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INTRODUCTION

The fourth meeting of the Mathematical Model Working Group was held

at the International Center, Stanford Research Institute on January 16, 17,

and 18, 1973. The purpose of the meeting was to provide the opportunity

for detailed information exchange between MMWG members on matters relating

to various math model techniques and results.

In his opening remarks Dr. Sherman (Working Group Chairman) reviewed

the results of the Transducer and Hydromechanics Committee program develop-

ment meeting of January 3, 4, and 5. During the THC meeting there was

considerable discussion and interest in the need for noise models -
particularly as applied to submarine hull structures.
Present at the SRI meeting were the following:

C. Sherman (Chairman) - NUSC/NL R. Radlinski
G. Martin ~ NUC E.
R. Smith -~ NUC [

Spurlock¥*

Young*
J. Hunt - NUC R. Kolesar
G. Benthien - NUC

M. Knittel -~ NUC

C. Campbell

D. Davison - NUC
S. Hanish - NRL
P. Rogers

R. Baier

L. Van Buren

R. Dunham

D. Porter

*Part-time
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MODEL FOR BAFFLING OF FLEXURAL WAVES

C.H. Sherman
Naval Underwater Systems Center

SUMMARY

A very simple version of a model for evaluating the effectiveness of

baffle structures was presented. The model consists of an infinite plane

elastic plate representing the hull of a ship on which are two other

plane layers representing the baffle. The layer adjacent to the hull ;
layer has fluid properties while the other layer of the baffle is another j

elastic plate. Water lies beyond this second plate. The fluid layer can | 4

be given a dispersive velocity and other frequency dependent properties
to make it represent more complicated structures such as a compliant tube
baffle. The outer elastic layer is probably a necessary part of the baffle
in order to avoid too much loss of hydrophone sensitivity when hydrophones
are mounted just outside the baffle.

The solutions to two separate problems using this model were described.
The first is the calculation of the effectiveness of the baffle layer in
reducing the noise pressure produced by flexural waves in the hull,
Specifically, the ratio of the pressure at the outer side of the baffle
to the pressure on the hull without the baffle was calculated for a

specified flexural wave in the hull,
The second problem is the calculation of the tendency of the baffle
layer to degrade the signal. The ratio of the total signal pressure on
the outside of the baffle to the total signal pressure on the hull without f

the baffle was calculated for a specified incident sound wave.




The ratio of the two ratios described above is the signal-to-noise
improvement produced by the baffle. Although this model is oversimplified
in many respects, it does serve as an example of the type of calculation
which is required for evaluating different baffle concepts and other aspects

of large aperture, hull-mounted arrays.
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FINITE ELEMENT ANALYSIS OF TOWED ARRAY MODULES

R.R. Smith
Naval Undersea Center

The finite element method is a numerical technique useful in the
vibrational analysis of complex structures. It can be applied to towed
arrays giving the vibration levels (including hydrophone output) for a
variety of forcing functions (cable strum, turbulent boundary layer, drogue
whipping). Ultimately, the finite element method can be used as a design

tool to predict the effect of various construction techniques on array

self-noise levels.
This paper gives some preliminary results using the finite element
method. The mathematical model is shown in Figure 1. It consists of a

module 33" long with 1.25" 0.D. The module has endcaps on both ends and

two hydrophones freely suspended in the fluid. The left end is vibrated
axially (to simulate the axial component of cable strum) and the right end

is left free. An isotropic hose wall is assumed. This geometry matches

that of an experimental test which will be described later. Axisymmetric
"fluid" finite elements are used to model the inner fluid and axisymmetric

thick shell elements with complex Young's modulus are used to model the

g B B B B e e e ee o OW W8 B

hose wall. The finite element idealization and nodal points are also

s |

shown in Figure 1. %i

The effect of the hydrophones on the pressure pattern in the inner

fluid is shown in Figure 2. Plotted along the length of the array are
the differences between pressure (AP) with and without the hydrophones.
Differences between radial displacements (AR) and between axial displacements

(AZ) are also plotted. All curves are normalized to the maximum value of

PN W e N N
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P, R, or Z in the array. The low level curve (maximum scattering 2

percent) is for hydrophones with cross section 0.25 of that of the fluid.

iy
A )

The high level curve (maximum scattering 10 percent) is for hydrophones

‘m

with cross section 0.75 of that of the fluid. As would be expected, the

hydrophones scatter the pressure and radial waves, but not the longitudinal
waves,

Bigdres 3 and 4 show the predicted complex input impedance of the
Eﬁ = module for Young's modulus 3.39:107 and 1.0x108, respectively. Note that
| the curves are similar in shape with the frequency of the antiresonance
higher for a large Young's modulus. A typical set of predicted results

are:

3.39x107 (1 - §.25) Newt/met?

L
]

£ = 100 Hz
f F, = 6.28 Newtons

(~.17, =.63)x10"" mat.

(=]
L}

(=.58, .25)x10"" met.

(=1
"

M U P, = pressure at hydr. #1

(-.29, -.18)x10° ybar

[ ]

(-.42, -.26) psi

i gt
—

radial displacement at hydr, #1 (bulge wave amplitude)

(.19, .22)x10"° met.
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Figure 5 is a frame from a motion picture showing a time history of a
vibrating module. The radial motion is exaggerated 10:1 over the aiial
- motion., Note: a) the existence of a bulge wave, b) the motion of' the
g» fluid relative to the hose wall, and c) the vibration in thickness of
the hose wall, indicating a necessity to use thick shell elements to model £
the wall, Figure 5 shows that the model is simulating the proper phenomena

in axial vibration. In order to determine the validity of the model in

S daasincides

simulating an actual towed array module, the theory must be compared with

controlled laboratory experiments. Comparison with sea tests is of limited

value because several noise phenomena occur simultaneously and generally

hydrophone output is the only measured quantity. A simple experimental

T T T T Ty T T o v e Y

setup is shown in Figure 6. It is intended to use this experiment to t

determine radial hose wall motion, input impedance and hydrophone output as ;{

a function of frequency for axial and transverse vibrations. The adequacy
of various finite element models can then be determined by comparison with
these results.

Some preliminary experimental results are shown in Figure 7. The

vertical axis is the ratio of radial displacement at a point 10 inches

from the front of the module to axial displacement at the front of the

e

module. The curve labeled "computed" represents finite element predicted

s e

T

results. The curve labeled "experiment" was obtained from the apparatus

shown in Figure 6. This curve is given for a region where bulge waves

% : were actually measured (70-200 Hz). Outside this region, the component

of transverse motion was comparable to the bulge wave. Although the curves

| SEE——

P —

; ; : i: have the same shapes, the levels differ by as much as 50 percent. Further

analysis of both the computed and measured results will be performed in

L YT S VR TR

" an attempt to discover the source of the discrepancies.
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FLEXURAL DISC MODELING

R.W. Dunham
Naval Underwater Systems Center

INTRODUCTION

Flexural disc transducer elements are particularly useful in low
frequency active sonar systems being capable of generating relatively
low frequencies while maintaining reasonable physical dimensions. They
also are used in line hydrophone arrays and are amenable to application
as drivers in proposed designs of Helmholtz resonators. In the present
talk, some results obtained from a special purpose computer program (see
Réference 1) foi modéling aiiaymmetric, multilaminate, piezoelectric
flexural discs including tﬁe support structure, or hinge, will be presented.
The case considered involves a disc with no radiation loading (i.e., in
air). The results show an optimum hinge geometry for the class hinge
studies as far as the coupling coefficient is concerned.
THE GENERAL FLEXIBILITY MODEL

The program is based on a general flexibility mecdel for a multi-
laminate disc with a hole at the center (solid disc is a special case).
The disc is broken up into circular contours which serve as mechanical
"ports" to render a matrix description of the disc's elastic behavior.
The program itself is divided into three basic parts: Subprogram FLEX,
Subprogram BOUCO, and Subprogram DYANA.

Figure 1 shows a disc with typical circular contours and the port
matrix equation relating a vector containing the generalized port forces

to a vector containing the generalized port displacements. In addition
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the vectors contain variables involved in the boundary conditions at the
inside and outside edges of the disc. Hence, the matrix [D] is an
expanded flexibility matrix. It is evaluated by Subprogram FLEX.
 The general dynamic equations for the n-port disc model are:
(Al () = [D] (F,)

7 = ) + {IK] + 30lR] - WP0) - wixi}  ®

Here the matrix [D] is the reduced flexibility matrix after the boundary
conditions were applied by Subprogram BOUCO. (Ft) is the vector of total
force given here as the sum of the vector of applied generalized ferce
and load terms involving the generalized displacement vector. The matrix
[A] relates the generalized displacements. Subprogram DYANA performs the
necessary matrix algebra to get (W) on the left-hand side only,

(8] ) = [D] (F))

Finally, DYANA solves for (W).
ASSUMPTIONS IN THE MODEL

There are two basic assumptions made in developing the model.

