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UNDERWATER SOUND TRANSMISSION

GENERAL

Sound generated anywhere in the ocean is propagated in all directions,

or in a beam or beams, to ocean volumes more or less remote from the source.

It is important to know where sound that we generate goes and at what power

level it arrives. This knowledge is necessary in the active functions of

communication, echo ranging, and echo sounding, and in the passive functions

of detecting noise of enemy ships and of avoiding the detection by the enemy

of noise radiated from our own ships and submarines.
.1;

In the transmission of sound in the ocean, energy travels along directed

lines that may be called rays. When energy strikes the bottom, the surface,

or any other boundary, it is scattered. If sound rays were straight lines,

and if reflection were specular and without loss, and if there were no

attenuation of the sound, the calculation of levels at remote points would

be quite simple. We would simply apply the inverse square law, which is

nothing more than a statement to the effect that all energy contained in a

spherical shell about the source at one instant is propagated outward and is

contained in another shell of larger radius at a later instant. Since the

volume of the shell for a given thickness is proportional to the square of

the radius, the energy per unit volume must be inversely proportional to the

!- square of the radius. Thus, if a comparison is made of the energy per unit

volume, or of the intensity, at a radius r yards as compared to the same

quantity at a radius of one yard, the level at the greater radius is simply

that at one yard divided by r 2 . Expressed in decibels, the loss is 20 log r.
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Nature is not as simple as the picture of the last paragraph. As

a rule, none of the foregoing conditions is satisfied. It is therefore

necessary for us to know something about the ocean and how the transmission

of sound is affected by ocean conditions. Logically, we now turn to a

discussion of ocean conditions that exist and affect all of the characteristics

of sound transmitted in the ocean that have been mentioned.

SOUND SPEED PROFILES

The principal ocean characteristics affecting sound speed are temperature,

pressure, and salinity. Quite complicated formulas have been developed by

1 2 3 4
Kuhawara , Del Grosso2 , and Wilson while Mackenzie and others have adjusted

these to explain experimental data. Anyone engaged in very precise

computations would do well to review the literature. For our purpose, a

family of curves for the case of atmospheric pressure and a simple correction

*for depth will be given. The curves in Fig. la give sound speed as a function

0
of tempeiature for 21, 31, and 41 /00 of 0200

NaCl. To the values given by these curves
5100 - - ----

there may be added .018/sec. multiplied by t
o000

depth, accounting for the increase in ft

sound speed with increased depth. o- 4000
W

As an example, suppose that we have a
4400 PARTS PER

condition of temperature 40 F and salinity 1000
SAI IT]

31 0 /0 at a depth of 1000 feet. From the 0700

curves we read the sound speed for zero depth 4eo0"a 4048 5C 64

DEOREES Vi41RENIMIT

as 4805 ft./sec. To this we must add - --.

(.018/sec.) x 1000 feet, giving 4823 ft./sec.

Fig. laI
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Figure lb is the curve for a balance between pressure and temperature

effects establishing an isospeed condition. In warm water, a negative temperature

gradient of greater magnitude is required to balance pressure increase with

depth than in cold water. Any combination of temperature and temperature

gradient above the curve produces upward refraction. Any combination below

the curve produces downward refraction.

In the mid North Atlantic and North Pacific the temperature falls off

from a few hundred feet below the surface to about 4200 feet in the

Atlantic and 3500 feet in the Pacific, and below these respective depths

it remains nearly constant. Temperature is the prevalent variable controlling

sound speed down to approximately the depth at which it becomes nearly

constant at a value close to 32°F. Consequently, the sound speed tends

to decrease with depth down to approximately this critical depth. Below

this depth at which the temperature becomes substantially constant,

pressure controls changes in sound speed, and from this depth to the

bottom the sound speed increases. A common situation in deep water at mid

latitudes is one in which below the depth of minimum speed the sound

speed increases with depth reaching at about 12,500 feet depth a value

equal to that at the surface. -.

Surmounting the temperature structure described, there will generally
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be a mixed layer in which the temperature is nearly constant or even increases

slightly with depth. This layer is very unstable, and some peculiar

temperature profiles are obtained in it. Figure 2 shows a few approximations

to temperature variation with depth down to 500 feet, actual bathythermograms

being replaced by a number of straight-line segments. At a in the figure we

have no surface-bounded duct. If the same portion of the ocean were exposed for

several hours to the mixing action of a high wind (and consequent high sea state),

we would expect mixing of the water near the surface and the development of the

BT such as approximated at b or c. The mixed layer as here represented constitutes

a surface-bounded duct. We must keep in mind that the speed profile approximately

parallels the temperature profile but will decrease less rapidly with depth or

will increase slowly when temperature is constant and depth is increased. The

approximation of speed profile by linear segments follows from that for

temperature.

The type of straight-line approximation of a BT shown in Fig. 2 may be

improved by the use of a larger number of shorter segments. Calculations of ray

paths based on these approximations give good representations of the salient

features. Limitations in accuracy occur mainly at layer boundaries involving

sound speed maxima.

T (OF) T(°F)- 5,0 0 .00 T(°F) -  500 600
... .. ..,. .. L F ',Z ... : ' '; . .4 4: ' .. . .. '] . . ... .. . i ..

3,I-H
0~~ { 0 L.zi

___ .... ... ... h~
..... .... .. ........... .0..

. ~ ~ ~ ~ ~ ~ ~ ~ ~N.... .... .'. ....'!' .i i ':; "; ii ; ;. . !:I:!:

.: ; , ]; . . ., ; ;, , ," I , ' . " ;. ': " ; ' ; i : " , ' " 'I :]

AU .. ... . . . .. .. .... .... .... ..

Fig. 2
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REFRACTION

When we are faced with any speed profile, corresponding to Fig. 2 what

I " sort of ray paths are anticipated? To answer this question, it is necessary

to describe how speed gradients cause deviations from straight-line propagation.

Actually, nearly all sound rays in the ocean follow refractive paths, that is

curved paths.

Let us imagine a hypothetical case of a plane wave directed horizontally

in a medium extending upward with a constant positive sound-speed gradient, g,

until the sound speed falls to zero at some height h, say 90,000 yards. The

condition would then be that since sound speed would be proportional to distance

downward from this height, a plane wave front would pivot about a point at

this height. Each ray normal to the wave front would describe the arc of a

circle. The real, existing part of the wave front within the layer characterized

by g does behave this way. We may write, then, that the vertical distance h

of the center of curvature from any given reference point at which sound speed

is c, in terms of sound speed and sound-speed gradient, is given by

h = -c -c (i)

dc/dy g(

The negative signs result from calling distances downward positive. The

value h is positive for a negative g.

We shall follow the convention of labelling all variables at zO with a

zero subscript. The radius of curvature p0 is

h -c
o = 0o ( 2 )

0o cos g cos (2

where o is the angle of the ray below the horizontal and also the deviation

of the radius of curvature clockwise from the vertical and g is the vertical
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speed gradient. The value of 4 at z 0 is 4o The sign of p is herein
.0

conventional to agree with the sign of h. The geometry involved is

depicted in Fig. 3.

Center of Curvature
- -h Height of Center

of Curvature
, hh=-CO ,,

0 ' (dc/dz)o

1=ho

Different for
each 00

--- ypo6t@hcal Sound Speed
_for Negative Z

II

0 - -- - -- Ocean Surface
00 Actual Sound Speed

In the Layer

Geometry of Ray Path with Constant Speed Gradient

Fig. 3

If now the speed gradient actually existing is approximated by a

succession of straight lines (constant gradients), each ray is approximated

by the arc of a circle in passing through each depth segment assumed to have its

own given gradient, with the appropriate radius of curvature for each depth

segment. Eq. (2) is everywhere satisfied. Since p is constant along a single



-7-

ray in a medium of constant gradient, is constant, an expression of

Snell's law. Actually Snell's law is not restricted to a single medium

even though g changes from one medium to the next. (We should perhaps

comment here that Snell's law is expressed by some authors as a relation

between the sines of the angles with the z axis.)

ACOUSTIC PATHS

Forming rays by the use of Eq. (2), we obtain the general characteristics

of the ray paths shown in Fig. 4 from a source S near the surface to distant

ranges; these are the path in the surface duct, the bottom-bounce path, and

the convergence-zone path.

Sound Speed- ;-Surface Duct Path

Bottom Bounce Path

Convergence
Zone Path

Sound
Speed

Bottom

Major Paths to Long Range

Fig. 4

Besides the fundamental paths illustrated in Fig. 4 there are other

near-surface to near-surface paths involving multiple bounces. For example,

Fig. 5 shows four different paths of slightly different lengths incorporating

*.,,*. .
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one bottom bounce and zero to two surface bounces in the outward transmission

of sound from the source to target. There are for each of the outgoing paths

four different return paths involved in echo ranging, making a total of

sixteen different round-trip paths, not all of different lengths. Further

combinations may arise from complicated reflection processes.

Source

Target

ia

Acoustic Paths From Shallow Source To Shallow
Target Using One Bottom Reflection

Fig. 5

In all cases shown so far, the source has been near the surface in the

surface-bounded duct. We consider next the ray paths available from a

relatively deep source. Fig. 6a shows ray paths from a source at a depth

of 1400 yards to points near the surface. A ray starting out horizontally

does not reach the surface since it is at the depth for which the sound-speed

gradient is zero. Nearby rays will not reach the surface either since by Snell's

law they become horizontal at a c only slightly greater than that at source

depth. However, there is a limit ray of some elevation at the source that will

Just gzaze the surface and a second limit ray depressed an amount equal to the



elevation of the first that will just graze the surface after a downward

excursion and ascent. Any steeper rays will insonify all the surface nearer

to the source for the case of initially upward rays or points on the surface

beyond the limiting ray for rays directed downward. But near the surface in

between the upward and downward limiting rays there is a shadow zone.

Limit Upward Ray
Surfacing at 7000 yds. Shadow Zone

Downward Limit Ray
Inadequate -Depth of 1400 -ds

Upward Paths from Deep Sources

Fig. 6a

The way to get rid of the shadow zone is illustrated in Fig. 6b. This

method is to locate the source at a depth where the sound speed is equal to or

greater than that at the surface. When this is done, the horizontally directed

ray at the source will again become horizontal or maintain an incident angle

at the surface, and there will be no shadow zone of the form just described. All

upward rays will fill in from the point of incidence of the initially horizontal

ray to lesser ranges, and all rays directed downward will fill in from this point

of incidence outward. The combination of ray paths available constitutes what is

called "the reliable acoustic path." Our own preference is to limit the use of

this terminology to the last example although this is not the most common

practice. The path of the last example is reliable in the sense that there are

direct rays to all ranges out to that range reached by a downward directed ray

that just grazes the bottom.
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Horizontal Ray
Surfacing at 3500 yds.

Reliable Acoustic Path
Adequate depth= 4200 yds.
in mid-atlantic in winter.

Sound

Upward Paths from Deep Sources

Fig. 6b

DIVERGENCE LOSS THEORY

To calculate divergence loss for curvilinear propagation, we start with

a "tube" of sound rays and determine how its cross sectional area varies with

distance from the source. The limitation in dimension implied by "tube"

is necessary when the spreading rate is a function of the coordinates, as

it is in curvilinear propagation, for then the spreading in different tubes
I

is different. The divergence loss in decibels is 10 log 1-. This is just
AA 2

10 log -AA , in which AA Is area of the reference cross section and AA

is that of the tube when it reaches the desired range. For rectilinear

propagation the ratio of the areas is the same as the ratio of the square

of the radial distances and the divergence loss is therefore always
r

2

r10 log -r-,. We shall ordinarily take the reference distance as 1 unit of

length so that this may be written 20 log r . AA may be considered to have
t 2

two dimensions at right angles to each other and the loss in each dimension



may be considered as 10 log r . This will be convenient for physical
2

insight into how loss in curvilinear propagation compares with that in

rectilinear propagation.

We shall consider linear gradients only because any sound-speed gradient

may be approximated by a number of linear segments so that a multiple-layer

theory will approximate any actual case.

Single Sound-speed Gradient

Our interest is in deviation from the simple case of spherical divergence.

The scope of our immediate inquiry is limited to divergence in a single

medium of constant vertical sound-speed gradient, g, now assumed negative.

We consider a fountain of sound rays from a source S contained as they

start out from the source between two cones having a common vertical axis

and a common apex. We let the inner of these cones make an angle ,o

with the horizontal and let the outer of the two cones make an angle 0 + 60

with the horizontal. (Remember angles are positive clockwise from the x axis).

Let us consider at first only the rays starting along the inner cone. As

these rays are traced, they travel along arcs of circles since the medium

is assumed to have a constant speed gradient within it. They thus bend

outward as shown in Fig. 7. As these rays, which are initially lying in the

conical surface and each in a vertical plane through the axis of the cone,

advance, the locus of points reached simultaneously is always a circle in

a horizontal plane of radius x given by

x = r cos 0. (3)



The circumference of this circle in a horizontal plane is the horizontal

dimension of the advancing wave front. It is designated s and is given by

s -27rr cos 6. (4)
1

Fig. 7 illustrates the geometry involved.

S1 rect 27,r cos 0.

SI curv=2-77r cose

.Co

Geometry of Refracted Rays In Constant
Gradient Medium in Horizontal Plane

Fig. 7

For rectilinear propagation 0 is always o and
0

Xrect r cos 0o, (5)
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1.

the special case of Eq. (3) when e = 0 Likewise.,

-,7

a. I et 2wr cos 0 - (6)

From Eq. (4) and Eq. (6), we have

s curv Cos 0(7)
i rect 0

To the reader who has a better feeling for calculations based on

straight-line propagation to the identical horizontal circle, we point out

that this approach would yield the same result, Eq. (7), because the circles

compared at the reference range of I yard would introduce this relation.

In Fig. 7, with the rays starting upward and bending downward, the

ratio of the s's is greater than 1 until cos 0 = cos o 0,which will occur

when 0 - - , if at all. It may also be noted that the ratio is maximum

when 0 - 0, in other words, when the ray is at the same depth as the source.

Another point of interest is rate of spreading in the horizontal. The

total angle around any cone with its vertex as center is a = 2w cos .

This a is rate of change of arc length in the horizontal with path length,

or spreading rate in the horizontal. The following relationship holds:

os = cos 0  (8)

When * tends toward the horizontal, cincreases, and when j tends away from
the horizontal, a decreases. In Fig. 7, 0 is tending toward the horizontal

and spreading rate Is increasing. Since spreading rate in rectlinear

L l
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propagation Is aO, Eq.()shows that, relatively, propagation over a

refractive path has a greater rate of spread so long as cos * > cos
in the case shown in Fig. 7, or, until * - -o which takes place

0

when the ray bends back to the depth at which it started. Therefore,

over this range of 0 the ratio of icurv increases to the maximum given

by Eq. )when 0 0. irect

For spreading in a vertical plane we compare the rays starting

in the outer cone bounding the fountain of rays with those starting

In the inner cone. A single pair of rays, as depicted in Fig. 8

will be adequate. 60 is the angle between rays at points reached at

the same instant of time (not same depth) in this section.

I'0• " 6X

" .. Spreading In Vertical Plans

UFig. 8
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In Fig. 8 the reference ray depicted starts from the source at a

negative angle O above the horizontal. A nearby ray in the same vertical
0

plane starts out at an angle 654 below the reference ray. As we follow

these rays, f continuously increases from its initial negative value 0 0and

method of procedure toward an indication of ray spreading that follows is0?

the most elegant approach, but not the simplest. (Another method will be

used for the multi-layer case, and the results can be shown to agree.) In

the immediate method we plan to derive Ss , the arc subtended between
2

neighboring rays, by finding the distance between points on these rays

reached at the same time.

The following equation is fairly obvious as it relates speed along the

circumference of a circle to rate of change of angular position:

d-g Cos (9)
dt p

with the second equality in Eq. (9) resulting from Eq. (2). When g is

negative, * is increasing, and when g is positive, c is decreasing. Separating

variables and integrating, we obtain

t
S -g fo dt (10)

or

In tan + = In tan + - gt. (11)
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In deriving Eq. (11), we have integrated along a single ray allowing

the time to vary. We shall now hold time constant and take the differentials

of the two sides of Eq. (11) as we vary $o and thereby go from reference

ray at angle 0 O to neighboring ray at angle 0o + 6 . The differentials of0 ~00
both sides are similar and come out in rather simple form by the following

steps:

6 in tan ( 1 sec (i +

tan +2)

6$
I- AT IT +

2 sin (I+ cos +

6$

sin + 0)

c iS$ (12)

Cos

Applying Eq. (12) to the differentials of the two sides of Eq. (11),

we obtain

! : (13)
cos 1 cos (13

The angle between two rays as they pass through points reached at the same

time is 6$.
d(6s)

The quantity 6$ is the spreading rate in the vertical . It
dl

corresponds to a in the horizontal given by Eq. (8). Since the spreading

rates follow the same functional form, the accrued spreads must also, and we

i
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may write for the ratio in the vertical plane of 6s to 6s
2 2 rect

2 2 curv cos (14)6s cos 0o"1/
2 rect o

This is analogous to Eq. (7). Finally, the ratio of the areas which are

H the products of s and 6s for each of the cases, is

2

curv = [cos

re t [c (15)

The loss in excess of spherical will be 10 times the logarithm of the ratio

of the areas. The total loss for the curvilinear case is then

loss =20 log r + 20 log cos 0 (16)
Cos

We reiterate that the treatment is for a medium with one constant sound-speed

gradient.

Multiple Layers without Sound-speed Discontinuities

The result of the last section in so far as divergence in the horizontal

is concerned is extensible to multiple layers with horizontal boundaries.

Eq. (7) is still applicable. The justification hinges on the fact that

a fountain of rays experiences a spreading into the circumference of a circle

of radius x regardless of the number of layers, and the expression for x

remains r cos 0.

Divergence in the vertical is somewhat complicated by propagation through

multiple layers with different sound-speed gradients. When sound passes through

one or more layer boundaries, accounting in terms of points reached at the

same time becomes impracticable. The complication which develops is depicted
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in Fig. 9 which shows by solid lines the position of a wave front as

neighboring ray reaches a boundary and again as the reference ray reaches

the boundary. In between these positions, the two rays are in different layers

and may experience quite different bending. In the figure the reference ray

is bending up while the neighboring ray is bending down. This effect leads

in the example to markedly increased spreading so that the single layer

formula for loss in the vertical plane no longer applies.

