
rM HASSAUITS INSI OF TEcH cAHBRIDGE ARTIFIcIAUIIUIG
A SYSTEM FOR UNDERSTANDING PROGRAMS, (U)

AI—M 3fl

MATHEMATICAL FORTRAN
N0001’# 75 C—06143

END
DATE

FPLME%
I—r i

LO~~~LL

11111 LI I~
11 1.25 1111 1.4 11111 1.6
II ______ WI _ mii~~~ ~~

MICROCOPY RESOLUTION TEST CHART
N~ T’ON*L RuI!Ou oc STA$~O~~D$ — A


~~~~~~~~~~~~~~~~~~~~ 

., 
~
-.‘

~
--

~~
-. 

~~~~~~~
. ..~ ~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~ . .— .

S
I

Massachusetts Institute of Thchnology

Artificial Intelligence Laborato ry

,i
~~1 Cambrid ge, Massachusetts

Memo 368

May 1976 revIsed August 1976

A System For Understanding Mathematical FORTRAN Programs

Richard~~ Waters

z ~O ~~ ~~~~ :
\

ABSTRACT

This paper proposes a system which, when implemented, will be abl, to understand
mathematical FORTRAN programs such as those in the IBM Scientific Subroutine
Package. The system takes , as input , a program and annotation of the program . In
order to understand the program , the system develops a plan for it. The plan0

specif ies the purpose of each feature of the program , and how these features
cooperat. in order to create the behavio r exhibited by the program. The system
can use its understandi ng of the program to answer quest ions about it including
questions about the ramifi cations of a proposed modificat ion . It is also able to aid
in debugging the program by detecting errors in it, and by locatin g the features of
the program which are r.sponsl ble for an error. The system shou ld be of
significant assistance to a parson who is writ ing a program.

This report describes research done at the Artificial Intelligenc e Laboratory of the Mass~~husstts
Inst itute of Technology. Support for the Laboratory’s artificial intelfigenc. research I~ provided in

L L. part by the Advanced Research Project Agency of the Department of D.ferm. under Off ice of Naval (L1
Ru.arch contract N8$814-75-C-B643.

—

~~~~~~~~~~~~~~~~~~ A



________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~ . . .

ACKNOWLEDGMENTS

I would particularl y like to acknowledge the assistance of C. Rich with whom I
discussed many aspects of this paper. In addition I would like to thank a J.
Susiman, a Smith and A. L Brown for their comments. .

I

—

~

—

~

—-

~

—~~~ ---.-~~~~—-~— — ~~~~~~ —— ~~ 1

_ ,~~~~~__-..

1 - •
I

U I CLASS I F I ED
SECURITY CLASSIFICATION OF THIS PA GE. (W14.fl Das. £nt.i,d.)

READ INSTRUCTIONSREPORT DOCUMENT ATION PAGE BEFORE COMPL.ETrNG P)RM
-

2 GOV Acç EssIoM~Mo I RECIPIENT S CATALOG NUMbER~ REPORT NUMBER

Memo No. 368 —“ (III~i~’ 5. TYPE OF REPORT & PERIOD COVERED4. TITLE (end SubU lie)

(I~
/ A System for Understanding Mathematical] Memo
FORTRAN_Programs

7~~ .___—
.,,

8. PERPORMING ORG. REPORT NUMRER

7. AUTHO*(.) ‘. 5.~~~~ jJ RACT OR GRANT NUM~~ER(..)(
~

fi~ictiari c/water~7
(
~ ~ 4_75-c_,d~43J

1. PERFORMING ORGAN IZATION NAM E AND ADDRESS t0. PROGRAM ELEMENT. PROJECT . TASK
AREA è WORK UNI T NUMBERSArtificIal Intelligence Labo

545 Technology Square g t:T:~
‘‘

Cambridge,_Massachusetts 02139 __________________________
T I~A~~~

_II. CONTROLLING OFFICE NAME AND A DDRESS
Mvanced Research Projects Agency

~~ ~
‘
AuaLJLJ176 1

1400 Wilson Blvd .

Arl ington, VirginIa 22209 76
i4. MONITORING AGENCY NAME S ADDRESS(U dill .t.ns f rom Con*rolIt,,1 Office) II. SECURITY CLAIL (of lid . r.port)

Office of Naval Research UNCLASSIFIED
information Systems . V

Arlington, Vir gInia 22217 u1~ DEc~LASSIFICAT,ON 1OOWNORAOING
SCHEDuLE

IS. DISIRICUTION STATEMENT (of tldà R. oct)

Distribution of this document IS unlimited .

17. DIST RIBUTION STATEMENT (of IA. ab.izacI entered I. , block 20, Sf er~~ from Repel)

IS. SUPPLEMENTARY NOT ES
. -

None

IS. KEY CORDS (Conliom. en MveIS •Ide if nec••Ie y end Sl.øli ~~ $~ block nomboc) V

plans progranrnlng assistant systems
program understanding representation of knowledge
debs~ g1ng
automatic verification

¼
~

A•STRACT (011411 1. en rover.. .ld. if noc•eomV end l*n1157 57 block menber)

his ~ap,e/ proposes a sv~ em’whlch, when implemented, will be able to under-
staild m4(henatlcal FORZ~.M frograms such as those In the IBM Scientific
Subrout4ne Package. $VIe system takes, as input, a~rogram and annotation of• th. pr6aram. In ord~~4o understand the program, he system develops a
¶lan”~~or It. The 9~,lan~”~peclfies the purpose of each feature of the pro-gram , and how these features cooperate In order to create the behavior exhib- cø3t,
ited by the program. The system can use its understanding of the program~~~~~

V -~~

~~~ FORM
•‘~, I JAN 13 1413 EDITION OP I NOV IS IS OCIOLEYt UN CLASS I F lED

S/N 0102.014-810 1 CURI TY CLA3IIPICAT ION OP THIS PACE (Cli.. Del. In*e,.d)

~



• ~~~~~~~~~~~~~~ 
~~~~~~ — V •~V~ • • V •~~ •~~

V
~~~~~~~~~~~~~ ~~~~~~~~~ VV ~~~~~~~~~~ • V  —• ~~~~~ _~• ___~ •_, •VVV

_
~ — 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -

..

BLOCK 20 CONTINUED:

answer questions about It including questions about the ramifications
of a pro~.osed modification. It is also able to aid in debugging the
program by detecting errors In It, and by locating the features of the V

program which are responsible for an error. The system should be of
•

V
significant assistance to a person who Is writing a prograrn.~~ç

H
H

H

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-~ -~‘ -~~~ - . ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



_ ~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~ 

V_ w
~~

•. -
~.u~~jL~~•j i gf - -

~~~~~~~~~
- 

~
- .

~~~~
- — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ _~~~~ -_ . . .

0$
~ -I

Richard C. Waters 1 CONTENTS

I. A PROGRAM UNDERSTANDING SYSTEM 1
1.1 BRIEFLY, WHAT THE SYSTEM DOES 1
1.1.1 ANSWERING QUESTIONS ABOUT A PROGRAM 1
1.1.2 DETECTING INCONSISTENCES IN THE PROGRAM AND ITS DESCRIPTION 1
1.1.3 AIDING IN THE DETECTION AND UNDERSTANDING OF BUGS 1
1.1.4 INVESTIGATING THE RAMIFICATIONS OF A MODIFICATION 2
1.2 BRIEFLY, HOW THE SYSTEM WORKS 2
1.2.! ThE STRUCTURES WHICH DESCRIBE A PROGRAM 2
1.2.2 HOW THE SYSTEM USES THE DESCRIPTIVE STRUCTURES 2

4 1.2.3 HOW THE DESCRIPTIVE STRUCTURES ARE BUILT UP 3

V

1.3 WHY THE SYSTEM IS VALUABLE 3

LA RELATIONSHIP TO OTHER WORK 3
1.4.1 OTHER APPROACHES TO THE SAME GOAL 4
1.4.1.1 GENERAL PURPOSE HiGH LEVEL LANGUAGES 4

V

1.41.2 SPECIAL PURPOSE SYSTEMS 4
1.4.1.3 USING GOOD PROGRAMMING STYLE 5

V 1.4.1.4 AUTOMATIC PROGRAMMING 5
1.4.1.5 AUTOMATIC VERIFICATION 6
1.4.1.6 PROGRAMMING ASSISTANT SYSTEMS 6
1.4.1.7 PROGRAM UNDERSTANDING 7

F. 1.4.2 SIMILAR APPROACHES 7
1.4.2.1 SUSSMAN 8
1.4.2.2 GOLDSTEIN 8
1.4.2.3 RUTH 9

* j -~-
~ 1.4.2.4 BROWN 9

1.4.25 GERHART V 18
1.4.2.6 HEWITT and SMITH 10
14.2.7 GREEN and BARSTOW 10
1.4.2.8 RICH and SHROBE 11
1.4.2.9 IBM 11

II. THE TASKS THE SYSTEM CAN PERFORM 12 V

11.1 ANSWERING QUESTIONS ABOUT A PROGRAM 14
11.1.1 REQUESTS FOR DESCRIPTION, “wHAr 14V V

11.1.2 REQUESTS FOR EXPLANATION, “HOW’ 15
11.1.3 REQUESTS FOR PURPOSE, “WHY” f~

—..... , 16
11.1.4 REQUESTS FOR JUSTIFICATION, ‘WI{y” /V V A V V

~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ / 17
11.2 AIDING THE DEBUGGING PROCESS f P ~ V

~~~ ‘—_...f/ 18
11.2.1 FINDING BUGS STATICALLY I ~ 

W•~~ 
~~~ 19

11.2.2 FINDING BUGS DYNAMICALLY / L ~~~~
~~~~~~~~ ~j  I 20

11.3 UNDERSTANDING MODIFICATIONS 
,, ~~~~~~~~~~~~~~~ 

22

I

V 

~~~~~~~~~ V4V~~_ . V V,
VV ~~~~~~ V _ V &_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

~ 4 V4VV ~4V.~ V SV V V V •4~ V4V~~_ .V .k._ &~4 V.4 ~_V4& V.V_S~~4_ VV ~~~_ ~~~~~~~~~~ 4 VV ~~ L4~~~• VVV4 ~ _V VV4 V~ ~~~~~~~~~~~~~~ 4_4VV _V~V..V_ ~~
_

~V 4 ~

_______ V V ~~ V -— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V •~~~•V _V V~ V4_ •4 ~V~ VV_

~ S*~T V., ._.._ ~. .V _._ __ _ _ *.. V~~~~~ _~~~~~V - _V V _~. . —

I_ V
~

Richard C. Wat.rs 2 CONTENTS

III. HOW THE SYSTEM WORKS 24
C) V

V 111.1 DECOMPOSITION OF A PROGRAM - 24
111.1.1 SEGMENTS 24
111.1.1.1 A SMALL EXAMPLE 24
111.1.2 CONNECTIVE TISSUE 25
IILI.2.1 DATA FLOW CONNECTIVE TISSUE 25

V

111.1.2.2 CONTROL F LOW CONNECTIVE TISSUE 25
111.1.3 PROGRAM TRANSFORMATIONS 26
111.1.3.1 REARRANGEMENT 26 V

111.1.3.2 SUBSTITUTION 26
111.1.3.3 FACTORING IN SPACE 27
111.1.3.4 FACTORING IN TIME 27
111.1.3.5 MOVING COMPUTATION BETWEEN THE CODE AND THE FLOW OF CONTROL 28
111.1.3.6 MOVING COMPUTATION BETWEEN THE CODE AND THE DATA FLOW 28

111.2 THE STRUCTURES USED TO DESCRIBE A SEGMENT 30
111.2.1 BEHAVIORAL DESCRIPTIONS 30

I

111.2.1.1 POINTS OF VIEW 30
111.2.1.2 RELATING BEHAVIORAL DESCRIPTIONS 31
111.2.2 PLANS 32

111.3 THE BASIC PLAN TYPES 36
111.3.1 THE GOAL DECOMPOSITION METHOO “AND’ 36

V 111.3.1.1 THE PLAN TYPE “AND” 36
111.3.2 THE GOAL DECOMPOSITION METHOD “XOR” 37 V

111.3.2.1 THE PLAN TYPE “CASE XOR” 37
111.3.2.2 THE PLAN TYPE “CONO XOR” 38
111.3.3 THE GOAL DECOMPOSITION METHOD “COMP” 39
111.3.3.1 THE PLAN TYPE “COMP” 39
111.3.4 LOOPS 40

V

111.3.4.1 THE PLAN TYPE “LOOP” 43
111.3.4.2 THE PLAN TYPE “ENUMERATION LOOP” 44

V

111.3.4.3 THE PLAN TYPE “AUGMENTED LOOP” 45
111.3.4.4 THE PLAN TYPE “INTERLEAVED LOOP” 46

111.4 DETERMINING THE DESCRIPTION OF A PROGRAM 48
111.4.1 CONTROL FLOW 50
111.4.5 SEGMENTATION 57
111.4.6 PLANS 57

V 111.4.7 BEHAVIORAL DESCRIPTIONS 57
111.4.8 THE GRAND PLAN FOR CONVT 58
111.4.9 TRANSFORMATIONS 61

- . V - - —
~

— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

MV. ~~~~~~~~~~~~~~~~~ - - - ~~~ V V V~~~ V~~~ ’
.... ~ n

Richard C. Waters 1 1. A PROGRAM UNDERSTANDING SYSTEM

1. A PROGRAM UNDERSTANDiNG SYSTEM -

This research project is conc erned with d.signing and lmplem.nt ing a program understanding
system. This section briefly descri bes what the proposed system do.., how it does it, arid why it Is
worth doing. S.ctions U and ill specify, in greater detail, what th. system does and how it do. . It.
This paper speaks of the program understanding system in the present tense. However, it should be
noted that the system has not been imp lemented yet.

1: 1.1 BRIEFLY, WHAT THE SYSTEM DOES
~~jV Th. syst em understands mathematica l FORTRAN programs. It does not attempt to understand

the mathematics embodied in a prog ram, but only the programming. A mathematical program can be
considered as the implementation of a theorem. The sys tem does not try to understand th, theorem.
It just believes it. What it does do, is to understand how the program implements th. theorem.

Mathematical FORTRAN progra ms were chosen as the domain because they are a
straightforward type of program. They are real programs that use only a smal l subset of possible
programming techniques. In particular , they use only simple data types (numbers , arrays, f unctions),
simple control structure (no recursion , no asynchr ony), static variables and no I/O. Furtherm ore, in
the IBM SSP subroutine library, there are a large number of reasonably structured real programs to
serve as experimental data for the system. These programs are a good test of a program V

‘ understanding system , because they were not specifically written to be understood I~
y such a system.

The system demonstrates its unders tanding of a program through its ability to perform severa l tasks
which require understanding. V

1.1.1 ANSWERING QUESTIONS ABOUT A PROGRAM

V

V

~
.. The system is able to answer questions about a program it understands, such as: V

a) What is this part of the program?
b) What does this part do?

V c) Why is this part here?
d) What is the function of this part?
e) How does this part do what it does?
f) What part achieves this goal?

In other words , it is able to explain a program , to impart its understanding of it to another.

1.1.2 DETECTING INCONSISTENCES IN THE PROGRAM AND ITS DESCRIPTION

The system does not attempt to prove the correctness of a program. However , it is able to
detect simple inconsistences in its understanding of a program. It can detect a variety of problems
where It can be simply shown that a segment of $ program can not possibly achieve the resu lts
requested of it. The system ’s deductive apparatus consists largely of pattern matching, and trial by
example. This allows it to prove many assertions false , but few correct. —

1.1.3 AIDING IN THE DETECTION AND UNDERSTANDING OF BUGS

The system can apply its understanding of a program to aid in the task of debugging it. When
running the program in a careful mode, the system constantly checks whether a contradiction has
arisen between It. understanding of the program, and what Is actusily happening. The moment a
contradiction appears, the system reports it. This causes bugs to be found closer to their point of
origin than in an Ordinary programming system. For example , th, system might say “matrix A is not in
hermetlon normal form” rather than “zerodivide” forty subroutine calls later.

V(
~~~~ Further, once given a point of departure, the system can trace back even closer to the origin of

the problem. For instance, after discovering that matrix A was not in hermetion normal form, the
system might say “the subroutine F is not living up to its extrinsic description, which claims that its

- __~~~~~ .~~. - _ _- - , 

- 
_~~ V V V V V _ 4  

~~~~~~~~~~~~ V&V.V V.aVV.V V~VVà~4~ j V~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
VV4 VV 4 V4_VV - - V . _ f l & _4V4 ~ V• ~ V4_ ~~ __Va~~ ._ S;~ _4.4~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _V__ - ~~~~~~~~~~~

— ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 2 I. A PROGRAM UNDERSTANDING SYSTEM

outp ut is always in hermetion normal form” or “the theorem implied by the use of subroutine F that
any matrix with properties P1, P2, and P3 is in hermetion normal form, must be false.”

In short, the system assists a user in backtracking a bug to its source, and by watching the
executi on closely, reduces the amount of backtracking which needs to be done.

1.1.4 INVESTIGATING THE RAMIFICATIONS OF A MODIFICATION

When a segment of code is altered, to fix a bug or add a feature, the system can assess some
of the ramifications of the change. This is particularly useful when the changed segment served other
purposes in addition to the one under consideration. The system can ask itself whether the functions
the old segment served are still being taken care of, whether the new goals interfere with other goals
of the program, and whether the change does in fact achieve the results intended of it.

-
- 12 BRIEFLY, HOW THE SYSTEM WORKS

The system looks at a program as being composed of logically separate segments of code which
V

-

L are combined together by connective tissue. Further, each segment is composed of subsegments, etc.
The connective tissue is of two types, data flow connective tissue (variables, function parameters,
assignments), and flow of control connective tissue (branches, subroutine calls, sequential code
placement). The data flow connective tissue transmits data between segments, and the control flow V

V connective tissue executes the segments in the proper order.

1.2.1 THE STRUCTURES WHICH DESCRIBE A PROGRAM

The program as a whole is described through the interaction of two types of descriptions:
behavioral descriptions and plans. A behavioral description specifies what a segment of code does
without indicating how it is done. It lists the inputs, outputs, prerequisites, and output assertions of a V

segment. Behavioral descriptions describe a segment from two major points of view. An intrinsic
behavioral description tells what a segment does in isolation. All the statements it makes about a V

segment are true for every use of the segment. An extrinsic behavioral description tells what a useV

of a segment does in the context of its use. One segment can be used for many logically unrelated
V

- tasks in the same program.
A plan indicates how several segments (and their extrinsic behavi oral descriptions) combin e to

form a larger segm ent (and its intrinsic behavioral description). Plans are quite variable , but ,
observation indicates that they fall into a small number of types (around ten). This makes it possible
to deal with the plans even though each type is treated separately. It also means that a great deal of
information can be interred about a segment purely from the type of the plan for the segment, since

V
out of the vast array of possible plan types only a small number are used. This in turn makes both

V recognizing and understanding a segment easier.
The grand plan, which completely d~scribes the operation of a program, simply consists of

behavioral descriptions and plans I or every segment down to some level where the segments are
taken as fundamental and as having no subsegments and hence rio plans.

V
V

1.2.2 HOW THE SYSTEM USES THE DESCRIPTIVE STRUCTURES

Questions about a segment are answered through reference to the descriptive structures. For
example, “What does this do?” is answered by refere nce to the behavioral description. “How does it
do it?” is answered by reference to the plan. “What function does it serve?” is answered by
reference to the extrinsic behavioral description and the plans in which it is contained.

Detection of inconsistences is performed while the descriptions are being constructed. As the
system builds up its understanding of a program, it continually checks for inconsistences in what it
knows. Whenever it discovers or is told something about the program, it attempts to verify it. If it
discovers a contradiction, it reports it. If it verifi es it, fine. Most of the time however, it comes to no
conclusion , since the deductive mechanism is weak. In that case , it assumes that the fact is true, but V

LS~~ V V ~ ~~~~~~~~~ V ~V VV ~~~ V~ V~~S~ V_ V~_~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

P’

~

V

~~ L~~~~-... — - --. ..——— ~ V

Richard C. Waters 3 I. A PROGRAM UNDERSTANDING SYSTEM
V

is prepared to discover at a later time that the fact is contradicted
More complex tasks are performed by means of the system asking itself questions. For

Instance , when a bug is det etected the system asks questions such as, “Where did this come from?” ;
“Who wanted it that way?”; and “Who wants it to be another way?” The answers to these questions
lead to an understanding of the bug.

1.2.3 HOW THE DESCRIPTIVE STRUCTURES ARE BUILT UP

The system develops its understanding of a program based on the cod. itself, and on what the
user tells it about the program via comments. Looking at the code, the system can separate out most
of the control and data flow connective tissue. Also , with a knowledge of what the primitive units are,
the system can go a long way toward analyzing the lower level segments.

The user must provide comments describing the overall behavioral description of the program ,
and th . basic segmentation of the code. Most comm ents are in the form of either a partial
specification of a behavioral description, or the delineation of a segment combined with an indication
of the plan typ e applicable to it.

It should be noted that it is very difficuit for the system to determine the segmentation by
itself , because of the vast number of possible segments it must consider, and because there are
several transformations commonly applied to segments which imprnve program performance at the
expense of clarity. For example , code is shared or similar subsegments are factored out of logically
unrelated segments. Once the system has a handle on the segmentation of the program it can use its
knowledge of the stereotyped plan segment types to analyze the program further.

The amount of annotation which the user is required to make is a critical parameter. It too
much annotation is needed the system will be too cumbersome for practical use. This not
withstanding, the currrent goal of this research is to achieve understanding without excessive concern

-
-

for how many comments are needed.

1.3 WHY THE SYSTEM IS VALUABLE V

The size and complexity of programs are rapidly increasing. This makes programs harder to -

V

work with and harder to understand. This type of system would be very useful for acquainting or
reacquatnting a person with a program, and for keeping track of what is going on when a person
works on a program.

The system would be particularly useful in a situation where a group of people are working on
a program. The system could keep each person abreast of what the others are doing. In addition, it
could help coordinate what the people were doing by watching that the segments people were writing
would interface properly, arid that the goals would mesh together.

In It. full form , the system would be an aid in debugging. Bugs seem to be of two types:
errors in the algorithm, and errors in the implementation of the algorithm. The system would be
helpful in locating and understanding implementation bugs in particular. Many bugs are simply due to
forgetting minor details which, though trivial, are essential. The system would also be abl. to greatly
reduce the chance of a programmer producing a new bug while fixing an old one. This is usual ly due
to forgetti ng that a particular segment of code has more than one function in the program.

In the future, the system ought to be able to move closer to a p~ g~am verification system. A
tru. understanding of a program should lead to a proof of correctness. The understanding serves as
a plan for the proof.

in a similar fashion, the system leads toward automatic programming. A complete understanding
of a program should enable th, system to write th. program, following the plans in it. understanding.
Th. only question is how can the understanding be developed without reference to the code.

1.4 RELATIONSHIP TO CTHER WORK

This section describes the relationship between the system proposed In this paper and other
wOrk, from two points of view. First, It compares th. basic methodology of this system with other

~~~~~~~~~~~~~ 



- ~~~~‘~- ~ . -‘ ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V • ~V —

~~

V

iI -
~

Richard C. Waters 4 1. A PROGRAM UNDERSTANDING SYSTEM
V

- i
— - approaches to the same overall goal. Second, it compares this system with other systems using a 4

similar methodology. While making thes. comparisons, it tries to trace the development of the key
ideas embodied In this system.

1.4.1 OTHER APPROACHES TO THE SAME GOAL

Consider a user (programmer) who wishes to perform a certain computation. To do this, he
writes a program which will cause a digital computer to perform the computation. This reduces his

V work to the work required to write the program. The basic goal of the research proposed in this
V

paper is to reduce programming effort as much as possible.
Writing a program consists of two intertwined tasks, designing all of the details required to

cause a computer to perform a computation, and showing at least informally, that this computation is
the one the user had in mind. Designing the details (producing the program) is what is usually
referred to as writing the program. However, it is clear that a programmer is continually guided by
an informal feeling for why what he has written, and what he will write, is correct.

1.4.1.1 GENERAL PURPOSE HiGH LEVEL LANGUAGES

The first step in reducing programming effort was achieved by moving from machine code,
through assembler language, to general purpose high level languages. The development of these
more powerful languages stemmed from two key ideas: modules and abstractions. - —

A pre-written module can be as simple as a multiplication routine or as complex as a data base
management system. A module can be used as a subroutine or expanded inline as a macro. It can be
partially pre-eva luated or transformed after instantiation to increase efficiency. In any case, modules
reduce the effort required to write a program because they can be used without having to be
rewritten. They reduce the effort required to verify a program because they can be used as lemmas
in the verification without having to be reverified.

Abstractions are used to express certain Icey relationships in a program in ways which are V

more convenient for the programmer. For instance, assembler languages introduced, among other
things, the idea of using symbols as variables to indicate data flow. Compiled languages introduced,
among other things, the idea of using syntactic nesting to indicate data flow. They also introduced the
idea that all of the primitives of a language could be modules, freeing the language from any
resemblance to, or dependence on, any particular computer architecture.

Global operations (performed by an assembler , compiler , or interpreter) translate these
abstractions into machine uiiderstandable form. This frees the programmer from specifying details,
such as actual memory addresses , which, though they must eventually be determained in order for the
computation to be performed, are not of any direct interest to the user. V - -

-

The abstractions facilitate verification because they correspond more directly to the properties
needed for verification. For examp le, verificatio~i may require that data flow occur from a use of V

module A to a use of module B. The syntactic nesting of the use of module A in the argument list of
the use of argument B succinctly expresses this requirement. Any added mechanism of memory
addresses, stacks, parameter passing, or variables would just get in the way.

