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NOTATION

Point groups: For the point groups (crystal class) the standard
Schonflies labels (Oh, c2h' D3, etc.) are used.

Labeling of irreducible representations: For the cubic group (0p)
the BSW notation! is used. r; for the tetragonal group (D4h) is
identical to X; of BSW. For the hexagonal group (Dg,) and for the

additional groups listed in Table C-1 the notation is essentially that

of Koster et al.z; we have replaced r;+ with r;. The correspondence

between frequently used labeling systems for the cubic, hexagonal, and

tetragonal groups is shown in Appendix A.

INTRODUCTION

A useful check on the crystal potential used in an electronic
bandstructure calculation may be obtained from a first-principles
determination of deformation potentials if these can be checked against
experimentally determined values. It is well knowns:4 that strains
associated with a change in the crystal symmetry provide a particularly

critical test of the original potential.

IL.Pp. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936)

Z"Properties of the Thirty-Two Point Groups', G.F. Koster, J.0. Dimmock,
R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).

3D. Shoenberg and B.R. Watts, Philos. Mag. 15, 1275 (1967).
4R. Griessen and R.S. Sorbello, J. Low Temp. Phys. 16, 237 (1974).
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The motivation behind the use of perturbation theory is very simple;

one wants to avoid calculating the small energy shifts AE from a
AE = El - EO 1)

type of calculation.
In the unperturbed crystal the energy levels are determined from a

solution of the Schrbdinger equation,
EVvZ+vid] yom = E° ¥o@).
The electron wave function is approximated by

Y200 = 2, 95 (3)

where the ¢2 are known functions and the c;‘ are determined by the
variational procedure. The variational procedure leads to the set of

equations

Z; <3 1wo-E3 | P9 = o )

where HO is the Hamiltonian of the unperturbed system B » (-V2 + V(@)

and Eg is the nth energy eigenvalue. (We arbitrarily order the EC's

from lowest to highest.) In matrix form the last equation becomes

T -, (5)




§%; = @ g l ¢‘,’> (6a)
LT <¢‘;|H°l¢§’) (6b)

As the 462 are not necessarily ort:hogonal,usmo is not the identity
matrix.

From the computational point of view there are two reasons for
utilizing Group Theory in the E° problem: (1) to provide automatic
accounting of degeneracy and of the connectivity between different-
magnitude X points along the same symmetry direction in : space. (2)

To decrease the number of trial expansion functions ¢h necessary to
obtain good convergence (and thus decrease computer time). Both of these
stem from a general principle of quantum mechanics; the wave functions

of a quantum system must form bases for irreducible representations of
the group of operators which commute with the Hamiltonian of the system.s

In the modified-plane-wave formulation® 7 within which we work the
¢ 's are plane waves and atomic-like functions. ﬁe plane wave p's
change under strain due to containing the lattice constant(s) explicitly.

Thus, the usual first-order perturbation expression

5"Energy Band Theory", J. Callaway (Academic Press, 1964), Section 1.6.
6E. Brown and J.A. Krumhansl, Phys. Rev. 109, 30 (1958).
7D. Gray and E. Brown, Phys. Rev. 160, 567 (1967).
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is replaced by

OE = Zij o? c} (AH;; - B AS;)) (8)
with
= (505 0
Ay = Hyj - Hy (%)
where H, 1 (p | -v2 +vo@r) + Ava)| ¢ N (10)

(See ref 8; in particular Section II and Appendix A.) lssij is defined
analagously to Z\H.j. Three important points should be noted here: (1)

A\H (and A&S ) are obtained algebraically by expanding H; 1 (Si})

in a Taylor series, (Otherwise, one has merely shifted the subtraction

approach of eq (1) to the individual Sij’ Hij elements.) (2) Both

Hl:l', 5;} and 1,9,
cases in which the perturbation changes the symmetry. (Once the crystal

Si? must be expressed in the lower symmetry for those

is deformed, the higher symmetry of the original crystal has no real

meaning, thus H1§ S. ; must be expressed in the lower symmetry; if one

(o)
then tries to express HlJ S1J

correspondence between the ij labels of 'ﬁ°, 50 and those of ﬁl, -Sl.)

in the higher symmetry, there is no simple

(3) To first order 1§V(?) equals zero if both of the following conditions
hold: (A) The strain contains no [1 component (that strain component which
preserves the original symmetry); (B) V{r) and AV(r) are taken as spheri-

cally symmetric. (See ref 9, Appendix A, section A.)