1. The strains 5, and S, are assumed given by:

-z 40  dY
SH*dtarta

s, =z84+1
¥ r

2

where Z is the axial coordinate, r is the radial coordinate, @ is the

slope of the deflection, and Y is the uniform radial displacement.

i
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2. The shearing strain (if included) is assumed to be parabolic as

SR

in simple beam bending.
MODEL FOR A SIMPLE DISC WITH HINGE

The model for a bilaminar disc of PZT-4 with a simple flange hinge is

R

Sobinaia et o i i
PRSI 1 B
ol 4T ;

shown in Figure 2. The disc is modeled as one radial section since it is
uniform radially. The two laminates of PZT-4 are assumed identical in

material properties. The hinge, however, requires two radial sections;

IS R

one for the thick region and one for the flange. Also, three laminates

are required for the hinge as shown. The disc portion is broken up into

twenty circular contours. The hinge requires only one contour at its
inside edge, this supplying the flexible boundary conditions for the outside

edge of the disc portion when the disc is united to the hinge in a BOUCO

run. The outside edge of the flange is taken as clamped.

Figure 3 shows the disc and hinge with the geometrical parameters
pertaining to the model. Both resonant frequency and effective coupling
coefficient were calculated vs., the relative flange length, a/(a+b), for
various relative flange thicknesses, tw/t. These plots are shown,
respectively, in Figures 4 and 5. Note that for the very thick flange,
a/(at+b) = ,9450, there is very little dependence on a/(a+b) as expected,
the values remaining close to those for a uniform, full thickness hinge
clamped at its outer edge. It is interesting to note the behavior of
the curves for very thin flanges. As the flange becomes shorter and
shorter the curves first appear to be approaching values for a uniform,
full thickness hinge, simply supported at its outside edge (shown as S.S.

on the graph) but finally the curves take off toward the values for a

16
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uniform, full thickness hinge clamped at its outside edge, (shown as

clamped on the graph). A little reflection indicates this is in agreement

with one's intuition.

CONCLUSIONS AND FUTURE PLANS

This computer program proved very efficient for modeling flexural
discs with the flexible supports. A very large number of cases were
run to generate the curves shown with relatively little computer time
and relatively few manhours invested. The stgdy showed that an optimum
hinge geometry exists for the coupling coefficient, i.e., for tw/t = ,2100
and a/(a+b) = .65. It is also interesting that the resonant frequency is
fairly independent of the flange length for this geometry. It should be
pointed out that this consideration ignores the stress distribution at
present.

Future plans consist of the following.

1. Actual flexural discs with supports similar to the above are
presently being constructed. These will be carefully measured generating
experimental curves corresponding to the ones shown here. Corresponding
computer runs will be made to compare with the experimental results thus
giving a thorough check on the program.

2. One shortcoming of the present program is the inability to
output the stress profile throughout the disc and hinge. This deficiency
will shortly be rectified when this capability is added.

3. The model is to be modified into an effective two-port model to

supply an effective ABCD matrix for use with Dave Porter's array programs.

17
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USE OF ORTHO" ‘AL FIELDS IN MAGNETOSTRICTIVE SCROLL TRANSDUCERS

C. L. LeBlanc and C. H. Sherman
Naval Underwater Systems Center

ABSTRACT

A linear magnetostrictive theory is used to investigate the
alternating small signal characteristics of a thin-wall scroll trans-
ducer polarized and driven with orthogonal magnetic fields. The concept
of orthogonal excitation, advocated by researchers in the International
Nickel Co., is studied from this linear viewpoint and values for the
effective electromechanical coupling coefficient are presented in terms
of the material coupling coefficient k33 derived by applying colinear
polarization and excitation magnetic fields along the axis of principal
strain. Although the effective coupling was found to depend quite
heavily on the orientation of the resultant magnetic fields, no case was

encountered where the effective coupling exceeded k However, it is

33
expected that orthogonal excitation will have genuine advantages under
large signal driving conditions and two special cases of high amplitude
drive will be discussed; linearized drive and unpolarized drive.
Magnetostrictive scroll transducers have been in use for over twenty
years. In all this time the first new approach for driving these scrolls
is the orthogonal drive concept invented by AR Edson at INCO. Investi-
gation of the orthogonal drive concept shows that the coupling coef-
ficient for an orthogonally driven scroll cannot exceed the coupling for
a conventionally driven scroll but that high amplitude orthogonal drive
gives better linearity and more acoustic power than high amplitude con-

ventional drive.

24
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Figure 1 shows a thin wall scroll transducer with two windings; an
exterior toroidal winding, which is the one used in conventional scrolls,
and an interior solenoidnal winding which is completely surrounded by
magnetostrictive material. Bias and alternating currents can be super-
imposed in both windings. Current it in the toroidal winding produces

a closed circumferential magnetic field - H Current is in the

]
3-

solenoidal winding produces an axial magnetic field - Hi - which forms a

closed path in the material as outlined by the connecting arrows. This

latter field is transverse to the H! circumferential field; thus, the

3
term "orthogonal drive'. The resultant magnetic field is H, and is
inclined at an angle @ to the H! field. To gain a better understanding

3

of orthogonal drive, the scroll transducer was analyzed using linear,
small signal magnetostrictive theoryl. The objective was to determine
the effective electromechanical coupling coefficient and to see if
orthogonal drive provided higher coupling than conventional drive.

It is conventional tv write the linear, small signal equations of

state in a coordinate system with the x, direction parallel with the bias

3
magnetization direction in the material. In Figure 2, the resultant bias
magnetization vector (H3) is inclined at an angle @ such that the tangent
of @ 1s the ratio of the physically applied orthogonal bias fields, Hi
to Hé. The first step in the analysis is to write the constitutive

equations of state for polarized polycrystalline material in the unprimed

coordinate system. Since the unprimed system is rotated by the angle @

to the primed system, which fits the scroll geometry and by which the

25
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scroll motion can be described, then the original equations of state
must be transformed to the primed system for practical analysis. The
transformation is accomplished using tensor analysis and the transformed
equations which are needed in the prime coordinate system are those
shown in Figure 3.

These particular equations apply to a simple magnetostrictive ring
transducer with magnetic isotropy and relate strain S, and stress T to
magnetic intensity H and magnetic induction B. Assuming that the mech-
anical stress and strain, as well as the magnetic intensity and induction
are uniform throughout the material, then the static and dynamic coupling
coefficients are equal.

The coupling coefficient is evaluated, using an energy approach
defined in the IEEE Standards on Piezoelectric Crystals, by calculating
the piezomagnetic strain and induction energy densities. The specific
energies are found by multiplying equation (1) by the only existing stress
component, the Té circumferential stress, and by multiplying equations
(2) and (3) by their respective alternating magnetic field components,

Hi and Hé. The results are shown in Figure 4. Equation (1) gives the
magnitude of the effective coupling in terms of the unprimed coefficients,
the ones usually measured and published as material constants. The
relationships between the primed and unprimed coefficients are found by
comparing the appropriate bracketed expressions. In equation (1), H'

is the ratio of the magnitudes of the alternating magnetic field components,

Hi to Hé. If the following assumptions are made:

26
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(1) the material is isotropic elastically, r

(2) there is no change in volume upon magnetization, and

(3) the elastic and piezomagnetic shear coefficients have

relationships similar to their piezoceramic counterparts,
then equation (1) reduces to the calculable form given by equation (2).

The material coupling coefficient k., is associated with a conventionally

33
driven scroll. Many cases, ranging from H' equals zero to H' equals

infinity, are possible in equation (2); only specific cases will be
commented upon.

Figure 5 shows the coupling coefficient ratio plotted as a function
of the bias direction @ for various driving signal ratios H'. The upper

left plot shows that the coupling facter varies as the cosine of ¢ when

H' equals zero (or, when the only active driving field is the Hi field).
For @ equals zero, the driving field is parallel with the Ss strain and
the Hé bias vector, and maximum coupling is achieved. This case
represents the conventionally driven scroll. For @ equals ninety degrees,
the driving field is transverse to the magnetic bias vector, which is now
in the xi direction, and the result is zero coupling. The plot in the

upper right hand corner shows that the coupling factor varies as one-

half the sine of @ when H' equals infinity (or, when the only active

LT T T e e L G A T PR T YT T R e . e Yo

driving field is now the Hi field). For @ equals zero, the driving field

is transverse to the Hé bias vector and the result is again zero coupling.

For @ equals ninety degrees, the driving field is parallel with the bias

= a2

vector in the xi direction, but is transverse to the Ss strain,

27




resulting in the transverse coupling coefficient which is one-half the
conventional coupling coefficient k33.
The two lower plots in Figure 5 represent cases of more practical

interest. On the left the resultant driving and bias vectors are

Ir parallel with one another and when @ equals roughly 55 degrees, the
coupling is zero. On the right the orientation between the resultant

Zy driving and bias vectors varies and at @ equals 45 degrees they are

N; transverse to one another; note, no coupling null is detected. In the

;w former case, the parallel and transverse piezomagnetic contributions to

- the Sé strain oppose one another; in the latter case, they aid one

" another.

i Although the effective coupling was found to depend quite heavily

a on the orientation of the resultant driving field with respect to the

;. resultant bias magnetization vector, the effective coupling cannot exceed

.- k33 - the coupling coefficient for a conventionally driven scroll. How-

- ever, orthogonal drive should have genuine advantages under high amplitude

T‘ driving conditions as we will now demonstrate with two specific cases.

': Edson's and Huston's . approach will be followed with the exception that

;_ Cartesian components of induction will be used.