While considering this phenomenon, it would be wise to note that a

similar effect may occur in reflection from a boundary. Suppose that we

start with the specification that gl - g0. The effect already described

will hold. But now, let us replace the boundary by a perfect reflector. The

reflected rays will then be the mirror image of the previously transmitted rays

and therefore, will experience the same increased spread as shown by dotted

lines in Fig. 9.

/06S
0
6X

Mechanism Increasing Divergence Loss
At Reflection from Sound-speed Maximum

Fig. 9
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Taking a further look at Fig. 9, we may be struck with the idea that

the effect described becomes negligible in the limit of small 64i" It

is true that if we halve 6xi, we approximately halve the travel time in

different media and therefore, approximately halve the distortion. However,

this leaves the same change in angle per unit angle which is the important

characteristic.

To handle the situation just described we hereafter compare pairs of

rays at the same depth rather than at the same time. 64 takes on a new

meaning becoming the angle between the rays at the same depth. 6x. is the1

horizontal spacing of the rays at the ith boundary.

We shall reiterate and expand our conventions. Characteristics at

the source or derived from characteristics at the source will carry the

subscript zero. The quantities co, go' and o are characteristics at the
0 0 0

source, and derivable from these are h and po. Consecutive layer boundaries
0

below the source will carry subscripts 1, 2, 3, etc. with corresponding

subscripts for characteristics there and for new h's and p's established from

these characteristics. In the negative direction (up) negative subscripts

will be associated with successive layer boundaries. In examples to be

presented later the source will be at the surface and no negative subscripts

will be needed.

We have established in Eq. (2) the convention that p has the sign of

h. A P with a component upward from the ray is negative and with a component

downward is positive. A convention of this type is necessary in order that

equations involving p be consistent. Note that a negative p is associated

with negative curvature which seems appropriate.
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In the computation of divergence loss, the quantities c at the source
0

and g, for each layer will be given along with layer depth. A preliminary

computation of c at each layer boundary may be performed by using the

relation

C. c + g (z - zi) (17)

All the h's may be computed from Eq. (1). The quantity h will beo

measured from the source, h from boundary one, first below the source,1

etc. The mathematical procedure will then be to trace any reference ray

from the source to consecutive layer boundaries, computing 4i' Pi and xi

at each boundary in the order given.

Using Snell's law, the 1i's are readily obtainable from 0o and the ci's

already computed:

coscP cos P
i -0 (18)

ci co

The Pi are then obtainable by the use of Eq. (2).

The quantity x i-lj is the increment

in horizontal range between the reference

depths i-i and i. Referring to Fig. 10,

xi -l,i  is seen to be, noting that p is .

Layer/

negative in the figure, Thickness s

xi lj = Pl (sin i-sin i i . (19)-
'i-I// ; sinO i

Horizontal Range Increment

Fig. 10
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In using Eq. (19), the term in parentheses has the quantity subscripted

for the first depth reached appearing with a negative sign. This sign,

first-reached depth negative, must be retained for upward rays resulting

in the higher subscripted quantity appearing with the negative sign. This

change in sign is just offset by a change in sign of each , and thus of

sin , on the way up. Consequently,

xii_1 =x 1il' i. (20)

The whole horizontal range through n layers is given by

n
x xil,i (21)

using the single subscript for the whole horizontal range to boundary n

along the ray.

We next treat mathematically a neighboring ray which, at the source, is

at an angle 6 with the reference ray (o + 6o with the positive x axis).
0 0 0

At each layer boundary we compute a 6 and a 6x .  For the whole
i i-1,i

horizontal distance between the reference ray and the neighboring ray, we

sum these 6x and obtain 6x as for x in Eq. (21).
i-l,i n n

The calculation of i is a bit tricky. It would seem quite easy to

start with Snell's law and differentiate obtaining

sin sin
_ _ o 0
c C
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Then solving for 64i and replacing the ratio of the c's by the ratio of the

corresponding cosines, we would obtain

tan 6o
U i = tan

The equations fail for either o 0 or = 0. For this reason we choose
0

not to number them. But now let us start with Snell's law for the

neighboring ray

cos(Oi + 6 4) cos( o + 60)

i s ( 2 2 )

and expand each numerator in a Taylor's series in retaining three terms

and obtaining

Cos *. - sin Coi64,. - cos/2)
ci

cos - sin o6o - cos 4 (6 42/2)
(23)

c

Next we replace the ratio of the c's by the ratio (.f the'cosines and divide

by the cosines. After subtracting unity from each side and changing signs,

we obtain

tan qioq+--- = tanq oo +-i-. (24)
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If - and - were negligible, we would obtain the previous result. But
6 2 2

2 is not negligible when tan 0 making the first order term zero.2 21

Similar reasoning applies to - -. To get accuracy we must use all terms

in Eq. (24) and consequently,

6 = - tan 4 + Vtan' i + 2 tan +6 + 64. (25)
i0 i 0 0.

In a computer program it is no great chore to use Eq. (25) consistently

to assure its use for cases in which it is needed.

The computation of 6xi-l,i offers no problem. We have an expression
hi 1

for x given by Eq. (19). In Eq. (19) we replace pil by cos

since h, unlike P,is independent of 4, and use Snell's law to obtain

ci tan 1i
x h tan4)ii (26)

Differentiating, we obtain the following expression:

ci_ 1

Shifting back to p instead of h,

6xi.l,i = Pi-l(sec i 6i - sec 4 i-l 'i-l) .  (28)

In using Eq. (28), the term in parentkreses has the quantity

subscripted for the first depth reached appearing with a negative sign.

The sign, first-reached depth negative, must be retained for upward

r,.
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rays resulting in the higher subscripted quantity appearing with the

negative sign. This change in sign is just offset by a change

Iin sign of each 6 on the way up and thus,

6x 6x (29)

and finally

n
6xn 6xi-li" (30)

Having Sx at the position where divergence loss is to be computed,
n

in most cases convert to 6s by the following relationship:n curv

6sc = 6x sinF (31)n curv n n"

When *n is very small, Eq. (31) becomes inaccurate for finite &f

which has to be used in practice. When the neighboring ray is the steeper

and n is approximately equal to zero, we can side-step by using then

relationship

6S =Sx sin (4n + 6n). (32)
n curv n n n

*Since we deal with a 6s only in the vertical, we may drop the subscript

2 to indicate vertical and use the subscript to agree with that for 6x.
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.4,

If we desire still greater accuracy for small angles, we may extend

or retract either ray along the arc of a circle by an amount do (not 6

in dealing with a single ray)given by the expression

6x
dn= --n (33)

' Pn-1

Except near the source, this will bring the extended or retracted ray into

phase coincidence with the other ray. Then, since both rays are nearly

horizontal

6s n 6y = Pn-1 cos (on + d) - cos n (34)

If a ray, when extended, would actually be reflected at depth subscripted

n, we may imagine the medium extended for this computation with the result

that the sign of 6y will be wrong. This is of no consequence.

For comparison of divergence loss with that for rectilinear propagation,

we may compare areas of the wave fronts reached in the two cases for the

same length of path. It is more enlightening, however, to take the

equivalent step of forming ratios of each of the dimensions contributing

to area in order to segregate their individual contributions to divergence

loss.

We had for divergence in a horizontal plane

s
i curv cos 

(i rect Cos 0
(
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Then 10 log of this ratio gives excess loss over the curvilinear path

in decibels attributable to spreading in the horizontal.

In the complementary dimension in a vertical plane, we have 6sn curv'

given by Eq. (32) or in Eq. (33) and Eq. (34), and 6sn rect' given by

6s r6o, (35)

in which r is path length. The ratio may be formed, and may be convertedT
to the decibel loss attributable to spreading in a vertical plane relative

to the loss in rectilinear propagation. Then total loss from vertical

spreading in db is

6s
Loss - 10 log r + l0 log 6s curv (36)

rect

Many of the equations here may be combined to express 6s in terms of
2

ocean cb'acteristics, *o and tSi . The value of 6s , so expressed, is quite0 0 2

complicaed if we observe the niceties of Eq. (25) and Eq. (34). In fact

it tends to lose the obvious physical interpretation of the simpler equations

given here. In addition, the eliminated steps may contain information of

considerable interest.

Summary of Computation for Divergence Loss in Vertical Plane

We can now summarize concisely, in practicable sequence, the eight

steps necessary to obtain excess spreading loss, in decibels over that

obtained in straight-line propagation. These steps follow:

1. Calculations are to be made for a model ocean for which the

sound speed profile will be specified. From the profile, we

I-,
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shall compute , h , ... , from the following formulaF 0

ci
hi =- . (1)

i i

These h's are the vertical distances to the hypothetical planes

of zero sound speed from reference depths such as layer boundaries.

2. Reference rays of different initial inclinations, that is 's,0

willl be con idered. For each *o compute by Snell's law the
corresponding 2' ... at layer boundaries and at the depth at

fwhich divergence loss is to be computed. Use tables and list

sines, cosines, and tangents of all C's used.

1 .3. For each C1 compute the p for each layer from the formula

h.
P = Cos " (2)

4. For each layer compute increment in x from the following formula

{X i -l*1 i = ry 1 i -(sin 4 i - sin $i- i) .  (19)

Sum these increments to get x i (Eq. (21)).

5. Assume a 6$* between each reference ray and an associated
0

neighboring ray. Compute for each pair of rays, 60) , 62)
1 2

from the following formula

= - tan + Vtan i + 2 tan +064o + (25)

For upward directed rays designate the 60 by 64iup

* In an example we shall choose 64) instead. Any layer boundary may be chosen.

In Eq. (25), *O may be replaced by any i with 60 ° replaced by 
60.

0L
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6. Compute 6x at the depth where the propagation loss is to be derived

from the formula

ax1 = PO(sec 0 - sec 0 60 0)

+ p (sec 0 64 - sec 6c ) + ... (28) and (30)
1 2 2 1 1 combined

For multiple layers there may be several terms like those in paren-

theses, that is, the difference of two products of sec and

6x is the special designation for the difference in x coordinateV

between the vertices of the reference and neighboring ray. This is

like the equation for 6xi except that the last 65, that is, the one

with the highest subscript is taken as zero, since there is no

difference in angle between two vertices each of zero angle.

7.A.When 0 at the depth where the last computation is to be made is

greater than or equal to 50, compute 6si by the following formula

6s1  6 i sin (31)

B.When is less than 5°, compute 6si  6yi by applying the next two

equations successively,

6xi

68 1 t 6Y i = P i-1 COS(O i + doi) -Cos 0 1•

This gives the spacing si at the point where the neighboring

ray reaches the depth at which the computation is to be made.
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8. Compute riSo, the spread which would take place in straight-line

propagations to the same range, and excess loss in decibels

given by

Excess Loss = - 10 log i

i

DIVERGENCE LOSS APPLICATIONS

Multiple Layer Applications

A specific model of the ocean is chosen for some of the examples to

follow. This is shown in Fig. 11. We have taken three layers with

layer boundaries at 50 yards, and 1400 yards depth, and with the bottom

at 6000 yards. Sound speed at the source (here taken as the surface) is

c = 1650 yds/sec. Sound-speed 1650 yd&/se

gradients are go = .03000/sec,

g -.042000/sec, g2 = .016000/sec. 15.5ydj/ser. 5Oyd

The value of g chosen represents 15y&

a very strong duct to emphasize 1594.gyds/sec

duct effects. The five signi-

ficant figures are assumed in id

order to obtain 2 or 3 in the 460

final results. This necessity

reflects the sensitivity of

results to small changes in

ocean characteristics.

1668 ydsAec.

Model Ocean for Multiple Layer Applications

Fig. 11
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Based on this model ocean, computations are carried out of divergence

loss over various paths in Appendix A. The preceding paragraph is repeated

there as Step One of the computations. Steps Two to Eight follow in the

Appendix with results obtained at each step.

The model ocean is assumed for the purpose of illustrating multi-layer

problems. All the rays considered are steep enough to escape from a

0 0
surface bounded duct at angles from 0 to 20° . The small angles bring out

major deviations in divergence loss from that for spherical divergence.

The three depths at which computation has been carried all the way

through to a ray spread and a computation of divergence loss are 20 yards

below the surface duct on the downward path, bottom, and surface after

the downward excursion. At the surface, there will be rays which follow

a bottom-bounce path (9 to 20 ), and rays which follow a convergence

zone path bending back to the surface from considerable depth but without

reaching the bottom. The results will be taken up and discussed in the

order just listed.

Loss to Ranges Twenty Yards Below Surface Duct

Fig. 12 is a graph of loss vs range at 20 yards below the surface

duct in excess of spherical divergence loss. An excess of even a few db

may be quite serious since this is doubled for round trip in echo ranging

and since the echo excess over reverberation may not be very high to

start with. It is therefore dubious whether those direct rays which reach

to ranges beyond 2000 yards for the example case are really useful. At

the steeper angles the loss becomes nearly equal to that of spherical

divergence.
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14

Duct depth 50 yds12 CO = ,650 yds/sec

Velocity gradient:
10 Induct = .03OAec

Below duct =-.039/sec
r6t'o 8

-10 log

6

4

2"

- ,.€ I p

0 .8 1.6 2.4 3.6 4.0

HORIZONTAL RANGE (K yds)- - - -- -

EXCESS LOSS 20 YARDS BELOW DUCT VERSUS RANGE

Fig. 12

In Step Six of the Appendix a 6x is computed for = 00 of about1+ 1

one-quarter mile. This is in spite of the fact that 6o is only about

one minute for this ray and its neighbor. In rectilinear propagation,

two rays starting out at the same angle with the reference ray arriving at

the same end point would have a horizontal separation more like 50 yards.

This point is cited in order to bring out the fact that this separation

in the horizontal is very greatly enhanced when the rays approach very close

to the horizontal.
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It may be of interest to note that at small values of 4 Eq. (31),

that is 6s = 6x sin 4, is at least approximately correct and consequently

the fact that 6x gets very large for small 4 is partially compensated for

1+1by the fact that the sin of + gets very small. As a matter of fact, if

a calculation had been preformed before emergence from the duct but near

the boundary where the rays make a small angle with the boundary, the

decreased magnitude of sin 4 would have overcompensated for the large 6x.

This sort of behavior will be observed in the next section at the other

velocity maximum at the bottom of the ocean.

Divergence Loss to the Bottom

The computations show that only the rays for which 4 is greater than 80
1

reach the bottom. Any pronounced effect on loss at the bottom caused by

refraction is expected to occur at 4 slightly greater than 80. With steep

angles the extent in space from surfacc to bottom is not great enough to

produce large effects. The excess loss to the bottom is plotted against

range in Fig. 13. The negative loss shown is a gain. All of the rays

considered here gain something over spherical divergence with the

most pronounced gain coming at small angles of incidence on the bottom.

This would be even further accentuated at a value of 4 less than 3°49 ',

3

say 10. The reason for this crowding together at small grazing angles is

that as the rays approach the horizontal 6s approaches 6y which is small

because of the slow variation of cos 4 . In Snell's law for small angles

a change of a few degreesresults in a very little change in the cosine,

therefore, very little change in the sound speed and in the depth.
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c0 =16500yd&/sec. g0 
= .03/sea

zI 50 yds. c I 
= 1651.5yds./sec. gl=-.042/se£

z2 = 1400 yds. c2 =1594.8yds./sec g 2 
= .016/sec

z3 6000 yds. c3=1668.4 yds./sec.

to 3 3049,4ro3- 54'

o3o
0

IJ I019

iI I
10 15 20 25 30

Range (Kyds.)

Excess Gain to the Ocean Bottom

Fig. 13

If we compute the range which would be reached if the rays starting

at * = 9019 ' were to continue in a straight line to the bottom, we would
0

find that it substantially exceeds the horizontal range obtained by the

same 4 over the actual path. Thus the ocean crowds the rays together
0

and thus it would be expected that on the average there would be a gain

at the bottom. Furthermore, there is a gain in a horizontal plane given

by 10 log Cos o which turns out to be only a fraction of a decibel.
Cos 4)

Comparing 4 with o it will be obvious that the grazing angle at
3 1 :

the bottom is substantially decreased especially for small angles at the

bottom. This decrease will produce a decreased scattering loss at reflection.

In the opposite direction, however, is the added divergence loss by refraction

which we described with reference to Fig. 10.
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Divergence Loss Surface to Surface via Bottom

1.0- 0= 14*

-o I X 10 1,
Co =30 .6-

_ .4-
1

0 .- 'II

20 40

_=9o

Excess Gain Over Spherical Divergence Loss
Surface to Surface via B-oltam Bounce. Model
Ocean as for Loss to Bottomn ( 3 Layers)

Fig. 14

The results are plotted in Fig. 14. We note that there is an excess

90

loss experienced by the path followed by the r y for which = 9° , the

smallest angle for which the calculation is carried out. This is the ray

for which maximum gain was experienced on the downward trip. Apparently,

the reflection loss experienced at the bottom more than offset this gain,

and even greater loss would be expected for angles at the bottom from 00

to 3049 ' . The fact that on the average there is an excess gain over the bottom

bounce path in this case is not surprising if one computes the range which
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would be reached by straight-line propagation if the angle 9019 ' were

maintained to the bottom and -9019' from there to the surface in

straight-line propagation. This range comes out 73148 yards which is

substantially greater than the actual range x appearing in the column

for horizontal range. In other words, the rays have been squeezed

together to reach the lesser range. Therefore, there must be an average

divergence gain via the bottom for this case.

Divergence Loss to the Convergence Zone

In our model ocean, all the rays which emerge from the first layer

boundary at angles of 00 to 80 become horizontal at depths short of the

bottom. Assuming the same sound-speed profile for the upward excursion,

they all return to the surface at or near the convergence zone. The angles

at which they reach the surface are the same as the angles at which they

started except for a change of sign which takes place at the vertex or

turning point. For this case x up = 2x and 6x up = 26x . Keep in mind0unn on.Frti aex v 0 v

that x and 6x are respectively the horizontal distance to the vertexv v

and difference in horizontal distances to vertices of a pair of rays.

Referring to Table 3 of the Appendix, we note that x decreases
v

from the ray for which i = 00 to a minimum at the ray for which = 50,
1 I

and then increases. This variation is doubled for the round trip. Without

looking any further it is evident that the rays must crowd together in going

through a minimum as the rate of change with angle goes through 0. In

other words, there must be a high convergence zone gain at about 5°.
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* The conclusion is substantiated in Table 5 for 6x . This spacing of

the rays becomes a minimum for 4l = 50 and then increases.

