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NOTATION
Value of s at transverse plane through boat center of gravity
Bobyleff's function of deadrise
Beam of boat
Cross flow drag coefficient; see Table 2

Hydrodynamic friction coefficient

Boat 1lift coefficient nondimensionalized by the beam,
2
ZCA/Cv

Speed coefficient, U/vgb

Load coefficient, A/pgb3

Modified version of nondimensional wave number; see Equation (32)

Value of CA at resonant encounter frequency

Wave celerity

Steady state buoyancy force

Dynamic part of hydrodynamic normal force on hull
Steady state part of FD
Normal force due to wave elevation

Force on hull due to perturbation pressure from wave
Normal force due to slope of wave

Normal force due to orbital velocity

Normal force due to orbital acceleration

Deadrise function of Wagner; see Equation (42)

Acceleration of gravity

Wave height, 2h

Amplitude of wave elevation, one-half wave height

Pitch moment of inertia about the boat center of gravity
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c2

Wave number, Zﬂ/Lw
Modified wave number; see Equation (81)

Radius of gyration of boat with respect to
center of gravity

Distance from transom to boat center of gravity,
measured parallel to keel

Wavelength

Overall length of boat, in feet
Same as LCG

Length of wetted portion of keel
Mean wetted length of hull

Hydrodynamic pitch moment relative to
center of gravity

Steady state pitch moment due to buoyancy
Dynamic part of hydrodynamic pitch moment on hull
Steady state part of MD

Pitching moment due to wave elevation

Total steady state pitch moment acting on hull

Partial derivative of pitch moment with respect to
motion variables z, 2, 6, etc., respectively

Pitching moment due to slope of wave

Pitching moment due to orbital velocity

Pitching moment due to orbital acceleration
Response amplitude operator (Equations 28 and 29)

Coordinate measured along keel from foremost
immersed station of keel (see Figure 19)

See Equation (40) and Figure 19

See Equation (41) and Figure 19
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Time

Steady reference speed of boat, in feet per second
Perturbation surge velocity and acceleration
Steady reference speed of boat, in knots

Boat weight

Hydrodynamic force component in direction of
positive x

Dynamic part of hydrodynamic X-force
Steady state part of X

Partial derivative of X-force with respect to
motion variables u, 4, Z, etc., respectively

Horizontal coordinate in direction of U

Horizontal distance from center of gravity to fore-
most immersed point on keel, i.e., where s = 0

scllcos T /
See Equation'iIIO)

Hydrodynamicfforce component in direction of
positive z

Dynamic parf of hydrodynamic Z-force
i

Steady state part of Z
f

Partial d&rivative with respect to motion variables
z, z, 6, etc., respectively

Vertical coordinate, positive down

Nondimensional amplitude of vertical displacement of
center of gravity of boat from steady, calm water position

Phase angle of surge, heave, and pitch motion,
respectively, with respect to wave height

Deadrise angle; see Figure 19
Wave heading angle; see Figure 18
Weight of boat

vii
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Components, normal to the keel, of the orbital velocity
and acceleration, respectively

Boat pitch angle perturbation, positive bow up

Amplitude of boat pitch angle perturbation from steady, calm
water trim angle, radians

ARSI S e

Mean wetted length to beam ratio
Length of wetted chine to beam ratio
Nondimensional value of 8.1° scllb

Nondimensional value of s

o Y AN

c2® 8c2/P

Nondimensional value of LCG, LCG/b

e

Nondimensional value of lk’ 1k/b

Total sectional added mass

T

Contribution to sectional added mass

Sectional added mass at transom
Kinematic viscosity of water

Boat damping ratio

Mass density of water
Stability root

Imaginary part of O

e

Real part of o

o A

Steady state trim angle measured from keel line to calm
water free surface at reference speed U

, ,
]
.

P
hy

Calculated value of T

Average wave slope near bow; see Equation (69)

Three dimensional or aspect ratio correction

v
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™

See Equation (80)
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See Equation (110)
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w Circular frequency of wave

w, Circular encounter frequency with waves
The prime (') symbol is generally used to denote quantities in non-
dimensional form. Factors used for nondimensionalizing the previously
described quantities are p/2, U, b. Typical examples are given as follows:

' o 2,2
Fus FBS/(I/Z pu“D“)

e gL 7 TN T VR TR

Mg/ (172 oub3)

ué/(1/2 pbs)

tU/b

= scllb

u/(1/2 pb)

ob/U
Subscript:

w Refers to wave component




ABSTRACT

A theoretical method is derived for predicting the linearized
response characteristics of constant deadrise, high-speed planing
boats in head and following waves. Comparisons of the theoretical
predictions of the pitch and heave response-amplitude operators
and phase angles with existing experimental data show reasonably
good agreement for a wide variety of conditions of interest.

It appears that nonlinear effects are more severe at a speed-
to-length ratio of 6 than of, say, 4 or less, principally because
of the reduction of the damping ratio of the boat with increasing
speed, and the consequent increase in motions in the vicinity of
the resonant encounter frequency. However, it is concluded that
the linear theory in its present form can serve as a useful
design tool, especially since it has already been shown that the
effect of hull parameters on performance as obtained from data in
the linear range is valid for operation in realistic seas.

ADMINISTRATIVE INFORMATION
This investigation was authorized and funded by the Naval Sea Systems
Command (SEA 035) under the General Hydrodynamics Research Program,
SR-023-0101, Work Unit 1-1562-002.

INTRODUCTION

The history of the development of planing hulls has depended almost
exclusively in the past on acquisition and analysis of full-scale and
model experimental data. This has been especially true in the area of sea-
keeping where until only a few years ago, practically no experimental data
were avallable. Following a study by Savitsky,1 in which he noted that the
lack of such data led to continuous controversy among boat designers as to
the makings of a good rouch water boat, extensive experiments were carried
out at the Davidson Laboratory. In 1969 Fridsma2 carried out experiments
on a series of constant-deadrise models in smooth water and regular head
waves to define the effects of deadrise, trim, loading, speed, and length-
to-beam ratio as well as wave proportions on added resistance, heave and

pitch motions, and impact accelerations. Despite the fact that he

1Savitsky, D., "On the Seakeeping of Planing Hulls," Marine Technology
(Apr 1968). A complete listing of references is given on page 82.

2Fridsma, G., "A Systematic Study of the Rough-Water Performance of
Planing Boats,' Davidson Laboratory, Stevens Institute of Technology
Report R-1275 (Nov 1969).




observed a significant nonlinear dependence of the motions on wave height, 'f
he concluded that his findings, which were predominantly obtained from ;
measurements in the linear range, were valid and extremely important. * 3
This was further confirmed by later experiments made with more realistic ‘
irregular head waves,3 when he observed that the results generally
correlated well with his regular wave findings.

The relative success of a recently developed theoretical method for
predicting porpoising of planing hulls4 gave encouragement to the belief
that a reasonably good dynamic model for the planing hull was in hand for
the first time. This consisted of a set of three linear equations in the
surge, heave, and pitch motions of the boat in calm water. The solution
of these homogeneous equations for the stability roots led to predictions
of porpoising trim angles which were on the whole in good agreement with
experimental data. Expressions for the linearized wave forces and
moments due to regular waves were consequently derived in the present report
and were used with the previously described equations for predicting
motions in waves. .

Although the theory is linear and has several approximations, it is
felt that its basic structure is correct in view of the good overall
agreement with the extensive model data obtained by Fridsma2 in regular
waves. Furthermore, as noted previously, since results obtained in the
linear range are valid, concerning the effect of hull parameters on
performance, it is felt that the theory will serve as a useful design tool

in its present form.

EQUATIONS OF MOTION
The linearized equations for the longitudinal motions of surge, heave
and pitch in regular head and following waves are derived in Appendix A.

Although the derivation is for all three degrees of freedom, the numerical

3Fridsma, G., "A Systematic Study of the Rough-Water Performance of
Planing Boats, Irregular Waves--Part 2," Davidson Laboratory, Stevens
Institute of Technology Report R-1495 (Mar 1971).

