAAG29 -7 5-C-0024
and by the National Science Foundation under Gra nt No. ENG 7 5-08492.



th at appropriate multiply periodic solutions assumed by Ablowitz do in

fact exist for (1.1) [13 - 15] . The present discussion should be con-

sidered in context with previous efforts to apply the fruits of soliton

theory to the problems of fluxon dynamics in large Josephson Junctions

[16 , 17]. Such studies are of interest not only as an aid to understanding

the volt-ampere characteristics of Josephson Junctions [1 - 3, 18, 191 , but

also because the soliton properties of fluxons may make them useful as

carriers of information [20 - 2 5] .

The displaced linear branch was first observed on 1 mm. X 1 mm.

crossed strip Josephson junctions as volt-ampere characteristics of the

sort displayed in Figure 1. Above a critical current 
~~~ 

for zero voltage

( 1/2 ampere ) , the voltage (V) was found to increase linearly with the

difference between current and critical current . Thus

~v = K ( I_ I
c) I  

(1.3)

where the constant of proportionality (K) is much less sensitive to

temperature than the normal electron component of tunneling current . It

was suggested [1] that the input power (VI) implied by (1. 3) is carried

by moving fluxons from the edges of the Junction toward the center

where it is given up in events of fluxon-antifluxon annihilation.

-2-
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Figure 1. Volt-ampere characteristics of typical experimental Junctions
at various temperatures. (a), (b), and (c) are Sn-0~

-Sn, vertical : wOO
rnA/div , hori zoital : 2 mV/dlv. (d), (e), and (f)  Pb~0x~Pb , verti cal 500
mA/div , horizontal : ZmV/div.
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Although the two dimensional effects which appear in the square

j unction geometry of Figure 1 are of both theoretical and practical Interest ,

the present discussion will be confined to the one dimensional geometry

Indicated in Figure 2. In this case a mechanical analog of (1. 2) [ 26] can
be used to demonstrate the existence of flux flow domains near the edges

and a fl ux annihilation domain near the center as shown in Figure 3.

The paper is organized in the following way . The linearized version

of (1. 2) which is obtained by neglecting the sin ~ term Is discussed in

Section II in order to provide a perspective for considering the nonlinear

problem . Then using results obtained by Pelinovskii and Shavratzkii [8]

and in [17 ] the flux flow domain is described in Section III. The

nonlinear solution in the flux flow domain is based upon the single

phase (periodic traveling wave) solution described in detail by

Whltham [~1. The flux annihilation domain considered in Section IV

involves the propagation of fluxons in both directions and requires

therefore a double phase (doubly periodic) solution [9 - 12] . In the

flux annihilation domain , fluxons and a ntifluxons combine to form

“breather solitons ” which give up their energy to the dissipation

represented by the -a4,1 term in (1. 2). To understand the annihilation

domain , It is important to appreciate the nature of breather solitons;

thus two appendices are included which discuss (A) the structure of a

-4-
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_________________________________________ _________ 
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( b )

Figure 2. One dimensional geometry used for the theoretical analysis (not
to scale). (a)  perspective view , (b ) section showing voltage v across
insulating ba rrier and current I parallel to the barrier.
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I!‘ii,

I,0

• 1

Figure 3. KInk flow domains and the kink annihilation ( br eather) domain
on a mechanical analog of (1. 2) . (a)  The crank is turned very slowly,
(b )  It Is turned faster , (c) Faster still.
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breather, and (B) the use of the Inverse scattering transform method

(ISTM ) to study the generation of breathers through the interaction

of double phase components. A third appendix (C) gives a summary

account of single phase and double phase solutions for ( 1.1) . The

material In these appendices should be appreciated in order to follow

the discussion of the main text . FInally we conclude with a review of

the results which appear to be useful in Interpreting currently available

experimental data and some suggestions for future experiments.

The unnormalized form of (1. 2) is

- ~~~~~~ - = J 01 sin(2n 4’/~’0) (1.4)

where

X is distance In the laboratory coordinate system ,

- T is time in the laboratory coordinate system ,

= V(X, T) is the voltage across the barrier ,

-I(X , T) is the superconducting surface current flowing

parallel to the barrier ,

g Is the shunt conductance through the barrier carried by

(Giaever type [27] )  normal electron tunneling per

unit length ,

I is the inductance presented to the superconducting surface

current per unit length ,

c is the shunt capapacitance of the barrier per unit length ,

and J O is the maximum (Josephson type [28])  superconducting electron

tunneling through the barrier per unit length .

-7-
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Thus

~ (X , T) ~ T 
V(X , T’ )dT ’ (1. 5)

is the magnetic flux which has passed point X at time T. It is

convenient to measure this In units of the magnetic flux quantum or

fluxon

= h/Ze
( 1.6)

= 2. 067843 X 10 15 
volt-seconds.

If we define a Josephson length

r~ __
11/ 2

~~~~ (1.7)

and note that the characteristic velocities of (1.4) are ± u0 where

u0 = (Ic]~~~
’2

, (l.~~)

then (1.4) reduces to (1. 2) with the normalizations

X X/)’1 
(1.9)

t u0T/)~ (1.10)

= 2114/~
4
o (1.11)

a gIU 0 X
J 

. (1.12)

-8-
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Furthermore , if the shunt voltage across the barrier is normalized as

V = 1~J 11/2 = ~~~
-
~~~
- (1.13)

Lz ~c J
and superconducting surface current as

I 
f~ J 1~/~ ~~~~~~ 

, (1.14)

Lan i J
then

4’t = V

(1.15a , b)

In this paper , we will be primarily concerned with an analysis

of the normalized equation (1. 2). A more detailed discussion of the

approximations involved in obtaining (1.4) can be found in reference [17 ]

together with some tables of experimentally measured values of the

parameters .