General purpose high level languages (such as FORTRAN, PL/I, and ALGOL) have introduced a
large number of features of general usefulness. They have introduced abstractions such as

— subroutines and data types, and modules such as access functions for complex data types (like strings ,
arrays, and structures). These laiguages have greatly simplified the programming process while
maintaining general applicability by incorporating knowledge of programming techniques. However,
they have not gone far enough; programming is still difficult.

1.4.1.2 SPECIAL PURPOSE SYSTEMS

A number of sys tems have been developed which are more powerful than general purpose
languages due to the fact that they incorporate algorithmic information specific to particular problem
domains. The simplest of these systems are subroutine packages (such as the IBM SSP (IBM

~

-

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ - - - V_~ _ ~~~~~~~~~~~~~~ _~ - V



~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V~~~

VV V ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~~

r ~~~~~~

Richard C. Waters 5 I. A PROGRAM UNDERSTANDING SYSTEM

GH2B-8285-4]) which extend the power of a general purpose language through th. addition of domain
specific modules.

To produce systems with greater power , designers have incorporated domain specific
knowledge in ways other than modules. For example, consider the language BDL [Hammer, Howe,
Kruskal & Wiadawslcy 1975] which can be used to write business data processing programs. BOL
constrains programs to have one particular top level structure. This allows the system to
automatically generate the code needed to implement this structure. Further, all the modules and —

abstractions used in BDL are sp ecifically desi gned to fit into this particular top level structure in
order to make the user’s design and verification tasks easier. All this makes writing a program easier
as long as the particular top level structure is appropriate.

This trend can continue with systems containing more and more information about smaller and
smaller domains, until the trend culminates in customizers. A customizer can only produce a few
programs, but it knows all of the details of each of these programs. The Only problem the user faces
is discovering whether the computation he desires can be implemented by one of the programs the
customizer can produce. If it can, the user specifies the program he wants by filling out a
questionnaire. Verification is simple because the quesUonnaire is directly posed in the terms the user
is interested in.

The problem with these systems is that they are too specific. A programmer can only use such
a system if there happens to be one which applies to his problem domain. If he changes domains , he

— will have to learn an entirely new system. Further, the more powerful one of these systems is, the
more limited its applicability.

1.4.1.3 USING GOOD PROGRAMMING STYLE

The particular sty le which a programmer uses has a great effect on the ease with which he can
write a program. Languages have been developed which encourage good programming style (for
example structured programming), and make some types of bad style impossible. For fxample, the
language CLU (Liskov 1974) is designed to make unstructured data access impossible. In CLU, a data
item can only be accessed through the access functions defined for its data type. Therefo re, it is
impossible to use any ad hoc data manipulations which could complicate the verification process. This V

approach extends the idea of enhancing the power of a general purpose language by including
programming knowledge in the system.

1.4.1.4 AUTOMATIC PROGRAMMING

With any of the general purpose languages discussed above, a programmer faces the task of V

specifying what modules are to be used, and how they are to be interconnected. Automatic
programming attempts to automate this process. In automatic programming, the user’s program is a
specification of what is to be done, not how it is to be done. Systems have been designed using
specification through examples of behavior (such as I/O pairs (Summers 1975; Shaw, Swartout, &
Green 1975; Hardy 1975] and traces (Bauer 1975]), exact specifications in a predicate calculus like
language (Manna & Waldinger 1975], or English language descriptions [Ruth 1976).

It is not true that automatic programming would eliminate all the effort of programming.
Developing a precise description of a desired computation is difficult, whether or not the description
is algorithmic. However , assumedly, a programmer has always had to develop some descriptive
specification f or a program he wishes to write, at least in his head. Therefore , writing and verifying a
program, which is itself a specification, should be easier , as long as the type of descriptive mechanism
used by the automatic programming system is sufficiently similar to the one used internally by the
user.

It should be noted that automatic programming systems do not eliminate the need for domain
specific algorithmic knowledge. Rather they attempt to provide a uniform method of access to this
knowledge. Domain specific knowled ge must be realized in the programs produced by an automatic
programming system. Therefore , if th. user is not going to specify it, it must be either known by the
system beforehand, or reinvented by the system in response to a problem.

_) V~~
_ V _ _ _ ~~~~~V~~ V~~ • € V ~~~~~~~ ~~~ ~~~~ V~~~~V~~~

- ‘ V ..-
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

Richard C. Waters 6 1. A PROGRAM UNDERSTANDING SYSTEM

Unfortunately, it has not yet been possible to codify large areas of knowledge, though small
areas have been codified (for example, Green and Barstow discuss the codification of knowledge about
sorting programs [Green & Barstow 1975)). Further, the problem solving capability required to
understand specifications and write a large variety of programs based on a manageably small stock of
knowledge is also beyond the state of the art. As a result , none of the automatic programming
systems proposed has been made to work well enough to be of any practical use. Those which have
been implemented at all, only work in a very small or simple domain such as simple list manipulation.

The approaches described above have been directed toward developing an interpreter for a
language (whether algorithmic or based on specifications ) which is so powerful that a complex
program can be trivially written and verified in the language. This is certainly a laudable goal,
however, it does not seem likely that it will be achieved in the near future.

1.4.1.5 AUTOMATIC VERIFICATION

Attempts have been made to develop a system which wil l at least be able to verify that a
program is correct. This would be particularly useful since true verification has been neglected by
programmers in the past.

In order to make automat.c verification posssible, the behavior of the primitive elements of
programming languages had to be rigorously axiomatized. Further, proof rules had to be developed
so that the axioms about the primitive elements could be combined into a proof of claims about a
program as a whole. This work was started by FLoyd [Floyd 1967] and continued by Hoare [Hoare
1969; Hoare 1971].

In order to prove something about a program (such as the correctness of its specifications), the
key step is deciding what subtheorems to attack. This is analogous to picking subtaslcs in the process
of writing a program, and unfortunately does not appear to be any easier. In addition, current
theorem provers are not able to prove theorems of any great difficulty.

Straightforward selection of subtheorems is Only possible in straight line programs. If there is
looping involved (via gotos, looping constructs , or recursion), then heuristics must be used in order to
develop subtheorems which describe the action of the loops (for example [Wegbreit 1973)). Systems,
such as that of Boyer and Moore [Boyer & Moore 1975; Moore 974], which attempt to prove
theorems about a program by looking just at the program, are only able to work with simple
programs.

Systems, such as that of Waldinger and Levitt [Wa ldinger & Levitt 1974], where the user
specifies loop assertions, still bog down on relatively simple programs due to the weakness of current
theorem provers, and the problem of codifying and using enough domain specific knowledge.

1.4.1.6 PROGRAMMING ASSISTANT SYSTEMS

There are several main ideas behind assistant systems. One is a recognition of the fact that , in
the absence of automatic programming, programs are not written in one pass. They are written bit by
bit, and then modified and added to many times as errors are found and corrected , and the original
specification for the program changes. This idea leads to a desire for systems which combine editors,

— compilers, interpreters, and debugging aids into one interacting unit. This combination would facilitate
cycling between modes and the .Jetection of errors.

A second idea is to have the assistant system keep track of a myriad of details, and help the
programmer avoid pitfalls. This is a natural extension of the idea of designing a language so as to
encourage good programming style. An assistant system would utilize knowledge of programming in
general, and of the particular language which the programmer was using in order to catch many small
errors which might otherwise lead to big problems. What makes this qualitatively different from the
many checks done by current compilers is that the bookkeeping would exist across the entire process
of developing a program, not just withsn a single compilation of a single subunit.

By themselves, these two ideas are not very exciting. They should be usefull but not
spectacular extensions of current programming systems. In order to really assist a programmer , a
system must enter into the programming process, either in design or verification. The main tenent of

- ~~~~~ V ~~~~~~~~ ~~V ~~~~~~~~~~~~~~~~~~~ -- -~~~~~~~~ -~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V~ -~~~ -~ —- -



_________ - .

Richard C. Waters 7 1. A PROGRAM UNDERSTANDING SYSTEM

the programming assistant approach is that this is possible, even though the programmer will have to
perform the two key tasks which are currently beyond the capabilities of automatic systems. As
described above, these two tasks (which may be closely related) are non-trivial problem solving and V

V the encoding and utilization of large amounts of knowledge.
Basic descriptions of programming assistant systems were put forward by Floyd [Floyd 1971]

and by Winograd [Winograd 1973), however they did not suggest how such a system could be
realized.

1.4.1.7 PROGRAM UNDERSTANDING

In order to cooperate with a programmer who is doing the really complex design and
verification , a system must understand what the programmer has done and is doing. How this
understanding is to be achieved is the central interest of this piper. The key idea is that along with
each program there is a plan. The plan links the specification , the program, the verification, and the
design of the program. It tells the purpose of each element of the program. This basic idea
originated with Sussman [Sussman 1973a) and Goldstein [Goldstein 1974).

From the point of view of this paper, developing a plan is the primary activity of programming.
If the plan is known, the specifications , the program, the verification , and the design can be derived.
It a system could develop a plan just from the specifications , it could do automatic programming. If a
system could develop a plan just from the specifications and the program, then it could do automatic
verification.

This paper proposes a system which can develop a plan based on a program , partial
specifications for it, and comments on it. This ~“~tem is an initial step towards a programming
assistant system which would understand a plan as it was evolved by a programmer, and assist in 

—

verification and writing of t~,e program.
The research proposed by this paper is mainly directed towards the question of how a system

can find out the plan for a program. It also investigates how plans can be represented and utilized
by a programming assistant system.

1.4.2 SIMILAR APPROACHES

This section discusses a number of systems involved with programming assistance, program
understanding, and plans. It contrasts these systems with the system proposed in this paper .
Consider the diagram below. It represents some of the features of the system proposed in this
paper. Other systems will be compared with this system particularly with regard to how they develop =
an understanding and how they use an understanding.

~~~~~~~~ V V  V~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ____ - ~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

Richard C. Waters 8 1. A PROGRAM UNDERSTANDING SYSTEM

- 
V 

~~~~~~~~~~~~~ ~~~~~~~~~the specific : prob lem solving
- =

~~~~~~~~ i~~ :a 
I I
I I

V S I

annotation of _____________ ______________

the program 
~

_
~J CREATING I USING

::::::::::::::: ~ I THE THE
the program 

~
-
~~ _

UNDERSTAND I NG f UNDERSTANDING

S I
S S
I I

know l edge of : Know ledge of
the specific - programm ing
programm ing in general I: language

Fig 1: Diagram of data flow in a program understanding system

V The system described in this paper takes a program together with annotation on it as input. —

Using general knowledge about programming and problem solving (which is embodied in the plan
types), and knowledge about the specific programming languge (FORTRAN), it develops a plan for the
program. This system does not attempt to encode much knowledge about the specific problem domain,
because it is too complex, being the full range of applied mathematics. It uses the understanding it
develops of a program in order to answer questions about the program, including questions about the —

ramifications of a modification. in addition, it can detect bugs in a program largely through an attempt
to prove the program incorrect.

1.4.2.1 SUSSMAN

Sussman’s HACKER [Sussman 1973a; Sussman 1974) is an automatic programming system which
writes parameterless programs in the simple domain of the blocks world. It constructs programs
given predicate calculus like specifications of the output state , and input state. It acquires greater
skill in programming by learning from the process of writing each program it produces. HACKER
writes programs by first proposing a simple-minded program and then debugging it. It alternately
modifies the program and searches for bugs in it , until the program works correctly. 

VEach time a program is written, a plan for it is constructed. When a program is modified, its
plan is modified to reflect the changes. The plan for a program represents what the purpose of each
feature of the program is, and information about how the features interact. The plan is of central
importance in detecting bugs and proposing solutions for them. HACKER does not have to attack the
problem of recognizing the plan for a program because the parts of HACKER which write programs
produce the plans at the same time.

1.4.2.2 GOLDSTEIN

Goldstein’s MYCROFT (Goldstein 1974; Goldstein 1976] operates on programs in the simple
domain of loop free turtle line drawing programs. These programs are output intensive programs
similar to the command sequences sent to a plotter. Almost every component of a program can be
identified with a visible segment of the resultant drawing.

- —~~~~~ -—-—-S- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S -- ~ V



Richard C. Waters 9 1. A PROGRAM UNDERSTANDING SYSTEM

S MYCROFT accepts as input a program which may have bugs, and a partial description of the
intended output. It then proceeds to construc t a plan for the program. The user can optionally
include commentary on the program indicating features of the plan.

Due to the specific nature of the domain, the task of finding the plan consists largely of
deciding which parts of the actual output correspond to which parts of the desired output. MYCROFT
attempts to find a plan which minimizes the number of errors detected. How easy this is to do 

V 
-

depends on how well the natural segmentation of the program corresponds to the description of the
intended output. This segmentation is a very important form of commentary supplied by the user.

MYCROFT uses the plan to propose fixes for the bugs it detects. It then proceeds to construct
a corrected program. It is most successful when a bug is caused by an incorrect value (such as a line
segment being too long). It has more difficulty when a bug is caused by incorrect logical structure of 1 -

the program (such as pieces of the intended output completely left out). It seems reasonable that
programming assistant systems in general will follow this pattern. This is because designing the basic
logical structure of a program seems to be a more difficult task than picking the correct values to use.

1.4.2.3 RUTH

Ruth [Ruth 1974) developed a language which can be used to express the set of all algorithmsfor a given task. This allows him to encode the domain specific algorithmic information for a particular
problem area. His system takes as input a program and the description of a set of algorithms. It then
determines whether or not the program implements one of the algorithms. If a match is found, the
corresponding algorithm is reported. If a match is not found, the system tries to find a near miss
algorithm and reports differences from this as bugs. His system has successfully operated on real
programs written by students learning programming.

His system performs a complex pattern matching task. It operates directly on the programs, - 
-which are written in a simple algebraic LISP l ike language having a conditional construct and a looping

construct. Comments on the program are not used, except for the implicit comment that the program
is intended to implement one of the specified algorithms. His system does a lot of work in order to
deal with transformations which can be applied to programs. It does this in order to detect when two
programs are essentially the same even though they appear , at first glance, to be very different.
Transformations are also of considerable importance in the domain of FORTRAN programs. His system

— incorporates knowledge about common bugs so that near misses can be detected easier.
Ruth does not deal with plans as such. He identifies understanding with determining which

algorithm corresponds to the given program. The algorithmic representation he uses captures some
V of the notions of a plan. However , it is more like a typical implementation of the algorithm, and does

not contain teleological information about purposes.

1.4.2.4 BROWN

Brown’s system WATSON (Brown 1975; Brown forthcoming; also: Sussman 1973b; Brown
1974; Sussman & Brown 19743, localizes failures in electronic circuits. As input, it takes a piece of
electronic equipment (which it operates on by giving commands to a person who makes tests and

— 
adjustments), its circuit diagram, a plan for the circuit, and a description of the problem it is exhibiting.
The plan and circuit are assumed to be bug free. The failure is therefore assumed to be due to a
damaged component, or improper adjustment (note the similarity with the bugs which were easiest for

V Goldstein’s MYCROFT to handle).
WATSON uses a variety of techniques triggered by features of the plan in order to localize the

V failure. The plans are constructed by hand and input to the system. As a result, WATSON does not
attack the problem of developing an understanding of a circuit. However , his system shows the

- ,  - importance, and power, of knowing plans V~~ the domain of electronic circuits.

- -~~~—-— -~~ ~~- V -~~~ ~. -~~~ - --—~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V - V~~~~V ~~~~~~~~~~~~~~~~



- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 10 I. A PROGRAM UNDERSTANDING SYSTEM —

1.4.2.5 GERHART

Gerhart’s work (Gerhart 1975] is not involved with an automatic system. Rather, it introduces
tools which can be used by a person who is writing a program, in order to make verification easier.
Sh. views programs as being built up out of simple pieces with known properties which are combined 

V 
- -

in ways which correspond to simple proof rules. This is in line with the basic work of FLoyd and
Hoare. At an intermediate level between the basic elements and a program as a whole, she introduces
“program schemata” which are the distillates of basic algorithms. She also introduces transformations
which can be applied to a section of code without altering its behavior. These two things can be used
as lemmas when trying to prove a program correct. They serve as an intermediate skeleton for
understanding and justifying a program.

Gerhart does not address the issue of recognizing a program in terms of these schemata and
transformations, or any way to automatically manipulate them. Her work is mentioned here because of
the similarity between her program schemata and the plan types discussed in this paper. Further, the
collection of schemata and transformations which apply to a program has many features in common V

with a plan for the program, even though there is no explicit teleological information.

1.4.2.6 HEWITT and SMITH

Hewitt and Smith’s programming apprentice (Smith, Waters & Lieberman 1973; Smith & Hewitt
1974; Hewitt & Smith 1975) is a programming assistant system designed to work in the domain of
Hewitt’s ACTORS formalism. The major goal of their system is proving the correctness of programs.

In contrast to many other approaches, major emphasis is placed on comments. The central
comment is the “contract.” Contracts correspond to what are called behavioral descriptions in this
paper and specify the input/output behavior of a subroutine. The ACTORS formalism encourages

ç heavy subroutinization. Since each subroutine has a contract associated with it , this leads to a
reasonable large amount of commentation.

In order to prove correctness, “meta-evaluation” (which is similar to symbolic evaluation), and
“ACTOR induction” are used. Each subroutine is proved to satisfy its contract which is used as a
lemma when proving the correctness of other subroutines.

Their system does not develop any descripUve structure in addition to the code and comments
supplied by the user. The information corresponding to a plan is fragmented, and most of it is only
present implicitly. Their system uses a form of comment called a “plan,” however, it is different from
the plans used in this paper. It is used to capture domain specific information arid to guide the
theorem prover which works with the meta-evaluator.

The system does not deal with automatic generation of ..~“scriptive structures. Any plan-like
structures which it uses are entered by the programmer. However, the system does embody several
ideas which are an important part of the research proposed in ths paper. In particular it uses the
idea of behavioral descriptions (“contracts”). Their work is being extended by Yonesaws (Yonezawa
1976). However, meta-evaluation is still largely at the hand simulation stage.

14.2.7 GREEN and BARSTOW

Researchers at Stanford University have been doing considerable work on what they call
“program understanding” (Green et. •l. 1974]. However, from th. point of view of this paper, their —

work would be described as directed towards automatic programming. Green and Barstow propose a
program writing system which knows about simple sort programs (Green & Barstow 1975]. 

V

Th, user of their system would only participate by making high level design decisions. The
system would have extensive knowledge of how to actually write sorting programs. Their paper
concentrates on the informal reasoning which the system would follow, and on what knowledge the
system would have to have. It does not discus;, in any detail , how the system could be implemented. V

I 
— c u _ V _VV ~~~ V _ V V _ VV V_V V~__ 

~~- ~~~~~~~~~~~~~~~~~~~ VVV~..a._V..V.. _ . ~~~~~~~~~ ~~~~ V_V ~~~~ ~~~~~~ - . k  V V V V ~~ VJ



V .  V V  - -

Richard C. Waters 11 1. A PROGRAM UNDERSTANDING SYSTEM 
V

5 1.4.2.8 RICH and SHROBE

Rich and Shrobe’s programming apprentice (Rich & Shrobe 1974; Rich & Shrobe 1976] is
designed to work in the domain of LISP programs. It comes closer to the kind of programming
assistant system discussed in this paper than any other system currently proposed. They touch on -

- 

- th. full range of behavior of a programming assistant system, but concentrate on understanding data V

types, understanding programs through plans, and verification.
They recognize a hierarchy of plans of increased detail as the fundamental description of a

V program. They envision a scenario in which the plans are developed through a dialog with the user
as a program is being written. However, they also investigate the question of developing the plan for V V

— 
a program written outside the system. They use plans primarily to guide verification which proceeds
in a similar manner to Hewitt’s meta-evaluation.

They have worked extensively with the example of the access functions to a hash table. They
use knowledge about the data types, and algorithms in this domain in order to build the plan and aid
in the verification. They have implemented some parts of their system, and are continuing
implementation efforts at the current time.

The work presented in this paper has benefitted greatly from the ideas in Rich and Shrobe’s
work. This paper could be looked at as focussing on one feature of a programming assistant system,
very similar to theirs, but working in a different domain.

V 
1.4.2.9 IBM

A group of people at IBM (including A. L Brown, C. Heidorn, A. Malhotra, P.4. Mikelsons, P. B.
Sheridan, and I. Wiadawslci) are working on a system able to explain the programs produced by a
customizer (Malhotra & Sheridan 1976; Mikelsons & Wladawski 1976). The customizer produces
programs written in the language BDL (Hammer, Howe, Kruskal & Wladawski 1975). The system is
designed to be able to respond in English to questions posed in English about the programs produced
by a customizer.

Their system has a semantic network which contains a model of the reievant business domain.
A program is understood by linking it up with the semantic network. Th, most common type of link
indicates the meaning of a data item. For example, that the datum carried by a certain variable is a
“price on an invoice.” The system does not try to create these links by itself. They are created by
the user mostly through the use of mnemonic variable names.

From the point of view of this paper, their system is interesting because it attacks the problem
of understanding a program. However, it does not use plans as such. The special nature of BDL
allows programs written in it to be directly used to answer many types of questions without
reference to a separate plan structure.

__________________



_________________ ________ V ~~~~~~~~~ ~~~

Richard C. Waters 12 IL THE TASKS THE SYSTEM CAN PERFORM V

V 
11. THE TASKS THE SYSTEM CAN PERFORM V

This system can do three things. First, it can develop an understanding of a mathematical
FORTRAN program by looking at th. program and its annotation. Second, the system can demonstrate
its understanding by answering questions about the program. Third, It can use its understanding to
aid in the debugg ing and modification of the program.

In this section, understanding is indirectly defined through the assumption that the system must
understand a program in order to perform the second and third tasks. Section III describes how the
system acquires and represents an understanding of a program.

Section ILl defines the second ‘ask by specifying in detail the types of quest ions the system
can answer about a program it understands. The remaining subsections describe some ways that the
system can utilize its understanding of a program.

The discussions below are concretized through reference to a specific example program (see
the fi gure below). A simpler program is subjected to exhaustive analysis in section 111.4.

Fig. 2: The subroutine RK1 from the IBM SSP. All of the examples in section
11 are taken from this program.

