

AD

Report 2176

TEST AND EVALUATION OF COMMERCIAL AND MILITARY STANDARD FILTER/COALESCER ELEMENTS AT LOWERED TEMPERATURES

May 1976

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT
RESEARCH AND DEVELOPMENT COMMAND
FORT BELVOIR, VIRGINIA

Destroy this report when no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

	UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date	Fotoreid)	
	REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
	1. REPORT NUMBER	2. GOVT ACCESSION NO	
	2176		(g) (repr.)
6	TEST AND EVALUATION OF COMMER MILITARY STANDARD FILTER/COALINATION OF COMMER AT LOWERED TEMPERATURES.	CIAL AND ESCER ELEMENTS	Final Jan-Mar 754
1	William R. Williams		8. CONTRACT OR GRANT NUMBER(#)
	9. PERFORMING ORGANIZATION NAM! AND ADDRESS Fuels Handling Equipment Division, Lab 2 U.S. Army Mobility Equipment Research a Development Command, Fort Belvoir, Vir	2000 and	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
14	USAMERDC-2		May 2076 13 NUMBER OF SAGES 42
L	14. MONIFERING AGENCY NAME & ADDRESS(IT directed	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
			Unclassified
	-		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)		
	Approved for public release; distribution u		
The	1 1 6 762708 D 5	\$6 (7	966
	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a	nd Identify by block number	
	Fuels Low-Te Diesel Fuel Filter E Coalescence Filtration/Separation	emperature Fuel Tests Elements	
	Tests were performed on military star compare their ability to coalesce suspend approximately 40 to 65° F. Test fuels Comparison tests of two manufacturers of formed. Charts showing correlations were	ndard and commercially ded water from hydroster turbine fuel, of water-in-fuel monitorial monitorial descriptions.	of litter/coalescer elements to be
	DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSO	LETE	UNCLASSIFIED
	40316	O i SECURITY CLA	ASSIFICATION OF THIS PAGE (When Date Entered)

PREFACE

Authority for conducting research described in this report is contained in The Catalog of Approved Requirement Documents (CARDS) under Project No. 1G762708D50606 and by request of the US Navy under MIPR N00024-75-MP-5117M (Basic) dated 30 October 1974.

Tests were conducted during January-March 1975 in the POL Test Facility, MERADCOM, Fort Belvoir, Virginia.

The work was conducted under the overall supervision of T. H. Jefferson, Chief, Research and Development Group, Fuels Handling Equipment Division, MERADCOM, Fort Belvoir, Va.

The following MERADCOM personnel participated in the evaluation program:

William R. Williams, Senior Project Engineer Conrad Korzendorfer, Technician Richard Crosariol, Test Mechanic Lloyd Johnson, Test Mechanic William Stoney, Test Mechanic

CONTENTS

Section	Title	Page
	PREFACE	iii
	ILLUSTRATIONS	v
	TABLES	vi
1	INTRODUCTION	
	 Subject Background 	1 1
11	INVESTIGATION	
	 Description of Test Facilities Coalescer Elements Test Fuel and Contaminant Test Procedures and Results 	1 4 4 11
III	DISCUSSION	
	7. Effect of Temperature8. Effect of Accumulated Flow9. Comparison of Two Turbidimeters	12 12 18
IV	CONCLUSIONS	
	10. Conclusions	21
	APPENDIX - Summarized Test Data	22

ILLUSTRATIONS

Figure	Title	Page
1	Test Facility for Low-Temperature Tests - Single Vessel	2
2	Test Facility for Low-Temperature Tests — Two Vessels in Series	3
3	Fram API Filter/Coalescer Element, Cutaway View	5
4	Velcon API Filter/Coalescer Element, Cutaway View	7
5	Velcon API Filter/Coalescer Element, End Section View	9
6	Plot of °F vs Log PPM H ₂ 0 in Effluent with Diesel Fuel at 30 GPM Using Three, 20-GPM Velcon API Elements	13
7	Plot of °F vs Log PPM H ₂ 0 in Effluent with Diesel Fuel at 10 GPM Using Three, 20-GPM Banner DOD Elements	14
8	Plot of °F vs Log PPM H ₂ 0 in Effluent with Diesel Fuel at 30 GPM Using Three, 20-GPM, Series 7, API Elements	15
9	Plot of Time into Testing vs PPM H ₂ 0 in Effluent with Diesel Fuel at 30 GPM or 50% Rated Flow Using Three, 20-GPM Velcon API Elements	17
10	Plot of Time into Testing vs PPM H ₂ 0 in Effluent with Turbine Fuel, JP-5, at 100 GPM or 100% Rated Flow Using Five, 20-GPM Keene DOD Elements	19
11	Comparison of Keene 861B and Monitek LT-210/130 Turbidimeters	20

TABLES

Table	Title	Page
1	Fuel Characteristics	4
2	Data Analysis of Temperature vs PPM H ₂ 0 in Effluent Diesel Oil	16
A1	Comparison Tests, Diesel Fuel: Single Test Filter/Separator with Two, 20-GPM Elements	22
A2°	Comparison Tests, Diesel Fuel: Two Filter/Separators in Series with Three, 20-GPM Elements in Each	23
A3	Comparison Tests, Diesel Fuels Two Filter/Separators in Series with Three, 20-GPM Elements in Each	24
A4	Flow Optimization and Life Tests, Diesel Fuel: Two Filter/Separators in Series with Three, 20-GPM Elements in Each	25-28
A5	Comparison Tests, Turbine Fuel: Single Test Filter/ Separator with Two, 20-GPM Elements	29-30
A6	Life Test, Turbine Fuel, DOD Elements: Single, 100-GPM Military Filter/Separators with Five, 20-GPM DOD	
	Elements	31-34

TEST AND EVALUATION OF COMMERCIAL AND MILITARY STANDARD

FILTER/COALESCER ELEMENTS AT LOWERED TEMPERATURES

I. INTRODUCTION

- 1. Subject. This report covers water-removal tests conducted on two types of commercial filter-coalescer elements, Fram and Velcon, conforming to API Bulletin 1581 and on the DOD filter coalescer element conforming to Mil-F-8901. All tests were conducted at below-normal temperatures (approximately 50 to 60° F) with diesel fuel and with turbine fuel.
- 2. Background. Military Standard filter-coalescer elements (DOD) perform satisfactorily for almost all military fuels in temperature levels above 65° F. Mil-F-8901 calls for element qualification in the temperature range of 70 to 90 ± 5° F. Below this level, filter-coalescer element performance is degraded. The US Army is interested in improving the performance of the coalescer elements, especially with diesel fuel, at low temperatures for arctic and marine applications. The US Navy and the West German Navy are interested in removing water from diesel fuel for on-board, turbine-powered hydrofoil watercraft. This is a critical application because of the presence of large amounts of saltwater contaminant. At least two manufacturers have developed coalescer elements to the new API Bulletin 1581 that specifies performance down to 40° F. The two commercial elements, Fram Series 7 and Velcon, and the DOD elements meet the dimensional requirements of Mil-F-52308 and are capable of being fitted to the Military Standard Filter Separators.

II. INVESTIGATION

3. Description of Test Facilities. All tests were performed at the MERADCOM POL Test Area. Two closed pumping loops were utilized; a 100-gallon-per-minute (gpm) and a 50-gpm system. The 50-gpm system was used in two different configurations: a single test vessel (Figure 1) and two test vessels in series (Figure 2). In most respects, the test facilities follow those outlined in Mil-F-8901. The basic items in each pumping loop include: a feed tank, a centrifugal pump of suitable capacity, a waterinjection system upstream of the pump, a water-flow meter, a test vessel (filter separator), a fuel-flow meter, a turbidimeter for measuring the amount of water in the effluent fuel, gages for measuring temperature and pressure, and suitable piping and valving to operate on a continuing, recirculating basis. A 1000-gallon feed tank located outside is cooled by cold water running over the tank periphery; there are no controls on the cooling system. The centrifugal pump is a Worthington, two-stage pump with two 7½-inch impellers (50 gpm) or 7½-inch impellers (100 gpm) driven by a 15-hp

Figure 1. Test facility for low-temperature tests - single vessel.