I
-9- 
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II. THE LI NEAR APPROXIMATION

We begin with a brief discussion of the equation

- - a~~~ = 0 (2.1 )

which i s a  linearization of (1. 2) by neglecting the sine term . From ( 1.4)

it can be seen that this is physically equivalent to assuming the coef-

fIcient of Josephson tunneling current (J 0 ) to be small . EquatIon (2.1)

can also be written as the first order pde’s

V + i  -avt x
(2. Za , b)

I + v  0t x

where v and I are normalized shunt voltage and series current as

defined in (1. 13) through (1. 15). The experimental situation Indicated

in Figure Zb can then be represented as in Figure 4a where the dimension

b = B/X~. Physical symmetry and the boundary conditions require the

current (i) to be zero at the center In Figure 4a. Thus we need consider

only the half Junction shown in Figure 4b with the bou ndary conditions

v(O , t ) = v 0
(2. 3a , b)

i(b/2 , t) = 0.

If we assume v0 = const. and seek steady state solutions , (2 .2 )  impli es

H
- -



Line of symmetry
i(o ,t )  I (b,? ) ’  i(o ,t )

I 
-‘0

V(o,t) v (b ,t )•v (o,t)

( a )

Line of symmetry

0-

sb v

( b )

Figure 4. A linear approximation to the problem. State voltage v and
current I
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1,

v( x)
(2.4a b)abv

1(x) = 2 ( l - -~— ) .

Now return to (1.15) and write

$ = v t - ix (2. 5)

which can be viewed as a traveling wave with phase velocity

u = v/I . (2.6 )

From (2. 4) we see that

~~~ u > 1  for 0 cz x~ z b/ 2 (2 .7a)

and

for O < x < 1/ a
(2 .7b)

u > 1  for l / a < x < b/ 2 .

Thus for sufficiently small a , the phase velocity of a single traveling

wave (2. 5) will exceed unity for almost all x

We can , if we wish , resolve • into the sum of two traveling

waves , one carrying flux to the right and the other carry ing flux to the

left. Then

-12- 
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•1
= (v1t - I1x) + (v 2t + 12x) . (2.8)

where v1 + v 2 = V
0 

and i1 + I 2 = i(x) . This resolution is not unique ,

but in anticipation of results to be obtained below for the nonlinear problem

we suggest the following for the case ab/2 > 1.

For 0 < x  < 1/a set v 2 = 0 and 12 = 0 and take v1 and 11
to be the values given in (2.4 ) . For 1/a < x < b/2 take

- - 
V

0 b-l/a-x11 - v1 - 

~~~~~~ ~b/2-l/)
(2.9a,b)V

- 
0 x-l/a

2 b/2-l/a

Thus for 0 < x < 1/a there is only a single traveling wave component

and it has a phase velocity less than unity . For 1/a < x  < b/2 there are

two com ponents and the phase velocity of each has a magnitude equal to

unity .

-13-
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III. THE FLUX FLOW DOMAI N