Equation (1) of Figure 6 shows the relation between the useful
circumferential strain Sé and the S3 strain in the direction of mag-
netization. Although the relation is a static one, we will assume it

holds dynamically. The square law relationship between strain and

magnetic induction given in equation (2), in conjunction with the
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normalization criteria (where subscript s designates saturation), is
used in equation (1) to derive equation (3). Equation (3) gives the
useful normalized strain in terms of the normalized Cartesian components
of magnetic induction. We will now use this formula in considering the
case which provides linear high amplitude operation, as outlined in
Figure 7. Let the components of induction be given by equations (1) and
(2), where bpx and bpy are bias components and u(t) and v(t) are, in
general, arbitrary functions of time. Inserting these components in the
strain formula, given in Figure 6 yields equation (3). Applying the
condition shown in equation (4) eliminates the bracketed term with the
squared, time dependent functions on the extreme right-hand side of
equation (3). The expression for the strain then reduces to the form
given in equation (5). Since both bracketed terms in equation (5) are
constants, the strain is a linear function of the magnetic induction
u(t). When the induction is a sinusoidal function of time, the bias
components can be adjusted to maximize the alternating peak-to-peak
strain to a value of the square root of two times saturation strain. In
a conventionally biased scroll the peak-to-peak strain cannot exceed
saturation strain and there is considerable second harmonic distortion.
Figure 8 shows the other case of interest, unpolarized orthogonal drive.
Let the components of induction be given by equations (1) and (2). These
conditions cause the resultant magnetic induction vector to be constant
in magnitude and to rotate at an angular frequency, omega (w). Inserting

these equations in the strain formula yields equation (3). Driving to

S——
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saturation induction makes bo equal unity, and then the Ss strain has

a fixed component of one-quarter saturation strain with an alternating

i
I
i
component of three-quarters saturation strain. Therefore, the peak-to-
I peak strain is three~halves saturation strain. When a conventional
I scroll is driven unpolarized, the peak-to-peak strain cannot exceed
saturation strain. In both cases, the strain varies at twice the

I frequency of the driving induction.

In summary, we note that the coupling coefficient for an orthogonally
I

driven scroll cannot exceed the coupling for a conventionally driven

T scroll. We also note that polarized orthogonal drive gives higher strain
amplitude with better linearity than conventional polarized drive and

{ that unpolarized orthogonal drive gives higher strain amplitude than

&

b conventional unpolarized drive. For the latter cases, orthogonal drive

“ has the potential for about 3 dB more acoustic power.
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COMPARISON OF TWO METHCDS FOR ANALYZING FREE-FLOODED
RING ARRAYS OF TRANSDUCERS

D.T. Porter
Naval Underwater Systems Center

Two computer programs used for predicting the transmitting behavior
of coaxial free-flooded arrays of transducer rings are discussed in this
paper.

Figure 1 shows a cross section of an array of three transducer rings,
labelled Tl, T2, T3. In the gaps between transducers, and at the ends
of the array are placed '"water rings", having the thickness of the trans-
cher rings and the density of water. Mutual coupling coefficients between
all transducer and water rings are calculated in conventional cylindrical
coordinates by Rogers' equations on the outer and inner surfaces of an
infinite rigid cylinder. Thus, the inner and outer surfaces of the
transducer rings are connected by the action of the water rings,
Unfortunately, the formulation of this 'water ring" method requires the
extension of the cylindrical surface past the end water rings to be rigid.
Because of this mathematical approximation, the predicted pattern will be
inaccurate near the array's axis.

)In Figure 2 we show that for M transducer rings and N water rings
array equations for M+N radiators can be derived, as in equation (1).
F is the driving force vector, Z is the mutual impedance matrix, and V
is the velocity vector. The velocity vector is solved for by inverting
the Z matrix, as in equation (2). The NUSC/NL program is presently limited

to MtN less than or equal to 60. By breaking the program into three
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separate parts this limitation could be raised to 200. However, the
largest array of coaxial free-flooded rings of which we have knowledge is
18.

An important assumption of this program is that the water rings with
their discrete velocities will adequately simulate the continuous velocity
variations that actually exist in the gaps between transducer rings and
at the ends of the array.

Calculations have been done for arrays with various numbers of water
rings per gap and per end. If the gap is much less than a wavelength and
also less than the transducer height, then one or two water rings per gap
will suffice. However, on the extension of the cylindrical surface at the
ends of the array the velocity normal to the cylindrical surface is changing
rapidly in magnitude and phase. As yet, a satisfactory method for
determining the required number and size of end water rings has not been
determined.

The program as written requires the inner and outer velocitics of any
ring to be equal and out of phase, and the top and bottom edges of each
ring have zero normal velocity. The program contains lumped circuits for
simple ceramic and magnetostrictive rings. The output includes source
level, directivity index, beam patterns, radiation impedance data, currents,
voltages, powers, and efficiency.

The second program (ref. b) is based upon the Helmholtz Integral
formulation. In this program we combined the NRL Multiple Ring SHIP

Program (courtesy of Peter Rogers) with the lumped element transducer
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model of the Water-Ring Program. The computer input and output of the
two programs (i.e., Rogers' and Porter's) contain nearly the same items.
In the SHIP model, the transducer rings are subdivided into bands
on their four surfaces, as is shown in Figure 3. The SHIP model calculates

mutual impedance coefficients between the ith

and jth rings of an array by
imposing a unit velocity on the ith ring, and calculating the pressure on

the jth ring. For any ring, the ratios of the inner, outer, and edge
velocities must remain fixed over the array. The outer velocity is

treated as the reference velocity. These reference velocities are determined
by the matrix - inversion solution of the force-impedance = velocity
equations shown in Figure 2, In calculating mutual impedance coefficients
(zij)’ the Helmholtz Integral model takes into account the scattering
produced by all the rings; If each of the N transducers have M bands, then
NxM equations are required to solve for the pressures on the NxM bands.

Note that in the Water-Ring Program the calculation of Z,, between bands

ij
on an infinite cylinder involved only bands i and j.

We now examine the zij matrix of a four ring array, using the
Helmholtz Integral Program. The rings have a mean radius of 2.58 inches,
a height of 0.75 inch, a thickness of 0.25 inch, and a small gap between
rings of 0.06 inch. The array is resonant in water around 10 kHz; the
zij presented are for 4 kHz. The inner and outer velocities on the ring
surface are assumed to be equal and out of phase; the top and bottom edge
velocities were assumed to be zero.

Figure 4 shows the 1-1 and 1-2 terms of the Zij matrix, for various

numbers of side and top bands. Note that as the number of bands is

2R RS
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increased the convergence of the matrix elements is slow, particularly

for the resistive elements, Rl1 and R12' A free-flooding ring transducer

is basically a dipole radiator, with a large amount of cancellation of

the radiation from the two sides. Many bands may be needed to predict this
cancellation. Although the ring thickness at 4 kHz is only about A/60,
several bands are needed on the top and bottom edges, because the pressure

is changing very rapidly across these surfaces. Note the Rll and R12 for

I (top bands)=2 and J(side bands)=6. For I=2 and J=8 there is only about

a two percent decrease in R.. and R12 compared to I=2 and J=6. However,

11

for the I=4, J=6 case there was about a nine percent decrease in R nd

i
R12 compared to I=2, J=6. Also we note that, for all the cases in Figure
4, R12 > Rll’ so that the mutual resistance between rings 1 and 2 was
actually greater than the self-resistance of ring 1. 1In conventional
baffled arrays, it is unheard of for the mutual resistance between two
radiators to exceed the self-resistance of one of them. Apparently, the

calculation was less than for R _. At

pressure cancellation in the R12 11

this frequency, , and X >> R or R.,. However, if the ring's

12 11 12

Thevenin internal reactance nearly cancelled the radiation reactance, then

o & Bl

the condition of R12 > R11 could cause the array's velocity control to be
erratic,

The multiple ring SHIP program operating on the NUSC Univac 1108
can use up to 96 total bands in an array. For I=4, J=8, there are 24 bands
per ring, which would limit the maximum number of rings to only 4! Using
smaller I and J enables one to handle larger arrays, but with less accuracy.

However, there seems no reason why the required I and J should get larger
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as the gap width becomes larger. Recall that with the Water-Ring Program
the calculation becomes more difficult as gap width increases,

Figure 5 compares calculated and measured (ref. c) transmitting current
responses for this same four ring array. At most frequencies, the
Helmﬁoltz Integral program agrees more closely with the measurement than
does the Water-Ring program. The gaps between rings are about A/100 at
10 kHz, and the gaps are also much less than the ring height, so that the
water rings should well simulate the action in the gaps. However the
whole array is only slightly longer than A/2 at 10 kHz. Therefore, the
array end effects are important, and the Water-Ring Program is not
reliable in modeling end effects,

The calculations did not take into account any of the array's
mounting structure. Slightly off of each end of the array was a fiberglass
ring which supported the wires that excited the magnetostrictive material.
The fiberglass rings, must have had some effects on radiation around the
ends of the array, and are partly responsible for the difference between
the measurement and the Helmholtz Integral calculations. Other causes
for this difference are inaccuracies in the transducer circuit model, in
the Zij matrix, and in the assignment of the relative velocities on the
different ring surfaces.