Figure 2. Test facility for low-temperature tests - two vessels in series.

(50-gpm) or a 25-hp (100-gpm) electric motor. The test vessel used in the 50-gpm system is a four-element separator nominally rated at 50 gpm but containing only two test filter elements with the other two inlets blocked off. The second separator used in series tests is a three-element Military Standard filter separator nominally rated at 50 gpm; usually, two elements were installed in this vessel with the third inlet blocked off. The rated flow rate of the separator is a function of the number of elements in the separator with each element rated at 20 gpm. The 100-gpm system uses a single, Military Standard filter separator equipped with five coalescer elements and nominally rated at 100 gpm. The turbidimeter is a Keene model 861F (range 0-30 ppm) or Keene model 861B (range 0-10,000 ppm). A Monitek model LT-210/130 (range 0.1-1000 ppm) was installed in series with the Keene model 861B for the last series of tests to compare performance of the two instruments.

- 4. Coalescer Elements. Three types of coalescer elements were compared: The Fram Series 7 (lot CCS110), the Velcon (log I-42083), both conforming to the requirements of API Bulletin 1581, and the DOD Military Standard coalescer element (Banner lot C12037-7 or Keene lot C1 3520-02-0) conforming to the requirements of Mil-F-8901. All three elements conform to the dimensional requirements of Mil-F-52308. A cutaway view of the Fram element is shown in Figure 3. A cutaway view of the Velcon element is shown in Figure 4. An end view of the Velcon element shown in Figure 5 indicates an apparent eccentricity which was found in all such elements examined. All of the elements are fabricated from quantities of pleated paper and coarse and fine fiberglass. The Fram element includes an outer wrap of fibrous polypropylene. Both the API elements and the DOD element are covered by a cotton sock.
- 5. Test Fuel and Contaminant. The fuels were fuel oil, diesel, No. 2, conforming to VV-F-800; and turbine fuel, aviation, grade JP-5, conforming to Mil-T-5624. A single lot was used for each fuel. Characteristics of the two fuels are given in Table 1.

Table 1. Fuel Characteristics

Test Fuel	Specification	WSIM as per ASTM D2550	Interfacial Tension, IFT (dynes/cm) as per ASTM D1331, Method B
Fuel Oil, Diesel No. 2	VV-F-800	13	23
Turbine Fuel, Aviation, Grade JP-5	Mil-T-5624	96	45

Figure 3. Fram API filter/coalescer element, cutaway view.

Figure 4. Velcon API filter/coalescer element, cutaway view.

Figure 5. Velcon API filter/coalescer element, end section view.

The water injected into the test fuel during tests was supplied by the Fort Belvoir water utility system. Prior to use, the water was filtered to a residual solids level of 1 milligram per liter. The pH factor varied from 6.5 to 7.0.

6. Test Procedures and Results. Tests were based upon the water-removal tests detailed in Mil-F-8901. A variety of tests was performed to determine optimum flow rate (i.e., the highest possible flow rate while obtaining a reasonably clean effluent) and to compare the performance of the two API filter elements with that of the DOD element. Several conditions were varied: number of filter elements in test vessel, fuel-flow rate, water-add rate, single vessel or two vessels in series operation; the temperature varied according to conditions at the time — only very limited control was possible — but it was usually kept below 60° F.

Tests with diesel fuel were performed first. Fresh batches of diesel fuel were used whenever feasible. Except for the life test, no 1000-gallon, diesel-fuel batch was used for more than 16 hours of testing at any one time.

Results of all testing are summarized in the Appendix, Tables A1 through A6. For reasons of simplicity, the detailed test sheets are not included but each test is summarized as follows: pressure and water in effluent are shown only at test completion or at time indicated; temperatures shown represent the range with the first figure that of test initiation and the last figure that of test completion. Original test sheets are stored in Bldg 362, MERADCOM, and are available for inspection.

Table A1 represents nearly identical diesel fuel tests performed on the Fram, Velcon, and DOD elements with a single vessel with two 20-gpm elements and run at 50% and 25% of rated flow with 0.5% and 2.0% water-injection rates. At similar temperature ranges, the Velcon elements demonstrate superior performance in water-removal efficiency.

Table A2 represents diesel fuel tests performed on the Fram and Velcon elements with two vessels in series and run, for the most part, at 50% and 66.7% of rated flow with 5.0% and 10% water-injection rates. Performances of the Fram and Velcon elements were approximately the same.

Table A3 represents identical diesel fuel tests performed on the Fram, Velcon, and DOD elements with two vessels in series and run at 50% and 25% of rated flow with 0.5% and 2% water-injection rates. The Fram elements demonstrated the lowest pressure drop, but the Velcon element was superior in water-removal tests with the DOD element slightly lower.

Table A4 represents flow optimization and life tests with diesel fuel performed on the Fram, Velcon, and DOD elements with two vessels in series and with 0.5% water-injection rate. After a flow rate is determined that will allow no more than 5 ppm water in the second vessel effluent, a sustained life test is performed to determine the rate of element degradation. Both API elements performed considerably better than the DOD elements; the DOD elements were tested only at 10 gpm while the API elements were run at 30 gpm. The Fram element demonstrated the highest overall water-removal efficiency as well as the lowest pressure drop.

Table A5 represents turbine fuel tests performed on the Fram, Velcon, and DOD elements with a single vessel and run at 100% and 115% of rated flow with 0.5%, 7.0%, 5.0%, and 10.0% water-injection rates. The Fram element demonstrated the lowest pressure drop, but differences in water-removal efficiencies between the three elements are not significant.

Table A6 represents a turbine fuel life test performed on LOD elements with a single, 100-gpm vessel and run at rated-flow rate with most of the test at 0.5% water-injection rate. On the eighth day of testing, tests were run at 5.0%, 7.0%, and 10.0% water-injection rates. Concurrent with the life tests, comparisons were made between the Keene 861B turbidimeter (currently used) and the Monitek LT-210/130 turbidimeter.

III. DISCUSSION

7. Effect of Temperature. Graphs of temperature (° F) vs water in the effluent fuel (ppm) for both separators in series (based upon the values of Table A4) are shown in Figures 6, 7, and 8. In each case, water-input rate is held at 0.5%. The fuel-flow rate for the Fram and Velcon elements was set at 30 gpm (50% of rated flow) while the fuel-flow rate for the DOD element was 10 gpm (16.7% of rated flow). Data analyses are shown in Table 2.

Correlation was best with the Fram element, but scattering in all three cases was so marked as to preclude the possibility of establishing a working formula.

