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NOTATION

a Value of a at transverse plane through boat center of gravity

B Bobyleff's function of deadrise

b Beam of boat

CDc Cross flow drag coefficient; see Table 2

Cf Hydrodynamic friction coefficient

C Lb Boat lift coefficient nondimensionalized by the beam,

2CA/Cv

CV Speed coefficient, U/Vgjb

CA Load coefficient, A/Pgb
3

CA Modified version of nondimensional wave number; see Equation (32)

CAR Value of C at resonant encounter frequency

c Wave celerity

FBS Steady state buoyancy force

FD Dynamic part of hydrodynamic normal force on hull

FDS Steady state part of FD

(F h)w  Normal force due to wave elevation

(Fp)w Force on hull due to perturbation pressure from wave

(F )w Normal force due to slope of wave

(F 2)w  Normal force due to orbital velocity

(F )w  Normal force due to orbital acceleration

f(B) Deadrise function of Wagner; see Equation (42)

g Acceleration of gravity

H Wave height, 2h

h Amplitude of wave elevation, one-half wave height

I y Pitch moment of inertia about the boat center of gravity

y

v

,i . . . . . .. . .. . ..
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k Wave number, 27r/L

k Modified wave number; see Equation (81)

k Radius of gyration of boat with respect to
ky center of gravity

LCG Distance from transom to boat center of gravity,
measured parallel to keel

L w  Wavelength

1 Overall length of boat, in feet

1 Same as LCG
g

1ik  Length of wetted portion of keel

1 Mean wetted length of hullm

M Hydrodynamic pitch moment relative to
center of gravity

MBS Steady state pitch moment due to buoyancy

MD Dynamic part of hydrodynamic pitch moment on hull

/DS Steady state part of MD

(Mh)w  Pitching moment due to wave elevation

MS  Total steady state pitch moment acting on hull

Mz,M,M, etc. Partial derivative of pitch moment with respect to
motion variables z, i, 0, etc., respectively

(MI)w  Pitching moment due to slope of wave

(M 2)w Pitching moment due to orbital velocity

(M5)w  Pitching moment due to orbital acceleration

- RAO Response amplitude operator (Equations 28 and 29)

s Coordinate measured along keel from foremost
immersed station of keel (see Figure 19)

Sc See Equation (40) and Figure 19

a c2 See Equation (41) and Figure 19
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t Time

U Steady reference speed of boat, in feet per second

u, u Perturbation surge velocity and acceleration

Vk Steady reference speed of boat, in knots

W Boat weight

X Hydrodynamic force component in direction of
positive x

XD Dynamic part of hydrodynamic X-force

XS  Steady state part of X

X ,X.,X, etc. Partial derivative of X-force with respect to
U U Zmotion variables u, 6, i, etc., respectively

x Horizontal coordinate in direction of U

xb  Horizontal distance from center of gravity to fore-
most immersed point on keel, i.e., where s 0

Xcl Scl/COS T

x d See Equation (110)

Z Hydrodynamic/force component in direction of
positive z

Z D Dynamic par# of hydrodynamic Z-force

Z Steady staie part of Z

ZzZtZi , etc. Partial dorivative with respect to motion variables
z, i, 6, etc., respectively

Z Vertical coordinate, positive down

.z0 '[ Nondimensional amplitude of vertical displacement ofcenter of gravity of boat from steady, calm water position

ix, az, C1 Phase angle of surge, heave, and pitch motion,
respectively, with respect to wave height

Deadrise angle; see Figure 19

Oh  Wave heading angle; see Figure 18

A Weight of boat

vii
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Components, normal to the keel, of the orbital velocity
and acceleration, respectively

6 Boat pitch angle perturbation, positive bow up

IO0% Amplitude of boat pitch angle perturbation from steady, calm
water trim angle, radians

A Mean wetted length to beam ratio

A Length of wetted chine to beam ratioc

xcl Nondimensional value of sls /b
cl c2, cl

x Nondimensional value of s /b
c2 c2'

Ak Nondimensional value of LC, LCG/b

A Nondimensional value of 1 k' lk/A

iTotal sectional added mass

a Contribution to sectional added mass

11s Sectional added mass at transom

V Kinematic viscosity of water

Boat damping ratio

P Mass density of water

a Stability root

aI  Imaginary part of a

aoR  Real part of a

TSteady state trim angle measured from keel line to calm
water free surface at reference speed U

T CCalculated value of Tc

, T Average wave slope near bow; see Equation (69)w

O() Three dimensional or aspect ratio correction

'See Equation (80)

'Pd See Equation (110)
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W Circular frequency of wave

W Circular encounter frequency with waves, e

The prime (') symbol is generally used to denote quantities in non-
dimensional form. Factors used for nondimensionalizing the previously
described quantities are p/2, U, b. Typical examples are given as follows:

FBS BS/(1/2 U2b 2)

jIHBS'= MBS/(1/2 pU2 b3 )

5
H6' - M6/(1/2 pb5)

t' - tU/b

tU/b

cl cl
2

= I/(1/2 pb2)

a' = ob/U

Subscript:

w Refers to wave component

ix
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ABSTRACT

A theoretical method is derived for predicting the linearized

response characteristics of constant deadrise, high-speed planing
boats in head and following waves. Comparisons of the theoretical

predictions of the pitch and heave response-amplitude operators
and phase angles with existing experimental data show reasonably
good agreement for a wide variety of conditions of interest.

It appears that nonlinear effects are more severe at a speed-
to-length ratio of 6 than of, say, 4 or less, principally because
of the reduction of the damping ratio of the boat with increasing

speed, and the consequent increase in motions in the vicinity of
the resonant encounter frequency. However, it is concluded that
the linear theory in its present form can serve as a useful
design tool, especially since it has already been shown that the
effect of hull parameters on performance as obtained from data in
the linear range is valid for operation in realistic seas.

ADMINISTRATIVE INFORMATION

This investigation was authorized and funded by the Naval Sea Systems

Command (SEA 035) under the General Hydrodynamics Research Program,

SR-023-0101, Work Unit 1-1562-002.

INTRODUCTION

The history of the development of planing hulls has depended almost

exclusively in the past on acquisition and analysis of full-scale and

model experimental data. This has been especially true in the area of sea-

keeping where until only a few years ago, practically no experimental data
1

were available. Following a study by Savitsky, in which he noted that the

lack of such data led to continuous controversy among boat designers as to

the makings of a good rough water boat, extensive experiments were carried

out at the Davidson Laboratory. In 1969 Fridsma2 carried out experiments

on a series of constant-deadrise models in smooth water and regular head

waves to define the effects of deadrise, trim, loading, speed, and length-

to-beam ratio as well as wave proportions on added resistance, heave and

pitch motions, and impact accelerations. Despite the fact that he

1 Savitsky, D., "On the Seakeeping of Planing Hulls," Marine Technology

(Apr 1968). A complete listing of references is given on page 82.

2Fridsma, G., "A Systematic Study of the Rough-Water Performance of

Planing Boats," Davidson Laboratory, Stevens Institute of Technology
Report R-1275 (Nov 1969).

1



observed a significant nonlinear dependence of the motions on wave height,$1 he concluded that his findings, which were predominantly obtained from
measurements in the linear range, were valid and extremely important.

This was further confirmed by later experiments made with more realistic
3

irregular head waves, when he observed that the results generally

correlated well with his regular wave findings.

The relative success of a recently developed theoretical method for

predicting porpoising of planing hulls gave encouragement to the belief

that a reasonably good dynamic model for the planing hull was in hand for

the first time. This consisted of a set of three linear equations in the

surge, heave, and pitch motions of the boat in calm water. The solution

of these homogeneous equations for the stability roots led to predictions

of porpoising trim angles which were on the whole in good agreement with

experimental data. Expressions for the linearized wave forces and

moments due to regular waves were consequently derived in the present report

and were used with the previously described equations for predicting

motions in waves.