1 C PURPOSE
2 C INTEGRATES A FIRST ORDER DIFFERENTIAL EQUATION
3 C DY\OX-FUN(X ,V ) UP TO A SPECIFIED FINAL VALUE
4 C DESCRIPTION OF PARAMETERS

— 
5 C FUN -USER-SUPPLIED FUNCTION SUBPROGRAM WITH -

6 C ARGUMENTS X ,Y WHICH GIVES OY\OX
7 C HI -THE STEP SIZE
8 C XI -INITIAL VALUE OF )(
9 C VI -INITIAL VALUE OF V WHERE VI-F(XI)
18 C XF -FINAL VALUE OF X
11 C YF -FINAL VALUE OF V
12 C ANSX-RESULTANT VALUE OF X
13 C ANSY-RESULTANT VALUE OF Y
14 C EITHER ANSX XF OR ANSYSYF DEPENDING
15 C ON WHICH IS REACHED FIRST
16 C IER -ERROR CODE
17 C IER-8 NO ERROR
18 C IER.1 STEP SIZE iS ZERO
19 C REMARKS

V 28 C IF XI IS GREATER THAN OR EQUAL TO XF, ANSX-XI AND ANSYI’YI V

21 C IF HI IS ZERO, IER’.!, ANSX-XI, AND ANSV.8.0
V 22 C METHOD

23 C USES FOURTH ORDER RUNGE-KUTTA INTEGRATION
V 24 C PROCESS ON A RECURSIVE BASIS. PROCESS IS

25 C TERMINATED AND FINAL VALUE ADJUSTED WHEN
26 C EITHER XF OF YF IS REACHED
27 C
28 SUBROUTINE RK1 (FUN ,HI ,XI ,YI ,XF ,YF,AN SX ,AN SY ,IER)
29 C IF XF IS LESS THAN OR EQUAL TO XI , RETURN (XI ,YI)
30 IER.0
31 IF (XF-XI) 11,11,12
32 11 ANSX.XI
33 ANSY—Y l
34 RETURN
35 C TEST INTERVAL VALUE
36 12 H-HI 

-V -~~~ - -



-- 

~~~ ~~~~~~~~~~ V~~~V V V~~~V~ - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,.~~V V ~~~~~ ~~~~ - V~V

V Richard C. Waters 13 IL THE TASKS THE SYSTEM CAN PERFORM

37 IF (HI) 16,14,28
t

*
38 14 1ER.1

— 39 ANSX-XI
40 ANSY-0.8
41 RETURN
42 16 H--HI
43 C SET XN—INITIAL X, YN-INITIAL V
44 28 XN-XI V

45 VN.YI V

46 C INTEGRATE ONE TIME STEP
47 HNEU-H
48 JUIIPaI
49 G0T0 178
50 25 XNI-XXV

- 51 YN1”YY
- ,

52 C COMPARE XN1 (-X (N+1)) TO X FINAL AND BRANCH ACCORDINGLY
53 IF (XN1-XF) 58,38 ,40
54 C XN1-XF, RETURN (XF,YN1) AS ANSWER
55 38 ANSX-XF
56 ANSY-YN1
57 0010 160
58 C XN1 GREATER THAN X FINAL, SET NEW STEP SIZE AND
59 C INTEGRATE ONE STEP, RETURN RESULTS AS ANSWER
68 48 HNEW-XF-XN

V 61 JUIIP.2
62 GOTO 170
63 45 ANSX.XX
64 ANSY-YY

V

65 GOTO 160
66 C XN1 LESS THAN X FINAL, CHECK IF (YN YN1) SPAN V FINAL
67 58 IF ((YN 1—YF)*(YF—YN)) 68,78,118
68 C (VN1,YN) DOES NOT SPAN YF, SET (XN,YN)-(XN1,YN1), REPEAT
69 60 YN-YN1
70 XN.XNI

V

71 0010 170
72 C EITHER VN OR YN1 -YF. CHECK WHICH AND RETURN PROPER (X, Y)
73 78 IF (YN1-YF) 80,100,80

V 74 88 ANSY-YN
7$ ANSX-XN
76 GOTO 160 V

77 100 ANSY-YNI
78 ANSX-XN1
79 6010 160
88 C (YN ,VN1) SPANS YF. TRY TO FIND x VALUE ASSOCIATED WITH YF
81 110 DO 160 1—1 ,10

-
- 82 C INTERPOLATE TO FIND NEW TIME STEP AND INTEGRATE ONE STEP

V

- 83 C TRY TEN INTERPOLATIONS AT MOST V

84 HNEW- ((YF—YN)/ (YN 1-YN))*(XN 1-XN)
85 JUMP.3
86 GOTO 17O
87. 115 XNEW.XX
88 YNEI4-YY

- -*
89 C COMPARE COMPUTED V VALUE Ill TH YF AND BRANCH
90 IF (YNEW-VF) 120,150,130

— LVV ._AV_ V V & ~~ VV~~~~~ - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. V~&VV~L! VV_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T:~~TT~T - --- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V V _ _  _ _ _ _ _

- -  - V V

Richard C. Wpters 14 II. THE TASKS THE SYSTEM CAN PERFORM 
V

V 

91 C ADVANCE, VF IS BETWEEN VNEW AND Thi
92 128 YN .YNEI4
93 XN-XNEW
94 GOTO 14 O -

95 - C ADVANCE, YF IS BETWEEN Yt4 AND VNEW
96 138 YN1.YNEW
97 XN1.XNEW
98 140 CONT INUE
99 C RETURN (XNEIJ. YF) AS ANSWER

100 150 ANSX.XNEW
101 ANSY”VF
182 160 RETURN
183 C
104 170 H2.HNEW/2.8
185 T1.HNEW*FUN(XN,YN)
106 T2.’HNEW*FUN(XN+H2,YN+T1/2.0)
107 T3-HNEW*FUN (XN+H2, VN+T2/2. 0)
108 T4-HNEW*FUN (XN+HNEW , VN+T3)
109 VY—YN+ (T1+2.8*T2+2.0*T3+T4)/6,0
110 XX—XN+HNEW
111 GOTO (2S,45,115),JLflIP
112 END

11.1 ANSWERING QUESTIONS ABOUT A PROGRAM

This section describes, mainly through examples, several classes of questions which cover most
of the questions one might ask about a program. The system is designed to be able to answer all
these types of questions.

The examples of what a user might ask (italics) about the program RK1, and of what th. system
might respond are given in English prose. This is not intended to indicate that the system will be able
to converse in English. That is a separate problem. The system will communicate in some, as yet
unspecified, LISPese dialect. English is used in this proposal for clarity of exposition.

Another point which should be raised, is that the questions and answers often refer to V

segments of code (denoted by the line numbers of all the lines contained in the segment). It is
reasonable to ask what constitutes a meaningful segment. The answer to this question is a function of

V 

the way the system understands programs. It is given , in detail, in section LU (particu larly 111.1.1 and
111.4). Basically , a reasonable segment is a section of the program that can be looked at as being a
program in its own right. It has inputs and output s. Further , control enters at one point , and leaves

V for one point.
In the examples , only reasonable segments are mentioned. If a user asked about an

unreasonable segment , the system would tell him that the segmen t was not reasonable and try to give
him a better idea of the segmentation so that he could ask a better question.

11.1.1 REQUESTS FOR DESCRIPTION, “WHAT”

The most basic kind of question which can be asked is, “What is this? ’. The question does not
ask how the thing works or what its place is in the grand scheme. Th. question just asks for a
description of its behavior. Consider some examples .

1) What Is 7Ine 30 of the prograav RaU? 
V

It is an assignment statement forming part of a data flow path to communicate 8
to the outside of RKI via the variable IER.

- - -~~~~~ V~~~~ - ~~~~~~~~~~~~~~~~ V V_~ _~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~ . V ~~~~~~~~~~~~~~~~~~~~~~~~~ - V. ~~~~V V~V•_ 

V



-
~~~~~ ~~~~~~~~ _~ V V V ~~ VV ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V~~~~~V~~~~~~~~ V V_ ~V_ V_~~~V VV ~~~~ V VVVV ~~~~~~~~ 

VV~~ ~~~~~~~~~~~~~~~ V —

Richard C. Waters 15 IL THE TASKS THE SYSTEM CAN PERFORM

2) What Is line 31?
V

It is an ARITHMETIC IF statement forming part of the control flow connective
tissue.

3) What Is “XF -XN ” In line 60?
It is a use of the primitiv, function minus which computes a—b-c.

Questions such as the above are not very interesting. This is because it is obvious to us what V

suc h small pieces of the code do. It should b noted, however, that it is important that the answers
to these questions are also obvious to the system. Even if no user ever asks such questions, the
system will ask itself such questions when it is trying to answer more difficult questions.

“What” questions become more interesting when they are asked about larger secti ons of the
code or from a non-local point of view.

4) What does this segment (lInes : 104-110) do?
It performs one step of integration. C’

5) In more detail , please .
Starting with XN, YN, HNEW, and FUN it computes XX—XN+HNEW and YY—F(XX)
giv .n that FUN(X,F(X))—dF/dx(X), and YN-F(XN).

Note that, in this answer, the system used the variable names in the program as names (or the
data items it was talking about. Internally is does not name them that way. It realizes that the
variables are only part of the data flow connective tissue, and are not satisfactory as names for the
data items because one variable often carries logicall y unrelated data items in different parts of the
program. This notwithstanding, it is probably better to use the variable names when talking to the
user than ad hoc new names for the data items.

6) What does this segment (lines: 60-64) do?
It computes ANSX—XF and ANSY—F(ANSX) starting with XN, YN, and FUN given
that FUN(X,F(X))—dF/dx(X), and YN—F(XN). V

7) From the point of view of that segment (l i nes : 60-64) what
does XF -XN in l ine 60 do?
It computes HNEW such that XN+HNEW-XF.

“What’. questions are answered through reference to the intrinsic and extrinsic behavioral
descriptions of segments (behavioral descriptions are discuss ed fully in section 111.2.1). The
difference between intr insic and extrinsic behavioral descriptions is illustrated by the dif fer.nce
between the answsrs to questions 3 and 7.

When asked about large segments , the answers to “what” questions are not obvious. The
answers to questions like 4-7 could aid a user in understanding the program RK1. Still , the answers
to these questions do not explain the program , they only describe it.

11.1.2 REQUESTS FOR EXPLANATION, “HOW’

“How’. questions ask for an explanation of the int.rnal worki ngs of a piece of a program. For
example, “How does this work?” A related set of questions asks how a piece of a program interacts
with larger pieces containing it. For example, “When is this executed?” and “Where do its Inputs
come from?” These questions are really just aski ng for an explanation of an aspect of the workings of
the containing segment. Consider some examples. .

~~

- ~~ _V • V ! ~~~~~•~ ~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ —~~~~~~~~~~~~~~~ —— - .- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—

-

RIchard C. Waters 16 II. THE TASKS THE SYSTEM CAN PERFORM

8) How does line 30 work?
~
j

Assignment is a primitive operation which copies a value (here 8) to a variable
(her. IER). It forms a link in a data flow path. - :

9) When Is line 30 executed?
It is executed once every time RK1 is executed. However, logically it should
only be executed when XI~XF v HIø0. Th. line was factored to its currint
position from that segment (lines : 32-33) and that segment (lines:
36-37,42-101). When X1CXF A HI—B the effects of line 30 are overridden by
1ine 38.

Not. that the system volunteered information about the factoring of line 38. It did this because
it understands that the simp le statement “Line 38 is executed once each time RK1 Is.” is misleading.

10) Now does line 32 work?
It uses the FORTRAN control flow construct ARITHMETIC IF to convert the
segment “XF-XI” into a predicate determining whether XI<XF or not.

11) How does this segment (lines: 60-64) work?
The basic segment (lines: 68-62) is a composition of line 68 (which determines
1INEW so that XF—XN+HNEW) and that segment (lines: 104-110) (which performs
a step of integration yielding XX—XN+HNEW—XF and YY—F(XX)). Lines (61,62,111)
are control flow connective tissue implementing the link to that segment (lines:
184-110). Lines (63,64) are data flow connective tissue passing the results
along.

12) When is this segment (l ines: 60-64) used?
When that loop (lines: 44-53, 67-71) terminates with XN1>XF, this segment
(lines: 68-64) is used to compute the results of the program RK1.

These questions are answered through reference to plans (see section 111.2.2). The answers
describe how segments interact to form larger segments. The next two sections describe questions
which get at specific aspects of this interaction. V

11.1.3 REQUESTS FOR PURPOSE, “'WHY”

A question of this type asks for the purpose of a construct. It asks why it is in the program.

13) What Is the purpose of IER In line 30?
The purpose of this use of the variable JER is to form part of a data flow path
carrying the value 0 to the outside of RKI.

14) What Is the purpose of this data flow path (the one
Implemented by l ine 30)? In 1:e situations where XI~XF v HI—B, this path
carries on. of the outputs (0) of the program , as required by lines (17, 18, 28,
21). It is incidental (not part of its purpose), that it also starts to carry 0 when
XI<XF A HI—0. The value is overridden in this case.

15) Why I~ line 31 in the program?
This predicate determines whither XI<XF or not. This is done so that the
computations requested of the program RK1 can be divided into two classes, one
where XICXF and one where XI~XF. V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ _ VS V~~~ 4 V ~~S. ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~V~~~~~~V4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —_ - 
._~ .__ V. ~~~~~~~~ 

__~i~I~~~~



V - -  V~_~V~ ~~~~~~ - ~~~~~~~~~~~~~~~~~~ — -

r 
~ 

-.. 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

- - ~~V *

Richard C. Waters 17 U. THE TASKS THE SYSTEM CAN PERFORM

16) Why Is this segment (li nes: 60-64) In the program?
Th. purpose of this segment is to compute ANSX and ANSY, two of the results
of the program RKI, in the situation where that loop (lines: 44-53, 67-71)
terminates with XN1>XF.

Note the similarity between the answer to this question and the answer to question 12. The
purpose of a segment and the plan for the containing segment are heavily intertwined. Asking “when”
is often equivalent to asking “why ”.

17) What is the purpose of l ine 37?
Due to the fact that several tests have been combined into this one construct, it
serves three distinct purposes. First , it determines whether HI—B or not. This is
used to divide the computations requested of the program RKI into two classes.
Second and third, in that segment (lines: 36, 37, 42), this line (37) implements
two predicates. One checks whether HIC0 and the other checks whether HI’8.
These are used to divide the problems faced by that segment (lines: 36, 37, 42),
which computes the absolute value of HI, into two classes.

Here it is seen that one piece of code may have several distinct purposes.

18) Why is line 60 In the program?
V It is composed with that segment (lines: 184-110). Its output HNEW is
V

computed so that when HNEW is input to that segment (tines: 104-118) that
V segment will produce an output XX—XF.

These questions are answered through reference to purpose links in plans (see section 111.2.2).

11.1.4 REQUESTS FOR JUSTIFICATION, “WHY”
V

These questions ask for the reason why something is true. Often something is true because it
is some segment’s purpose to make it true. In this case , a justification question is just a purp ose
question from a different point of view. However, only the main goals of a segment are recorded as
purposes. A feature of a segment may be used to justify something even though the feature is not
considered as satisfying a purpose.

19) Why Is the prerequisite of l ine 60 that XF be a floating
number satisfied?
It is satisfied because the same requirement is a prerequisite of the immediately
containing segment (lines: 60-64) and its satisfaction carries over.

20) Why Is this prerequisite (of lines: 60-60) satIsfied?
Its satisfaction is guaranteed by a chain of prerequisites reaching back to the
prerequisites of RK1. The value of XF is carried unchanged from an argument to
the program RK1 which is required to be a floating number.

Seeing that the user is interested in a full justification (or th, prerequisite , the system traces
back as far as possible in order to give a definitive answer. There is no better justification than the
above. If RK1 is called w ith the argument XF which is not a floating number, it will not work.

21) ConsIder the use (lines: 61, 62) of that segment (lines:
104—110) in this segment (lines: 60-64). Why is the

4, prerequisite that HNEW be a f7oating number satisfied?
It is satisfied because an output assertion of line 60, the source of HNEW, states
that HNEW is a floating number.

~ L~~~ . ~~~~~ . ~~~~~~~~~~~ ~~ .., ~~~~~~~~~~~~~ .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~ ~~~~~~~~~~~~~ ~V_ ~~~ V_V V V~V ~~ ~~~~~~~~~~~ -~~

I

Richard C. Waters 18 II. THE TASKS THE SYSTEM CAN PERFORM

22) What justifies the output assert ion of this segment (l ines:
60-64) that 4NSYaF(AHSX)?
Data flow (lines: 63-64) makes ANSX—XX and ANSY—YY . it is an output
assertion of that segment (lines: 104-110), the source of XX and YY, that
YY—F(XX). Therefore, ANSY—F(ANSX).

23) What justifies the output assertion of this segment (lines:
60-64) that ANSXzXF? V

Data flow (line: 63) makes ANSX—XX. It is an assertion of that segment (lines:
104-118), the source of XX, that XX.XN+HNEW. It is an assertion of line 60, the
source of HNEW, that XN+HNEW —XF. Therefore, ANSX—XF’.

Note that this is about as difficult a proof as this system can make. It tries to prove things —

correct by pattern matching, and false by testing them on examples. If a more complex proof is
required , when the system is developing its understanding of a program, the system just believes the
implicit claim of the program writer that the proof is possible. For example:

24) What is the jus t i f i ca t ion of the output assertion of this
segment (lines: 104-110) that YY:F(XX)?
The prerequisites of this segment (tines: 104-110) guarantee that V

FUN(X,F(X))—dFfdx(X), and YN—F(XN). The program writer claimed that it was a
true theorem that if these prerequisites were met then evaluating the equation
implemented in lines (104-1 10) would yield YY—F(XX).

Note that it is actually not a true theorem. The equations only approximate the integral over
the interval from XN to XN+HNEW if HNEW is sufficiently small. Even this is not easy to prove. When
trying to understand the program RK1 it is helpful to assume that the equations actually calculate the
integral, though this would be impossible to prove since it is in fact false. The approach taken here
avoids getting involved in the mathematical complexities of approximation.

These questions are answered through reference to reason links in plans (see section 111.2.2).

It is felt that the ability to answer the types of questions illustrated in the last four sections
would show that the system can understand a program. The next sections indicate some tasks the
system could perform beyond explaining a program.

11.2 AIDING THE DEBUGGING PROCESS

Any difference between the operation of a program , and the operation intended by the
programmer is a bug. This system is designed to aid a programmer in detecting and eliminating any
differences.

In order to detect differences between the operation of a program, and the operation intended
V by the programmer , the system must understand both of them. Section 111.4 describes how this is

done. —

-

To determine the operation of the program, the system starts with direct analysis of the code
based on its knowledge of the primitive constructs. To determine the operation intended by the

V programmer , the system starts with direct analysis of the programmer’s annotation of the program,
and with assumptions about what modes of operation can possibly be intended (for instance, that in
the SSP, no programmer ever intends to divide by zero).

Both of these approaches bog down short of complete understanding. The annotation, though
fairly easy to understand, is always incomplete. The code, though always completely specifying the
operation of the program, is too complex to be understood without guidance. Full understanding is
developed by assuming that the two descriptions do describe the same operation. Each is used as a
guide to fill In tb.. gaps in the other.

Th. result of this process is a s ing~e entity, the grand plan. 11 specifies what the system thinks

- - _~~ _~ __~~ ~~~~~~~~ V V _
VV -~ - _~~~~~ V_ ~~~~~~~~~~~ - - ~~~ —— ~~~~~~~~~ V~~~ - ~~~~~~~~~~~~~~~~~~~~~~ ~_ -~~~~~~~

~
~~~~~ VflV_~ 

- 
- ~~~~~~~~~~~~~~~~~~~~~~~ ~~ V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ V VV~~V!~ ~~~~~~~~~~~~~~~~~~ — V — — -

Richard C. Waters 19 II. THE TASKS THE SYSTEM CAN PERFORM

the operation intended by the programmer is, and exactly how the program implements this operation. - 
-

The system cannot represent both the operat ion of the program and the intended operation Of
the program with one description if it thinks there are any differences between them. Any
differences it ever finds are reported as bugs.

11.2.1 FINDING BUGS STATICALLY

The sys)am uses the programmer ’s annotation as a guide for developing a description of the
V operation of a program. After this is accomplished, the annotation, and general knowledge about what

modes of operation are reasonable, are checked against the operation of the program. The system
tries to justify that the intentions of the programmer are realized in the program.

Looking at a particular claim, the system may prove that it is valid. In that case, fine. On many
occasions, the system will not be able to come to any conclusion about the validity of a claim. In that
case, the system just believes the claim is true, while remembering that it is unsubstantiated.

Alternately, the system may be able to prove that the claim is invalid. In that case , the system
reports this as a bug. These bugs, which are found via pre-execution analysis of the program, are
the subject of this section.

• There are several general claims which can be assumed to be intentions of the programmer (at
least with regard to simple mathematical FORTRAN programs). These claims can be used to uncover
many bugs.

One claim is that the extrinsic prerequisites of every segment must be satisfied. This is to say
that no programmer will deliberately use a segment with inputs outside its stated domain of
applicability. Testing this claim at the beginning of every use of every segment leads to the detection

V of bugs such as incompatible subroutine arguments, using the wrong variable name, leaving out special
case checks, etc.

Another general claim is that the satisfaction of the extrinsic prerequisites for the use of a
- 

j V 
- segment must imply the satisfaction of the intrinsic prerequisites of the segment. In a similar vein,

the intrinsic assertions of a segment must imply the extrinsic assertions of that segment. That is to
say, the segment must be capable of what it has been asked to do. These claims uncover bugs based
on a misunderstanding of the inherent abilities of a segment.

In addition, there are other more specific claims. Claims such as loops must terminate;
uninitialized variables cannot be read or returned, etc. Many of these can be handled by properly
stating the prerequisites of the primitive constructs.

The really interesting bug detection involves comparing what the programmer said should
V happen with what does happen. Consider the example program, RK1. Inasmuch as it is a published

program that people have been using for years, it has no bugs in it which can lead to catastrophic
failure of the program. However, it does not operate in the manner that the comments clearly indicate V

that it should.
V For example, an examination of the program readily shows that the comment in lines (20-21)

does not correspond with the operation of the program. The comment clearly states that XI~XF -

ANSY—V I and that HI—B -~ ANSYm0.0. The way the program operates is that XI~XF -‘ ANSX—YI and that
V 

V ANSY—0.0 only if HI—B i~ XI<XF. It can be seen that this is a bug in the comment, not in the program.
The mode of operation indicated by the comment is impossible since XI?XF and HI—B are not mutually

V exclusive conditions. it is also clear that this is a minor bug, as long as some other programmer does
not take the comment seriously and write another program which depends on the fact that H1B -.
ANSY-B.0.

A more serious bug is involved with the search scheme embodied in lines (81-98). This
segment uses repeated interpolations to seek out XNEW such that F(XNEW)—YF. It is basically just a
slightly improved version of a halving search (in which line 84 would be HNEW—(XN1-XN)/2). The key

V V to the method is that the interval (XN,XN1) always contains a root of F(X)-YF and that the size of the
interval decreases at each step. The simple halving search is guaranteed to improve the accuracy of
the result by a factor of 1024 in 10 iterations.

The search starts with YF in the interval (YN,YN1) (note the comment line 80). A new value of Y
is calculated (YNEW) and then the test in line 90 is used to determine whether YF is in the interval

V 

~~~~~~~ V V V •  ~~~~~~~~~~ ~~~~~~~~ -~~~~~~~ ~~ -— -• ~~~~~~~~~~~~~~~~~~~~~~~ ~• V V V  ~~~~~~~~~~~~~~ - ~~~~~~~~~ V -- ~~~~~~~~~~~~~~~~~ ~~V~~•


Richard C. Waters 20 II. THE TASKS THE SYSTEM CAN PERFORM

(YN,YNEW) cr the interval (YNEW,YNI). This intention is indicated by the comments in lines (89,91,95).
The problem is that the particular predicate chosen to make the determination will work correctly
.n ly when YN<YNI. If YN’-YNI, it consistently makes the wrong choice. As a result the search will
onl y work in the intended fashion when YN<YN1. This, however , is not assured.

The form of the test in line 67, which performs a similar func t ion, indicates that the programmer
did not intend to limit RK1 to working on monotonically increasing functions only. Therefore it is
probably the test in line 90 which is in error , and should be changed.

With this bug, the interval (XN,XN1) is no longer guaranteed to decrease in size, or to even
contain a root of F’(X)-YF. This would lead to considerable trouble if it were not for the fact that the
search segment is robust. First, line 84 can extrapolate as well as interpolate. Second, the segment
implemented by lines (184-118) will work fine with HNEW<0. Third, the segment implemented by l ines
(90-97) tends to create an interval (YN,YN1) containing a root of F(X)-YF where YN<YNL. As a result
of this, after thrashing in the first couple of iterations , the search begins to work more or less
correctly. This is probably why this bug was never found. Only rare pathological functions can cause
catastrophic failure of the search.

This is an example of a definite bug that can be detected by comparing the operation of the
V program with the intentions of the programmer , but which is almost impossible to detect by looking at

the performance of the program RKI on test data .
The program RKI has several other bugs similar to the two cited above.

11.2.2 FINDING BUGS DYNAMICALLY

The system reports a bug staticall y when it is able to disprove a general claim, or a claim made
by the programmer , about the program. However, the system does not have an elaborate deduction
mechanism. It uses mainly pattern matching and trial by example. As a result, it is often reduced to
accepting a claim on faith.

The proposed system has the added ability to execute a program in a careful mode where it
continually checks all tne claims it was not able to prove valid. This is essentiall y just letting a user
of the program indirectly suggest what data items should be used in order to check the claims by
means of trial by example.

If a discrepancy is disccvered, the system proceeds basically the same way as if the bug had
been found statically through a fortuitous choice of trial by example. The only difference is that the
partial computation can be used to help understand the bug.

Suppose that the two bugs described in the last section were not found staticall y. The first
bug would be detected dynamically the first time RKL was called with HI—B and XI<XF. Similarly, the
second bug would be found the first time that the search was initiated with YN1<YN.

V

11.2.3 UNDERSTANDING BUGS

The last tw o sections talked about detecting the existence of a problem. Once a problem is
detected it must be traced back to it s source so that it can be corrected.

• Most computing environments do a certain amount of dynamic bug detection. For instance, they
continually check claims such as: non-existent memory wilt not be referenced, and division by zero
will not be attempted. If , f or example , an illegal memory reference occurs , the computing environment
reports this as a problem. The programmer then begins the involved process of finding the source of
the bug. This system starts out more than half way done with this process because the problems it
finds are at a much higher logical level.

A useful system should be able to converse with a user about a bug, just as it can about a
program. In addition, it should be able to present the issues involved so that the user can make

V decisions about what should be changed.
The system determines what the relevant issues are by asking itself questions. It asks whether

there was any justification for the claim which has just turned out to be false. If so, t his jus t i f i ca t i on
is obviously spurious. The system tries to see whether any part of it has an obvious weakness.
Depending on the type of error , the system determines what the other segments involved are. For V

- V~~~~~~~~~ V V -• ~~~~~~~~~~~~ V~~V
~~~~~~~~~~