AMartin, M., "Theoretical Prediction of Porpoising Instability of High-
Speed Planing Boats,' DTNSRDC Report 76-0068 (Apr 1976).
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calculations in this report have been obtained from the solutions to the
coupled pitch and heave equations only. This was felt to be justified on

2,3 He found from visual

the basis of the experimental findings of Fridsma.
observations and on examination of the time history record of model boat
motions in regular head waves that little surging motion took place,
particularly at speed-to-length ratios of 4 and 6. To verify this observa-
tion at a speed-to-length ratio of 2, comparative tests were made for both
"consiant speed" and "constant thrust" conditions. He found little
difference in the pitch and heave motions. This result is not altogether
surprising in view of the fact that, according to Equation (121) of
Appendix A, the theoretical estimates of the surge component of the wave
excitation force are essentially given by the product of the heave
component with the tangent of the steady state, running-trim angle. Since
the trim angles of his experiments were between 4 and 6 degrees, the wave
excitation force in surge would be expected to be much less than in heave.
Accordingly, the surge degree of freedom is omitted from the equations of
motion given as follows. These equations, which are in nondimensional
form, are for a planing boat moving with constant forward speed U and are
written with respect to its body coordinate system at its steady calm

water running trim; i.e., no motion except steady forward speed. The
origin of the coordinate system is located at the boat center of gravitv.
The axes Ox, Oy, and 0z are, respectively, forward, starboard, and

vertically down. From Equations (127) and (128) of Appendix A, we have

-iw 't
(m'-z,') 2' - 2,'3" - 2 2' - 25'6" - 23'3"' - 2,'€ = (@) ' e € (1)
- M.'Z' - M.'2' =M 'z' 4+ (I '-Mz') 6' - M:'8' - M8 = (M) ' e-we ‘ (2)
z z z y 6 8 S w

where the prime (') symbol indicates quantities nondimensionalized on the

basis of U, b, and p/2, and

z',2',z' = vertical heave acceleration, velocity, and displacement,
respectively, positive down

BRI e &, e E . o S That S 2 v S
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"',é',e = pitch angular acceleration, velocity, and dis-
placement, respectively, positive bow up

m' = mass of the boat ¢
' = pitch moment of inertia of the boat about the y-axis

y through the center of gravity
we' = wave encounter frequency kb (1 t-%)

t! = time

(Z)w',(M)w' = complex amplitudes of wave excitation force and

wave excitation moment, respectively, about the
center of gravity

b = boat beam

k = wave number, ZTT/Lw

c = wave celerity

Lw = wave length

U = steady reference boat speed.

The coefficients of the motion variables such as 22"22" etc., are the
stability derivatives of the boat. There are 12 of these in the previous
equations and 24 when the surge degree of freedom is included. The

equations for these coefficients were derived in Reference 4. The

equations for the wave excitation force and moment are derived in

Appendix A by treating the craft as a slender body with a correction factor
for three-dimensional effects. These equations are conveniently written

in terms of five components. From Equations (120) and (122) of

Appendix A, they are

-iw 't’
' e ' ' ' ' '
@), e == LD+ FL + (FO )+ (Fp),' + (F) '] cos T (3)

-iw 't'
) e S =) ) ) )t ) ()

The definitions of the individual components are given as follows, and the

appropriate equations for regular head and following waves are found in

Appendix A.




(Fl)w"(ul)v' integrated effect of the wave slope on the boat to
chine immersion; see Equations (74) and (102)

(F,)) ', (M) "' integrated effect over the length of the boat of
2'w 2'w
the wave orbital velocity; see Equations (82)
and (103)

(FS)"',(MS)V' integrated effect over the length of the boat of
the wave orbital acceleration; see Equations (87)
and (104)

(Fp)w"(HP)w' integrated effect over the length of the boat of
the ambient perturbation pressure due to the waves;
see Equations (111) and (115)

(Fh)w"(uh)w' effect of change in boat wetted area due to wave
elevation; see Equations (118) and (119).

All of the previously defined quantities are derived for the boat
moving unperturbed at constant speed U in regular head or following waves.
The effect of other wave headings is readily obtained as indicated in
Appendix A. The hydrodynamic and inertial forces and moments resulting
from the boat motions are given by the left-hand side of Equations (1)
and (2).

NATURAL FREQUENCIES AND DAMPING
By setting the right-hand side of Equations (1) and (2) equal to zero
and solving for the boat response to an initial perturbation, we obtain a
solution which describes the dynamic characteristics of the boat in calm

water.

c,'t' o't
z'(t:)ﬂ=zlel +zze2 . (5)

Tet et
Olt 02t

o(t) = 61 e + 62 e E SR (6)

where zl, zz,....el, 62,... are constants which depend on the initial con-

ditions. The 0' terms determine the character of the time history response
of the boat to any small disturbance. Four values of 0' are obtained from

the roots of the resulting characteristic equation.

AO'4 + 30'3 2

+Co'""+D0o'+E=0
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(z;' - -l) (“él - Iyl) - H'z" z.e.l

- sl o ! - 2’ = M. 2" = o
B Zi' (He' Iy') + (Zz m') Me' Hz' Ze' “i' Ze'

- ' S ’ ' M. Wl - m! - M.
C Zz (Me' Iy ) + Zi He' + (Zz a') He' Hz' Ze'

(8)

- [ ]
Mi Ze Mz Ze

= t M. ? ' ' _ U ([ t 9,0
D Zz Me + Zi Me Hi Ze Mz Ze
- ' v . ' t
E Zz Me Mz Ze

The roots of these equations may be real or complex conjugate pairs.
In either case it is seen from Equations (5) and (6) that if any root has
a positive real part, the transient response increases without limit, and
the boat is considered unstable in the linear sense.

In general a complex pair of roots represents an oscillatory mode;

e.g., for the root pair 0' =0,' + 1 oI', the z' response is

R
GR't'
t o et et
z e (c1 cos o 't! + ¢, sin o 't ) (9)
where <y and c, are real constants which are determined by the initial
conditions. The magnitude of the imaginary part of the root ¢_' is the

I
nondimensional natural frequency of the modal motion. In dimensional form,

the natural frequency and period are

. = 'l_J
o, =0;' ¢ rad/sec (10)
T= 2n sec (11)
e]
I
T
6




The effect of the real part of the root 0_,' may be illustrated by computing

R
the time for a transient disturbance to either halve or double fitself in

magnitude. Thus, if 0_.' is negative, the envelope of the disturbance will

R
be halved when

-e Royy2 (12)

It follows that the time for the disturbance motion of each mode to halve
or double itself is

t

or t, = 0.69/0R sec (13)

1/2

Another useful measure of damping of oscillatory modes is the damping ratio
£, which is directly related to the rate of decay of disturbance
oscillations. It is given by

En-

In the vicinity of the resonant encounter frequency, in waves, the damping
ratio is also inversely related to the amplification ratio of the boat
response. Values of £ between 0.6 and 1.0 are usually considered to give
well-damped modes. Values less than about 0.4 are generally considered to
produce underdamped modes. Although the foregoing may provide a rough
indication of the vertical plane dynamic characteristics of the boat, a

dynamic motions analysis is required for any detailed study.

STEADY STATE MOTION IN WAVES
The steady state solution of Equations (1) and (2) is a simple
harmonic motion in heave and pitch and has the following form

-iw 't'
e

'e

0
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6 = 90 e (16)

where zo' and 60 are the complex amplitudes of the heave and pitch motion.
Substituting these equations into Equations (1) and (2) leads to the
following equations for zo' and 00.

A

' - '
1% *48 =@,

' - '
Bl z, + Bz 90 (M)"

The solution to these equations

(z)w' B2
A, B

AB2

Alternately, in terms of the amplitude and phase angle

iaz
zy' = |zo'|e

%
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8y = 18y e

where

|z0' I- (zR

1/2

2

E S e

+ zI'z) a, = tan~t (zl'/zR')

1/2

2 2
6gl= (8% + 8.