Although the theory is linear and has several approximations, it is

felt that its basic structure is correct in view of the good overall

agreement with the extensive model data obtained by Fridsma 2 in regular

waves. Furthermore, as noted previously, since results obtained in the

linear range are valid, concerning the effect of hull parameters on

performance, it is felt that the theory will serve as a useful design tool

in its present form.

EQUATIONS OF MOTION

The linearized equations for the longitudinal motions of surge, heave

and pitch in regular head and following waves are derived in Appendix A.

Although the derivation is for all three degrees of freedom, the numerical

3Fridsma, G., "A Systematic Study of the Rough-Water Performance of
Planing Boats, Irregular Waves--Part 2," Davidson Laboratory, Stevens
Institute of Technology Report R-1495 (Mar 1971).

4 Martin, M., "Theoretical Prediction of Porpoising Instability of High-
Speed Planing Boats," DTNSRDC Report 76-0068 (Apr 1976).
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calculations in this report have been obtained from the solutions to the

coupled pitch and heave equations only. This was felt to be justified on
2,3the basis of the experimental findings of Fridsma. He found from visual

observations and on examination of the time history record of model boat

motions in regular head waves that little surging motion took place,

particularly at speed-to-length ratios of 4 and 6. To verify this observa-

tion at a speed-to-length ratio of 2, comparative tests were made for both
"constant speed" and "constant thrust" conditions. He found little

difference in the pitch and heave motions. This result is not altogether

surprising in view of the fact that, according to Equation (121) of

Appendix A, the theoretical estimates of the surge component of the wave

excitation force are essentially given by the product of the heave

component with the tangent of the steady state, running-trim angle. Since

the trim angles of his experiments were between 4 and 6 degrees, the wave

excitation force in surge would be expected to be much less than in heave.

Accordingly, the surge degree of freedom is omitted from the equations of

motion given as follows. These equations, which are in nondimensional

form, are for a planing boat moving with constant forward speed U and are

written with respect to its body coordinate system at its steady calm

water running trim; i.e., no motion except steady forward speed. The

origin of the coordinate system is located at the boat center of gravity.

The axes Ox, Oy, and Oz are, respectively, forward, starboard, and

vertically down. From Equations (127) and (128) of Appendix A, we have

-iW t

(m'-Zi') ' - z.'i' - Zz' - zU'' - z6'' - ze = (Z)w' e(1)

-iW It'
- M..'Z' - M.'' - Mz'' + (Iy'-M') ' - m66,- Mee =(M)w  e e (2)z z zy e0e w

where the prime (') symbol indicates quantities nondimensionalized on the

basis of U, b, and p/2, and

z',',z' = vertical heave acceleration, velocity, and displacement,

respectively, positive down

3
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e',e',e - pitch angular acceleration, velocity, and dia-
placement, respectively, positive bow up

m W mass of the boat

I ' = pitch moment of inertia of the boat about the y-axis
through the center of gravity

' = wave encounter frequency kb (1 +Ue  U

ts M time

(Z)w',(M)w' = complex amplitudes of wave excitation force and
wave excitation moment, respectively, about the
center of gravity

b = boat beam

k = wave number, 2r/L
w

C = wave celerity

L ff= wave length

U = steady reference boat speed.

The coefficients of the motion variables such as Z..',Z' , etc., are the

stability derivatives of the boat. There are 12 of these in the previous

equations and 24 when the surge degree of freedom is included. The

equations for these coefficients were derived in Reference 4. The

equations for the wave excitation force and moment are derived in

Appendix A by treating the craft as a slender body with a correction factor

for three-dimensional effects. These equations are conveniently written

in terms of five components. From Equations (120) and (122) of

Appendix A, they are

-iW 't'
( + '+ ,) (F) '(F (we =- [(F) w +(F2)w + (Fw5) (Fh)w ] cos T (3)

-iw It'I e I, ( I,
(M)w  e = (M1)w + (M2 )w' + (M5 )w + (Mp)w' + (Mh)w' (4)

The definitions of the individual components are given as follows, and the

appropriate equations for regular head and following waves are found in

Appendix A.

4
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(F1)W',(M) W ' - integrated effect of the wave slope on the boat to
chine imersion; see Equations (74) and (102)

(F2)w',(M 2)W' - integrated effect over the length of the boat of
the wave orbital velocity; see Equations (82)
and (103)

(F5)',(M 5)w' integrated effect over the length of the boat of
the wave orbital acceleration; see Equations (87)
and (104)

(Fp)w ,(Mp)w' - integrated effect over the length of the boat of
the ambient perturbation pressure due to the waves;
see Equations (111) and (115)

(Fh effect of change in boat wetted area due to wave
elevation; see Equations (118) and (119).

All of the previously defined quantities are derived for the boat

moving unperturbed at constant speed U in regular head or following waves.

The effect of other wave headings is readily obtained as indicated in

Appendix A. The hydrodynamic and inertial forces and moments resulting

from the boat motions are given by the left-hand side of Equations (1)

and (2).

NATURAL FREQUENCIES AND DAMPING

By setting the right-hand side of Equations (1) and (2) equal to zero

and solving for the boat response to an initial perturbation, we obtain a

solution which describes the dynamic characteristics of the boat in calm

water.

z'(t) z e + z2 e + ...... (5)

(t) = 1 e + 2 e +...... (6)

where z1, z2  .  0 ... are constants which depend on the initial con-
l' 2**1' 29s

ditions. The a' terms determine the character of the time history response

of the boat to any small disturbance. Four values of Y' are obtained from
the roots of the resulting characteristic equation.

A O'4 + B o' 3 + C O' 2 + D o' + E =0 (7)

5
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where

A (Z. ' -') (M6-' 1 y) -. ' Z6
z 8 y z

B - Zi' (Mg' - I y') + (Zi' - m') MH' -M.z'I 6 ' -M i ' Z;

t, C - ZZ  (Mg' - Iy') + Zi' M61 + (Z.' -a ' -m. z
(8)

z 0
D - Z Z' - z Z6

E z ' H' +Z.' Ho' - Hz Zo' -Z I MI

z 0 z Z0'

The roots of these equations may be real or complex conjugate pairs.

In either case it is seen from Equations (5) and (6) that if any root has

a positive real part, the transient response increases without limit, and

the boat is considered unstable in the linear sense.

In general a complex pair of roots represents an oscillatory mode;

e.g., for the root pair a' = a _ i Cy I', the z' response is

aR't'
z' -e (c cos oIt' + c2 sin a1 't') (9)

where c1 and c2 are real constants which are determined by the initial

conditions. The magnitude of the imaginary part of the root aI' is the

nondimensional natural frequency of the modal motion. In dimensional form,

the natural frequency and period are

a I U rad/sec (10)
I b

T 27r
T = sec (11)

:/6
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The effect of the real part of the root a' my be illustrated by computing

the time for a transient disturbance to either halve or double itself in

magnitude. Thus, if aR  Is negative, the envelope of the disturbance will

be halved when

C't' a t
R RSR e =1/2 (12)

It follows that the time for the disturbance motion of each mode to halve

or double itself is

t1/2 or t2 =0.69/aR sec (13)

Another useful measure of damping of oscillatory modes is the damping ratio

E, which is directly related to the rate of decay of disturbance

oscillations. It is given by

R (14)

VOR 2 + o1I2

In the vicinity of the resonant encounter frequency, in waves, the damping

ratio is also inversely related to the amplification ratio of the boat

response. Values of between 0.6 and 1.0 are usually considered to give

well-damped modes. Values less than about 0.4 are generally considered to

produce underdamped modes. Although the foregoing may provide a rough

indication of the vertical plane dynamic characteristics of the boat, a

dynamic motions analysis is required for any detailed study.

STEADY STATE MOTION IN WAVES

The steady state solution of Equations (1) and (2) is a simple

harmonic motion in heave and pitch and has the following form

-iw 't'
z' =z O' e e (15)

7
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-lw 't'

e e0 e e (16)

where z0' and 60 are the complex amplitudes of the heave and pitch motion.