8A.M. Gray, D.M. Gray, and E. Brown, Phys. Rev. B, 11, 1475 (1975).
9D.M. Gray and A.M. Gray, Phys. Rev. B, 14, 669 (1976).




For cubic crystals, explicit expressions for l&sij

hydrostatic, tetragonal, and trigonal strains are given in ref 8,

and AH.,K for
ij

Appendix C.

In applying this procedure to specific crystal and strain types one
needs to know what group is associated with the lower symmetry. The
main part of this report is devoted to the determination of this lower
symmetry group for various strains and to what simplifying relations

exist due to symmetry alone. Once the group associated with the lower

symmetry is identified, extensive use may be made of existing compat-
ibility tables. As an example, consider a PZS’ level of a cubic
crystal. In the unperturbed (E°) case r'zs’ levels are 3-fold degenerate
“125’ is 3-dimensional). Now apply a tetragonal strain. Compatibility
tables (connecting the tetragonal subgroup to the full cubic group)
associate PZSI with l"3 and FS of the tetragonal group. Since I"s is 1-
dimensional and FS is 2-dimensional, one immediately knows that, under
this strain, a Fzsf level will split into two levels, one non-degener-
ate (PS) and one 2-fold degenerate (PS)' The unperturbed FZS' level
will show up on PS and on FS whereas the different shifts will show

up only on F3 gx_‘r's, as appropriate; in this particular example one
need only compute one of these two shifts, the other may then be

deduced immediately from symmetry considerations alone.

SYMMETRY THEOREMS
The example just given illustrates a major simplification due to

symmetry; this simplification stems from the following theorem (proved

8A.M. Gray, D.M. Gray, and E. Brown, Phys. Rev. B, 11, 1475 (1975). .

5
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in ref 9): The Fermi energy Ep and the sum over the “star-of-k"

of any given level belonging to any given irreducible representation
changes (to first-order) under strain only if the strain contains a

Pl component (i.e., contains a symmetry-preserving component). This
theorem allows one to make, from symmetry considerations alone, a number
of predictions regarding ratios of energy level shifts®. It should be
noted that no more information can be obtained from the Wigner-Eckart

theorems’10

than from standard compatibility tables combined with the
"star-of-k" theorem above; the Wigner-Eckart theorem leads to the same
ratios and corroborates the information that some shifts are probably
not equal to zero.
There are two important corollaries to the "star-of-k" theorem:
(1) For cubic crystals, AVolume=0 is the necessary (except for
"accidental" cases) and sufficient condition for AEF (etc.)=0.
(Appendix B).
(2) For non-cubic crystals, AVolume=0 is only a necessary condition.
(Appendix B).
If a model is chosen which constrains the potential to spherical
symmetry within a muffin-tin sphere (after deformation as well as

before) the discussion in ref 9 shows that our theorem applies to

V(r) also; thus, for such a model, and for strains not containing Pl'

SA.M. Gray, D.M. Gray, and E. Brown, Phys. Rev. B, 11, 1475 (1975).

9.M. Gray and A.M. Gray, Phys. Rev. B, 14, 669 (1976).

10"Operator Techniques in Atomic Spectroscopy,' B.R. Judd (McGraw-Hill,

1963), pp. 39-41.
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the bandstructure shifts and splittings are due solely to the change

in symmetry and to the explicit change in lattice constant(s), i.e.,
there is a "geometric" effect but no "potential" effect (change in
bandstructure due to the change in V(r) caused by the change in lattice

constant).

DECOMPOSITION OF THE STRAIN AND DETERMINATION OF THE ASSOCIATED
LOWER SYMMETRY GROUPS

A. General.

An arbitrary (symmetric) strain can be represented as

o s B - B
e =|e, €, € (11)
"1 "8 "

The components are defined as follows: imagine that three orthogonal

- -
axes fo’ Eb' ho of unit length are imbedded securely in the unstrained

solid. After a small deformation these axes become f, 2, h with

12 E; + e13 ho (12)

etc. (This definition is consistent with that used in ref 8 and 9

- -
f=0+ ell) fo + e

and corresponds to Kittel's notationll except for a factor is2 in the

8A.M. Gray, D.M. Gray, and E. Brown, Phys. Rev. B, 11, 1475 (1975).
9.M. Gray and A.M. Gray, Phys. Rev. B, 14, 669 (1976).
11"Introduction to Solid State Physics', 2nd ed., C. Kittel (Wiley,
1956), Chap. 4.
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off-diagonal elements.) From eq (11) and (12) it may readily be seen

that

AVolume = (Volume) Tr & (13)

P R
by writing Volume = f Xge h.