-1
ag = tan (BIIOR)

The denominator of Equations (19) and (20) is the characteristic

quartic (Equation 7) where iwe' replaces 0'. This may be written in terms
When this is done, Equations (19) 4nd (20) become

of the stability roots.

' - (z)w' B2 B (H)w' A2
%o A Q

0. = (M)w' A1 B (z)w' B1
0 AQ

where A is given by Equation (8) and

Q= (1we' - 01') (iwe' - 02') (1we' - 03') (1we' - 04')

For the planing hulls investigated there was always one dominant pair of

complex conjugate stability roots. If the damping ratio of the mode is

low, one may expect large motions when the wave encounter frequency is

near the modal natural frequency. This is clear from the following form of

the expression for modulus of Q in Equations (23) and (24). P

2
IQI = wUN' 03v °1.'

w 12 w 12 2
sbae] A A x
1] 1t
“un “un
2 1/2

) - .

e e 2

— +[.'_'.£
03 oa 2

B e T T

(25)




where wUN'z = ol' 02' is the square of the undamped natural frequency of the

01' + 02' .
——————— is the damping ratio of the
Zml'o{

oscillatory mode (51 < 1). Similar definitions apply to the 03', 04' modes,

oscillatory mode, and §, = -

except in most cases 52 > 1, so that the second mode is not oscillatory.
It is seen that the first term can have a sharp minimum at the resouant
value of we', depending on how small El is. If the remaining terms and
the wave force vary slowly with frequency in the vicinity of this minimum,
then the heave and pitch amplitude might be expected to have a well-
defined resonance peak near this frequency. The encounter frequency at
which this would occur is given by

' > fr-2¢
we' =Wy V1267 = (26)

)

for El < 1//2

where wDN' = % Iol' - 02'| is the damped natural frequency of the mode.

It is seen that the value of this so-called resonance frequency is smaller
than both the damped and undamped natural frequencies. If Equation (26)
is substituted for we' in Equation (25), the magnitude of |Q| is approxi-
mately proportional to &l for small &l, and the response zo' and 90 at
resonance is roughly inversely proportional to &1. Thus, for the

previously stated conditions

z ' ~ 1/51

0 Near resonance

for El << 1 (27)

e0 ~ 1/&1
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COMPARISON WITH EXPERIMENT

Since the only systematic experimental data available about motions
of prismatic planing hulls (Figure 1) in regular waves are those obtained
by Fridsma,z the theory will be compared with these data only. This is
not particularly restrictive since experiments have been performed with
16 configurations built around a rather large series of constant deadrise
models (Figure 1), and, as stated earlier, measurements were obtained for
effects of deadrise, trim, loading, length-to-beam ratio and speed on the
pitch-and-heave amplitude and the phase angle in regular head waves. To
facilitate comparisons of the theory with these measurements, the ampli-
tudes of the heave and pitch motion are nondimensionalized by the
amplitudes of the wave height and wave slope, respectively. These so-

called response-amplitude operators (RAO) are then

|2,
=% = |z;'| £ = heave R0 (28)
|8,
L = pitch RAO (29)

Since the sense of positive boat displacement was assumed opposite to that
for wave surface elevation in the equations of motion (Appendix A), the

phase lag €, when both displacements are taken in the same sense, is

e, =a - (30)
The phase lead in pitch is given by

€g = 2n - 0 (31)

The previously described quantities, Equations (28) to (31), are plotted

against a modified version of the nondimensional wave number

11




1/3 '
b L
CA = E(CA F) (32)

1/3
The factor (CA %) was determined empiricallyz 8o as to minimize the

effect of the boat length-to-beam ratio, /b (or rather the radius-of-

gyration--to--beam ratio) and the load factor cA (or the mass) on the value
of CX at the resonant encounter frequency.

The principal geometric characteristics of each of the 16 configu-
rations investigated are given in Table 1. The values of the non-
dimensional longitudinal position of the center of gravity from the
transom (EEE/b)l shown in the table were obtained from interpolations of
cross plots of LCG versus trim angle curves obtained from smooth water

experiments. These were estimated by Fridsma2 to give the running trim

angles Tg shown in the table.

For the theoretical predictions, it was necessary to calculate the
running trim. This was determined for all configurations from the
previously mentioned values of (fEE/b)l. Although most of the calculated
trim angles T, were within approximately one-half degree of the desired
TE values, a few were about 1 degree lower. Since the trim angle plays
the major role in determining the dynamic characteristics of the boat, it
has been necessary, in these cases, to make calculations for a second 1CG
position selected to give a calculated trim angle closer to the desired
value. The resulting determinations are shown in Table 1B and designated
by subscript 2.

For each configuration theoretical calculations were made of the
pitch and heave RAO's and the corresponding phase angles as defined by
Equations (28) to (31) for wavelengths ranging between 1 and 60 boat
lengths. In addition the stability roots for each configuration were
also determined. It was found that for speed-to-length ratios of 4 and
6 there was only one pair of complex conjugate roots in virtually every

case. For a speed-to-length ratio of 2, however, there were two pairs
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of complex conjugate roots in every case. This presumably was due to the

importance of buoyancy forces at these lower speeds. Calculations were
AR’ This is the value of CA for which the
encounter frequency is equal to the so-called resonance frequency w_ ' as

R
determined from Equation (26). This occurs for head waves when Lw/b in

also made of the value of C

Equation (32) is given by the following equation

1/2
L 1+Vl+4wR' cv2

w
——— = 2‘" :
b 2 wR Cv

(33)

U

Ve o

These, together with the estimated damping ratios, are shown in Table 1.

where CV = is the speed coefficient.

It is seen that the values of CAR for nearly all cases lie between 0.075
and 0.10. The effect of increased trim angle, decreased load coefficient,
and increased speed are seen to decrease the damping ratios. The effect
of length~to-beam ratio does not appear to be significant. The effect of
deadrise appears to be small at a speed-to-length ratio of 4; however, at
a speed-to-length ratio of 6, the damping ratio decreases with decreasing
deadrise angle for similar running-trim angles. The 10-degree-deadrise
configuration J, having an estimated damping ratio of 0.06 at a trim angle
juét under 4 degrees, is seen to have the lowest damping ratio by far. It
will be seen that this condition resulted in the most violent motion of all.
The results of the theoretically determined RAO's and phase angles
are plotted in Figures 2 through 17. The figures for each speed-to-length

ratio are discussed separately.

SPEED-TO-LENGTH RATIO EQUALS 4

Most of the parametric study has been performed at the speed-to-length
ratio of 4 because this speed is more typical in planing craft operation
than speed-to-length ratios of 2 and 6. Figures 2 to 9 show comparisons
of the measured and computed values of the pitch and heave RAO and phase

angle as a function of the modified nondimensional wave number parameter Cy-

14
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- Also shown on the abscissa is a scale of wavelength-to-beam ratio.
The solid curves represent RAO's and phase angles as calculated on the
basis of the model (fEEYb)l values shown in Table 1lA. In some cases broken
curves are also shown. These represent the effect of a small change in the

LCG position and trim angle as listed in Table 1B. The data points are

indicated by the symbols shown. The experimental wave height-to-beam ratio
was 0.111 for all configurations, except the one shown in Figures 2a and
2b, where the effect of wave height was also investigated. It may be seen
from this latter figure that the effect of wave height does not appear to
be large, except perhaps at CA = 0.15. However, it will be seen later

that this is not necessarily true for all configurations.