Substituting these equations into Equations (1) and (2) leads to the

following equations for z0' and e0*

A z' + A (Z) (17)
1 0 A2 % (Z)w

B z' + B 0  (M) (18)

1 0 82 0 04)

where

A (Z' i 2  Z ' + + Z ' w e
A2 Z ' ,e2 -z+ z ''

2 2 Ze ' + i z 1 e

B =M..' '2 - M '+ i M.' W1 e z z e

B2 (Mgt - I ,) W , 2  M ' + i M' We
S2 ( y 0

Th' solution to these equations is

(Z)w' 82 - (M)w' A2
z = 2 2 z' + i z (19)

1 lB2 A 2 B RI

(M) w ' A1  (Z)' B1A B A2 B e R + i e (20)

Alternately, in terms of the amplitude and phase angle

ict

0 IzoIe Z

8
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eo - 1601 e (22)

where -2 1/2 -

Iz0' I- (zR' + z' az a tan (zI'/zR')

101- ((R 2 + a1 ) ae  tan& (1/eR)

The denominator of Equations (19) and (20) is the characteristic

quartic (Equation 7) where iw ' replaces a'. This may be written in ters
e

of the stability roots. When this is done, Equations (19) ind (20) become

(Z)w' B2 - (M)w' A2
z0  AQ (23)

(M)w' A1 - (Z)w' B1
e0  A Q (24)

where A is given by Equation (8) and

Q = (iW' - a01) (iW e' - 02') (iW' - 03') (iW' - 041)

For the planing hulls investigated there was always one dominant pair of

complex conjugate stability roots. If the damping ratio of the mode is

low, one may expect large motions when the wave encounter frequency is

near the modal natural frequency. This is clear from the following form of

the expression for modulus of Q in Equations (23) and (24).

2i 1w,2 W 2 11/a" _ --
IQI UN, 03 , 04 WUN'2) WUN ' 2

2 2 2 1/2 (25)

3 4e 4 a 3 22

9
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where 2
wher 1 ~ 2 is the square of the undamped natural frequency of the

01' +02
oscillatory mode, and 1 2 is the damping ratio of the

1 2

oscillatory mode (1 < 1). Similar definitions apply to the a3', 04' modes,

except in most cases &2 > 1, so that the second mode is not oscillatory.

J It is seen that the first term can have a sharp minimum at the resottant

value of we ', depending on how small 61 is. If the remaining terms and

the wave force vary slowly with frequency in the vicinity of this minimum,

then the heave and pitch amplitude might be expected to have a well-

defined resonance peak near this frequency. The encounter frequency at

which this would occur is given byI2 E12
WR WU 212 WDN [ 2l/2 (26)

for 61 < l//2

where WDN' = 1 o - 02 is the damped natural frequency of the mode.

It is seen that the value of this so-called resonance frequency is smaller

than both the damped and undamped natural frequencies. If Equation (26)

is substituted for w 'in Equation (25), the magnitude of IQI is approxi-
e

mately proportional to i for small &l' and the response z0' and 80 at

resonance is roughly inversely proportional to 1 Thus, for the

previously stated conditions

0' 1 near resonance
0 for l<< 1 (27)

10



COMPARISON WITH EXPERIMENT

Since the only systematic experimental data available about motions

of prismatic planing hulls (Figure 1) in regular waves are those obtained2
by Fridsma, the theory will be compared with these data only. This is

not particularly restrictive since experiments have been performed with

16 configurations built around a rather large series of constant deadrise

models (Figure 1), and, as stated earlier, measurements were obtained for

effects of deadrise, trim, loading, length-to-beam ratio and speed on the

pitch-and-heave amplitude and the phase angle in regular head waves. To

facilitate comparisons of the theory with these measurements, the ampli-

tudes of the heave and pitch motion are nondimensionalized by the

amplitudes of the wave height and wave slope, respectively. These so-

called response-amplitude operators (RAO) are then

IZ I b
h-T z0' I - heave RAO (28)

1801
kh = pitch RAO (29)

Since the sense of positive boat displacement was assumed opposite to that

for wave surface elevation in the equations of motion (Appendix A), the

phase lag czs when both displacements are taken in the same sense, is

c - a - (30)

The phase lead in pitch is given by

e = 27t - a8  (31)

The previously described quantities, Equations (28) to (31), are plotted

against a modified version of the nondimensional wave number

11.



C C 1/3 (32)

The factor A b was determined empirically2 so as to minimize the

effect of the boat length-to-beam ratio, R/b (or rather the radius-of-

gyration--to--beam ratio) and the load factor CA (or the mass) on the value

of C at the resonant encounter frequency.

The principal geometric characteristics of each of the 16 configu-

rations investigated are given in Table 1. The values of the non-

dimensional longitudinal position of the center of gravity from the

transom (LCG/b)1 shown in the table were obtained from interpolations of

cross plots of LCG versus trim angle curves obtained from smooth water
2

experiments. These were estimated by Fridsma to give the running trim

angles TE shown in the table.

For the theoretical predictions, it was necessary to calculate the

running trim. This was determined for all configurations from the

previously mentioned values of (LCG/b) . Although most of the calculated

trim angles T were within approximately one-half degree of the desired

TE values, a few were about 1 degree lower. Since the trim angle plays

the major role in determining the dynamic characteristics of the boat, it

has been necessary, in these cases, to make calculations for a second LCG

position selected to give a calculated trim angle closer to the desired

value. The resulting determinations are shown in Table lB and designated

by subscript 2.

For each configuration theoretical calculations were made of the

pitch and heave RAO's and the corresponding phase angles as defined by

Equations (28) to (31) for wavelengths ranging between 1 and 60 boat

lengths. In addition the stability roots for each configuration were

also determined. It was found that for speed-to-length ratios of 4 and

6 there was only one pair of complex conjugate roots in virtually every

case. For a speed-to-length ratio of 2, however, there were two pairs
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of complex conjugate roots in every case. This presumably was due to the

importance of buoyancy forces at these lower speeds. Calculations were

also made of the value of CXR. This is the value of CX for which the

encounter frequency is equal to the so-called resonance frequency WR' as

determined from Equation (26). This occurs for head waves when L w/b in

Equation (32) is given by the following equation

L Cv{'

- 2 w C (33)

where C = is the speed coefficient.

These, together with the estimated damping ratios, are shown in Table 1.

It is seen that the values of CAR for nearly all cases lie between 0.075

and 0.10. The effect of increased trim angle, decreased load coefficient,

and increased speed are seen to decrease the damping ratios. The effect

of length-to-beam ratio does not appear to be significant. The effect of

deadrise appears to be small at a speed-to-length ratio of 4; however, at

a speed-to-length ratio of 6, the damping ratio decreases with decreasing

deadrise angle for similar running-trim angles. The 10-degree-deadrise

configuration J, having an estimated damping ratio of 0.06 at a trim angle

just under 4 degrees, is seen to have the lowest damping ratio by far. It

will be seen that this condition resulted in the most violent motion of all.

The results of the theoretically determined RAO's and phase angles

are plotted in Figures 2 through 17. The figures for each speed-to-length

ratio are discussed separately.

SPEED-TO-LENGTH RATIO EQUALS 4

Most of the parametric study has been performed at the speed-to-length
I

ratio of 4 because this speed is more typical in planing craft operation

than speed-to-length ratios of 2 and 6. Figures 2 to 9 show comparisons

of the measured and computed values of the pitch and heave RAO and phase

angle as a function of the modified nondimensional wave number parameter C .

14



Also shown on the abscissa is a scale of wavelength-to-beam ratio.