We may write € as

= = (o
" Zi,o( b, P e (%)

i.e., as a linear sum of component strains, each transforming like one
partner of one irreducible representation. (In eq (14) the i index is
associated with a representation label; the o index allows for cases
where there is more than one independent € associated with a given
representation, either through different partners of a multi-dimensional
representation or through independent functions associated with a one-
dimensional representation, e.g., x2+y2 and z2 both associated with
r‘l for a tetragonal crystal.) Since there are six independent entities
in eq (11) six Tl yi11 be required for the most general (symmetric)
strain e.

For any crystal class (point group) the irreducible representations
which may be included in the decomposition of an arbitrary strain must
be contained in [F

Xyz
r

z as its basis functions. (A proof of this theorem is outlined in Appen-

]s’ the symmetrized square of F;yz' where :

xyz is the representation (possibly reducible) which has x, y, and

dix C; Table C-1 lists the irreducible representations contained in

[;nyzjls for all of the 32 point groups.) This does not automatically




tell us which strains are associated with which representations but
does restrict the list of possible representations. For a given point
group this list may also be obtained indirectly if the list for a '"parent"
group is known; for example, the tetragonal point group (D4h) list may
be obtained from the cubic point group (0p,) list by using the Op <> D4h
compatibility tables. An overall chart of the subgroup decomposition
of the 32 point groups is shown in Appendix D.

Using cubic, hexagonal, and tetragonal crystals as examples, we now
show how specific strains are associated with specific lower-symmetry

point groups.

B. Cubic Crystals (Oh).
For cubic crystals we may decompose € as

-

100 100 100
€=a/010 +b|0To0 +c| 010
001 002 000
(15a)
000 0017 010
+d|( 001 +f| 000 +h| 100
010 100 000
with a = (e)) + ey, + ess)/3
b= (2333- ell- e22)/6 (ISb)
c = (e11 - ezz)/z
9
(S
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d =0y

f = 3

h = e12

Using the procedure of Appendix E, one finds that the first matrix
in eq (15a) transforms like x2+y2+z2, i.e., like I, (the correspondence
between functions and irreducible representations can be obtained from

standard tables); the second and third matrices transform like

Zzz-xz-yz and xz-yz, i.e., like the two partners of Flz; the last

three matrices transform like yz, xz, and xy, i.e., like the three
partners of PZSI . This is consistent with Table C-1 for Oh.
For actual computation it is probably more convenient to decompose

100 Too 20
010 010 01
001 002 00
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a= (e * €33)/2
£= (o, = )2 (16b) .
h = (e); - ¢3)/2

Using eq (13) one sees that only the first matrix in (16a) is associated

with a change in volume; this matrix transforms like Fl and represents
hydrostatic (cubic) st;ain. The second and third matrices each transform
like faz and are associated with tetragonal distortions; since the
third matrix is related to the second by simply interchanging the x and
z axes, no new computation is required. Similarly, the last three
matrices in (16a) each transform like rzs’ and are associated with
strains along the long diagonals éll), <f11) , and (Hl) , respectively,
i.e., trigonal distortions; again, only one actual computation is
needed, the remaining two being determined by interchange of appropri-
ate axes. Thus, for cubic crystals, an arbitrary strain may be
written as a linear combination of hudrostatic (cubic), tetragonal,
and trigonal strains.

Examples of specific distortions of cubic crystals:

1. Cubic —» tetragonal (D

4h)'
(a) General tetragonal.

11




Ah

y /-'At ;
s~y '

4 5 Figure 1; Cubic — general tetragonal.