Examinations of Figures 2 through 9 shows that the motions reach their
maximum amplitudes very close to the predicted resonant encounter frequency,

corresponding to the value of CAR given in Table 1A. It is also seen that

the slope of the phase angle curve tends to be a maximum near this value A
of CA’ as one might expect. The overall agreement between the calculated ;
and measured RAQ's and phase angles is seen to be quite good even for the
cases in which the conditions of the experiment were not simulated by the
theory in all respects. For example, the running-trim angle for Configu-

ration E was estimated to be 4.8 degrees, while the model value was

reported to be 6.0 degrees. A recalculation using an LCG position of 1.50

beams instead of the original 1.73 beams gave a calculated running-trim

angle of 5.8 degrees and better agreement with the data, as shown by the !
broken curves in Figures 3a and 3b. Although the assumed LCG position was
further aft than on the model, this discrepancy had much less influence on

the boat dynamics than the running-trim angle. It is of interest to note

from Table 1B that the increased trim angle resulﬁed in a decrease in the
damping ratio from 0.39 to 0.29, thus accounting for the sharper peak
response, It is also worth noting that the phase angles in Figures 3a and
* 3b were unaffected by the trim angle change to a value of CA of 0.15. i
However, for larger values there is a larger phase lag, though the motion

amplitudes are not greatly affected. Fridsma2 made the same observations

15
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on the basis of comparing the data from Configurations A with those from E;
see Figures 2 and 3. These configurations have estimated damping ratios

of 0.47 and 0.29, respectively., However, when a boat is in a more stable
configuration due, for example, to increased loading or smaller running
trim angle, the damping ratio is higher, and the effect of a small increase
in trim angle is significantly smaller. This is shown in Figures 4, 7,

and 9.

In a few cases, where part of the bow was estimated to be in water, the
agreement with theory 1s better than one might expect, since the present
theory does not include this effect. This was especially true for
Configurations K and P; see Figures 6 and 9. The former had a 30-degree-

deadrise angle and the latter a length-to-beam ratio of 4.

SPEED-TO-LENGTH RATIO EQUALS 6

At a speed-to-~length ratio of 6, the planing craft becomes less stable
and the motions more severe, According to Table 1B, the damping ratios at
this speed are the lowest. It is seen that the damping ratios of
Configurations B, J, and M decrease with a decrease in deadrise for
running-trim angles slightly under 4.0 degrees. On the other hand,
Configuration G, because of its higher loading has the highest damping
ratio even though the trim angle is close to 5.0 degrees.

The effect of wave height was investigated with Configuration B
(Figure 10) only. It is seen from this figure that the nonlinear effects
are more pronounced than at the lower speed. This is especially true
near the resonant encounter frequency and may, in part at least, account
for the measured peak RAO's being lower than the theoretical ones.
Reasonably good agreement was obtained between the computed and measured
RAO's for the more highly loaded 20-degree-deadrise boat; see Figure 11.
The predictions for the 30-degree-deadrise boat (Figure 12) were not as
good, particularly for the pitch RAO. This may, in part, be due to the
fact that a portion of the model bow was in the water. The poorest
agreement with the predictions of RAO were for the 10-degree-deadrise boat;

see Figure 13, The possible reasons for this will be discussed later.
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For every data point, except one, by using the theory the variation
of phase angle with encounter frequency is predicted quite well. This is
especlally evident from the solid phase angle curves shown in Figures 10
through 13, which were computed from the original Lce position. The
reason for the discrepancy at CA = 0.10 in Figure 13 is not apparent.
Calculations for the more aft position of LCG generally show an increase in
the phase lag at CA > 0.15 which is larger than that at a speed-to-length
ratio of 4. This indicates that the boat response is more sensitive at
this speed than at the lower speed to the shift in 1C6 position required
to correct the estimated running trim. It appears that an improved
method of estimating running-trim angles, within the context of the present
theory, would be desirable and would contribute toward removal of this
type of discrepancy, not only in the phase angle but also in RAO
predictions.

As noted earlier, poorest agreement between theory and data was ob-
tained for RAO's of Configuration J; see Figure 13. According to Table 1B
this boat had an estimated damping ratio of approximately 0.06 and was
therefore not far from a porpoising condition. This is indicated also by
the sharply tuned pezk in measured RAO's and the steep slope in the phase

angle data curve. Although the theoretical phase angle curve is shifted

to the right, it is apparent that it exhibits a variation with CA in the

vicinity of resonance similar to the data. This suggests that the
theoretical prediction of the damping ratio is reasonable. Since the peak
RAO is roughly inversely proportional to the damping ratio (Equation (27))
a small error in damping ratio, when this quantity is less than 0.1, can
lead to large discrepancies in RAO. It also becomes more difficult to
find the resonant peak experimentally. One would expect to find it close
to the region of maximum slope in the phase angle curve. Since there was
no recorded data point in the interval of wavelengths between 15 and

20 beam widths, where the phase angle changed by more than 100 degrees, it
is possible that the resonant condition was not measured. It is,

therefore, also possible that peak RAO's are actually higher than those




shown by data points in the figures. Even if this were so it would be . g
expected that nonlinear effects would limit the response to something less 4
than predicted. .

It is also seen in Figure 13 that a second peak in RAO's occurred for 1
a wavelength of approximately 7.5 boat widths. According to Reference 2 :
the model was reported to rebound from a wave crest, completely "fly over" 3
a second wave crest, and land on the third. It thus had an actual f
excitation frequency of one-half that normally expected. This is very 3
close to the resonant frequency of the craft, which presumably occurs at ;

a wavelength between 15 and 20 beam widths. Although the phenomenon is

undoubtedly due to nonlinear effects, it is doubtful that it would have
occurred if the boat were not in a highly tuned condition due to the fact

that it was not far from a porpoising condition. It should be remarked,

however, that it is somewhat surprising that the resonant frequency of the
boat seems to have been altered very little, although the change in the

flow condition on the boat is apparently very large.

SPEED~TO-LENGTH RATIO EQUALS 2

The speed-to-length ratio of 2 represents the prehump condition where
buoyancy forces are predominant, and significant side wetting above the
chines occurs. Furthermore, at this speed the hydrodynamic coefficients
may be Froude number and frequency dependent. Since the theoretical pre-
dictions of the hydrodynamic forces assume no side wetting or Froude
number dependence, it should be expected that the motion predictions would

suffer somewhat because of this. Furthermore, it was estimated that most

of the bow of each of the boat models tested at this speed was in the
water. As noted earlier, the present theory does not include the effect
of bow immersion. Despite these shortcomings, the theory was exercised,
and comparisons were made with the experimental data for all of the

configurations tested.
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As mentioned before, all of these configurations had two pairs of

complex conjugate roots, representing two natural frequencies. However,

one of them was a low-frequency, highly damped mode. The values of CAR

and £ for the other mode are shown in Table 1. 1t is seen that all of

the configurations (C, D, H, and L) are predicted to have a fair amount of
damping. Comparisons of the theoretical predictions of RAO and phase
angle with the experimental data for the 10- and 20-degree-deadrise boats;
i.e., Configurations C, D, and H, shown in Figures 14 through 16, are
better than might have been expected. The predictions for the 30-degree-
deadrise model appear to be worse than the others. This is probably due

to the fact that this boat ran with the greatest amount of bow immersion.

CONCLUSIONS

The theoretical method proposed in the present report appears to
provide reasonably good predictions of the linear response characteristics
of high-speed planing boats in waves. Accuracy of the predictions of
RAO's and phase angles is best around a speed-to-length ratio of 4. This
is fortunate since this is the most typical speed for planing craft
operation. Although the predictions of the phase angles at a speed-to-
length ratio of 6 are good, there is a tendency to overestimate resonant
RAO's in most cases. This problem appears to be most severe when the
boat is operating near its porpoising condition. Part of the reason for
overestimation may be due to the fact that nonlinear effects are not
accounted for in the theory. 1In addition it is felt that a more precise
method for estimating the running-trim angle, in the context of the
present theory, would lead to a further improvement in these predictions.

Since the present theory was derived for prismatic planing hulls, it
does not take into account detailed variations in hull geometry.
Furthermore, it is a linear theory, and a number of simplifications and
approximations have been incorporated in it. It is anticipated that
further development to eliminate these shortcomings will take place.

Nevertheless it is considered to be a useful design tool in its present
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form, especially since it has been shown that the effect of hull
parameters on performance, as obtained from data in the linear range,

is valid for operation in realistic seas.
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APPENDIX A

FORCE AND MOMENT DUE TO WAVES AND THE EQUATIONS OF MOTION
FORCE AND MOMENT DUE TO WAVES

> 'A' *
MR T ol ]

It is assumed that the craft is proceeding in straight-line motion

at constant speed U and arbitrary heading angle Bh through regular waves.

