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ABSTRACT

Recent developments in the theory of the sine-Gordon equation

are used to analyze the appearance of a "displaced linear branch" in

the volt-ampere characteristic of a large Josephson junction. Internally

the junction is divided into a flux annihilation domain near the center

and flux flow domains near the edges. The displaced Hnear branch is experi-

mental evidence for the existence of flux flowdomains. In the flux annihilation

domain, an ac voltage component is induced by the continuous formation

and decay of sine-Gordon breathers. Whitham's nonlinear WKB method

is used to analyze the flux flow domains while the inverse scattering

transform method is used as a qualitative guide to the study of breather

formation in the flux annihilation domain.
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MAGNETIC FLUX ANNIHILATION IN A LARGE JOSEPHSON JUNCTION
Alwyn C. Scott

I. INTRODUCTION

The physical phenomenon to be discussed in this paper is the
"displaced linear branch" in the volt-ampere characteristics of Josephson
tunnel junctions having dimensions large compared with the Josephson
penetration length (~ 0.1 mm). This effect was reported several years
ago [1 - 3] and an explanation based on a continuous flow of magnetic
flux quanta (fluxons) was suggested. Since that time, several striking
advances have been made in the understanding of the analytic behavior
exhibited by solutions of the underlying nonlinear partial differential

equation, the sine-Gordon equation

=sin ¢ . (1.1)

bex ~ Pt

Particularly important have been i) the development of an inverse
scattering transform method (ISTM) for (1.1) [ 3 - 6], ii) the application
of Whitham's method (WM), of slow perturbation of a single phase

(periodic traveling wave) solution, to a dissipative version of (1.1) [7, 8]

bpx ¢tt - ad, = sin ¢, (1. 2)

iii) Ablowitz's discussions of the extension of Whitham's method to

multiple phase (multiply periodic) solutions [9 - 12], and iv) demonstrations

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024
and by the National Science Foundation under Grant No. ENG 75-08492.




that appropriate multiply periodic solutions assumed by Ablowitz do in
fact exist for (1.1) [13 - 15]. The present discussion should be con-
sidered in context with previous efforts to apply the fruits of soliton
theory to the problems of fluxon dynamics in large Josephson junctions
[16, 17]. Such studies are of interest not only as an aid to understanding
the volt-ampere characteristics of Josephson junctions [1 - 3, 18, 19], but
also because the soliton properties of fluxons may make them useful as
carriers of information [ 20 - 25].

The displaced linear branch was first observed on 1 mm. X1 mm.
crossed strip Josephson junctions as volt-ampere characteristics of the
sort displayed in Figure 1. Above a critical current (Ic) for zero voltage
(~ 1/ 2 ampere), the voltage (V) was found to increase linearly with the

difference between current and critical current. Thus

V= K(I-Ic) (1.3)

where the constant of proportionality (K) is much less sensitive to
temperature than the normal electron component of tunneling current. It
was suggested [1] that the input power (VI) implied by (1. 3) is carried
by moving fluxons from the edges of the junction toward the center

where it is given up in events of fluxon-antifluxon annihilation.
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Figure 1. Voit-ampere characteristics of typical experimental junctions
at various temperatures, (a), (b), and (c) are Sn-0y,-Sn, vertical: w00
mA/div, horizoatal: 2 mV/div. (d), (e), and (f) Pb-0,-Pb, vertical 500
mA/div, horizontal: 2mV/div,
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Although the two dimensional effects which appear in the square
function geometry of Figure 1 are of both theoretical and practical interest,
the present discussion will be confined to the one dimensional geometry
indicated in Figure 2. In this case a mechanical analog of (1.2) [ 26] can
be used to demonstrate the existence of flux flow domains near the edges
and a flux annihilation domain near the center as shown in Figure 3.

The paper is organized in the following way. The linearized version
of (1.2) which is obtained by neglecting the sin ¢ term is discussed in
Section II in order to provide a perspective for considering the nonlinear

problem. Then using results obtained by Pelinovskii and Shavratzkii [8]

and in [17] the flux flow domain is described in Section III. The
nonlinear solution in the flux flow domain is based upon the single
phase (periodic traveling wave) solution described in detail by
Whitham [7]. The flux annihilation domain considered in Section IV
involves the propagation of fluxons in both directions and requires
therefore a double phase (doubly periodic) solution [9 - 12]. In the
flux annihilation domain, fluxons and antifluxons combine to form
"breather solitons" which give up their energy to the dissipation
represented by the -ad, term in (1. 2). To understand the annihilation
domain, it is important to appreciate the nature of breather solitons;

thus two appendices are included which discuss (A) the structure of a
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Figure 2. One dimensional geometry used for the theoretical analysis (not
to scale), (a) perspective view, (b) section showing voltage v across
insulating barrier and current i parallel to the barrier,




Figure 3.

| <— Flow

3
°
('
[ =4
o
- o
o~ o VA
o e LS
S~ 2 - =
= =
.E c
& g
g
; ?
°
- 3
™

Kink flow domains and the kink annihilation (breather) domain

on a mechanical analog of (1.2). (a) The crank is turned very slowly,
(b) It is turned faster, (c) Faster still,

b




breather, and (B) the use of the inverse scattering transform method
(ISTM) to study the generation of breathers through the interaction

of double phase components. A third appendix (C) gives a summary
account of single phase and double phase solutions for (1.1). The
material in these appendices should be appreciated in order to follow
the discussion of the main text. Finally we conclude with a review of
the results which appear to be useful in interpreting currently available
experimental data and some suggestions for future experiments.