100

ol

=)

= e 01o (17a)

00«

% with e a = At and o = Ah/At. This is most conveniently written as

1

T=cpel4c,®? _ (17b)

with
100 100

el=¢ 010 3. € =e 010 (17¢)

B e el

001 002

v S

giving

g

X

- 5 ”l.,._.c. ot
o B2 h -’}\“I' @

& cl (& ‘2)/3 ’ C2 = (oX+ 1)/3- (17d)

Thus, for an arbitrary Ah/At ratio a Pl component is required and

the star-of—f theorem does not hold; there are two '"operator functions'",

£

12




e < (x2+y2*zz) and c, (22z2-x2-y2) transforming like I"1 and [,,
respectively.
(" r‘lz" tetragonal.
When Ah is exactly 2At (i.e., & = 2) we see from

eq (17d) that ¢; = 0 and no Pl component is required so that volume

k]
A is preserved and the star-of—l? theorem holds; the operator function
4 3 . is then 2z2-x2-y2 which transforms like r'lz‘
2. Cubic —» orthorhombic (DZh)'
T (a) "Even".
.’: z
_ ~At
By y Jat
i b3
2 Figure 2. Cubic —» orthorhombic "even".
B
Y 100
e 7 ’ é‘ = e k1 ; iz
5 {; | 010 (18)
o i 000
- with e a, = At. The operator function is x2-y2, second partner of r'lz.
o ,
There is no rll component (volume is preserved); thus, the star-of-k
Gz theorem holds.
a
:;5‘ Note: We may represent this strain as




,"’#*»'-:
" a4

Too 200
é’scle 0To + c,e |0To0 (19)
002 001

with ¢ = 1/3, c2 = 2/3 so that, if one already has a computer program
for the distortion associated with the first matrix of eq (19), no

new programming is required.

(3 l -A$
/(_:ﬂAt
X Y ‘/A .

A a, 7/

Figure 3. Cubic —»orthorhombic ''uneven'.

(b) '"Uneven'.

100
€=el030 (20)
00 &

with e a, = At, e a, = As. We may rewrite eq (20) as

100 100 200
€=cief010 |+ ce 010+ cee| 0T0[ (21)
001 002 001
14




N R P et SR ; -

o
a4t

‘g
AT
3 e
L ¥ 7
-y

U st

v }_f% s

with cls(l-ﬁ-x)/s, czs(ﬂ-d)/.'s, and cs-(1+/j)/3. Thus, in the
general orthorhombic "uneven' case cl# 0, i.e., a Fl component is
contained in the strain and the star-of-'l: theorem does not hold.

Note: If As = (1-8)At, i.e., &K=1-4 so that ¢,=0, no [}
component is contained (volume is preserved) and the star-of-k theorem

holds. For this case c,=(2/3-1)/3, c3=(1+/8)/3.

3. Cubic —~ trigonal (DSd)'

)

4. Cubic —trigonal.

110

with 2e V3 a, = At. The operator function is yz+xz+xy, the sum of

the three partners of FZS’ . There is no Pl component (volume is

preserved); thus, the star-of--l: theorem holds.

e e T et I L S L
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3 j C. Hexagonal Crystals (D6h)

1 Axes are defined in Fig. 5. This is consistent with Koster et al.2

;-

F 60° :
& ' ‘m’“’ "

£ 3 | P /

¥ Figure 5. Coordinates for hexagonal crystals,

For hexagonal crystals it it probably most convenient to write an

arbitrary strain as

100 000 100
k €=al010 +b|000 +cloTo
000 001 000
(23a)
010 001 000
%;i +dl100| +flooo +hloo01
- 000 100 010

33!5?9'

2"Properties of the Thirty-Two Point Groups'", G.F. Koster, J.0. Dimmock,
R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).

éJ
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with a = (e11 + ezz)/z

33

(¢]
]

(0., = e _)I2
1 22 (23b)

(=W
n

%12

£f=e4

h =
€23

The matrices in eq (23a) transform like x2+y2( Fl), 22( Fl)’
x2_y2( F6)’ xy ( Pé), xz( FS), and yz( FS); this is consistent with
Table C-1 for D6h' The first two strains in (23a) preserve the
hexagonal symmetry; the third strain is associated with an orthorhombic
distortion; the last three strains are associated with monoclinic
distortions (the xy distortion forms a monoclinic P lattice, while the
xz and yz distortions form monoclinic C lattices).

Note: A strain for which b = -2a in eq (23a) will be volume-
preserving (see eq (13)) but will still contain Fl so that the star-
of-i theorem will not hold.

Examples of specific distortions of hexagonal crystals:

1. Hexagonal — orthorhombic (DZh).

e T A

v, YT T A R VT T AR,
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Qp
At
i R e )

R R R T IR T

Figure 6. Hexagonal — orthorhombic.