Figure 6 compares calculated NDI for the two mathematical models for
the same four ring array. The calculated NDI for the Water-Ring model is
lower for all frequencies, especially 10-14 kHz. This difference is

calculated NDI is consistent with the calculated beam patterns.

gl in 3 oo i bl sl
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Figures 7, 8, 9, and 10 compare the measured patterns with those

calculated at 6.0, 9.5, 12,0, and 14.0 kHz. For most of these frequencies
all three of these patterns agree well except near the array axis. In
general, the Helmholtz Integral patterns are more directive than the
measured patterns, which are in turn more directive than the Water Ring
patterns.

One of the objectives of this project is to establish which types of
arrays are best suited to each model. Two parameters are used to categorize
an array. One is simply the numbgf of rings. The second is the ratio of
the gap width to the ring height.

Figure 11 shows some of our conclusions with respect to the usefulness
of the two models. This chart is based on some intuition and a limited
amount of array calculations (not presented here). The chart suggests that
the Water-Ring program gives poor results for sparse arrays, and the
Helmholtz Integral program deteriorates for arrays of more than 10 rings.
In those cases where either program is useable, the Helmholtz Integral
program should be more accurate. Presently neither program can accurately
predict the behavior for a large, sparse array. Hopefully this situation
can be improved by new approximations, probably based on the Helmholtz
Integral formulation.

REFERENCES
a. JASA, August 1968, pp. 514-522, Article by D.T. Porter.
b. NRL Report 7240, by P.H. Rogers, 1972,

c. NUSL Report 723, by T.J. Meyers, 1966.
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MECHANICAL ACOUSTIC RADIATOR

M.L. Rumerman
Naval Ship Research and Development Center

This paper outlines the analysis of a mechanically-driven acoustic

radiator. The ultimate goal is to provide a guide by which the device

can be designed to operate broadband over a specified frequency range.
The radiator consists of a thin cylindrical shell and the mechanical

excitation is generated by diametrically-opposed flatted rollers

(Figure 1), which are made to traverse the circumference of the inner

surface of the shell at constant angular speed. When a flat comes down

upon the shell, an impulsive force is delivered, and the vibration thus
generated results in sound radiated into the acoustic medium.

Were the rollers to move without slipping on the shell, only
discrete frequencies would be generated, due to the kinematic regularity.

Slipping results in a continuous spectrum. Let A be the average interval

between successive impacts. Then D=0+ E where A is the deterministic
time between impacts (dependent upon geometry and speed) and 7 is the

average slip time between successive impacts. It can be shown that when

£ > ?-l— s Where fmin is the lowest frequency of interest, then the impacts
min

can be considered uncorrelated and the resulting spectral density of

radiated power, S(w), can be given by

s(w) = Hed

w > 2nf
i
< A )

n
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where F(w) 1s the average spectral density of total energy radiated by a
single impact.
F(w) can be calculated by a modal analysis of the shell vibration

and radiation. It is found that the spectral density of the excitation

will be broadband when 271 f € < 1, where f is the highest frequency
max max

of interest and e is the duration of an impact. The radiated power
spectrum will then be broadband if the shell can be made to respond
uniformly over the frequency range.

Figure 2 represents idealized modal transfer functions - from
excitation spectrum to radiated power spectrum - as a function of frequency.
Assuming that the peaks are equal and that adjacent curves cross at their
mutual 3 dB down points and that adjacent modes are independent, it can be
shown that the effect is to give a broadband response over the frequency
range, as indicated by the dashed line. While it is impossible to design
a shell having the acoustical features described above, something approaching

it should be feasible and would provide efficient broadband response.
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TWO METHODS FOR PREDICTING
ARRAY DIRECTIVITY INDEX

AT

B D. T. Porter
Fl Naval Underwater Systems Center
§

ABSTRACT

The first method is referred to as the pattern method. Pertinent

equations are:

I Z Intensity on M.R.A.

i Ry = 14 lag 10 ( Average Intensity ) &
4 aus s 2m I m 2

u Average Intensity = I, = - 21(0,¢)c _sin 6dedé (2)
k AV 2

& | 4mr

E

f Unfortunately, to accurately evaluate the integral of equation (2), a
| great many pattern points may be needed.

The second method is referred to as the radiated power method. If
the array under consideration is a receiving array, we must mathematically

concoct an analogous and reciprocal transmitting array. Pertinent

equations are

Source Level = 71.6 + NDI + 10 log (Acoustic Power) (1)
and
n 9 .
Acoustic Power = R,V 4
21 1'3 o
j-

We may find NDI from (3) if we know the source level on the MRA, and the
acoustic power radiated from each transducer. Knowledge of the source
level requires the array's acoustic response at only one point, instead

of many as in the pattern method. However, knowledge of the acoustic

| power requires solution of the array's coupled force - velocity - mutual

— coupling equations in order to get the radiation resistances and velocities

e e

I_ 59
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needed in equation (4). This in turn requires expressions for mutual
coupling coefficients (Zij)' The programming and debugging of thesc
expressions may be very troublesome.

Provided the Zij can be obtained, the radiated power method gives
exact results for NDI' An example was shown where the computer time

(Univac 1108) for a 1000 - element array's NDI was 100 minutes for the

pattern method and 22 minutes for the radiated power method.
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COMPUTER TIME FOR UNIVAC 1108
TO CALCULATE N, _ VIA PATTERNS
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B (min) 36,000
4
\ For 2-D Pattern, Np = N6°N¢
? i A NGN Nt
i (min) 36,000
El : For N, = 180, N, = 20, and N. = 1000
E 0 ¢ t
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h (Same array required 22 minutes using
E Radiated Power Method)
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PATTERN METHOD OF OBTAINING NDI

)
N _ = 10 log (-—— 1)
DI 10 IAV
T
Ji ./; I(8,¢9) r2 sin6 deod¢
‘v " ) (2)
4y

TYPICAL TWO DIMENSIONAL FAR FIELD PATTERN

ELEVATION

VERY COURSE
INTEGRATION GRID

}-AZIMUTH
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RADIATED POWER METHOD

OF OBTAINING NDI

Ls-71.6+N + 10 log P

DI ACOUSTIC

or

Npp = Lg =71.6 - 10 log P

DI ACOUSTIC

n n

P - P - R,V
acovstic * 3 Pac ) s I
i=1 i=1

2

Ri = Real (ZRADj)
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A FINITE ELEMENT APPROACH TO ACOUSTIC
RADIATION FROM ELASTIC STRUCTURES

M. Knittel
J. Hunt
D. Barach
Naval Undersea Center
Past mathematical models of vibrating structures immersed in an
infinite fluid medium have not been entirely successful because of the
difficulties involved iﬁ combining the vibrational aspects of the structure
with the acoustic radiation properties of the medium. In cases where
this interaction has been successfully treated, such as in a combination
of a finite element program (MARTSAM) with a Helmholtz Integral radiation
program (CHIEF), the necessity for evaluating numerous and expensive
integrals limits the usefulness of these methods. Near and far field
pressures are calculated at a minimum number of field points for a limited
number of frequencies. The approach that we have taken to acoustic
radiation from elastic structures avoids this difficulty; calculation of
the near and far fields for numerous frequencies is an inexpensive process
and thus allows the calculation of the pressure at enough points to draw
contour plots of the pressure field.
The problem chosen for analysis with this method was the behavior of
a tangentially poled, piezoelectric, ceramic cylinder immersed in an
infinite fluid medium (Figure 1), This free-flooded cylinder was chosen
because it is a simple, axisymmetric body in which circular harmonics

other than m=0 can easily be electrically excited; that is a voltage that

varies as cosine mf) can be applied around the cylinder. These non-zero
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harmonics are important in scattering from a single cylinder because all
circular harmonics will be excited when the incident wave does not
propagate down the symmetry axis. The non-zero harmonics are also
important in the design of non-coaxial arrays of cylinders since interactions
between them will excite non-zero harmonics of the individual cylinders.
Finite element techniques were used to model one-half of a double
stave of the cylinder and the appropriate boundary conditions applied
(Figure 2). Each nodal point has three displacement degrees of freedom
and an electrical degree of freedom. The coordinate axes of the structure
were transformed from rectangular to a cylindrical coordinate system and
the degrees of freedom condensed down to an axisymmetric representation.
Cosine mp voltage dependence was applied around the cylinder, and cos m@
and sine m@) displacement dependence was assumed. Below 20 kHz, our
calculations have shown that this reduction is valid.
The fluid immediately surrounding the cylinder was modeled using

finite element techniques out to a sphere that just encloses the structure.
This was done because for spherical surfaces, the acoustic radiation Green's
function for steady-state problems separates when expanded in spherical

i harmonics. A closed form solution for the radiation impedance that is

associated with each spherical harmonic can be found that consists of

merely a ratio of Hankel functions. The finite element fluid sphere

surface forces, pressures, and normal velocities can be expanded in

i A approximations to spherical harmonics through a simple transformation to
a finite set of spherical harmonic base vectors. The spherical harmonic

components of the pressure at any point outside the finite element fluid
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sphere can be calculated in terms of the sphere surface pressure components 4
and ratios of two Hankel functions. 3

Forty-nine acoustic fluid elements were used to model one-quarter of
the fluid sphere in the x-y plane (Figure 3); these axisymmetric elements é

are triangular in cross section with six nodes per element. Each node has

one degree of freedom, the pressure. A connection or compatability matrix
was formed that relates the normal displacements of the structure to the
pressures in the fluid on the common surfaces. This gives a total of
about 150 degrees of freedom. However, by solving the interior problems

of the free vibrations of the combined structure - fluid sphere with zero
sphere surface pressure, the number of degrees of freedom can be reduced
down to about twenty-five. In addition, solving the equations in this
manner avoids singularities that occur for frequencies near eigenfrequencies
of the interior problem. Therefore, once the finite element mass and
stiffness matrices are formed and assembled and the interior problem solved
once, only matrices of the order of 25x25 need to be solved for each
driving frequency. No acoustic radiation integrals are numerically
evaluated, and the pressures at a large number of field points for numerous
frequencies can be inexpensively calculated.