The unnormalized form of (1. 2) is

°xx - !gQTT -gle, = Jot s1n(21r4>/¢0) (1. 4)

where
X is distance in the laboratory coordinate system,
“ T is time in the laboratory coordinate system,

®r

®x

1

V(X,T) is the voltage across the barrier,

-I(X,T) is the superconducting surface current flowing

parallel to the barrier,

g is the shunt conductance through the barrier carried by
(Giaever type [27]) normal electron tunneling per
unit length,

1 1is the inductance presented to the superconducting surface
current per unit length,

c is the shunt capapacitance of the barrier per unit length,

and is the maximum (Josephson type [28]) superconducting electron

Jo
tunneling through the barrier per unit length,

o
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Thus

T

X, T = [ VX, T)dT' (1.

is the magnetic flux which has passed point X at time T. It is
convenient to measure this in units of the magnetic flux quantum or

fluxon

QO = h/Ze
(1.
-15
= 2.067843 X 10 volt-seconds.
If we define a Josephson length
) 1/2
A, = - (1.
I | 2m
and note that the characteristic velocities of (1.4) are # U, where
-1/2
u, = [£c] / g (1.
then (1. 4) reduces to (1. 2) with the normalizations
X = )(/)\I (1.
t = uo'l.‘/kI (1.
¢ = 2m8/2 (1.
a = gluo XI . (l.
B

5)

6)

7)

9)

10)

11)

12)




et
Furthermore, if the shunt voltage across the barrier is normalized as
v v
V= = {1.13)
[4* oo ]1/ 2 Vu
2nc

and superconducting surface current as

1 1
i= R (1.14)
[cbojo 1/2 IN ’
2nl
then
¢ =V
(1.15a,b)

¢x = -1 .

In this paper, we will be primarily concerned with an analysis
of the normalized equation (1.2). A more detailed discussion of the
approximations involved in obtaining (1. 4) can be found in reference [17]
together with some tables of experimentally measured values of the

parameters.
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II. THE LINEAR APPROXIMATION

We begin with a brief discussion of the equation

Ve~ B, = 0 (2.1)

XX

which is a linearization of (1. 2) by neglecting the sine term. From (l.4)
it can be seen that this is physically equivalent to assuming the coef-
ficient of Josephson tunneling current (jo) to be small. Equation (2.1)

can also be written as the first order pde's

(2. 2a,b)

where. v and i are normalized shunt voltage and series current as
defined in (1.13) through (1.15). The experimental situation indicated

in Figure 2b can then be represented as in Figure 4a where the dimension
b= B/)\I. Physical symmetry and the boundary conditions require the
current (i) to be zero at the center in Figure 4a. Thus we need consider

only the half junction shown in Figure 4b with the boundary conditions

v(0, t) = Yo

(2.3a,b)
i(b/2, t) = 0.

If we assume Yo " const. and seek steady state solutions, (2.2) implies

-10-
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Figure 4. A linear approximation to the problem, State voltage v and
current 1 .
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v(x) = v

0
2 (2.4a,b)
i) = —2 a - &,
2 BT
Now return to (1.15) and write
¢ =vt - ix (2.5)
which can be viewed as a traveling wave with phase velocity
u=v/i. (2.6)
From (2. 4) we see that
ab
= <1 => u>l for 0<x<b/2 (2.7a)
and
ab
S >1=>uc<l for 0<x<1/a
(2.7b)

u>1 for l/a<x5b/2.

Thus for sufficiently small «, the phase velocity of a single traveling
wave (2.5) will exceed unity for almost all x .

We can, if we wish, resolve ¢ into the sum of two traveling
waves, one carrying flux to the right and the other carrying flux to the

left. Then

i3

Lo o ———— Ao €7 A0 >
: paS g 7

e il Sk i
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¢ = (vlt - 1% + (vzt + 12x) ’ (2.8)

where ntv, v, and 11 + 12 = 1(x). This resolution is not unique,

but in anticipation of results to be obtained below for the nonlinear problem

we suggest the following for the case ab/2 > 1.

For 0 <x<1l/a set v,=0 and i, =0 andtake v, and i

to be the values given in (2.4). For 1/a < x < b/2 take

v0 b-1/a-x
y oy s WLV
A (2.9a,b)
3wy =_2(..x;1&)
i 2 2 ol

Thus for 0 < x < 1/a there is only a single traveling wave component
and it has a phase velocity less than unity. For 1/a < x < b/2 there are
two components and the phase velocity of each has a magnitude equal to

unity.
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[1I. THE FLUX FLOW DOMAIN
In this section we address ourselves to the nonlinear equation
(1.2). Consider first a steady state solution. Then i sin ¢

which is readily integrated to
] 2
z.1»,(—Ei-cosq> (3.1

where E is a constant of integration. The conditions ¢ = 0 and

o, = 0 at large x requires E=1 whereupon
¢x=tzsm¢/2.

From (1.15) i has maximum magnitude of ic = 2 when ¢(0) = w. Thus

the critical current (into both ends)

® 3 .11/2
i 0’0
. ” 4[ = ] (3.2)

is established below which the voltage (v = ¢t) is zero and above
which flux must flow. This effect has been carefully investigated [29].

Suppose now that 1(0) > lc (I > Ic) so a steady state solution
for (1.2) does not exist. As has been shown in reference [17], it is

convenient to turn to Whitham's method of averaging for which it is

supposed that the solution appears locally as a traveling wave of the form

¢ = ¢(8)

(3.3a,b)

0 = wt - kx




where w and k are allowed to be slowly varying functions of x

and t. Then ¢(8) is defined locally as the elliptic integral

..»,/2 2 ¢JL.- ™
e b e f 2(E - cos ¢') '’ 2.4

where we assume E >1. Dynamic equations for the slow variation of

k, @« and E with x and t are [7, 8, 17]

[wF'(E)P(E)]t % [kF'(E)F(E)]x = -awF'(E)F(E)

(3. 5a,b)

The functions F'(E) and F(E) are complete elliptic integrals of the

first and second kind respectively and defined as

1 2m dg
FiE) = fo N 2(E - cos ¢)

(3.6a,b)

2w
FE) = 5= [ W2(E - cos ¢) de
0

Note that in the large amplitude linear limit, E = %,

F' - (zm'l/z

(3.7a,b)
F - (zl:)l/2 .