In this section we address ourselves to the nonlinear equation

(1. 2). Consider first a steady state solution. Then sin ~

WhiCh is readily integrated to

1 2
x E

~~~~
5 $  (3 .1)

where E is a constant of integration . The conditions ~~, 0 and

-~~ 0 at large x requires E = I whereupon

. = ± Z s i n +/Z .

From (1. 15) 1 has maximum magnitude of ‘c = 2 when •(0) = i~~. Thus

the critical curre nt (into 
____ 

ends)

[ 1’~ i01 1/21
I ~~~~~~~~~ j ] (3.2 )

is established below which the voltage (v = is zero and above

which flux must flow . This effect has been carefully investigated (29 J .

Suppose now that 1(0) > i (I > so a steady state solution

for (1. 2) does not exist . As has been shown in reference [17], it is

convenient to turn to Whitham ’s method of averaging for which it is

supposed that the solution appears locally as a traveling wave of the form

(3. 3a ,b)

0 = 4 4 3 t - k x

-14-
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- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

where ~ and k are allowed to be slowly varying functions of x

and t. Then 4,(O) is defined locally as the elliptic integral

I~ 2 4’ d~ ’
0 = ~Ik - U 

~ 2(E - ~~~~~ ~ ‘) ‘

where we assume E > 1. Dy namic equations for the slow variation of

k , ~ and E with x and t are [7 , 8, 17]

[wF ’(E)F(E)]
~~
+ [kF ’(E)F(E)] = -aUF’(E)F(E)

(3.Sa ,b)

k + w  = 0 .
t x

The functions F ’(E) and F(E) are complete elliptic integrals of the

first and second kind respectively and defined as

F”E — -i- ~ _ _ _ _ _ _ _ _ _ _ _= Zir ~.I2(E - cos 4~)

(3. 6a , b)

F(E) = f ‘JZ(E - cos.~~) d4)

Note that in the large amplitude linear limit, £ -~~

F’ (2E) l/~
’2

- (3. 7a , b)
1/2F -‘ (ZE)

It is convenient to require that • increase by 2w when B does ,

whereupon k , w and E are related by the nonlinear dispersion equation

-15- 



k 2 
- U 2 

= [F ’(E ) ] -2 (3.8)

In the large amplitude linear limit (E >> 1) , the product

F’(E)F(E) — 1

as is shown in Figure 5. Furthermore (3. 4) and (3.8) imply

so

= 4’t — et = U

(3. 9a ,b)
i = - ~ -~-e = kx X

and (3. 5) approa ch the linear equations (2. 2) whIch were considered in

the previous section. Figure 5 indicates that this large amplitude linear

limit is approached within a few percent for E >  2.

Suppose now that the current (1) is increased to the maximum

zero voltage (v = 0) level. As I goes from 0 to 0+
, the steady

state current , i( x) , will jump from the solution of (3.1) (with E = 1)

to a solution of (3 .8) with U 0 or

k = k = [F ’(E )] 1 (3. 10)

-16 - 
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where £ is the critical value of the integration constant E for a
C

traveling wave solution carryIng the critical current . Since kc 1c = 2 ,

(3.10) is satisfied for F ’(E ) ~ 0. 5 or

E ~ 2. 237 .
C

For positive values of voltage (U > 0) , this periodic solution will

move .

To determine the relation between terminal current , 1(0) , and

voltage, w(O), whon the flux is moving, we must eliminate E fro m the

nonlinear dispersion equation (3.8). This can be done by noting [7 , 17]

that traveling wave velocity (or nonlinear phase velocity )

- 

u = w / k (3.11)

and E are related as

I..(u1
2 

~~: 

[- r(E)] l/Z dE. (3.12)

where the lower limits have been chosen to satisfy the condition

u = O  when E = E
C

Since E0 2, the high amplitude linear limit ( F(E) ~ ( 2E)~’
2

and F’(E) — (2E) hh’2
1 La appropriate for evaluating the right hand side

of (3.12) . Then

-18-
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E(O) = E (~~~ ) (3. 13)

which upon substitution into (3. 8) gives

[w(o) = k(O) - A
~
T

~~
t

~~ 
. (3. 14a)

This is the equation for the displaced linear branch. Taking account of

(3 .9)  and the normalizations in (1. 13) and (1.14) , it can be written

~ 
(I - . (3.14b)

Thus the consta nt slope (K) which appears in (1. 3) is equal to half the

characteristic Impedance of the linear operator in (1. 2) [1] , and the

weak temperature dependence of this slope (see Figure 1) is readily

appreciated .

Now let us consider how far such a steady state traveling wave

solution can be extended into the Junction. The assumption of steady

state in (3. 5b) implies

const (3.l5a )

and f rom (3. 5a) , k(x) must satisfy

[ kFF ’] = -awFF’ . (3 .l5b)

Pelinovskil and Shavratzkii [8] have shown that there Is a definite

limit in x beyond which a single phase (periodic traveling wave) solution

-19 -



of (3.15 ) does not exist. To see this consider the quantity kFF’ .

Using (3 .8)  it is seen to be

kFF ’ = F~~l + w 2( F ’) 2 (3.16 )

which , for fixed U~ is a function of E with a minimum value (E Emin
)

satisfying the condition

2{[ F’ (E )] 2 
+ F(E 1 )F ”(E 1 )} + ~ ~~~. (3.17 )

The character of kFF ’ as a function of E and U is displayed in

Figure 6 and Emin vs. w is plotted in Figure 7. When kFF ’ is equal

to its minimum val~ie , (3. lsb) can no longer be satisfied because the right

hand side requires that kFF’ continue to decrease. It is only for the

range of x for which E > E m that the steady state single phase

solution can exist.

The value of x (say x0 ) at which kFF’ has fallen to its

minimum value is an upper estimate for the boundary of the flux flow

region. Equation (3.15) can be integrated with the boundary conditions

E = E ( O )  at x = 0

E = E  at x = xmm o

to obtain

-20-
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Figure 6 . Ic F(E) F’(E) vs. E
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~0 
=

~~~ ~~~0) [
~ 

J_.
~

+ (F ’) 2 
+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
] dE . (3.18)

mm

where from (3.13) and (3.14)

E(0) = c,J~~~ + E . (3.19)
C C

In the large amplitude linear limit (3.18) implies that x0 — (2E c)~~
’2/aw

as w ~ , and x0 — .607/aU as w — 0.

We are now prepared to calculate the power flowing across the

boundaries of the flux flow region. In general P(x) (v(x)i(x) ) c~k( x)

where the approximation improves for large E as indicated in (3.9) .

Taking the boundaries of the flux flow region as x = 0 and x

(see Figure 8) , the power flowing in at x = 0 is

P(0) ~ Uk(0)
(3. ZOa ,b)

U + C

where (3. 14a) has been used to evaluate k (O) .  In a similar way , the

power flowing out at x = x0 is

P(x0 ) ~ Uk(x 0
)

_________  

(3. Zla , b)

+ mm

where (3.8 ) has been used to evaluate k(x0) .

-23-
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If the assumption of steady state in the flux flow domain is

correct , the difference between these Incoming and outgoing powers must

equal the d .c .  dissipation. Thus we expect

P (0) - P(x0) = aU 2x0 (3. 22)