Figure 4, m=0 complex electrical impedance. The real part of the
impedance is proportional to the acoustic power radiated into the water.
Choosing a frequency of 3,000 Hz.

Figure 5. Structural displacements show breathing mode.

Figure 6. Vertical directivity pattern,

Figure 7. Near field pressure contour plot out to 0.4 meters at one

time step.




Figure 8. Contour plot extending out into the far field to 3.6 meters.

Far field begins at about 2.5 meters.

Figure 9. m=1 complex electrical impedance. In performing the
experiments, it was found that fiberglassing the cylinder lowered the
resonant frequencies., Difficulties were also encountered in measuring the
magnitude and phase of the electrical impedance accurately while driving
the cylinder in the non-zero circular harmonics. In addition, the material
parameters used in our model are loss-less parameters whose values in some
cases are probably not too accurate. All of this contributes to the
discrepancies between theory and experiment. Look at 4,500 Hz.

Figure 10. Structural displacements show cosine 1@ dependence.

Figure 11. Vertical directivity pattern.

Figure 12, Horizontal directivity pattern showing two nodes.

Figure 13. Near field pressure contour plot in (=0 plane showing
central nodal line.

Figure 14, Pressure contour plot extending out into the far field.

Figure 15. m=2 complex electrical impedance.

Figure 16. Structural displacements at 8,750 Hz.

Figure 17, Vertical directivity pattern.

Figure 18. Horizontal directivity pattern showing four nodes.

Figure 19. Near field pressure contour plot in =0 plane again
showing central nodal line.

Figure 20, Pressure contour plot extended out into the far field.
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The next application for which we hope to use this method is the
receive or scattering problem using a free-flooded cylinder or some other
structure. We also hope that this formulation will offer a feasible
method to solve the combined equations of motion in the time domain. In
addition, we will probably use this method to design a free-flooded
cylinder for optimum performance. We are also looking at new and more
informative ways to display the generated data, perhaps such as a movie
of lines or surfaces of constant pressure that change with time and use
continuously varying colors to represent magnitudes of pressure. In
addition, we are trying display methods that will show both the structural
displacements and the pressure field and how they vary with time in one

changing display.
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FIGURE 1

FREE-FLOODED CYLINDER
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FIGURE 5




VERTICAL DIRECTIVITY PATTERN

EXPERIMENT AT 3000 Hz

— —=—THEORY AT 3000 Hz
PRESSURE UNIT = 1 dB re 1 ubar/volt at 1 meter

CIRCULAR HARMONIC =0
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RADIATED PRESSURE PATTERN FROM A
TANGENTIALLY POLED CYLINDER
(NEAR FIELD)

CIRCULAR HARMONIC =0

FREQUENCY = 3000 Hz

WT = #/2

PRESSURE UNIT = 1 NEWTON/(METER)2

FIGURE 7
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RADIATED PRESSURE PATTERN FROM A
TANGENTIALLY POLED CYLINDER
(FAR FIELD)

CIRCULAR HARMONIC = 0

FREQUENCY = 3000 Hz

WT = n/2

PRESSURE UNIT = 1 NEWTON/(METER)2

FIGURE 8
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RADIATED PRESSURE PATTERN FROM A

TANGENTIALLY POLED CYLINDER
(NEAR FIELD)
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CIRCULAR HARMONIC = 1

FREQUENCY = 4500 Hz

WT = 7/2

PRESSURE UNIT = 1 NEWTON/(METER)2

FIGURE 13
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RADIATED PRESSURE PATTERN FROM A
TANGENTIALLY POLED CYLINDER
(FAR FIELD)
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RADIATED PRESSURE PATTERN FROM A
TANGENTIALLY POLED CYLINDER
(NEAR FIELD)

CIRCULAR HARMONIC = 2

FREQUENCY = 8750 Hz

WT = n/2

PRESSURE UNIT = 1 NEWTON/(METER)2

FIGURE 19
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APPLICATIONS OF THE FINITE ELEMENT METHOD
AND COMPUTER GRAPHICS TO A TRANSDUCER ELEMENT

J.Z.-Bunt, R,R. Smith, D. Barach, L. McCleary
Naval Undersea Center

SUMMARY

Although many mathematical models have been developed for the

longitudinal vibration type element discussed in this report, they have

[P

i
only partially succeeded in predicting its free vibrational response. %f
3
The difficulty has been the large flexural interaction between the non- %
axisymmetric radiating head and the electrically driven axisymmetric tube,
which results in a strong coupling between the circular harmonics of the
piezoelectric tube. The inability to predict this effect has been the
primary deficiency of earlier mathematical models. General Dynamics/
Electric Boat Division, in close cooperation with NUC, has used the finite-
1 element method to develop a three-dimensional model in which this deficiency
has been corrected. This mathematical model is representative of the most
advanced techniques which describe the vibratory characteristics of an
electromechanical sonar transducer. In this paper, the mathematical
model is used to predict the deformaticn of the composite transducer in ?
=& terms of the free vibrational modes of its component parts. Two types of
3 computer-generated displays - contour plots of the predicted deformations
i and three-dimensional continuously shaded plots of these predicted deforma-

% tions - are used to graphically illustrate the physical meaning of the model's

&

numerical predictions. The contour plots are arranged so that they can

be directly compared with the deformations experimentally measured by

holographic interferometry. Predicted deformations are found to agree

I
1
1
1




e

closely with those measured experimentally.

The geometrical symmetry of the transducer consists of two reflection
planes and a 180-deg rotation axis. By exploiting this geometrical
symmetry, one can show that by modeling only one quarter of the transducer,
i.e., that portion of the transducer situated between the two symmetry
planes, and by applying the correct boundary conditions to nodal points
located in the symmetry planes the correct vibrational response of the
system can be obtained.

Although exploitation of the symmetry decreases the size of the
numerical problem by aimost a factor of four, the resulting eigenvalue
problem still has 1135 displacement degrees of freedom. Hence, each
eigenvector (or the deformation of the one-quarter model of the transducer
at resonance) results in 1135 pieces of data, while the deformation of the
entire transducer is represented by nearly 4000 numbers. Therefore, an
understanding of the physical meaning of this large block of computer-
generated data can be achieved only through its graphic display. We
have used two different types of computer-generated data displays to

depict the eigenvectors of the system.
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SELF AND MUTUAL ACOUSTIC RADIATION IMPEDANCES
FOR TWO COPLANAR UNBAFFLED DISKS

A.L. Van Buren and B.J. King
Naval Research Laboratory

SUMMARY

The self and mutual acoustic radiation impedances for two coplanar
unbaffled disks are calculated using an eigenfunction expansion in terms
of oblate spheroidal wave functions. Terms representing outgoing waves
from both disks are included. One disk is assumed to be vibrating with
a rotationally symmetrical normal velocity distribution, and the other
disk is assumed to be stationary. The determination of the expansion
coefficients from these boundary conditions is facilitated by the use
of an addition theorem which expresses spheroidal wave functions with
reference to one coordinate frame in terms of spheroidal wave functions
with reference to a second coordinate frame. Numerical results for the
special cases where the vibrating disk is either oscillating uniformly

or vibrating uniformly on only one side are presented and discussed.
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INTRODUCT ION

The surface of a disk is the natural coordinate surface £ = 0 in
oblate spheroidal coordinates (£,n,¢). Thus the acoustic radiation from
a disk vibrating harmonically with a known normal velocity-distribution
can be calculated by use of an eigenfunction expansion in terms of oblate
spheroidal wave functions. The calculation can be extended to include a
second, coplanar, vibrating disk by adding an expansion of spheroidal
wvave functions about the second disk. An addition theorem [1] which
expresses spheroidal wave functions with reference to one coordinate
frame in terms of spheroidal wave functions with reference to a second
coordinate frame can be used to facilitate application of the boundary
conditions on each disk.

By linear superposition, the acoustic radiation field of the two
vibrating disks is equal to the sum of the field produced when the first
disk is vibrating and the second disk is stationary and the field produced
vhen the second disk is vibrating and the first disk is stationary. Thus
no generality is lost by restricting the analysis to ghe case where the
second disk is stationary.

This paper is concerned with both the self acoustic radiation impedance
of the vibrating disk and the mutual acoustic radiation impedance between
the vibrating disk and the statiorary disk. The formulas necessary to
evaluate the self and the mutual acoustic radiation impedances are developed
in Sec. 2. It is assumed that the normal velocity distribution of the
vibrating disk is rotationally symmetrical. In Sec. 3, numerical results
calculated for the special cases where the first disk is either oscillat-

ing uniformly or vibrating uniformly on only one side are presented and

X
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discussed. Previous results of Crane [2] and Hanish [3] which were
obtained by approximate methods that do not involve spheroidal wave
functions are also discussed.