It is convenient to require that ¢ increase by 2r when 6 does,

whereupon k, w and E are related by the nonlinear dispersion equation




k2.l [F@) 2. (3.8)
In the large amplitude linear limit (E > 1), the product
F'(E)F(E) = 1
as is shown in Figure 5. Furthermore (3.4) and (3.8) imply
b =6
SO
v = ¢t - et =W
(3.9a,b)

1=-¢x--9x=k

and (3. 5) approach the linear equations (2. 2) which were considered in

the previous section. Figure 5 indicates that this large amplitude linear

limit is approached within a few percent for E> 2.

Suppose now that the current (i) is increased to the maximum

- +
zero voltage (v =0) level. As i goes from 0 to 0 | the steady
state current, i(x), will jump from the solution of (3.1) (with E =1)

to a solution of (3.8) with w =0 or

" o . -1
k = kc =[F (Ec)] (3.10)

=16

“w:\.‘_ﬂ&w,ﬂ-ﬁ- P S5




{1~ 3)

‘sa (3)d (I)d ¢ °anbyg

(3),4(3)4

————
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where Ec is the critical value of the integration constant E for a
traveling wave solution carrying the critical current. Since kc = ic =2,

(3.10) is satisfied for F'(Ec) = 0.5 or
E = 2, 237,
c

For positive values of voltage (w > 0), this periodic solution will
move.

To determine the relation between terminal current, i(0), and
voltage, w(0), when the flux is moving, we must eliminate E from the
nonlinear dispersion equation (3.8). This can be done by noting [7, 17]

that traveling wave velocity (or nonlinear phase velocity)
u = w/k (3.11)

and E are related as

u ' E '
A 2 F(E) ;
1-(u') Ec

where the lower limits have been chosen to satisfy the condition

u =0 when B:Bc.

Since E = 2, the high amplitude linear limit [F(E) = ( ?.!:)l/z

and F'(E) = (ZB)'l/ 21 1s appropriate for evaluating the right hand side

of (3.12). Then

-18-




L 2

1+u
E(0) = Ec (l-u) (3.13)

which upon substitution into (3.8) gives

w(0) = k(0) - \Izr.c . (3.14a)

This is the equation for the displaced linear branch. Taking account of

(3.9) and the normalizations in (1.13) and (1.14), it can be written

418 &,
v_zj:(x 1) - (3.14b)

Thus the constant slope (K) which appears in (1. 3) is equal to half the

characteristic impedance of the linear operator in (1.2) [1], and the
weak _temperature dependence of this slope (see Figure 1) is readily
appreciated.

Now let us consider how far such a steady state traveling wave
solution can be extended into the junction. The assumption of steady

state in (3. 5b) implies
w = const (3.15a)
and from (3. 5a), k(x) mus.t satisfy
[kPl»"]x = -awFF' . (3.15b)

Pelinovskii and Shavratzkii [ 8] have shown that there is a definite

limit in x beyond which a single phase (periodic traveling wave) solution

| PCSRECIPIRNCIR st R P Sk earivb i s Wi A




of (3.15) does not exist. To see this consider the quantity kFF'.

Using (3.8) it is seen to be
KFF' = FV1 + w2(F")? (3.16)

which, for fixed w, is a function of E with a minimum value (E = Em )

in

satisfying the condition
W {[F(E_, )2+ FE_ IJF"(E_ )} +1=0 (3.17)
min min min g i

The character of kFF' as a function of E and w is displayed in

Figure 6 and Em " vs. w is plotted in Figure 7. When kFF' is equal

i

to its minimum valye, (3.15b) can no longer be satisfied because the right
\%"\;\

hand side requires that kFF' continue to decrease. It is only for the

range of x for which E > Em that the steady state single phase

in
solution can exist.
The value of x (say xo) at which kFF' has fallen to its

minimum value is an upper estimate for the boundary of the flux flow

region. Equation (3.15) can be integrated with the boundary conditions

"
o

E=E(0) at x

EzE at x=x

to obtain

-20-
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E(0) "
F
"o"lf [?{ ‘li*“""z : J—B—z'—i}dﬁ-“"g’
e W 1+ w (FY)

where from (3.13) and (3.14)

E(0) = m)zEc + Ec . (3.19)
In the large amplitude linear limit (3.18) implies that Ry ™ (ZEc)l/Z/aw

as w= ®, and X, = .607/aw as w=0.

We are now prepared to calculate the power flowing across the
boundaries of the flux flow region. In general P(x) = (v(x)i(x)) = wk(x)
where the approximation improves for large E as indicated in (3.9).
Taking the boundaries of the flux flow regionas x =0 and x = x0

(see Figure 8), the power flowing in at x = 0 is
P(0) = wk(0)

(3.20a,b)

where (3.14a) has been used to evaluate k(0). In a similar way, the

power flowing out at X = X, is

P(xo) = wk(xo)

= Nwz + 2E
min

(3. 2la,b)

where (3.8) has been used to evaluate k(xo).