V—.III
~~~

Richard C. Waters 21 II. THE TASKS THE SYSTEM CAN PERFORM

V instance, what is the source of the variant input or who will receive the variant output.
Consider the first bug in RKI discussed above. Suppose that the system discovers statically V

that when XI~XF and HI—B, ANSY—YI though the comment in line 21 claims that ANSY should equal 0.0.
The system might report this as follows:

There is a descrepancy between the value of ANSY returned by the
V pr ogram , and the comment on line 21. When XI~XF and HI—B, ANSY—Yl which is not

neccessaril y equal to 8.8 even though HI—B.

The above identifies the error , but it is not enough. The system should present a more
complete description of what is going on as follows:

The top level structure of the program RKI is a COND XOR (see section
111.3.2.2).
“(IF XI~XF THEN ... ELSE (IF HI—B THEN ... ELSE ...V

This implies that (HI—B A XI<XF) -. ANSY—0.0.
On the other hand, the comments on lines (20,21) indicate that the top level

structure of the program was intended to be either an AND (see section 111.3.1.1).
“(IF XI~XF THEN ...) AND (IF HI—0 THEN ...) AND N
Or a CASE XOR (see section 111.3.2.1).
“select the one applicable case and perform the corresponding computation
CASEI X1~XF THEN ... CASE2 HI—B THEN ... CASE3 XI XF A HI,’8 THEN ...
With either structure HI—B should always imply that ANSY—B.8.

This describes the true nature of the descrepancy between the program and its annotation.
V

The system should go on to volunteer added relevant information such as:

X I~X F and HI—B are not mutually exclusive situations.
As a result , a CASE XOR is not reasonable as the top level plan for RK1.
Further , when both conditions hold, it is not possible for ANSY to equal 0.8 as
required by line 21 and to also equal Yl as required by line 28 when YI,’B.0, no

V

matter how the program is implemented. -

This last statement points directly at the cause of the problem. The system has noticed that
V

the comments on lines (20,21) are actually contradictory. The most reasonable way to fix this bug is
to change the comments since they are unreasonable.

The system should give a similar in depth analysis of the second bug in RKZ. Suppose that the
system found this bug dynamically, it might say something such as:

The comment on line 91 indicates that it is a prerequisite of the segment
implemented by lines (92,93) that YF be between YNEW and YNI. In the current

V situation this is not the case even though execution of the segment implemented by
lines (92,93) is about to begin.

It should be noted that the test on line 90 tested only that YNEW<YF. The
programmer implied that it could be proven that YF is between YNEW and YNI
whenever VP was between YN and YNI and YNEW<YF. This is obviously not the
case.

The system first describes the conflict which has arisen. Then it identifies the theorem which
had been used to justify that XF whould indeed be between YNEW and YN1.

It should be noted that the system probably would not be able to develop such a pithy
justification fro m the program as it stands. The system would start with a justification based on all of V

the prerequisites of the segment (lines: 81-98), all of the asser tions of the segment (lines: 84—88),
and the assertions of line 98. This contains a lot of irrelevant information. In order to distill this down V

~

V V V ~~~

~

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ V -~~~~~~

Richard C. Waters 22 II. THE TASKS THE SYSTEM CAN PERFORM

- to a concise justification, the system would probably need assitance from the user. For instance, the
system might ask, “Why does the fact that YNEWCYF from line 90 imply that ~ is b tween YNEW and
YNI , as required by line 91?” The user might answer “Because VP is between YN and YNI.”

Another piers of information the system could give the user would be a counter example. The
system could use the values that the variables currently have from the partial computation to guide it
in the selection of a counter example to the above theorem which would illustrate the problem.

For example, if YN—4, YF—3, YNI— 1, and YNEW—2 then clearly YF—3 is between
YN—4 and YNI—1 and YNEW—2 is less than YF—3, however, YF—3 is not between
YNEW—2 and YNI—1.

The user could ask for more information if he desired, in order to decide whether the test on line 90
should be changed, or a prerequisite requiring that YN<YN1 should be added to the search.

11.3 UNDERSTANDING MODIFICATIONS

V There are two main aspects of modification: deletion and insertion. When something is deleted,
the system must ask itself what depended on the existence of the deleted section, what loose ends
have been left dangling. If there are no loose ends, then the section must not have been used f or
anything.

When a section is inserted the system must ask itself two questions, “What contribution is this
section going to make?” and “What problems is it going to cause?” The system can get hints about
the answer to the first question by knowing that a section is replacing another, or supposedly f ix ing a
bug.

There are many potential problems that a modification may cause. Control or data flow paths
may be disrupted. Needed assertions may be deleted or contradicted. This could cause justifications
to become invalid. It can be seen that a lot of work is required in order to assess the ramifications of
a modification. However, it should also be noted that a lot of this same type of work is required when
the system analyzes the program in the first place.

Consider some examples of how the system might respond to a suggested modification.

25) What would happen If l ine 30 were deleted?
In the situations where XI~XF or HI,’8, the argument to RKI corresponding tothe variable IER would be returned unmodified. This contradicts the comments
on lines (17,18,28,21) which states that IER should be B.

26) What would happen It l Ine 31 were changed to
“IF (XF-XI) 11,12,12”?

V The new program would be differen t in that this segment (lines: 32-33) would
only be executed when X1>XF and the rest of the program would be executed
when XI—XF as well as when XI<XF.

V When XI—XF and HI—B, then IER would equal 1 and ANSY would equal 0.8
whereas , IER—0 and ANSY—VI in the unmodified program.
When X I—XF and HI,~0, it seems (though I (the system) cannot prove it) that it is
still the case that ANSX—X I and ANSY—Yl as required by the comment on line 20.

27) What Is your jus t i f i ca t ion for the last statement?
Assuming X I—X F and H1,’0, then for all of the examples I (the system) have tried,
tha t loop (lines: 44-53, 67-71) terminates on the f irst i teration with
X NI(—X1+HNEW)>XF. This causes this segment (lines: 68-64) to be executed.

V Again for all of the values I (the system) have chosen, HNEW—8 and therefore
ANSX —XX—X N+B—X I—XF and ANSY—YY—F(XX)—F(X I)—YI.

It is entirely possible that the system would actually be able to prove the assertion. It is

V -~~ V -~ V - - ~~~~~~~~~~~~~~~ •~~~~. . - V V

-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVV* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

Richard C. Waters 23 II. THE TASKS THE SYSTEM CAN PERFORM

V 
-
~~~~~ interesting, however, that the very simple deductive methods, trial by example and substitution of V

equals, lead to a such lucid explanation of what is happening.
Now consider modifications which might be proposed as fixes for the two bugs in RK1 discussed

above.

V

- 28) What would happen if l ine 21 were changed to
“ C OTHERWISE IF HI:ZERO THEN IER:1, ANSX:XI , AND ANSY:0.0 ”?

V This would eliminate the bug by removing the conflict between the old line 21
and the top level structure of the program.

Note, comments as well as code may be modified.
V

29) What If the test In l ine 90 were changed to
“IF (YF-YNEW) 120,150,130”?
I (the system) assume you intend to claim that i t is true that when XE is
between YN and YNI and YF<YNEW then YF is between YNEW and YN1.
This is true for the example which brought up the bug. However, it also has

V counter-examples for instance, when YN— 1, YF—2, YNEW—3 and YNI—4.

V 30) What if the test l ine 90 is changed to
V

“IF ((YNEW-YF)*(YF-YNJ)) 130,150,120”?
As far as I (the system) can tell, this fixes the bug without disrupting any of the
other uses of line 98.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~ !~~~~~~~~ ~~~~~~~~~~~~~

Richard C. Waters 24 111.1 DECOMPOSITION OF A PROGRAM

III. HOW THE SYSTEM WORKS

This paper is a proposal. As a result, this section claims to be neither complete nor completely
accurate. It only tries to show that it should be possible to achieve the behavior described in the
rest of this paper. With this in mind, consider the following description of how the system might
work.

The system constructs a logical structure, the grand plan, for a program. This structure shows
how the problem of achinving the goal of the entire program is reduced, through the program, to
subproblems which can be achieved by primitive programs available in the programming environment.

The grand plan is a tree. Each node is a plan explaining how a goal is decomposed into
subgoals, the plans for which are the daughters of the node. The leaves are goals achievable by
primitive programs.

V

Each part of the program is . linked with the piece(s) of the grand plan, which it implements.
Each part is explained by this link. Questions about a part of the program are referred to the
corresponding part of the grand plan in order to be answered.

V

111.1 DECOMPOSITION OF A PROGRAM

A program is decomposed into sections following the structure of its grand plan.

V 111.1.1 SEGMENTS

The goal associated with a node, or leaf , of the grand plan is referred to as a “segment of the
main goal.” The set of parts of the program which are associated with this node, and its decendants,
is referred to as a “segment of the pr ogram ,” the program segment which implements the goal
segment. In this paper the term “segment ” is used to refer to both the goal segment and the - -

corresponding program segment.
In general, a program will have a basic tree-like structure closely parallel to the structure of its V

grand plan. However, many transformations are commonly applied to a program in order to increase
its efficiency (see section 111.1.3). These transformations obscure the basic parallel. As a result, a
program segment need not be a simple continuous piece of the program. It may be spread here and

V there through the code. In addition, one piece of code may be contained in several logically
non-overlapping segments. -

The code for a g~ten segment , with the rest of the program deleted, forms a new program V

which implements the corresponding goal. Further, it is a property of the way this system chooses
segments that each segment has only one entry and only one exit path. In other words, no
information is encoded in the flow of control into or out of a segment. Each segment of a program is
described by a behavioral description (see section 111.2.1).

V 111.1.1.1 A SMALL EXAMPLE

This section presents an example of the relationship between a program and its grand plan.
Section 111.4.8 discusses tha grand plan for a more complex program.

Consider a segment of code which computes the roots of a quadratic polynomial which is
assumed to have real roots. It takes as input the coefficients A, B, and C and outputs the roots Ri
and R2.

0 - SQRT(B**2-4~A*C)
RI • (.-8+D)/ (2*A)
R2 - (-B-0)/ (2*A)

Pig 3: A program which fil ds the roots of a quadratic polynomial.

The following is a possible grand plan for this program. Each node has a name of the form Gn. V

—c— -j- -—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~

r r —~~~ -‘ - ~~~~~~~~~~~~~~~~~~ - —f- —

Richard C. Waters 25 111.1 DECOMPOSITION OF A PROGRAM

The node specifies the goal which it achieves, and a plan for how to achieve it.

GI: “calculate the roots” to do this achieve G2 and G3
C2: “calculate first root” compose the goals G4 and G5

V G4: “calculate the square root term” D—SQRT(8ss2-4sAsC)
V G5: “get the first root” Rl— (-8+D)/(2sA)

G3: “calculate second root” compose the goals G6 and Cl
G6: “calculate the square root term” D—SQRT(B s2-4.A C)
G7: “get the second root” R1—(-B-D)/(2sA)

Fig 4: A grand plan for finding the roots of a quadratic polynomial

The final figure in this section shows how the program is segmented, and how these segments
correspond to goals in the grand plan. V

program segments code
P1 P2 P3 P4 P6 0 - SQRT (B**2-4*A*C)
P1 P2 P5 Al - (-B+O)/(2*A)
P1 P3 P7 R2 - (-B-D)/(2*A)

Fig 5: This shows the correspondence between the program and the grand
plan. The program segment Pi achieves the goal Ci. The program segment name
appears before each line contained in it.

Note tha t due to factoring (see section 111.1.3.3), segment P3 is not continuous, and the first line
implements both P4 and P6, which are logically non-overlapping segments.

111.1.2 CONNECTIVE TISSUE

Consider a program segment P corresponding to a goal C. The segment P contains subsegments
Pi which achieve the subgoals Ci of G. The segment P also contains code which is not contained in
any subsegment. This excess code is connective tissue. It is the cement which binds subsegments
together to form a larger segment achieving a more complex goal.

The goal of a segment is achieved by executing a set of subsegments. However , the
subsegments are not just executed in a vacuum. They must have information conveyed to them, from
them, and between them. In addition, they must be executed in the correct sequence.

111.1.2.1 DATA FLOW CONNECTIVE TISSUE

Data flow connective tissue carries data items between segments. It carries data from the
output of one segment to the lntput of another segment, fr om the output of a subsegment to the
output of th. containing segment , and from th. input of a segment to the input of a subsegment.

Th. most common data flow constructs which form these pathways are subroutine arguments,
returned values, free and bound variables, and assignment. This. constructs can be chained together
so that a datum can follow a path consisting of many sections from its source to its destination.

111.1.2.2 CONTROL FLOW CONNECTIVE TISSUE

Static control flow conn.ctives, such as GOTO, CALL, RETURN, and physical sequential placement
of statam•nts, fix a pattern of execution. In addition, dynamic control flow connectlvss, such as DO
and various IFs, perform computations by varying the pattern of exscution. In this system, th. key
actions of dynamic control flow are captured in ths notion of a pridicate , which is used explicitly in
several plan types.

A predicate is a hybrid construct formed by wrapping a segment in dynamic control flow

~
~~~

V V :r. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~Wc_ ~~ u__ VV_V~ V V V _ _ _ _ V V V V V V _ V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~

Richard C. Waters 26 111.1 DECOMPOSITION OF A PROGRAM

constructs. A predicate has no explicit outputs, however it causes control to exit via one of two
paths. On one path it makes the output assertion P and on the other ~P. The output is in effect
encoded in th. flow of control.

Predicates are only used in certain plan types, where the way they contribute to the overall
goal is made explicit. This makes it easier to understand the function of predicates.

111.1.3 PROGRAM TRANSFORMATIONS

One of the greatest problems in recognizing the basic structure of a program is that, for a V

variety of reasons, pieces of the code are shuffled around when the basic plan is implemented. The
primary motivation for this is economy. Pieces are moved so that they need not be redundantly
executed. Pieces are also often moved so that they need not be redundantly written, even if this
increases execution time.

The transformed program performs the same essential calculation. However, it usually has
-

V incidental differences, complexities, and redundancies which may lead to bugs when it is modified, or
incorporated in a larger program.

V This system attempts to detect transformations as it develops the grand plan for a program. It
continually tries to get at the underlying logical structure of a program. V

111.1.3.1 REARRANGEMENT

Consider the primitive pieces of code which form a program. They form indivisible units
implementing the logical segments which are leaves of the grand plan. Conn.ctivs tissue links these
pieces together into a program. The control flow connective tissue forms a directed graph, each node
of which is executed only in a certain set of situations.

A given piece of code can usually be put in any of several positions in the flow of control. In
fact , the placement is constrained in only two ways. First the data links provide a partial ordering for

F the fundamental pieces of code. A piece of code must be situated so that it follows (in the order of
execution) any piece of code which provides data for it, and precedes (in the order of execution) any
piece of code which uses data output from it. Secondly, the grand plan specifies what subset of
situations each piece of code should be executed in. A piece of code is constrained to positions in the V

control flow which cause execution only in the correct situations. That is to say, a piece of code
which should only be executed some of the times that the program as a whole is executed (for
example one of the alternatives of an IF), must be put in a section of the topological control flow
structure which is executed at just those times.

Clearly the grand plan only loosely restricts the position of the pieces of code. One reasonable
way to decide on the exact sequence is to require that pieces of code which implement the same

V logical segment be together. This makes the relationship between the grand plan and the program
clear , but it is sometimes wasteful. V

It should be mentioned that programmers of ten desire even more flexibility in placement than
that which is described above. There is no way to get around the data flow constraints except for

V changing the algorithm, and hence the grand plan. However, the control constraints can be loosened.
It is possible to position a piece of code so that it is executed too often, as long as its results can be
ignored in the extra cases. For instance, they can be ignored if, in the extra cases, another section of
code overrides them.

It should be noted that stretching the grounds for rearrangement in this way is dangerous. It
can lead to bugs because it creates extraneous situations which are peripheral to the main goal.
Things come into being whose sole function is to fix things up after something has been moved.
These things can easily get mislaid or misunderstood, causing bugs.

111.1.3.2 SUBSTITUTION

A section of code can always be substituted for another section of code as long as it does
exactly the same thing in the given situation. This is not terribly useful. However, a section of code

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V____~.V ~~~ . --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V ~~~~~~~~~~~~~~ ~~ — -—~‘ ‘-~~~~~~~ - -V
_ _ _ _ _ _

Richard C. Waters 27 111.1 DECOMPOSITION bF A PROGRAM V

4,
can also be substituted if it does more than is required as long as the extra work can b. ignored. It
can be ignored by either throwing it away , or by overriding it at a later tin4. This typ e of
substitution is useful in utilizing pre-existing sections of code. It is also useful in promoting
factorization (see below).

Just as in rearrangement , stretching the situation can lead to later troubles. For instance, the
r•quir•ments for ignoring the extra work can easily get lost in the shuffle because they are
peripheral to the main task. Also some other program may eventually come to depend on one of the
extraneous features. This can lead to future problems, since the original program does not guarantee
the extraneous features. They may go away at any time.

There is a special case of substitution which deserves note. Often the grand plan will call for a
general routine, however, the situation makes it clear that the actions of the routine will be limited to
a subset of its normal actions. In this situation, a more restricted routine can be substituted.
Sometimes the routine can be eliminated entirely because its inputs are so heavily constrained that
only one of the outputs is possible.

V

111.1.3.3 FACTORING IN SPACE

Here, two or more identical sections of code are replaced by one instanc of thi section of
code. This saves redundancy in writing the program. Consider two sections of od. which ha.e the
same specifications, and which are in parallel positions in the flow of control. That is to say, in a
given situation either one, but not both, of the sections is executed. The two sections can be
replaced by one section (identical to them) in a position that is executed in just the union of the
situations that the original two were executed in. In addition, of course, thu new position must be
such that the data flow restrictions are met.

4 .B

A 1.~~ J.
A2

Fig. 6: Two identical pieces of code it Al and A2 can be factored forward
to position B, or backward to position C, as long as the new position is consistent
with data flow constraints.

Both of the methods of stre tching discussed above can be used here to promote factoring.
First, substitution can be used to make dissimilar pieces of code identical. Second, a segment can be
factored to a point that is executed too often as long as the results can be ignored in the add it~bnal
situations. Finally, factoring can be generalized to factoring out of n parallel positions, rathe r than
just two.

It should be not.d that factoring is a process which causes one piece of cod. to perform two
or more functions which are logically unrelated. A factored pi.c. of code p.rforms all of the actions
which were performed by its antecedents as a group. Since the ante cedents were in parallel
positions, their action s were associated with logicall y distinct situations.

‘V
111.1.3.4 FACTORING iN TIME

Hr e a section of code can be moved out of a position, where it is executed many times, to one
where it is executed Only once, as long as the result of its •xscutlon is the same each tim. it 5 V

— —--_ .~~~--—-——- -~ -—-~ S~~~~
__

V.~~~~~ V V & ._V V V — — s~a • V V ~~V V V _ V V - V V V ~~~~~~~~~~


~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Water s 28 111.1 DECOMPOSITION OF A PROGRAM

executed. The archetypical case of this is moving something out of a loop. However, it should be
noted that this type of factoring can also be used when the repetitiv, serial execution of identical
pieces of code, with the same input, is explicit.

B

- A l
V Al I

- A 2

- c  C

Fig 7: Pieces of code with identical results (such as those at Al and A2) can
be temporaly factored forward to B or backward to C as long as data flow
constraints are met.

This process is obviously subject to the same restrictions as spatial factoring. The movements V

must not violate data flow constraints, and the new position must be executed every time any of the
old positions were executed. In addition, as above, things can be stretched and generalized to n
pieces of code.

V It should be noted that this type of factoring usually only occurs forward. In the figure, if the
results of Al and A2 are not used until after point C, then Al is clearly redundant.

111.1.3.5 MOVING COMPUTATION BETWEEN THE CODE AND THE FLOW OF CONTROL

There are many things which can either be computed by functions, or directly implemented in
the flow of control. A straightforward example of this is a logical connective such as AND or OR. For
example , a test for x ’8 V y’ø could be implemented using one logical expression, or by using two
separate tests branching to the same place. This system should be able to recognize that these two
implementations perform essentially the same computation.

Looking at it another way, position in tt~.e flow of control can be used to encode information (for
example the outcome of the first test above). A programmer can choose to encode this information in
a variable or returned value instead. This usually leads to a simplification of the flow of control.
Another good example of this is in the use of loops (see section 111.3.4).

V If something is to be implemented in the flow of control, there is usually considerable flexibility
in the way it can be done. Loops can be implemented with DOs or IFs. Subroutine calls can be
implemented with CALLs or computed GOTOs. V

In addi t i on, FORTRAN has a triple branching IF. This can often be used to implement two
cascaded binary choices. This is particularly confusing when the two choices are logically unrelated.

111.1.3.6 MOVING COMPUTATION BETWEEN THE CODE AND THE DATA FLOW

The basic use of a data flow path is to transmit a datum from one place to another. When this
is being done, the datum is not modified by its journey. However, data flow paths can be constructed
so that they perform a computation. When this is the case, the datum which exits from the path may
not be the same as the one which entered the path.

For examp le, various devices , such as calling a subroutine with arguments of nonmatching types,
can be used to bring different sets of access functions into play at the two ends of a path. If
different access functions are used to store and retrieve a datum , it may be transformed by the data
path. This system treats this as if •xplicit transformations had been used. This has the effect of
factoring the computation back out of the data flow. 

~~~~~~V ~~~~~~~~~~~~ 
~~~~~~~~~~~~ S~~~ V~~~~~~~~ ~~~~~~~~~~~~ S. & ~~~~~~~~~~~ ~~~~~~~~~~~~ •~~ V~V~~~~~ V V I ---a. -

V

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

Richard C. Waters 29 111.1 DECOMPOSITION OF A PROGRAM

j  Data flow paths can also be used as a syntactic method for specifying that certain conversions
should b performed. For instance the statement ~Su’D~ (where S is single precision and D is double
precisi on) will cause the FORTRAN compiler to insert a conversion from double to single precision. V

This system just treats this as if the conversion was explicitly stated in the first place.
FORTRAN has the powerful constructs EQUIVALENCE and NcOMMON which cause two or more

variables to refer to the same section of memory. They can be used to cause different sets of access
functions to be used on the same datum, and for other useful things. However, they can also bring V

about opaque and com~.iax side effects. Initially, this system will not try to deal with the difficulties
associated with EQUIVALENCE and COMMON. It will assume that every variable is distinct , i.e. that the

V value held by a variable can never be modified by an operation on a variable with a different name.
Another issue is broug ht up by arrays, which are the only non-atomic data item available in

FORTRAN . One way to look at an array reference NA(I)hs is that it is a function which takes two
arguments, the array and the index, and returns a reference to the element of the array. Another
way to look at it is as a name for the selected item, and hence a data flow path for that item alone.
The second approach has the advantage that, when retrieving and storing a value in an array element,
it captures the notion that the other elements of the array are unaffected. In the first view, the
array indexing is part of the computation . In the second view, it is part of the data flow.

As a concrete example of the difference betNeen the two views consider the segment A(l)—2.
In the computational view, this segment takes two inputs, A and I, and produces an output matrix
which is identical to A in all elements except the I’th which is set to 2. In the data flow- view, the V 

-

V segment has no inputs. As an output, it has Only the single element A(I) which happens to be part of
an array, and is set to 2.

The second approach makes it easier to understand what is going on, but it can only be used
when the value of I, and hence the identity of A(I), can be determined at t he time of the analysis. In
particular this means that I cannot depend on the value of any datum coming from outside of the
program being ana lyzed. When analyzing the segment above , the system would start with the

V computational view , and then switch to the data flow view if it discovered that it knew the value of I.

~~~~~~~ i;

- - V -

—~~ ~~~~~~~~ V V~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~ ~~ - V - -

Richard C. Waters 30 111.2 THE DESCRIPTIVE STRUCTURES USED

111.2 THE STRUCTURES USED TO DESCRIBE A SEGMENT

As was said above, the grand plan for a program shows how the goal of the program is
decomposed , step by step, to goals achievable by primitive programs. Further, each node of the
grand plan is a plan explaining how a goal is decomposed into subgoals. It is now time to look at the
precise structure of a plan. To that end, the next section details the structure of behavioral
descriptions. They describe the input/output behavior of segments, and form an integral part of
plans.

111.2.1 BEHAVIORAL DESCRIPTIONS

A behavioral description consists of five parts: a set of input items, a set of output items, a set
of prerequisites, a set of assertions , and a mapping. The prerequisites are logical conditions involving V

the input objects. They must be met if the segment is to Lehave correctly. The assertions are logical
statements which are true after completion of the segment. In terms of the input and output items,
the assertions say what the segment does when the prer equisi tes are met. Note particularly, that the
definition of a behavioral description speaks of irput and output items, not variables. An item is a
piece of information (a number or an array or a function) which is passed between segments. A
variable is just the most common data flow construct. The mapping specifies when an output item is
identical to an input item.

Segment
YN1 • F(XN 1)
XN1 - XN1+DX

Behavioral description of the segment V

inputs: x,inc
prerequisites: floating numbers (x , m c)
outputs: newx, newy, oinc
assertions: floating numbers (newx , newy)

newx—x+i nc
newy~F(x)
oinc•inc V

mapping: (oincHinc)

Fig. 8: An example of a behavioral description for a two line segment. The V

lower case names (for example x, m c , newx) are names for items. Any similarity
between these names, and the variable names in the example segment is just for
the convenience of the reader. The system encodes no information in the names.

If a behavioral description accurately describes a segment, then if the inputs are supplied and
the prerequisites satisfied, the outputs will appear , and the assertions will be true. in order to justify
the claim that a given behavioral description is accurate , the system must look at the internal
structure of the segment. The mapping is of assistance since anything which is true of an item under
one name, is true under another name. The system knows, in advance, behavioral descriptions of all
of the basic programs available in FORTRAN.

111.2.1.1 POINTS OF VIEW

To be useful, a behavioral descri ption must be accurate. However , exactly what is put into a
behavioral description is a function of the purpose to which the behavioral description will be put.
One segment can be described from many points of view, and several segments can be described from
a common point of view.

There are two key types of points of view: intrinsic” and ~extrinsic. An intrinsic behavioral

S- V V~~~~~~~~~~ -~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~ V~ ~~~~~~~~~~~~~~~~~ V V .~~~~~~~~~~~~~~~~~~~ ,

- - - —,V!
~

V

~

*

~

V ~~~~~~~~~~ ~~~~~~~ V — V

Richard C. Waters 31 111.2 THE DESCRIPTIVE STRUCTURES USED

description describes a segment from an internal point of view. it references nothing external to the
s.gm.nt. Everything it says about the segment Is-true by virtue of th. segment’ s internal workings
and Is independent of where, how, and why the segment is used.

An extrinsic behavioral description describes a segment from an external point of view. It
references nothing internal to the segment. It describes the segment in terms of the environment of
its use. An extrinsic behavioral description is only used in conjunction with other extrinsic behavioral
descriptions sharing the same point of view.