The computation of 6s is shown in Table 8. There is a 6s for each

value of " However, since the range at first recedes and then increases as

is increased, there is an overlap of energy. Hence, in order to express

loss as a function of range, it is necessary to add two intensities together.

The intensity is inversely proportional to the spacing of the rays and

therefore, the reciprocals of the 6s's must be added and the reciprocal of

the sum taken to get an effective 6s. This work has been carried out to

obtain the graph of excess loss vs range appearing in Fig. 15.

32 Computed Excess Gain relative to Spherical Divergence

Loss to Convergence Zone in 3-Layer
28 Model Ocean- Ocean Data same as for

Loss to Bottom.

24

o1c 20.

16

,W 8

4

66 68 70 72 74 76 78 80

RANGE (Kyds)

Fig. 15



..
-37-

In the figure, the high peak value due to convergence is observable

at a range of 72480 yards. The height of this peak checks well with

observation. The abrupt falling off at 74000 yards is due to the fact

that the bottom has intercepted part of the energy that would have arrived

there from steeper rays. This is a bottom cutoff.

The range calculated here is somewhat greater than that observed in

the mid-Atlantic. This may be attributed to two factors, the stretching

out that occurs for the small angle rays in the surface duct, and a

value of g which may be too low.
2

Any marked concentration of energy near the 00 ray is prevented by

the marked spreading of rays in the upper layer both on the upward and

downward journeys. For this reason, we have computed convergence zone loss

for a two layer case for which the upper layer has c = 1650 ydsisec.,o

g = -.039/sec., z, = 1400 yds., and g = .018/sec. For this case the

curve of loss vs range is that of Fig. 16. Now it will be seen that

there is a double peak with the rays near 00 bunching up to form the

peak at the longer range. The peak at minimum range remains. It will

also be observed that here, where the gradient in the lower layer was taken

somewhat higher, the range of the convergence zone is much shorter than

in the preceding example. Lack of a surface duct also contributes to the

shorter range.
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24 A
~22

20

18- Excess Gain at Conver-

gence Zone

' 16 
2- Layer Case

co= 1651.5yds./seca

to 4 go= -. 039/sec to

.E 12 
350 yds. depth

go =+.018/sec. to

5900 yds. depth
w 10

8-

6-

4-

2-

I , I I I I

65 70
Horizontal Range (Kyds)

Fig. 16
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Loss by Divergence in the Horizontal Plane

All the preceding computations for model oceans were excess loss

resulting from the type of spreading that took place in vertical planes.

There is additional small loss due to spreading in the horizontal given

cos 0by 10 log c 0 with 0 computed either to the point of incidence on the

bottom or to the vertex of a ray which does not reach the bottom. For

the model ocean which we have discussed in detail here, this loss comes

out slightly negative meaning that there is a slight gain at the bottom

and at the convergence zone. For some cases the loss may exceed I db.

There is no problem in computing it.

For bottom bounce, the angle 0 should be that made with the

horizontal by a straight line to the point of incidence of the actual

ray on the bottom. For convergence zone it should be the angle made with

the horizontal by a straight line to the vertex or turning point of the

actual ray. In both of these cases the excess loss in the horizontal is the

same to the bounce or vertex as over the "round-trip" back to the surface.

Surface Duct Propagation

An important acoustic path to near-surface targets is the surface duct.

This arises whenever a sound speed maximum at some depth exceeds any sound

speed (maximum or otherwise) at lesser depth. The case of a linear gradient

will illustrate the salient features. Here rays starting out at small

horizontal angles travel through arcs of circles from surface to surface

where they bounce and go through a repetition of the cycle. They are

thereby trapped in what constitutes a surface-bounded duct.
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We shall consider a constant, positive sound-speed gradient in which

all rays are arcs of circles with radii of curvature given by Eq. (2).

Our first concern in this discussion is the question of what range of angles

* provides rays that stay in the duct. We shall resort to some approximations

that are good because o is small. We start by writing for the vertical
0

distance from the source,

y -p(cos -cos ). (37)

Letting y = d, the duct thickness, 0 and o = 6 for the ray that

vertexes at the bottom of the duct, we obtain

d = - p(l - cos 0) -
2  (38)2

Solving the last equation for 0, we obtain 0 / 7d-5. The range of angles

at the surface of rays contained within the duct is 0 to 0. As an example,

if d = 50 yards and p = - 90,000 yards, then from Eq. (38) we have 0 = 1/30

radian or about 2

The bundle of rays contained within the duct starts out experiencing

spherical divergence and then bends around so that beyond the range where the

limit ray reaches the bottom of the duct there is experienced, on the average,

cylindrical divergence, all rays then contained within the duct being trapped

and thereby restrained from further average spreading in the vertical. How

can we express divergence loss acquired in the region of transition from

spherical to cylindrical divergence? If the rays were to proceed in straight

lines, each to its vertex depth, and then were to abruptly turn parallel to

the surface, we would have the same rays contained as by the actual refraction.
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The average divergence loss would then be spherical out to the range where

all rays had turned and cylindrical thereafter. We shall compare this range

where all rays would have turned with that at which the limit ray first

vertexes.

_ Th~
h /0 Cose

/ _ .. -

Equivalent Spherical and Cylindrical Divergence Losses

Fig. 17

In referring to Fig. 17, we note that the range x to the vertex of
v

the trapped ray that penetrates deepest !s given by

x v =-p sin 0 -pO = O=/ (39)

with the last form following from Eq. (38). If the ray at this angle 0

had traveled in a straight line to the bottom of the duct, the distance x
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traversed would have been

x
x = d cot 0 6- 8- ,i (40)
1 2 0 2 2'

From this equation we conclude that the divergence loss is equivalent to

spherical loss out to one-half the distance x given by Eq. (39) and is
v

cylindrical thereafter. This statement applies to loss averaged in depth

and at range beyond x . Mathematically, we have (x and r in yards)
v 0

x
Divergence Loss =20 log 2-+ 10 log r2 /

v

x
-10 log -+ 10 log r. (41)

2

As an application of the foregoing results, let us take a case of

constant temperature down to a depth of 50 yards, surmounting a pronounced

negative gradient that limits the duct depth to 50 yards. The value of h,

the vertical distance to the centers of curvature, will be taken as

-90,000 yards corresponding to a sound speed at the surface of 1,620 yds./sec.

and a gradient of .018/sec. From Eq. (38) we have = = 1 radian 2-p 30

Then, from Eq. (39) and Eq. (40) we obtain x = 3000 yards and x 1500 yards.v

At any range greater than 3000 yards, the following expression of divergence

loss holds:

Divergence Loss = 10 log 1500 1 10 log r.
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At 5000 yards, for example, this would give 68.8 db compared to spherical

divergence loss all the way of 74 db.

We have hinted at a lack of uniformity within the duct from the surface

to the bottom of the duct and would now like to examine this a little bit

further. Since the surface is a pressure-release surface, the pressure

variation there will be 0, and the normal component of particle velocity will

double. If we were to plot pressure level versus depth, we would expect

the pressure to rise rather rapidly from 0 at the surface to a maximum and

then to fall off toward the bottom of the duct, in regions reached by only

a few of the rays. (All the rays spend time near the surface.) This

expectation agrees with actual observation in the field.

If this general picture were looked at in a little more detail, it

would be found that there may be a number of maxima and minima of pressure from

the surface to the bottom of the duct. The variation arises from propagation

over multiple paths. For example, at short range there is a direct path

and the surface-reflected path. Depending upon the two path lengths, the

contributions of energy reaching a given point over the two paths will have

a phase relationship that may be anything. At some ranges and depths

there will be constructive interference; at other ranges and depthsothere

will be destructive interference.

An interesting phenomenon within the duct is the existence of a caustic.

This is a surface on all points of which neighboring rays are crossing each

other. This caustic occurs after any ray has experienced one surface bounce.

It will now be shown that the crossing of adjacent rays takes place at 4/3

of the space cycle from the source at the surface to the next incidence on

the surface.for the case of one bounce only. There are other crossings further

out.
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We had the expression for ray depth in terms of angle with the

horizontal as

y - p(cos - cos 0 ) .  (37)

The x distance out to some point beyond.the first surface reflection is

given by

x = - p(3 sin - sin 4)
_-h

cos (3 sin - sin 4). (42)

The first term in parentheses in Eq. (42) gives the distance out to the

second vertex. The second term backs off toward the position of surface

bounce. Substituting the value of sin in terms of cos o we obtain
0

x = 0 -h sin o - - cos 2  ] (43)Cos o 0 V-T

This expression for x contains no variables except 0 provided that y

is held constant so that c is constant. We may therefore differentiate it

with respect to O to determine the conditions under which the derivative
0

is stationary, indicating crossing or osculations of rays. We obtain

h sec 2 
0 tan 0dx 3 h sec2 + 0. (44)

pc h s 
02
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Dividing by h sec 2  and manipulating, we obtain

sin
sin = 3 (45)

or approximately

=0 -(46)

We substitute this value of 4, in Eq. (37) and Eq. (42) to obtain

parametric equations for x and y at the caustic, as follows:

Y T=  o -s 9 o s --3 o o 9' ( 4 7 )

and

-hx = 3 sin4, -sin h 4o (48)
I Cos 4 0  0 33 0

both good for small angles. Eliminating 40 between Eq. (47) and Eq. (48),

we obtain the equation relating x to y along the caustic as follows:

x 2 =-16 hy , (49)

which is a parabola, as tabulated below for h =-87 kyds., a realistic value.

x(kyds.) 0 1.68 2.36 3.36 4.72 6.72 8.38
y(yds.) 0 2.00 4.00 8.00 16.00 32.00 50.00
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Reliable Acoustic Path

We shall use our model ocean as the medium for the computation of the

reliable-acoustic-path rays. The source depth required in order that an

initially horizontal ray vertex at layer boundary one is that for which the

sound speed is c The vertical space interval below layer boundary two is
1

Y2 The sound speed there is

c =c =c +gy
3 1 2 2 2 3

from which

y 1651.5 - 1594.8

2,3 .016 yds

= 3544 yds.

This leads to y = 4944 yds as source depth. Since all of the ray angles

at the source are the same as at the first layer boundary, except for sign,

we have a ready made set of angles for which most of the computations have

been completed. Upward rays at the source will have 4 negative; downward

rays will have 4 positive. The p for any 3 will be that already determined

for the same • The p0 and p will be the same as accompanied the corres-
0 2

ponding p before. The 6543 up will be taken arbitrarily as -.005. Then 6 up
1 3 1

will be -.005 and 60 up will be that determined before for the corresponding

except for sign.

The change here is of course the depth y This will lead to new x
3 3 P2

and 6x but x , x 6 5x and 6x are already computed for any given
3,2 2,1 1,0 2,1 1,0

*0 now equal to 4 except for sign. We record In Table 1 the salient data.
1 3
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Excessup x6x sP r c Gain

3 0 392 2,1 1,0 0 0 3

+80 +51701 -780.3 +103.7 +11.8 -664.7 +96.7 +259.6 +4.3

+60 +47124 -721.5 +122.7 +19.8 -579.0 +65.4 +236.9 +5.6 I
+40 +43486 -657.9 +144.5 +38.9 -474.5 +40.9 +218.8 +7.3

+20 +40706 -590.5 +168.8 +94.4 -327.3 +19.1 +205.0 +10.3

+10 +39779 -551.0 +183.2 +172.8 -194.7 +9.3 +200.4 +13.3

0 +39365 -511.1 -194.7- -259.2 -965.1 +49.7 +198.4 +6.0

-1 +36177 -481.6 -183.5 -172.8 -837.8 +44.9 +182.5 +6.0

-20 +33497 -443.0 -168.8 -94.4 -706.2 +43.5 +169.2 +6.0

-40 +29050 -379.3 -144.5 -38.9 -562.7 +49.0 +147.3 +4.8

-60 +25427 -322.2 -122.7 -1).8 -464.7 +52.5 +129.4 +4.0

-8 +22689 -272.3 -103.7 -11.8 -387.8 +56.4 +116.0 +3.1

0
-10 +19919 -2n0.4 -87.8 -8.0 -326.0 +58.3 +102.5 +2.5

-14°  +15987 -166.5 -63.4 -4.0 -233.9 +57.4 +83.5 +1.6

-200 +12009 -107.5 -41.0 -2.1 -150.6 +51.9 +64.8 +1.0

Reliable Acoustic Path
Source Depth 4944 Yds.

Table 1

For the initially downward rays, positive, x consists of a horizontal3 0

distance traversed in going down to the turning point and returning to source

depth plus a horizontal distance exactly the same as for the ray for which 4
3

was negative and of the same magnitude. In traversing the distance to the turn-

ing point and back up to source depth, the neighboring ray travels a shorter

horizontal distance than the reference ray so that 6x for this segment of the

path is negative, just as it is for every segment of an upward directed ray

with a negative 6 . Here the similarity ends because 63 at the source was

negative but after the excursion to the turning point and back to source depth,

it has become positive. ence, from this level on up to the surface all 6xij

are positive and the pair of rays come closer and closer together. In the
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table 6x and 6 x will be seen to be positive for positive . As a2 1 1,0 3

result, 6x o experiences a large jump in going from initially downward rays

through # 0 to initially upward rays. For the case of = 0, the value
3 •3

is relatively high as with the upward rays because 6 was given a negative

value making the ncighboring ray an upward ray. If 6 had been given a
3

positive value, 6x up would have been even smaller fo- i = 0 than for
0 3

t= +1. In other words, there is an abrupt break in the curve at = 0.
3 3

The small value of 6x up at 1 reflects in the value of 6s up and represents
0 0

a high gain as shown in the table. Gain versus angle is plotted in
3

Fig. 18 and gain versus horizontal range is plotted in Fig. 19.

-18 Gain over Spherical Divergence

Loss versus Source Angle
15 Reliable Acoustic Path

3- layer Model Ocean
Source Depth 4850 yds

10lo
6SO11 -9

.6

S 3

-20 -15 -10 -5 0 5 10 15 20

Angle at Source (03)

Fig. 18



-49-

Gain over Spherical Divergence
18 Loss versus Horizontal Range

Reliable Acoustic Path

15 3- layer Model Ocean
Source Depth 4850 yds

12 -

Gain=

10 log r 60

6

.3

* I. . . 'm

10 20 30. 40 50 60

Horizontal Range (Kyds)

Fig. 19

This break in the curve has not been recognized in experimental data.

This is probably attributable to the presence of large fluctuations over

multiple paths, one of which enjoys a surface bounce before reception at the

end point. With very short pulses and the hydrophone at sufficient depth

the break should be detected, somewhat smoothed by diffraction.

The importance of the reliable acoustic path has already been discussed

in the general descriptions at the beginning of this report. Now, the

actual computations show that for this specific case very long ranges are

reached, and of course, the insonification of the surface is continuous from

directly over the source out to these ranges.
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In the above table, the simple formula, Eq. (31) was used for angles 0P
00

of absolute value greater than 40, but the more accurate Eq. (32) together

with Eq. (33) was employed for the smaller angles.

Excess gain in the horizontal is small and may be either positive or

negative at different ranges. At the longer ranges there is a slight excess

loss.

ATTENUATION

The term attenuation applies to any propagation loss that is expressible

in terms of decibels per kiloyard. It includes primarily absorption, which

is conversion to beat of a certain percentage of the remaining energy in

each kiloyard of travel. It also includes loss by volume scattering, and

in the special case of sound propagating in a surface-bounded duct it includes

loss by surface scatter and diffraction out of the duct. Attenuation by any

of these mechanisms is a function of frequency and ocean characteristics.

Absorption

Absorption in sea water has been measured in the laboratory with results

partially shown in Fig. 20. It will be noted from the shape of the curves

that absorption increases approximately as the square of the frequency.

Different curves are given for different temperatures. It is thus

apparent that there is a temperature dependence with less absorption

at higher temperature. There are other dependencies that the curves do

not show.

There Is a dependency on magnesium sulphate content, which is credited

with the jog in the absorption curve at high frequency, resulting in higher
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absorption at low frequency

than in water free from o .0,000

this salt. This mechanism

is a relaxation phenomenon. 1,000 i
The dependence of [--RI-

absorption on pressure . -oo _-I

is not fully understood. --- -

However, losses over long - ---

acoustic paths near the -- 1

axis of the deep-sound 1 .01-_--- it

channel in the Atlantic

(depth of about 1400 yards),
0. Ir-- -

reported by Thorp, indicate --_-

much higher attenuation
0.01 --

of low frequencies

at the relatively high .. ...

pressure. Explosive ,

charges were used as I
0.000! !04

sources and comparisons FREQUENCY (CY0LES)

at several long ranges Absorption in Sea Water

permitted the assumption
Fig. 20

of cylindrical divergence

loss in the space intervals between measurements. When the divergence

loss was subtracted from the total, the highcr-loss curve of Fig. 21 was

obtained. Here attenuation is plotted against frequency. The curve appears
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to fair into the low-pressure, lower-loss curve above 5 kc. The shape

suggests a relaxation phenomenon so far observed only at high pressure.

There is a trend toward the use of the Thorp loss curve for the whole

path to the convergence zone and for the whole bottom-bounce path in

deep water. This trend, adopted here, will affect the computation

of bottom-reflection loss to be discussed later.

In practice, measurements in the ocean nearly always show propagation

loss to exceed that calculated from divergence plus that from absorption

using the laboratory-produced curves. In the case of low-frequency sound

at high pressure, the Thorp curve includes the added attenuation. Part

of this excess may be added absorption caused by the presence of bubbles.

We are fairly sure of absorption by bubbles in the case of propagation

in surface-bounded ducts. As a matter of fact, some laboratory measurements

have required repeated degassing of samples before the standard or accepted

5
curves of Fig. 19 were obtained. Schulkin has obtained a formula for

attenuation by bubbles in db per limit-ray cycle that matches a curve

compounded of AMOS data and NRL data. The curve is presented in Fig. 21.

The formula is

s/= 1.64 (fh)1/2, (50)

in which a is attenuation by bubbles in db per limit-ray cycle, f iss

frequency in k1Iz, and h is mean wave height in feet.

Schulkin's formula may be converted to db/kyd by dividing by limit-ray

cycle and multiplying by 1000. The limit-ray cycle is 2120, in which P is

radius of curvature in yards and d is duct thickness in yards. (The value is



p 90,000 yards in a mixed layer). This gives

1  582 (fh) 1-2 = 1400 (.3 2)(.39hl/2) (51)

The last form is presented in order to compare with Saxton's empirical

formula,

1400 (log f)(1.4n), (52)

in which n is sea state. The quantity .3f17 2 in al agrees with log f at

10 kc where Eq. (52) is believed particularly reliable. The remaining factor

I V2 n-of a L, i.e., 1.39hV2, has a generally similar shape to 1.4 , but comes out

appreciably lower valued at sea states above 4. The author accepts Shulkin's

formula, Eq. (50). Its excellent fit with data is shown in Fig. 22 which is

reproduced from Shulkin's report.