Perturbations from the straight-line motion are assumed to be zero and
only the force and pitch moment excitation in the vertical plane, due to
vq ; waves, are to be determined in this section. Since the theory is con-
i cerned mainly with the high-speed, low-aspect ratio condition, it is
assumed that the craft may be treated as a slender body with a three-
dimensional flow, or aspect-ratio correction, and that unsteady effects
are small,

The total hydrodynamic force on the craft is taken as the sum of

the time rate of change of the transverse momentum in the vertical plane

imparted to the water by the presence of the moving craft and the ambient
perturbation pressure due to the waves. Determination of the first of
j‘ . these, the dynamic part of the force, initially follows the lines used by
) ) the author in deriving the equations for porpoising planing craft.a
}3; This type of analysis was originally suggested in 1924 by MunkS and
1 . Jones~ in connection with the analysis of airships and slender wings and

& has more recently been generalized by Bryson7 for slender finned missiles.

i 5Munk, M.M., "The Aerodynamic Forces on Airship Hulls," National
Advisory Committee for Aeronautics Report 184 (1924).
: 6Jones, R.T., "Properties of Low-Aspect-Ratio Wings at Speeds Below and
Above the Speed of Sound," National Advisory Committee for Aeronautics
Report 835 (1946).

Bryson, A.E., Jr., "Stability Derivatives for a Slender Missile with
Application to Wing-Body-Vertical Tail Configuration,”" Journal of
Aeronautical Sciences, Vol. 20, No. 5, pp. 297-308 (1953).
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It has been applied to the problem of the translational impact of
seaplanes on water by Hayo8 and othera.g’lo

The equations for the wave force and moment are described with
respect to orthogonél axes 0Ox, Oy, and Oz with origin fixed at the
center of gravity of the boat. The axis Ox is in the fixed direction of
the forward reference speed U of the boat. The axis Oy is starboard,
and Oz is vertically down; see Figures 18 and 19.

The flow over the hull is assumed to occur in transverse planes which
are fixed in space and oriented normal to the keel. The momentum of each
layer of water transverse to the keel is u& ds, where u is the two-
dimensional added mass of the section of the hull at point s, interacting
with the wave motion in the section of flow plane of length ds, and E is
the component of the orbital velocity* normal to the keel at that section.
The coordinate s is measured aft from the foremost immersed station along
the keel. The: dynamic part of the normal force on the section ds of the
hull is the time rate of change of the momentum imposed on the layer of

water ds by the presence of the hull

dF = 37 (ue) ds (34)

Both p and & will in general be functions of the longitudinal position
coordinate x of the hull section and time t. Since the time derivative
is in the fixed transverse plane, it must reflect the changing coordinate

x of the transverse plane with time. Thus

8Mayo, W.L., "Analysis and Modification of Theory for Impact of
Seaplanes on Water," National Advisory Committee for Aeronautics Report 810
(1945).

9Milwitzky, B., "A Generalized Theoretical and Experimental Investigation
of the Motions and Hydrodynamic Loads Experienced by V-Bottom Seaplanes
During Step-Landing Impacts,' National Advisory Committee for Aeronautics
TN 1516 (1948).

1OSchnitzer, E., "Theory and Procedure for Determining Loads and
Motions in Chine--Immersed Hydrodynamic Impacts of Prismatic Bodies,"
National Advisory Committee for Aeronautics Report 1152 (1953).

*
This is reasonably constant over the depth of planing craft.
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d ,3__,
dt ot 9x

The normal force on the entire hull due to the orbital motion is
obtained by integrating Equation (34) along the wetted length of the hull
1k and multiplying by a correction factor ¢(A) to account for the three-
dimensionality of the flow.

e
. . dy
F, 1 109 I ¢ 3¢ 98
0

The sectional added mass at any transverse section depends on the sectional
geometry of the boat and the magnitude of §. According to Reference 4

the transverse sectional added mass distribution for a prismatic hull form
may be estimated from the following equations for the separate contributions
Ha

£ ¢(8)2 ¢ 0 <

2
2—%—9— (1 - sin B) Se1

2 -
2 Bb (2 ch) Sc2

wetted length along keel; see Figure 19

=1 -1

k m
mean wetted length of hull

- 1@{ tan B b

scl T tan T in calm water




: 8., = (0.5 (0.57 + 0.0018) (tan B/(2 tan 1) - 0.0068) - 0.03)b (41)

';. O

k|l £8) = 32 - 1 (42)
B = deadrise angle, degrees

ch =tats= 8.2

b

boat beam

The quantity 5.1 is the value of s at which the chine becomes "effectively"
immersed. The term B, which is Bobyleff's function, is a function of
deadrise angle. The sectional added mass 1t at any section is the sum of
the contributions H, at that section. It follows from Equations (37)
through (39) that we may put

du s du_ s 3w
P at 4 z 4 3s cot T (43)
g so that Equation (36) becomes
?; B 2k Qk .
= :2 3u at

; Fp = 60 f ¢” 5y ds + f M ge ds (44)
‘i_ where

;fr P T f(B)2 0<s< S.1

E

" au

_,'\ — = 4
} T (45)
e o

;”f, Bb S.o <s < Qk

The corresponding moment is obtained by integrating the product of the

stripwise force and the moment arm from the center of gravity (a-s).

L L

] k
% My = 00 J' (a-s) £* ¥

Kk
a‘é ds + I (a-s) ug ds (46)
0 0

i g
s R
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vhere a is the value of s at the transverse flow plane through the center
of gravity; i.e., a = 1k - iEE. and LCG is ths dictance fro4 transom to

center of gravity; see Figure 18.

Determination of I, a and E
For the condition of the boat moving with constant speed and trim

angle T through waves, we may write
T=stan T+, 47)

where the first term is the calm water value, and C' is the contribution

from the waves. With the aid of Equation (35) we have

Z=Usin1t+ &w (48)

since, according to Figure 19 we see that

5% = - cog T
Also since U sin T is a constant
L= (49)

The values of Cw’ &w and E; are next determined from the velocity
potential ¢w for the wave motion. This may be written with respect to
the moving boat axes as follows, where x, y, and z are measured from a
point directly above the center of gravity, and the real part is to be
taken.

-kz 1k [x cos B, + i + (U -
¢, =dhce e htyein Byt Ueos By -o)el g
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)
b j where 8, = angle of wave crests from boat x-axis; B, = 0 and 7 for
;! Y following and head seas respectively; see Figure 18
ii ( h = wave amplitude, 1/2 wave height
: ¢ = wave celerity
k = 2'n/Lw = wave number
Lw = wavelength

t = time
In the following we will consider only the head and following sea cases.

We then have

-kz e-T'ik[x + (U +c)t)

¢w = ihc e (51)

In Equation (51) and the following, the upper sign refers to head seas;

the lower sign, to following seas. The encounter frequency wy is

given by
3 We = k (U +c) (52)
f The wave elevation is
» d ¢ H(kx + w_t)
n(x,t) = = (d—t") =he e (53)
v 8 z=0
;iﬁ since c2 = g/k. The horizontal and vertical components of the orbital
? | velocity are given, respectively, by
it} -
e 0 ¢, - -kz +i(kx + w  t)
A wh e e (54)
) ¢w -kz +i(kx + W, t)
w o= - = {wh e e (55)
w dz

where the circular frequency of the orbital motion is given by

w = ke
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The expression for EH may be obtained as the sum of the components of the
orbital velocity normal to the keel.

g ==v ginT~-w co8 T
W w w

Inserting Equations (54) and (55) leads to

. -kz +i(kx - T + w, t)
Cw = - jwh e e (57)

The expression for cw is readily found from this equation and Equation (53)

as

By operating on Equation (57) with Equation (35), we obtain the

expression for the acceleration term, Equation (49).