8. Effect of Accumulated Flow. Diesel fuel tests could not always be reproduced exactly because the diesel fuel was recirculated continuously and thus was being cleaned continuously. It was not economically feasible to use a fresh batch (1000 gallons) for each test. The problem was twofold: while the batch of fuel was being continuously cleaned, the filter elements were continuously accumulating material (including surfactants and gums) from the fuel. To determine if accumulated flow had any appreciable effect, a plot was made of hours running time vs ppm water in the effluent (Figure 9). To eliminate differences due to temperature variations, only those

Figure 6. Plot of $^{\circ}F$ vs log PPM H₂0 in effluent with diesel fuel at 30 GPM (50% rated flow) using three, 20-GPM Velcon API elements. (Water input rate = 0.5%) (Data from Table A4)

Figure 7. Plot of °F vs log PPM H₂0 in effluent with diesel fuel at 10 GPM (16.7% rated flow) using three, 20-GPM Banner DOD elements. (Water input rate = 0.5%) (Data from Table A4)

Figure 8. Plot of $^{\circ}$ F vs log PPM H₂0 in effluent with diesel fuel at 30 GPM (50% rated flow) using three, 20-GPM Fram, Series 7, API elements. (Water input rate = 0.5%) (Data from Table A4)

Table 2. Data Analysis of Temperature vs PPM H₂0 in Effluent Diesel Fuel

						First Separator		Second Separator	
Fig. No. (Graph)	ïg. No. Element Graph)	Flow Rate (GPM)	% Rated Flow	H ₂ 0 Add Rate (%)	Correlation Coefficient log [PPM] vs T (* R)	Equation $P = PPM H_2 0$ $T = T (^{\circ} R)$	Correlation Coefficient log [PPM] vs T (* R)	Equation $P = PPM H_2 0$ $T = T (^{\circ} R)$	
9	Banner (DOD)	10	16.7	.05	.783	$P = 8.083 \times 10^9 \times [e^{032}T]$.761	$P = 2.596 \times 10^{19} \times [e^{062}T]$	062 T]
2	Fram (API)	98	20.0	.05	.927	$P = 2.184 \times 10^{15} \times [e^{059}T]$.923	P = 3.01 x 10 ¹³ x [e ⁰⁸⁶ T]	086 T]
8	Velcon (API)	90	50.0 .05	.05	.581	P = 8.519 x 10 ¹⁶ x [e ⁰⁶⁵ T]	.749	$P = 2.096 \times 10^{19} \times [e^{084}T]$	04-T]
enter aud e 1 dittil pole						°R = Absolute Scale = °F + 460 e = Natural Logarithm Base = 2.71828	+ 460 ie = 2.71828		

Time into Test (Hrs.)

17 hr x 60 x 30 GPM = 30,600 gallons total flow For a 1000 gallon tank:

$$\frac{30600}{1000}$$
 = 30.6 \approx 30 passes

Figure 9. Plot of time into testing vs PPM H_2O in effluent with diesel fuel at 30 GPM or 50% rated flow using three, 20-GPM Velcon API elements. (Water input rate = 0.5%) Values for temperature range of $62 \pm 2^{\circ}$ F only. (Data from Table A4)

values obtained over a certain temperature interval were included ($62 \pm 2^{\circ}$ F). Data was obtained from the life test of the Velcon API element (listed in Table A4). As can be seen, the curve remains relatively flat. There appears to be some anomalous values after about 17 hours at 30 gpm or after about 30 passes through the separator.

The effect of accumulated flow should not be significant for the life tests performed with turbine fuel. The turbine fuel contains no appreciable amount of gum or surfactants. But a plot of hours running time vs PPM water in the effluent (Figure 10) for $62 \pm 2^{\circ}$ F indicates a sharp break at about 24 hours at 100 GPM or about 144 passes through the separator. This is most likely due to degradation of the filter/coalescer elements and not the fuel. Degradation may be due to surface chemistry effects, mechanical breakdown, or a combination of both.

9. Comparison of Two Turbidimeters. A comparison of the readings of the Keene 861B turbidimeter (range 0-10,000 ppm) and the Monitek LT-210/130 (range 0.1-1000 ppm) was made. A linear relationship was expected, and a linear plot of the two readings is shown in Figure 11. Data analysis indicates a correlation coefficient of 0.873 which is lower than anticipated. A solution to the equation for the best straight line through the points is:

M = 1.695K - 3.416

Where M = Monitek LT-210/130 reading

K = Keene 861B reading.

Figure 10. Plot of time into testing vs PPM H_20 in effluent with turbine fuel, JP-5, at 100 GPM or 100% rated flow using five, 20-GPM Keene DOD elements. (Water input rate = 0.5%) Values for temperature range of 62 \pm 2° F only. (Data from Table A6)

PPM H₂o in Effluent by Keene 861B Turbidimeter

Figure 11. Comparison of Keene 861B and Monitek LT-210/130 Turbidimeters. (Data from Table A6)

IV. CONCLUSIONS

- 10. Conclusions. Based upon an examination and analysis of the test data, it is concluded that:
- a. The two commercial filter coalescer elements designed to meet API Bulletin 1581 show improved performance over the performance of the Military Standard DOD element in removing water contaminant from diesel fuel at temperatures between 40 and 60° F. The Fram element demonstrates a lower overall pressure drop than the Velcon or the DOD elements.
- b. Optimum configuration for a filter separator system for diesel fuel would make use of two filter separators in series using API filter/coalescer elements and with a flow rate no greater than 50% of rated flow.
- c. The API elements and the DOD element demonstrate no significant differences in removing water from turbine fuel.
- d. A continuously recirculated pumping loop is adequate for filter element testing with diesel fuel if the total number of passes through the test vessel does not exceed 30.
- e. Efficiency of water removal is inversely proportional to temperature but no definite formula can, as yet, be established.
- f. The Keene 861B and the Monitek LT-210/130 turbidimeters exhibit a moderate amount of linear correlation.

APPENDIX
SUMMARIZED TEST DATA
Table A1. Comparison Tests, Diesel Fuel
Single Test Filter/Separator with Two, 20-GPM Elements

					0	Sep	Separator		
Type of Element	Type of Fuel	Flow Rate (GPM)	Rated Flow	Fuel Temp. (°F)	Add Rate (%)	ΔP@ 60 min (PSI)	H ₂ 0 Out 10 min (PSI)	ΔΡΘ H ₂ O Out H ₂ O Out 60 min 10 min 9 60 min (PSI) (PSI) (PPM)	Comments
Fram CCSIID	DF-2*	40	100	48-53	0.5	22.0	1295	2795	
(API)	=	40	100	47-54	0.5	18.2	170	210	Retest
	=	20	20	55-59	0.5	10.0	78	95	
	=	20	50	51-55	2.0	11.6	169	179	
		10	25	49-55	0.5	5.0	67.5	71.5	
,		10	52	28-60	2.0	0.9	36.0	53.0	
000									
12083	DF-2*	20	20	53-57	0.5	10.0	0.4	17.0	
(API)	=	20	20	47-53	2.0	12.2	83.5	86.5	
	=	10	25	19-95	0.5	0.9	0.7	9.0	
,	=	10	25	54-58	2.0	7.0	161	14.6	
3520-02-0	DF-2*	20	50	55-58	0.5	11.3	2.7	126.0	-
(000)	=	20	50	42-52	2.0	12.3	482.0	377.0	
	=	10	25	09	0.5	7.5	24.0	36.0	
>	=	10	25	55-59	2.0	7.2	78.0	76.0	

Table A2. Comparison Tests, Diesel Fuel Two Filter/Separators in Series with Three, 20 GPM Elements in Each