14

' 12 --

Sea surface loss (decibels/ 01-0
l EMPIRICAL CURVE (AMOS DATA)limiting ray cycle) versus

$ • 1.64(fh)"2
frequency x wave-height para- e
meter (kilohertz feet) for
surface sound channels. The 6
solid curve represents an U
empirical fit to the AMOS
data for 2.2-25 kHz (Ref.3). w

The crosses are for data
obtained from Baker, Pieper, 2

and Searfoss (Ref.4), and the
circles are for data reduced 1 10 20 0 oo

from Saxton, Baker, and Shear FREOUENCY i WAVE-HEIGHT PARAMETER (f. kHr f

(Ref.5). For comparison, the
dashed theoretical curve is
presented for sea surface Fig. 22
scattering from Marsh, Schulkin,
and Kneale (Refs. 18 and 19).

5References in caption for Fig. 22 are those of Schulkin
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Scattering Loss in Surface-duct Propagation

Scattering loss in the duct is in db/kyd and is therefore a part of

attenuation. Measurements of sound levels below the surface duct in what

is commonly called the shadow zone show that there is sound energy there

considerably in excess of the diffracted energy predicted by normal-mode

theory that has been applied to the ideal case of a perfectly flat surface.

7
This deficiency in the theory has been corrected in a paper by Bucker that

was published in January, 1969, issue of the U. S. Navy Journal of Underwater

Acoustics. An explanation is not given in this text. The leakage may be

several times as great as predicted by normal-mode theory for a smooth surface.

This result must be attributed to scatter from the rough surface or from bubbles.

The totality of mechanisms of attenuation in the duct are absorption

augmented by bubbles, scattering from the surface (and bubbles), and loss by

diffraction. All of these combined give an attenuation coefficient that the

author has designated a0 + aL9 where a 0 is the absorption coefficient only

(as measured in the laboratory) and aL is the coefficient for all other

contributors. The coefficient a L has been discussed under "Absorption,"

the previous subheading, but now we claim a portion of aL, let us say half,

as loss by scatter.

Scattering out of the duct may be quite important. Let us consider some

of the mechanisms involved in scatter. The one that we shall treat here is the

result of sound energy incident on the surface impinging on facets of the rough

surface boundary, which presents various angles with the horizontal. If the

facet size is large enough (say a facet has dimensions greater than one wave

length), it will scatter an appreciable amount of energy in a beam.



-56-

We must mention in passing that scattering can be produced by bubbles

associated with surface roughness, and there can also be absorption

introduced by these bubbles. Measurements have not revealed which

mechanism is predominant. Patches of warm or cold water have been observed

near the lower boundary of the duct, but their scattering ability appears

slight.

In surface scatter it is desired to determine the distribution of

incident energy with respect to grazing angle.

Near the source, within the small angular limits of ducted energy,

intensity may be considered independent of angle. If the source is very

near the surface, rays initially directed horizontally will traverse only

a slight distance to their first surface bounce. The limit ray (that

vertexing at the bottom of the duct) may travel several thousand yards

before its first surface bounce. The more bounces there are, the faster

will energy shift out of a mode because of scatter. Thus, a larger and

larger portion of the total energy will be represented by the deeper going

rays until a condition is reached in which a small fraction of this energy

in the deep-running rays scattering out largely replenishes the large

fraction of the energy of the shallow rays scattering out, after which

equilibrium will be achieved. We shall introduce mathematics to describe

the equilibrium distribution obtained.

We shall now embark on a dissertation on angular distribution of power

in the duct at equilibrium. It will be assumed that surface scattering per

bounce (fractional loss per bounce) is independent of angle of incidence

over the narrow range of angles 4o of trapped rays. We shall let power per
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*unit angle (for any desired extent in the horizontal) be P() within the

limits of the vertical angle 4 at the surface for trapped rays, namely

*0 to 0. This same power stays in the same small 0 indefinitely unless

absorbed or scattered out. We ignore absorption in the following.

For any given 4P the number of surface incidences per kiloyard will
1

be with p in kiloyards, in radians. At each surface bounce P()
2p4)1

will be multiplied by some factor 6<1, and after 1 incidences this
2p4)

power will be P( )62Pv(.P
1

In addition to the original power P( )A , in any A), which is

continually decreasing, there is power scattering back into AcI as the
1

A outside of A lose it. Let us suppose that a fraction s of the total
1

trapped power P is redistributed uniformly over the angles trapped in each
t

kiloyard of travel so that a fraction of sPt goes into the AO under

consideration. Adding this, we have

Power in A after I kyd = p(4)61,4201 + ]4. (53)

Now when some distribution of power in 4 is stable, which is the

condition sought, then every part of this distribution must lose the same

fraction of intensity per kiloyard. If a L is loss per kiloyard in db, then

in absolute value the remaining power in AI after one kiloyard is
-. 1ciL

10 P(la ) AL , which may be equated to the right side of Eq. (53).
1 1

Then solving for P(4), we obtain
1

sP
P(4)) = O~OIL- (54

4 t -(54)

0 0
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If P( ) in Eq. (54) were to be integrated over from 0 to 0, we

should obtain total trapped power. Integration appears rather difficult,

but it is a simple matter to sum the powers in n small equal increments of

angular width A4 with a computer program to approximate the result of inte-

gration. Then we have, putting n A = 0, and designating the angle of the

midray within an increment by a subscript i

n n1

Pt =  P(yi A  = P st n (55)6i~l -. I2 '(55)

-i= l(1 0 al - 61

from which

n
n =(56)

_.laL  1126

Substituting Eq. (56) into Eq. (54) with a generalized subscript j, we have

(-. 1 1L I-2 p~b
il0 - (57) :J t IP( J)A /P t = 0 L (1-2 (57

n

-. ICL 1/2P i

In using these formulas, some value of a L is accepted. This may be

about half the value of the anomalous absorption coefficient Xs of Eq. (50)

the remainder of x being ascribed to absorption by bubbles. Next, since 6 is

a proper fraction, 6 is largest for maximum 4i, that is,for 0. Its largest

permissible value must leave 10 - 6 positive. We have to choose

some 6 with the above limitation. Then the distribution can be computed. Typical

curves are shown in Fig. 23. In these curves we have used P = Pt/n instead of
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Pt of Eq. (57). With 6 arbitrary the result is not completely satisfying,

but it does relate the general shape of power distribution with respect

to 4 to a mechanism.

At present we do have measured values of a L determined to account for

otherwise unexplained loss in ducts. These values include excess absorption

by bubbles, but some portion like

half of the db may be applicable
2.50

here. Perhaps this theory may lead H 0 YDZ

to some experimental tie-in with the 2 MI DD/KYE
2.0 6" - .,

value of 6. (A).0o b

(8)~ .2212 a

REFLECTION LOSSES 1.5

Reflection losses are of two _
C 10

kinds, those at bottom reflection and

those at surface reflection. Loss

resulting from repeated incidences

in surface-duct propagation has been b .4 .8 1.2 1.6 2.0

treated. Our next interest is in

single bounce losses. Distribution of Power with Respect

Our treatment will utilize a to Grazing Angle Oo In Surface Bounded Duct

simple model that assumes specular

reflection. It is known that Fig. 23

reflection may be pure scattering at times, and some of the implications of

scattering will now be discussed qualitatively since no quantitative theory is

available. Then we shall come back to the usual simple model in order to use

empirical formulas.
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Scattering from the bottom is related to bottom topography, which modifies

the image of the source transducer radiating the energy that produces the

sound field. The inverse square law applies in the far field of a transducer

(or is approximated when there is refraction). The far field is defined from

the requirement that on the axis of the sound beam, the distances from a field

point to all points on the transducer radiating face differ by no more than

a small fraction of a wave length. (This definition applies strictly to a

plane radiating face, but it is adequate for our discussion.) The distance

from the transducer to the far field is relatively short, and all points on

the bottom are in the far field. With specular reflection at the bottom, the

field points after reflection see the image of the transducer and, on the

axis of the reflected beam, are substantially equidistant from points on the

face of this image. Therefore, the inverse square law holds for this case

after reflection with distances reckoned from the source or its image.

Reflection loss may occur from a portion of the power being drained off by

penetration into the bottom or by passage through absorbing sediments and

strata before reflection.

By Huygens' principle we could reconstruct the field after reflection

by integrating the simultaneous contributions to any field point from all

elements of the insonified bottom. Without actually attempting to go through

this process, it is obvious that different elements of the bottom will

contribute a variety of phases at the field point. Then, in order for the

results to agree with the actual situation in which there is energy in the beam

and substantially no energy outside the beam, these phases must balance in a

delicate way.
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If the bottom is rough, the image of the transducer is no longer

clearly visible at points in the scatter field. However, Huygens'

principle can still be applied and now obviously the integration over

this rough bottom involves perturbed phases, giving a different result.

The specular direction no longer has to be a preferred direction. Energy

is scattered in every direction. This mechanism gives rise to a scatter

field of the bottom considered as a new source. The scatter field now

is from an area so large that field points of interest are in the near

field, and this field is expected to be characterized by a multiplicity

of very narrow lobes, possibly of only a few feet in width where they

8
intersect the surface. Hurdle et al have presented evidence of this

field structure.

When this last mechanism exists, the term "reflection loss" is a

misnomer. We are dealing with scattering rather than reflection. A loss

in excess of divergence loss plus attenuation is to be expected, but this

excess loss is an extremely complicated function of scatter angle and range.

At our present level of understanding of the scattering process, we

do not know how to modify the simple reflection model in order to use

scatter coefficients effectively. We shall therefore somewhat reluctantly

accept the reflection model for the present. Let us say that measurements

disclose a loss in excess of divergence loss and attenuation that will be

called reflection loss.

What is measured is total one-way loss over the bottom-bounce path.

The depth needs Lo be determinable from transit time in order that grazing

angle to the horizontal may be computed for assumed specular reflection

since it develops that the loss depends upon grazing angle. When divergence
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loss and attenuation in db are subtracted from the total loss in db,

we are left with the reflection loss. While it is not expedient to

publish curves at this time, certain general statements about reflection

loss may be made. At first glance the results are so highly variable as

to seem almost random except when the bottom is known to be smooth and flat.

For this case, the reflection loss in db is a few decibels and depends on

grazing angle ,being maximum at about 450 . The loss for this case could

conceivably go to 0 at 00 grazing angle. As the bottom topography gets

rougher, the reflection loss increases getting higher as roughness

increases. The increased loss could be up 20 decibels or higher. With

bottom roughness the curves cannot approach 0 at 00 angle since 0° angle

cannot exist with all simultaneously reflecting portions of the bottom.

When calculations in the low-frequency region assume Thorp attenuation,

a fair average value over all deep-water terrains is 8 db per bounce.

To get representative performance, we should carry out computations for

cases of average, 5 db above average, and 5 db below average values.

The association of each computation with specific areas is beyond the

scope of this presentation but it may be mentioned that some work in

this area has been carried out, notably by NUSL.

COMPUTATION OF TOTAL LOSS

Up to this point we have discussed the kinds of loss t lat may be

encountered. We now proceed to put them together for each of the important

acoustic paths to give total one-way loss.

We may write a formula for total loss II that includes losses, some of

which are 0 for specific paths. We have

H = divergence loss + attenuaqtion + reflection loss. (58)
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Divergence loss includes corrections for refraction. Attenuation includes

losses by absorption and scatter, and reflection loss is that at the
a

bottom and that at the surface.

Direct Path to Short Ranges

This case is a simple one in which loss is comprised of spherical

divergence loss, 20 log r, plus absorption. If the path is from shallow

source to deep target at a o of, let us say, 200 or greater, the simple

absorption ax may be used. If the path is to stay near the surface,absorption

by bubbles will be a factor, but for the direct path surface scattering

will not be a factor. Therefore, in addition to spherical divergence there

will be an absorption (0 R augmented by an additional absorption of only about0

2 xL x R. The R is range in kiloyards whereas r is range in yards.

Propagation loss over the paths followed by the rays that come close

to the shadow zone below the surface duct will show an increased loss of a

few db over spherical divergence loss. It would be unwise to anticipate

good operation over these rays that emerge from the surface-bounded duct

at angles of up to, let us say, 30

Bottom-bounce Path

For this case divergence loss is very nearly spherical. A slight gain

over spherical may be experienced in the rays incident on the bottom at very

small grazing angles such as a few degrees. The gain in this case may be of

the order of 2 or 3 db. Additionally, there is absorption for which the

Thorp curve should be used and bottom reflection loss using three values of,

let us say, 3 db, 8 db, and 13 db. Except for very precise work, the

dependence of reflection loss on grazing angle may be ignored.
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Convergence-zone Path

The divergence loss to the convergence zone way be considered to be

spherical to about 1600 yards range and cylind-ical thereafter. The Thorp

curve should be used for attenuation. The range in mid-North Atlantic is

about 70 kiloyards and in mid-North Pacific about 60 kiloyards.

Surface-bounded Duct

Beyond the range at which the limit ray vertexes, the divergence loss

is spherical to half this distance plus cylindrical thereafter. At very

short range, possibly out to one quarter of the distance to the vertex,

spherical divergence loss may be used. If level is then plotted against

range for very short range and for relatively longer ranges, the two

curves may be faired together smoothly. The attenuation is (x + (cL in
0 L

each kiloyard of range. A part of a is caused by the presence of bubbles,

and another part is caused by scattering from the surface. Measurements

of total loss do not distinguish well between these two mechanisms.

Reliable Acoustic Path

Divergence loss over paths from the deep source starting out nearly

horizontally will in general be less than spherical by several db. If

the rays strike the surface at angles greater than 100, the loss will be

very nearly spherical. In addition, the Thorp absorption curve should be

used.

Paths Involving Isolated Surface Bounces

The bottom-bounce path really includes paths from source to surface to

bottom to target, from source to bottom to surface to target, and from source

to surface to bottom to surface to target. These paths involve, in addition

to a bottom reflection loss, also one or two surface reflection losses. This
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situation is quite different from the surface reflection loss encountered

in propagation in ducts. The loss per bounce obviously depends upon the

sea state. It varies from a negligible amount in sea state 0 to about

8 db per bounce in sea state 6 at the frequencies employed.

Over the path to two or more convergence zones there is a surface

bounce at each skip distance. Here again the loss may vary with sea state

between the limits of 0 db and about 6 db, the upper value being reduced

somewhat by the relatively small grazing angles for this path at the low

frequencies which must be employed.

WAVE EQUATION

Introduction

When a vibrating motion is imparted to an elastic medium, this motion

is propagated through the medium in the fashion described mathematically by

the solution of a wave equation. For example, the simplest wave equation is

1Pl 4 (59)

for a plane wave in the x direction in a fluid medium. The variable t

is time; c is sound speed, assumed constant for the present, and t is some

state of the medium such as particle velocity, pressure increment, or a

potential function from which the other two quantities may be derived. A

solution of Eq. (59) is

=A cos 1k(ct - x] + B cos 1k,(ct + x]. (60)
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Some writers prefer the use of x - ct instead of ct - x. The physical

association of increasing phase with increasing time (x constant) and

decreasing phase with increasing distance from the source (t constant)

is more appealing to us. In general, A and B are determinable from the

boundary conditions in space and time. The significance of k and c

becomes more obvious from the following discussion.

We let B = 0 as a special case. Then 1 is constant if ct - x

is a constant,say -x , so that x = ct + x . In other words, is constant

dx
if x increases linearly with time so that - = c. C is thus the speed with

which the quantity represented by P is propagated in the positive x

direction. A is the amplitude of P.

We now examine the space distribution with t fixed. We observe that

the first cosine term in Eq. (60) lags by a complete cycle when its argument

increases by 27T and this must occur in one wavelength for which Ax = X.

27r
Thus since the wave number is defined as -', k is the wave number when kX = 27.

We now examine the time distribution at a fixed point in space. Let

t be incremented by a period, T. This procedure must carry the argument

through 2r radians and so kcT = 27T. The period T is then T = k- = X

kc

T is also the reciprocal of frequency, thus f = If w is angular velocity,

W = 2Trf = kc. We may therefore write wt - kx in place of k(ct - x).

The second term on the right of Eq. (60) describes a wave of the same

wave number as in the first term, but propagated in a negative x direction.

Either part of the solution may be dropped by placing its amplitude, A or B,

equal to 0.
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Summarizing what has gone before, a simple form, Eq. (59), of the

wave equation has a simple solution of the form Eq. (60) which constitutes

a mathematical description of two plane waves propagated with a speed c

in the x direction (one wave in the positive sense and the other in the

negative sense). Sound speed c is a characteristic of the medium. The

constant k is the wave number and the solution holds for any real k. The

following relations hold:

27T
wave length, X, equals the fraction--f,

2 ?

period, T, equals the fraction 2 c'

1 c kc
frequency, f, equals 1= andT X Tra

angular velocity, w, equals 27f = kc.

Having brought these relationships out, we shall hereafter prefer using

w for kc so that the argument of the cosine term is (wt - kx), or (wt + kx).

Derivation of the Wave Equation

The derivation is for a fluid medium. We use a Cartesian coordinate

system. We deal with forces in excess of static forces. Given a small

parallelepiped of dimensions dx, dy, dz, we desire to apply the equation of

motion. The force in the x direction is p(dy)(dz) on the yz face at x and

(p + 2- dx)(dy)(dz) on the yz face at x + dx, in which p is pressure in excess

of static pressure. Since pressure acts inward on the volume, the latter

force is in a negative direction, and the sum of the two forces in the positive

x direction is - -a-x(dy)(dz). By Newton's second law this force equals the

d2  2
mass p(dx)(dy)(dz) times the acceleration 2- -5t-2- where is displacement in

the x direction. Thus, dividing both sides of the equation by dx(dy)(dz),

we have

2 jr- a =p- (61)a)x y2-
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Differentiating Eq. (61) with respect to x*, we obtain

2  2 ar
- = - x. (62)

Similarly, we obtain for the y and z directions, with q and representing

respective displacements,

2 a2
P = i(TY) , (63)

- z (64)

Adding Eqs. (62), (63), and (64) and using V2 for the Laplacian operator

D2 2  a2
+ - + - ,we obtain

-V 2 P (T + +z• (65)

The part in parenthesis in Eq. (65) may be written V d, where d is

total displacement with components , n and C. The term V • d is the dilation

A, that is, change in volume per unit volume. We now have

p = t7 = p-y(V - d). (66)

Now let us make use of Hooke's law, which states that stress is proportional

to strain. The stress is -p and the strain is A for the hydrostatic case.