111.2.1.2 RELATING BEHAVIORAL DESCRIPTIONS

Given two behavioral descriptions for a given segment, it may by desirable to show how they
correspond. This is done be specifying an additional mapping which shows how the items mentioned
in the two descriptions correspond.

VTh. next figure shows an extrinsic behavioral description for the segment in the example
above. A correspondence mapping is included, as part of its mapping component, which relates it to
the intrinsic behavioral description of the segment in the previous figure.

Segment V

XN - XN1
YN - YN1
YN1 - F (XN1)
XN1 • XN1+DX

Extrinsic description of the segment
inputs: x, y, deltax
prerequisites: floating numbers (x, y, deltax)

0.0~x
0.0<deltax

outputs: nextx, nexty, oldx, oldy
assertions: floating numbers (nextx, nexty, oldx, oldy)

nextx—x+deltax
nexty—F(x)
oldx—x
oldy—y
nextx>oldx

mapping: (x’.x, deltax..inc, nextx..newx, nexty..newy; oldx..x, oldy.’y)

Fig. 9: This is an example of an extrinsic behavioral description of a use of
the segment whose intrinsic behavioral desription is given in the last figure. Data
flow connective tissue has been added to create more outputs. Similarly V

prerequisites have been added, yielding more complex assertions at~ ut nextx. T e
mapping component consists of two parts separated by a semicolon. The first part V

shows how names used in the extrinsic description map to names used in the
intrinsic description. The second shows how names in the extrinsic description
directly map tog.th.r. Anything which is said of a name is true for any name it is
mapped to and vice versa. Any identity between extrinsic and intrinsic names is
accidental and carries no information. The mapping carries the information.

The correspondence mapping enables the system to use the fact that the intrinsic behavioral
description is accurat s to help show that the extrinsic behavioral descriptiOn is accurate. The
extrinsic behavioral description is accurate if the intrinsic behavioral description is accurate and W~sfollowing four requirements are met.

First, each item in the intrinsic inputs must be mapped to by an element of the extrinsic inputs.
Sicond, each element of the extrinsic outputs must be mapped to by an element of the intrinsic

V

. ~~~~~~ ~~~~ -~S ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
_
~ V~V - •V ’ • V V~V . ~~~~~~~~~~~~~~~~

__
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

Richard C. Waters 32 111.2 THE DESCRIPTIVE STRUCTURES USED

outputs or directly from a member of the extrinsic inputs. Having an extrinsic output come directly
from an extrinsic input is a common method of extending the intrinsic abilities of a segment. Third,
the extrinsic prerequisites must Imply the intrinsic prerequisites. If not, the segment is being 

V

incorrectly used. Finally, the extrinsic assertions must be implied by the intrinsic assertions, and the
extrinsic prerequisites. If not, there is no basis for asserting them.

X I X p

____________________________ ( extrinsic description
segment 

: : intrinsic description
i~ Ip : V

x 1 u 1 0 ,X 0
I~ 1A : : 

: : XP A I *..XA

X0 X~
Fig. 10: This figure shows a schematic representation of the relationship

between intrinsic and extrinsic descriptions of a segment. To the right, equations
summarize the key relationships among the extrinsic and intrinsic inputs, outputs, V

prerequisites, and assertions. Throughout the rest of this paper, subscripts will be
used to refer to the inputs, outputs, prerequisites, and assertions of the behavioral
description of a segment. In the figure, X stands for the extrinsic name of the
segment, and IN for the intrinsic name. Therefore, 1~X0~ stands for the outputs of
the extrinsic behavioral description of the segment.

V 111.2.2 PLANS

The plan for a segment shows how the behavior of the segment is produced through the
combined effort of a set of subsegments. It consists o four parts.

Firstly, it lists extrinsic descriptions of the subsegments from a common point of view. These
describe the behavior of the subsegments in the context of the outer segment. Secondly, the plan
includes the intrinsic description of the segment as a whole, from the same point of view. This is the
goal to be achieved. Thirdly, there is an indication of the plan type of the plan and of how the
subsegments map into the components of that plan type. Finally there is a description of the
teleological structure of the plan. The teleological structure contains the key information which allows
the system to know why the program is the way it is.

V For each plan type there is a collection of specific methods and information (see section 111.3).
This knowledge specifies how subsegments interact in accordance with the plan type. It shows what
control and data flow are required. More importantly, it shows how the extrinsic descriptions of the
subsegments are logically combined in order to yield the intrinsic description of the segment as a
whole. It indicates how to go about verify ing that the segment as a whole works correctly, and what
some of the common bugs are in programs using the plan type.

Looking at plans from another point of view, a plan is an instantiation of a plan type. The
extrinsic behavioral descriptions instantiate the subsegments. Data item naming conventions
instantiate the data flow. Subsegment naming conventions specify the control flow through reference
to the plan type. Finally the intrinsic behavioral description of the outer segment, together with the
description of the teleological structure , instantiate the logical structure of the plan type.

The teleological structure is described using a net of two kinds of links ( purpose, and
“ reason ”). Purpose links specify the purpose of a feature of the plan. They are intended to show

-V ~~~~~ ~~~~~~~~~~~~ — ~~
.—V- -V- V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—

‘..——- -V-———-



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ._ V-, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
V______ VTW ?

Richard C. Waters 33 111.2 THE DESCRIPTIVE STRUCTURES USED

why the major design decisions were made. As a result, Only the main goal directed features have
purpose links. It should be noted, that a feature that does not have an avowed purpose may still be
used as a justification for something. If it is not used for anything, then it is just incidental (there are

V many incidental features in a typical program). In the example plan, it is not just incidental that the V

function F produces a floating number output, however , it is not its purpose either. Its purpose is to
compute the function F as required by the intrinsic description of the outer segment.

Purpose links show outputs designed to become inputs to other subsegments and/or outputs of
the outer segment. They show assertions satisfying prerequisites of other subsegments and/or being
used to imply assertions of the outer segment’s behavioral description. They also show more global
ideas, for instance, that a particular subsegment determines whether a loop should terminate. In

V addition, purpose links show that the inputs and prerequisites of the intrinsic behavioral description
of the outer segment are designed to provide ‘or inputs and prerequisites of subsegments.

The reason links explain why certain things ‘an be claimed. In particular they indicate why the
-

- assertions of the intrinsic behavioral description of the outer segment can be claimed and why the
prerequisites of the extrinsic behavioral descriptions of the subsegments will be satisfied. They show
the key set of assertions from which another assertion can be inferred.

Taken together, the reason links are a trace of a proof of correctness for the segment. This
system is unable to verify this proof because it must take many reason links on faith due to the tact V

-

I

that it cannot prove that they are valid.

-~ ‘~~~~~ -~ —~- . -, ~~~
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

V
~

V__ V V

V.

Richard C. Waters 34 111.2 THE DESCRIPTIVE STRUCTURES USED

Segment
YN1 - F (XN1)
XN1 - XN1+DX

Plan for the segment which is of type AND
(ID REA PUR) Extrinsic description of part Al of A (F)
1 — — Inpu ts: x
2 12 prerequisites: floating number (x)
3 — 13 outputs: newy
4 — — assertions: floating number (newy)
5 — 16 newy—F(x)

mapping: (newx.’arg 1, newy4’return...value;)
Extrinsic description of part A2 of A (+)

6 — — inputs: x, inc
7 12 — prerequisites: floating numbers (x, m c )

V 8 — 13 outputs: newx
9 — — assertions: floating number (newx)
10 — 15 newx—x+ inc

mapping: (x’.argl , inc..arg2, newx..return_value;)
Intrinsic description of part A of A (the whole segment)

11 — 1,6 inputs: x, inc
12 — 2,7 prerequisites: floating numbers (x , m c )
13 — — outputs: newx , newy
14 4,9 — assertions: floating numbers (newx, newy)
15 18 — newx—x+inc
16 5 — newy—F(x)

Fig. ii: This is an example plan for segments similar too the one dealt with
in the last two figures. Note that here the names for the items do have meaning
because all of the behavioral descriptions have a common point of view. If they
are the same in two different descriptions then they refer to the same item. The
table to the left of the fi gure indicates the teleological links. For example, line 8
has producing the output in line 13 as its purpose, and line 7 cites line 12 as the
reason it expects to be satisf ied. Sect ion 111.3.1.1 summarizes the specific
knowledge for plan type AND.

If a plan is to be applied to a particular segment , to explain its operation, three things must be
added to it. First , there must be an indication of what code corresponds to the segments referred to
in the plan. Second, there must be a listing of what data flow connective tissue implements the data
flow required by the plan type. Similarly, there must be a listing of the control flow connective tissue
which implements the control flow required by the plan.

The resulting struct~re s referred to as an app lied plan or explanation. It can be used to
V answer questions about ‘ow a particular segment does what it does. It should be noted that this is a

second level of instantiation. The first level made explicit the structure (teleological, data flow , and
contrnf flow ) of the segment. This level makes exp licit the way in which the structure is implemented.

,

~

- -- -

~

-

~

-- -V

~ 

-~~~~~~~ - V -~~~~~~~~~V - - - V V - V - V”~~~~~ - -



— —~ _-V~ V~~V- V V- W_ _ V__ V-• V_ V~_~ •__ __ p~fl___V~ V V •__ ~V_V V V VV-_ V __V_ __~ V- V_._,__..;,.V~V V VV.V;r.__._ ~~
V_ _,VV..V.~V- ,,,~!!• Vfl!__V__

Richard C. Waters 35 111.2 THE DESCRIPTIVE STRUCTURES USED

Segment with segmentation information
A Al YN1 - F(XN1)
A A2 XN1 - XN1+DX

Applied plan for the segment (additional information only)
data flow

into part Al of A (F)
V x from outside A via variable XN1

into part A2 of A (+)
x fr om outside A via variable XN1
inc from outside A via variable DX

to outside of A
newy fr r m part A l via assignment , and variable YN1
newx from part A2 via assignment , and variable XN1

control flow
from outside A to part Al via initial placement
from part Al to part A2 via sequential placement
from part A2 to outside via final placement

Fig. 12: This shows the additional information which must be added to the
plan in the previous fi gure in order to make it an applied plan, or explanation. Th.
segmentation information is represented alongside the example program in the
same was as in Fig. 5.

This system uses different methods for the understanding and manipulation of each type of
plan. This allows great flexibility. This is only possible because the number of plan types is small.
The next section describes the essential features of the plan types found in the programs in the IBM
SSP.

V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 

-- ~~~~~~~~~~~~~~~~~~~~ V-~~V~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V-_ •~~ .VV_VV- V_V~.V- _ .V~ .._V_~ V..~VVV-_ ~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.~~~V~~~V. V_V - .

Richard C. Waters 36 1113 THE BASIC PLAN TYPES

111.3 THE BASIC PLAN TYPES
V 

The f ollowing sections detail the structures of the basic plan types. The sections are grouped
into cat agories based on the way the plans approach decomposition of a goal. Each section follows
the same pattern.

Each section starts with a schematic representation of how subsegments are combined in
acc ordance with the plan. Arrows in the diagram indicate typical control flow (solid lines) and data
flow (dashed lines). Control and data flow are not part of a plan unless it is applied to a specific V

program. However , the way the subsegments interac t highly constrains the form the data and control
fl ow can take. A “ +

“ is .ised to mark the exit path on which a predicate asserts its assertions. It
asserts the negation of its assertions on the other path.

Above and below the diagrams , equations summarize how the extrinsic inputs, outputs ,
prerequisites, and assertions of the subsegments combine to produce the intrinsic inputs, outputs,
prerequisites, and asser tions of the outer segment. As before, su bscrip ts are used to refer to the
parts of the description of a segment. Below these are explicit descriptions of the purpose (subscript
PR) of each subsegment. These descriptions in conjunction with the equations indicate the teleolog ical
structure of the plan.

To the right of the diagram, equations summarize any definitions needed to understand the
other equati ons. At the bottom of the fi gure, there is an example segment of FORTRAN code
illustrating the plan type. Lastly, there is a section describing the plan type and indicating any points
of special interest.

111.3.1 THE GOAL DECOMPOSITION METHOD “AND”

In this strategy, a goal is divi’4ed into pieces which can be achieved in isolation. In order to
achieve the goal, each piece is achieved separatel y.

111.3.1.1 THE PLAN TYPE “AND”

A 1 — ~~~~~~ A i 1
— 

A~ — (A l.1~~ 
Al p ) A (A , ,1 ,~~ Ai A~fa lse )

I I

I I
A I I I

~~~ Al j ~A2 k.. ~~~An

A 0 — ~~~~ A l 0
A A — A , .1, n A l A

Al pp — contributes Ai0 to A0 and AiA to AA.

X - SIN (Y)
A - ABS (Z)

Fig. 13: Schematic for , and examp le of , the plan type AND

V This is the simplest type of plan. N subsegments (with extrinsic names Ai) are additively
combined to produce the overall segment (whose intrinsic name is A). The purpose of each internal V

segment is to achieve its part of the overall goal. There is no a priori constraint on the order of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- V V V~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V . 
--V -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~~~~~ ~~~~~~~~~~~~~

Richard C. Waters 37 111.3 THE BASIC PLAN TYPES

execution of the internal segments. They do not interact in any way. No data flows between them.
It should be noted that the union of the assertions of the Ai should not be a contradiction. If it is,
then what on subsegment is trying to achieve is incompatable with what another subsegment is
tr~ ’n$ to achieve.

111.3.2 THE GOAL DECOMPOSITION METHOD “XOR”

In this strategy, a goal is subdivided into cases. In order to achieve the goal, it is determined
what type of situation sx ists. Based on the type, an easier goal is achieved which is equivalent in the
particular situation.

111.3.2.1 THE PLAN TYPE “CASE XOR”

A 1 — U 1•1,~ (P1 1 U M 1)
A p — A 1~~1, fl (Pi p A (Pi A .A i p )) A (XOR 1,,1,~Pi

*
)

1 1

JA 1 J ~A2 • ‘ . La” J
L~ 

---j
~

w
A 0 — A 10 - A 20 - ... - A n 0

— A , ,1 ,~ (Pi A A l A )

P1 pp — to establish whether 
~~ 

is true.
Ai pp — when PiA is true, this provides the A0 and AiA.

IF (1-1) 10,5,10
5 )( — SIN (Y)

GOTO 30
18 IF (1-2) 20,15,28
15 X - COS(Z)

GOTO 30
20 STOP
30

Fig. 14: Schematic for, and example of, the plan type CASE XOR

Depending on which of n situations (PiA) is found, one of n actions (Al) will be performed. It
must be true that one and only one of the situations occurs at a given time. This being th. case,
there is no restriction on the order in which the tests are made. Note that whichever test is chosen
to be made last can be omitted (though this does not add to the clarity of the code).

V 

The tests are made with predicates. In the example, the first predicate is “1-1—8”. The IF
converts the segment “1-1” which outputs a number into a predicate. In a given situation , the
predicates, cascaded together , select the correct subsegment to use as the body of the CASE XOR. As



_________

Richard C. Waters 38 111.3 THE BASIC PLAN TYPES

in the AND the subsegments (Al-An) do not interact with each other. In fact in any one execution of
a CASE XOR only one of the Al is executed.

111.3.2.2 THE PLAN TYPE “COND XOR”

A 1 — U 1~~1,~ (Pi 1 U A i 1)
Ap — A i.1.n ~~

‘ ‘
* 

(Pi p A (Pi A.+A lp ) ) )  A (v ,.l,nPi A)

A 1

p’ IA • A j. 111~ 1.Pj ~ V 
-

~A1 ~A2 

~J . • . ~An 

L
:
~

V

~
1

A0 — A 10 - A 2 0 - ... - A n 0
AA A i.1.n ( ( P $

~ 
A 

~‘A~
P i pp — to establish whether 

~
1A is true.

Al pp — w hen (
~

‘1A A PiA) is true, this provides A0 and AiA.

IF (X) 5,5,10
5 ERROR - i

GOTO 38
10 IF (Y/X) 15,15,20
15 E R R O R- 2

GOTO 30
28 ERROR- 0
38

Fig. 15: Schematic for , and example of , the plan type COND XOR

The COND XOR is a variant of the CASE XOR. It is included here because it is extreme ly
common and because bugs often arise due to a confusion between the two. In the ~OND XOR, the
order of execution of the tests is not free , it is essential.

In a serial computer , the tests must be made in some order. The COND XOR takes advantage of
this tact to gain two benefits. First the situation in which a subsegment Al is executed is (

~
‘1A A

not just (
~~

A) (actually this was true with the CASE XOR as well , but since ((XOR 1 .1 . ~~‘*
)

(PiA- P’iA)) it was not useful). This is useful here because the alternative situations needed to
subdivide a goal often have this kind of form. In addition, the prerequisite of the COND XOR requires

V only that the OR (rather than the XOR) of the predicates Pi~ be true. This is, in general, more in line
with the way that people think. In the example, the three situations are XsO, X>0 A Y/X~0, arid X>0 A
Y/X>0. Using the COND XOR, rather than an equivalent CASE XOR, saves duplication of programming
effort.

The second gain is that the prerequisites of a COND XOR are often simpler than in an equivalent
CASE XOR. In the example, because the order of the tests is fixed, the prerequisite of the second
test (that X#$) does not need to be a prerequisite of th. whole COND XOR. Note that, as in the

~~~~~~~~V4E ~ V V~~ ~V- V_V~~~~~ ~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --.-.----~ ~~~~~~~~~~~~~~~~~~~ a L.. .- V , _ . - - .~ V ——V


~~
_ ~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -V — -‘ —

Richard C. Waters 39 111.3 THE BASIC PLAN TYPES

example, the last predicate of a COND XOR is often “tru*” (needing no code to be implemented) which
recogni zes the situation “otherwise.’

One of the most common bugs associated with XORs is due to the fact that programmers often
implement a ~OND XOR when they have a CASE XOR in mind. In the example, the programmer might
have been thinking that whenever X~0 then error—I and whenever Y/X~8 then error—2. It is easy
not to notice that this makes no sense since the alternatives are not mutually exclusive. What
happens when both alternatives are true? The program makes an arbitrary decision setting error to
1. This may cause a problem later if some other program assumes that error~2 implies that y/x)8.

111.3.3 THE GOAL DECOMPOSITION METHOD “COMP

In this strategy (composition), a goal is achieved one step at a time. A subgoal is chosen so
that after the subgoal is achieved it is easier to achieve the desired goal.

111.3.3.1 THE PLAN TYPE “COMP”

A 1 • t ~ U F 1x
AP - G P A F PX

I i  i-
A

1G
w V

I F1 ~~Fxx U F ij
i_l I F~GA • G A X A CAI

G0 ,F 11
F GA l -. F~1 

V

i iI ,
I ’I i  V

A 0 - F0
- GAX A FA

GpR — to satisfy Fp1, to provide F11, and to contribute GAX to AA.
FpQ a to provide A0 and to contribute FA to AA.

Z - ABS (X )
Y • LOG (Z)

Fig. 16: Schematic for , and example of , the plan type COMP

The subsegment F performs a calculation based on external data and on the ouputs of the
subsegment a The inputs and prerequisites of F are divided into two sets external (Fin and Fp~

) and
internal (F11 and Fp1). The internal requirements are satisfied by the outputs and assertions of G.

Th. vertical splitting of the goal has two main benefits. First, the prerequ isites of the whole
segment are often simpler than the prerequisites o f F, since some of the later are satisfied by the
assertions of G. More importantly, the assertions of t he outer segment compose the assertions of F
and G. In the example , G makes the assertion Z—ABS(X) and F makes the assertion Y-’LOG(Z). Often,

j  substitution is used to eliminate references to the outputs of G in the assertions of A. In the exam ple ,
this would yield Y—LOG(ABS(X)) as the assertion of A.

V An important special case of the plan type COMP occurs when AA equals F* and F* does not

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~V V~~~_ V _~~~~~~~~~ 



- V~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ .—.--.,- ~~~~~~ ~~~ -V i-VV_

Richard C. Waters 40 111.3 THE BASIC PLAN TYPES

mention the outputs of G. In this case (referred to as a PREP COMP), the only function of C is to
satisfy prerequisites of F.

This plan type is not common in numerical programming. However , it does occur in the program

L ~K1. The following example from the blocks world illustrates the plan type.

CLEARTOP (A)
PUTON (A ,B) V

Fig. 17: An example of the plan type PREP COMP

The goal is to put A on B (B is assumed to already have a clear top). C which is CLEARTOP(A) 
V

contributes to this goal only by making F which is PUTON(A,B) applicable.

V 
111.3.4 LOOPS

The previous sections have described three methods for transforming one goal into a set of V

easier subgoals so that achieving the subgoals achieves the goal. The plan types described above are
limited in that , even in combination, they can only be used to implement a goal decomposition method
when the set of subgoals can be bounded in size at the time the program is written. Loops can be
used to implement unbounded, but finite, sets of subgoals which are sufficiently repetitive.

V Loops are not a different goal decomposition method. They are a different implementation
method. It should be noted that loops are also often used to implement bounded sets of subgoals

V which have repetitive structure.
There are two ways to approach the description of the plan type LOOP. One could start with a

method for describing unbounded but finite sets of subgoals and show how they can be implemented.
Alternately, one could start with the phenomenon of a loop and show how it can be harnessed to do
useful work. Each way highlights interesting aspects of the problem.

Consider a finite but a pr, ri unbounded set of subgoals which can be put in one to one
correspondence with an initial subset of the positive integers so that achieving the subgoals in the
natural order of the corresponding integers achieves the overall goal. Let G(i] represent the subgoal
associated with the integer i (square brackets will be used exclusively to mark items associated with
the i’th iteration of a loop). The set of subgoals is then {G(1], ... ,G(i), ... , G(n]), where n is the
unknown number of subgoals.

Suppose that there is a set of computations ~B[1), ... , B(i], ...} such that if (G(l], ... , G[i— 1]}
have already been achieved, then executing 8(i) achieves G(i). Further, suppose that there is a set of
predicates (1(8], ... , T(i), ...} such that if {G[1), ... , G(i)) have already been achieved, then executing

• 1(1] will determine whether the overall goal has been achieved, i.e. whether n—i. Given this, the
following unbounded computation would achieve the overall goal and terminate when it has been V

achieved.
I I a a
I I a ____________________ V
I I I
I I , I , ,

I I I , I I

L
j

~~~j (71[T (1] I ~~~ (n:1I rF~I2~ IV F ~ 1+ iu F ~H Li:’ ’ ’
L~f B 1]

V

I.... ~~~~~~~~~~~
.

~~

..! ~~~~B(:]
[

Fig. 18: Schematic for the plan for an unbounded computation achieving the (G(i])

__ V

~

V V VV I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V~~ VV V V ’~ ’~ ~~ ~~~ V_V-V ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

V_~
-__,_w_..-.-. f l -~~~~ y~~~~ W’_i w-r

—

-
V~ V V V V

- ~~~ ~~~~~~~~~~~~~~~

‘ V Richard C. Wat ers 41 111.3 THE BASIC PLAN TYPES

Th. sequence of computations cannot be implemented in the way the above figure suggests. If
V

•ach segment was implemented s .parately the resulting program would be infinite, since n is not
known in advance.

V
A loop has the property that it can produce an unbounded sequence of computations from a

finite amount of code.

“IH
-

V _
V

V & Fig. 19: a loop

The above plan schematic has loops in control and data flow. If it were r’unning, it could clearly keep
running for an unbounded time, alternately executing B and T. Furthir, since 1 is a predicate, it might
even terminate. There is a problem however , how would it start? It appears that the execution of T

~ must always precede the execution of B and that the execution of B must always precede the
execution of 1.

If the execution of the loop were already at either point X or point Y, then there would be no
problem. A loop may be initiated by mimicking every relevant feature of the state of the world at X

- V - or at V and then proceeding as if the loop had always been running. What features are relevant
depends on the nature of T and B. Clearly, any data items which will be used as inputs must be

V created, and the prerequisites of T and B must be satisfied.
The notion of mimicry is a powerful one in its own right. It is brought into play whenever two

data or control flow paths join together to become one. The joining causes the information about the
origin of the paths, which was inherent in their separateness , to be lost. On the other hand, when
paths diverge, as from a predicate , information can be encoded in the separateness of the paths.

The plan types XOR, COMP, and LOOP approach mimicry and path convergence in different ways.
In an XOR (see section 111.3.2) the data and control flow paths join together at the bottom. Ther output assertions explicitly mention this fact. In effect they say that one of these n things happened
and it can be decided which one by determining which predicate was true.

In a COMP (see section 111.3.3) there is not actually any joining of paths. However, imagining
that there is potentially a second control flow and data flow path directly to F from the outside
provides a convenient way of thin king about what is happening. If everything was set for the

- execution of F, then the direct path could be taken. G creates the required conditions, thereby
V mimicking the conditions on the direct paths to F. Note that, in general, F cannot tell whether control

—
:-~ comes from C or directly from the outsidi.

This notion can be extended. Whenever the relevant state is indistinguishable in two places
arid the same subsequent calculation is desired, then a GOTO can be done from one place to the other.

• VV&~~~V_ ~~~~~~~~~~~~~~~~~~~~~ VAV_VV ~~ • _~~~ VSV _M~ . A ~..a 1.a. _. ...V _..A._ . _ ~ V_ _ V ~V_~~~~_ V V V ~~~~~~~~~~~~~ V V~ V ~~~~~~ V~VV__V ~~•~~~~ -V- V t - ~__ - V V~~~~Vtá~~ __V_V V~~~~ ~~~~~ VV._~ _ V.V_VV_Illid

V V V~ V V~~~~_V_V_V V V ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - -V V

Richard C. Waters 42 111.3 THE BASIC PLAN TYPES

This causes a joining of data and control flow paths. If the computations beyond the two points are
not directed toward the same goals, but just happen to be functionally equivalent, then the joining is
just a case of factoring (see section IILL3.3) and is liable to be confusing programming.