	-				И,0			1st Se	Separator	2nd Se	Separator	
Type of Element	Type of Fuel	Rate (GPM)	% Rated Flow	Fue 1 Temp. (%)	Add Rate (%)	Time into	to Test	^A (PSI)	H20 Out (PPM)	AP (PSI)	H20 Out (PPM)	Comments
Velcon 1-42083	DF-2*	30	50.0	44-53	5.0	,	40	1.91	391.3	8.0	3395.6	Test Curtailed
(API)	=	=	=	56-57	5.0	-	-	11.8	60.2	13.0	8.0	Retest
	=	25	41.7	58	5.0		40	10.0	42.2	10.0	1.1	
	=	=	=	58	10.0	1	90	10.2	60.2	8.6	1.0	
	2	30	50.0	58-57	10.0	1	40	13.0	92.2	0.9	3.4	
	=	40	66.7	57	10.0	1	•	16.2	122.0	7.0	7.6	
>	=	=	=	57-58	5.0	1	-	15.7	76.0	10.0	4.0	
Fram CCSIID	DF-2*	30	50.0	49-53	5.0	-	1	10.0	4033	4.0	75.8	
(API)	=	25	41.7	56-58	5.0	-	1	8.9	3970	0.9	73.3	
^	=	20	33.3	55-56	5.0	,	30	7.0	4170	4.0	57.3	Test Curtailed
Fram CCSIID	DF-2*	30	50.0	54-59	5.0	1	1	11.0	177.2	3.0	1.4	Elements Changed
(API)	=		=	59	10.0	-	-	11.9	282.2	4.0	1.4	
		40	66.7	59-58	10.0	-	-	16.0	287.2	0.9	6.1	
	=					2	1	1	252.2	1	7.1	
	2	30	50.0	57-63	5.0	-		12.2	200.0	4.0	3.3	
	=	н	2	99-69	11	9	1	11.8	87.0	4.0	1.5	
	=		=	46-71	=	7		15.1	100.0	0.9	1.5	
	=	30	50.0	42-58	5.0	2	30	16.1	122.0	8.0	2.1	
>	=	30	50.0	54-58	10.0	1	1	15.0	106.0	6.0	1.8	
									-			

* Indicates Fresh Batch of Diesel Fuel

Table A3. Comparison Tests, Diesel Fuel Two Filter/Separators in Series with Three, 20-GPM Elements in Each

Type of Type Flow Rated Temp. Add (°F) mine 60 min							First S	Separator	2	Secor	Second Separator	ator	
110 DF-2* 20 50 55-60 0.5 5.6 31.8 188.8 2.0 2.0	Type of Element	Type of Fuel	Flow Rate (GPM)	Rated Flow	Fuel Temp. (°F)	H20 Add Rate (%)	ΔP@ 60 min (PSI)	H 0 Out @10 min (PPM)	H ₂ 0 Out @60min (PPM)	ΔΡ@ 60 min. (PSI)	H ₂ O Jut @ 10 mir (PPM)	H ₂ 0 Out ©50 min (PPM)	Comments
10 25 63-64 0.5 3.2 62.0 83.0 1.0 0.1 10 25 63-64 0.5 3.2 62.0 83.0 1.0 0.1 10 25 51-56 2.0 4.2 123.0 153.0 0.2 0.4 10 25 51-56 2.0 10.1 4.6 35.6 3.5 0.2 10 25 51-56 0.5 10.1 4.6 35.6 3.5 0.2 11 10 25 51-56 0.5 11.7 6.7 118.7 6.0 0.1 12 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 13 10 25 51-56 0.5 6.1 70.0 58.0 4.0 0.7 14 15 25 55-61 20 6.1 70.0 58.0 4.0 0.7 15 25 25-61 20 6.1 70.0 58.0 4.0 0.7 16 25 25-61 20 6.1 70.0 58.0 4.0 0.7 17 25 25-61 20 6.1 70.0 58.0 4.0 0.7 18 25 25-61 20 6.1 70.0 58.0 4.0 0.7 19 25 25-61 20 6.1 70.0 58.0 4.0 0.7 10 25 25-61 20 6.1 70.0 58.0 4.0 0.7 10 25 25-61 20 6.1 70.0 58.0 4.0 0.7 10 25 25-61 20 6.1 20 20.0 10 25 25-61 20 6.1 20.0 20.0 11 25 25-61 20 6.1 20.0 20.0 12 25 25-61 20 6.1 20.0 20.0 13 25 25-61 20 6.1 20.0 20.0 14 25 25-61 20 6.1 20.0 20.0 15 25 25-61 20 6.1 20.0 20.0 16 25 25-61 20 6.1 20.0 20.0 17 25 25-61 20 6.1 20.0 20.0 18 25 25-61 20 20.0 20.0 19 25 25-61 20 20.0 20.0 10 25 25-61 20 20.0 20.0 11 20 20 20.0 20.0 20.0 12 20 20 20.0 20.0 20.0 20.0 20 20 20 20.0 20.0 20.0 20.0 20 20 20 20.0 20.0 20.0 20.0 20 20 20 20.0 20.0 20.0 20.0 20.0 20 20 20 20.0 20	ram CCSIID			50	55-60	0.5	5.6	31.8	188.8	2.0	2.0	2.2	
10 25 63-64 0.5 3.2 62.0 83.0 1.0 0.1 10 25 51-56 2.0 4.2 123.0 153.0 0.2 0.4 10 25 51-56 2.0 4.2 123.0 153.0 0.2 0.4 20 50 43-49 0.5 10.1 4.6 35.6 3.5 0.2 10 25 51-56 0.5 5.6 1.8 1.8 2.0 0.1 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 10 25 51-56 2.0 11.7 6.7 118.7 6.0 0.0 11 10 25 51-56 2.0 6.1 23.6 26.6 3.0 0.1 12 25 55-61 20 6.1 70.0 58.0 4.0 0.7 13 26 55-61 20 6.1 70.0 58.0 4.0 0.7 14 25 55-61 20 6.1 70.0 58.0 4.0 0.7 15 25 25 25 25 25 25 25	(API)	=	20	50	46-51	2.0	8.0	392.0	452.0	3.0	1.1	3.1	
10 25 51-56 2.0 4.2 123.0 153.0 0.2 0.4 DF-2* 20 50 43-49 0.5 10.1 4.6 35.6 3.5 0.2 20 50 50-59 2.0 10.8 42.0 58.0 3.0 0.1 10 25 51-56 0.5 5.6 1.8 1.8 2.0 0.1 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 10 25 56-59 2.0 11.0 240.5 0.0 11 20 50 50 50-56 2.0 11.0 240.5 0.0 12 20 50 50 50-56 2.0 11.0 240.5 0.0 13 20 50 55-61 20 6.1 70.0 58.0 4.0 0.7 14 25 55-61 20 6.1 70.0 58.0 0.1 15 25 55-61 20 6.1 70.0 58.0 0.1 16 25 55-61 20 6.1 70.0 58.0 0.1 17 20 50 50 50 50 50 50 6.1 18 20 50 50 50 50 50 50 50 50 50 50 50 50 50		=	10	25	63-64	0.5	3.2	62.0	83.0	1.0	0.1	0.1	
"" 20 50 43-49 0.5 10.1 4.6 35.6 3.5 0.2 "" 20 50 50-59 2.0 10.8 42.0 58.0 3.0 0.1 "" 10 25 51-56 0.5 5.6 1.8 1.8 2.0 0.1 "" 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 DF-2* 20 50 43-50 0.5 11.7 6.7 118.7 6.0 0.0 " 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 2.0 6.1 70.0 58.0 4.0 0.7 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	>	=	10	25	51-56	2.0		123.0	153.0	0.2	0.4	9.0	
" 20 50 50-59 2.0 10.8 42.0 58.0 3.0 0.1 " 10 25 51-56 0.5 5.6 1.8 1.8 2.0 0.1 " 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 DF-2* 20 50 43-50 0.5 11.7 6.7 118.7 6.0 0.0 " 10 25 51-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	2083	DF-2*		20	43-49	0.5	1.01	4.6	35.6	3.5	0.2	0.2	
" 10 25 51-56 0.5 5.6 1.8 1.8 2.0 0.1 " 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 DF-2* 20 50 43-50 0.5 11.7 6.7 118.7 6.0 0.0 " 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	(API)	:	20	20	50-59	2.0	10.8	42.0	58.0	3.0	0.1	0.3	
" 10 25 56-59 2.0 6.0 8.8 6.8 2.0 0.1 DF-2* 20 50 43-50 0.5 11.7 6.7 118.7 6.0 0.0 " 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7		=	10	25	51-56	0.5	5.6	1.8	1.8	2.0	0.1	0.2	
DF-2* 20 50 43-50 0.5 11.7 6.7 118.7 6.0 0.0 " 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	>	=	10	25	26-59	2.0	0.9	8.8	8.9	2.0	0,1	0.1	
" 20 50 52-56 2.0 11.0 240.5 200.5 7.0 0.8 " 10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 " 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7 " 10 25 55-61 20 6.1 70.0 6.1 70.0 6.1 " 10 25 55-61 20 6.1 70.0 6.1 70.0 6.1 " 10 25 55-61 20 6.1 70.0 6.1 " 10 25 55-61 20 6.1 70.0 6.1 " 10 25 5	ene CI	DE-2*		20	43-50	0.5	11.7	6.7	118.7	0.9	0.0	0.0	
10 25 51-56 0.5 6.1 23.6 26.6 3.0 0.1 10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	(000)	=	20	50	52-56	2.0		240.5	200.5	7.0	0.8	2.6	
10 25 55-61 20 6.1 70.0 58.0 4.0 0.7	_	=	10	25	51-56	0.5	6.1	23.6	26.6	3.0	0,1	0.2	
	>	=	10	25	19-55	20	6.1	70.0	58.0	4.0	0.7	0.3	
			0									+	