Therefore, we have

-p =A = V d (67)

• P is treated as a constant, a procedure which is generally an adequate

approximation.



-69-

in which i is the bulk modulus of elasticity. Substituting Eq. (67) into

Eq. (66), we obtain

v2 p t" (68)

This is the wave equation for excess pressure.

We choose to use velocities henceforth rather than displacements.

These will be designated as follows

u ,v w (69)

We now define a velocity potential* by the equations

u=- --- v=- " w (70)ax' ay' az"

or

d = - V. (71)

Rearranging order of differentiation in Eq. (66) and substituting for d from

Eq. (71), we obtain

N2(p- p~t ) - 0 (72)

at

from which

P= P (73)

-9-
*Officer' defines also a disp>-c.!ment potential for alternate use. Tolstoy
and Clay use displacement potential altogether.
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So we see that both p and d are derivable from i.

We now proceed to express the wave equation in terms of p. Substituting

Eq. (73) into the wave equation for p, Eq. (68), we obtain

V2 (p- t) _- t) (74)

or

(P ) = 0. (75)

In all cases with which we are concerned * will have the form

iwt

i(u, v, w, t) = (u, v, w)ei. (76)

When the partial derivative with respect to time is taken in Eq. (75),

d is replaced by iW and we may divide by iwp to obtain:dt '
Sc- .t (77)

This is the wave equation for the velocity potential. It is formally the same

as that for pressure. A solution of Eq. (77) for plane waves in the x direction

and for constant c has already been given in Eq. (60).

WAVE GUIDES

Wave guides are ducts with perfectly-reflecting boundaries. We consider

a plane wave propagated in the x direction between reflecting boundaries at

z = 0 and z = L. We start with the assumption that these boundaries are

perfectly rigid so that no change of phase and no loss take place at reflection.

The wave equation in Cartesian coordinates is simplest and appropriate for this

case. This equation was given as Eq. (77). However, Eq. (77) is now
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simplified somewhat by the fact that there is no variation in the y

direction. The equation is therefore

+ 1 414(78)
ax z CT

A common method of solving partial differential equations is by

separation of variables. We therefore wish to equate i to the product of

two or more functions of different variables. We anticipate that as far as the

x direction and the time t are concerned, the functional form will be ei(wt -x)

We therefore shall try as the velocity potential

e i(wt - ax) O(z). (79)

Substituting this in Eq. (78) leads to the following equation, which is an

ordinary differential equation.

d +y 2  
0,dz + =(80)

in which

2= W2
W- - a2  (81)

We encountered K = W in Eq. (60) and identified it as the wave numberC

along the ray. The terms a and y are now seen to be x and y components of K.

The solution to Eq. (80) is

=a cos yz + b sin yz. (82)

and Eq. (82) substituted in Eq. (79) Yields

= i(wt - ax) [a cos yz + b sin yz]. (83)
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Here we have three undetermined constants, a, b, and y. We can find

two of them by matching boundary conditions. At hard boundaries which are

postulated at z = 0 and L, 0, that is to say, there can be no particle

velocity in the z direction at the boundaries. Taking the derivative of i,

with respect to z, in the z direction, we obtain for particle velocity

w i(Wt - yx) y(a sin yz -b cos yz) (84)

Putting z = 0, we find that the first term in parentheses vanishes. The second

term must also vanish, which requires that b = 0. Now we are left with only

the sine term. In it, putting z L, we must require that yL (n -i)

in order that this term vanish at z = L. We thus have

(n- L)7 (85)7n L

and

a Cosyz. (82a)
n Yn "

In Eq. (85), we have introduced the subscript n to designate the particular

value of y for a particular n. Any positive integral value of n will satisfy

the boundary condition. Therefore, the solution can be written with any

integral n up to n (to be discussed presently) or, more generally, as the

summation of terms as n takes on all integral values from 1 to nc. Negative n's

give redundant terms and so are left out.

We have seen that c and y are components of the wave number K in the x

and z direction respectively. Therefore, for each yn there is an 0n given by

n = K n

C"2 . K 2 _ Y 2 (86)
n n9
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or

w2 W2  (n- 1)2'2

( -I C T (87)n cL

Examining Eq. (87), we note that real values of a occur only ifn

+L +2ftn+w-1-+-- = 1 +

C C

The largest value of n admissable for a given frequency, n , limits the

number of modes at that frequency. Also, for a given n, there is a low

frequency cutoff, f , such that

f > (n - l)c
cn 2L

We are now ready to write the final equations for qj, u, w, and p as

follows:

= an COs Y nz cos [(Wt -nx) - n], (88)

n
C

u= - = a co sinz  [(Wt - a - B , (89)

n=l

W + X a y sinyz [(wtt- aX) - (90)
az n1 nn n nl n1'

In each of thle last four formulas we have constants a arid which -ould be
n n

determinable from initial space and time conditions. We note that \'aniseht.

at the boundaries while Iwi is maximum at the boundaries, as is 11)1. ,t th1is

point we may look upon w(z) as simply a density function of particl-c veloitv



-74-

in the z direction. Each n contributes a normal mode of P which is

characteristic of standing wave patterns.

Let us note that p and u are everwhere in phase, a condition required

for the transmission of power. Another way of looking at this solution,

which has some interesting ramifications, is led into by noting in Eq. (88)

that the product of the cosines is the cosine of the sum plus the cosine

of the difference, all over 2. The cosine of the difference has the following

argument:

Arg. A = wt - (xnx + ynz) - n . (92)

This represents a wave traveling in the xz plane with a component in the

positive x direction with wave number a and one in the positive z directionn

with the wave number yn" The sum term experiences a change of sign of y z

and is representative of a wave traveling in the positive x direction and the

negative z direction with wave numbers 0n and yn' It follows that the

downward wave (positive z direction) makes an angle 0 with the x axis
n

given by

Yn
0 =sin - sin n )
n K KL

while the upward wave for the same n has the sign of 0 minus. These two wavesn

together form a standing wave pattern, or mode, in the vertical. Figure 24

illustrates the geometry involved.
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0
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TRAVELLING WAVES EQUIVALENT TO MODE

Fig. 24

It would have been equally easy to have taken soft boundaries in

which pressure disappears at the boundaries. For this case the only term

which would remain in 4 of Eq. (83) would be the sine term. The term Yn

would have been the same as in Eq. (85) Or we could have taken one

boundary hard and the other soft, and in this case we should have ended up

with

(n - l/2)Tr
Yn- L

These derivations are good exercises for the student.

Phase and Group Velocity

We note that as the wave progresses in the x and z directions with a

speed c, the point of intersection of the wave with the surface (or with any

c
plane z = const.) travels with a speed C 0 where 0 is the angle between

nn
the surface and the wave front. This speed is the phase velocity V, as can

be seen by reference to Fig. 25. In the figure while the constant phase

I . . i~ ...
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surface advances from C to D, the phase of this surface progresses along the

lower boundary from A to D. Thus its velocity along the boundary is its

I
velocity along the ray multiplied by AD/CD or by ---. We have then

V c ck 9W)
n co s =

n n n

As n increases, a decreases and V increases. Therefore, the higher then

mode n, irer, the higher the phase velocity.

Group velocity is the velocity with which energy is propagated. For

a plane wave in free space this is just the sound velocity c in the direction

of propagation. In layered media with total reflection at the boundaries there

is a simple expression for group velocity for a single frequency in a single

mode, namely c cos q. For more modes or a sum of frequencies we have to

sum the individual energy densities each multiplied by its own group velocity

and divide by total energy density to get group velocity.

Physical Interpretation of Modes

Before proceeding to more complicated cases, we should like to discuss

the physics involved in the wave guide, rather than the mathematics. To

this end -',e shall proceel to present two points of view.

The first point of view can be presented with the aid of Fig. 25. In

this figure, . and 2 ar- boundaries both assumed to be hard, perfect

reflectet s. L is the wave guide thickness. AB is a constant phase surface

,f which the section in the plane of the paper is a straight I ine. CDEFG is

.i 1ciV path frori one point on the wave front to another point en the same

r(1nt . 0 is the grazing angle which thi, i ray makes wit') the horizontal

, llI I ust ration loses its ilnaning fc)? 0 cnn hn 7/4.

ilii llllillil lllI'' ' ,'I
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BOUNDARY I

CONSTANT- PHASE
SU FA - RAY PATH

BOUNDARY2 A -b

PATHLENGTH OF REINFORCING R8.'

Fig. 25

The condition for this wave to have permitted wave number components

is that the phase now existing at point G, taken as , recur only after

some whole number of periods. The transit time from C to E to F to G

is given by

t Path length 2L sin 0
c fA (95)

This is derived by noting that

CD = - DH' cos 20, (96)

cos 20 being negative for 0>45 ° . Similarly,

FG = - 1' . os 20. (97)
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Adding these together along with D, we obtain

CDFG = DF(l - cos 20) = 2 -F sin 2 0 (98)

from which Eq. (95) follows, since L = DF sin 0.

At time t the phase at G will be + c + E in which c and c
1 2 1 2

are phase shifts at boundaries 1 and 2. This is not the same phase we

started with and need not represent a whole number of periods. However,

at an earlier time, earlier by 1 21Tf 2 , the phase i would have recurred.

Therefore,

£+£

1 2  (n - I)T n (99)27Tf f (99)

T being period, f being frequency, and n being an integer.

Substituting t from Eq. (95) into Eq. (99) and multiplying by 2vf,

we obtain

M(2L sin 0n) + c + c = 2(n - ])IT. (100)

2Tf sin 0
Substituting yn for - , we convert Eq. (100) to

2YnL + 6 +£ = 2(n - 1)7. (101)

n 0 1 2

We may solve this for y for the special case when c = 0, obtaining
1 2

Ln L (102)
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which checks Eq. (85) derived by application of boundary conditions.

The c's which have been put equal to zero here would also enter Eq. (85)

if the reflection coefficients used there had involved a phase shift.

Let us write also an expression which we previously had,

n (103)
c sin 0n

in which for the moment we consider w fixed. This tells us that for every

yn there is a 0n given by

Y

sin 0  
=- (104)n W0

If, on the other hand, we choose a fixed 0, this equation may be written

Yn

n sin 0

or

Y
f = n

- 2 sin 0' (105)

and we thus have a frequency set for the given 0.

A second point of view is now presented in order to emphasize the

mechanism involved. Given a point source within the wave guide, the response

at field points may be considered to be that of the source, its images

(treating both boundaries as mirrors), and succesi;ve images of images. The

.. . . . . . . . ... m l I I I II I I I I . . .. .. . . . .



-80-

effect is that of an array of point sources which have a far-field beam

pattern consisting of very sharp lobes at any given frequency, corresponding

to the mode directions 0 at that frequency.
n

Take the case of a point source halfway between hard boundaries with

successive images spaced integral multiples of L from the source. Rays

from each source at an angle 0 with a horizontal will be in phase and normal

to a constant phase surface only if the differences in path lengths from

the different sources to the surface are each an integral number of wave

lengths. This requires

L sin 0 = (n- 1)X, n = 1, 2, 3, ... (106)

or

2(nY- 1) (107)

n L

Equation (107) differs from Eq. (85) by a factor of 2. The reason for this

is that a source at the middle of the wave guide cannot excite modes which

have a pressure null at the middle of the wave guide. Therefore, only

alternate modes are excited and the steps in y are twice as large for the

permitted modes. In general, particle velocity in the z direction is zero

when pressure is maximum. This means that at the depths for which po = 0

the motions of up-ward and downward rays cancel. For our case, even when

particle velocity in the z direction is not zero, it is 900 out of phase with

pressure so that no net average power is propagated in the z direction.

Pressure a-d particle velocity in the x direction are maximum together and in

phase with each other.
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0

Still another form of the last equation is
0

f c (n - l)c
fsn (108)n L sin 6'

(n - 1)c th
Since f can never be less than L the n

mode has this frequency, f , as a low-frequency

cut off. So we see that n is not in general

permitted to go to infinity unless the frequency

also approaches infinity.

It may be informative to inquire into the

excitation of the different modes when the source 2d

is off center. If the source is a distance D < L/2

from either boundary, the system of images will
2L

consist of pairs of elements, each pair having a 4 4 <
separation 2D, with pair centers separated by 2L. O

Putting D = L/2, we obtain the previous case: all S' SOURCE---
/L

separations L. But now, the far-field response

pattern in general has the form BOUNDARY2

R cos s + [21 cos( X-sin 0 (109) Una e s

See Fig. 26. The part in brackets will give terms

all in phase when PATTERN OF EQUIVALENT
ARRAY OF SOURCES

47RL sin 0 = 2(n -

k (n - 1)T
L sin 6 or

n
Yn (n L (110)

Fig. 26
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2nd sinO@

Equation (110) is identical with Eq. (85). The factor cos- 2 s

may be regarded as a weighting factor which emphasizes those modes for
27Td sin6

which x is nearest some multiple of 27 or -2n. As a special case
7)L sin 0

when d = L/2, this requires L = (n - i)n which takes us back to

Eq. (106) for the same special case.

WAVE GUIDE IN CYLINDRICAL COORDINATES

This section is an expression of wave guide theory in cylindrical

coordinates with sound propagating radially outward from a line source

(or a sum of point sources in line) which is perpendicular to the boundaries.

This case is preliminary to the study of layered media.

Let the boundaries be the planes z = 0 and z = L. Let the source

be along the Z axis. Let sound speed c be constant. The wave equation in

cylindrical coordinates is (see Appendix B)

1 ±j+ 4 f
r Tr z c~ 11

Let us assume

iW t
= R(r) Z(z)e (112)

Substituting this in the wave equation and dividing by , we obtain

d2 R 1 dR d2 Z
dr' r + -c1 j 0, (113)

R Z c'.
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or

d2R I dR d2Z w2

dr'Ir -dr = z c r  14

R___ C (114)R Z

w
2

The reason for grouping c y with Z is that c may sometimes be a function of z.

Equation (114) can hold for all r and z only if each side of the equation

is constant. Introducing a separation constant _2, we have

d2R + dR + a2 R 
= 0 (115)

+ -r+

and

d 2 Z +~2 2
+ - a2 Z = 0. (116)

The solution of Eq. (115) is

R = Il 1' 2 (aR) . (117)
0

See Appendix B. H2 is the outgoing wave* and the one in which our interest
0

centers. Its asymptotic expansion, good for (ctr) > 1, is

H2 (aR) = 2 ei(r - ./4 (118)

Equation (118) may be combined with eiWt to yield a traveling wave,

it= a i(wt - ar + 7T/4) (119)Rei t -e(19

The exponential may be written as a cosine with a phase angle a determinable

from initial conditions at a specified position.

* Because we chose plus sign in the exponent cf the factor ett
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Equation (116) for Z is identical with that of the last previous

section, Eq. (0), and the various standing-wave solutions are obtained

by identical procedures. For two "hard" bounding planes, the whole

general solution of Eq. (111) is

n
1 c onz

= r a cosn n - cos (wt - a r) - n (120)
n L n n

Equations for particle velocity u in the radial direction and w in the

z direction and for p are

n
cU- a Cos n T zrn cos(Wt -an r -

n

-~ L a acos sLnt- xr ) (121)

n=l

n
W 1 -  c anrL sin f - s (wt - a r n), (12)

n=l1

n

= p4_ 7 a cos -- sin(wt - a r - n). (123)n=l n n n

Only the second term in u is in phase with p and contributes power. The

first term is a reactance term which may appreciably increase the motion

at short range. At a transducer face, for a given maximum motion, pressure

and power will be lower because of the reactance termfor a given particle

velocity.
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thIn the last four equations, the n term of the summations describes
th

the n mode. N is the highest mode present for a given w. It will be
C

appreciated that for the present case, as for the plane wave, a is related

to the wave number W along the ray by
C

c2 = (fa_ ( )2 (124)n L

This is to say, the wave numbers in the r and z directions may be looked

upon as the legs of a right triangle of which the wave number along the
th

ray is the hypotenuse. Furthermore, the phase velocity of the n mode is

V -- (125)
n a

n

Thus, V gets greater as the mode number gets higher, as with the plane
n

wave, and for the same reason.

Almost parenthetically because of its remoteness from ocean acoustics,

we call attention to the solution for standing waves in the radial direction,

that is, for transmission of sound through a long tube with axis vertical.

For this case,

s t (a n r ) ei(Wt Ynz) (126)

satisfies the wave equation with a determinable from

0

0 (127)

at r = radius of the tube. These maxima and minima may be located in tables,
0
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=2 - 2
and a thus determined. Then yn If the tube is of finite

n n c n

length, the added constraints will limit the solution to preferred

frequencies as well as wave numbers.

REFLECTION COEFFICIENT

We consider a half space of constant density p and constant sound

speed c surmounting one or more horizontally stratified layers of thickness
Al

h , h , ... , densities p ,p , ., and sound speeds c , c , ... , with
2 3 2 3 2 3

the upper of these boundaries, that with the half space, at z = 0. Let

a plane wave be incident on the boundary at z = 0 from above with the
iYZ

vertical factor in the velocity patential represented by AeiYI . This

wave will in general be partially reflected and partially transmitted. The

velocity potential of the reflected part will have its component designated

by AR eiz R may be complex indicating a phase shift as well as an
12 12

amplitude change at reflection. The transmitted part will be designated by

Be-( 2z. If the second medium is not a half space extending to infinity,

there will be an upward ray in the second medium reflected from below

designated by CeiY 2z.

Our immediate objective is to express R , B and C in terms of the

w sin 4i 12
wave numbers yi C. , A and R . R may then be determined in terms

C 23 23

of wave numbers and R and this process may be continued until the
34

succession of stratified layers is terminated in some designated way. We

write the vertical factors of the potentials, then, as follows:

= A(e-I 1  + e YI z  (128)
1 12

= Be-Y 2z + CeaY2
z  (129)

2
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Let the second layer be of thickness h and let there be a reflection
2

coefficient R from the 2, 3 boundary at z = h . Then
23 2

0 2)zh = Be -iY22 + CeiY 2h2 (130)
2

Now

?iyh

R Ce 22 .