-kz +i(kx - T + wy t)
= Ew = « whe e

Evaluation of FD

If we substitute Equations (45) and (47) through (49) into
Equation (44) we obtain, on discarding second order terms in the wave
disturbance,

+ F

4 5

FD = Fl + F2 + F3 + #

s

cl
Fl = ¢(A) pT f(B)2 U2 sin2 T .[ (s tan T + cw) ds
0

s
cl
Fz =2¢Q) pm f(B)2 Usin T tan T j.

0

W e v o . .
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k
Fy=¢(\) BpUsin b I iwds (63)
sc2

S
F, = 600 B & v? sin? 1 b J' ds (64)
sc2
b
Fg = 6(0) I Wt ds (65)
0

The first term represents the effect of the variation in added mass
to the point of effective chine immersion for constant normal speed
component U sin T. The next two terms give the effect of the orbital
velocity. The fourth term is the calm water normal force contribution over
that portion of the hull from S.o to the transom. The last term gives the
force due to wave orbital acceleration.

In Reference 4 the quantity 8.1° which is the value of s at which
the chine just becomes effectively immersed, is evaluated on the basis
of Wagner's11 wave rise theory and an empirical correction by Shuford12 for
the calm water case. In that derivation, the value of 7 is s tan T and S.1

is defined by the following equation

(£(B) t >2~1L2 1 - sin B) 66)
s, tan T =3 (1 - sin (

To make use of this result, the expression for Cw in Equations (58) and (61)
is approximated by the following equation in the range s = 0 to s = S.1°

llWagner, H., "The Phenomena of Impact and Planing on Water,' National
Advisory Committee for Aeronautics Translation 1366, ZAMM Bd 12, Heft 4,
pp. 193-215 (Aug 1932).

12Shuford, C.L., Jr., "A Theoretical and Experimental Study of Planing
¢ .rfaces Including Effects of Cross Section and Plan Form," National Advisory
Committee for Aeronautics Report 1355 (1957).
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Cw(scl) - Cw(o)

L, = . + 5,00 (67)
cl

Making use of Equation (58) in Equation (67) and substituting this for cv in
Equation (61), we obtain

s tan T + gw = g tan (T + rw) + ;w(O)

+1(kx, -T)
- he xb
xcl/cos T

[ tikxcl ] +1we t (69)
e -1l]e

x, = horizontal distance from center of gravity to foremost
immersed station on keel

X . =8 cos T
c1/

cl
The first term on the right-hand side of Equation (68) represents the
combined effect of trim angle and wave slope on the force in the interval )
s =0tos= Se1 The second term is the effect of wave elevation on

the force. This effect will be evaluated later. On substituting the first
term on the right side of Equation (68) into Equation (61) and making use
of Equation (66) with T replaced by T + Tw’ we obtain to the first order in
the wave term

2
Fy = 60) p 7 4= (1 - sin B) U? (sin T cos T - T) (70)

The first term in this equation is the calm water normal force contribution.
When this is added to Fa we obtain the total dynamic part of the steady state
normal force F__ on the hull. We nondimensionalize by dividing through by

2 2 DS
1/2 p U° b” and obtain




3
FORY H
¥ F . '= AT (1 - 8in B) sin T cos T + C sin2 1 cos2 TAcos B (71)
: DS 1+X2 D,c
‘ where we have made the following substitutions from Reference 4. .
i o) = s (72)
: 1+
| 2
i ¢(A\) B=C cos” T cos B (73)
D,c
i CD o = cross flow drag coefficient; see Table 2
i b
A = mean wetted length-to-beam ratio g
S ¥
TABLE 2 - CROSS FLOW DRAG COEFFICIENT#* ?
Section Shape........ Ceteessseastaseennanas CD,c
V-Bottom, constant deadrise...........00...1.33
r V-Bottom, horizontal chine flare..... 1.33 + 0.0147 80
- V-Bottom, vertical chine strips...... 1.60 + 0.0147 g° .
k7 *
1 Reference 12.
If we nondimensionalize the wave term in Equation (70) we obtain
r . .
y (Fl)w 1+ G Tw (74)
‘1
i~ !
T where
e )
¥ G = E-(l - sin B) (75)
'Vﬁag ; Equations (62), (63), and (65) are expressed in terms of the orbital
j&-~ motion at some depth z, - For planing boats there 1is generally very little
@ﬁ s difference whether we take za at the keel or at the free surface.
A;:’,v ’
Wl | |
e
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Nevertheless we approximate it by the equation
z =YssinT (76)

where Y is taken as the fraction of the depth to the keel at which the
orbital motion is considered to act. Since integrations are to be carried
out from the foremost wetted portion of the keel aft, we substitute for

x in Equations (57) and (59) the following

s
X Xy " Cos T an

Substituting Equations (76) and (77) irto Equations (57) and (59) gives

. H(y - ko s)
Lw = - jwh e (78)

H®W - k, 8)
t =-uwhe 0 (79)
w
Vmkx - T+t (80)
ko = (k/fcos 1) (1 + 1Y sin T cos 1) (81)
On substituting Equation (78) into Equations (62) and (63), carrying out
the integration, and nondimensionalizing, we obtain with the aid of

Equations (66), (72), (73), and (75) the following expression for the

normal force due to orbital velocity.

(Fz)w' = sz + F3' = - e (Hl cos T + H2 sin 1) (82)




£ where :
1
+1 k 8 ’ ;
" A G - 0 - A
1 1+ A 2 [e L asy kos ) - 1] for 8 > 2° (83) I
g (kO scl) ;
| H]_ = 1
| A |
3 | 1+ ) %' for B < 2° (84) 1
‘ f
c +1 k. s +1 k. £
| - -
‘ H2 =+ 1 3 g’cb cos2 T cos B (e 0 "e2 e 0 k) (85)
? 0

The selection of a 2-degree-deadrise angle in Equations (83) through (84)

was to avoid the computational problem of a near zero in the term

3 / (ko scl)2 at a deadrise angle close to zero. It is assumed that
Equation (84), which is strictly for zero deadrise angle, is suitable for
angles to at least 2 degrees,

The force due to orbital acceleration is obtained by substituting

. .
D e e SR e ' et 3l A o Do i bl K o A st AU v S A SR AT S

Equations (37), (38), (39), and (79) into Equation (65). Thus
s
- 1
Fy ¢ +i k.s
F5 = ¢(A) wzh e %1 f(B)2 tan2 T J. 52 e 0 ds
0
(86)
i b2 Ek + k0s Bb fa T gk H k0s é
+ E_Z__ (1-sin B) e ds +-9———E——E—— (s-scz) e ds !
scl Sc2

If we carry out the integrations, make the substitutions indicated by
Equations (66), (72), and (73) and nondimensionalize, we obtain finally

5 € e a e e g A T T i 1A 3 .

2 iy iH
(Fg) ' =2 (“‘J’—b) ( )e [1- 2—3 +H, +tan T (H; - H, Acz)] (87)

ol
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A Sy ‘ * kosy [
1

2 - o
o . e 2—(ko 'cl) +12(ko .cly]-z , for 8 > 2

3
0 'cl)

(88)

for B < 2°

0 %c2

2
C cos” T cos B | +ik. 2 +1ik
D.c [ =0k 3 1k, L) -e

(1 +14 ko scz)] (90)

2
2(k0 b)

AcZ = s<:2/b

In summary the dynamic part of the nondimensional force on the boat
moving with constant speed and trim through regular head or following waves

is given by
(Fp' = Fpo' + (F)' + (Fy) ' + (FQ)! (91)

The effect of the ambient pressure and increased wetted area due to the

waves will be determined later.