ANALYSIS

The oblate spheroidal coordinates (£,n,¢) are related to Cartesian

coordinates by the trlnsfoi-mtion

x= g-(ge + 1)1/2(1 - n2)1/2 cos¢ ,

y = 22+ 10M20 - D)2 ainy (1)

vhere d is the interfocal distance, and where Osf<e , -lsnsl , and
0s¢<2x . Here the surface of constant £ is an oblate spheroid with a

major axis of length (g2 + 1)1/2

d and a minor axis of length £€d. The
spheroid for £ = 0 is a disk of radius a = d/2. The surface of constant
n is a hyperboloid of one sheet which intersects the £ = 0 surface in a
circle of radius a(l - n2)1/2 ‘

Consider two identical disks Dl and D2 which are coplanar and share
& common x axis, as shown in Figure 1. The radius of each disk is a, and
the center to center separation is tm. Spheroidal coordinate systems
cl“l’"l”l) and 02(52'"2"2) are established which contain D, (51 = 0)
and Da ('52 = 0), respectively, as natural coordinate surfaces. The
region exterior to the disks is assumed to be filled with an infinite
homogeneous fluid of mass density p and sound speed ¢. Disk D, is

assumed to be vibrating with a rotationally symmetrical normal velocity
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distribution whose spatial dependance is given by v(n.), and disk D
1 2

is assumed to be stationary. The time dependence is assumed to be har-
monic with the factor .:lut being suppressed.

The acoustic pressure produced at a point r on or exterior to both
D1 and D2 can be expressed as a sum of outgoing spheroidal waves originat-

ing from both D1 and Dz:

Tt (%)
p(r) - lzo —Zo [All*ll (h;gl’"l"l)

+ u*ﬁ)(h;ga’n2’¢2)] ’ (2)
vhere the spheroidal wave functions are given by

tﬁ)(h;z.n.o) - Rﬁ’(h.e)s&)(h.n)cosm 5 mﬁ)(h.z)s&)(h.n)eom

- *:?(hiﬁmd) = 1"3)(11;50"1’) (3)

- R::)(h.i)sl(‘i)(h.n)cosm :

Here the acoustic size parameter h = kd/2 = ka, vhere k = y/c is the wave-
number, and “1’"1”1) and “2'"2"2) are the spheroidal coordinates of r
in (:1 and 02. The spheroidal radial wave functions of the first and second
kinds Rg) and Rﬁ) and the spheroidal angle wave functions of the first
kind BS') used in this report are defined by Flammer [4]. The radial
functions Rg‘) and RS) correspond to spherical Bessel functions of the

first and second kinds and are normalized so that 0(“ represents out-

me
going vaves for e“t' time dependence. The angle functions 83') can be




expanded in a series in the corresponding associated Legendre functions:

s n,n) = nz;’lan(nm)p:m(n) : (%)

vhere the prime indicates that the summation is over even or o0dd values of
n according to whether L - m is even or odd. Terms involving sinm¢ have

been omitted from (2) since the acoustic pressure must be symmetrical

lbontboth¢1-03nd¢280 .
The coefficients A - and B e 3T determined by the Neumann boundary

conditions imposed on Dl and D2 $

-3p/am, = iwpv(n,) , on D, (5)
3p/3n2 =0, on D, (6)

vhere in spheroidal coordinates

(3p/2n), _ o = (1/in1a)ap/3¢ . (1)

Application of the boundary conditions on D, or D, is difficult if p(r)

is not expressed entirely in Cl or 02. respectively. This is accomplished

by use of a spheroidal addition theorem which expresses a spheroidal wave

function with reference to one coordinate frame in terms of spheroidal

vave functions with reference to a second coordinate frame. The general

P ?

addition theorem for spheroidal wvave functions which is derived in [1]

allows for arbitrary relative position and orientation of the two
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coordinate frames. For the present application, the addition theorem

can be expressed in the following form:

ol®)

e (B3E a0 00,0 = el 4ib)

® n,
nzo uzo,l 'mtun¥un (h;EJ.nJ,QJ) 9 (8)

vhere

2 ey r-2
clz = C o 2 1"7"a_ _(h|me)
miun mtun N rem,m+1 T=m

-, r+
x I [1°%/(2s01))a,_ (b|un) {’ D(-.t,r,u,n)hi"’)(krla). (9)
s=u,utl tsir-si

S e (10)

with the'pri-e sign indicating that the summation is in steps of two,
vhere u starts from O or 1 depending on whether t-m-n is even or odd,
vhere r starts from m or m + 1 depending on vhether £ - m is even or odd,
and vhere s starts from u or u +1 depending on vhether n - u is even or
odd. The function héa)(krlz) is the spherical Hankel function of the

second kind. The angle function normalization l‘m is given by
1 |
I_lls&’(h.n)]"’dn %
S (r+2u)18%(h]un
o :-g.x rtlaﬂzuul) , (1)
vhere r = 0,2,4,... if n-u is even and r=1,3,5,... if n-u is odd.
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Also,

€
D(l.t,r‘\l,l) - '2"! ::: : P:-u(O)C('gt.r’uol) + (‘l)wn(o)ﬂ»(sot’ri'“i.}'

(12)
vhere

IO € inﬁ.—r{ 28+1)(2t+1)(s-u)l(t-m+u) ! (r+m)1[(s+t+r)/2]1 ‘}

r+t-s8)/2]1[(r+s=-t)/2]1[(s+t=-r)/2]1 (s+t+r+l)!
wmax = s+t-r t+r-s s+r-t 2 ?
x v-vgin(-l) s+t-r)/Fw t+r-c)/ém—uw a+r-t)/a-uw \ (13)
4
with |

st

=

R———

— +—

o I

(;) = al/[bi(a-b)1] , (14)
wain = 1/2 [Max (r-s-t,s-r-t-2m+2u,t-s-r+2u)l, (15)
wmax = 1/2 [Min (s+t-r,r+t-s-2m+2u,r+s-t+2u)l, (16)
and
(p-q)/2
p:(o) - .(.LJ-.L_;’.Q_.(M)J. . a7)

2P(R3) (B2,

since p-q = t-mtu 1is required to be even. The quantity €y is equal

tol if u= 0 and is equal to 2 if u ¢ 0.

Femt o o =

Expressing p(r) entirely in C, by use of (8), differentiating with
respect to §, in order to apply the boundary condition on D, given by (5),
multiplying by sg)(h,n)cos qé¢ and integrating over n from -1 to +l1 and
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over ¢ from 0 to 2n , the ranges of orthogonality for these functions,
one obtains the following set of equations:

L

+ (k) *(1) T
R (h.O)A‘p + B (8,0) 120 -Zo (-1)"""‘0..1

J _‘.'L) W
-( quOp’p Otoe ,q=0¢top, (18)
vhere the dot indicates the derivative with respect to £ and vhere

Top = f v(n)s(l)(h.n)lnldn ; (19)

Similarly, application of the boundary condition on Da leads to the
additional set of equationms:

(k) (1)
qu (h.O)BqP + qu (n,0) zzo nzo a!-qp ek

=0 ,p=0to=,q=0¢top. (20)

In theory, the infinite set of equations given by (18) plus (20) can be
solved for the unknowns A - and B nt ° In practice, the summations in (18)
and (20) are truncated at & = L, and the remaining T = (L+1)(L+2) equations
m.olndforA mdnu s 2 =0toL,m=0to 2t . The choice for L
depends on the desired accuracy of the results, the normal velocity
distribution v(nl), and the acoustic size ka. An estimate for L is given
by the highest order that must be retained in the expansion of v(n,) in

terms of spheroidal angle wave functions. The truncated equations can be
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written in matrix form

T
Ilnqrbr-gq,qnlto'r, (21)
re

vhere the matrix elements qu depend only on the frequency and the
geometry of the two disks, the elements br consist of the unknown coef-
ficients A, and B, » the right hand side elements 8 1" 1 to T/2,
depend on the normal velocity distribution v(nl), and the elements

LN T/2+1 to T are zero. Equation (21) can be inverted to give

b, -j.l N;:gq ,r=lto?, (22)
80 that once the inverse elements have been calculated for a given
frequency and geometry, A nt and B bt can be obtained for any velocity
distribution on D, by matrix miltiplication. The method can easily be
extended to include a nonzero velocity distribution on l:>2 by modifying
the right hand side of (20) to give nonzero elements 80 1" T/2+41 to T.
Consider the special case of uniform vibration where the normal

velocity distribution v(nl) on D, is equal to a constant V., over the

1 1l
part of D:I. called S’ » 18 equal to a constant -v1 over the part of Dl
called S~ » and is equal to zero over the remainder of Dl' For example,

the pulsating disk has an s’ region covering the entire surface -lsnlsl ’
vhile the oscillating disk has both an s* region covering Osnlsl and an
8  region covering -15n,<0 . It is still assumed that D, is stationary.
Under these conditions the normalized self acoustic radiation impedance

l. is defined by

ot ik o il b
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vhere A, is the sum of the areas of s* and S, vhere the area element dS

is given by

dS(n,¢) = izlnldndQ :

radiation resistance and Feactance, respectively.