«328+
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If the assumption of steady state in the flux flow domain is
correct, the difference between these incoming and outgoing powers must

equal the d.c. dissipation. Thus we expect

2
P(0) - P(xo) = aw xo (3. 22)
whereupon a second estimate for x0 is
2E 2E
o | ‘\/ c min
xg =2 |14 -\/1+——w2 ; (3. 23)

We do not expect precise agreement between the values of x0 calculated
from (3.18) and (3. 23) because the power flow estimates in (3. 20a) and
(3. 2la) are not exact for smaller values of E.

However, as Figure 9 shows, the agreement is rather good.

Equation (3. 23) gives values for x. which are 7-10% higher than those

0
calculated from (3.18) when w lies between 1 and 2. Equation (3. 23)
is, of course, much more convenient than (3.18). For w >10, the
asymptotic expression
2E
W 7% SC———" (3. 24)

is a reasonable approximation.

-25-
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Figure 9. Maximum length of the flux flow domain (xo) vs.

voltage (w).
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IV. THE FLUX ANNIHILATION DOMAIN

Let us suppose that we have a large Josephson junction which
exhibits a displaced linear branch (Figure 1) in the volt-ampere char-
acteristics as is implied by (3.14). Assume further that o, b, w and

EC are adjusted such that the relation

ab

> wz = w(w + ZEC) (4.1)

holds. This relation says that the d.c. power into the junction (RHS)
equals the d.c. power dissipated on the junction (LHS)., If w is
increased above the value which satisfies (4.1), the LHS will be greater
than the RHS and the displaced linear branch will not supply power to
the junction at the rate it would be dissipated. Thus the value of w
which satisfies (4.1) is the "break voltage" wg (see Figure 10) above
which the displaced linear branch will not continue. Figure 1 shows
that such a break voltage is a characteristic feature of the displaced
linear branch.

For wp, > 1, (4.1) implies that a necessary condition for

B
observing a break in the displaced linear branch is

ab
2 1 (4. 2a)
or, in unnormalized units,
i, =

B el




e-———————————————

Figure 10, The break voltage (wB) in the displaced linear breathers.
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gB ~ 2/;5 : (4. 2b)

Now consider the difference between the power flowing ‘nto
the flux annihilation domain, P(xo), and the d.c. power being

dissipated in this domain

2. b
Pdc=aw (z-xo) b (4. 3)
Thus, from (3.2!) and (3.23)
SO TR AR
P(xo)-Pdc-w ) ZEC - aw 5 (4. 4)

From (4.1) this difference is zero when w=w_. For w< w (4. 4)

B B’
indicates that the d.c. power flow into the flux annihilation domain is
greater than the d.c. power dissipation in that domain. Thus for w < “g
it is not possible to have a steady state (w = const) in the flux
annihilation domain. There must be an additional a.c. component of
voltage to dissipate the power difference given by (4.4). The source
for this a.c. voltage is the continuous creation of breather solitons near
the center of the junction.

The dynamic activity in the flux annihilation domain is consider-
ably more complex than in the flux flow domains. To get some qualitative

appreciation for this activity we turn to the ideas developed in Section II

and in the appendices. Consider first the problem of representing the

-29-
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d.c. compunents or the time averages of v and i. Following

Appendix C we assume a double phase solution

o(x, t) = Q(Gl, 92)

with

915 wlt - klx

Gz=wzt -kzx.

Then, motivated by (2.8), we try the simple form

©(0), 6,) =0 +6, .

1 2

Equations (C-14) both become

(kl + kz)x = -ar(wl + wz)

and (C-6c, d) imply

ul + wz = w (a constant).

(4.5)

(4.6a,b)

(4.7)

(4.8a)

(4.8b)

The boundary condition kl(xo) + kz(xo) = k(xo) and (4.8a) implies

kl + kz = k(xo) - aw(x - xo) .

(4.9)

o o e A IR




The symmetry condition discussed in connection with Figure 4 requires

b b
kl(z) + kz(z) = 0, but from (4.9)

b R i il (
kl(z) + kz(z) = k(xo) m»(z xo)
(4.10)
ab
= w+ /ZEC e W,
This is equal to zero only at the break voltage w = wg- For w< wgs

the simple double phase function assumed in (4.7) cannot correctly
represent the d.c. components. Some more versatile expression
(probably using Riemann theta functions) will be required [13 - 15].

In the special case w = however, we can use (4.5) - (4.7) where

B,

k(xo) X - xo

b oot "o Tk 5 xo)
(4.1la,b)
kix) x-x
o & o 1. 0
ki) === &z xo) ;

For wp = @ < wg» (4.11) should be approximately correct.

Furthermore from (3. 24) and (4. 2a)

so most of the junction will be occupied by the flux annihilation domain.




Also the rate at which kinks enter this domain at x = X0 will be
w/2m. Since each breather forms by coupling a kink entering from the
left and an antikink from the right, the steady state rate of breather
formation must equal w/2w,

Where in the flux annihilation domain will these breathers form ?
To answer this question we can use the results of Appendix B as a qualitative
guide. Justat the centerof the junction, b, = 0 and ¢, = @ Thus,
from (B-22), we expect the number of breathers formed per unit time and
distance to be aw/2w. Since the rate of rotation falls from a maximum at
the center to zero at the edges of the flux annihilation domain, the net
rate of breather formation should equal abw/4w . Then the condition
(4. 2a) implies a breather formation rate ~ w/2m,

Thus we have a fairly self consistent picture of breather formation
for the case w - wp X wg* We expect the breathers to remain near the
center of the junction because they are formed near the center of the

junction as stationary breathers.

The case w <« uB is much less well understood for several reasons.
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i) The qualitative nature of the d.c. solution is not clear.

ii) From (4. 4) the a.c. voltage is no longer a small fraction
of the d.c. voltage.

i) For w~ 1, Xy~ b/2 and the flux annihilation domain
becomes very narrow. In this case, the a.c. voltage is probably not
confined to the flux annihilation domain.