The solid curves represent RAO's and phase angles as calculated on the

basis of the model (LCG/b)1 values shown in Table 1A. In some cases broken

curves are also shown. These represent the effect of a small change in the

LCG position and trim angle as listed in Table lB. The data points are

indicated by the symbols shown. The experimental wave height-to-beam ratio

was 0.111 for all configurations, except the one shown in Figures 2a and

2b, where the effect of wave height was also investigated. It may be seen

from this latter figure that the effect of wave height does not appear to

be large, except perhaps at CA = 0.15. However, it will be seen later

that this is not necessarily true for all configurations.

Examinations of Figures 2 through 9 shows that the motions reach their

maximum amplitudes very close to the predicted resonant encounter frequency,

corresponding to the value of CAR given in Table 1A. It is also seen that

the slope of the phase angle curve tends to be a maximum near this value
of CV, as one might expect. The overall agreement between the calculated

and measured RAO's and phase angles is seen to be quite good even for the

cases in which the conditions of the experiment were not simulated by the

theory in all respects. For example, the running-trim angle for Configu-

ration E was estimated to be 4.8 degrees, while the model value was

reported to be 6.0 degrees. A recalculation using an LCG position of 1.50

beams instead of the original 1.73 beams gave a calculated running-tri

angle of 5.8 degrees and better agreement with the data, as shown by the

broken curves in Figures 3a and 3b. Although the assumed LCG position was

further aft than on the model, this discrepancy had much less influence on

the boat dynamics than the running-trim angle. It is of interest to note

from Table lB that the increased trim angle resulted in a decrease in the

damping ratio from 0.39 to 0.29, thus accounting for the sharper peak

response. It is also worth noting that the phase angles in Figures 3a and

3b were unaffected by the trim angle change to a value of C of 0.15.

However, for larger values there is a larger phase lag, though the motion

amplitudes are not greatly affected. Fridsma2 made the same observations

15



on the basis of comparing the data from Configurations A with those from E;

see Figures 2 and 3. These configurations have estimated damping ratios

of 0.47 and 0.29, respectively. However, when a boat is in a more stable

configuration due, for example, to increased loading or smaller running

trim angle, the damping ratio is higher, and the effect of a small increase

in trim angle is significantly smaller. This is shown in Figures 4, 7,

and 9.

In a few cases, where part of the bow was estimated to be in water, the

agreement with theory is better than one might expect, since the present

theory does not include this effect. This was especially true for

Configurations K and P; see Figures 6 and 9. The former had a 30-degree-

deadrise angle and the latter a length-to-beam ratio of 4.

SPEED-TO-LENGTH RATIO EQUALS 6

At a speed-to-length ratio of 6, the planing craft becomes less stable

and the motions more severe. According to Table 1B, the damping ratios at

this speed are the lowest. It is seen that the damping ratios of

Configurations B, J, and M decrease with a decrease in deadrise for

running-trim angles slightly under 4.0 degrees. On the other hand,

Configuration G, because of its higher loading has the highest damping

ratio even though the trim angle is close to 5.0 degrees.

The effect of wave height was investigated with Configuration B

( i (Figure 10) only. It is seen from this figure that the noulinear effects

are more pronounced than at the lower speed. This is especially true

near the resonant encounter frequency and may, in part at least, account

for the measured peak RAO's being lower than the theoretical ones.

Reasonably good agreement was obtained between the computed and measured

RAO's for the more highly loaded 20-degree-deadrise boat; see Figure 11.

The predictions for the 30-degree-deadrise boat (Figure 12) were not as

good, particularly for the pitch RAO. This may, in part, be due to the

fact that a portion of the model bow was in the water. The poorest

agreement with the predictions of RAO were for the lO-degree-deadrise boat;

see Figure 13. The possible reasons for this will be discussed later.
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:For every data point, except one, by using the theory the variation

*I of phase angle with encounter frequency is predicted quite well. This is

especially evident from the solid phase angle curves shown in Figures 10

through 13, which were computed from the original LCG position. The

reason for the discrepancy at CA - 0.10 in Figure 13 is not apparent.

Calculations for the more aft position of LCG generally show an increase in

the phase lag at CX > 0.15 which is larger than that at a speed-to-length

ratio of 4. This indicates that the boat response is more sensitive at

this speed than at the lower speed to the shift in LCG position required

to correct the estimated running trim. It appears that an improved

method of estimating running-trim angles, within the context of the present

theory, would be desirable and would contribute toward removal of this

type of discrepancy, not only in the phase angle but also in RAO

predictions.

As noted earlier, poorest agreement between theory and data was ob-

tained for RAO's of Configuration J; see Figure 13. According to Table IB

this boat had an estimated damping ratio of approximately 0.06 and was

therefore not far from a porpoising condition. This is indicated also by

the sharply tuned peak in measured RAO's and the steep slope in the phase

angle data curve. Although the theoretical phase angle curve is shifted

to the right, it is apparent that it exhibits a variation with CA in the

vicinity of resonance similar to the data. This suggests that the

theoretical prediction of the damping ratio is reasonable. Since the peak

RAO is roughly inversely proportional to the damping ratio (Equation (27))

a small error in damping ratio, when this quantity is less than 0.1, can

lead to large discrepancies in RAO. It also becomes more difficult to

find the resonant peak experimentally. One would expect to find it close

to the region of maximum slope in the phase angle curve. Since there was

no recorded data point in the interval of wavelengths between 15 and

20 beam widths, where the phase angle changed by more than 100 degrees, it

is possible that the resonant condition was not measured. It is,

therefore, also possible that peak RAO's are actually higher than those

[ 17
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shown by data points in the figures. Even if this were so it would be

expected that nonlinear effects would limit the response to something less

than predicted.

It is also seen in Figure 13 that a second peak in RAO's occurred for

a wavelength of approximately 7.5 boat widths. According to Reference 2

the model was reported to rebound from a wave crest, completely "fly over"

a second wave crest, and land on the third. It thus had an actual

excitation frequency of one-half that normally expected. This is very

close to the resonant frequency of the craft, which presumably occurs at

a wavelength between 15 and 20 beam widths. Although the phenomenon is

Vundoubtedly due to nonlinear effects, it is doubtful that it would have

occurred if the boat were not in a highly tuned condition due to the fact

that it was not far from a porpoising condition. It should be remarked,

however, that it is somewhat surprising that the resonant frequency of the

boat seems to have been altered very little, although the change in the

flow condition on the boat is apparently very large.

SPEED-TO-LENGTH RATIO EQUALS 2

The speed-to-length ratio of 2 represents the prehump condition where

buoyancy forces are predominant, and significant side wetting above the

chines occurs. Furthermore, at this speed the hydrodynamic coefficients

may be Froude number and frequency dependent. Since the theoretical pre-

dictions of the hydrodynamic forces assume no side wetting or Froude

number dependence, it should be expected that the motion predictions would

suffer somewhat because of this. Furthermore, it was estimated that most

of the bow of each of the boat models tested at this speed was in the

water. As noted earlier, the present theory does not include the effect

of bow immersion. Despite these shortcomings, the theory was exercised,

and comparisons were made with the experimental data for all of the

configurations tested.
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• -As mentioned before, all of these configurations had two pairs of

complex conjugate roots, representing two natural frequencies. However,

one of them was a low-frequency, highly damped mode. The values of CXR

and C for the other mode are shown in Table 1. It is seen that all of

the configurations (C, D, H, and L) are predicted to have a fair amount of

damping. Comparisons of the theoretical predictions of RAO and phase

angle with the experimental data for the 10- and 20-degree-deadrise boats;

i.e., Configurations C, D, and H, shown in Figures 14 through 16, are

better than might have been expected. The predictions for the 30-degree-

deadrise model appear to be worse than the others. This is probably due

to the fact that this boat ran with the greatest amount of bow immersion.