in C, by use of (8) and substituting into (23), one obtains

2 ®
2%a (4)
2 = A, R (h,0)I!
8 pcViA L [ot0n ot

L -
+ I8, I' (1)%_, R)(4,0)1 ] : (25)
.zo nt nZO.l wtonFon on

Vhere n = 0, 2,4... or 1,3,5

«++ depending on whether ¢ - n is even or odd,
and vhere

I ™ f sgi)(h.n)lnldn ‘ (26)
s*es”
Similarly, the force produced by p(r) on that part of the stationary

disk Dz vhich corresponds to the

vibrating area on Dl can be calculated

and used to obtain the normalized mutual acoustic radiation impedance z .
This gives

10]

(23)

Expressing p(r) entirely




T e i LAl

1
=~ m:qu("z”z)ds("a"z)

i
I foin e
I
L

(27)
2 -
2ra 2 Z ' (1)
= & 1 ¢ (n,0)15
pch n-O 1 nl.On On
(&) '
* BoyRoy ‘(0018 | (28)
vhere the integration is over the same range in N, &s covered by "1 in ;

3, ' and S, i
o When both disks are vibrating uniformly with the same velocity
i- distribution and with individual velocity amplitudes, Vl and V2. the
3 total normalized acoustic radiation impedances 2y for Dl and z, for D2
; can be obtained from the impedances z, and z. by the expressions ;
i 5= s, * znvzlvl - (29) :
L
2 B, vz VNV, (30) *
L. |
!1 Thus z_ and z characterize the acoustic radiation impedance of the two ‘:’
2 disk sytten. In the remainder of the paper z_, Tg s x, and L B X 3
E will be referred to as the self radiation impedance, resistance, and
L reactance and the mutual radiation impedance, resistance and reactance, | |
L respectively.
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NUMERICAL RESULYS AND DISCUSSION

a. Introduction

Calculation of the self and mutual radiation impedances by use of
(25) and (28) requires numerical values for the oblate spheroidal radial
vave functions aii)(h,o) and nif)(h,o) and their first derivatives vith
respect to £ and for the 1htegrals IO! and 16‘ « The necessary radial
functions were calculated using OBRAD (5], a Fortran computer program
written in double precision arithmetic for the CDC 3800 computer at the
U. S. Naval Research Laboratory. OBRAD is one of several computer programs
(6,7) vhich have been developed recently to evaluate spheroidal wave
functions with greater accuracy over a wider range of parameter than
previously available. Extensive tables [8,9] of both oblate and prolate
spheroidal radial wave functions and their first derivatives with respect
to £ have recently been published. These tables contain entries for values
¢fm=0,1,2; £ = m(1l)m+th9 for a wide range of values of £ and h. The
integrals IOl and 161 vere evaluated by expanding the angle functions in
a series of Legendre functions as given in (4), subsequently expanding the
Legendre functions in a series in cosré , vhere 6 = cos'ln and r is an

integer, and evaluating in closed form the resulting simple integrals.

b. Pulsating Disk and Stationary Disk

Consider first the case where disk D1 is pulsating with a normal
velocity Vi, and disk D2 is stationary. Since the z = 0 plane exclusive
of the surface of D1 can be replaced by a stationary surface without

affecting the acoustic fields, the situation is equivalent to the uniform
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vibration of a circular piston in a rigid infinite plane. This latter
problem has been solved previously. A detailed review by Bouwkamp is
found in [10]. Extensive tables of both 2  and z for various values of
ks and kr,, calculated from expressions given by Rayleigh [11] and
Pritchard [12] vere published recently by Berkowitz and Baier [13]. The
existence of these independent results provides an accurate check on the
method described in this report. Corresponding values for L and z  vere
obtained from (25) and (28) for numerous values of ka and kr,, and compered
with the results of Berkowitz and Baier. The agreement was never less
than 3 significant figures.

c. Oscillating Disk and Stationary Disk

Consider the case vwhere disk Dl is oscillating with a normal velocity
upntudd Vl. and disk D2 is stationary. The self radiation impedance of
Dl vas calculated from (25). It was found that the self radiation reactance
xg does not vary significantly from that of a single oscillating disk as
the spacing krm is decreased from over 200,vhere the effect of the
stationary disk is negligible,to 2ka , vhere the two disks are
touching. These results are summarized in Table 1. The self radiation
resistance Tgs hovever, is somevhat sensitive to krlz. Figure 2 shows r'
a8 & function of the relative spacing rl?./.' for several values of ka.
Because of the large dynamic range of the values for r,s some of the
curves have been scaled as indicated in the figure. Note that the effect

of the stationary disk is significant when both /a and ka are small,

12
but decreases rapidly as either becomes large. When r1.2/" is greater than

sbout 4.0 or ka is greater than about 1.5, the effect of the stationary
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disk is negligible so that Ty is very nearly equal to the radiation

radiation impedance for this two disk problem. His calculations, restricted

I resistance of a single oscillating disk. Crane ‘(2] investigated the self
1’ to ka = 0.3 to 1.0 and involving approximations of uncertain validity,

A e

also showed that the stationary disk has a negligible effect on the self
radiation reactance. However, his results for the self radiation resist-

G ance, although in qualitative agreement with Figure 2, show an effect of

.- the stationary disk that is many times larger than that obtained by the
‘. present method.

The mutual impedance between the oscillating disk and the stationary disk vas
calculated by the use of (28). The behavior of both the mutual radiation s
i resistance T and the mutual radiation reactance x asa function of kr12
is shown in Figures 3 - 6 for several values of ka. It is seen that the
effect of the oscillating disk on the stationary disk tends to increase as

ka is increased until about ka = 2.5 when it then begins to decrease.

.
o TR LR UL TR VT L W [

Note that point dipole theory predicts that T and x will be identically
- equal to zero since the acoustic pressure vanishes throughout the z plane.
T Thus the initial increase in the effect as ka increases from small values i
is due to the deviation of the pressure field from that of a point dipole. i
Both the finite size of the oscillating disk and scattering from the ’
stationary disk are contributing factors. As ka continues to increase,
hovever, the competing effects of increased directivity associated with
the radiation from the oscillating disk and increased phase cancellation
over the stationary disk eventually dominate, and the effect begins to %

decrease.
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d. One-Sided Vibrating Disk and Stationary Disk

low consider the case where disk Dl is vibrating uniformly over only

1
and all of 02 are assumed to be stationary. Note that the surface normal

its top half with a normal velocity amplitude V.. The bottom half of D1

velocity distribution for this problem is equal to one half of the sum of

the surface normal velocity distributions for the previous two examples.

Consequently, the acoustic field for this problem can be obtained as one
! half of the sum of the acoustic fields for the separate problems: (a)

Dl oscillating and D2 stationary (b) Dl pulsating and D2 stationary.

This example of linear superposition, known as the Gutin principle [14]

results from the linear wave equation and is represented in the linear

. nature of equations such as (19) and (22). As mentioned earlier, the

;, | acoustic radiation from (b) is equivalent to the radiation from a uniformly

| vibrating circular piston in a rigid infinite plane ﬁnd can be evaluated
accurately by the use of formulas given in the literature.

. The self radiation impedance of D. was calculated for several values

1
of ka and kr,, by the use of (25). The results are summarized in Table 2.

Both the self radiation resistance and reactance remained virtually unchanged
E from the corresponding values for a single disk vibrating from one side as
s the spacing krla is decreased from over 200 to 2ka. Thus the effect of the

stationary disk on the self impedance of the one-sided vibrating disk is

*,_.

negligible for all values of ka and kr,,. Crane (2] presented values for !
r, that were obtained by combining his values for the self radiation
impedance of an oscillating disk in the presence of a stationary disk with

values for the self radiation impedance of a circular piston in a rigid
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infinite plane. Note that the radiation impedance of the circular piston

does not depend on “12’ 80 that the entire variation of r. with krlz

comes from the oscillating-disk contribution. Therefore the apparent

inaccuracy in Crane's values for the oscillating-disk contribution results

in a variation of rg with kr,, that is too large (up to 20%).

The mutual radiation impedance between the vibrating half of Dl and

the top half of the stationary disk 02 was calculated by the use of (28).

Values of :l'.l and x for various values of ka are plotted versus krl,‘, in

Figures 7 and 8 and Figures 9 and 10, respectively. The results for small

ka are in good agreement with calculations using monopole theory where Dl

is replaced by a uniformly pulsating sphere with an equivalent volume accel-

eration, and D2 is considered to be & single point. For small, increasing
ka, the effect of the one-sided vibrating disk on the stationary disk
increases as the volume acceleration of D1 also increases and produces s
larger acoustic pressure everyvhere. Hovever, as in the case of the
oscillating disk, the competing factors of increased directivity and phase
cancellation eventually dominate and produce a decrease in the effect

above about ka = 2.0. Hanish [3] calculated values of r, for ka = 0.1 to
1.0 by use of the linear superposition described above. He used Pritchard's
formula to evaluate accurately the contribution from the circular piston

in a rigid infinite plane but neglected scattering in calculating the
contribution from the oscillating-disk component. However, since the
contribution from the circular piston is usually far greater than that

from the oscillating-disk component, Hanish's results are usually in good
agreement vith those obtained using (28).
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TABLE 1

Self radiation reactance of an oscillating disk in the presence of a
stationary disk

et i B e ) B N

0.1
0.3
0.5
1.0
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e e e B
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TABLE 2

Self radiation impedance of a one-sided vibrating disk in the presence

ki el

of a stationary disk

foy ey ey m Em

k’rla = 2ka krlz = 200
J ka r. x. r. x, g
1 ; 0.1 0.00250 0.0636 0.00250 0.0636
g ; : - 4§
& 0.3 0.0223 0.189 0.0223 0.189 |
i L/

-i 0.5 0.0611 0.310 0.0610 0.310
1.0 0.234 0.580 0.232 0.581
3 1.5 0.524 0.764 0.529 0.792

[——
» .