When the goals are the same, the GOTO can be a very useful way to look at a problem. It could
have been a plan type on its own. However, the programs in the SSP tend to follow the ideas of
structured programming. As a result , the notion of GOTOs and mimicry can be restricted to
stereotyped positions in certain plan types. This makes it easier to deal with GOTOs, just as a similar
restriction makes it easier to deal with predicates.

Returning to LOOPs, suppose that the loop above is started at point X and that I and B have
the following properties. The first time T is executed , it computes T(B]. The second time it is
executed it computes T(1], and so on. The first time 8 is executed, it computes B(1]. The second time
B is executed, it computes B(2], and so on. If this is true, the loop will perform exactly the same
computation as the unbounded program.

In addition, the loop will take up finite space if T and B do. If this is to be the case, the (1(i))
and the (B(ifl must be sufficiently repetitive in structure so that they can be implemented by finite
programs. It should be noted that I and B will most likely contain computation whose sole purpose is
to make it possible for them to determine which iteration is the current one so that they know what
to compute. In the unbounded program, this information is contained in the flow of control. In a loop,
it must be encoded in other ways.

_
_ - ~~~~~ V~~~~~~~~~~ V - V -V -~~~~~~~~~

- V V ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~ V_~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 43 111.3 THE BASIC PLAN TYPES

111.3.4.1 THE PLAN TYPE “LOOP’

n such that ((A~.g,~ _ 1 TIi)~) A
VA 1 — U j, 0 ,fl (B(i)ix U T (i]ix)

Ap — ‘~i s Ø ,n (Bt i] px A T f i) px)
I I

— — }
A I I • BR] and optionally 1(8]

I 1(i)1 - T (11~x U T (i] xxI(i) p — T(i]p~ A T (i 3 p1
+ : B(i] ~ B(i] xx U 8(i) i~B(i1 p — 8~’~px A 81’~ pz

1t

~
x

B(isfl~~

~ B (A J..e, ; (T (j] A n BEj] A)) A B(i+lJ A . TIi+1] p1 V

(A

~

,g , (T (j] A A B(j] A)) ~ BII+1] p1

V

A0 — (U 110,~ 8(i]
~

)
— ~~~~~~~~~~~~~~~ B(i] A)

‘~ ~~~~~ n.1T
~

11 A~ ~

I pp — to initiate the looping.
I (I] p~ — to determine if the computation should stop i.e. if n—i.
B (i] PR — to perform the steps of the calculation.

X (0) — Dill
DO 10 I— 1 ,INF IN II Y X • 1
X (I) — F(I ,X(I—1),Y(I)) 10 X • X— ((X*X — 10)/ (2*X))
IF (T(I ,X (I),Z(1)) 28,18,28 IF (ABS(X*X—10)—1.OE—18) 20,20,18

10 CONTINUE 20
20

Fig. 20: Schematic for, and examples of, the plan type LOOP

T and B are as described above. I is an additional segment which performs the mimicry in
order to start the loop at either X or V. In the equations in the figure, 1 is referred to as B(0) (this is
done for notational convenience). If I mimiclcs the situation at point Y, then it in addition mimicks what
is referred to as 1(8]. Note that this can (and often does) cause trouble since B[1] is always
executed if the LOOP is started at point V. There is no way to differentiate between the case where
only the goal G(1] should be achieved and the case where no subgoals should be achieved.

The equations showing how the subsegments interact in order to create the behavior of a LOOP
are complex. Fortunately, most LOOPs do not take advantage of the full complexity. In the figure, two
example segments are given. The first , which has more or less full complexity, is artificial and could
be looked upon as a schema of a LOOP. The second, which finds the square root of 10, is much V

V~
simpler. Further, LOOPs can be broken up in Order to isolate different areas of complexity.

Probably the greatest area of complexity is determining when, if ever , a given LOOP will
terminate. Th. quantity “n,” which represents the termination point, appears in .very equation and is V

central to the understanding of a LOOP. The next two sections show how the problem of working with

-V - -~ V_.V V --~~ -V~~_ ._ -~~~~~~~~~ ~~ SV-V~~~V_ ~~~~~~_ ~~~~~~~~~~~ -V~~~V-V V~~~~~~~~&~ V~~~~~~~~V. S~~V~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ V.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~ ~~~~~~~~~~~~~~ _~~ ~~~~~~~~ - ~~~~~~~ _.•_V._~V__ ~V._ ~ •VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _V ..V VV_ ~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 44 111.3 THE BASIC PLAN TYPES

n can be split of f from the rest of the LOOP. Once isolated n often turns out to be relativ •ly easy to
understand.

There are other areas where simplification can occur . These areas could be looked at as
features which a given LOOP might or might not have. The expressions for the inputs and
prerequisites are often simplified. B and/or I may not have any external inputs or prerequisites.
Failing this, the expressions for A 1 and/or Ap may not depend on c~ (this is the case in th. second
example segment).

Very often , the only outputs are from the last step. Similarly, the assertions may only depend
on the last step. It should be noted that picking just the right assertions for T aid B so that the
entire action of the LOOP is summarized at each step is an art. Put another way, it will often be very
hard to prove that a convenient form for the assertions of A follows from a convenient form for the
assertions of T and B. When faced by a difficult proof, this system will just ask the user whether it is
possible. If he says that it is, then the system will trust him. However, it will remember that the
assertion may be shown false at a later time.

111.3.4.2 THE PLAN TYPE “ENUMERATION LOOP’

If everything is removed from a LOOP except for the calculation of n, then the remaining LOOP V

is an ENUMERATION LOOP. The process described in th, next section shows how additional
computation can be added into a LOOP.

- 0.0
00 28 1-1 ,180 18 X - G ( X )

20 CONTINUE IF (X) 10,20,10
28 ... V

Fig. 21: Examples of the plan type ENUMERATION LOOP

The schematic for this type of LOOP is identical to that for the general LOOP except the it does
not produce any output. It just cycles through a sequence of states. In doing this it defines an
ordered set of situations. The only difficulty in understanding an ENUMERATION LOOP is determining
when it will terminate. Since an ENUMERATION LOOP theoreticall y can be as complex as any LOOP, it V

may not~ be easy to understand. However , in general when the parts of a LOOP which do not
contribute to the calculation of n are stripped away, the ENUMERATION LOOP which remains is easy to
understand. Though this type of LOOP seldom appears, as is, in a program, it is very important as a
basis for understanding more complex LOOPs which are built up on the basic series of states it
enumerates.

‘n ENUMERATION LOOP is slightly extended so that it returns B(n]0 as its output, then it is
rifirre . ‘~~ as a SEARCH LOOP. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


V
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V W ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ —

Richard C. Waters 45 111.3 THE BASIC PLAN TYPES

(11L3.4.3 THE PLAN TYPE ‘AUGMENTED LOOP’

This plan type combines a loop L and an additional body AB computing (AB(1], ... AB(i], .4 to
form a more complex LOOP. In the figure, X. V stands for part V of the segment X. V

n — L.n
A 1 — L1 U ~~~~~ AB(i) 1x)
A p . Lp A t’~i.S,n A8(] p~)

I I

T — L . T
B - an AND of L.B and AB

I .-- I — an AND of L.I and AB [8]
+

_ I I

rL.B I L.B(i)~
1A B (0] I L.Bfl]0 ~L.B(i] 0 U AB (i1 0 D A8(i+1I ~X V ! ! -

S I I I

AB :._ ~~

~~
(A J.,,,(T(j]A A L.B1j)~

)) A L.B(i+l] A I(i+l] pz ,
V

~~~~~~~~ (A j.,, j (T(j] A A L.B(j]A)) ‘ L.B(i+1)p1
I A j.e,i T j A  L.B(j)A A AB (j )~~) )  -, AB(i+1) p 1

‘ L.B ~
( - - ‘ I

5~~ V
5 ,

I I  —

A0 — L0 U (U i.• n AB (i]0)

— L* A ~~~~~~ AB (i)A)

‘PR — to initiate the looping.
I (i) PR — to determine if the computation should stop i.e. if n i .
L.B [j) P P — to perform the calculation for LOOP L
AB (i] PR — to perform the added steps of calculation.

Z — 1.0
DC 18 1— 1 ,10 00 18 1.1,18

10 X (I) — Y(I)*Z(I) 10 Z — Z*X

Fig. 22: Schematic for, and examples of, the plan type AUGMENTED LOOP V

Note that this is a three level plan. AB is added to LB (a subsegment of the LOOP L) to form a
new body. There is no restriction on the way AB and LB interact except that no data can flow from
AB to LB or to I. I may also be modifi.d by the addition of AB(83 in order to initialize the actions of
AB.

The most important thing here is that the addition of AB to I does not effect L’s termination, if
L. was understood, then the new loop A is easy to understand. Any segment which can be explain ed
by this plan can also be explained by the general LOOP plan. Using this plan is more advantageous
becaus. it develops a better understanding of th. whole segment by looking at the internal structure
of s.gm.nt a

There are two major subcases of this plan type. The division is based on whether AB uses
feedback or not. The examples il lustrate the two types: AND AUGMENTATI ON and COMP 

V � ~~~~~ V V V — ~~~~~~~~~ - - -



~~~~~~~~~ V VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .V~~~~V V ~~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ ~~ •~- VV

Richard C. Waters 46 111.3 THE BASIC PLAN TYPES

AUGMENTATION. In both cases , a computation is performed, taking advantage of the sequence of 
V

V 

states which is set up by the LOOP L, which i~ usually an ENUMERATION LOOP (as in the examples ).

111.3.4.4 THE PLAN TYPE ‘INTERLEAVED LOOP”

This plan type combines two LOOPs, K and L, so that they are computed in synchrony. The
combination terminates as soon as either one terminates.

n - IIIN(K.n,L.n)
A 1 — U i.ø n (K. B( i) ix U K .T ( i )  ix U L.B( i] ix U L.T(i] ix~A p — A ;.ø n (K.B( i] px A K.I(i] p~ A L.B(i] p~ A L.Tf l] p~

)
I S 5 I

— !  —
A

I 

~~~~~~~ 
I . K OR L.T

~L.I ±X
1 1 each LOOP operates

~~~~~~~~~~~~ __~~L~~~~
- 

- - 

- 

separately

A0 — (U ,0,~ (K .B( i] 0 U L.B(i] 0)
— (A 1~~0~~~ (K.B( i] A A L.8( i] A ) )

A (A
~~,e,~~~ i 

(K.T (
~

] A A L.I(i] A ) )

V A (‘~<J(~
] A V ~‘L.I(fl) A )

I pp — to initiate the looping.
L. I (ii pp — to see if the computation should stop due to LOOP L
K. I (i] pp — to see if the computation should stop due to LOOP K.
L. B ( i) pp — to perform the steps of the calculation for LOOP L
K. B t i ]  pp — to perform the steps of the calculation for LOOP K.

X - 0.0
DO 1— 1 ,10
X - F ( X )
IF (X ) 10,20,10

V 10 CONT INUE
28

Fig. 23: Schematic for , and example of , the plan type INTERLEAVED LOOP
V This is also a three level plan; K.T, LI, K.B and L.B are executed in any order in a ring, with

mimicry starting the LOOP at any of four points. The key requirement is that no data flows between
the two subLOOPs. Their only interaction is that when one terminates , the other is ar~i f i c i a l l y
stopped. It should be noted that when one of the subLOOPs (say K) terminates, then the whole LOOP

V ~~~~~~~~~~~~~~~~ ~~~~~~~ — - — - -



~~~~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V - - V _ ~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ V — — —

Richard C. Waters 47 111.3 THE BASIC PLAN TYPES

(A) acts in all respects just like that subLOOP (K) with some additional computation from the partial
•xecution of the other subLOOP (I). In particular, the outputs are the outputs of K with a subset of
the outputs of L added on.

Like mimicry, interleaving is a powerful idea in its own right and could be a separate plan type.
Interleaving is essentially a way to simulate parallel processing. Here it has been restricted to
applying only to LOOPs because it is not interesting when applied to the other plan types discussed.

One of the most important attributes of this plan type is that it can be shown to terminate even
V if only one of the two LOOPs K and L can be shown to terminate. As a result of this, this plan type is

often used to bound the execution of a possibly non-terminating LOOP with a simple ENUMERATION
LOOP (see the examples.

The other major use of this plan type is based on considering that it computes either K or L
V (whichever completes first). Here first is defined in terms of the sequence of states produced by the

- - :~ LOOPs. This is done in a situation where, for instance, the results of L are not desired (or perhaps
are not computable) if K terminates first. The program RKI contains an example of this.

In conclusion, it should be noted that control exits an iNTERLEAVED LOOP in two different
places depending on which test terminates the LOOP. In a grand plan this feature is expressed by
considering that the interleaving process joins two LOOPs, each of which is the initial component of a

V complex computation. If the INTERLEAVED LOOP terminates due to test K.T, then execution continues
only in the computation LOOP K is the initial component of.

The splitting of the flow of control on exit from an INTERLEAVED LOOP could have been
eliminated if a component were added to all LOOPs which was executed after the test had terminated
the looping. This was not done, because t was felt that composing this exit segment on the output of
every LOOP would obscure the basic nature of LOOPS.



- .

Riciiard C. Waters 48 111.4 DETERMINING THE DESCRIPTION

111.4 DETERMINING THE DESCRIPTION OF A PROGRAM

This section gives an indication of how the system can develop an understanding of a program
in terms of the descriptive structures defined in section 111.2. Given an understanding of a program,
Section II gives an indication of how tasks are performed by the system. Basically, the system either
just reports out parts of the descriptive structures, or asks itself a series of questions and performs
some minor deductions. The descriptive structures were specifically designed to make the tasks
described in section II easy.

V Starting fr om the text of a program, including annotation, an understanding is developed using
several types of knowledge. The system has complete knowledge of the basic facts about FORTRAN.
This includes knowledge of the specific control flow and data flow constructs available, and knowledge
of the basic programs available. The system also has sorle basic knowledge about mathematics.
However , it should be noted that , this system does not try to understand the mathematical theorems
implemented by a program, but only how the program implements the theorems. Finally, the system
has knowledge of what plan types are used in the programs in the IBM SSP.

The understanding process is illustrated by a discussion of the program ~ONVT which is shown
in the next figure.

L - _ _ _ _ _ _ _ _  • V V __ _ _



- ~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~ V V~~~~~~~~~~~~~~~~~~~~~~~_~~~~~~~~~ 
V~~~~~~~~~~ 

Richard C. Waters 49 111.4 DETERMINING THE DESCRIPTION

1 C PURPOSE
2 C CONVERT NUMBERS FROM SINGLE PRECISION TO DOUBLE PRECISION
3 C OR FROM DOUBLE PRECISION TO SINGLE PRECISION.
4 C DESCRIPTION OF PARAMETERS
5 C N - NUMBER OF ROWS IN MATRICES S AND 0.
6 C M - NUMBER OF COLUMNS IN MATRICES S AND 0.
7 C MODE - CODE INDICAT ING TYPE OF CONVERSION
8 C 1 — FROM SINGLE PRECISION TO DOUBLE PRECISION
9 C 2 - FROM DOUBLE PRECISION TO SINGLE PRECISION

V 10 C S - IF MODE-i , THIS MATRIX CONTAINS SiNGLE PRECISION
11 C NUMBERS AS INPUT. IF MOOE.2 , IT CONTAINS SINGLE
12 C PRECISION NUMBERS AS OUTPUT. THE S IZE OF MATRIX S
13 C I S N B Y M.

4 14 C 0 - IF MODE—i , THIS MATRIX CONTAINS DOUBLE PRECISION
15 C NUMBERS AS OUTPUT. IF MOOE-2 , IT CONTAINS DOUBLE
16 C PRECISION NUMBERS AS INPUT. THE SIZE OF MATRIX D IS
17 C N B Y M.
18 C MS - ONE DIGIT NUMBER FOR STORAGE MOOE OF MATRIX
19 C 8 - GENERAL
20 C 1 - SYMMETRIC
21 C 2 - DIAGONAL
22 C REMARKS
23 C MATRIX 0 CANNOT BE IN THE SAME LOCATION AS MATRIX S.
24 C MATRIX 0 MUST BE DEFINED BY A DOUBLE PRECISION STATEMENT IN
25 C THE CALLING PROGRAM.
26 C METHOD

4 27 C ACCORDING TO THE TYPE OF CONVERSION INDICATED IN MODE, THIS
28 C SUBROUTINE COPIES NUMBERS FROM MATRIX S TO MATRIX 0 OR FROM
29 C MATRIX D TO MATRIX S.
3 0 C
31 SUBROUTINE CONYT (N ,M,MODE ,S,DJIS)
32 DIMENSION S(1),O(1)
33 DOUBLE PRECISION 0
34 C FIND STORAGE MODE OF MATRIX AND NUMBER OF DATA POINTS
35 IF (MS-i) 2, 4, 6
36 2 NM-N*M
37 GO TO 8
38 4 NM. ( (N+1)*N)/7
39 60 T0 8
48 6 NM-N

V 41 C TEST TYPE OF CONVERSION
42 8 IF (MODE-i) 18, 18, 28

V I 43 C SINGLE PRECISION TO DOUBLE PRECISION
V 4 44 10 DO 15 L-i ,NM

V 

45 15 D(L).S(L)
46 GO TO 3B
47 C DOUBLE PRECISION TO SINGLE PRECISION
48 28 00 25 L-1,Nt1
49 25 S(L)-O(L)
SO C
51 30 RETURN
52 END

Fig. 24: The subroutine CONVT

S VV V V V V 
- ~~~~~~~~~~~~~~~~ - ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - —..-—-—~ —.
~~-
, - - -~ - _~~~~~~ ,_ ._.__S_S___ .S_.._

- Richard C. Waters 50 111.4 DETERMINING THE DESCRIPTION

The first step taken by the system in order to analyze a program is to divide the program into
V control flow, data flow , basic program fragments , and comments.

1—31 are comments and appear in the preceding figure V

V 31 subroutine convt (n,m,mode ,s,d,ms)
- 32 dimension s(1),d(1)

33 double precision d
34 c find storage mode of matrix and number of data points
35 IF (ms—i) 2, 4 , 6

- 36 2 rim-n*m
37 GO TO 8
38 4 nm- ( (n+1 ) *n) 12

- 39 GO TO 8
40 6 nm-n

V 41 c test type of conversion
42 8 IF (mode- i) 10, 10 , 20

- 63 c single precision to double precision
V 44 10 00 15 l— 1 ,nm

45 15 d ( l ) — s ( l )
46 GO TO 30
47 c double precision to single precision
48 20 00 2.5 l-i,nm V

49 25 s ( l ) — d ( l )
58 c V

V 51 30 RETURN
62 end

Fig. 25: This shows the subroutine CONVT printed in four different
styles of type. The styles of type identify each part of the program as either:

1) FLOW OF CONTROL CONNECTIVE TISSUE
V 2) data flow connective tissue
• 3) a basic program fragment
- 4) c a comment. V

Modulo certain transformations (see sections 111.1.3.5 and 111.1.3.6), this division can be done
purely syntactically. For convenience , entire expressions like N((N+1)sN)/ 2u have been taken as basic
programs in the example. The system will actually onl y consider functions like M~~ N M~_II

, UFLOATN, array 
V

indexing, etc. to be primitive.  However, it probably will treat expressions in a special way since they
V are particularly easy to understand.

111.4.1 CONTROL FLOW

The control flow of a FORTRAN program can be completel y analyzed by looking at the text of
the program , without any elaborate reasoning. Programs such as optimizing compilers currentl y
perform such analyses. The next figure is a control flow diagram for the program CONVT. Thas
diagram is a graphic representation of what the system knows about the control flow of the program.



~~~~~~~~~~~~~~~~ V V~~SV _ V ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 51 111.4 DETERMINING THE DESCRIPTION

_ _ _ __ _ _ _

¶
CON VT I -~

V

lIP

r~
’
~ I

V

_ _ _ _ _

- 35

- - 1 3 6 1 3 8 1 [4 0 1

~ _____________

ISEQ V

I f
1 4 2 1
42I~~~~

1~ _ _ _

144 1 I 148 1 I
SEQ

V

L~III HI
44 48

44 481 44.0 1 1 48.B I
44 48

46 T SEQ

is1

Fig 26: The control flow in the program CONVT.
SEQ—SEQUENTIAL PLACEMENT, IP—INITIAL PLACEMENT.

Richard C. Waters 52 111.4 DETERMINING THE DESCRIPTION
V

The diagram is a directed graph. Each arc connects one node to one other node. It represents
the flow of control between the nodes. Forking of control flow arcs is only reasonable in an
environment where there is asynchronous processing. The label on an arc indicates how it is
implemented. This label is either a line number or a direct explanation. If it is a line number, the

V control flow construct on that line implements the control flow indicated by the arc. The possible
direct explanations include “SEQUENTIAL PLACEMENT” and “INITIAL PLACEMENT.” Both of these refer
to situations where the arrangement of the statements in the program governs the flow of control and
there is no explicit flow of control construct to point to.

Nodes are labeled with an indication of the activity taking place at the node. A line number
indicates the basic p’ogram and/or data flow which takes place in the control environment assoc iated
with the node. For example , the ac tions of line 36 (computing NaM and assigning the result to NM) are
computed Only when MS<1. If a node is associated with only a part of a line, then it is labeled with
the extrinsic name of that part of the line. For example, the label “44.B” on a node indicates that only
the body, “L—L+1”, of the ENUMERATION LOOP, embodied in line 44, is associated with the node. A

V node at which nothing happens is not represented as a box. It is just a point at which an arc
V terminates and another begins.

If more that one arc leaves a node, then that node must be a predicate. For example, the nodes
labeled 35, 42, 44.T, and 48.T are predicates. Several arcs can enter a node. This has no
extraordinary significance.

The nodes are associated with the lowest level segmentation of the program. In the figure,
nodes have been selected in accordance with a line oriented selection of basic programs. The system V

V would actually produce a more complex diagram in which no reasoning was required during the node
Vselection process. For clarity, the figure superimposes a higher level of segmentation on the system’s

diagram (see the section on segmentation below). In order to avoid making any decisions about V

V
segmentation while analyzing the control flow , the system puts in as many nodes as there are distinct
control environments.

V 111.4.2 DATA FLOW

The data flow for a FORTRAN program can also be completely analyzed in a straightforword
V manner. The next figure is a diagram, similar to the control flow diagram, representing the system’s

knowledge of the data flow in the program CONVI.

-~~~ V~~~~~~~~~ V V VV ~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~ V V

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— V VV_  S~V5~~ V~~VV ~V••5• •~~ V SrS~~~_~~___SV~ ~~~~~~~~~ 
-- V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V

Richard C. Waters 53 111.4 DETERMiNING THE DESCRIPTION

ARG2 , ,ARG1 ,ARG4 ,ARGS ARG3 , , ARGS

M ‘N ‘~~ 
MS , 

!0 MODE ~~MS

~s
S 

_______  S S
S S *6 5~~~S S

, S
— +  ‘ 

, , 6 1
116 S M 5~J ‘N , ‘, I ~ * S , , ,

6 6  *~~~ _ _ _ _ _ _  _ _ _ _ _ _  , I
S S 6

36 1 38 40

:36 1 :38 :40 1
6 W W 6 5  1. + 6

NM’ I Mfl~~ S
S ~ + 4

6 *  6 _ _ _ _ _ _  6
I ,

42 1 :
I _ _ _ _ _ _  I , S
* 5 5
I I , S

S S S I I I
• 6 6 I i i
* I I I  V

5 S ‘n I I
I ~ A A ~~~~6

[f
44~J 

~~~~~~~~ “ ‘\ 
j~ 8.I~

~,
• 6 644 ,‘ S \ 48’ I I

, S S

/ : ~ ~
.