23 B

or

C = Be 2 iy2 h 2 R . (131)
23

Substituting Eq. (131) in Eq. (129), we obtain a new expression for q ,viz:
2

B[e-iY2z + R e 2 (z - 2h 2  
(132)

at z 0

Pq$ =p . (133)
11 2 2

Consequently,

P A(1 + R ) = p B(1 + R e-2 iy 22) (134)
1 12 2 23

also at z = 0,

1 = 2 (135)
Dz Dz

0 0

Consequently, performing this operation

2iy h
y A(] - R ) 2 B(I - R 2e 2 2) (136)
1 1' 2 2 3
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From Eq. (]34) and Eq. (136) we wish to determine B and R . We have
12

-2i5 ih
p AR - p (1 + R e 2 2)B = - p A (134a)
1 12 2 23 1

-2iy h
y AR + y (1 - R e 22 2)B = y A (136a)

1 12 2 23 1

and

p -p (I + R e-2iy2 2)
1 2 23

S -y (1 R e-2i h2)

p -p (1 + R e- 2iy2h2)
1 2 23

y 1 y 2(1 - R 2e- 2iy 2h2)

from which we have factored out an A in both numerator and denominator.

Expanding the determinants,

p y (1 + R e 2 h) ) (1 - R e )

R 2 1 23 2 2 23 (137)
12 y (1 + R e-2iy2h2) + P Y (1 - e- 2i5 2)

Solving the Eqs. (134a) and (136a) for B, the numerator for the

determinantal form of solution becomes

PI -pI

A
Yi Y1

and B becomes

2p y A
B = - _ (138)

y ( + R e- 2 i ~y 1) + ¢ y (1 e 22i ) .

2 1 23 1 2 23
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We shall consider a few special cases of R .23

a) R = 0. This means no reflection or second layer extending23

to o. Substituting in Eq. (137),

R 2 1 1 2 (139)P Y + P Y
12 p p

2 1 1 2

If Y is real, R is real, positive and < 1. If p y = p -y,
2 12 2]1 2

there is no reflection (matched impedances). At normal incidence
y c
I = . and

'y c
2 1

pc -pc Z -Z

R = --- 2 ] = - 1 (140)
12 pc +pc Z +Z

2 2 1 1 2 1

where Z pc is characteristic impedance of the imedium. If y is
-2itan-1p P I2 2

imaginary, R = e - Y which has a magnitude I (total
12 0 2 1 1 Ply 2

reflection) with a phase shift -2tan P Y As Y I approaches

2 ]

zero by letting the grazing angle at- incidence on the boulndary

approach zero, the phase shift approaches 180

b) R = 1. This is the case of the boundary of infini te impedance.
23

jY" h
Multiplying numerator and denominator of Eq. (121) by e i: , we

obtain

P Y co ; Y h - if y ! in Y h
R - 21 -, f _ _ ..... .. L (I /4] )

p Y cos Y h + ipy sin ' 1
2 1 2 2 1 2 2 2

Thi s has an abl!olutc value of 1ni ty. Tlbw i. total reflectio n %,i h
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a phase shift

0 = - 2tan {(-Ltan yhj (142)

0 - 1800 as y 4, 0, that is, as grazing angle approaches 0.

c) R = - 1, approximately for water to air is given by
23

p y cos y h - ip y sin y h

R 12 2 2 2 1 2 2
12 PY cos y h + iP2Y sin yh (143)

1 2 2 2 2 1 2 2

Again IRI = 1, there is total reflection with a phase shift

8 = 1 80 0 2 tan an yh) , (144)
1 2

e 4 180 as T 4 0, and also as h 0. This last condition
1 2

reverts to the simple case of reflection from a water to air

interface with the air of infinite extent for which 0 1800.

WAVE GUIDE MODIFICATION

Suppose now that we look again at the wave guide and this time let

the lower boundary at z = L have a reflection coefficient e in which 0

is given by Eq. (142) or (144). Now let us write the solution, Eq. (82)

in the form

= Ae - i y z + Bei y z. (145)

Here our interpretation is of a downward wave designated by Aei Y z and an

upward wave designated by Be iyz the direction being apparent from the way

in which these exponentials combine with e . This form lends itself well
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to relating upward and downward rays at the boundaries to reflection

coefficients.

At the upper boundary we require - 0. This is satisfied if
az

A- B - 0. (146)

At the lower boundary we now require

A[eiYL I ei(YL + 6)] 0. (147)

This is satisfied only if

i(y nL + 0) 1- lnt L (2n - )7rJ (148)

or if

(2n- 1) - 0
2L (149)

These are the eigenvalues for this case.

We can also write in the format of Eq. (88)

=Ya n cos (yz + 3)cos[(wt-ctX (150)

TWO-LAYER WAVE GUIDE

We now replace the half space by a layer of finite thickness h assumed

11
to be homogeneous liquid density p Iand sound speed c Ibounded at its upper

surface by air so that R = -1, The lower layer is assumed to be a

homogeneous liquid of thickness h density p and sound speed c, bounded
2 2ic t

beneath by a relatively high impedance material so that R 23 1. The 1, 2

_ ~interface is at z -O
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The z-coordinate factor of velocity potential is

* - Ae-iYIz + Be +iYz (151)

in layer 1, and

* - Ce- Y2z + De+iY2Z (152)
2

in layer 2, where y and y are vertical wave numbers in the respective

media.

The boundary condition to be satisfied at the 1 to 0 interface is

that p 0 0, and therefore, = 0 when z -h Thus
1 1'1 iy h + B-iy Ih o 13Ae y1h 1 Be- 1 1 = 0, .(153) ,

B -Ae +21yIh. (154)

The boundary condition at z = h is
2

2 0,lb o (155)
2

meaning no particle velocity in the vertical, therefore

-Ce-22 + De 2 2 0, (156)

D - Ce 2 2.  (157)

Substituting Eq. (154) and Eq. (157) into Eq. (151) and Eq. (152)

respectively, we find

. A[e-i z - eiI (z + 2h)] (158)

= [eiY2z + eiY2(z - 2) (159)2!
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A is arbitrary. We now need to determine C in terms of A.

There are two conditions at the 1, 2 interface which need to be

satisfied as follows

P(*) P (0) (160)

I1 10 2 20'

and I -Z- , .(161)

Putting z 0 in Eq. (158) and Eq. (159) and substituting into Eq. (160)

yields

p e (1e h1h)A- p2(1 + e-21yh2 2 )C O. (162)

Taking the partial derivatives of Eq. (158) and Eq. (159), putting z 0

and equating to each other, one obtains

n y (1 + e21yIh )A - y (1 - e-21y2h )c 0. (163)

In order that the simultaneous equations, (162) and (163) in A and

C both be satisfied, the determinant of the coefficients must vanish.

Solving the determinants leads to

P Ltan yh P 2(14
Y I1I y tanyh (164)

2 2 2

The dissymetry results from the difference between upper and lower boundaries

of the dual medium. Eq. (164) in combination with Snell's law from which

2 7Yr -(44) ,(165)
2 1

determines the permitted values of y and y2.



For any permitted pair of values of TI and y, Eq. (162) may be

solved for C in terms of the arbitrary A.

2iy ih
p (1 e )A

C -2i i (166)
p (1 + e -21y 2 )

2
Since the relationship between y and y, Eq. (164), depends on

1 2
angular velocity w, different sets of permitted values are obtained at

different frequencies.

If the student wishes to work out a case, it is suggested that he

put P= P compute and tabulate y2 for various values of y1 and then,

against each y • plot the right and left sides of Eq. (164) and find
1

intersections.

Reference 11 carries calculations much further and develops

solutions to the general multilayer problem. Some of the symbols used

there are different than ours and their use of angles of incidence and

reflection for reference instead of grazing angles interchanges sines and

cosines.

NORMAL MODE THEORY

The ultimate in precision of solutions of the wave equation has been

sought in Normal Mode Theory. We would be remiss not to discuss the

general approach, and to indicate limitations. Right at the start let us

assert that ray theory is adequate for at least 90Z of the cases we shall

encounter and necessary in many cases where the complexity of normal mode

solutions is beyond our current capability or patience. In this connection

we quote from Ref. 12. "Even when the boundary conditions can be formulated

exactly, and initial conditions are simple, the exact solution of the

I1iF ' ,. . . . . . . . ." " ' ' "
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problem cannot be presented." Vast strides have been made in the use of

this approach since the quoted words were written; nevertheless, we still

require approximations to actual conditions before we can solve the wave

equation exactly and we still assume plane surface and bottom boundaries

because other assumptions are too complex for mathematical manipulation

*. to solutions.

SaMore recent comment on this situation is given in Ref. 13 which

is directed to a comparison of methods as its title indicat~s. In the

last paragraph of this paper, Tolstoy states, "It appears, therefore,

that natural causes and experimental error limit the use of exact

solutions to about the same ranges as numerical error will limit the

use of W.K.B. and traditional ray methods."

In view of the limitations of normal mode solutions, why should we

spend time on them? First of all, they give us an insight into mechanisms

beyond that apparent from ray theory. They describe diffraction. They

describe behavior at caustics. They predict a phase shift of 7r/2 at a

turning point or vertex. The tedium of solution is greatly reduced by

reliance on computer programs. There is a great deal of literature on

this method and no one can pose as an expert in the field without a

knowledge of the approach.

Before taking up the general approach to the normal mode method, let

us clear up a few odds and ends.

We first assumed a solution in Cartesian coordinates for the plane

wave in a wave guide (Eq. (79)). The factor in the x (horizontal) direction

in our solution could have been written Ae-icx + Be+ia x in which we could1*
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interpret the first term as an outgoing wave and the second term

as an incoming wave. This is common practice. However, we omitted

Be on the assumption that there is no incoming wave and combined the

other term with eiw . We see that when we combine this with a factor

Vwe obtain + . The quantities wt - ax

and wt + ax are phases as functions of time and x dimension from which

expressions for sound speed and wave length are derivable. Another form

of solution in the x direction is a cos ax + b sin ax. This does not

readily combine with e i t to express a travelling wave. Hence, the first

form is preferred when we have travelling waves.

In the simple wave guide in Cartesian coordinates, we had a

situation in the z (vertical) direction where a cos yz + b sin yz was

the chosen solution. We could have used the exponential form and will

do so in some cases. This would have combined with ei(wt - ax) to give

a wave with a downward component ei(wt - ax - yz) and a wave with an

upward component ei(wt - ax + yz) which together constitute a standing

wave best expressed in spherical functions to bring out the standing wave

characteristic. Whenever we have confinement between two or more

boundaries, we have a standing wave situation.

When a solution comes out in Bessel functions, we have a similar

choice to make. A Hankel function has a real and an imaginary part which

~j1 iwt
can be combined with e to give a phase. We indicated in Eq. (118) an

approximation for H2 at moderate or long range which was exponential inI 0
form. If the approximation were not made, the combination H2 e iwt would

0

still have a phase for each combination of x and t. So the Hankel function
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is to be regarded as corresponding to an exponential with imaginary

exponent combined with a variable amplitude. Tables give amplitude and j

14
phase as functions of the argument. To be still more specific suppose

a is 1 ft- ' and x is 10 ft. Then ax is 10 radians or 5730 . Tables of

the Hankel function H2 (Ref. ) give for an argument of 10, a phase lag

of = 4400 as compared with a lead of = 610 for ax = a difference of

about 5010. A shift of 9 radians in circular functions would be 5150.

But also, with the Hankel function the amplutude has fallen off from

.897 to .253, a ratio of 3.54 in proceeding from 1 ft. range to 10 ft.
1

range. This is close to - as in the approximation. From x - 8 to
1

x = 16, the ratio is almost exactly - x.

In the x direction ( or r direction in cylindrical coordinates)

we usually have travelling waves and use Hankel functions.

How about standing wave patterns with Bessel functions? Corresponding

to the circular functions we have Bessel functions of the first kind. We

shall encounter these in considering sound speed c variable in depth when-

ever we wish to emphasize the standing wave pattern in the vertical dimen-

sion. However, using an upward and a downward wave in combination repre-

sented by Hankel functions may simplify matching boundry conditions.

The complete problem in normal modes consists of first a solution

in whatever functions are required for the particular depth variation of

c, and second the determination of various constants depending upon the

satisfying of boundary conditions at every boundary as already carried out

for the case of the two-layer waveguide. Satisfying boundary conditions

for solutions other than circular functions or exponentials is generally

tedious but straight-forward.
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General Approach to the Problem of Stratified Media

It was stated early in this report that the sound speed profile

may often advantageously be approximated by a succession of gradients of

different values, each value for a particular layer. The best we can

do in describing these profiles is to specify a succession of horizon-

tally stratified layers and in each a sound speed as a function of 4.

depth for that layer, sometimes a linear function, sometimes more com-

plicated.

In exact solutions of the wave equation we need to use analytic

functions for which we Know how to get solutions in not too complicated

form. A number of authors (Ref. 15, Ref. 16, and Ref. 17) have used

c
C (167)

which can also be written

K K 0/ + z. (168)o

in which K is the wave number along the ray at depth z and K is its0

value at a reference depth z = 0. Since the separated part of the wave

equation for depth contains a factor y 2  K2 - a2 , this becomes

2 KIl+ -Zy K:(l +z) - 2  (169)
0>

which is fairly simple and can be handled.

Note that for the function c in Eq. (167), the gradient is

dc -Co1

dz 2(1 + az) (10
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which is very nearly constant for 0z << 1. Of course, B may be positive

yielding a negative gradient, or negative yielding a positive gradient.

7 Solutions will be in Bessel functions.

Tolstoy and Clay (Ref. 10) obtain solutions also for the sound

speed profile a a2z2.
A further requirement in boundary conditions is some manageable

form of ultimate boundary. This may be any boundary for which the re-

flection coefficient is taken as 0, 1, or -1, corresponding respectively

to constant sound speed to infinity, hard boundary of infinite impedance

and soft boundary of zero impedance. More complicated cases have been

treated.

When there is total reflection at the boundaries there will be

standing wave patterns, the unknown constants are determinable from

boundary conditions, and the solution for the depth factor of velocity

potential will be a set of eigenfunctions, i.e. all boundary conditions

can be satisfied only for a set of eigenvalues y, belonging to a set

of eigenfunctions. When one ultimate boundary has zero reflection

coefficient, sometimes called the radiation condition, y is continuous

unless the general solution for the whole velocity potential requires

otherwise, a situation which will be brought out later.

In the case where sound speed is a function of depth, we encounter

occasions when rays become horizontal and have therefore y = 0. Suppose

that the ray travels downward to this turning point with c increasing

downward. At greater depths than for y = 0, y becomes imaginary and our

solutions have imaginary wave numbers. If the depth function were of the

form e-iyz, then clearly an imaginary y would produce a real exponent

meaning decay with depth. So it is with other functions. In the case
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of a modified Hankel function, for example, y may become imaginary

and the function will decay. Nevertheless, the same function holds

throughout the layer and matching of different functions is carried out

only at layer boundaries. Let us not be misled by the fact that

some of the functions with which we deal are commonly given new letter

designations and are separately tabulated for imaginary arguments. This

practice is just a convention for convenience. We can readily shift to

a different table when the argument becomes negative (imaginary y).

The deptii functions with which we usually deal go to infinity at

a turning point. This gives us a narrow region of indeterminancy.

However, in spite of this, transferring from positive to negative

arguments (y going from real to imaginary) gives fitting values which

are finite outside a narrow region.

We now proceed to outline a few special cases treated by normal

mode theory. In every case we shall be dealing with horizontally stratified

media. In every case the solution can be written as

i(r z t) - O(z) R(r) e i t  (171)
11

-Jar
For plane waves R(r) = e which combines with the time to give

ei(Wt - ar) For cylindrical spreading R(r) = H2 (ar) which is expressible

in polar coordinates as tRje - ie so that it combines with the time factor

to give IRIei(Wt - and JR1 are tabulated. 14 At moderate or long
el(wt -a+n/)iwt

range this becomes - r + /4) In the following cases R(r)e

range ~ ~ vr thsbcoe r

may be written at once. Only the depth function 0 offers any complexity

since sound speed may be a function of depth and since it is to the depth

function that boundary conditions are applied.
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Bilinear Gradient, Hard Bottom

Here we take up a case like that of the two-layer wave guide

already treated except that the sound speed profile is a positive gradient

next to the surface and a negative gradient below it bounded beneath by

a hard bottom (Z = ). The boundary between the two liquid layers is taken

as z - 0. Thicknesses are 1 for the upper layer and 1 for the lower so
1 2

that the ultimate boundaries are air (Z = 0) at z = -1 and hard bottom
1

(Z = ) at z = +1. The densities p and p are taken as constant and
2 2

equal. The functional form of the sound speed is taken as

c
C (172)

/1+ -z

with subscripts l and 2 for a denoting layer l and layer 2 and with

c equal to the value of sound speed at the layer boundary.0

We repeat the wave equation for velocity potential in cylindrical

coordinates

+ - +(173)
ar r ar az Cya

The solution is obtained in Appendix B for the case where c is given by

Eq. (172). As a matter of fact, two different solutions for (z) of

Eq. (171) are presented. We shall choose that expressed in modified

Hankel functions. We have the following solutions.

In layer 1

Tpin [anh (n) + bnh(nn)] 1H2(r) e ( t -1 'o (174)
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and in layer 2

Sn Ch(n) + d h ( 2H(anr) e'(t - 0) (175)

In Eq. (174) and Eq. (175), w is 2n times the frequency (any frequency

we choose), 0 is the modulus of H2 (ar) and 1n is given by
0n

K?(U + Wz - at2
on (176)

n (K2o2)213
(K0

as defined in Eq. (1.225) of Appendix B. Beta takes on values B in
1

layer I and in layer 2. K is wave number along any ray at z = 0,2 0

K2 (l + gz) is K2 as a function of z and K2 - a2 is r2, the square of the
0

wave number in the vertical (z) dimension. We shall find how certain

discrete values of a n are arrived at with corresponding yn(z). Yn(0)

will identify permitted grazing angles at the 1,2 boundary through the

relation

K sin 00= --- sin 0.
0

Since a and w do not vary with depth z, the z factor 42 is
n 2

the only difference between these 's at the same r and t. As in cases

already covered, the problem remaining is to apply boundary conditions to

express bn, cn and dn in terms of an and to determine eigenvalues of yn

which must exist because no energy escapes from either ultimate boundary.

When this is done we shall have a set of n 's in each layer which are

interrelated for each n.