2.0 0.976 0.785 0.977 0.768
2.5 1.196 0.k21 1.190 0.428

© e

b - 3.0 1.].15 00192 loll'f 00193
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Fig. 2

Fig. 3

Fig. &

Fig. 5

Fig. 6

Fig. 7

FIGURE CAPTIONS

The two disk geometry.

The self radiation resistance of an oscillating disk in the
presence of a stationary disk as a function of the relative
spacing rlzls. .

The mutual radiation resistance between an oscillating disk and

a stationary disk as a function of the separation krlz.

The mutual radiation resistance between an oscillating disk and

e stationary disk as a function of the separation krm.

The mutual radiation reactance between an oscillating disk and a

stationary disk as a function of the separation krla.

The mutual radiation reactance between an oscillating disk and a

stationary disk as a function of the separation krla.

The mutual radiation resistance between a one-sided vibrating

disk and a stationary disk as a function of the separation krlz.

The mutual radiation resistance between a one-sided vibrating

disk and a stationary disk as a function of the separation krlz.

Fig. 9 The mutual radiation reactance between a one-sided vibrating disk

and a stationary disk as a function of the separation krle.

Fig. 10 The mutual radiation reactance betveen a one-sided vibrating disk

and a stationary disk as a function of the separation krlz.
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MODELING OF FINITE ARRAYS OF COMPLIANT TUBES

R.P. Radlinski
Naval Underwater Systems Center

INTRODUCTION

The modeling described here concerns the use of two dimensional
multibody programs to predict the performance of a finite width, plane
array of compliant tubes. The current plans at NUSC are to imbed at least
one planar array of plastic compliant tubes in a rubber blanket and to
test this composite when attached to a flexing plate. The two-fold task
of the baffle is to (1) provide a noise free environment for outboard
mounted hydrophones by reflecting near field radiation generated by flexural
wave back toward the plate, and (2) to reduce the level of sound radiated
into the far field. In this portion of the report, we will be investigating
the performance of an isolated planar array of tubes.

An individual compliant tube can be designed to have its first
transverse flexural resonance in the frequency band of interest. Thus,
the tubes are truly compliant only in a finite bandwidth. A schematic
diagram of a single compliant tube is shown in Figure 1. Mathematically,
the tube is often taken to be rectangular or elliptical in shape. Toulis

had considerable success by analyzing the performance of a tube as a bar

clamped at both ends.l

The first tubes designed by Toulis2 were metallic and used in an
acoustic lens. Metal tubes were also used as reflectors in the NUSC-North
American Autonetics AFAR system now in operation near the Azores Islands.

Plastic tubes have been used in a Johns-Hopkins Applied Physics Laboratory-
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Autonetics collaboration of the construction of a Luneburg lens. Compliant
tube technology has been pursued at NUSC largely through the efforts of
Gerald Brigham who was formerly associated with the Autonetics collaborations.

TWO DIMENSIONAL MODELING

Let us now consider modeling a finite array of compliant tubes. At
the last meeting of this committee at NRL, I described the use of a two
dimensional arbitrary body model which was used to calculate radiation
patterns and impedances for line arrays near finite width, soft reflectors.
A two dimensional analysis was possible because the lengths of the inter-
acting bodies were long compared with the acoustic wavelengths of interest.
The situation is the same with compliant tubes. By extending the program
to include incident plane wave radiation, it becomes feasible to study
reflection or transmission from a finite array of tubes.

Consider an array of compliant tubes, as shown in Figure 2, where

the individual tube is considered elliptical in shape.

PO——— t
’l
(Pinc + Pscarreren ) = Pt
Pinc . "
—

0000,q000

A TWO DIMENSIONAL ARRAY OF COMPLIANT TUBES
FIGURE 2
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The total pressure at a point t is given by the sum of the incident and

scattered pressure.

Pc 3 P1nc " Pscattered

- o, fA(s',k) 6 (s',t) di

o
where

A(s',k) is the source strength
k is the wavenumber

p(s',t) = Jo(kr') + i Yo(kr') (zeroth order Hankel function)

In this formulation, the source strength integral describes the scattered
wave. The unknown source strength is determined by satisfying the prescribed
boundary conditions.

The tubes will be assumed to be resonance devices with an average

mechanical impedance given by

f2
Sl W e
o f
o
where 1/2
e e T B g 35 | 26200%)
o 2nf " 2nf B
ab
f - Frequency
fo - First flexural resonance frequency of the tube

as measured in air

A - Surface area of the tube
v - Two dimensional volume of the tube

B, - Bulk modulus of the tube
a - semi-minor axis of the ellipse

b - semi-major axis of the ellipse
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The boundary condition that the tube becomes

y Rl P
-—(P1 i tc) Aoy Pine  + Mscate| = 0
e TN 2nfe | on’ on'

where p is the density of the medium and

%;7 is the normal derivative at the surface of a tube.

A comparison of the prediction of the model with measurements is
shown in Figure 3 for an array of ten steel tubes. The non-dimensional
semiaxes of these tubes were kb = 0.138m and the semiminor axes were
kb = 0.042 at the single tube resonance frequency as measured in air. The
major axis of a tube was aligned parallel to the direction of incident plane
wave radiation and the center-to-center spacing was kd = % m at the above
frequency. The bulk modulus of the steel tubes were calculated and measured
to be about 1/11 that of water. As seen from the measurement in the plane
of the tubes, the reactive loading effect decreases the effective resonance
frequency of the array in water 13 percent with respect to the single tube
resonance frequency in air. The predictions from the arbitrary body program
show a frequency shift of about 4 percent as compared with the measurements,
but the predicted bandwidth agrees well with the data.

To obtain convergence for ten tubes with the above program requires at
least five minutes/frequency of computer time on the Univac 1108. 1If one
wished to investigate the properties of larger arrays of tubes and vary
several array parameters, such an analysis becomes quite expensive. A
mathematically simpler approach is to treat the tubes as acoustically round
but retaining the same mechanical impedance function as was devised for the

elliptical shape. Since the acoustic wavelengths of interest are large
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.
- compared with the dimensions of a tube, this approximation should not be
g' critical. The scattered wave can then be described by series of cylindrical
' harmonic wave functions. The two dimensional volume of the round tubes was
;_ taken to be equal that of the corresponding elliptical tube.
- As seen from Figure 4, the total pressure at point t becomes

E |

B = P = Pine T Pscate

(& . L e

éi ! ikr cos 9

i i Pt . s E : zA H (kr )eiqez

n‘ L= q==—c 949 L

: where Hq(krl) is the qth order Hankel function and Aq is an undetermined

series coefficient.

i 8;

3 e

l | Pt=Pnc * Fscarr
| - i ——

| e

SRS T

GEOMETRY FOR THE ROUND TUBE ANALYSIS

FIGURE 4
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To satisfy the boundarv conditions at the (th cvlinder, rewrite

Pinc in terms of Bessel functions as

ikr cosb “ 1q(0 +5)
Pinc e ol E Jq(krz)e 2 2

q.—@

and use the Addition Theorem

iqb %
3 md , - (m-q)6
Hq(krj)e = z Jm(ktn)ﬁm-q(krlj)e L 23

m- -—C
which expresses the cylindrical harmonics with respect to one coordinate

system in terms of a second coordinate system.

The predictions from the round tube analysis are compared in Figure 5
with measurements taken in the center of the ten steel tube array. The
frequency shift of 8 percent for the predicted curve with respect to the
measurements is more pronounced than the curve obtained with the elliptically
moded tubes (Figure 3). This additional frequenty shift is in part due to
the closer effective spacing of the round tubes with respect to the equal
area squashed elliptical tubes. As reported by Toulisz, the mutual coupling
in a plane area of compliant tubes causes the resonance frequency to approach

that in vacuum as the spacing between the tubes decreases.
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” CONCLUSION

1 Recent measurements made at NUSC with closely spaced plastic tubes

will be used to determine any further modifications which might be made to

T
i the above models. Comparisons of model predictions with measurements from
s an area of ten steel tubes indicate that (1) the impedance function used

to describe the tubes is reasonable for sparsely spaced arrays and (2)

z because the acoustic wavelengths are large compared with the dimensions of
i

the tube, the mathematical shape used for an individual tube is not critical.

; 5 The models described here are only the first step toward understanding the
& array performance in the actual situation where the tubes are imbedded in
3
i
" rubber and attached to a flexing metal surface.
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