I I II ~ I’ .——— + I 1 s i 5 S
6 5 6 5 S I 5 5 * 1 1 I

I I~~~I I S 5 5 1 1 I l
I I S 5 5 I S

I j I S S 4 , I
I S

~~ 6 5 I
* I L _I 6 5 V 5 . 5

5 I S * I
5 6 5 5 5 I S

I I $ I 6 * I I i
V S I V I S

I * L
I p — — — , I . — — — l S I
, , S I S I ~ S
I I I

_______ I
S I I S
44.B , 48.B I

6 6 6 6
_ _

S I I ,
S S * I 1. S I ~I I I I 5 5 I V

S I I V S 6 * V I I
I 5 1 , — — — — ~~ + + , ~ ,

~~~~~~~ INN NM 
~~~~~~~ I

I I 5 I S I
, I I

44.1 1 48.1
5 6

N :0 S MODE :MS
~~~~~ 1~~~

ARG2W WARG1 WARDS ~ARG4 ARG3W WARDS

4 
Fig. 27: The data flow in the program CONVI

4.,. 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V - -  - -~~~~


___________ _________________ -—

Richard C. Waters 54 111.4 DETERMINING THE DESCRIPTION

Though some data flow constructs (such as assignment) are directional, many (such as variables
and subroutine arguments) are not. These non-directional constructs merely maintain the same value
at several points. The control flow imposes a directionality on them. The label on an arc indicates
how the data flow it represents is implemented. The label is either a line number of a data flow
construct , a variable name, or a direct explanation. If it is a variable name, then that variable
implements the data flow. Direct explanations are used to indicate phenomena which cannot be easily
isolated to one item in the program. The only one used in the fi gure is “ARGn” which indicates that
the data flow into or out of the program was achieved through subroutine argument positiOn n.

Unlike control flow arcs , data flow arcs can fork arbitraril y. For example, the arc implemented
by variable NM connects the assignment statements leaving nodes 36, 38, and 40 with the nodes 44.T,
and 48.T. However , a data flow path can actuall y Only carry one datum at a time. As a result, a datum

V which is delivered to the node labeled 44.1, in a given execution of the node, actually originates at
just one of the nodes 36, 38, or 40. Many arcs can enter or leave a node. This just indicates that
several data items are entering or leaving the node.

The data flow nodes are selected by the system in the same way as control flow nodes are.
Namely, one for every data flow environment. As before , the figure shows a higher level of
segmentation.

111.4.3 BASiC PROGRAM FRAGMENTS

V There are only a limited number of basic programs available in FORTRAN. The system has
complete intrinsic descriptions of each one as part of its specific knowledge about FORTRAN. These
descriptions embody the lowest level of detail understood by the system.

111.4.4 ANNOTATION

The information described in the previous three sections gives a complete picture of the
program, at the finest level of detail. The system uses this information to binld up a descript ion of
the program at intermediate levels of structure up to an intrinsic description of the program as a
whole. The use of annotation of the program is essentia l in this process. Comments and their use wil l
be discussed in all of the following sections.

It should be noted that this system does not try to do any natura l language processing. As a
result , the comments cannot be used in the exact form they take in the programs in the SSP. It has
not been decided what form the comments will take. The next figure offers one suggestion.

A very important question is how much annotation will be required in order for the system to
develop an understanding of a orogram. It appears that though the comments on the programs in the V

SSP will have to be recast in some other form , they contain sufficient information ~or understanding.
As a result , the amount of annotation needed should not be greater than the amount already present
on the actual programs.

V V


~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ — -~~~~
. -  

~~~~~~~~~~~~~~ 
— ~~~~~~~~~ -~~~~~~~~~

Richard C. Waters 55 111.4 DETERMINING THE DESCRIPTION

C partial intrinsic description of CONVT
C inputs: n, m, mode, {s(i)}, (d(i)}, ms
C prerequisites: floating numbers ({s~i)))C double precision numbers ({d(i)))
C integer numbers (n, m, mode, ms)
C matrices ({s(i)}, {d(i)))
C n—NUMBER_OF_ROWS({s(i)))—NUMBER...OF_ROWS({d(i)))
C m-NUMBER_OF...COLUMNS({s(i)})-NUMBER_OF_cOLUMNS((d(i)})
C ms—$TORAGE_MODE((s(i)})—STORAGE_MODE({d(i)))
C mode ~ ~1, 2)
C outputs: on, om, omode, {os(i)}, {od(i)~, oms
C assertions: floating numbers ((os(i)))
C double precision numbers ((od(i)))
C integer numbers (on, om, omode, oms)
C matrices({os(i)), {od(i)))
C mode—i -~

lod(i)}—DBLE((s(i))) COMPONENTWISE
V C mode—2 -‘ {os(i)}—SNGL({d(i))) COMPONENTWISE

C
31 SUBROUTINE CONVT (N,11,MOOE ,S,O,MS}
32 DIMENSION S(1) . O(1)
33 DOUBLE PRECISION 0
C
C the next segment is of plan type XOR
C partial extrinsic behavioral description of the next segment
C assertions: OUTPUT NUMBER_OF_ELEMENTS((s(i))) NUMBER_OF...ELEMENTS({d(i)})
C
35 IF (MS-1) 2, 4, 6
36 2 NM-N*M
37 GO TO 8
38 4 Nl1- ((N+1)*N)/2
39 GO TO 8
40 6 NM-N

V C
C the next segment is of plan type XOR
C
42 8 IF (IIODE-1) 10, 10, 20
C
C partial extrinsic behavioral description of the following segment
C assertions: {od(i)}—DBLE({s(i))) COMPONENTWISE
C
44 10 00 15 L-1,NM

• 45 15 D(L).S (L)
46 G0 10 30
C
C partial extrinsic behavioral description of the following segment

V C assertions: {os(i)} SNGL({d(i))) COMPONENTWISE
C
48 20 DO 2S L-1,NM
49 25 S(L)-D (L)
51 38 RETURN
52 END

Fig. 28: The annotation on the program CONVT translated to a form understandable
by the system. Indentation indicates segmentation.

—~~~~~~~—-——-.-—- ~~~~~~~~~~~~~~~~~~~~~~ • V V~~~ -— ~~~~~~~~ V -~~~~~~
_ — S

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~
_ V

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V.,.. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ W V. V V ~~~~~~~~~~~~~~~~~~~ -~~~~~

V

Richard C. Waters 56 111.4 DETERMINING THE DESCRIPTION

All of the information in the above figure comes directly from the comments on the actual
program. This section will discuss the partia l intrinsic behavioral description for CONVT which
corresponds to the header comment , lines 1-30, together with lines 31-33. It is interesting to note
that lines 32 and 33 could be looked at as comments which have been put in a form which the
FORTRAN compiler can understand and act on. The following sections will discuss the internal
comments.

Consider where each part of the partial intrinsic behavioral description for CONVT (see the
fi gure above) comes from. The SUBROUTINE statement , line 31, specifies that there are six inputs and V

outputs. Names for them in the behavioral description have been patterned after the variable names
V for clarity. The system itself attaches no significance to its internal names.
V This brings up the very interesting topic of mnemonic names. The variable names are a very

important source of information about a program, particularl y if there is not much other annotation.
Since N, M, and MS are standard names for NUMBER_OF_ROWS, NUMBER_OF_COLUMNS , and
STORAGE_MODE respectively, in the programs in the SSP, additional commentation on this fact might
have been omitted if CONVT was not so wel l documented.

The name of a variable is usually chosen to specifi y some aspect of the datum carried by the
variable. This can be used to learn about the assertions of the segment producing the datum, and
about the prerequisites of segments using it. However , there is a problem with this. A variable is
usually used to carry different datums 1 in different parts of the program, whi le the mnemonic name
often applies to only some of these datums . For examp le, the variable NM in CONVT is very mnemonic
when it is carrying the result of line 36, but not when V t is carry ing the result of line 38 or 40.

In addition to this problem, since the system does not understand English, it cannot use the
mnemonic value of a name directl y. As a result , the system will probabl y not use any more
information from the variable names than FORTRAN uses, namely, the fact that the first letter of a
variable name signifies whether it is an integer or floating point number.

Returning to the header comment , the DIMENSION statement , line 32, indicates that S and D a’e
matrices. This fact is spec ifically recorded in the partial behaviora l ~escri ptson . In addition S and 0
are referred to as {s(i)} and {d(i)) when talking about the ent ire aggregate. The prerequisites and
assertions about the data types of the inputs and outputs come from the names for the variables and
the DOUBLE PRECISION statement , line 33.

The specific information about N, M, US, and MODE is given in lines 5-9 and 18. The information
about what S and D are , on output, is given, though not too clearly, in lines 10-17 and 27-29. One
source of confusion is that , unlike the partial bel aviora l description, the comment does not make a
clear distinction between input and output data carried by the same varia ble. As a result, when it
says “S,” it is not clear whether it is the input or the output data which is being referred to. V

The comments on lines 24-25 are riot used because they do not appl y to the internal workings V

of the program CONVT. The very important comri~ent on line 23 is not used because this system
makes the simplifying assumption that variables never overlap.

The partial int-insic behavioral description derived from the header comment is used as a basis
f or the intrinsic behavioral descri ption of the program. In fa ct , it is almost complete. The only thing
that has to be added is some information about some of the outputs. Many comments are in the form
of partial behavioral descriptions, but few are anywhere near as complete as a header comment is.

At this point , the system has a good idea of the highest and lowest level descriptions of the
operation of the program. In order to understard the program more fully, it must lInk these two

V descriptions up by determining the intermediate structure of the program.
Basically, it is not too difficult for the system to analyze one or maybe two levels beyond what

it knows. An attempt to go farther than that , would lead to a combinatorial explosion of possibilities.
Internal comments in the program being analyzed provide landmarks so that the system never is more
that two levels away from what it knows.

V
~

V V
~

V
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~ 
V ~~~~~~~ ~~~ ~~~~

Richard C. Waters 57 111.4 DETERMINING THE DESCRIPTION V

111.4.5 SEGMENTATION

The first step in developing an understanding of the internal workings of a program is to
properly segment it. The basic difficult y involved in determining segmentation is that there is a very
large number of ways that a program can be divided into segments. Fortunately, there are several
methods which can be used to speed up the search.

Firstly there are comments which specify segmentation. The entire program is marked as a
segment by being physically separated from the other programs in the SSP. Further, it is delineated
by the SUBROUTINE and END statements , lines 31 and 52, for the benefit of the FORTRAN compiler.

The position of internal comments tends to specify internal segmentation though not
unambiguously. The position of the comments in CONVT indicates that lines 35-40, 44-46, and 48-49
are segments. It is harder to see that line 41 indicates a segment from 42-49, not just for 42. The
comment on tine 50 is particularly interesting in that it is clearl y intended solely to specif y
segmentation. In the last figure, segmentation information is indicated by indentation. This obviously
would not be adequate in a situation where there were overlapping segments. It does suffice here,
however.

Secondly, the segmentation can proceed incrementall y (for one or tw o levels) from above or
below. This is done in conjunction with recognizing plan types expressed in the code (see the next
sect ion). If a plan can be recognized, this automatically gives some of the segmentation. The reason
this process can only proceed profitably from the top and bottom, and not from the middle, is that  in
order to recognize the plan, either the segment , or the subsegments must be determined.

In CONVT proceeding from the bottom can easil y detect that the expressions are segments.
Working from the top, it would not be too hard to notice that the whole program is a COMP of lines
35-40 and 42-49, and that these two segments are XORs of (35, 36, 38, and 40) and (42, 44-45, and V

48—49) respectively. In this simple example the incremental approach yields a total analysis because
V the program is very shallow.

111.4.6 PLANS

The main reason recognition of the plan type of a segment is possible is that there are only a
few plan types used in the SSP. There are an obundance of features which are very specific in
differ entiating between these plan types. For instance, all LOOPs, and Only LOOPs, have a l oop in
control and data flow. All , and only, LOOPs and XORs have predicates. All, and only, COUPs and
LOOPs have data flow between subsegemnts. In addition, the subcategories of the four major plan
types also have clear identif ying characteristics.

Of co nsiderable aid to recognition is the fact  that certain FORTRAN constructs are
stere otypicall y used to implement certain plan types. For instance, ARITHMETIC IFs often implement
XORs. DOs often implement AUGMENTED LOOPs, a DO being an ENUMERATION LOOP. Expressions
implement sequences of COMPs.

Finally, comments sometimes give an indicat ion of the plan type of a segment. The phrases

~FIND STORAGE MODE’ in line 34 and ~TEST TYPE OF CONVERSION” in line 41 seem to indicate that
the segments following them are XORs. In general, however , comments are not very helpful for
discovering the plan type of a segment.

111.4.7 BEHAVIORAL DESCRIPTIONS

The internal comments are very useful for devel oping the behavioral descriptions of the V

internal segments. In CONVT, the c omment on line 34 indicates that the output of the fo llowing
segment is the number of elements in the arrays. The comment on line 43 indicates that the output is
the OBLE of the input. Similarly, the comment on line 47 Indicates that the output is the SNGL of the
input.

With some vital guidance fr om the internal comments , inf ormation about behavioral descriptions
f or the internal segments comes up fro m the intrinsic behavioral descriptions of the primitive
programs used, and down from the partial intrinsic behavioral description for the whole program given

-~ ~~~~~ V V V~V~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ — ~~~ V.~~ V V._V. ~~~~ -• — ~~~~~~ - -  - .~~~L -



•,.— ,..~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ V ~~~~~ V V. V~~~~ V.• - V~~~~~~~~~~~

V.
~~~

V. _ V ~~~~~~~~~~~~~~~~~~~~ V~V~ V

Richard C. Waters 58 111.4 DETERMINING THE DESCRIPTION

by the header comment. Each plan type has information about what the intrinsic description of a
segment corresponding to that plan type must be if the extrinsic behavioral descriptions of the ‘1subsegments are known. In the absence of a comment to the contrary, the extrinsic description of a
segment is assumed to be the same as the intrinsic description. Information cannot propagate from
the intrinsic behavioral description of a segment to the extrinsic behavioral descriptions of its V

subsegments unless something is known about the descriptions of these subsegments. Comments are
crucial in providing enough information about the behavioral description of a subsegment so that a
more complete description can be inferred from the description of the segment. This allows the high
level description provided by the header comment to be pushed down into the program. V

Information filters up fr om the primitive programs until it meets information filtering down from
the header comment. It is at the places where these two types of information meet, that the system 

V

is required to perform significant deductions. These often take the form of proving that an extrinsic -
V

behavioral descri ption, partially specified by a comment , follows from an intrinsic behavioral
description, specified from below.

111.4.8 THE GRAND PLAN FOR CONVT

The previous three sections tried to give an idea of how an understanding of a program is
developed. This section exhibits a complete grand plan for CONVT, and a discussion of how this V

specific grand plan can be developed. The next figure is a schematic of the grand plan for CONVT.
P1135<0 ~—extrin sic name

A1 $ 36 PIQ(R)

P2 135s0 1~_~~~~
plan type

G IA ( EX) intrin sic name
A2 j 38

(C) -COMP
P3 135>0 (EX)-CASE XOR

(AAL) sAND AUGMENTED LOOP
CONVT(C) A3 (EL) -ENUMERATION LOOP

r~
1I42

~
0

I rLIE(EL)44
I— A IIC(AAL ) -

~

FIB(EX) ..4 LAB I45
~
— P2 j 42>0

rLIE( EL148
LA 2 ID(AAL ) -

~ V

LAB I49

Fig. 29: Schematic of the grand plan for CONVT. This is a shorthand
notation for a diagram of the grand plan similar to the diagrams for the plan types
in section 111.3. This figure shows how the plans are imbedded. The diagrams in
section 111.3 show what the diagram corresponding to each node of the schematic
looks like.

The figure shows how the segments combine to produce the progr~ n CONVT. The next figure
shows much of the same information in a differen t form. In addition, it clearl y shows how the
segments relate to the physical code. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~_~~~~~~~~ V V  ~~~~~~~.


Richard C. Waters 59 111.4 DETERMINING THE DESCRIPTION

1—30 are comments applying to the whole program.
31 V SUBROUTINE CONVT (Nj1,MODE,S,D,IIS)
32 V DIMENSION S(1) ,O(1)
33 V DOUBLE PRECISION D
34 V (C) C FIND STORAGE MODE OF MATRIX AND NUMBER OF DATA POINTS

V 35 VA (P1,P2 P3) IF (MS-i) 2, 4, 6
36 VA (A l) 2 NM N*ll
37 VA 60 10 8

V. 38 VA (A2) 4 N11-((N+1) *N)/2
39 VA 60 10 8
40 VA (A 3) 6 NM-N
41 V (F) C TEST TYPE OF CONVERSION V

42 YB (P1,P2) 8 IF (MODE-i) 10, 10, 20
43 VB (Al) C SINGLE PRECISION TO DOUBLE PRECISION
44 VBCE 10 00 15 L-1,NM
45 VBC (AB) 15 D(L)-S(L)
46 VB 60 10 30
47 YB (A2) C DOUBLE PRECISION TO SINGLE PRECISION
48 VBDE 20 00 25 L-1,NM
49 VBO (AB) 25 S(L)-O (L)
5 0V (F) C
51 V 30 RETURN
62 V END

Fig. 30: The program CONVT showing segmentation information. Each tine is
preceded by the intrinsic name of every segment containing it (V—CONVT). In
addition, in parenthesis, are the extrinsic name(s) of the segment(s) the line is most
closely associated with (if appropriate).

Both figures stop at the level of expression oriented basic segments which can easily be built
up from the actual primitive programs. As discussed in the section on segmentation (111.4.5) and on
plans (111.4.6), a multiplicity of factors allows the segmentation and plan types to be inferred. Most
notably, the DO statements in lines 44 and 48 indicate the extents of segments C and 0, and that they
are AUGMENTED LOOPs. The ARITHMETIC IF statements in lines 35 and 42 together with the dividing
and then rejoining character of the control flow diagram indicates the extent of segments A and B and
that they are CASE XORs. The appearance of the control and data flow diagrams indicates that the
segment ~ONVT is a COMP.

Given the segmentation structure , the system then fleshes out the grand plan with behavioral
descriptions. The figure at the end of this section shows the complete grand plan for CONVT. The
grand plan is large. However , it is straightforwardly derivable from the text for cONVT.

All of the data and control flow information is derived from the data and control flow diagrams.
The intrinsic descriptions of the basic units (which are at the end of the figure) are developed from
the specific intrinsic behavioral descriptions of the primitive elements known by the system and used
in CONVT. Lower levels of detail have been suppressed for simplicity.

Consider the following scenari o for how the other behavioral descriptions were developed.
Starting from the top, the basic intrinsic behavioral description for CONVT is taken from the header
comment. A few clauses about the outputs have filtered up from below. Otherwise, it is the same as
in the comment translation figure. The comments on lines 34, 41, 43, and 47 make it possible to
propagate some of the high level information in the intrinsic behavioral description for ~ONVT into
segment B, and to flesh out the plan for the segments CONVT and 8. They do this by indicating k.y
parts of the extrinsic behavioral descriptions of A, B, C, and D.

Working from the bottom, there is no difficulty in developing the complete plan for segment A.
Similarly there is no difficulty in developing the plans f or the AND AUGMENTED LOOPs C and 0. A plan

V for the ENUMERATION LOOP E is included in the figure so that it can be seen how parts of it are used

I ~~~~~~~~~~~

~~
-..

~~~~~~~~~~~
__ 

~~~~~~~~~~~~~~~~~~~~~~~ 
V~ V. VV ~~~~ V~~~~~SV V -~~~ - -~~~~~~~ V. - _ _ _

-
- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ ~~~~ VV ~~~~V~~~~~~~ V V V .  ~~~~~~~~~~~~~~~~~~~~~~~~

Richard C. Waters 68 111.4 DETERMINING THE DESCRIPTION

to develop the plans for C and 0. (refer to the section on AUGMENTED LOOPs 111.3.4.3).
V It should be noticed, that the intrinsic descri ption of the ENUMERATION LOOP segment E differs

considerably from the extrinsic behavioral descriptions of its use in segernents C and 0. This
V difference embodies a theorem which is probably too difficult for the system to deduce. The fact that

the programmer chose to use a DO statement to implement E causes the system to use the indicated
extrinsic behavioral description. The intrinsic description of E is one that would arise if the
programmer had not used a DO but rather had open coded the LOOP. It is included to give added
insight into the plans for LOOPs.

As discussed in section 111.1.3.6, the array indexing in lines 45 and 49 has been factored out of
the computation into the data flow. This can be done because, as the plan for segernent E shows, theV 

value of the variable L is a function of the number of times the loop has been e>ecuted, not of any
data value. This system makes this type of factorization whenever poscible. As i n this case, it usually

V leads to a significant simplification of the statement of the plans.
As an examp ’e of the process of developing behavioral descriptions, consider segment 0. The

V DO on line 48 indicates that l nes 48 and 49 form a segment, and that that segment is an AUGMENTED
LOOP. DO is a primitive construct , and so the system immediatel y produces an intrinsic behavioral
description for it (see the intrinsic behavioral description of segment E in the fi gure at the end of this
section). Referring to section 1112.4.1, it can be seen that this descript on conforms to the general
pattern of a description of a LOOP, as expressed by the equations in that section. Segment E is an
ENUMERATION LOOP since it has no outputs. The assertions of E are just a combination of the
assertions of its body and test.

Because segment E is implemented by a DO, the system knows that there is an equivalent and
much more useful way to state its assertions. This is used in the extrinsic description of segment E
when used in segment 0 (see the f i gure at the end of this section). Line 49 can be identified as the
AB (additional body) of the AUGMENTED LOOP. Section 111.3.4.3 shows how an AB is integrated into a
LOOP in order to form an AUGMENTED LOOP. In this case, the data flow diagram shows that the AB
(line ~~ is executed before the body of the ori ginal LOOP and takes the cutput of the previous V

execution of that body (the quantity named k[i) in the description of E) as an input. This quantity is
carried by the variable L. The assertions of E (namely that k[i)—i+1) show that the value of L depends
only on the number of times the LOOP has cycled. As a result, the array references in line 49 can be
factored out of the computation into the data flow. This makes it clear that AB (line 49) does not fecd
back to itself because the (5(i)) are not actually input to it. This implies that 0 is an AND AUGMENTED
LOOP.

Referring again to section 111.3.4.3, the intrinsic behav ioral description of 0 can easily be
inferred. The assertions of 0 are just a combination of the assertions of AB and segment E. The

V 
assertions of E have actuall y been omitted except for the fact that the LOOP is executed from 0 to
limit (since k(i] is not an output of 0). Note that the only deduction -equired in this whole process
was pattern matching and that there were not a large number of blind a leys which the system had to

V follow.
V The teleological links (see section 111.2.2) are omitted from the grand plan due to the lack of a

reasonable way to represent them. The key deductions take place when the information propagated
up from below first meets information filtered down from above. This happens at the interface
between the intrinsic and extrinsic behavioral descriptions of the segments A, C, and 0. In order to
demonstrate consistency at these points the system must use theorems defining the terms
MNUMBER...OF_CLEMENTS” and “— COMPONENIWISE”.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --4


- - ~~ ‘!‘ fl V ! •~ Y V V V VVV_VVVV VV_~_,.V ._tVV~V.V? V VV~V.V. V~ V. V V_•
~•~Y

~~~~~~~~~~~~~~~ 
V.~V~~ ~~~~~~~~~~~~~~~ 

___
._ V~~~~

_
~

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

Richard C. Waters 61 111.4 DETERMINING THE DESCRIPTION

V
V given:

matrix ((x(i)))
n—NUMBER_OF_ROWS((x(i)})

V m—NUMBER_OF_COLUMNS({x(i)))
ms—STORAGE _MODE((x(i)))

V ne—NUMBER_OF_ELEMENTS({x(i)})
then:

n>0
m>0

V msE (1,2 ,3)
ms—0 -

~ ne—n*m
ms—i -. ne—((n+ i)sn)/2
ms—2 -‘ ne—n
ne>8

given:
- V matrices ((x(i)}, (y(i)})

ne—NUMBER_OF_ELEMENTS({x(i)))—NUMBER_OF_ELEMENTS({y(i)))
then:

{x(i)) — F((y(i)}) COMPONENTWISE A~ ~ ~,
x(i) — F(y(i))

Fig. 31: Theorems about matrices needed for understanding of CONVT

The first theorem shows that segment A does indeed calculate the NUMBER_OF_ELEMENTS in
the matrices. The second theorem shows that segments C and D do indeed produce outputs which are
COMPONENTWISE functions of their inputs. These deductions close the gaps between the intrinsic and
extrinsic behavioral descriptions of these three segments.

It is reasonable to expect that the system might know these theorems as part of its knowledge
of matrices, which are the only complex data type in FORTRAN. if riot, then the user would either
have to give them as part of the header comment or the system would ask him if the deductions
required above were valid . If he said they were , then the system would in effect asume these
theorems to be true, though it would not use them in any other context .

If anywhere along the line the system discovered any inconsistency in the program, it would
report a bug as discussed in section 11.2. The program CONVT does not have any bugs. See section

V 11.2 for a discussion of the program P1(1 which does have bugs.
V

Finall y, in a tidy ing up phase, the system propagates low level information all the way up to the
1 : top, and fills in gaps in the intrinsic behavioral descri ption for the whole program. In order not to

keep a lot of excess information , it only adds in information to fill in conspicuous gaps. In this case ,
V

several of the outputs to the program (such as on, om, and {os(i)) when mode—i) are completely
unspecified. Data flow analysis shows that they are directly mapped from inputs.

111.4.9 TRANSFORMATIONS

The Only transformation (see section 111.1.3) which was applied to produce the program CONVT,
is factoring computation out of the flow of control . An arithm etic IF was used to implement several
predicates at once in line 35 and line 42. This is easy for the system to spot by looking at the control
flow diagram. The system undoes the transformation before anal yzing the program further . Other
transformations can also be identified by clues indicating that they have been applied.