Table A4. Flow Optimization and Life Tests, Diesel Fuel Two Filter/Separators in Series with Three, 20-GPM Elements in Each

				-								
		1	9	100	H20	Time in	Time into Tact	1st Se	Separator	2nd Se	Separator	
Type of	of of	Rate (GPM)	Rated	Temp.	Rate (%)	<u> </u>	250	ΔP (PSI)	H ₂ 0	ΔP (124)	H20	Comments
						(Hr.)	(Min)		(Mdd)	1	(Mdd)	
Keene C1	DF-2*	09	100	57-59	0.5		01	17.0	2132.0	15.0	2142.8	Flow Test
(000)	=	20	83.3	69	0.5	,	10	15.0	2082.0	14.0	1992.8	
		40	66.7	09	0.5	,	10	13.0	1672.0	11.0	1647.8	
	=	30	50.0	09	0.5	,	10	11.0	982.0	11.0	242.8	
	=	20	33.3	62	0.5		10	0.6	82.0	5.0	13.8	=
	=	10	16.7	64	0.5		10		7.0	•	0	=
>		10	16.7	64	0.5	-	•	5.5	3.0	2.0	0	æ
anner Cl		9	1 99	13			01	9 8	1228 0	0 01	1190.0	Flow Test
(000)	1 = 1	9 8	50.0	62	0.5		10	7.0	1028.0		980.0	
-	=	20	33.3	63-64	0.5		40	0.9	288.0	0.9	24.0	
-	2	10	16.7	29-99	0.5	-	•	4.0	0.99	2.0	4.6	=
-	=	10	16.7	09	0.5	-	1	5.4	135.0	2.0	7.7	Life Test -1st DAY
+	=	=	=	62	=	2	•	5.0	140.0	2.0	8.9	=
-	=	=	=	64	=	3	•	4.9	105.0	2.0	7.7	=
-	=	=	=	99	=	4	•	4.8	95.0	2.0	7.2	=
-	=	=	=	89	=	2	•	4.8	100.0	2.0	6.2	=
-	=	=	=	68	=	9	•	4.8	95.0	2.0	5.7	=
	=	=	=	68	=	7	•	4.8	95.0	2.0	5.7	=
	=		=	69		8	•	4.8	95.0	2.0	4.7	
-	=	=	=	25-60	=	6		6.5	175.0	3.0	8.3	Life Test-2nd Day
	=	=	=	63	=	10	,	14.1	160.0	3.0	8.3	
-	-	-	-	-	-		-	10 4	115.0	0 0	2 2	

* Indicates Fresh Batch of Diesel Fuel

Table A4. Flow Optimization and Life Tests, Diesel Fuel (cont'd)

					Н20			1st Se	Separator	2nd Se	2nd Separator	
Type of Element	Type	Flow	Rated	Fuel Temp.	Rate	Time in	Time into Test		H ₂ 0	AP (1961)	H20	Comments
	200	(arm)			(%)	(Hr.)	(Min)	(151)	(PPM)	(Ica)	(PPM)	
_	=	=	=	99	=	12	•	13.0	105.0	3.0	5.3	
		=		89	=	13	•	12.8	95.0	3.0	5.3	•
-	=	=	=	19	=	14		12.8	90.0	3.0	4.5	=
-		=	=	89	=	15		12.5	95.0	3.0	5.3	=
-		=	=	89	=	16	1	12.5	95.0	3.0	5.1	=
>		=		53	=	11		7.2	221.0	5.0	11.3	Life Test-3rd Day
200110	2	00	7 99	43-47	3 0		30	14.0	585.0	0.6	19.2	Flow Test
(ADI)	7-10	3	200	40-51	=		30	10.8	405.0	7.0	5.2	=
	2	=	2 =	51	5.0	-	10	12.8	535.0	7.0	13.2	=
	=	=	=	55-63	10.0	-		10.1	185.0	7.0	1.1	Ξ
	2	=	=	53	0.5	7		10.7	229.0	7.0	2.4	Life Test-1st Day
		=	=	59	=	2		10.3	179.0	7.0	1.8	=
	=	=	=	62	=	3	,	10.1	149.0	7.0	1.4	2
	-	=	=	64		4		10.0	129.0	6.5	1.2	=
-	=	=	=	99	=	5		10.0	119.0	0.9	-:-	=
-	=	=	=	19	=	9		10.0	119.0	0.9	1.0	=
-	=	=	=	89	=	7		10.0	109.0	0.9	6.0	=
		-		69	=	8	•	9.8	104.0	6.0	6.0	=
		=	=	55	5.0	1	•	12.0	201.0	0.9	2.3	=
>	-			55	10.01	-	-	13.8	111.0	0.9	1:1	=
					38.8				-			
	-			-			-					

*Indicates Fresh Batch of Diesel Fuel

Table A4. Flow Optimization and Life Tests, Diesel Fuel (cont'd)

					Hoo			1st Se	Separator	2nd Se	Separator	
Type of Element	Type	Flow	% Rated	Fue 1 Temp.	Add	Time in	Time into Test	AP (1991)	H20	AP (PST)	H20	Comments
	Fuel	GPM	FIOW	۴.	9-6	(Hr.)	(Min)		(Mdd)		(Mdd)	
F 45083	DF-2*	9	66.7	40-43	0.5	,	10	18.0	1086.0	7.0	235.4	
-	=	30	50.0	45-50	-	•	40	14.5	0.963	7.0	3.8	Life Test-1st Day
-	=		-	55	-	2		13.7	0.964	7.0	4.4	=
-	2	=	=	57	=	8	•	13.1	496.0	7.0	12.4	=
	=	=	=	69	=	4	•	12.8	476.0	0.6	1	=
-	=		•	09	=	5	•	12.8	486.0	0.6	ı	
	=	-	=	09	=	9	1	12.8	436.0	0.6	1	=
-		=	-	09	=	7	-	13.0	396.0	0.6	7.4	=
	=		"	09		8	1	13.0	396.0	0.6	7.4	=
	-		,	55	=	6		13.6	440.0	10.0	11.3	ife Test-2nd Dax
	-			58		10		13.5	430.0	0.6	9.8	a
		=	=	09		11	,	13.0	410.0	9.0	7.8	2
	=	=	=	19	=	12	-	12.8	390.0	9.0	7.3	=
			=	63	=	13	-	12.7	390.0	9.0	6.8	
		=	"	63	=	14	•	12.5	380.0	0.6	6.8	-
	=	=		63	=	15	•	12.3	380.0	0.6	6.8	=
			-	63		91	'	12.1	310.0	0.6	6.8	a
	-	=	=	99		17	•	13.0	378.0	11.0	13.2	Life Test-3rd Day
	-	=	=	09	=	18	-	13.0	388.0	11.0	11.2	-
-	-	-		09	=	19	•	13.0	288.0	11.0	10.7	=
	2			09	=	20	-	13.0	278.0	11.0	10.2	=
			•	19		12	-	13.0	308.0	11.0	10.2	
-	=	-	=			- 00	-		2000		11 0	•