Numerical studies of the case w <« w_ would be helpful in

B
understanding these uncertain aspects. As far as the external observation
of a displaced linear branch is concerned, however, all that is required

is for a single phase (traveling wave) solution to be established near the

edges of the junction.
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V. CONCLUSIONS

Here an attempt will be made to draw together the somewhat
tattered strands of the above discussion by indicating which results may
have experimental significance and by suggesting some directions for
future research.

1) Critical current.

From (3. 2), the ciritical current (I c) above which flux will begin
to move is 4[90J0/2wl]1/2. Since it is practical to compute jo and {
from independent measurements on a small junction [17], the ideal value
for Ic can be compared with that actually observed on a large junction.
Such a comparison is important because irregularities in the bartier
thickness (d in Figure 2) may cause flux pinning and increase Ic above

the value given by (3. 2).

2) Slope of the displaced linear branch.

Equation (3.1i4b) indicates that the slope of the displaced linear
branch should equal Z'J-?/_l. where the factor of two accounts for current
flow into both ends of a long junction (see Figure 2b). This result con-
firms the suggestion made in [1). Since ¢ and ! can be independently
measured on a small junction, this striking feature of the above theory
for the displaced linear branch is always subject to direct experimental

check.
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3) Conditions for observing the displaced linear branch.

In (4. 2) it was noted that the condition for observing a break in
the displaced linear branch is ab = 2 or, in unnormalized units,
gB = 2'Jc_/l_. If ab >» 2, the Josephson current becomes a small
portion of the total current, and the situation reduces to the linear
problem studied in Section II. If, on the other hand, ab « 2, the
junction becomes a resonant electromagnetic structure, and the step
structure observed by Fiske [30-33] will dominate the volt-ampere

characteristic. Thus the condition

e 1 (5.1a,b)

or
gB ~ 2Nc/t

also determines the range of experimental parameters for which the
displaced linear branch should be unambiguously observed.
4) Numerical studies.

It was assumed, in the discussions of Sections III and IV, that the
a.c. voltage associated with the decay of breather solitons is confined
to the flux annihilation domain and does not "leak out" into the flux flow
domain. This assumption seems plausible because stationary breathers

are generated at the center of the junction and it is confirmed in a

s




rough way by observations on the mechanical model as shown in Figure 3.
But it would be comforting to have a direct numerical test of this picture.

An appropriate problem would be integration of (1. 2) with end conditions

w(0, t) = w(b, t)

"

0 for t< 0

v for t>0

and with ab =2, a=0.1, 0.01, 0.001, and v =1, 10, 100. An asymptotic

form of the dynamic activity should be sought as t = o,

5) Experiments with light sensitive junctions.

Barone et al. [ 34] have recently demonstrated that properly

prepared Pb - CdS - In junctions can be changed from "small” (b<1)
to "large" (b >1) by ordinary optical illumination. This change occurs
because the Josephson tunneling is increased and therefore XI is decreased
under illumination. An increase in the Josephson tunneling should correspond
to an increase in the normal electron (Giaever) tunneling and therefore an
increase in o, Thus ab should be an even more sensitive function of
illumination than b. Indeed, from (5.16), ab is directly proportional to
the Giaver tunneling density.

Thus it may be possible to experimentally observe a transition from
"Piske steps" on a "small” junction to flux flow on a "large" junction as

the illumination level is increased.

-36-
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APPENDIX A: STRUCTURE OF A BREATHER

1. Classical structure

Consider the sine-Gordon equation in characteristic coordinates
¢§ . =8ing (A-1
which is equivalent to (1.1) under the independent variable transformation

(x-t)

T
un
™~ b=

(A-2a,b)

™ [

T == (x+t) .

If ¢ ,(€,7) is a solution of (A-1), it is easily shown that ¢, (€,7)

which satisfies

S

(676,_1)g = 4V sin—515)

¢ "6
e n_"n-1
(¢n+¢n-l)'r 5 g b AL

(A-3a,b)

is also a solution [35]. This is called a Backlund transform which
generates a new solution from a known (old) solution; by repeated
application a hierarchy of solutions can be obtained. If iy ] is real,

an additional kink or soliton will be introduced with the asymptotic

form
¢j = 4 tan-l[ exp(Ziyjﬁ - i'r/Zyj)] (A-4)
~37«
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and velocity in the laboratory (x, t) frame [17]

4y +1
:-11——' (A'S)
j 4Yj‘1 ¥

u
As George Lamb has suggested [36], a convenient way to generate a
breather solution to (1.1) is to perform two Backlund transforms with

complex y's and

*
Yl = -YZ ' (A"6)

Such a solution, ¢5, 1s given by [16, 35, 36]

oy & ¢
X——Y—*-) tan( 4 2) (A-7)
Yty

¢g
tan '—4' =

where ¢, and ¢, have the Gudermannian form indicated in (A-4). Thus

in the laboratory (x, t) frame a breather soliton has the form

1 1 L | » 1
3 *| exp[4(y- 3 )x-1(v+ =)t] -exp[ -1y - 0% )xHily +oo
¢B=4tan = Y* : Yl *Yl - X
+ oy - e % i
y+y | l+exp[ily-y 2 + ?)x +1i(-y+y st R )t]
(A-8)

Upon examination of (A-8), the following points will be noted.