Evaluation of MD
The dynamic part of the moment about the boat center of gravity is

obtained, according to Equation (46), by multiplying each integrand in

Equations (61) through (65) by the moment arm (a - s8). The corresponding

moment equation becomes

MD - Ml + M2 + M3 + Ma + M5 (92)




-11 where
v .CI
S 2 .2 2 2
3 M, = ®(}) pm £(B)° U° s1n” T tan (T + 1) I (2s-5°) dg (93)
3 ‘ 0
: 8c1
: " M, = 2 (1) pm f(B)2 Usin T tan T j (as-sz) &w ds (94)
0
b
My = 6(A) BpUsintThb J. (a-8) &w ds (95)
: ~4 Sc2
;f- "
: M, = 60) B 2 u? sin® T b .[ (a-s) ds (96)
;;: sc2
. / lk
' Mo = () ‘[ (a-s) u g ds (97)
0

On carrying out the integration in Equation (93) and using the result
of Equation (70) one readily obtains

2
- pmb” . 2 - _Tcc - 2
M, = 600 BT (1-sin 8) U? (sin T cos T - 1) (zk GG - 2 scl) (98)

The last term in parentheses is the moment arm of Fl from the center of

gravity. It is readily evaluated with the aid of Equations (40) and (41)
where T is replaced by T + Ty* Thus )

= 2 -y T _ 0.0018) tan B
b, -G -2s =1t - LG (0.157 2 G T b+ b R(8) (99)

where R(B) = -0.0038 (0.57 + 0.0018) - 0.03

5. mwnm“v"w




Combining this with Equation (98) and discarding terms of higher order

than one in the wave compounents yields

2
Ml = ¢(A) BIZE— (1-8in B) Uzb [sin T cos T (A

k

_(A-z (0.157 - °'2°13) tan 6 _ A - R(B)) rw]

where Acl is scllb for calm water. The first term in the brackets is the
calm water moment contribution. When this is added to Hb we obtain the
total dynamic part of the steady state moment. We nondimensionalize this

by dividing by 1/2 p u%b3 and obtain

A 2
MDS'-mcsinTcosT(}\k-Ag-skcl)

ol s (303)
+ CD,c 8in® T cos” T cosB A 2 Ag
where Equations (72), (73), and (75) have been made use of. If we non-

dimensionalize the term in Equation (100) due to the wave slope we obtain

R S - tan 8 _
(Ml)w 1+ G [X 2 (0.157) Ag ] Tw 4(102)

tan T
where the terms in P were dropped since they were found to have very little
effect on the accuracy of the calculations.

The part of the moment (M2 + M3) due to the wave orbital velocity is
seen to be expressible as the sum of the moment of the force (Fz)w acting
at s = 0 and the contribution obtained from the integration of the second
term in the integrands of Equations (94) and (95). On carrying out this
operation, making the appropriate substitutions from Equations (66), (72),
(73), and (75) and nondimensionalizing, one obtains




ey 0 s () () et (- 2)
F | (Mp)' = Mp' + M37 = (F) )t (mA) + (g )\p)stn T e\ -7 .
2 (103)
5; : That part of the moment MS’ due to the acceleration, is expressible as

the sum of three integrals analogous to that given in Equation (86) for

FS' On carrying out the integrations indicated in Equation (97), making

the appropriate substitutions as before, and nondimensionalizing one

1 obtains
b | ' ' ) wb\ 2 /ny TV 1
" (MS)W = (FS)W (Ak—)\g) +2 (T) (E-) e (MSl + MSZ + M53) (104) j
- where
2
A +1i k. s
G _ A cl -7 70 “cl 2
21+A(ks)4‘e [3(“osc1) 6+
0 “cl
Mo =1 +1 (6kys (ks)3)+6 for B > 2° i
51 0 Sc1 0 Sc1 i
0 for B < 2°
+1 k. £ +1i k. s
_G_A 1 =% kg 2 =% %o a1
| Moy = 5 T3 % 3 [e (1+1 ko Qk) -e (1+1i kg SCIJ
(ko b)
i
! 2
- Cp c cos” T cos B
M., =-tanT| A , H, + 2 iH
53 c2 5 2 (ko b)3 6
+i k., 2
- 0 "k 2 -
H6 = e [2 - (ko Qk) +1i2 (ko lk)]
+i k., s
- 0 “c2 2 -
- e [? - (k0 scz) + 12 (k0 scz)]




b4 In summary the dynamic part of the nondimensional moment on the boat
& : ) moving with constant speed and trim through regular head or following waves

: is given by
;ﬁ"w ) ("D)' - HDS' + (Hl)w' + (HZ)H' + (Hs)w' (105)

Normal Force and Moment Due to
Ambient Pressure

j The force due to local pressure effects FP is obtained by integrating

the ambient pressure over the bottom of the hull. Thus

2

5 F = + =2 as 1
by || p o |ez+ (106) i

B ', 0 " e

where the second term is the effect of the wave perturbation

/ d o, -kz Fi(kx + @ t)
: 3t - 8 h e e (107) 2

and the first term represents the static buoyancy force. We will consider
!‘-3 oo only cases for speed coefficient Cv at more than 0.5, where the water
breaks clear of the transom, thus ventilating the backside of the boat to 3
the atmosphere and removing the component of force parallel to the keel. For
this case the force due to ambient pressure may be assumed to act normal to

the keel. The following expression for the static buoyancy force was

found to fit existing data reasonably we11.13’14
el o352
Feg =K7P8b A% sin T (108a)

13Hsu, C.C., "On the Motions of High Speed Planing Craft," Hydronautics
! Report 603-1 (May 1967).
5 1l.Brown, P.W., "An Experimental and Theoretical Study of Planing Surfaces
! with Trim Flaps," Davidson Laboratory, Stevens Institute of Technology

Report 1463 (Apr 1971).
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This is equivalent to K p g b .I (s - acz) sin T ds

sc2

where Kk is an empirical correction factor, which accounts for the ventilation
effects. A value of 0.624, obtained from data on prismatic hulls.la has
been used in the present calculations and in Reference 4. Thus

Equation (108a) becomes, in nondimensional form

v . 0.624

BS 2
Cy

32 sin T (108b)

For the sake of consistency with the above result, the same value for K
and the same integration limits were used also in evaluating the force due
to the wave perturbation pressure (FP)w' Thus the second term in
Equation (106) becomes

L

e wd -(sin T +1 cos 1) k(s - sc2)
(Fp)w = 0.624 pgbh e e ds (109)

ch

where the following substitutions have been made in Equations (106)
and (107)

dS = b ds

N
[}

(s - scz) sin 1

Wd = kxd +tw, t : (110)

xd=xb—sczcos‘r

X =x4- (s - scz) cos T

On carrying out the integration, we obtain in nondimensional form

38
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E
3 3
1 ‘ H'(wd + 1) -k A b(sin T +1 cos T) \
b (F) ' =+ 2(0.624) h i e 1-e (111)
. P'w - CVZ b kb 4
where C, = U/v/s?
Thus the total normal force due to the ambient pressure is }
' - ' U
FP FBS + (FP)w (112)
¢ According to Reference 14 the assumption that the buoyancy force acts ;'
’ one-third of the mean wetted length forward of the stern gives good
. agreement with data. Accordingly, the nondimensional moment about the "
‘/ center of gravity, due to the buoyancy force, is
LN
b v o 0.624 ,2 ( A )
? | MBS . 2 (A® sin 1) 3 Ag (113)
; v
. |
s ; The moment due to the wave perturbation pressure iz, with the aid of '.4[
. Equation (109) :
% _ 2, _
5 +1i wd -(sin T + 1 cos T) k(s-scz)
I = -
-: (M'P)w 0.624 p gbh e (sd s) e ds
| 8.2 (114)
! where s; = \ - Ag)b
2 Carrying out the integration, we obtain in nondimensional form
+ 1 at2m
‘ ' - ' _ 2(0.624) h e _
| (Mp)w (FP)w (A )\8) + 2 b 2 1 H7) (115)
! C k b
; v
| .
39




3 where ) .

, i _ -k A b(sin T + 1 cos 1)
- H7 = [1l+k Ab(sin T+ 1 cos 1)] e

-

Thus the total moment about the center of gravity due to the ambient

; pressure is

P My)' = My + (M) f (116)

i Normal Force and Moment Due to Change _
in Wetted Length |

It is recalled that only part of the force and moment contributions
arising from the effect of wave elevation has so far been accounted for.