* Indicates Fresh Batch of Diesel Fuel

Table A4. Flow Optimization and Life Tests, Diesel Fuel (cont'd)

					H ₂ 0			1st Ser	Separator	2nd Se	2nd Separator	
Type of Element	of	Flow	Rated	Temp.	Rate	Time in	Time into Test	ΔP (PSI)	H20 Out	AP (PSI)	H20	Comments
	- Fe	(GPM)	801	E	<u>8</u>	(Hr.)	(Min)		_		(PPM)	
	=			09	=	23	-	13.0	358.0	11.0	12.2	
	=			09		24	-	13.0	378.0	11.0	11.2	
	=			57	=	25	-	13.0	110.0	11.0	12.2	Life Test-4th Day
	=	=	=	19		56	-	12.8	85.0	11.0	9.7	=
	=			63		27	-	12.5	75.0	11.0	7.8	•
	=	=	=	64		28	•	12.5	65.0	11.0	6.7	=
	=	=	"	65		29	•	12.0	0.09	11.0	6.2	•
	-			64-61	5.0	1	-	12.7	2285.0	10.0	18.2	-
	=		•	44-51	0.01	•		15.0	3030.0	11.0	33.8	=
>	=	2	"	51-53	10.0	1	-	11.0	2180.0	7.0	11.8	=
							76					
										+		
							STATE OF					
1		-										

*Indicates Fresh Batch of Diesel Fuel.

Table A5. Comparison Tests, Turbine Fuel Single Test Filter/Separator with Two, 20-GPM Elements

Type of Type Flow Rated Add Ad			_			H ₂ 0	First				Second Separator	1
STID Spate 40 100 44-56 0.5 10.8 0.6 2.2 6.0 "	Type of Element	Type of Fuel		Rated Flow	Fue Temp.	Add Rate	∆P @ 60 min (PSI)		H20 Out @ 60 mir (PPM)	E H20 Out > 60min (PPM)		Comments
(AP1) " 40 100 54-55 5.0 15.9 6.8 7.0 6.0 6.0 2.0 6.0 <td< td=""><td>Fram CCSII</td><td>Dieat</td><td>1</td><td>100</td><td>44-56</td><td>0.5</td><td>10.8</td><td>1</td><td>2.2</td><td>6.0 (48</td><td></td><td></td></td<>	Fram CCSII	Dieat	1	100	44-56	0.5	10.8	1	2.2	6.0 (48		
" 46 115 46-51 0.5 9.8 0.6 2.0	(API)	=		100	54-55	5.0	15.9	8.9	8.9			
" 46 115 45-54 2.0 14.8 8.7 8.7 8.7 " 46 115 54-55 2.0 13.5 4.7 4.7 - 4.7 " 46 115 54-55 5.0 13.5 4.7 4.7 - 4.7 " 46 115 54-55 5.0 13.5 4.7 4.7 - 4.7 142083 152 40 115 51 10.0 15.8 28.8 N/A - 1.4 (API) " 40 100 55 2.0 23.8 0.2 0.8 - 4.7 " 40 100 49-50 5.0 29.5 23.0 23.0 0 - 4.7 " 40 100 46-50 10.0 29.5 26.8 28.8 - 4.7 " 46 115 53-56 0.5 14.6 0 0 0 - 4.7 \$		=	46	115	46-51	0.5	8.6	9.0	2.0	-		
" 46 115 54 5.0 13.5 4.7 4.7 " 46 115 54 5.0 17.6 528.8 528.8 " 46 115 54 5.0 13.5 4.7 4.7 " 46 115 51 10.0 15.8 28.8 N/A 12083 \$\frac{1}{12083} \rightarrow{4} \rightarrow{40} \rightarrow{100} \rightarrow{51-54} \rightarrow{0.5} \rightarrow{23.8} \rightarrow{0.2} \rightarrow{0.20} \rig		=	46	115	45-54	2.0	14.8	8.7	8.7	2 3 7 7		
115 54 5.0 17.6 528.8 \$28.		=	46	115	54-55	2.0	13.5	4.7	4.7	•		1
" 46 115 54-55 5.0 13.5 4.7 4.7		=	46	115	54	5.0	17.6	>28.8	>28.8			
Vertcon 146 115 51 10.0 15.8 28.8 N/A Vertcon 142083 19535 40 100 51-54 0.5 18.0 0			46	115	54-55	5.0	13.5	4.7	4.7	-		
Vertcon 142083 year 40 100 51-54 0.5 18.0 0 0 142083 40 100 51-54 0.5 18.0 0 0 0 (API) " 40 100 49-50 5.0 29.5 >>30.0 >>25.0 0.8 " 40 100 46-50 10.0 29.5 26.8 >>28.8 " 46 115 53-56 0.5 14.6 0 0 * " 46 115 55 5.0 26.0 2.0 3.2 * " 46 115 55 5.0 26.5 3.3 6.8 \$\$\frac{3520-021}{4}\$ \$\$\frac{35}{4}\$ 46 115 55 5.0 26.5 3.3 6.8 \$\$\$\frac{3520-021}{4}\$ \$\$\frac{35}{4}\$ 115 52 5.0 20.5 1.9 1.9 \$	-	-	46	115	51	10.0	15.8	28.8	N/A	-		
40 100 51-54 0.5 18.0 0 0 0 0 0 0 0 0 0		100					0.00		-			+
40 100 55 2.0 23.8 0.2 0.8 40 100 49-50 5.0 29.5 >30.0 >30.0 40 100 47-50 10.0 30.0 >25.0 >25.0 46 115 53-56 0.5 14.6 0 0 46 115 55 5.0 26.0 2.0 3.2 46 115 55 5.0 26.5 3.3 6.8 46 115 50-53 0.5 14.8 0 0 50-53 0.5 14.8 0 0 60 115 52 5.0 20.5 1.9 1.9 70 70 70 70 70 70 70		JP-5	40	90	51-54	0.5	18.0	>				-
40 100 49-50 5.0 29.5 >30.0 >30.0 >30.0 >30.0 >25.	(API)	•	40	100	55	2.0	23.8	0.2	0.8	-		
40 100 47-50 10.0 30.0 >25.0 >25.0 40 100 46-50 10.0 29.5 26.8 >28.8 46 115 55 5.0 26.0 2.0 3.2 46 115 55 5.0 26.5 3.3 6.8 46 115 50-53 0.5 14.8 0 0 46 115 50-53 0.5 14.8 0 0 46 115 52 5.0 20.5 1.9 1.9 46 115 52-51 10.0 22.2 8.9 10.9 47-50 22-51 20.5 3.3 6.8 48 115 52-51 20.5 3.9 30.9 49 40 40 40 40 40 40 40		•	40	100	49-50	5.0	29.5	>30.0	>30.0	-		
40 100 46-50 10.0 29.5 26.8 >28.8 46 115 55 5.0 26.0 2.0 3.2 46 115 47-50 5.0 26.5 3.3 6.8 46 115 50-53 0.5 14.8 0 0 46 115 52 5.0 20.5 1.9 1.9 46 115 52-51 10.0 22.2 8.9 10.9 46 115 52-51 10.0 22.2 8.9 10.9 5 5 5 5 5 5 5 5 5		=	40	100	47-50	10.0	30.0	>25.0	>25.0	-		
46 115 53-56 0.5 14.6 0 0 0 46 115 55 5.0 26.0 2.0 3.2 46 115 47-50 5.0 26.5 3.3 6.8 963 46 115 50-53 0.5 14.8 0 0 46 115 52 5.0 20.5 1.9 1.9 46 115 52-51 10.0 22.2 8.9 10.9 46 115 52-51 10.0 22.2 8.9 10.9 5 5 5 5 5 5 5 5 5		=	40	100	46-50	10.0	29.5	-	>28.8	-		-
46 115 55 5.0 26.0 2.0 3.2 46 115 47-50 5.0 26.5 3.3 6.8 98=5 46 115 50-53 0.5 14.8 0 0 46 115 52 5.0 20.5 1.9 1.9 46 115 52-51 10.0 22.2 8.9 10.9			46	115	53-56	0.5	14.6	0	0	-		
### 46 115 47-50 5.0 26.5 3.3 6.8 ### 46 115 50-53 0.5 14.8 0 0 0		=	46	115	. 55	5.0	26.0	2.0	3.2	3.6 (80		
## 46 115 50-53 0.5 14.8 0 0 0	>	=	46	115	47-50	5.0	26.5	3.3	6.8	-		+
" 46 115 52 5.0 20.5 1.9 1.9 1.9 " 46 115 52-51 10.0 22.2 8.9 10.9	3528-02-0	36.35	46	115	50-53	0.5	14.8	0	0	1.		
46 115 52-51 10.0 22.2 8.9 10.9	(000)	=	46	115	52	5.0	20.5	1.9	1.9	•		1
	*	*	46	115	52-51	10.0	22.2	8.9	10.9	1		+
												+
		-										-