i) As y = a pure imaginary #, ¢B - 2n and the breather
disassociates into a kink-antikink pair.
ii) As y= areal #, ég = 0 and is proportional to

slin-ut) vhete Koy VETT %34 ey ant o® s ba i
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iii) The envelope of the breather is determined by the denominator

in (A-8). The envelope velocity

RN S 1S
M 4y "V 4y
A= (A-9)
R Sy e
e

is positive for Iy | >1/2 and negative for |y | <1/2. Thus the condition

for a stationary breather is

1
Iy | = -2 (A-10)

In terms of an angle parameter (B) which relaxes from EZ--o 0 as two

kinds decay into a stationary breather of zero energy, (see Figure 1l)

a stationary breather takes the form
¢g = 4 tan-1 {tan B sin[ (cos B)t] sech[ (sin B)x]} . (A-11)

The rest energy of a breather can be calculated as the total

energy of a stationary breather from the Hamiltonian density

2

2
Ot

H= ¢, +1-cos¢ ' (A-12)

™ =
™~ |—

corresponding to (1.1). At 't =0, (A-1ll) reduces to ¢B(x,0) =0; so
1 2
Hs= > %,t(x’o) and the total energy

0

UB=_[°° Hdx
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or

UB =16 sin B . (A-13)

When B reaches w/2, the breather disassociates into two kinks of

the form (A-4), so the energy of a kink is
U. =8. (A-14)

2. Quantum structure

Fadeev [37, 38] and Dashen, Hasslacher and Neveu [39] have
carried through an exact quantization of the breather soliton described
by (A-11). The discrete energy levels were found to be

o Aoy
Un = ZUk sin [-Z-ﬁ: (n+1/2) (A-13)

where U, is the unnormalized energy of a kink (fluxon), A is Planck's
constant divided by 27 and

W,

uOAI (A-14)

is the Josephson frequency which was used in (1.10) to normalize the ~.
time scale. There is correspondence between the classical frequency
(cos B) in (A-1l) and the frequency for emission or absorption in (A-13)

if

W,
P ="d_2 4 (n+1/2) . (A-15)

-4]-




Thus the allowed quantum states for a stationary breather are evenly
spaced on the circle |y | =1/2 (see Figure 11). Quantum effects should
become important in predicting the dynamics of a breather if the number
of these states is not large compared with unity. To evaluate this

situation we note that in unnormalized units
U =8cVEA_ ==8 J \ (A-16)

and turn to the parameters measured on the Josephson transmission lines
discussed in reference [17]. From (A-14) the total number of levels is
4U
= e

" Table I. Estimates of Quantum Structure for Breathers

N53C N25L
-4 -3

x’ 2.63 %10 1.27 X 10 meter

oy 6.69 X 1010 1.81 X 1610 rad/sec.
Io 1.9 .097 amp/meter
o 1.223 L062 amp/CMz
U, 13.1x 10" 3.2a4x 10 27 joules
N(=4ﬁk/urul) 2.37 X 1o5 2.16 X 1o5 ——--

From the last entry in Table I it is clear that the number of

quantum levels is so large that classical dynamics should be sufficiently

-42e
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accurate for the description of these particular Josephson transmission

lines. As for other structures it should be noted that N =« j OXIZ or

N=W (A-18)

where W is the width of the transmission line (see Figure 2a). If
W were decreased by two orders of magnitude (from 64 microns to
0.64 micron), quantum corrections would still be of minor importance.
This is in accord with a previous estimate of the need for quantum

corrections in a point contact Josephson junction [ 40] .
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APPENDIX B: A COHERENT BREATHER GAS FROM ROTATING
INITIAL CONDITIONS

Here we use the inverse scattering transform mothod for the sine-
Gordon equation (1.1), which was discovered by Ablowitz, Kamp, Newell
and Segur [ 4], to see how a breather gas can be generated. In laboratory
coordinates the equations for evolution of the scattering variable

g = (¢1, 4'2) are

el ARl ¥ S " P
Y, x = 20 gy o8 @yt sine -3 (6,614,
(B-la,b)
o, ==2[L stn ¢+'l( 610, + 2 (y - cos e
2,x " 2'ay 2 W0 NN T 1Y C g COB AN,
and
o 0 1.4 " S
b p= 2 WHggoos e +o (g sinet (6 -0y,
(B-2a,b)
g W o e 7 ¥
¢z’t-2[ - siny -3 (¢, ¢t)]¢1 > v+ 2y °°8 N, -

These equations are closely related to the Backlund transform equations
(A-3) [ 5, 41 ] for which we noted that a purely imaginary y introduced
a kink or soliton and a pair (y, -y*) introduced a breather into the
total solution.

The application of such scattering equations to compute the
evolution of nonlinear waves from specified initial conditions has been
discussed in detail [ 5, 17]. Here I will merely sketch a particular
calculations of interest to our study of the flux annihilation domain in

Section IV,
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Refer to Figure 12 and consider the following initial conditions

on ¢(x, t) which is to be a solution of (1.1)

U
o

o(x, 0) =
¢,(x, 0) =0 for |x|>p (B-3a,b)

=V for legp.