These are given by Equations (74) and (102) respectively, and represent the

effect of the mean wave slope Ty in Equations (67 through 69). The wave

elevation term Qw(O) of Equation (67), which must also be included, has the 3
' I effect of increasing the wetted length of the boat. The effect of this on E
the force may be determined with the aid of Equations (71) and (101), which .
express the effect of the mean wetted length A and trim angle T on the :
steady normal force and moment due to forward speed alone. The change in g
mean wetted length due to wave elevation will be approximated from the free
surface elevation at the point x = Xy
¥ ik X3+ w, t)

AN = b sin T (117)

The position Xy rather than (xb --%) , has been used since Ab is measured
from the transom to the point s = Sc2’ which, we have seen from

Equation (110), is directly below the point x = x4 on the free surface.
With the aid of Equations (71), (75), and (117) we may estimate the non-

dimensional normal force (Fh)w', due to wave elevation, from the

40
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following expression

'
9 FDS

Fple' = 73

A

which, on making the appropriate substitutions, yields

+ ik x

+w t)
he e

d
b gin 1
(118)

G sin T cos T
1+ 02

+ C cos B sin2 T coa2 T]

(Fply' = [ D,c

The nondimensional moment about the center of gravity due to wave
elevation is obtained in an analogous manner with the aid of Equation (101).
Thus

3 MD '
S
(Mh)w' Y a2
or
1 2 A
()'={GsintcosT[—————(A-A——)\)+———]
Mw 1+ n2 k%73 % T+
+ik x, +w t) (119)
+C c B sin2 T c052 TG =~ X) he a ¢
D,c os g b sin T

The next step is to incorporate all of the foregoing results for wave

excitation into equations of motion of the boat.

EQUATIONS OF MOTION

The equations of motion of planing craft in the longitudinal degrees
of freedom are most conveniently expressed in terms of heave, surge, and
pitch motions. Accordingly the normal force due to the waves are resolved
into the vertical and horizontal components. We employ the convention that

the nondimensional surge force and displacement are denoted by X' and x',

respectively, and are positive in the direction of the calm water speed;




the nondimensional vertical force and displacement are denoted by Z' and -
z', respectively, and are positive in the downward direction normal to the
calm water free surface. The nondimensional pitching moment and dis- -
placement angle are M' and 8 and are positive for the bow-up direction of %
rotation; see Figure 18.
Since the motions due to waves will be determined relative to the
steady state attitude and draft of the boat, the steady state hydrodynamic
force and moment make no contribution, in the linear sense, to the boat
motions. This is discussed further in Reference 4, where the complete
steady state equilibrium equations are derived. The vertical component
of the linearized wave force is therefore obtained by adding the
contributions from Equations (91), (112), and (118) and by omitting F__'

DS
A
and FBS .
+i we't'
] = o ' ] ' ' ]
(Z)w e [(Fl)w + (Fz)w + (FS)w + (FP)w + (Fh)w ] cos T (120)
The horizontal component of the wave force is
¥i we't' How 't
x) ' e =(2) 'tanTe € (121)

The moment due to the waves is obtained by summing Equations (105), (116),

and (119) and by omitting MDS' and MBS" Thus

+iw 't'
1 e —-— T 1 t 1 1]
™M, e = M)+ M)+ (M) '+ () + (M) (122)

In the previous equations (X)w', (Z)w', and (M)w' are of course complex
constants.

Equations for estimating the linearized hydrodynamic forces on the boat
due to perturbations from steady state motion in surge, heave, and pitch
have been derived in Reference 4 for use in the theoretical prediction of
calm water porpoising. The same equations are of course applicable for

calculating the linearized hydrodynamic force and moment on the boat

42




arising from its motion response to waves. If we express the two non-
{ dimensional force components and the nondimensional moment due to the boat
motions, as linear functions of the nondimensional perturbations in surge,

»: heave and pitch, we have“

X)py =X G+ X u+ X, Z+X 2+X z2+X58+X8+x 6 (123

‘ (z')BM-zﬁﬁ+zuu+zgi;+zz;é+zzz+z§§+zéé+zee (124)
(M')BM-Mﬁﬁ+Muu+M.z.i+Mi2+Mzz+M6§+Héé+Hee (125)
where u = %', and 0 = X'. The primes used to denote nondimensional values

have been omitted on the right-hand side of the equations for convenience.

The coefficients Xﬁ, Xu, etc., in the previous equations, are the (stability)

derivatives of the force and moment with respect to the motion perturbations

i, u, etc. The dot above the symbols represent derivative with respect to

f time. Theoretical estimates for all of the stability derivatives in the

Q . previous equations are derived in Reference 4. ,
. % The equations of motion in waves may now be written in terms of :

i Equations (120 through 125) as

3 Fow 't

i ver ' = U

3 m'a (X )BM (x)w e (surge equation) (126)

f +How 't

: o _ 1 - Y

1 m'2 (z )BM (Z)w e (heave equation) azn

j -

; . +ow, "t

gy _ ' = '

5 Iy 0 M )BM (M)w e (pitch equation) (128)

| I

! where m' = 1 n 3 is the nondimensional boat mass, and I ' = I—x—g is the

2 pb y 2 pb

nondimensional pitch moment of inertia of the boat about the y-axis through

the center of gravity.
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Equations (126 through 128), with the wave force and moment terms set equal
to zero, are the equations for porpoising stability.a The steady state

solution of Equations (126 through 128) is a simple harmonic motion in the

perturbations. Thus

e we't'
x' = x' e (129)
1 we't'
2 =z e (130)
i we't'
= 60 e (131)

where Xy zo', 80 are the complex amplitudes of the displacement and pitch
angle perturbations. If we substitute Equations (129 through 131) into
Equations (126 through 128) we obtain the equations for the amplitudes and

phase angles of the motions.

(132)
2 . _ '
+[x6“e 'xefixew] 8, = (X),
Z. w 2 +1iz w |"x.'"+|{@. -mw 2 _ Z +1i2,w |" 2.
a e u e 0 z - z e 0
(133)
. 2_ . ] = '
+ [Ze Wy Ze + i Ze we] 60 (Z)w
M., w 2 +iM w |'"x. "+ |M ow 2 _ M +iM wl|' =z
ua e - u e 0 z e z e 0
(134)
- 2 — ) - '
+ [(Me Iy) Wy Me +1i M6 we] 80 (M)w

The prime on the brackets indicates that each term is primed. The solution
to these equations give the complex amplitude of the boat motions
ia

X't i = x, e ¥ (135)
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zo' =z '+12z"'a= lzo'l e (136)

R 1

i Qg
8 =6+ 16, =16, e (137)

0
where the subscripts R and 1 refer to the real and imaginary component.
The displacement amplitudes and phase angles are given by the following

equations

2 2 -1

|x0'| - xR' + xI' @ = tan (xI'/xR')
2 -1

Izo'l = zR' + 2z 12 a, = tan (zI'/zR')

8, =vyoi+08 a=cant (8 /8)

Since the convention for heave displacement is positive down while the
convention used for the change in free-surface elevation due to waves is
positive up, it is necessary to shift the phase angle for the heave motion
by 180 degrees if we wish to determine the phase angle of the heave motion
with respect to the free-surface displacement, positive up in both cases.
On this basis, we readily find that the phase lag of the heave displacement
with respect to the free-surface elevation n at the boat center of

gravity is

€ =0 ~T head waves
z z
(138)

€E =TT - a, following waves

The phase leads of the surge amplitude and pitch angle with respect to n

at the same point are, respectively:
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e
P a1
=
E | € =21 -a head waves
¢ X X
(139)
: E = qQ following waves
. i X X
1
% -
1 ce = 27 ae head waves
j (140)
€g = Qg following waves |
|
7] » ]
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Figure 12 - Heave and Pitch Responses (V/v2 = 6) Configuration M
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Figure 13 - Heave and Pitch Responses (V/vX = 6) Configuration J
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{ Figure 14 - Heave and Pitch Responses (V/v/I = 2) Configuration C
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Figure 15 - Heave and Pitch Responses (V/v/1 = 2) Configuration D
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Figure 17 - Heave and Pitch Responses (V/vZ = 2) Configuration L
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