whereupon a second estimate for x0 is

~ + ~~~c + 
2
~~~mn ] (3 . 23)

We do not expect precise agreement between the values of x0 calculated

from (3. 18) and (3. 23) because the power flow estimates in (3. 20a) and

(3. 2.la) are not exact for smaller values of E.

However , as Figure 9 shows , the agreement is rather good .

Equation (3. 23) gives values for x0 which are 7-10% higher than those

calculated from (3.18) when w lies between 1 and 2. Equation (3. 23)

is , of course , much more convenient than (3.18). For w > 10 , the

asymptotic expression

x (3.24 )0

is a reasonable approximation.

-25- 
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FIgure 9. Maximum length of the flux flow domain (x 0) vs.
voltage (w) .
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IV. THE FLUX ANNIHILATION DOMAI N

Let us suppose that we have a large Joseph son Junction which

exhibits a displaced linear branch (Figure 1) in the volt-ampere char-

acteristics as is implied by (3.14) . Assume further that a , b , U and

E are adjusted such that the relation
C

U
2 

= w(w + ,~Jii ) (4. 1)

holds. This relation says that the d.c. power into the Junction (RHS)

equals the d.c. power dissipated on the junction (LHS) . If U is

increased above the value which satisfies (4 .1) , the LHS will be greater

than the RHS and the displaced linear branch will not supply power to

the Junction at the rate it would be dissipated. Thus the value of U

which satisfies (4.1) Is the “break voltage ” (see Figure 10) above

which the displaced linear branch will not conti nue . Figure 1 shows

that such a break voltage Is a Characteristic feature of the displaced

linear branch .

For ~~ l~ (4.1) implies that a necessary condition for

observing a break in the displaced linear branch is

1 (4. 2a)

or , In unnormalized units ,

~27 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



(I ~ 

-

— I
U

9 
U

Figur e 10. The break voltage (w 8) in the displaced linear breathers.
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C

g B —  . (4 .Zb )

Now consid er the difference between the power flowing 4 nto

the flux annthilat ion domain , P(x 0 ) , and the d .c .  power being

dissipated in this domain

1’dc = 
2 ( b 

- x0) . (4 .3)

Thus , from ( 3 .Z ~) and (3.23)

(4 •4)

From (4.1) this difference is zero when U = U~~. For U < U8, (4. 4)

indicate s that the d .c. power flow into the flux annihIlatIon domain is

g~reater than the d. c. power dissipation in that domain. Thus for U < U
8

it is not possible to have a steady state (w const) in the flux

annihilation domain. There must be an additional a.c. component of

voltage to dissipate the power difference given by (4. 4) . The source

for this a. c. voltage is the continuous creation of breather solitons near

the center of the junction .

The dynamic activity in the flux annihilation domain is consider-

ably more complex than in the flux flow domains . To get some qualitative

appreciation for this activity we turn to the ideas developed in Section II

and in the appendices. Consider first the problem of representing the
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d.c.  compunent s or the time averages of v and i. Following —

Appendix C we assume a double phase solution

+(x , t) = •(O i, 0 2
) (4. ~)

with

(4.6a , b)
0 2 = U

2
t - k 2x

Then , motivated by (2. 8) , we try the simple form

+ 0 2 . (4.7 )

Equations (C-14) both become

(k1 + k 2) = -a(u1 + w
2

) (4.8 a)

and (C-6c , d) imply

U
1 

+ U
2 

w (a constant). (4.8b)

The boundary condition k1(x0) + k 2(x0 ) = k(x 0
) and (4. 8a) implies

+ k 2 = k(x0) - ~~(x - x0
) . (4.9 )

t
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The symmetry condition discussed in connection with Figure 4 requIre s

+ k 2
(~ ) = 0 , but from (4 .9 )

k 1(~ ) + k 2
(~ ) = k(x 0

) - aU(~~ - x0
)

(4. 10)

U + - U .

This is equal to zero only at the break voltage U = U
B

. For ~ <

the simple double phase function assumed in (4. 7) cannot correctly

represent the d .c . components. Some more versatile expression

(probably using Riemann theta functions) will be required [13 - 15] .

In the special case w = U
8

~~ however , we can use (4. 5) - (4.7) where

k(x 0) x - x0k1(x) = k(x0) - w(x-x0) + 2 ~b/z -

(4.ll a , b)
k(x 0) x - x0k 2

(x) = - 

2 ~b/2 -

For - U 
~~ 

UB, (4.11) should be approximately correct .

Furthermore from (3. 24) and (4. 2a)

so most of the Junction will be occupied by the flux annihilation domain.

- 31-



Also the rate at which kt~ ks enter this domain at x = x0 will be

U/ ZIY . Since each breather form s by coupling a kink entering from the

left and an a ntikink fro m the right , the stead y state rate of breather

formation must equal U/Zr! .

Where in the flux annihilation domain will these breathers form ?

To answer this question we can use the results of Appendix B as a qualitative

guide. Jt~ tat  the center of the junction , •,~ = 0 and 4,~ = w. Thus ,

from (B- 22) , we expect the number of breathers formed per unit time and

distance to be aw/Zw . Since the rate of rotation fall s from a maximum at

the center to zero at the edges of the flux annihilation domain , the net

rate of breather formation should equal abU/4w . Then the condition

(4. 2a) implies a breather formation rate U/Zlr .

Thus we have a fairly self consistent picture of breather formation

for the case U - U
8 

< < U
8

. We expect the breathers to remain near the

center of the Junction because they are formed near the center of the

j unction as stationary breathers .

The case U << is much less well understood for several reasons .

-32-
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i) The qualitative nature of the d .c. solution is not clear.