We now concentrate on the vertical factors

= a h (n) + bnh (nn), (177)
In nI n n 2 n
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and

a =ch () (n). (178)
n In n f2 n

In each of these last equations h advances in phase and h lags
1 2

as $z increases. We now take B negative in the upper layer to give a

positive sound speed gradient and we take a positive in the lower layer

to give a negative sound speed gradient. Then h may be interpreted as a
1

wave travelling toward the 1, 2 boundary in either medium and h as a
2

wave travelling away from the 1, 2 boundary. Reversing the signs of

both a's reverses the interpretation. The distinction here is unneces-

sary for the simple ultimate boundaries assumed for the present case

since the ratio of reflected to incident waves is the same as its

reciprocal at each ultimate boundary.

Just as with the 2-layer waveguide, we require ( = - 0
in z L

for a pressure release surface. Then

b n z Li a(179)
I nh 2(n)] L

At the 2, 3 boundary, vertical particle velocity is zero so we
put ( ]z = L2  0. This gives

NCn z = L 

d= - 1 n . (180)
2 Ah( n)z = L2

We now have our potentials expressible in terms of 2 constants an,

Cn, of which the first may be regarded as arbitrary. We still have two

conditions to satisfy at the 1, 2 boundary so that restrictions will be

placed on permitted values of a and, for each permitted values C will
nP n

be determinable in terms of a .
n
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At the 1, 2 boundary, z = 0, pressure and vertical component of

particle velocity must match in the two media. Thus,

Pnah ) + bzh(%)] =O PCh (%) + dh()] z=0  (181)

0i3[a h(n_) + b h'(n [h' + d h (182)

In both Eq. (181) and Eq. (182), b and d have been solved for in terms of

a and c respectively so that we have relationships here between c and a.

In Eq. (182) the other factor K2 3 resulting from differentiation with
0

respect to z has been cancelled from the two sides of the equation.

Again as with the 2-layer waveguide, we may set up a determinant of

the coefficients of a and c and equate it to zero. This will be satisfied

for discrete values of (qn z=0 . For positive (rj ) the solution is oscil-

latory,for negative (n ) hyperbolic. Any permitted value of qn may be

substituted into Eq. (181) to permit solving for c in terms of a and
n n

the solution is thereby completed. These computations should really be

carried out on a computer.

If is negative and 82 positive, nn will be negative for some of

its permitted values at z = 0. This corresponds to rays that make small

angles with the surface and bottom and bend to become horizontal for

nn = 0 at some depths. Near the 1, 2 boundary where n is negative the

solution is hyperbolic.

if is positive and 2 negative, (nn)z=O is always positive but

some of its values for z 0 0 will become negative near the ultimate

boundaries corresponding to rays that oscillate about the 1, 2 boundary

without reaching the ultimate boundaries, 1, 0 and 2, 3.
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Mode Excitation

The general solution of Eq. (173) is a summation of modes, with

each vertical factor containing an a so far arbitrary. The relativen

weights of these modes are related to the values of the coefficients

of the modified Hankel functions. By adjusting the an's any desiredn

function of z can be obtained. So if we kitow this function we can

determine the a 's. For a discussion of the method see Ref. 18,
n

pp. 439-446. It develops that for a given source depth, every mode is

excited in proportaion to the values of the modified Hankel functions

for a given n has a null at source depth, the nth mode will not be

excited .and a = 0. (This happened in the case of our discussionn

of beam patterns in the section on "Physical Aspects".) In addition the

pressure p at some field point is proportional to the depth function

there so that the overall effect from source to receiver involves the

square of the depth function.

Reference (9) pp. 61-66 describes the meaning of normal modes

and illustrates this with the very simple case of a vibrating string

leading up through excitation of modes. This discussion is worthy of

attention if a still simpler case than treated here is sought for

better understanding.

LEAKAGE FROM SURFACE DUCTS

19Schulkin has discussed the physical aspects of scattering from

the surface bringing out the complications of the problem.
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Schweitzer20 has presented some nice graphs of depth functions

in a surface duct. These show the n oscillations of the nth mode in

the duct and the hyperbolic decay fitted on at the duct boundary.

Schweitzer assumes that phase relations between the modes are destroyed

by surface scatter and that consequently the modes add by power. This

is probably appropriate for wave heights approaching a wavelength.

The Navy.Underwater Research and Development Center has carried

the computation of normal modes much further than anybody else for a

21
variety of sound profiles. Reference is made to Pedersen and Gordon

They have reported cases of excellent fit with experimental data at

short ranges, taking phase relations of the modes into account. This

agreement would be expected only at low frequency and low sea states.

Reference must be made to the theme issue of JUA on Scattering

from the Surface Duct. We mention three papers as follows.

Bartberger and Ackler treat various two and three-layer cases

which approximate ocean conditions in some cases with a surface duct,

and which take typical ocean bottom conditions into account. Since their

cases do not have a perfectly reflecting bottom, the depth functions by

themselves are not restricted to permitted values. Hence, the most

general solution instead of being a summation of potential functions *P'

has the form of an integral over the continuous wave numbers a, as

follows

*(r,zt) f e J *(r,z)da. (183)

1~* *
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Since a is independent of depth for any given ray, its variation

implies rays at different angles to the horizontal at any given depth.

When Eq. (183)is integrated in a complex plane, the contributions to

the integral come principally from the poles and therefore the integral

may be replaced by the sum of the residues at these poles. This process

yields a set of eigenvalues a which are complex corresponding to phasen

shift and attenuation per unit distance. The attenuation accounts for

loss by propagation into the bottom.

Bucker 7 applies wave theory to a rough surface by ascribing a

reflection coefficient of magnitude less than 1 to the surface. After

getting solutions which would be applicable if the non-reflected energy

were lost to the air, he then accounts for its presence below the surface

duct as energy scattered into the shadow zone.

Murphy2 2 presents a special mathematical procedure valid at

turning points which eliminates the indeterminancy usually encountered

there.

WKB METHOD

The WKB method, like ray acoustics, is an approximation method.

13
As Tolstoy has pointed out it may describe ocean sound propagation with

no more error than is intrinsic in the data. In other words, if we must

use widely fluctuating and incomplete data, and if even this must be

approximated to give analytic depth functions susceptible to exact

analysis, then the exact analysis does not yield results exactly describing

actual conditions. Perhaps approximate methods would do as well.
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We now derive the WKB approximation for stratified media,

following the style of Ref. 10. We consider the vertical factor

in the velocity potential. Its equation was obtained as

dZ + y2- 0, (184)

in which y may be a function of z.

In the WKB method we let

- is (185)

with s and p functions of z. Then

di + ds (186)dz d z P -z e l S)

dz L(dz +dzdz++ dz~dz + d (87

d is
Adding *y2 from Eq. (185) to from Eq. (187), dividing by e , and

separating real and imaginary parts we obtain

-[' z _-y2] = 0, (188)

ds + ds 0 (189)
"d-z dz z=

The last equation may be written

d (del ds0(9
* " +(
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which has a solution

Ids -(~1/2P p , (191)

A being a constant of integration.

The WKB approximation is made by assuming the first term of

Eq. (188) negligible in comparison to the others. This tequires that

it be negligible with respect to say the third term so that

or

R « 1. (192)

I The inequality (188) must be satisfied for the WKB approximation to be

good.

When the first term of Eq. (188) is neglected

ds m + Y 1 (193)

and therefore,

a ydz + so. (194)
0

*1

Equation (193) substituted in Eq. (191) and this in turn substituted

in Eq. (185) yields

y-1 A -1 2 eis. (195)

Equation (195) tells us that in this approximation * has a magnitude
proportional to Y-1/ 2 and a phase s given by Eq. (194). It may be noted
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that * becomes infinite at a turning point where y - 0. This is a

region where Eq. (192) is not satisfied. The exact solution is well

behaved at a turning point.

Tolstoy and Clay have shown that s in Eq. (194) is approximately
o

+ 4 * for some special cases in which z is at a turning point. We have

to use -K ito correspond to our choice of exponent + iwt. Also we have
4

to choose the sign in Eq. (194) which makes the definite integral

negative whether we are integrating along a downward path oi an upward

path as long as we proceed in the direction of propagation.

We now make use of the fact that 0 is a function of z only so that

tracing the ray from a given z through a cycle to the same z headed in

the same direction (up if we started up, down if we started down), the

change in phase must be some integer times 2w. Thus for the surface

duct with ym = KL(l + 7z) - ct, B negative, total phase shift is

- 2~t + 6z) -- 7 = - 2mir. (196)

The last 7r on the left is the effect of a surface reflection to complete

the cycle. The integration is readily carried out and we obtain the

approximation to the eigenvalues a corresponding to different wholem

numbers m. Almost any kind of layered media in which rays go through a

spatial cycle can be handled. We may have a duct with turning points

above and below the axis or with boundaries at which phase shifts are

function of grazing angle. In the latter case it may be easier to

solve for angles at some reference level 1 for which

m
K - Cos 8

* Wood2 3 denies that this w/4 is present at the turning point for a constant
sound..speed gradient.
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It is interesting to integrate this space phase shift in the

vertical over a round trip for the waveguide with y constant.

Here there is no 1 for a turning point and
4

- 2f ydz = - 2yL.

From this we subtract C + C , the phase leads at the boundaries, and

10 20

equate the result to a whole number times 2w radians, -2(n - I)f,

obtaining Eq. (101).

SUMMARY

Many useable acoustic paths characterized by a specified source

position, a specified receiver or target position, and a path between,

exist in the ocean. Losses over any path include divergence loss and

attenuation. To a first approximation divergence loss is independent of

frequency. Attenuation is highly frequency dependent. Over all paths

there is an attenuation coefficient a characterizing pure absorption
0

(conversion to heat). This includes loss by friction and loss by

relaxation processes which involve storage of energy which is given up by

hysteresis - that is by falling back too late to be fully retained in the

sound wave. A dependency of a on acoustic path used has been observed0

(Thorp curve). Some paths exhibit bther characteristic losses. An

anomalous attenuation in the surface duct is attributed to absorption

by bubbles and to leakage by scattering from a rough surface. Reflection

loss over the bottom-bounce path is very significant. All these losses

have been discussed and quantitative values have been assigned to them.
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The tracing of ray paths over significantly different paths

was approached by approximating sound-speed profiles in depth by

layers each with its own linear segment. The ray path in each layer

is then a segment of a circle of radius simply related to sound speed

and sound-speed gradient. These circular segments of the paths have

x and z components. Formulas for the spreading of two neighboring

rays were developed and the spreading was simply related to divergence

loss. Examples were computed in detail.

After the bread and butter approach of ray geometry had been

covered, that is the "How," we approached the "Why" by more basic

considerations. This involved new definitions, introduction to the

wave equation and solutions of the wave equation for a series of cases

of gradually increasing complexity, preparing the student for exposure

to referenced literature which assumes quite a lot of background

knowledge. The solutions employed are derived in Appendix B.

Derivation of reflection coefficients added to the potential

scope of our solutions.

It has been brought out here that the normal-mode solutions are of

greater academic than practical importance. This is not to deny the

existence of experimental data which tends to confirm the validity of

features of normal-mode solutions easily overlooked in ray theory.

The WKB method of approximation for stratified media was described

and shown to yield approximate eigenvalues for paths cycling in the

z-direction.
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APPENDIX A

Computation of Losses in Specified Model Ocean

Ocean Specification and Derived Parameters (Step 1)

A specific model of the ocean is chosen for some of the examples to

follow. This is shown in Fig. 11. We have taken three layers with layer

boundaries at 50 yards, and 1400 yards depth, and with the bottom at

6000 yards. Sound speed at the source (here taken as the surface) is

co = 1650 yds./sec. Sound-speed gradients are g0 = .030000/sec.,

g! = -.042000/sec., g .016000/sec. The value of g chosen represents

a very strong duct to emphasize duct effects. The five significant

figures are assumed in order to obtain 2 or 3 in the final results. This

necessity reflects the sensitivity of results to small changes in ocean

characteristics.

In this model ocean, divergence loss as a function of range is

desired at

a.) 20 yards below the duct U

b.) the bottom (z)
3

c.) the surface after a bottom bounce (z0UP)

d.) the surface at the convergence zone (z0
up

Multiplication of the g's by depth increment in yards gives Ac in

yds./sec. We compute

c = 1650 + 50(.030000) yds./sec.
1

- 1651.5 yds./sec

cl+ = 1651.5 - 20(.042000) yds./sec

- 1650.66 yds./sec.
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c = 1651.5 - 1350(.042000) yds./sec.
2

= 1594.8 yds./sec.

c = 1594.8 + .016000(4600) yds./sec.
3

= 1668.4 yds./sec.

Now the h's may be computed from Eq. (1) of the main text, giving

h = -55000 yds. (upward from surface)o

h = +39321 yds. (downward from first layer boundary)

h = -99675 yds. (upward from second layer boundary)2

These h's are measured from the top of the layer boundary designated by the

subscript and each applies to the layer below the designated boundary.

Ray Paths to be considered (Step 2)

The rays of interest cross the first boundary at angles of 00, 10, 20,

0 0 0 0 0 0 0 0 0
30, 40, 50, 6 ° , 8 , 9 , 10 , 14 , and 20 . For each , the cosine may be

I

looked up and then Snell's law may be applied to get the cosines of 0o0

, and 3 . Then from these cosine values the angles, the sines, and+ 2 3

the tangents can be found in the tables. The following is a suggested format.

In it, the quantity first derived from the angle is underlined twice.

The quantities next derived from Snell's law are underlined once.

Subscript 0 1 1+ 2

2°27 '  00 1050' 1503 ,

cos * .99909 1 .99949 .96567

sin * .04275 0 .03199 .25966

tan * .04279 0 .032C1 .26R88

Table I
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Similar tables can be compiled for all angles considered. For * < 80

the rays will not reach the bottom. For > 90 there will be also a
3

at the bottom.

Radii of Curvature (Step 3)

The radii of curvature are computed from the formula

hi

i= cos

Table 2 lists the radii of curvature in the three layers for a selected set

of angles.

1 0o 1 P2

00 -55050 +39321 -103218

10 -55058 +39327 -103232

20 -55084 +39345 -103281
40 -55185 +39417 -103472

50 -55261 +39471 -103613

80 -55591 +39707 -104231

140 -56735 +40525 -106378

200 -58584 +41845 -109843

Table 2

These radii of curvature apply to either upward or downward paths

without change in sign.
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Horizontal Range (Step 4)

We wish to obtain x x from the rays that reach the bottom, and
+ 3

x from the rays which vertex short of the bottom. Our tabulation will not:i v

include the increments in each layer, although the formulae are set up as

a sum of such increments. These formulae are

p (sin -sin )

+ p (sin4, -sin)
1 1+ 1

3 1 0

+ p (sin4 - sinc$ )
1 2 1

+ p (sin - sin )
2 3 2

When the rays vertex, 4 is replaced by v which is zero. Thus, the

term sin 43 will drop out.
3

The following table lists the accumulated x values at important depths

or boundaries.

Ix I+x vx31 1+ v 3

0 3611.27 39365

1 2311.88 37527

2 1612.22 37102

4 946.50 36268

5 772.02 36242

6 646.93 36277

8 489.83 36910

9 430.12 30478

10 402.07 27498

14 272.57 20659

20 201.44 15057

Table 3
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The horizontal distance traversed in the round trip from source to

:I bottom and back to the surface again for the same ocean parameters on both

legs is twice that to the bottom alone. Likewise, all vertexing rays

return to the surface at twice the horizontal range at which they vertex.

Computation of 6C (Step 5)

The are computed from Eq. (25) starting with all 6= .005. The

equation becomes

6 - tan i + VtanL i + .01 tan + .000025.

A few values of these 60's are given below.

0 +2 3

0 .000291 .000388 .00004648

2 .003284 .003792 .000689

8 .004785 .004881 .002330

9 .004832 .004909 .002544 .011130

10 .004855 .004919 .002738 .008429

20 .004960 .004978 .003940 .005490

Table 4

In the foregoing table, 64 was .005 in each case.
1

Computation of 6x, (Step 6)

In this step we compute the 6xi-l' i and the dxn by the following

equations

6xi.li = Pi-l(sec 4i64i - sec 4il 1-i.1) (28)
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and

n
6x 6 1-191*

n i1=1

The first of these equations gets the subscripts reversed for upward paths.

Thus, the two terms within the parentheses get interchanged and this just

compensates for the change in sign of 64 and 64)_. Consequently,

6 x = 6 x

except when 6x includes a turn around.

Again we shall tabulate a few values. Columns 2, 3, 4, and 5 are the

results of computations by the first of the above formulae, while columns

6 and 7 are the results of summing by the second formula.

6x 6x 6x 6x or 6x 6x 6x or 6x
1 0,1 191+ 1,2 2,3 2V 1+ $ v

0 -259.22 -181.34 -194.71 +4.9670 -440.56 -448.96

2 -94.42 -47.48 -168.76 +73.74 -141.90 -189.44

4 -38.89 -16.86 -144.50 +139.31 -55.75 -44.07

5 -26.84 -11.71 -133.28 +170.18 -38.55 +10.06

8 -11.83 -4.67 -103.74 +253.96 -16.50 +138.39

9 -9.23 -3.89 -95.35 -886.97 -13.12 -991.55

10 -7.98 -3.18 -87.76 -586.26 -11.16 -682.00

20 -2.05 -.84 -40.96 -158.31 -2.89 -201.32

Table 5



A- 7

Computation of 6s1  (Steps 7 and 8)

Steps 7 and 8 of the summary will be performed separately for each of

four cases as follows:

1. Loss to points 20 yards below duct,

2. Loss to bottom,

3. Loss to surface via bottom bounce, and

4. Loss to convergence zone.

Region below Surface Duct

The remaining steps are the computations 6si from equations below

then the computation of ri 60 for the straight-line path, and finally
1 0

computation of the ratio of spreading over the curvilinear path to that

over the straight-line path as a measure of excess divergence loss due

to the geometry in a vertical plane. The last quantity will be expressed

in decibels.

The following equations will be applicable.

4Ss = 6xi sin i,

fort > 40. For < 40:

6s = 6y =p cos(C + )-cos , ,
1 1+ 1+

1+ P r
0

Excess Loss =-I0 log -A+ 0

1+
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6x sin4 6r6 Excess Loss
2 x+ n + 1+ 1 O (db)

0 -440.60 11.40 1.04 10.4

1 -277.90 9.05 4.30 3.2

2 -141.90 6.30 5.30 .8

4 -55.75 .07672 4.28 4.07 .2

8 -16.50 .14263 2.35 2.37 0

14 -5.60 .24390 1.37 1.38 0

Table 6

Results are discussed in the body of the report. Equations used are the same

for other cases except for subscripts.