Table A5. Comparison Tests, Turbine Fuel (cont'd)

Add Rate (%) 0.5 0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Fuel Temp. (°F) 51-59 51-54 59-60 53-54 54-52	
		311 001 001 001 001

Table A6. Life Test, Turbine Fuel, DOD Elements Single 100 GPM Military Standard Filter Separators with Five, 20-GPM DOD Elements

Type of Element	Type	Flow	% Rated	Fue 1 Temp.	H20 Add Rate		Time into Test	ģ	H20	H ₂ 0	4
	Fue	(GPM)	Flow	(%)	(%)	(F.)	(Min)	(PSI)	(PPM)	(PPM)	COMMENTS
13530-02	JP-5	100	100	52	0	0	0	9	-	-	First Day
(000)				54	0.5	-	10	6	0	•	2
				89	-	-	30	11	0	•	•
	=	"	"	19	"			14	0	•	
	=	-	=	63	"	2	-	15	0	1	=
	=	-	•	99		3	-	16	0	•	=
	=	-	=	99	-	4	•	16	0	٠	
-	=	=	-	69	-	2		16	0		
-	=	=	=	54		9		20	0.4	•	Second Day
	=			28	=	7		22	0.4	-	
	=	-	=	09		8	-	22	0.1	•	2
	=			09	=	6	•	22	0.2	•	
	=	,,	u	19	"	10	•	23	0.2	0.34	-
	и		,,	62	=	11	•	23	0.2	0.18	=
	"	•		62	=	12	•	23	0.2	0.18	=
		=	=	62	=	13	•	23	0.2	0.44	=
	=			56		14	-	20	0.9	0.15	Third Day
	2		•	19	=	15	•	22	8.0	0.01	
	=			63	=	16	-	22	0.7	0.43	=
			•	63		17	-	22	9.0	0.35	=
				64	•	18		22	9.0	0.35	=
				65		19		22	9.0	0.38	=
	"	=	=	65	-	20	•	22	0.6	0 37	

Table A6. Life Test, Turbine Fuel, DOD Elements (cont'd)

Type	Flow	8 to	Fuel	H 20 Add Time into Test	Time in	to Test	9	H20	H20	
Fuel	Sec. 10	Flow		(%)	(Hr.)	(Min)	(PSI)	(PPM)	(PPM)	comments
=	-		9		21	ſ	22	9.0	0.37	=
•			50		22	•	24	0.4	0.60	Fourth Day
-			62		23	1	24	0.4	09.0	
=	=	=	64	=	24	•	24	11.5	8.60	п
=	=		63		25	ŀ	23	11.5	9.00	
=			64		56	•	23	11.5	9.00	
2		"	64	п	27	•	23	11.0	8.40	=
=	=		64		28	•	23	11,0	8.60	=
	=		64	=	29	-	23	11.0	00.6	=
=		-	09		30	-	24	11.6	10.80	Fifth Day
=		=	63		31	-	24	11.6	10.80	=
			65	=	32	-	24	10.6	9.20	
=	=	"	99		33	-	23	9.6	8.80	=
=	=		89	•	34	ı	24	9.6	8.80	=
=	=	-	69	•	35		24	9.6	8.80	=
=	=	-	69	=	36	:	24	9.6	8.80	=
=	=	=	69	-	37	_	24	9.6	7.30	=
•	•		99	•	38		25	8.3	09.6	Sixth Day
=	=	-	09		39	-	25	8.2	9.20	•
=	2		09	=	40	-	25	6.7	6.50	2
			09		41	-	25	6.4	7.00	-
			09		42	-	25	7.2	8.60	=
=	=	=	09	=	43	-	20	2 2	-	•

* Using Keene 861B Turbidimeter

** Using Monitek LT-210/130 Turbidimeter

Table A6. Life Test, Turbine Fuel, DOD Elements (cont'd)

Type of Element	Type of	Flow Rate	Rated	Fuel Temp.	H ₂ 0 Add Rate		Time into Test		H20 00t*	H 0	Comments
	201	(aun)	5	(0)	(%)	(Hr.)	(Min.)	(PSI)	(Mdd)	(Mdd)	
				29	"	44	•	25	6.2	8.20	
	i			62	,	45	•	25	6.2	8.20	=
				54	2	25		23	11.5	8.20	Seventh Day
	,			99		47	•	24	0.9	4.40	=
		"		99		48	-	24	5.0	4.40	=
	=			25		69		24	5.8	4.20	-
				89		09	•	24	5.5	4.40	
				58	=	51	•	25	5.0	4.20	=
			-	09	:	52	-	25	5.5	4.60	=
		100	100	55	5.0	•	10	30	20.7	25.80	Eighth Day
			"	55	=	•	20	30	18.7	25.80	
		•		55		•	30	30	19.7	25.80	•
				55		•	40	30	19.7	25.80	
				55		•	20	30	17.7	27.80	
-				55		-		8	17.71	28.80	
	=	-	=	55	=		10	30	16.2	28.80	
		•		55	-	1	20	30	14.7	27.80	=
1			ú	55	•	1	30	30	14.2	27.80	=
	-	100	100	55	7.5	1	10	33	16.7	35.80	
				54		-	20	33	18.2	37.80	=,
			•	55	•	-	30	33	17.7	35.80	=
		-	=	54	=	•	40	33	18.7	34.80	-
	-	-	=	56	10.0		10	35	22.7	35.80	