ii) From (4. 4) the a. c. voltage is no longer a small fraction

of the d .c.  voltage .

iii ) For w — 1, x0 
— b/Z and the flux annihilation domain

becomes very narrow. In this case , the a. c. voltage is probably not

confined to the fl ux annihilation domain.

Numerical studies of the case U << U
8 

would be helpful in

understanding these uncertain aspects. As far as the external observation

of a displaced linear branch is concerned , however , all that Is required

is for a single phase (traveling wave) solution to be established near the

edges of the j unctIon.
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V. CONCLUSIONS

Here an attempt will be made to draw together the somewhat

tattered strands of the above discussion by indicating which results may

have experimental significance and by suggesting some directions for

future research .

1) Critical current.

From (3. 2) , the ciritical current 
~
1

C~ 
above which flux will begin

to move is 4[,0J 0/ 2 n I ] l/ ’Z . Since it is practical to compute j 0 and I

from independent measurements on a small Junction [17] , the ideal value

for can be compared with that actually observed on a large Junction.

Such a comparison Is important because irregularities in the barrier

thickness (d In Figure 2) may cause flux pinning and increase I above

the value given by (3. 2) .

2) Slope of the displaced linear branch.

Equation (3 14b) indicates that the slope of the displaced linear

branch should equal 2’../c/I where the factor of two accounts for current

flow Into both ends of a long junction (see Figure Zb) . This result con-

firm s the suggestion made in [I) . Since c and I can be independentl y

measured on a small Junction , this striking feature of the above theory

for the displaced linear branch is always subject to direct experimental

check.
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3) Condi tions for observing the displaced linear branch.

In (4. 2) it was noted that the condition for observing a break in

the displaced linear branch is ab ~ 2 or, in unnormalized un its ,

gB ~ 2\ c/I . If ab ~~ 2 , the Josephson current becomes a small

portion of the total current , and the situation reduces to the linear

problem studied in Section II. If , on the other hand , ab << 2 , the

Junction becomes a resona nt electromagnetic structure , and the step

structure observed by Fiske [30-33] will dominate the volt-ampere

characteristic. Thus the condition

1 (5.la , b)

or

g B -  2’J c/I

also determines the range of experimental parameters for which the

displaced linear bra nch should be unambiguously observed.

4) Numerical studies.

It was assumed , In the discussions of Sections III and IV , that the

a. c. voltage associated with the decay of breather solitons is confined

to the flux annihilation domain and does not “leak out ” into the flux flow

domain. This assumption seems plausible because stationary breathers

are generated at the center of the Junction and it Is confirmed In a

-35-
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rough way by observations on the mechanical model as shown in Figure 3.

But it would be comforting to have a direct numerical test of this picture .

An appropriate problem would be integration of (1. 2) with end conditions

w(O , t) U(b , t) = 0 for t < 0

= v for t > 0

and with ab = 2 , a = 0.1 , 0.01 , 0.00 1, and v = 1, 10 , 100. An asymptotic

form of the dynamic activity should be sought as t

5) Experiments with light sensitive junctions.

Barone et al. [34] have recently demonstrated that properly

prepared Pb - CdS - In Junctions can be changed from “ small ” (b < 1)

to “large ” (b > 1) by ordinary optical illumination. This change occurs

because the Josephson tunneling is increased and therefore is decreased

under illumin ation. An Increase in the Josephson tunneling should correspond

to an increase in the normal electron (Giaever) tunneling and therefore an

increase in a. Thus ab should be an even more sensitive function of

illumination than b. Indeed , from (5.16) , ab Is directly proportional to

the Giaver tunneling density .

Thus it may be possIble to experimentally observe a transition from

“Fiske steps ” on a ~‘small” Junction to flux flow on a “large ” Junction as

the illumination level is increased.
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APPENDIX A: STRUCTURE OF A BREATHER

1. Classical structure

Consider the sine-Gordon equation In characteristic coordInates

4, = sin 4, (A-i

which is equivalent to (1.1) under the independent variable transformation

(A - 2a ,b)
7 = (x+t)

If ~~~~~~~~ is a solution of (A-i) , it is easily shown that 41 (g ,7)

which satisfies

1
= 4Fy sin( 2

- 
(A-3a , b)

i n n- 1
= - sin( 2

is also a solution [35] . This is called a B~cklund transform which

generates a new solution from a known (old) solution; by repeated

application a hierarchy of solutions can be obtained. If I~ is real,

an additional kink or soliton will be introduced with the asymptotic

form

= 4 ta n ’[ex~(W~~ - iT/2’~~)] (A-4)
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and velocity in the laboratory (x , t) frame [17]

4 +1
u = . (A -5)

j 4Y J
-l

As George Lamb has suggested [ 36] , a convenient way to generate a

breather solution to (1.1) is to perform two B~ cklund transforms with

complex y ’s and

= -~~~~~~ . (A-6)

Such a solution , ~~~ 
Is given by [16 , 35 , 36] -

tan 

~~ 
= ( )  

tan
(
~~1~~ 2)  (A 7)

.Y +Y

where and 4,~ 
have the Gudermanntan form Indicated in (A-4) . Thus

in the laboratory (x , t) frame a breather soliton has the form

= 4 tan ’[1~~~ 
exp[ i(’y - ):-i(~y+ —~~ )t ] -exp[ ~i(.~* 

-~~~~~~~~~~~ )x+i (y *+ ~ LIIr )tfl~

~~y +y l-4.exp[ i ( y -y  - + ~~~ )x + i(-~ +~ -
~~~~~~~ + ~~ T )t] J