CONCLUSIONS

The theoretical method proposed in the present report appears to

provide reasonably good predictions of the linear response characteristics

of high-speed planing boats in waves. Accuracy of the predictions of

RAO's and phase angles is best around a speed-to-length ratio of 4. This

is fortunate since this is the most typical speed for planing craft

operation. Although the predictions of the phase angles at a speed-to-

length ratio of 6 are good, there is a tendency to overestimate resonant

RAO's in most cases. This problem appears to be most severe when the

boat is operating near its porpoising condition. Part of the reason for

overestimation may be due to the fact that nonlinear effects are not

accounted for in the theory. In addition it is felt that a more precise

method for estimating the running-trtm angle, in the context of the

present theory, would lead to a further improvement in these predictions.

Since the present theory was derived for prismatic planing hulls, it

does not take into account detailed variations in hull geometry.

Furthermore, it is a linear theory, and a number of simplifications and

approximations have been incorporated in it. It is anticipated that

further development to eliminate these shortcomings will take place.

Nevertheless it is considered to be a useful design tool in its present
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form, especially since it has been shown that the effect of hull

parameters on performance, as obtained from data in the linear range,

is valid for operation in realistic seas.
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APPENDIX A

FORCE AND MOMENT DUE TO WAVES AND THE EQUATIONS OF NOTION

FORCE AND MOMENT DUE TO WAVES

It is assumed that the craft is proceeding in straight-line motion

at constant speed U and arbitrary heading angle 8h through regular waves.

Perturbations from the straight-line motion are assumed to be zero and

only the force and pitch moment excitation in the vertical plane, due to

waves, are to be determined in this section. Since the theory is con-

cerned mainly with the high-speed, low-aspect ratio condition, it is

assumed that the craft may be treated as a slender body with a three-

dimensional flow, or aspect-ratio correction, and that unsteady effects

are small.

The total hydrodynamic force on the craft is taken as the sum of

the time rate of change of the transverse momentum in the vertical plane

imparted to the water by the presence of the moving craft and the ambient

perturbation pressure due to the waves. Determination of the first of

these, the dynamic part of the force, initially follows the lines used by

the author in deriving the equations for porpoising planing craft.
4

This type of analysis was originally suggested in 1924 by Munk5 and

Jones 6 in connection with the analysis of airships and slender wings and

has more recently been generalized by Bryson 7 for slender finned missiles.

5Munk5

Munk, M.M., "The Aerodynamic Forces on Airship Hulls," National
Advisory Committee for Aeronautics Report 184 (1924).

6Jones, R.T., "Properties of Low-Aspect-Ratio Wings at Speeds Below and
Above the Speed of Sound," National Advisory Committee for Aeronautics
Report 835 (1946).

7Bryson, A.E., Jr., "Stability Derivatives for a Slender Missile with
Application to Wing-Body-Vertical Tail Configuration," Journal of
Aeronautical Sciences, Vol. 20, No. 5, pp. 297-308 (1953).
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It has been applied to the problem of the translational impact of

seaplanes on water by Mayo
8 and others. 9,10

The equations for the wave force and moment are described with

respect to orthogonal axes Ox, Oy, and Oz with origin fixed at the

center of gravity of the boat. The axis Ox is in the fixed direction of

the forward reference speed U of the boat. The axis Oy is starboard,

and Oz is vertically down; see Figures 18 and 19.

The flow over the hull is assumed to occur in transverse planes which

are fixed in space and oriented normal to the keel. The momentum of each

layer of water transverse to the keel is p: ds, where W is the two-

dimensional added mass of the section of the hull at point s, interacting

with the wave motion in Lhe section of flow plane of length ds, and is

the component of the orbital velocity* normal to the keel at that section.

The coordinate s is measured aft from the foremost immersed station along

the keel. The dynamic part of the normal force on the section ds of the

hull is the time rate of change of the momentum imposed on the layer of

water ds by the presence of the hull

dF

Both W and will in general be functions of the longitudinal position

coordinate x of the hull section and time t. Since the time derivative

is in the fixed transverse plane, it must reflect the changing coordinate

x of the transverse plane with time. Thus

8Mayo, W.L., "Analysis and Modification of Theory for Impact of
Seaplanes on Water," National Advisory Committee for Aeronautics Report 810
(1945).

9Milwitzky, B., "A Generalized Theoretical and Experimental Investigation
of the Motions and Hydrodynamic Loads Experienced by V-Bottom Seaplanes
During Step-Landing Impacts," National Advisory Committee for Aeronautics
TN 1516 (1948).

10
Schnitzer, E., "Theory and Procedure for Determining Loads and

Motions in Chine--Immersed Hydrodynamic Impacts of Prismatic Bodies,"
National Advisory Committee for Aeronautics Report 1152 (1953).

,

This is reasonably constant over the depth of planing craft.
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d a U a (35)
a x

The normal force on the entire hull due to the orbital motion is

obtained by integrating Equation (34) along the wetted length of the hull

1k and multiplying by a correction factor *(A) to account for the three-

dimensionality of the flow.

k 1
FD  ..(k) ds d

F d ds + 11A da (36)
FD f dt I d~(6

0 0

The sectional added mass at any transverse section depends on the sectional

geometry of the boat and the magnitude of . According to Reference 4

the transverse sectional added mass distribution for a prismatic hull form

may be estimated from the following equations for the separate contributions

La

2 f(B) 2  - cl (37)

pr2
a 4 (1 -sin ) s < <Ik (38)

- Bb ( C ) s < s < x (39)2 c2 c2- k

where X = wetted length along keel; see Figure 19

Sc2 = 1k 1m

I m mean wetted length of hullm

8 cl ftan T b in calm water (40)
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c2 = (0.5 (0.57 + 0.0018) (tan 0/(2 tan T) - 0.0068) - 0.03)b (41)

9O
f(9) =-- 1 (42)

8 - deadrise angle, degrees

c2 ' at s - sc2

b - boat beam

The quantity sc1 is the value of s at which the chine becomes "effectively"

immersed. The term B, which is Bobyleff's function, is a function of

deadrise angle. The sectional added mass V at any section is the sum of
the contributions pa at that section. It follows from Equations (37)

through (39) that we may put

d-=  fi scot -r (43)

kdt as-c t

so that Equation (36) becomes

x k f -

F I (A) 2- ds + 11 I (44)fJ dt j
0 0

where

P 0 sf(8) 0 s Scl

(45)

B b S 2  s k

The corresponding moment is obtained by integrating the product of the

stripwise force and the moment arm from the center of gravity (a-s).

= (X) J (a-s) 2  ds + (a-s) p ds (46)

0 0
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where a is the value of a at the transverse flow plane through the center

of gravity; i.e., a - 1k - LCG, and LCG is tbz dietance frA transom to

center of gravity; see Figure 18.

Determination of 4, 4 and

For the condition of the boat moving with constant speed and trim

angle T through waves, we may write

= stan T + (47)

where the first term is the calm water value, and 4w is the contribution

from the waves. With the aid of Equation (35) we have

U ulsin T + (48)

since, according to Figure 19 we see that

as

ax -cos T

Also since U sin T is a constant

C C (49)

The values of ;w9 w and are next determined from the velocity
w

potential w for the wave motion. This may be written with respect to

the moving boat axes as follows, where x, y, and z are measured from a

point directly above the center of gravity, and the real part is to be

taken.

-kz ik [x cos + y sin + (U COS c) t]
ow ihc e e h h (50)
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where Oh = angle of wave crests from boat x-axis; Bh  0 and n for

following and head seas respectively; see Figure 18

h - wave amplitude, 1/2 wave height

c wave celerity

k - 2W/L - wave number
w

LV wavelength

t time

In the following we will consider only the head and following sea cases.

We then have

I = ~~~ik[x +( )t

w ihc e-k z e -+ (U + t (51)

In Equation (51) and the following, the upper sign refers to head seas;

the lower sign, to following seas. The encounter frequency w is

given by

w = k (U + c) (52)
e

The wave elevation is

(d w) +i(kx + we t)

) =(x, 1 h e e (53)
t =  dt / z=O

2
since c = g/k. The horizontal and vertical components of the orbital

velocity are given, respectively, by

w we-kz ei(kx + we t)
w ax

a 0 w -kz +i(kx + we t)
ww -5 z =iwhe e (55)

where the circular frequency of the orbital motion is given by

w kc
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The expression for w my be obtained as the sum of the components of the

orbital velocity normal to the keel.