Table A6. Life Test, Turbine Fuel, DOD Elements (cont'd)

Type of Element	Type	Flow Rate (GPM)	% Rated Flow	Fuel Temp.		H ₂ 0 Add Time into Test Rate	to Test		H20	F20	Comments	
	3					(Hr.)	(Min)	(PSI)	(PPM)	(PPM)		
	"	2		54		•	50	36	18.7	32.80	-	
	=	=		54	=		30	36	20.7	39.80	=	
	=	=	=	54	-		40	36	23.7	41.80	=	
-	=	=		53	=		50	36	21.7	35.80	=	
>	=	=	-	53	-	-	-	37	18.7	32.80	=	
				k			1 28		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			10	188		8						
												-9
						1						
				100	7							
				100								
				a de la companya de l								-
				The Court of the C		THE STATE OF	- Control of the cont		The second second			

DISTRIBUTION FOR MERADCOM REPORT 2176

No. Copies	Addressee	No. Copies	Addressee
1	Department of Defense Director, Technical Information Defense Advanced Research Projects Agency	1	Director Army Materials and Mechanics Research Center ATTN: DRXMR-STL Technical Library
	1400 Wilson Blvd Arlington, VA 22209		Watertown, MA 02172
l media	Director Defense Nuclear Agency ATTN: STTL Washington, DC 20305	Adams Sa	US Army Ballistic Research Laboratories Technical Library DRXBR-LB (Bldg 305) Aberdeen Proving Ground, MD 21005
12	Defense Documentation Center Cameron Station Alexandria, VA 22314	1 (g)	Commander Edgewood Arsenal
	Department of the Army		ATTN: SAREA-TS-L Aberdeen Proving Ground, MD 21010
6	Commander US Army Materiel Development and Readiness Command	1	Commander US Army Aberdeen Proving
	ATTN: DRCRD-WB DRCRD-T DRCRD-J DRCRD-O DRCRD-G DRCRD-FP 5001 Eisenhower Ave Alexandria, VA 22333		Ground ATTN: STEAP-MT-U (GE Branch) Aberdeen Proving Ground, MD 21005
1	Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 23651	1	Director US Army Materiel Systems Analysis Agency
1	HQDA (DAMA-AOA-M) Washington, DC 20310		ATTN: DRXSY-CM Aberdeen Proving Ground, MD 21005
1	HQDA (DAEN-RDL) Washington, DC 20314	1,	Director US Army Engineer Waterways Experiment Station
1.	HQDA (DAEN-MCE-D) Washington, DC 20314		ATTN: Chief, Library Branch Technical Information Center
1 2.40	Commander US Army Missile Research and	Alle ac Mil	Vicksburg, MS 39180 Commander
	Development Command ATTN: DRSMI-RR Redstone Arsenal, AL 35809		Picatinny Arsenal ATTN: SARPA-TS-S No. 59 Dover, NJ 07801
1 26 10 10 10	Chief, Engineer Division DCSLOG ATTN: AFKC-LG-E HQ Sixth US Army Presidio of San Francisco, CA 94129		20101,19

No. Copies	Addressee	No. Copies	Addressee
1	Commander US Army Troop Support and Aviation Materiel Readiness Command ATTN: DRSTS-KTE 4300 Goodfellow Blvd	1	Plastics Technical Evaluation Center Picatinny Arsenal, Bldg 176 ATTN: A. M. Anzalone SARPA-FR-M-D Dover, NJ 07801
	St Louis, MO 63120		
2	Director Petrol & Fld Svc Dept US Army Quartermaster School Fort Lee, VA 23801	1	Commander Frankford Arsenal ATTN: Library, K2400, B1 51-2 Philadelphia, PA 19137
1	Commander US Army Electronics Research & Development Command ATTN: DRSEL-GG-TD	1	Learning Resources Center US Army Engineer School Bldg 270 Fort Belvoir, VA 22060
1	Fort Monmouth, NJ 07703 President US Army Aviation Test Board ATTN: STEBG-PO Fort Rucker, AL 36360	1	President US Army Airborne Communications and Electronics ATTN: STEBF-ABTD Fort Bragg, NC 28307
1	US Army Aviation School Library P.O. Drawer 0 Fort Rucker, AL 36360	1	Commander Headquarters, 39th Engineer Battalion (Cbt)
1	HQ, 193D Infantry Brigade (CZ) Directorate of Facilities Engineering Fort Amador, Canal Zone	1	President US Army Armor and Engineer Board
1	Commander Special Forces Detachment (Airborne), Europe	1	ATTN: ATZK-AE-TD-E Fort Knox, KY 40121 Commandant
1	APO New York 09050 HQ, USAREUR & Seventh Army DCSENGR, ATTN: AEAEN-MO ATTN: Mil Ops Div APO New York 09403	1	US Army Command and General Staff College ATTN: ATSW-RI-L Fort Leavenworth, KS 66027 Commander
2	Engineer Representative US Army Standardization Group, UK Box 65, FPO New York 09510		2nd Engineer Group ATTN: S4 APO San Francisco 96301
1	Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 61201	1,000 0986 2,	Commander and Director USAFESA ATTN: FESA-RTD Fort Belvoir, VA 22060 MERADCOM
		1	Commander Technical Director Assoc Tech Dir/R&D Assoc Tech Dir/Engrg & Acq

No. Copies	Addressee	No. Copies	Addressee
	Assoc Tech Dir/Matl Asmt Assoc Tech Dir/Tech Asmt CIRCULATE	1	Commander Naval Sec Systems Command ATTN: NAVSEA Code PMS 303.5 Washington, DC 20360
1	Chief, Lab 3000 Chief, Lab 3000		Department of the Air Force
	Chief, Lab 4000 Chief, Lab 5000 Chief, Lab 6000 Chief, Lab 7000	1	HQ USAF/RDPS (Mr. Allan Eaffy) Washington, DC 20330
	Chief, Lab 8000 Chief, Lab 9000 Chief, TARSO CIRCULATE	1	Mr. William J. Engle Chief, Utilities Branch HQ USAF/PREEU Washington, DC 20332
1 1 1 3	Lab 2000 Fuels Hdlg Eqpt Div Research & Dev Group Tech Reports Ofc	1	AFSC/INJ Andrews AFB, MD 20334
3 3 2 1	Security Ofc Tech Library Requirements & Programs Ofc	1	AFCEC/XR/21 Tyndall AFB, FL 32401
1	Information Ofc Legal Ofc	1	HQ USAF/PREES ATTN: Mr. Edwin B. Mixon Bolling AFB-Bldg 626
	Department of the Navy		Washington, DC 20332
1	Director, Physics Program (421) Office of Naval Research Arlington, VA 22217	1	AFAPL/SFL Wright-Patterson AFB, OH 45433
1	Director Naval Research Laboratory ATTN: Code 2627 Washington, DC 20375	1	Department of Transportation Library, FOB 10A, TAD-494.6 800 Independence Ave., SW Washington, DC 20591
1	Commander, Naval Facilities Engineering Command		Others
	Department of the Navy ATTN: Code 032-A 200 Stovall St Alexandria, VA 22332	1	Professor Raymond R. Fox School of Engineering and Applied Science The George Washington
1	US Naval Oceanographic Office Library (Code 1600) Washington, DC 20373	1	University Washington, DC 20052 Commandant
1	Officer-in-Charge (Code L31) Civil Engineering Laboratory Naval Construction Battalion Center Port Hueneme, CA 93043		US Coast Guard ATTN: ENE 400 Seventh St., SW Washington, DC 20590
1	Director Earth Physics Program Code 463 Office of Naval Research Arlington, VA 22217		