(A-8)

Upon examination of (A-8) , the following points will be noted .

i) As ‘y — a pure imaginary ~ 2tt and the breather

di sassociates into a kink-ant lkInk pair.

ii) As y — a real # , ~~ 
0 and is proportional to

sin(kx-wt ) where k = - 1/4 y ,  U = + 1/4 ~ and w
2 

= 1 + k 2 .
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111) The envelope of the breather is determined by the denominator

in (A-8) . The envelope velocity
1 * 1

Y + —  - ‘~ - ——y
= (A-9)

e 1 * 1
~i- ~~~~ - Y  +~~ ;T

is positive for I’y I > 1/2 and negative for I~ I < 1/2. Thus the condition

for a stationary breather is

1y =~~~~ . (A-b )

In term s of an angle parameter (~~~) which relaxes from — 0 as two

kind s decay into a stationary breather of zero energy , (see Figure 11)

a stationary breather takes the form

= 4 tan ’ {tan ~3 sin[ (cos ~)t] sech[ (sin ~3)x] } . (A-U)

The rest energy of a breather can be calculated as the total

energy of a stationary breather fro m the Hamiltonia n density

H 4 ~~+~~~4,~~+ l - c o s 4, 
- 

(A-12)

corresponding to (1.1). At -t  = 0 , (A-li) reduces to 4,8(x , 0) = 0; so

H =~~~+~~~
(x , 0) and the total energy

u8 =f  H~~
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or

UB = 16 sin ~3 . (A-13)

When ~3 reaches iv/2 , the breather disassociates into two kirks of

the form (A-4) , so the energy of a kink Is

Uk = 8 . (A-14)

2. Q~iantum structure

Fadeev [37 , 38] and Dashen, Hasslacher and Neveu [39] have

carried through an exact quantization of the breather soliton described

by (A - ll). The discrete energy levels were found to be

—
U = ZU k sin (n + 1/2) (A-l3)

where Uk is the unnormalized energy of a kink (fluxon), A’ is Planck’ s
constant divided by 2ir and

U
1 

= U~A1 (A-l4)

is the Josephson frequency which was used in (1.10) to normalize the

time scale . There is correspondence between the classical frequency

(cos ~3) in (A-li ) and the frequency for emission or absorption in (A-l3)

if

2~ k 
(n + 1/2) . (A-l5)
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Thus the allowed quantum states for a stationary breather are evenly

spaced on the circle ~ I = 1/2 (see Figure 11). Qua ntum effects should

become import ant in predicting the dynamics of a breather if the number

of these states is not large compared with unity . To evaluate this

situation we note that in unnormalized units

U k = 8cV~ X
1 

= ~ ~ 0J 0
X
1 

(A-16 )

and turn to the parameters measured on the Josephson transmission lines

discussed in reference [17] . From (A-l4) the total number 1 levels is

l r U j

Table I. Estimates of Quantum Structure for Breathers

N53C NZ5L

x 2 .63 X ~~~~~~~~~~ 1.27 X ~~~~ meter

6.69 X 10 10 1.81 X 1~~’° rad/sec.

1.9 .097 amp/meter

1. 22 . 062 amp/CM 2

Uk 13.1 )( lo~~~ 3 .24 X 10 19 j oules

N(=4Uk/lr..l(.I)
J

) 2. 37 X l0~ 2. 16 X 10~

From the last entry in Table I it is clear that the number of

qua ntu m levels is so large that classical dy namics sh ould be sufficiently
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4r4
accurate for the description of these particular Josephson transmission

lines. As for other structures it should be noted that N j 0X~ or

N X W  (A-l8 )

where W is the width of the transmission line (see Figure 2a) . If

W were decreased by two orders of magnitude (fro m 64 microns to

0.64 micron) , quantum corrections would still be of minor importance .

This is In accord with a previous estimate of the need for quantum 
-

corrections in a point contact Joseph son Junction [ 40] .
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APPENDIX B: A COHEREN T BREATHER GA S FROM ROTATING
INI TIAL CONDITIONS

Here we use the inverse scattering ~r~~n qfrir ~~ method for the sine-

Gordon equation (1.1) , which was discovered by Ablowitz , Kamp , Newell

and Segur [4] , to see how a breather gas can be generated . In laboratory

coordinates the equations for evolution of the scatteri ng variable

= are

i 1 1 1  1
- 

~~~ 
(y - cos +) 4a~ + j [;7 sin 4 , -  

~
(B-la , b)

~ 2 ,x = sin •+ 
-

~~ ~~~~~~ + -
~ (‘y - cos

and

= ~ (~~ + cos +)‘I~l 
+ ~ [~~~~ 

sin . + 
~~~ 

(4
~

-
~ t )]4

~ -

(B -2a , b)

~~~~~~~ 
=
~ ~* 

sin s~ - ~ ~~~~~~~~~~ 
- -

~~
(
~~+ ~~~cos 4~)~~

These equations are closely related to the B cklund transform equations

(A-3) [5 , 41] for which we noted that a purely imaginary y introduced
*a kink or solIton and a pair (y, -

~~ 
) Introduced a breather Into the

total solution .

The application of such scattering equations to compute the

evolution of nonlinear waves from specified initial conditions has been

discussed in detail [5 , 17]. Here I will merely sketch a particular

calculations of Interest to our study of the flux annihilation domain in

Section IV .
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Refer to Figure 12 and consider the following initial conditions

on •(x , t) which is to be a solution of (1.1)

4, (x , 0 ) = 0

0) = 0 for I x I  > p  (B-3a , b)

= V f o r I x I < p .

A scattering problem Is defined as indicated where a rid ‘1’r are the

asymptotic incident and reflected waves In Region and is the

asymptotic transmitted wave in Region~~~ . SInce 4i obeys (B-I , 2) in

all regions , the asymptotic forms indicated in Figure 12 follow directly

from assuming 4, -. 0 as Ix I — ~ and writing

(B-4)

Bound states of the scattering problem require a(y ’) = 0 and Im(y ’) > 0.

The corresponding bound state eigenvalues represent the kinks and breathers

to be fou nd In the evolution of 4,(x , t) . It is easily shown that under (B-4)

the upper (lower) half of the y plane maps to the upper ( lower) half of the

~‘ -p 1ane ; thus the condition for a bound state is the same in laboratory (x , t)

coordinates as in the characteristic (~~~, T) coordinates usually used to dis-

cuss the ISTM for the sine-Gordon equation .

Since the bound state eigenvalues are independent of time , they

can be determined from the initial conditions (B -3) at t = 0.
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In RegionQ
i

- -
~~ ‘y ’ X

= e
(B- Sa , b)

= 0

In Region 0 (Proceeding as in [ 17) )

(cos mx - sin mx) sin mx 
~lO

x J  J (B-6)

- sin mx (cos mx + sin mx) ~ J
where

(2 m) 2 
E (~~S ) 2 

+ (.~) 2 (B -7)

The bou ndary conditions at x = -p determine the constants 
~lo and

I
‘~2O as

I
‘ I

=(cos mp - ~~~~ sin mp)e
(B-Ba , b)

V
~‘Z0 ~ sin mp) e

Then the boundary conditions at x = +p determine 
—

a(y ’ , 0) = e 
I y ’P 

(cos mp - 
~~~~

— sin mp) 2 
- (~j L ) 2sin 2mp] (8-9)

as the incident wave amplitude at time t = 0.