= V sin T -w cos T (56)

Inserting Equations (54) and (55) leads to

-kz +i(kx-rT+w t)

w - -iwbe -ze ;kx-T+We t)(57)

The expression for w is readily found from this equation and Equation (53)

as

+iT

Cw =rl e (58)

By operating on Equation (57) with Equation (35), we obtain the

expression for the acceleration term, Equation (49).

2 -kz +i(kx-t + t)

t w = -- 2h e e e (59)

Evaluation of FD

If we substitute Equations (45) and (47) through (49) into

Equation (44) we obtain, on discarding second order terms in the wave

disturbance,

F F + F + F + F + F (60)
D 1 2 3 4 5 60

where

F = OM p 7 f(8)2 U2 sin2 T f (s tan T + w ds (61)

0
Socl

F2 - 2 *(X) p f(8)2 U sin T tan T J s ds (62)

0
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jtk

F - A) B p U sin T b f w ds (63)

' Sc2

F4 >m(X)BRU 2 sin2 rb $ ds (64)

a 2~k

F5 =(A) f w ds (65)

0

The first term represents the effect of the variation in added mass

to the point of effective chine immersion for constant normal speed

component U sin T. The next two terms give the effect of the orbital

velocity. The fourth term is the calm water normal force contribution over

that portion of the hull from sc2 to the transom. The last term gives the

force due to wave orbital acceleration.

In Reference 4 the quantity scl , which is the value of s at which

the chine just becomes effectively immersed, is evaluated on the basis
of Wagner's 1I wave rise theory and an empirical correction by Shuford1 2 for

the calm water case. In that derivation, the value of is s tan T and scl

is defined by the following equation

a(f() Scl tan T)2  (1 sin ) (66)

To make use of this result, the expression for w in Equations (58) and (61)

is approximated by the following equation in the range s = 0 to s = scl.

11Wagner, H., "The Phenomena of Impact and Planing on Water," National

Advisory Committee for Aeronautics Translation 1366, ZAMM Bd 12, Heft 4,
pp. 193-215 (Aug 1932).

12 Shuford, C.L., Jr., "A Theoretical and Experimental Study of Planing

_rfaces Including Effects of Cross Section and Plan Form," National Advisory
Committee for Aeronautics Report 1355 (1957).
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- (sC1) 4 (0) + (0) (67)

Making use of Equation (58) in Equation (67) and substituting this for ;w in

Equation (61), we obtain

s tan T + w = s tan (T + TW ) + V(O) (68)

'1 where

Tw h xe /CS I e ±k ci e Tliee t(69)
ci

xb horizontal distance from center of gravity to foremost
immersed station on keel

Xcl S cl/COS T

The first term on the right-hand side of Equation (68) represents the

combined effect of trim angle and wave slope on the force in the interval

S = 0 to s = S 1 . The second term is the effect of wave elevation on

the force. This effect will be evaluated later. On substituting the first

term on the right side of Equation (68) into Equation (61) and making use

of Equation (66) with T replaced by T + Tw, we obtain to the first order in

the wave term

2

F1 = *(X) p 7-- (1 - sin ) U (sin T cos T - Tw) (70)
w

The first term in this equation is the calm water normal force contribution.

When this is added to F4 we obtain the total dynamic part of the steady state

normal force F on the hull. We nondimensionalize by dividing through by

1/2 p U2 b2 and obtain
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' 1 +X X 2 s i n 2 ~ 2  T c s B (
F DS -( - sin 8) sin T cos T + C D,c sin CO A (71)

where we have made the following substitutions from Reference 4.

0(0) - 1 + x (72)

2
(B) B=CD,c COS t cos8 (73)

C = cross flow drag coefficienL; see Table 2
D,c

A = mean wetted length-to-beam ratio

TABLE 2 - CROSS FLOW DRAG COEFFICIENT*

Section Shape .............................. CD,c

V-Bottom, constant deadrise ................ 1.33

V-Bottom, horizontal chine flare ..... 1.33 + 0.0147 B
°

V-Bottom, vertical chine strips ...... 1.60 + 0.0147 B
°

Reference 12.

If we nondimensionalize the wave term in Equation (70) we obtain

(F)w A? G T (74)

where

G = (1 - sin 8) (75)

Equations (62), (63), and (65) are expressed in terms of the orbital

motion at some depth z . For planing boats there is generally very littlea
difference whether we take z at the keel or at the free surface.

a
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Nevertheless we approximate it by the equation

Z a y s sin T (76)

where y is taken as the fraction of the depth to the keel at which the

orbital motion is considered to act. Since integrations are to be carried

out from the foremost wetted portion of the keel aft, we substitute for
x in Equations (57) and (59) the following

X8 co: T (77)

Substituting Equations (76) and (77) into Equations (57) and (59) gives

w M - iwh ei(Ii/ k0 s) (78)

w+i(V'- k0 s)

where

=k xb - T + W t (80)

k = (k/cos t) (l + i y sin T cos T) (81)

On substituting Equation (78) into Equations (62) and (63), carrying out
the integration, and nondimensionalizing, we obtain with the aid of

Equations (66), (72), (73), and (75) the following expression for the

normal force due to orbital velocity.

,b,( h ) + iW
(F)' F2  + F' - i4 -- e (HI cos T + H sin T) (82)2w 2 3 U bIl 2 ) (2
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where

G [ ikoscl 0
S+ I(k 0 Scl)2 ke (1; i k0 a cl-1 for 8 > 2 (83)

Hlw

IA 4 for 8< 2 °  (84)

CD, c 2 0 ik c2 0i kok)

H2 = + k0os-T CosB e - e (85)

The selection of a 2-degree-deadrise angle in Equations (83) through (84)

was to avoid the computational problem of a near zero in the term
2

(k0 Scl) at a deadrise angle close to zero. It is assumed that

Equation (84), which is strictly for zero deadrise angle, is suitable for

angles to at least 2 degrees.

The force due to orbital acceleration is obtained by substituting

Equations (37), (38), (39), and (79) into Equation (65). Thus

5e Fi ,. cl +ik~s

F5 =- p(X) W
2h [2 f(8) 2 tan 2  J s2 e 0 ds

0

(86)-+ Pi b2  ( +i kos +ikk

+ (1-sin e) e- ds + p Bb tan T - 0 d
4 J cs2J ~

2 IScl Sc2

If we carry out the integrations, make the substitutions indicated by

Equations (66), (72), and (73) and nondimensionalize, we obtain finally

5w -- (!.o)( e 2 (H)+i H .'
(F5) W  -2 b 2 + H4 + tan T (H - H2 Xc2) (87)
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where

xC 1  0  C 2- )F21 fo0>20

3A ) 3 [2(k 0  Ci) +o

H (8
3

0 for 0 < 20

H G -( +i k 0 Sc +i k ±i -0- ( L l k) (89)H4 - +i1 + A 2 ko 0 b-(9

C2 C OikB0k _ 0 a
H25 ko 2  ,1e k(l + ik0 Lk) -e S (I + k 0 Sc2) (90)

c2 s c2/b

In summary the dynamic part of the nondimensional force on the boat

moving with constant speed and trim through regular head or following waves

is given by

(F)' F ' + (F) + (F) + (F) w  (91)
D DS lI w 2 w 5 w

The effect of the ambient pressure and increased wetted area due to the

waves will be determined later.