A scattering problem is defined as indicated where ¢1 and q/r are the
asymptotic incident and reflected waves in Region @ and 4't is the

asymptotic transmitted wave in Reglon@ . Since ¢ obeys (B-1,2) in
all regions, the asymptotic forms indicated in Figure 12 follow directly

from assuming ¢ - 0 as |x| = © and writing
¥ g 8 ¥
| ek S (B-4)

Bound states of the scattering problem require a(y') =0 and Im(y') > 0.
The corresponding bound state eigenvalues represent the kinks and breathers
to be found in the evolution of ¢(x,t). It is easily shown that under (B-4)
the upper (lower) half of the y plane maps to the upper (lower) half of the
y'-plane; thus the condition for a bound state is the same in laboratory (x,t)
coordinates as in the characteristic (£,T) coordinates usually used to dis-
cuss the ISTM for the sine-Gordon equation,

Since the bound state eigenvalues are independent of time, they

can be determined from the initial conditions (B-3) at t = 0.

ik
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In Regiong :)

Ay
Ei 2
¢l e
(B~5a,b)
¢¢2 =0
In Region @ (Proceeding as in [17])
o .
(cos mx o sin mx) = sin mx '»10
¢ = X (B-6)
B i ( + > sin mx)
= sin mx cOSs mx 2m ~bzo
where
@m?= a9+ 2. (B-7)

The boundary conditions at x = -p determine the constants ¢10 and

Yo 28
4 Y'p
3 N 2 g
“‘10 =(cos mp - sin mp)e
: B-8a,b
v ’%Y P it
Voo *Fa TR mPN :
Then the boundary conditions at x = +p determine
iy'p '
\'
aly', 0)=e [ (cos mp - S sin mp)z - f— )zsinzmp] (B-9)

2m 4m

as the incident wave amplitude at time t = 0.

POPRRA R, iy
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The bound states are determined by the condition a(y', 0) = 0

which can be expressed as
cot 2mp = &L | (B-10)
2m ;

This condition together with (B-7) is just the pair of equations studied
previously in connection with the problem of fluxon propagation [17]. The
only difference is that y has been replaced by y' which is related to vy
by (B-4). Thus we can immediately state that all the roots of (B-10) which
lie in the upper half of the y'-plane lie on the imaginary axis, and the
construction of Figure 11 in reference [17] will find them. In particular we

note that Zmnp = nm for most of the roots, so from (B-7)

' o 4[R2 2 ¢
Yn""pﬁz) « () . (B-11)

To see which of these roots correspond to breathers we must return to
the y-plane and use the results of the preceding appendix. First we

write (B-4) in the form
Y:-;'[Y't‘\l(yl)z'O’l ] . (B"IZ)

As V is increased from zero, threshold levels (Vn) are reached at
which new zeros of a(y', 0) appear in the upper half of the y'-plane.

Each enters at the origin and moves up the imaginary axis of the y'-plane.
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From (B-12) a corresponding pair of zeros enters the y-plane at y = £1/2
and move up the circle ,Y l = 1/2 indicated in Figure ll. Thus
stationary breathers are generated just above threshold by the initial
conditions (B-3). From the construction in Figure 1l of [17], it is easily

seen that the threshold condition for the nth breather pair is
v = (2n-)m/p . (B-13)

From (B-1l1) we note that as p = ® most of the zeros lie at

y' =1V/2. For V < 2, (B-12) indicates that they lie on the circle

|yl =1/2 in Figure 11 and cluster at
-1
B =sin (V/2). (B-14)

As p=® and V< 2 inFigure 12, we have byye ™ 0 every-

where whereupon (1.1) reduces to the pendulum equation

by = SN ¢ . (B-15)

This extended oscillation may be viewed as "gas" of a large number of
synchronized or coherent breathers.

It is interesting to compare the energy of this coherent state with
the total input energy Uo. From the Hamiltonian den#ity (A-12) and the
initial conditions (B-3), this energy is

v, = vep (B-16)
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which can be portioned between i) kinks (of which there are none when
V < 2), 1ii) breathers and iii) radiation. Since these three energy components

are positive definite [38], the energy of the N breathers

Vo 5 ¥, (B-17)

An upper bound on UN is obtained by noting that the approximation (B-11)

B

underestimates Iy;1 | so

il X 2nm, 2
|an> W LR (B-18)

and from (B-14) the energy of the nth breather

/i . 22
UNB >8V /1 - ( VP) . ; (B-19)

From (B-13) the number of breathers (N) is the largest integer less than

Vpin
..

Thus there are no breathers, and no breather energy, when
Vp< m,

In general the total breather energy
N
: 2nm 2
U™ nZ=1 8V /1- ) . (B-20)

Vp > 2n

For

the right hand side of (B-20) can be approximated by the integral

1
4 vzp£ /l_yz dy =« Vip*

"

Thus (B-20) and (B-17) together imply

B Y
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as p=-= o with V < 2, For a number of breathers large compared with
unity, essentially all the input energy goes into the breathers. If

Vp = 2rN, (B-20) implies UNB/UO is greater than 55% for N = 2,
greater than 71% for N = 3 and greater than 79% for N = 4,

Finally let us suppose that

V>2

and we are interested in the behavior of the dissipative sine-Gordon
equation (1.2). The time average of sin ¢ will be small, and, for
sufficiently large p, the x derivatives can be neglected. Then (1. 2)

reduces to

dv :
S = -av. (B=21)

From (B-13), a breather forms every time V decreases by 2v/p.
Thus a rough estimate for the number of breathers formed per unit

time and per unit distance is given by

£ _E_V_ &
TH e (B-22)
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APPENDIX C: DOUBLE PHASE SOLUTIONS

This appendix is a summary account of the theory of multiphase
solutions for nonlinear wave equations which has been developed over
the past few years by Ablowitz [9 - 12].

Suppose we have a nonlinear wave equation for ¢(x, t)
N(¢) =0 (C-1)

which can be obtained from an Euler variation of a Lagrangian density.