It should he stressed that transformations are a thorny issue. It is essential that the system be
very conservative about applying Inverse transformations to a program. If the system experiments
with reversing a large number of transformations wh!Ch might have applied at any given point, it will
drown in a sea of alternativ e programs. If a large number of transformations have been applied to a

~~~~~~ V V ~~~~~ V V V~~~~~~~~~~~~ V~~~~ ~ V V V. ~~~~~~~- -  -



_‘__ !~~
_-, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ WV_ V VV._V V. V~V~~V~ 

V~V V
__

~ V - V. ~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~_ V ~~~~~~~~~~~~~~~~~~~ ~ V_ V.

Richard C. Wat ers 62 111.4 DETERMINING THE DESCRIPTION

program, comments will undoubtedly be needed so that the program can be unscrambled and
understood.

V Further , it should be noted, that though a transformation may have been applied to a program
while it was being writ ten , th, inverse transformation may not have to be app li.d in order to

- understand the program. Consider the following two programs which are related to each other by
factoring.

IF ( I) 10,18,20
10 Y-S IN(X )

- w_x*x
6010 38

20 Y— S IN(Z )
- w_x*x

3$

IF (I) 10,18,20
18 Y — S I N(X )

6010 38
20 Y—SIN (Z)
30 W-X*X

V 

Fig. 32: Two programs related by factor ing.

The second program can be understood as an AND of an XOR and NW_XSX N, rather that as a
- transformeu XOR of two ANDs. Only transformatio ns leading to distorted programs not fitting any plan
- type need be undone. In the second program, a comment might well be inserted to indicate that there

V is a transformation which should be undone. Otherwise , there is no reason to think that a
transformation has applied.

hL.~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— VV



- V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ _:V.~~VV.~,V._V.V_ V~V, V~ V. VV~ V -

Richard C. Waters 63 111.4 DETERMINING THE DESCRIPTION

Fig. 33: The grand plan for CONVT

Plan for segment CONVT which is a COMP of GIA arid FIB
extrinsic description of GIA

inputs: ms, n, m
prerequisites: integer numbers (ms, n, m)

matrices ((s(i)}, (d(i)})
n—NUMBER_OF_ROWS({s(ifl)—NUMBER_OF_ROWS({d(i)))
m—NIJMBER_QF_COLUMNS({s(i)fl.NUMBER_OF_COLUMNS({d(i)})
ms —STORAGE_MODE((s(i)})—STORAGE_MODE({d(i)))

outputs: length
assertions: integer number (length)

length=NUMBER _OF_ELEMENTS((s(i)})—NUMBER_OF_ELEMENTS((d(i)))
mapping: (ms’4type, n’n, m’m, length+.size;)

extrinsic description of F~Binputs: {d(i)}, (5(i)), length, mode
prerequisites: f oating numbers ((s(i)})

double precisi on numbers ((d(i)})
matrices ((s(i)), {d(i)))
integer numbers (length, mode)
length—NUMBER_OF_ELEMENTS(fs(i)))—NUMBER_OF_ELEMENTS((d(i)))
mode E (1,2)

outputs: (od(i)},{os(i)}
assertions: floating numbers ({os(i)))

double precision numbers ((od(i)))
matrices((os(i)), (od(i)})
mode— i -

~
(od(i)}— DBL E(1s(i))) COMPONENTWISE

A {Os(i))—{s(i)) COMPONENTWISE
mode— 2 -. {os(i))—SN~L({d(i)}) COMPONENTWISE

A (od(i)}—{d(i)) COMPONENTWISE
mapping: ((d(i)}~-’(d(i)), (s(i)}4..(s(i)}, length..length, mode..mode,

(os(i)}’ ~(os(i)}, {od(i))..(od(i)};)
intrinsic description of CONVT

inputs: n, m, mode, (s(i)}, {d(i)}, ms
prerequisites: floating numbers ((s(i)))

double precision riurr-bers ((d(i)))
integer numbers (n, m, mode, ms)
matrices ((s(i)}, (d(i)})
n—NUPviBER_OF_ROWS((s(i)))-NUMBER_OF_ROWS((d(i)))
m-NUMBER_OF_CQLUMNS({s(i)))-NUMBER_OF_COLUMNS((d(i)})
ms =STORAGE _MODE((s(i)})—STORAGE_MODE((d(i)))
mode E ~1, 2)

outputs: on, om , omode , {os(i)), {od(i)) , oms
assertions: floating numbers ((os(i)))

double precision nun--ber s ((od(i)})
ntege - numbers (on, om, omode , oms)

matrices((os (i)}, {od(i)~)
mode— i -. {od(i)}— DBLE({s(i)}) COMPONENTWISE

A (os (i)}—{s(i)) COMPONENTWISE
mode—2 — (os(i))—SN3L({d(i))) COMPONENTWISE

A {od(i)}—{d(i)) COMPONENTWI SE
On—n
om— m
omode—mode

V
fl ~_ V~V~ ~~~~~~~~~~~~~~~

-~Wr VV~VV V , , V
~~~~~~~~~~~~~~~~~~~~ ,_ I~ ~~~~~~~~~~~~~~~~~~~ ny ~~~~~r 

V~~ c_V_ _V V~ V. ~~~~~~~ ~~~~~~~~~~~~~ 
VV

__
~~~

__ _V.V_~V_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~

Richard C. Waters 64 111.4 DETERMINING THE DESCRIPTION

oms—ms
data flow

into GIA
- ms from outside CONVT via argument position 6

and variable MS
n from outside CONVI via argument position 1

and variable N
- m fr om outside of CONVT via argument position 2

and var iaoV e M
V into FIB

length from length of GIA via variable NM
V mode from outside of CONVT via argument position 3

and variab le MODE
{s(i)) from outside of CONVT via argument position 4

V and variable S
V {d(i)} from outside of CONVT via argument position 5

V and variable 0
V to outs ide of CONVT

on fr om outside of CONVI via argument position 1,
variable N, and argument position 1

om from outside of CONVT via argument position 2,
variable M, and argument position 2

omode from outside of CONVT via argument position 3,
variable MODE, and argument position 3

oms from outside of CONYT via argument position 6,
V variable MS, and argument position 6
V {os(i)) from {os(i)} of FIB via variable S

and argument position 4
(od(i)) from (od(i)) of FIB via variable 0

and argument position 5
control flow

V fr om outside of CONVT to GIA via initial placement
fr om GIA to FIB via sequential placement
fr om FIB to outside of CONVT by sequential placement

and RETURN line 51

________________ — _ _ _ _ _

~ VV~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~._.y ~~~~~~~~~~~~ V V

Richard C. Water s 65 111.4 DETERMINING THE DESCRIPTION

Plan for segment A which is a CASE XOR of P1135<3, A1136, P2135—8, A2138, P3135<0, and A3
extrinsic description of P1135<0
(the IF line 35 predicates the segment 35 taking the + branch when result<0)

inputs: type
prerequisites: integer number (type)
outputs: none
assertions: type<i
mapping: (typeHarg 1, result4.return_value;)

extrinsic description of A1136
nputs: ri , m
prerequisites: integer numbe’s (n, m)
out puts: size
assertions: integer number (size)

siZe—n*m
mapp ing: (nMarg i, m..arg2, sizewreturn_value;)

extrinsic description of P2135— 8
(the IF line 35 predicates the segment 35 taking the + branch when result—0)

inputs: type
prerequisites: integer number (type)
Outputs: none
asser tions: type—i
mapp ing: (type.’argl, resultwreturn_va lue;)

extrinsic description of A2138
inputs: n
prerequisites: integer number (n)
outputs: size
asserti ons: integer number (size)

size—((n+1)*n)/ 2
mapping: (ri..argi, n.~arg2, size.’return_value;)

extrinsic description of P3135>8
(the IF line 35 predicates the segment 35 taking the + branch when result >0)

inputs: type
prerequisites: integer number (type)
outputs: none
assertions: type>1
mapping: (type.’argl;)

extrinsic description of A3
inputs: n
prerequisites: integer number (n)
outputs: size
assertions: integer number (size)

size— n
mapping: (;size’.n)

intrinsic description of A
inputs: type , n, m
prerequisites: integer number (type)

V t ype<1 -, integer numbers (n, m)
type —i -, integer number (n)
type>l -. integer number (n)

outputs: size
assertions: integer number (size)

type<1 -+ size— n*m
type— i -

~ size—((n.I)sn)/ 2
type>i -+ size—n

- _V..•.V_.~V_ •VJ~~~S~~~ V~~ V V~~~~~ V VVV. V . _ _ _~V V _ _ I~~~~~*~~V JV OV & Vt~V4~ VV.V ~~ V -p . V V V . . V V V

~V~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.-- -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ V . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , ~~~~~~~ ~~

Richard C. Waters 66 111.4 DETERMINING THE DESCRIPTION

data flow
into P1135<0

type from outside A via variable MS
into A1136 V

n from outside A via variable N
m from outside A via variable N

V into P2135*0
V type from outside A via variable MS

V into A2138
n fr om outside A via variable N

into P3J35>8
V

type fr om outside A via variable MS
into A3

n fr om outside A via variable N
to outside of A

size fr om size of A l 136 via variable NM
or from size of A2138 via variable NM
or from size of A3 via variable NM

control flow
from outside of A to P1 via initial placement

V from P1 to Al via IF line 35 and label 2
from P1 to P2 via shared code line 35
from P2 to A2 via IF line 35 and label 4

V from P2 to P3 via shared code line 35
V from P3 to A3 via IF line 35 arid label 6

from Al to outside of A via GOTO line 37 and label 8
from A2 to outside of A via GOTO line 39 and label 8
from A3 to outside of A via final placement

- V -~ ~~~~~~~~~~~~~~~~~~~~~~~~ flVV ~~~~ _Vr ~~~~~~~~~~~~~~~~~~~~~~ ~V?~~~ VV V~ _ V. V~~~~~~~~~~~~~~~~ V ! ~~~~~~~~~~~~~~~ ~~~ V V . S V _ V V V V -

Richard C. Waters 67 111.4 DETERMINING THE DESCRIPTION

Plan for segment B which is a CASE XOR of PiI42~0, A 1IC, P2142>0, and A2ID
extrinsic description of P1 l42~0(the IF line 42 predicates the segment 42 taking the +branch when resultSO)

inputs: mode
prerequisites: integer number (mode)

mode ((1,2)
Outputs: none
assertions: mode—I
mapping: (mode~.arg 1, resultHreturn_value;)

extrinsic description of A1IC
inputs: length, {s(i))
prerequisites: floating numbers ((5(i)))

integer number (length)
length—NUMBER....OF_ELEMENTS((s(i)))—NUMBER_OF....ELEMF.NTS({d(i)J)

outputs: (05(i)), {od(i))
asser tions: floating numbers ((05(i)))

double precision numbers ({od(i)}) V

matrices({os(i)}, {od(i)))
{od(i))—DBLE((s(i))) COMPONENTWISE

A (os(i)}—(s(i)) COMPONENTWISE
mapping: (length.~limit, {s(i)}ø{source(i)}, (od(i))*’(dest(i)}; {os(i))..(s(i)})

extrinsic description of P2142>0
(the IF line 42 predicates the segment 42 taking the + branch when result>0

inputs: mode
prerequisites: integer number (mode)

mode ((1,2)
outputs: none
asserti ons: mode—2
mapping: (mode..argl, result..return_value;)

extrinsic description of A2ID
inputs: length, (d(i))
prerequisites: double precision numbers ({d(i)))

integer numbe (length)
length-NUMBER_QF_ELEMENTS({d(i)})—NUMBER_OF_ELEMENTS({s(i)}

outputs: {os(i)), (od(i))
assert ions: floating numbers ((os(i)})

double precision numbers ((od(i)})
matrices((os(i)} , (od(i)))
{os(i))—SNGL({d(i)}) COMPONENTWISE

A {od(i)).{d(i)) COMPONENTWISE
mapping: (length4.limit , (d(i)}.’{source(i)), {os(i))H(dest(i)); {od(i)).’(d(i)))

intrinsic description of B
inputs: mode, length, {s(i)J, {d(ifl
prerequisites: integer numbers (mode, length)

length—NUMBER_OF_ELEMENTS((s(i)})—NUMBER QF....ELEMENTS((d(i)))
mode ((~,2)
mode—i -. f loating numbers ({s(i)))
mode— 2 -~ double precision numbers ({d(i)))

outputs: (os(i)), (od(i))
asserti ons: floating numbers ({os(i)))

double precision numbers ((od(i)))
matrices({os(i)), (od(i)})
mode— i -

~ (od(i))—DBLE((s(i)}) COMPONENTWISE
A (os(i))—(s(i)) COMPONENTWISE

V V V~~~ ~~ ~~

_ VV~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~ V V V~~~~~ V ~~~~ V , -~~~ ~~~~~~V V~~~~~~

Richard C. Waters 68 111.4 DETERMINING THE DESCRIPTION

mode— 2 -. {os(i))—SNGL((d(i))) COMPONENTWISE
A {od(i))—{d(i)J COMPONENTW1SE

V data flow
into P1I42~9

switch from outside B via variable MODE
into A1IC

{s(i)} from outside B via variable S
into P1142>8

switch from outside B via variabel MODE
into A2ID

(d(i)) from outside B via variable 0
to outside of B

{os(i)J from (os(i)} of Al via variable S
or from {os(i)) of A2 via variable S

(od(i)) from (od(i)) of Al via variable 0
or from (od(i)) of A2 via variable D

Control flow
from outside of B to P1j42~0 via initial placement
from P1I42~0 to A1IC via If line 42 and label 18
from P1 (42~0 to P2j42>0 via shared code line 42
from P2142>0 to A2ID via IF line 42 and label 20
from Al to outside of 8 via GOTO line 46 and label 30
from A2 to-outside of B via final placement

-~~~~ V~~~~ V V.~~~~~~~~~~~~~~~~

-—-—~~~~—
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ VV V~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - :~~VV V~~~~~~~~~~~~~~~ 

V~~~~~~~~~~ - -~~~~~~~

Richard C. Wat ers 69 111.4 DETERMINING THE DESCRIPTION

V 

Plan for segment C which is an AND AUGMENTED LOOP of LIE and AB145
extrinsic description of LIE

inputs: limit
prerequisites: integer number (limit)

limit>0
outputs: none
asser tions: integer numbers ({k[i]})

A j~~Ø I imi t k[i) i+1
mapping: (limiti.,endvalue, kHk;)

extrinsic description of AB(0) (part of I)
inputs: none
prerequisites: none
outputs: none

V assertions: none
mapping: (;)

extrinsic description of AB[i]145 i— 1,~
V inputs: source(i)

prerequisites: floating number (source(i))
outputs: dest(i)
asserti ons: double precision number (dest(i))

dest(i)— DBLE(source(i))
mapping: (source(i)+.fnum, dest(i)’.dnum;)

intrinsic description of C
inputs: l imi t ,(source(i))
prerequisites: floating numbers ({source(i)})

integer number (limit)
limit>8

outputs: (dest(i))
assertions: double precision numbers ((dest(i)))

A 1 • 1, i i in ~ 1
(dest(i)— DBLE(source(i))

data flow
V into LIE

limit fr om outside C via variable NM
into AB[i)145

source(i) from ({source(i)} which comes from outside of C
via variable S) via variable S(L)

to outside of C
{dest(i)) from (the dest(i) which come from dest(i)

of (AB(i]145) via variable 0(L)) via variable 0
V control flow

V from outside of C to I (LI and AB(8]) via initial placement
I initiates the LOOP between T and AB

from T to AB via DO line 44
V from A B to L.B via DO line 44

- - from L8 to T via DO lin,- 44
from I to outside of C via DO line 44

V /

,1~~

I
/

I

- V V V V . V



r~
._ V VV 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V V V~ ,__VV~ ~~ V ~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~

Richard C. Waters 78 111.4 DETERMINING THE DESCRIPTION

Pla, for segment D which is an AND AUGMENTED LOOP of LIE and A8J49
extrinsic description of LIE

inputs: limit
prerequisites: integer number (limit)

limit>0
outputs: none
asser tions: integer numbers ({k[i)})

“i sØ, I i m i t k(i]*i+1
mapping: (limit..endvalue, kisk;)

extrinsic description of AB[0) (part of I)
inputs: none
prerequisites: none
outputs: none
assertions: none
mapp ing: (;)

extrinsic description of AB(i]I49 i—l ,~inputs: source(i)
prerequisites: double precision number (source(i))
outputs: dest(i)
asser tions: floating number (dest(i))

dest (i)— SNGL(source(i))
mapping: (source(i)s.dnum, dest(i)’.fnum;)

intrinsic description of C
inputs: limit ,(source(i))
prerequisites: double precision numbers ((source(i)))

integer number (limit)
l imi t >8

outputs: {dest(i)}
assertions: floating numbers ((dest(i)})

A
~ i, ~ ~~ ~(dest(i)—SNGL(source(i))

data flow
into LIE

limit fr om outside 0 via variable NM
into AB(i]149

s Jrce(i) fr om ((source(i)} which comes from
outside 0 via variable D) via variable 0(L)

to outside o f D
dest(i) from (the dest(i) which come from dest(i)

of {AB(i)149) via variable S(L)) via variable S
control flow

from outside of C to I (L.I and AB[8]) via initial placement
I initiates the LOOP between T and AR

from I to AB via DO line 48
from AB to L.B via DO line 48
from L.B to 7 via DO line 48
from T to oLt side of 0 via DO line 48

~

V V

~

V V

~

V_ VV ~~~~~~~~~~ V~~~~~~~ V~~~ — -

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ VV ~~~~_W_V V~ V. ~~~~~~~~~~ V

~~~~~~~~~~~~~~~~~~~~~~~ - V 
V ~~~~ ~~~~~~~~~~~~~~~ 

- V~~~~~~V~~~~~

T~~
V V
~~~ 

V~~V. VV - V

Richar d C. Waters 71 111.4 DETERMINING THE DESCRIPTION

Plan for segment E which is an ENUMERATION LOOP of I, B, and T
(literally realized in a DO line 44 and in a DO line 48)
(mappings, data and control flow are omitted since the DO statement is self contained)

extrinsic description of B(0) (part of 1)
inputs: none
prerequisites: none
outputs: k(0]
assertions: integer number (k(0])

k[0]—1
extrinsic description of B(i] i— l ,~inputs: kf i—1)

prerequisites: integer number (k(i-1])
outputs: k(i)
assertions: integer number (k[i])

k(i]—k(i—1]+1
ex trinsic description of 1(0] (part of I)
(this predicate is an inherent part of a DO statement)

inputs: none
prerequisites: none
outputs: none
assertions: none

extrinsic description of T[i] i— l ,~(this predicate is an inherent part of a DO statement)
inputs: k(i), endvalue
prerequisites: integer numbers (k(i~ endvalue)
outputs: none
assertions: k[i)~endvalue

intrinsic descrip tion of E
inputs: eridvalue
prerequisites: integer number (endvalue)
outputs: none
assertions: integer numbers ({k[i]))

k(8]—1

“i .i
A i .1,~ ..jk(i)~endvaluek(n)>endvalue

V
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



yV V ~~~~~ __ V 
~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ V - 

~~~~~~~~~~

Richard C. Waters 72 111.4 DETERMINING THE DESCRIPTION

Intrinsic descriptions of the basic segments: 35, 36, 38, 42, 4~, and 49
1Rt A~I~ d~~~~~~~8H &

inputs: argl
prørequisltes; Integer nwnlw (

~ra1) V

outputs: return...value -‘

assertions: integer number (return_value)
return_value—arg i-l

intrinsic description of 36
inputs: argi, arg2

~F~~ uiait~ ~~~ (
~~Ii ~)outputs: return_value

assertions: integer number (return_value)
return_value—arg 1 sarg2

intrinsic description of 38
inputs: argi , arg2

V prerequisites: integer numbers (argi, arg2)
Outputs: return_value
assertions: integer number (return_value)

re turn _value—((arg 1+1 )*arg2)/2
intrinsic description of 42

inputs: argi
prerequisites: integer number (argl) V

Outputs: return_value
asserti ons: integer number (return_va lue)

return_value—argl -1
intrinsic description of 45

inputs: fnum
prerequisites: floating number (fnum)
outputs: dnum
assertions: double precision number (dnum)

dnum—DBLE(fnum)
intrinsic description of 49

inputs: dnum
prerequisites: double precision number (dnum)
outputs: fnum
assertions: floating number (fnum)

fnum—SNGL(dnum)

- 
-
~~~

-
~~

--
~~

--

~~

- ~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ —~ V ~~~~~~ _— - V V~~V -

Richard C. Waters 73 BIBLIOGRAPHY

Bauer, M. (1975) “A basis for the Acquisition of Procedures from Protocols”, Fourth International Joint
Conference on A.!. U.S.S.R.

Boyer, Robert and Moore, Strother (1975) “Proving Theorems About LISP PrOgrams”, JACU V22 *1
Jan. 1975, pp. 129-244

Brown, A.L. (1974) “Qualitative Knowledge, Causal Reasoning, and the Localization of Failures” MIT
AI-WP-61 March 1975

Brown, A.L (1975) “Qualitative Knowledge, Causal Reasoning, and the Localization of Failures” MIT PhD
thesis Sept. 1975

Brown, A.L (forthcoming) “Qualitative Knowledge, Causal Reasoning, and the Localization of Failures”
MIT AI-TR-362

Floyd, R.W. (1967) “Assigning Meaning to Programs”, Proc. Symposia in applied math. V19 Am. Math.
Soc. pp. 19-32 Prov. R.1.

Floyd, R.W. (1971) “Toward Interactive Design of Correct Programs” Stanford AIM 158 Sept 1971

Gerhart , S.L (1975) “Knowledge About Programs; a Model and a Case Study”, S1GPLAN Notices, V18
*6 Proc of International Conf. on Reliable Software June 1975

Goldstein, Ira (1974) “Understanding Simple Picture Programs” PhD thesis M.I.T. MIT-AI-TR-294

Goldstein, I. (1976) “Planning Paradigms - Knowledge for Organizing Models into Programs ” MIT
A1-WP-123 March 1976

Green, C.C. et . al. (1974) “Progress Report on Program Understanding Sytems ” Stanford AIM-240
August 1974

Green, C.C. and Barstow , 0. (1975) “A Hypothetical Dialogue Exhibiting a Knowledge Base for a
Program Understanding System ” Stanford ~A1M-258 (STAN-CS-75-476) Jan. 1975

Hammer , M., Howe, W. G., Kruska l, V. J., and W ladawsky I. (1975) “A Very High Level Programming
Language for Data Processing Applications ” iBM research report RC-5583 Yorktown Heights N.Y.

Hewitt, C. and Smith, B. (1975) “Towards a Programming Apprentice” IEEE Transactions on Software
Engineering Vse- 1 *1 pp. 26-46 March 1975

Hardy, S. (1975) “Synthesis of LISP Functions from Examples ”, Fourth Internation Joint Conference on
V A.I. U.S.S.R.

Hoare, C.A.R. (1969) “An Axiomatic Basis for Computer Programming”, CACM V 12 ~l0 pp. 576-583

Hoare, C.A.R. (1971) “Procedures and Parameters: An Axiomatic Approach”, Symposia on the Semantics
of Algorithmic Languages E. Engeler ed. pp. 102-116, Springer

IBM GH2O-0205-4 (1970) “Scientific Subroutine Package Version 111 Programmer’s Manual” White
Plains N.Y.

Liskov, 8. (1974) “A Note on CLU” M.I.T. Computation Structures Group Memo 112

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ __ V VVJVJIId

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ _~_ V V~~ ~~~~~~~~~~~~~~~ 

V~V

Richard C. Waters 74 BIBLIOGRAPHY V

Malhot ra, A. and Sheridan P.B. (1976) “Experimental Determination of Design Requirements for a
Program Understanding System” IBM research report RC-583 1 Jan 1976 Yorktown Heights N.Y.

Manna, Z. and Waldinger , R. (1975), “Knowledge and Reasoning in Program Synthesis”, Artificial
V Inteilegence V6 pp. 175-208

V Mikelsons, M. and Wladawski I. (1976) “On the Formal Documentation of Programs” IBM research
report 1976 Yorktown Heights N.Y.

Moore , J.S. (1974) “Introducing PROG into the Pure LISP Theorem Prover ”, Xerox PARC report
CSL-74-3

Rich, C. and Shrobe, RE. (1974) “Understanding LISP Programs: Towards a Programmers Apprentice”
MIT A1-WP-82 Dec. 1974

Rich, C. and Shrobe, RE. (1976) “Initial report on a LISP Programmers Apprentice” NIT Masters Thesis,
A1-TR-354

Ruth, G.R. (1974) “Analysis of Algorithm Implementations” MIT PhD Thesis , MIT MAC-TR-138 May 1974

Ruth, G.R. (1976) “Protosytem I: an Automatic Programming System Prototype ”, M.I.T. LCS-TM-72

Shaw , 0., Swartout , W., and Green C. (1975) “Inferring LISP Programs From Examp les”, Fourth
INternational Joint Conference on AJ., U.S.S.R.

Smith, B., W aters, R.C., and Lieberman, H (1973) “Comments on Comments or the Purpose of Intentions
V and the Intention of Purposes” Term project for MIT course 6.893 “Automating Knowledge

Based Programming and Validation Using ACOIRS” Dec. 1973

Smith, B. and Hewitt C. (1974) “Towards a Programming Apprentice” AISB summer conference July
1974

Summers, P.O. (1975) “Program Construction from Examples”, PhD thesis Yale Univ.

Sussman, G.J. (1973a) “A Computational Model of Skill Acquisition” PhD. thesis M.I.T. AI-TR-297
August 1973

Sussman, G.J. (1973b) “A Scenario of Planning and Debugging in Electronic Circuit Design” MIT
V AI-WP-54 Dec. 1973

Sussman, G.J. (1974) “The Virtuous Nature of Bugs” Proceedings of theAlSB Summer conference July
1974 pp. 224-237 U. of Sussex England

Waldinger , R. and Levitt , K.N. (1974) “Reasoning About Programs ”, Artificial Intelligence V5, pp.
V 235-316

Wegbreit , 8. (1973) “Heuristic Methods for Mechanica lly Deriving Inductive Assertions ”, Third
INternational Joint Conference on A.I. Stanford Univ.

Winograd , T. (1973) “Breaking the Complexit y Barrier (Again )” , Proceedings of the ACM
SIGIR-SIGPLAN Interf ace Meeting, Nov. 1973

Yonesawa, A. (1976) ~V;ymbolic Evaluation as an Aid to Program Synthesis” MIT A I-WP-124 April 1976

-— — -— —~~~~ —~~~
-
~~~~~~ —- ~~~~~~ V_  V~ V ~~- A