J
-47 -
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The bound states are determined by the condition a(y ’ , 0) = 0

which can be expressed as

cot Zmp = . (B-b )

This condition together with (B-7) is just the pair of equations studied

previously in connection with the problem of fluxon propagation [ 171 . The

only difference is that y has been replaced by y ’ which is related to ‘y -

by (B-4 ) . Thus we can immediately state that all the roots of (B-b ) which

lie in the upper half of the f-p lane lie on the imaginary axis , and the

construction of Figure Il in reference [ 17) will find them . In particular we

note that 2m~P ~ nw for most of the roots , so from (B-7)

- (nw) 2 
. (B-ll)

To see which of these roots correspond to breathers we must return to

the ‘y-p lane and use the results of the preceding appendix. First we

write (B-4) in the form

~ A [~I ~~J(~~ )
2~~ 1 ] . (B-l2)

As V is increased from zero , threshold levels (Va) are reached at

which new zero s of a(y ’ , 0) appear in the upper half of the ~y ’ -plane .

Each enters at the origin and moves up the imaginary axis of the ‘j ’-plene .
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From (B-iZ) a corresponding ~~~~ of zeros enters the ‘y-plane at y ±1/2

and move up the circle Iv I = 1/2 indicated in Figure U. Thus

stationary breathers are generated just above threshold by the Initial

conditions (B-3). From the construction in Figure 11 of [ 17] , it is easily
thseen that the threshold condition for the n breather pair is

V = (Zn-l) ii /p . (B-13)

From (B-il) we note that as p — oo most of the zeros lie at

= iV/2. For V < 2 , (B-12) indicates that they lie on the circle

~ I = 1/a in Figure 11 and cluster at

= sin 1(V/2) . (B-14)

As p — ~ and V< 2 in Figure 12 , we have — 0 every-

where whereupon (1.1) reduces to the pendulum equation

sin ~ . (B-l5)

This extended oscillation may be viewed as “gas ” of a barge number of

synchronized or coherent breathers.

It is interesting to compare the energy of this coherent state with

the total input energy U0 . From the Hamiltonian density (A-l2) and the

initial conditions (B-3) , this energy is

U 0 V2P (8-16 )
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which can be portioned b tween I) kinks (of which there are none when

V < 2) , ii) breathers and iii) radiation. Since these three energy component s

are positive definite [381, the energy of the N breathers

U NB U0. (B-l7 )

An upper bound on U NB is obtained by noting that the approximation (B-il )

underestimates Iy~ I so

i~~i>~Ji - ( 2fllT
)
2 (B -18 )

thand from (8-14) the energy of the n breather

- 

U NB > 8 vJ1 - (
2i~11T

) 2 
• (B-l9 )

From (8-13) the number of breathers (N) is the largest integer less than

VpF w
2w

Thus there are no breathers , and no breather energy , when

Vp < it .

In general the total breather energy

U NB > 
~~ 

8VJl~ ( )
2 (B-20 )

For

Vp ~~ 2w

the right hand side of (B -20 ) can be approximated by the integral

~ V 2p J~ I1-y 2 dy = V2p

Thus (B -20 ) and (B-l7 ) together Imply

_ _ _ _ _ _ _ _ _ _ _ _  
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U -~~UNB 0

as p — ~o with V < 2. For a number of breathers large compared with

unity , essentially all the input energy goes into the breathers . If

Vp ZwN , (B -2 0 ) implies U NB/U O is greater than 55% for N = 2 ,

greater than 71% for N = 3 and greater than 79% for N = 4.

Finally let us suppose that

V >> 2

and we are interested in the behavior of the dissipative sine-Gordon

equation (1. 2). The time average of sin l~ will be small , and , for

sufficiently large p , the x derivatives can be neglected. Then (1. 2)

reduces to

-aV .  (B-al )

From (B-l3) , a breather forms every time V decreases by 2w/p .

Thus a rough estimate for the number of breathers formed per unit

time and per unit distance is given by

7~~=~~~~ . (B-az )
2w
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APPENDIX C: DOUBLE PHASE SOLUTIONS

This appendix Is a summary account of the theory of multiphase

solutions for nonlinear wave equations which has been developed over

the past few years by Ablowitz [9 - 12] .

Suppose we have a nonlinear wave equation for ~ (x , t)

N( 4 ,) = 0 (C-I)

which can be obtained fro m an Euler variation of a Lagrangian density .