Evaluation of MD

The dynamic part of the moment about the boat center of gravity is

obtained, according to Equation (46), by multiplying each integrand in

Equations (61) through (65) by the moment arm (a - s). The corresponding

moment equation becomes

M + M2 + M3 + M4 + M (92)
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where

W 1 = () PW M~)2 U2 sin 2 T tan (T + Tw )  (a- 2) do (93)

cl

M 2 O(X) P1 f() 2 U sin T tan T J (as-s2) do (94)

* 0

k

M 3 0(A) B P U sin T b f (a-s) Zw ds (95)
S c2

k

M4 =(X)B PU 2 sin 2 T b (a-s) ds (96)

Sc2

M5  (A) J (a-s) j tw ds (97)

0

On carrying out the integration in Equation (93) and using the result

of Equation (70) one readily obtains

2U
M14 = 4+(;\A ) 4b (1-sin ) (sintcosT- )( - -- s (98)

1 w cl)

The last term in parentheses is the moment arm of F from the center of

gravity. It is readily evaluated with the aid of Equations (40) and (41)

where T is replaced by T + T . Thusw

2 0 7 0k -LCG- s -£ - LCG - (0.157 - tan b
k cl 4 tan(T + T b + b R() (99)

where R(M) -0.003 (0.57 + 0.0018) - 0.03
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Combining this with Equation (98) and discarding terms of higher order

than one in the wave components yields

Mn P 2 (-i U2 [ sin T CO
H *(A) p b

4  (1-sin k) U9b co3 / (k g 3 2cl)

(100)

+ -2(0.15 0.0016) tan 6- -g R8)-w

4 tan T g R8'~w

where Acl is s cl/b for calm water. The first term in the brackets is the

calm water moment contribution. When this is added to M4 we obtain the

total dynamic part of the steady state moment. We nondimensionalize this

by dividing by 1/2 P U2b3 and obtain

DS 1 Gsin T cosT k g - 3 cl)

(101)

D,c 2 ~~ g)• + CD sin2 cs T cos8 ( - g

where Equations (72), (73), and (75) have been made use of. If we non-

dimensionalize the term in Equation (100) due to the wave slope we obtain

( A [A 2 (0.157) tan A T (102)
(l1w 1+ AG tan T Ag w

where the terms in 8 were dropped since they were found to have very little
effect on the accuracy of the calculations.

The part of the moment (M2 + M3 ) due to the wave orbital velocity is

seen to be expressible as the sum of the moment of the force (F2)w acting

at s - 0 and the contribution obtained from the integration of the second

term in the integrands of Equations (94) and (95). On carrying out this

operation, making the appropriate substitutions from Equations (66), (72),

(73), and (75) and nondimensionalizing, one obtains
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(2)w - 2' +3 - (F2)w' ('k-g) +4h - 3i H a
(MH) - '+H MX~g + 4 (!j-)( Q-) Sin T e (H i N

(103)

That part of the moment M., due to the acceleration, is expressible as

the sum of three integrals analogous to that given in Equation (86) for

F5. On carrying out the integrations indicated in Equation (97), making

the appropriate substitutions as before, and nondimensionalizing one

obtains

(M5 (F 5) w (A k-Ag +2 (.U b-- e (M 51 +14 52 + H 53) (104)J

where

2 1
G Xcl +i k0 Scl 3 (k 2 6 +
2 1 + A (k S )4 0  6

M51 = + i 6k 0 Scl - (k0 Scl) )]+ 61 for 6 > 20

0 for 6 < 20

M t k [e k0 Rk (+ k+i k0 scl )52 ' 2 1 + (k0 b)
2  L k0 - e 0 (1 + i 0 S 1

M53-- tan CDc cos 2 T cs 8 i H

5 Lc2 115 + 2 (k0 b)
3  

6]

e 0ko k2 (k[)2k) 2; 12 (ko k)]

6 -i 1s

0 c2 [2 - (k0  -c 2 2 (k0 Sc2)]
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In sumary the dynamic part of the nondimensional moment on the boat

moving with constant speed and trim through regular head or following waves

is given by

(M)' - s' + (Ml)w' + (M2)w + (M5)w (105)

Normal Force and Moment Due to
Ambient Pressure

The force due to local pressure effects Fp is obtained by integrating

the ambient pressure over the bottom of the hull. Thus

Fp J p gz +dt] dS (106)

0

where the second term is the effect of the wave perturbation

d 0 w -kz +i(kx + w t)
d =g h e e (107)

and the first term represents the static buoyancy force. We will consider

only cases for speed coefficient CV at more than 0.5, where the water

breaks clear of the transom, thus ventilating the backside of the boat to

the atmosphere and removing the component of force parallel to the keel. For

this case the force due to ambient pressure may be assumed to act normal to

the keel. The following expression for the static buoyancy force was

found to fit existing data reasonably well.
1 3'14

1 3  2F BS =K P g bXsin T (108a)

13Hsu, C.C., "On the Motions of High Speed Planing Craft," Hydronautics
Report 603-1 (May 1967).

14Brown, P.W., "An Experimental and Theoretical Study of Planing Surfaces
with Trim Flaps," Davidson Laboratory, Stevens Institute of Technology
Report 1463 (Apr 1971).
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This is equivalent to K P g b f - sc2 ) sin T ds

ac2

where K is an empirical correction factor, which accounts for the ventilation

effects. A value of 0.624, obtained from data on prismatic hulls, 14 has

been used in the present calculations and in Reference 4. Thus

Equation (108a) becomes, in nondimensional form

F 0.624 X2 sin T (108b)BS = 2

For the sake of consistency with the above result, the same value for K

and the same integration limits were used also in evaluating the force due

to the wave perturbation pressure (Fp )w . Thus the second term in

Equation (106) becomes

k4-i d (sin t +Ii cos T) k(s - Sc2)

(Fp)w = 0.624 pgbh e + df e( c2 ds (109)

S c2

where the following substitutions have been made in Equations (106)

and (107)

dS - b ds

z = (s - Sc2) sin T

-j kx + W t (110)
d d e

xd = xb - Sc2 cos T

X = Xd - (S - Sc2) cos T

On carrying out the integration, we obtain in nondimensional form
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+i(d+ T)k b i i'

(F ' 2(0.624) h i G - (O11)
( w 2 b kb

CV

where Cv W U//

Thus the total normal force due to the ambient pressure is

F F BS' + (Fp) ' (112)

According to Reference 14 the assumption that the buoyancy force acts

one-third of the mean wetted length forward of the stern gives good

agreement with data. Accordingly, the nondimensional moment about the

center of gravity, due to the buoyancy force, is

S(2 sin ) ( - g (113)

CV

The moment due to the wave perturbation pressure is, with the aid of

Equation (109)

'k

.4 d k -(sin T + i cos T) k(s-sc 2)(Mp)w  =0.624 p gbh eJ (S d-S) e ds

S (114)
5c2

where sd (X - Xg)b

Carrying out the integration, we obtain in nondimensional form

+ i(d + 2 T)

( -p)w  (Fp)w ' (X - X ) + 2(0.624) h e (1 H (115)
CV2 b k b2  7
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where

-k A b(sin T + i cos T)

H7 [1 + k X b(sin T i cos T) e

Thus the total moment about the center of gravity due to the ambient

pressure is

( (Mp) w  (116)

Normal Force and Moment Due to Change
in Wetted Length

It is recalled that only part of the force and moment contributions

arising from the effect of wave elevation has so far been accounted for.

These are given by Equations (74) and (102) respectively, and represent the

effect of the mean wave slope T in Equations (67 through 69). The wavew
elevation term w (0) of Equation (67), which must also be included, has the

effect of increasing the wetted length of the boat. The effect of this on

the force may be determined with the aid of Equations (71) and (101), which

express the effect of the mean wetted length A and trim angle T on the

steady normal force and moment due to forward speed alone. The change in

mean wetted length due to wave elevation will be approximated from the free

surface elevation at the point x = xd.

e+ i(k xd + W t)
he

b sin T (117)

The position xd, rather than xb - ,has been used since Ab is measured
from the transom to the point s = c2' which, we have seen from

Equation (110), is directly below the point x = xd on the free surface.