100

T e | 010 (24)

000

with e T At. The operator function is xz-yz, a partner of f;.

Since there is no Pl component the star-of-k theorem holds. In

Fig. 6 the points 1,2,3,4 form the base of the orthorhombic C cell.
Before distortion the sides of this cell have the ratio V3. required
for a hexagonal crystal; after distortion the ratio becomes

V31 a (1-e)/a_(1ve) = V3Y(1-2e).

18
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2. Hexagonal — monoclinic P (CZh)'

l"_ o —-,i

Figure 7. Hexagonal —» monoclinic P.

et e e e d

Details of the geometry are given in Appendix F, paragraph 2.
010
T=el100 (25a)

000

19
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e e i

N R a2’= a (1+137e/2) (25b)

The operator function is xy, a partner of rg. Since there is no Fl
component the star-of-k theorem holds. In Fig. 7 the dotted lines
connecting points 1,2,3,4 form the base of a monoclinic P crystal with
angle 1,4,3 =3 . The vertical sides of the monoclinic P are rectangles

with height c. (unperturbed hexagonal height).

3. Hexagonal —» monoclinic C (CZh) - Xz,

In Fig. 6 the points 1,2,3,4 form the base of an orthorhombic C
cell. Under xz distortion the vertical (z direction) face with bottom
side 1,2 is distorted from a rectangle to a parallelogram and the solid
with base 1,2,5,6 and vertical sides forms a primitive cell for the
monoclinic C cell (with base 1,2,3,4). Details of the geometry are
given in Appendix F, paragraph 3.

001
S=el000 (26)
100
The operator function is xz, a partner of T;. Since no r& component

-
is contained the star-of-k theorem holds.

4. Hexagonal —» monoclinic C (CZh) - yz.

Again referring to Fig. 6 the points 1,2,3,4 form the base of an
orthorhombic C cell. Under yz distortion the vertical (z direction)
face with bottom side 2,3 is distorted from a rectangle to a parallelogram.

As in the previous case, the solid with base 1,2,5,6 and vertical sides

20




forms a primitive cell for the monoclinic C cell (with base 1,2,3,4).
Details of the geometry are given in Appendix F, paragraph 4.

000

€=el001 (27)

010
The operator function is yz, a partner of FS' Since no T& component
is contained the star-of-k theorem holds.

Note: the primitive cells for the xz and yz distortions do not

have the same shape.

D. Tetragonal Crystals (D4h)'
For tetragonal crystals (with z-axis unique) an arbitrary strain can

be written as
" .T r

100 000] 100

of)

=al01o0 +b|000O +c|0To0




12
£=e5, (28b)
h = e

v 23

4 The first matrix in eq (28a) transforms like x2 + y?2 (), the second
as z° ([’1), the third as x2 - y? (]"2), the fourth as xy (PS)' and
the last two as xz and yz, respectively (the two partners of r's); this

; is consistent with Table C-1 for Dan

7; Note: A strain for which b = -Za in eq (28a) will be volume-

preserving (see eq (13)) but will stili contain P1 so that the sta:-

|
£ - ; 2 :
. / ) of-k theorem will not hoi..
f Examples of specific distortions of tetragonal crystals:
.;_ 1. Tetragonal —» orthorhombic (OZh).
E 1 (a) “Even".
—— o~}
z
Pl
to
: T
0
i ‘{//Zyt
1
; Figure 8. Tetragonal —» orthorhombic "even'".
S - 100
s / e=e|0T10 (29)
, 000

oy ?




with et . ™ At. The operator function is x2 - yz ( l"z). Since there

is no |; component the star-of-X theorem holds. Volume is preserved.

(b) "Uneven".

H—'fo’_?'

Figure 9. Tetragonal—»orthorhombic "uneven'.

100
T=e¢|040 (30)
00x
with et, = At, e 5, As. We may rewrite eq (30) as
100 000 100
cle 010| + c,e 000 + c3e 010 (31)
000 001 000
* i 1 +3)/2.
If As = (1-3) (solto)At; i.e., = (1-/3), we see from either (30)

with ¢, = 1-B)2, ¢, = -K, ¢

or (31) that volume is preserved. However, there are still l"l

components (unless & = 0 and A= 1; i.e., the orthorhombic "even" case)

so that the star-of-k theorem does not hold. The three operator




£

v LS

.
—l e S

*L«‘ functions associated with eq (31) are x2+y2, 22, and xz-yz, respectively,

or ¢, r'l(l) *ec, f'l(Z) + Cs f’z.