Thus

N(4, ) = -
~~~ 

L(4,t , 4,x ’ ~ (C-2 )

Suppose further that 4 (x , t) can be written as a double phase function

4,(X , t) = Z’ (0 1, ez) (C-3)

such that L is a doubly periodic function of 01 ~ id 0
2~ 

Then choose

01 = w1t 
- k 1x

(C-4a , b)

= ~ 2t - k 2x

and average L over both periods to

— L. J f L(w~~ +U
2

~~ 0 
, k1~ 0 +k 2~0 , ~ )00 1d0 24w 0 0 1 2 1 2

H =~~ (w 1, w 2, k1, k 2) .
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If 
~~~~

, 
~~~~

, k1 and k 2 are not constant but allowed to vary slowly

with x and t , two dy namic equations for this slow evolution can

be obtai ned from Euler variations of ç’ with Oi and O 2~ 
Thus

£ = 0 => - (-f ) = 0 (C-6a)

(C-6b)

Two additional equations are conservation of periods for the two

components or

(w
1

) + (k1)t = 0

(C- 6c , d)

~~2~x + (k z)t = 0

A necessary condition for this description to be valid is that the original

equation (C-i) have the double phase solutions indicated in (C-3) for

which L is doubly period.tc. It has recently been demonstrated that

multiple phase solutions [~ (x , t ) = ~
(0 i, O 2~ ..., °N~ 

for any finite

Integer N] exist for those particular nonlinear wave equations which

display soliton behavior [13-15) . This class Includes the sine-Gordon

equation (1.1).

A Lagrangian density for (1.1) is

1 2 1 2L = ~~ 4 ’ -~~~4~~~ cos 4 , .  (C-7)
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If j ,(x , t) has the doubly periodic form in (C-3)

L = -
~~ (k 1~~0 + k 2’~0

) 2 
- -

~~ ~‘~i
’1’o1 

+ w
2 0

) - cos ~ (C-8)

so (C-6a ,b) become

2w 2rt Zw 2w

~~ 1 1 2~ 01
~~6 2

~~01d0 2 + -
~~~

— f f (k 1~~~+k 2~ 8~~ 0 )dO 1dO 2=0

2w 2ir 2 w 2 ~
-

~~

- f f (w
2~~

2 +w 1
4~9~~ 0

)de1de 2 + ~i~f f (k 2~~~ +k 1~ 8~~0 )d01d0 2 = 0.

(C-9a ,b)

These are (3. 22) of reference [9) .

Now consider (1. 2) in which the sine-Gordon equation is made

dissipative through addition of the small loss term - a4,~
. Following the

discussion in Wh itham [7 , p. 510],  we note that (C-9a) can be

interpreted as

- 

~
‘ > IX + (sin4 ,)1 0 (C-b )

where -

2w 2w
~ ~l f f ( . 

~~~ 
d01d0 2 . (C-il)

0 0  1

Noting the correspondence between (C-b ) and (1.1) in the form
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- 4, + sin 4, = 0 , we can perform a similar averaging of (1. 2)

to obtain

- 

~4’x>ix + ( sin 
~~~~~~ 

= -a( 4~
) b . 

(C-lZ)

Similar treatment with respect to the averaging

Zn Zn

2 f f ( . ) -
~~~~ d01d0 2 (C-l3)

0 0  2

beads to the pair of dynamic equations

2w 2w 2w Zn
-

~~~~ f f ~~~~~~~~~~~~~~~~~~~~~~ + 

~ f f (k1~’9~+k~ 0~~9 )de 1d0 2 =

2w 2w
= -a f f ~~l

s1
$ + w 2~ 0~~ 0 )dO 1dO 2

Zir 2w Zir Zw
~& f f (~ 2

4 2 +~ 1~~~~~~~)de1dO + 1~ f f (k 2~~~ +k1~ 9~~ 0 )dO 1de 2 =

2w Zn
= -a f  f  (w1~~ ’ +w 2~ 0~~~~ )d01d8 2

(C-l4a ,b)

These , together with the conservation equations (C-6c ,d) are the dy namic

equations used in this paper . In Section III , only a single phase is

assumed (3. 3) so (C-l4a) reduces to (3. 5a). In Section IV , both phases

are employed for the d. c. components . It is necessary in either case to

assume

_  
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a < < l

so that the dissipative variation over a cycle is small and the averaging

indicated in (C-5) is well defined.

Abbowitz [9] has suggested a way to get some Integral constraints

on the function 
~~~~~ 

0
~

). Con sidering (0-3) as a change of independent

variables , (1.1) becomes

+ 2h~~ ~ 
+ g 

~~ 
+ sin ~ = 0 (C-15)01 1 “1 2 2 u

Z 2

where g1 - k~ and h - k1k 2. This equation can be written

in the form of a conservation law as

.1_ (i g~~
2 ~i g~~ 2 -co s~~) + ~~~~ (h~~

2 + g ~~ ~ ) = 0

or as - (C-16a , b)

~ ) + ( A g~~~
2 - 1g~~

2 - cos~~ ) = 0 .

From these it follows that

f
2
~
1
l g1~~ - 

~~~ g2~~ - cos ~‘)d0 2 = -E 1
and (C-l7a ,b)

f
Z1V

( 1 g 2~~ - -
~~ g1~~~ - cos ~ )d01 = -E 2 .

If • is independent of (C-l7a) is satisfied by the eUiptic function

in (3 .4) .

~ii_ 4
—---- - _
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Under the assumption h 0 , (0- 15) becomes

g1~~0 ~ 
+ g2~ 8 ~ 

+ sin ~‘ = 0 (0-18)
11  2 2

which Lamb [ 36] has shown to have solutions of the form

= 4 tan 1[ f(0 1)g(0 2)] (0-19 )

where f and g are elliptic functions . This is the doubly periodic

function suggested recently by Ben-Abraham [ 421 . For our purpcses ,

however , the assumption h 0 Is too severe. It requires

~~1 = 1  (0-20)
1 2

which means that the two component traveling waves must have phase

velocities in the same direction with one going faster than the characteristic

velocity of (1. 1) and the other slower.

From references [13-15] it seems that a simple prescription for
1~

constructing a more general double phase solution to (1.1) would be as

follows : i) Express the elliptic function defi ned in (3.4 ) in terms of

theta functions , ii) Augment the argument s of these theta functions from

o to 81 + 0 2, and iii) Check that the resulting expression is a solution

of (1.1).
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