Divergence Loss at the Bottom

We have observed that only the rays for which 4) is greater than 80

1

reach the bottom. Any pronounced effect on loss at the bottom caused by

reflection is expected to occur at 4) slightly greater than 80. With

steep angles the extent in space from surface to bottom is not great enough

to produce large effects.

Our procedure will be to complete computations and tabulate results for

this case. We shall include 3 in the table because scattering loss at
3

reflection, in the text, is a function of 4 . We shall also include horizontal3

range. Slant range to the bottom in yards for this case is given by

r - V x' + 6 0 0 0F
.

Results are given in Table 7 which follows.
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6 Sx 68 r 6 Excess Loss Horizontal
3 3 3 3 0 (db) Range (x)

90 3049 '  -991.55 71.06 150.1 -3.25 30478

100 5049 '  -682.00 73.37 136.6 -2.74 27498

140 11025 '  -352.23 69.15 106.1 -1.90 20659

200 18°19 '  -201.32 60.41 80.4 -1.04 15057

Table 7

Divergence Loss Surface-to-Surface via Bottom

We may refer to "surface-to-surface via the bottom" as "round trip"

which it really is as far as the vertical is concerned. The relation

x = 2x holds. Likewise, 6xup = 26x . The angles at the surface are
0 3 0 3

P - 6sup will not be 26s because the 6xup gets multiplied by

sin oP rather than by sin f3 to give 6sup. The gain observed at the

bottom will not necessarily be evidenced in the round trip.

For rectilinear propagation the range rup is 2r , that is, the

0 3

corresponding rectilinear path experiences a bottom bounce.

In the following table P and Sxup are derived from f and 6x
0 0 0 3

respectively.

Excess

* up sin u~p 6xup6up r up~c Loss H-Range

00000 (db) Wx

9°  -9019 '  -.16189 -1983.1 321.0 300.2 +.3 60956

100 -10018 '  -.17880 -1364.0 243.9 273.2 -.5 54996

140 -14012 '  -.24531 -704.5 172.8 212.2 -.9 41318

200 -20091 -.34448 -402.6 138.7 160.8 -.6 30114

Table 8
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Results are discussed in the body of the report.

Divergence Gain to Convergence Zone

We note that 6$ changes sign in going through a vertex and returning

to a depth reached by both the reference and neighboring rays. Neighboring

ray steeper downward means 6$ positive. Neighboring ray steeper upward

means 6 negative. This causes the rays to converge and perhaps to

cross. A negative 6xup means the rays have crossed.
0

Excess
U *up sin up 6xup 6sup ruP6 o Gain H-Range
0 0 0 0 0 0 (db) (x

0°  -2°27' -.04275 -898 38.39 23.1 -2.2 78730

10 -2o38 '  -.04594 -643 29.55 141.0 +6.75 75054

20 -3010 '  -.05524 -379 20.93 246.0 +10.7 74204
40 -4042 '  -.08194 -88.1 7.22 315.0 +16.3 72536

5 -5034 '  -.09700 +20.1 1.95 331.0 +22.3 72484

60 -6029' -.11291 +1141 12.92 241.0 +14.3 72554

80 -8022 '  -.14551 +277 40.27 358.0 +9.3 73820

Table 9

Results are discussed in the body of the report.
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APPENDIX B* Bessel Functions

GAMMA FUNCTIONS

The r function is defined for positive real v by:

r(v) = f e-  t -idt. (1.87)
0

When V is an integer n, successive integrations by parts reduce Eq. (1.87) to

r(n) = (n - 1)' (1.88)

and as with the factorial we have a recursion formula

r(n + 1) = nr(n). (1.89)

Equation (1.89) holds for any n, real or complex, and may be used to give

either ascending or descending arguments (e.g. solving for r(-1/3) from r(2/3)).

The Eq. (1.87) may be integrated for v = 1/2 by the substitution t =u 2

yielding

r(l1/2) = ' (1.90)

Then successive applications of Eq. (1.89) yield r(3/2), r(5/2), ... , as well

as r(-1/2), r(-3/2),....

We record also:

r(2/3) = 1.35412

r(1/3) - 2.67893. (1.91)

* Extracted from another report by the present author.
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BESSEL FUNCTIONS

Bessel Functions of the First Kind

In problems involving cylindrical coordinates (e.g. sound propagation in

stratisfied media), we encounter Bessel functions. Most useful functions are

solutions to differential equations. The Bessel functions may be taken up as

solutions of Bessel's equation.

Bessel's equation is

d 2Z IdZ + (1.92)
z+ z  z) Z

and a solution is Z = J (z). By writing Z as a power series, substituting
V

in Eq. (1.92) and equating coefficients of the different powers of z in

the equation independently to 0, we find certain relationships among the

coefficients of the power series for Z that are satisfied by the following

formula when V equals a positive integer n.

S = () m (z/2) (n + 2m)

n m! (n + m)! (1.93)

The value J (z) is called a Bessel function of the first kind of order n andn

argument z. The values of J (x) and J (x) are plotted in Fig.l.13.O 1

For negative integral orders it can be shown that

J(Z) (-i)n n (z). (1.94)
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Equation (1.93) may be expressed in terms of r functions as follows:

, (Z) = Go (-l)m (z/2)(n + 2m)
J(z) I (m + l)r(n + m + )" (1.95)

~m=O

It develops that for any positive v we may substitute this v for n in

Eq. (1.96) obtaining

(-1) m (z/ 2 )( + 2m)
3 (z) = F(m + l)r(v + m + ), (1.96)

Bessel Functions of the Second Kind

The solution J (z) evolves from the straight forward procedure just

indicated. The student may substitute the solution in the form given in

Eq. (1.93) into Eq. (1.92) thereby verifying that Eq. (1.93) is a solution

of Eq. (1.92). However, there must be a second independent solution of a

second order differential equation. This will be given without derivation.

Because V enters Eq. (1.92) as V2, substituting -V forv gives the

identical equation. Therefore, J_ (z) is a solution of Eq. (1.92). When v

is an integer, J (z) and J (z) are not independent as can be seen from-n n

Eq. (1.94). However, when V is not an integer, it turns out that J_,(z)

is linearly independent of J V (z), and a solution

Z - AJ (z) + BJ-V(z) (1.97)

constitutes a "fundamental system" of solutions.
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j It should also be apparent that the combination of J (z) and a
V

function of Y (z) which is a linear combination of J (z) and J (Z)

constitutes a fundamental system of solutions since

aJ (z) + bY (z) = aJ (z) + b[cJ (z) + dJ_ (z)]

- (a + bc) J (z) + bdJ_ (z)

= AJV(z) + BJV(z)

A precise relationship between Y (z) and the J's is commonly used, namely

JV(Z) cos vr- J_ (z)
YV ( z )  Sin V7 (1.98)

The Eq. (1.98) defines a Bessel function of the second kind and is called a

Weber function. (Ref. 3)

When v is an integer n, Y (z) is indeterminate from Eq. (1.98). However,n

it may be defined as the limit of the right side of Eq. (1.98) as v converges

to n. It has been evaluated and is linearly independent of Jn (z); therefore,

we have the equation

Z = AJ (z) + BY (z) (1.99)

which holds for all real V. Y (X) is plotted in Fig. 1.13. Y (0) =
0 0

By using kz in place of z in Eq. (1.92) and taking the special case of

V -0, we obtain

d 2 Z dZ+ k2 0  (1.100)
dz' z dz
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a forn which may develop in the process of solving the wave equation in

cylindrical coordinates with k 2 introduced in the separation of variables.

Since we have substituted kz for z, a solution is J (kz). A fundamental
0

system of solutions is

Z =AJ (kz) + BY 0(kz). (1.101)0 0

It sometimes develops that only certain values of k permit satisfying

boundary conditions. These permitted values of k are called eigenvalues,

and the Z obtained for any eigenvalue is an eigenfunction belonging to its

eigenvalue, which in turn belongs to it. Boundary conditions may also

require that either A or B be zero.

Bessel Functions of the Third Kind

There are two functions of the third kind, usually called Hankel

functions, and designated H V and H 2 These functions are given by

H 1(z) = 3 (z) + iY (z) (1.102)

and

H V2 (z) j J(z) - iY V(z). (1.103)

Either Hankel function is a solution of Eq. (1.92), and the two together

comprise a fundamental system of solutions. In some solutions to the wave

equations we shall use this fundamental system of solutions. Specifically,

we shall encounter a solution

Z = EN '(z) + F11 2(z) (1.104)
0 o
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where E and F are constants. The function H 1(z) will be interpreted as

2
ar incoming* wave and H as an outgoing* wave so that the two together may

0

comprise standing waves and in addition traveling waves (when E # F).

Since J and Y are real, the Hankel functions are complex and conjugate

to each other. The interpretation of a complex solution is an amplitude

IHo '1or IHo2 1, and a phase lead tan-1 (+Y/J), the plus sign for H 0 and minus

sign for H 2. The amplitude and phase are tabulated in Ref. 9.0
+ikz

We should note that this complex form is analogous to our use of e-

to stand for harmonic space functions. As a matter of fact, the limiting

forms of J09 Y09 and H as the argument increases without limit are cosines,

sines, and exponentials as follows:

lim (27zT /

im J o(z) = (2/7z)1,2 cos (z - W), (1.105)

lrn Y (z) = (2/iTz)V2 sin (z - (1.106)

and

lim H ' 2 (z) = (2/ 7z) 1/2 e"(z (1.107)
z-)*W 04

The phase for each of these functions approaches (z - ) at large z. The major

difference from the harmonic functions is the factor z- /2, which will be

associated in our applications with divergence loss characteristic of cylindrical

spreading.

* The respective roles of Ho1 and Ho2 are oft. eversed arbitrarily to match

an arbitrary choice of the negative sign in+Q t in the solutions of the wave
equation which will follow. We shall use e and this convention determines
the specified interpretations of H and H

... . ........ .. 1
:

. .... 0 0..
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Modified Bessel Fuictions*

In physical problems we sometimes encounter negative and complex wave

numbers. As an example, if we have the complex wave number

k k + ik (1.108)

it follows that

ikx ikox -klxe =e e . (1.109)

-k z

The last factor is an exponential damping factor. A factor e in the

Hankel functions of zero order with large arguments would emerge from

Eq. (1.107) if z were replaced by kz, k given by Eq. (1.108).

Imaginary wave numbers will often occur in problems of stratified

media. These may appear in the arguments of a Bessel function in such a way

as to render the argument imaginary. Bessel functions of the three kinds

are all given special designations for imaginary arguments and are all called

"modified" Bessel functions. We have the relationships

I (z) J (iz) (1.110)
V V

K (z) Y (iz) (1.111)

L V' 2 (z) = H 1'2(iz). (1.112)

It should be noted that imaginary arguments lead to modified functions

which are real. Furthermore, the variable z here is not necessarily depth.

* The meaning of this terminology should not be confused with the meaning of
"Modified Hankel functions" to be introduced later on Page 62.
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The modified Bessel functions which we shall need have some function of

depth as argument.

Up to this point we have shown various forms of solutions to Bessel's

equation and have stated that if z is replaced by kz, k2 being introduced

as a separation constant of undetermined value, it may develop that k can

take on only certain permitted values (eigenvalues) and still permit

satisfying boundary conditions. Even so, there is a solution (eigenfunction)

for each eigenvalue, and a linear combination of eigenfunctions is a

solution. Thus, Eq. (1.104) as an example might more generally take the

form

Z i EiH o(kiz) + Fi H o2 (k z). (1.113)

If there are no restrictions on k, the summation is replaced by an

integration over k.

Solutions of Equation for Depth Function

The following equation occurs in the study of sound propagation in

stratified media

D +[ 2(l + z) -O 0. (1.114)

There are at least two approaches to its solution. The first approach which

we shall describe reduces Eq. (1.114) to a Bessel's equation of order (1/3).

Eq. (1.114) is of the form

1 + (Bz + C)€ 0. (1.115)
dz
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We let

Bz + C = (3BF)2/3 (1.116)

and

*(z) = (Bz + C)I/2V(C) = (3 B)1/3V(C). (1.117)

Then

= (Bz + C)3/2,
3B

and

dz (Bz + C)•/2 (1.119)

We then find

dz dC 12 dz

and

4- C[3 1/3 ~\d
=z d) B ( z d (1.120)

Substituting Eq. (1.116), Eq. (1.117, and Eq. (1.120) worked out, into

Eq. (1.115), we obtain

d + + (1 - 92)V - 0 (1.121)

which is the desired form.
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Expressing V as Hankel functions we have *

V = AH1 (&) + BH2 ( ). (1.122)

+ +

Finally, the full expression for € in terms of Hankel functions involving z is

*33
*=+yHyH2 21L +(1.123)

in which

y (i + -z) -2J± (1.124)

The second procedure is to make the substitution

K2(l + Bz) -2
0 - •(1.125)(K2o)

0

Substitution of Eq. (1.125) in Eq. (1.114) yields the Stokes equation

dq4 + 0 = . (1.126)

Solutions to this equation may be found readily by expressing * in a power
series of ascending powers, substituting in Eq. (1.126), collecting coefficients

of like powers and equating the collected coefficients of each power to zero.

The coefficients a(3n) , n - 1, 2, 3, ..., are all expressible in terms of a
(3n) 0

This gives one series solution of the following form

f(n) a (1 -Ly1 + 1 -4 6 q. + (1.127)

o 3! 6Cfeenc 69"

*See reference 6
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The coefficients a3n+l, n = 1,2,3,..., are all expressible in terms

of a , giving a second solution
1

g(I) = a ( - +2 + 2 5 7 2 5 8 10 + (1.128)
4111 -. 10!

Note that in both f(n) and g(l) the signs alternate but with negative

argument all signs are alike in either function. All other coefficients,

a a are zero.
2 5

The Airy functions, which have been tabulated, are related to f and g

as follows:

. 3-1 3-4
Ai(-r) f  ) f(T) - (- g(r) (1.129)

(*)f(ii) + r () (1.130)

The solution of Eq. (1.126) is expressible in terms of the Airy functions

as

= E Ai(-n) + F Bi(-n). (1.131)

Finally, just as we combined Bessel functions of the first and second kind

to form Hankel functions, so we may combine Airy functions to form modified

Hankel functions

h 12'/6 e- i L/ 6 Ai(-n) - i Bi(-n3), (1.132)

h - 12'/6 e+i / Ai(-n) + i Bi(-p.' 2 t

" f I
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.6 Ai -X)

.4 A x A '(.x)

.2

60 1

-. 2- AI'(x)6 8

-4"

-. 6

-LO'-

Ai (-,± x),Ai' ( ±::x)

Airy Functions of First Kind and Derivatives

22

2,0

L6

10 81,w)
.6 i'(x)

.2

BI1(-x); -. 4

-LO

Airy Functions of Second Kind and Derivatives
Fig. 1.14 and 1.15
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Note that when n is positive, the sign in the terms for Ai and Bi alternate

giving rise to oscillating functions. When n is negative, which can occur

for example when 8 is negative and z is large, Ai(-n) is a monatonically

decreasing function with increasing -n and Bi(-q) is a monatomically increasing

function with increasing -I.

The modified Hankel functions are expressible in terms of z by substituting

Eq. (1.125) for T). The expression for 4 is then

= C h 01) + D h (r). (1.133)
1 2

In contrast to the solution in regular Hankel functions, Eq. (1.123), there are

constants as coefficients of h and h as compared to y(z) in the coefficients1 2

of H and H12. This makes a neater solution.

+ +
The Airy functions and their derivatives are plotted in Fig.|.14 and Fig.I.15

taken from Ref. 4.

LAPLACIAN

The wave equation will be derived from physical principles in the

treatment of sound propagation. In Cartesian coordinates, it is

V2 
T = 132-- (1.134)

The operator V2 called the Laplacian needs to be defined. The definition will

be in terms of Cartesian coordinates and we shall then show how to express

it in any coordinate system.

The operator V is defined in vector analysis as

V i + i + k a- (1.135)

a x......
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in which i, J, and k are unit vectors in the x, y, and z directions

respectively. The dot product of V by itself is

32  2 a2 a 2

V + + z-. (1.136)

The Eq. (1.136) defines V2 in Cartesian coordinates. When V2 operates on

a scalar quantity T, we have the left member of the wave equation, Eq. (1.134).

Use of Eq. (1.136) in Eq. (1.134) gives the wave equation in Cartesian

coordinates.

An expression for V2 in generalized coordinates, q, q , and q , is1 2 3

derivable (e.g. see Ref.5) and takes the following form:

23 a h h 2h 3v 2 =h h h ")+ j-T-(r ---- . (1.137)

2 3 1 2 31 2 3 12

The h's are given by

hi = (1.138)

in which n is the normal in the positive direction to the level surface

in qi, i.e., the surface obtained with q, constant.

In spherical coordinates we have a radial distance r from the origin,

the colatitude 8, and the longitude * measured from the positive x axis
toward the positive y axis. The level surface in r is a sphere. The

3r
normal to this is radial in direction and Tn= h = 1.

an

The level surface in 8 is a cone, and the normal to this is a vector

normal to the cone giving n - h -. A level surface in * is a plane and
n 2 r
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- h r sin " Using these h's, Eq. (1.137) for the Laplacian

becomes

r i (r sin 0 + (sin 0 +-) (1.139)=r Zsin 0r r) sin 0 "o

For a spherical wave in which spheres are equiphase surfaces of constant

amplitude, this reduces to

1 a r2  a 2  2a
V7 2 +-- (1.140)

A third system of coordinates with which we should have familiarity is

that of cylindrical coordinates. Here the three coordinates are r, the

radial distance from the polar axis; z, the distance from the origin along

the polar axis; and 0, the longitude measured from the positive x axis. The

level surface in r is a cylinder, the normal is radial and 2n . h = 1.

The level surface in z is a plane normal to the polar axis, the normal is

az
along the polar (z) axis, and an = h = 1. The level surface in 0 is a plane

2

including the polar axis, the normal is horizontal and tangent to a cylinder

of radius r about the polar axis and- = h -.
3 r

Applying the general Eq. (1.138) with these h values, we obtain

the Laplacian

a2  I a2

( r - + r +e

a a a 2 1 32

r T r z +  +  (I. 141)

..........
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For cylindrical symmetry in which a sound wave is traveling

inward or outward with equiphase surfaces which are infinite cylinders,

this reduces to

1k rrv2ar aL+r~ (1.142)