Thus

&
N(¢) = 56 L(¢t, by ¢) . (C-2)

Suppose further that ¢(x, t) can be written as a double phase function

$(x, t) = ®(e,, 0,) (C-3)

2

such that L is a doubly periodic function of 61 cnd ez. Then choose

6, = wt -k x

1 1 1
(C-4a,b)
92 = wzt - kzx
and average L over both periods to
1 2n Zn
i L) (-]
gt § § Lw?®, +0 8, k@, +k.& , )00 do,
4 0 0 1 2 1 2 (C-5)

= p(wl, @5 kl’ kZ) .
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If € @, kl and k?_ are not constant but allowed to vary slowly

with x and t, two dynamic equations for this slow evolution can

be obtained from Euler variations of ¢ with 91 and 62. Thus

. RESRRP SR T T
50 =0 => (aw )t (ak )x =0 (C-6a)
1 1 1
5 I a8
T £=0=>( }, = & ). =0, (C-6b)
662 awz t akz X
Two additional equations are conservation of periods for the two
components or
(wl)x i (kl)t ar
(C-6c,d)
(wz)x + (kZ)t =0,

A necessary condition for this description to be valid is that the original
equation (C-1) have the double phase solutions indicated in (C-3) for
which L is doubly periodic. It has recently been demonstrated that

multiple phase solutions [¢(x, t) = ®(6,, 6 i GN) for any finite

20+
integer N] exist for those particular nonlinear wave equations which
display soliton behavior [13-15]. This class includes the sine~Gordon
equation (1.1).

A Lagrangian density for (1.1) is

1 1.2
L=%6é, 5% ~COS¢. (C-7)
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M If ¢(x, t) has the doubly periodic form in (C-3)

1 A 2
2 - S (w® tw® ’ ) -
L 2(k¢ l+k2‘l’ez) 2(4»1 91 wz 62) cos (C-8)

so (C-6a,b) become

N fz« wa 2 E fZﬂfZﬂ 2
(0, +w @ @ )d6.de, + (k,2 +k @ & _ )d6.de6_=0
atoolelzelézIZaxoolelzelezlz
2 J}TTZW 2 _a-jgiva 2
(W ®" +0.® @ )do.de_+ (k.® +k® @ _ )de.de_=0.
8t0029219192128){002921619212
(C-9a,b)
é These are (3. 22) of reference [ 9] .

Now consider (1. 2) in which the sine-Gordon equation is made
dissipative through addition of the small loss term - g, Follbwing the
| discussion in Whitham [ 7, p. 510], we note that (C-9a) can be

‘ interpreted as

<¢t)n - <4’x>1x + (sing); = 0 (C-10)
where
2w 2w
() efo fo £ weldeldez. (C-11)

Noting the correspondence between (C-10) and (1.1) in the form

- Sif=
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byy * ¢xx + sin ¢ = 0, we can perform a similar averaging of (1. 2)

to obtain

<¢t)lt - (¢ >1x + (sin ¢)l - -a<¢t)l . (C-12)

X

Similar treatment with respect to the averaging

wafZ'lr
') .= (+)® _ de.de (C-13)
2 0 0 92 | -

leads to the pair of dynamic equations

2n 2w 2m 21r 2
f f (w@ o tu,8 °e )de,de +-9~f k@ g +k® @ )d do, =
i 1 o o o G
f f +w@ @ )de de
0 0 o ¢ W
2m 2w 2w 2w
2 s 2
L. f f (0,80 +w® @ )dode, +== [ [ (k8 +k® & )dede, =
ot 4y B, 18,0, TR mee R 28,1 e e, 1 2
fZ'anﬂ 2
-a (W@ +0 ® & )de.de
6 o ‘hiByiAi0 0, ) -2

(C-14a,b)

These, together with the conservation equations (C-6c,d) are the dynamic
equations used in this paper. In Section III, only a single phase is
assumed (3. 3) so (C-14a) reduces to (3.5a). In Section IV, both phases

are employed for the d.c. components. It is necessary in either case to

assume

«55-
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so that the dissipative variation over a cycle is small and the averaging
indicated in (C-5) is well defined.
Ablowitz [ 9] has suggested a way to get some integral constraints

on the function 0(61, 6,). Considering (C-3) as a change of independent

2

variables, (1.1) becomes

g,® + 2ho +g.® +s8in® =0 (C-15)
1 elel 8192 2 9262

where g1 = ulz -'kiz and h = wlwz - klkz. This equation can be written

in the form of a conservation law as

il (.l Qz d @2 = -t 2 =
g =i g cos®) + th®_ +g.® @ )=0
891 9 °1 61 2 S 62 862 91 2 el 61
oras (C-16a,b)
il (h‘bz +agd® @ s ..1. 2 ad _l 2 - -
g ) + (< g,2 g,® cos )= 0.
ael e2 1 91 ez aez Y ol 92 2°1 el
From these it follows that
2
1 g4 - A s
f (6 9®g -3 9,0 - c0s 8)do, = -E
0 1 2
and (C-17a,b)
2m .
1 2 G § - s
{ G gz°ez 3 °1°el iy g

If ® is independent of 6 (C-17a) is satisfied by the elliptic function

2’

in (3.4).




Under the assumption h =0, (C-15) becomes

g,® + g @ +sin® =0 (C-18)
1 9191 2 9292

which Lamb [ 36] has shown to have solutions of the form
® =4 tan'l[ f(el)g(ez)] (C-19)

where f and g are elliptic functions. This is the doubly periodic
function suggested recently by Ben-Abraham [ 42]. For our purpcses,

however, the assumption h = 0 is too severe. It requires

W w A
-,;l (;;) w1 (C-20)
1) (k2

which means that the two component traveling waves must have phase

velocities in the same direction with one going faster than the characteristic

velocity of (1.1) and the other slower.

From references [13-15] it seems that a simple prescription for
constructing a more general double phase solution to (1.1) would be as
follows: 1) Express the elliptic function defined in (3. 4) in terms of
theta functions, ii) Augment the arguments of these theta functions from

6 to 6 + ez, and iii) Check that the resulting expression is a solution

of (1.1).
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