With the aid of Equations (71), (75), and (117) we may estimate the non-

dimensional normal force (Fh)w , due to wave elevation, from the
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following expression

FDS'

(Fh)w I XS

which, on making the appropriate substitutions, yields

[+ i(k xd + w t)

(F)~ G sin T coso T 2 2 h ed e

h) w  (+) 2  CDc b sin T
(118)

The nondimensional moment about the center of gravity due to wave

elevation is obtained in an analogous manner with the aid of Equation (101).

Thus

(Mh) ax-t- A

or

(Mh)w') 2  - - + 1 + X

+ i(k xd+W t)cos 2  
+ e

+ CDc cos sin T eT (t h19
D~c 9 b sinT

The next step is to incorporate all of the foregoing results for wave

excitation into equations of motion of the boat.

EQUATIONS OF MOTION

The equations of motion of planing craft in the longitudinal degrees

of freedom are most conveniently expressed in terms of heave, surge, and

pitch motions. Accordingly the normal force due to the waves are resolved

into the vertical and horizontal components. We employ the convention that

the nondimensional surge force and displacement are denoted by X' and x',

respectively, and are positive in the direction of the calm water speed;
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the nondimensional vertical force and displacement are denoted by Z' and

z', respectively, and are positive in the downward direction normal to the

calm water free surface. The nondimensional pitching moment and dis-

placement angle are M' and 6 and are positive for the bow-up direction of

rotation; see Figure 18.

Since the motions due to waves will be determined relative to the

steady state attitude and draft of the boat, the steady state hydrodynamic

force and moment make no contribution, in the linear sense, to the boat

motions. This is discussed further in Reference 4, where the complete

steady state equilibrium equations are derived. The vertical component

of the linearized wave force is therefore obtained by adding the

contributions from Equations (91), (112), and (118) and by omitting F
DS

and FBS'.

+-i W t

(Z)w  e e = - [(F1 )wt + (F2)w1 + (F 5) w' + (Fp)wt + (Fh)w'] cos T (120)

The horizontal component of the wave force is

i W '+iw 't'
(x)w e e (Z) 1t e (121)

The moment due to the waves is obtained by summing Equations (105), (116),

and (119) and by omitting MDS' and MBS'. Thus

+i W It,

(M)w e 2 (Mw w  + (M) w  + (M5w + (Mp)w' + (Mh)w (122)

In the previous equations (X)w , (Z) W, and (M)w' are of course complex

constants.

Equations for estimating the linearized hydrodynamic forces on the boat

due to perturbations from steady state motion in surge, heave, and pitch

have been derived in Reference 4 for use in the theoretical prediction of

calm water porpoising. The same equations are of course applicable for

calculating the linearized hydrodynamic force and moment on the boat

42<I
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i- arising from its motion response to waves. If we express the two non-

dimensional force components and the nondimensional moment due to the boat

motions, as linear functions of the nondimensional perturbations in surge,

heave and pitch, we have
4

(X')BM - X.it 6+ Xu u + X z + X.z +Xz z + X 6 + Xb + Xe 6 (123)

(Z')BM- z + z u + Z.. z + Z ; z + Z z+Z i +Z 6 6+Ze e (124)
BM Z z z z e e G

(M')BM = M. C + Mu u + M.. M z i z z + M + M 6 + Me  (125)

where u i' and 6= x' The primes used to denote nondimensional values

have been omitted on the right-hand side of the equations for convenience.

The coefficients X6, Xu, etc., in the previous equations, are the (stability)

derivatives of the force and moment with respect to the motion perturbations

u, u, etc. The dot above the symbols represent derivative with respect to

time. Theoretical estimates for all of the stability derivatives in the

previous equations are derived in Reference 4.

The equations of motion in waves may now be written in terms of

Equations (120 through 125) as

I e t
m'6a' - (X')BM (X)w e (surge equation) (126)

I'+i t

m's' - (Z')BM (Z)wI e e (heave equation) (127)

+i WI't'
I ' (M')BM (M)w e (pitch equation) (128)

M

where m' = m is the nondimensional boat mass, and I I is the
1 3 y 1 5

Pb ~pb2 2

nondimensional pitch moment of inertia of the boat about the y-axis through

the center of gravity.
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Equations (126 through 128), with the wave force and moment terms set equal

to zero, are the equations for porpoising stability.4  The steady state

solution of Equations (126 through 128) is a simple harmonic motion in the

perturbations. Thus

+i W It'
x 0 e (129)

+i W It,

Z' z' e e(130)

+i W It,
e e (131)

!0

where xo', z0 f, a0 are the complex amplitudes of the displacement and pitch

angle perturbations. If we substitute Equations (129 through 131) into

Equations (126 through 128) we obtain the equations for the amplitudes and
phase angles of the motions.

[(X - m) We + i Xu We] x0' + [Xz We - z i XzW e zo' (3
~(132)

+ X e - X + I X~ Wj Ieo = (X)

Z. W 2 + ] _Zo
Z We 2 + e]e x0' + (Z - m) we Z+ i Zw e]' zO'

(133)

+ z .e2 _z+ z , Ze = (Z)
L W e - ej

[M. W 2 + i Mu I' x O' + [M.. w 2 M + i M f we 9Mu e2 +iMu We]z e z e]

(134)[ I) 2 Me + i M 6 We w0(M

+ [(Ma - we - e]' W0 =

Y. The prime on the brackets indicates that each term is primed. The solution

to these equations give the complex amplitude of the boat motions

ia.

x0 = XR' + i x 1 ' = IX0' e X (135)
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I

zO' zR + i zI zo e (136)

i a
e0  -e + 1 0, 1e (137)0 R 1 l e e

where the subscripts R and I refer to the real and imaginary component.

The displacement amplitudes and phase angles are given by the following

equations

I -o'xl + xI' ax = tan (xi'/xR')

Iz0 I M ,2 a - tan- 1 (zi'/ZR')Vz'l zR + zil z

leol = 2es + e2 a = tan-1 (e/eR)

Since the convention for heave displacement is positive down while the

convention used for the change in free-surface elevation due to waves is

positive up, it is necessary to shift the phase angle for the heave motion

by 180 degrees if we wish to determine the phase angle of the heave motion

with respect to the free-surface displacement, positive up in both cases.

On this basis, we readily find that the phase lag of the heave displacement

with respect to the free-surface elevation n at the boat center of

gravity is

E CL - n head waves

, (138)

. = - a following waves
z z

The phase leads of the surge amplitude and pitch angle with respect ton

at the same point are, respectively
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c 21T - head waves
x x

(139)

c Otfollowing waves

=21T a head waves

(140)

0 = following waves
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Figure 2 -Heave and Pitch Responses (V/IA- 4) Conf iguration A
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Figure 3 -Heave and Pitch Responses (V/VrT 4) Configuration E
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[1-~Figure 4 -Heave and Pitch Responses (V/v'I 4) Configuration F
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Figure 5 -Heave and Pitch Responses (V/Vt - 4) Configuration I
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Figure 6- Heave and Pitch Responses MA/ET= 4) Configuration K
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Figure 7 - Heave and Pitch Responses (V//Z = 4) Configuration N
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Figure 8 -Heave and Pitch Responses (V/Yi - 4) Configuration 0
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Figure 9 -Heave and Pitch Responses (V/IV- 4) Configuration P
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Figure 10 -Heave and Pitch Response. (V/IA- 6) Configuration B
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Figure 11 -Heave and Pitch Responses (V/I! 6) Configuration G
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Figure 12 -Heave and Pitch Responses (V/A: 6) Configuration M
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IFigure 13 -Heave and Pitch Responses (VIA -6) Configuration J
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Figure 14- Heave and Pitch Responses (V/vJ -2) Configuration C
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Figure 15 -Heave and Pitch Responses (V/VI 2) Configuration D
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Figure 16-Heave and Pitch Responses (V/At - 2) Configuration H
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Figure 17 -Heave and Pitch Responses (V/IA- 2) Configuration L
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