2. Tetragonal —» orthorhombic C (DZh).

Fati

S dlly

~ L /’\ /

: . e % I

e aic e

s/ / \\/
b S |<7—‘/f0‘——7’ ”,—"77
‘ />~ S 2 e z
' t I & | /
e Fd
b \\ | : /
[ \ | /
l r
, s
R e 3
. eto l«‘d
Figure 10. Tetragonal— orthorhombic C.
. 010
243 T=e([100 (32)
4 000

The operator function is xy ( ["3). Since no rll component is contained
M | the star-of—i theorem holds. The solid with base 1,2,3,4 and vertical
Gy A ¥ (z-direction) sides is a primitive cell of the orthorhombic C cell with
base 1,5,7,3 and vertical sides. All vertical sides are S, (undeformed

tetragonal height). The new primitive cell has sides t, tyr S (to
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first order); angle 1,2,3 is 90°-2e, The orthorhombic C cell has base
sides 1,3 (Y2't_(1-e)) and 3,7 (fz“tome)).

3. Tetragonal ~» monoclinic P (CZh) - Xxz.

%

Figure 11. Tetragonal —»monoclinic P.
001
€=el000 ’ (33)
100
The operator function is xz, a partner of r;. Since no ]1 component

is contained the star-of-i theorem holds. After distortion the solid

4‘

<
=
!
,“%5
4
1

»
.

&
y &

with base 1,2,3,4 and vertical sides (y direction) is a monoclinic P

"

cell with side 1,4 = Sy side 1,2 = ty and vertical side tys angle

2,3,4 is 90°-2e.

Note 1: The mcnoclinic P cell used here is '"'special" in that two

o

sides have the same length t,. No new Bravais lattice is thereby

created, however, since this cell has no additional symmetry elements

s e

5 b

;}




P
o 1
e
& ; over and above those associated with a cell of identical base but
Eil vertical height not equal to t,. |
h . .
b Note 2: From Fig. 11 one sees why there is no separately named
monoclinic C Bravais lattice with face-center atoms in the non-900-
angle face (base 2,4,6,5); such a lattice can always be considered as
b
& monoclinic P with base 1,2,3,4.
vf;g : Note 3: The tetragonal —» monoclinic P (CZh) (yz) case is identical
S to the xz case with the roles of the x and y axes interchanged.
Fs |

x'@ ‘ 26
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APPENDIX A

EQUIVALENT LABELS FOR IRREDUCIBLE REPRESENTATIONS

TABLE A-1. EQUIVALENT LABELS FOR THE CUBIC GROUP (On)

BSW? Koster et al.P Tinkhan®

B
F‘
B
r
|
?

3 Ref 1, Table I. Koster (ref 13, Table XXXI) and Slater (ref 14,
Table A3-20) also use the BSW notation.

b Ref 2, Table 87. This is also known as the Bethe notation.

€ Ref 12, Table for O, App B, p. 329. Tinkham gives labels for O
(proper rotations only). This is also known as the Mulliken notation.

1. L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50,
58 (1936).

2. '"Properties of the Thirty-Two Point Groups," G.F. Koster,
J.0. Dimmock, R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).

12. "Group Theory and Quantum Mechanics,'" M. Tinkham (McGraw-Hill,
1964).

13. G.F. Koster, ''Space Groups and Their Representations' in "Solid
State Physics, Vol. 5," ed. F. Seitz and D. Turnbull (Academic
Press, 1957).

14. '"Quantum Theory of Molecules and Solids, Vol. 2," J.C. Slater
(McGraw-Hill, 1965). 28




TABLE A-2. EQUIVALENT LABELS FOR THE HEXAGONAL GROUP (Dgp)
Koster et al.? Slater? Tinkham®

P+ F+ A '

PR 2+ A,

fst Ma¥ By

Mg + M3+ B,
E-, Lt o' £y
b N
b Fe* _ s+ E
# 2
;} r]. fag \-‘1- /",
B - Fa~
I |
3 3= M= :
\ (4~ Is-
k fs- s~
k - -
r|6 Ms

3Ref 2, Table 72. Koster (ref 13, Table XXVI) lists the representations
(unlabeled) in the same order.
bRef 14, Table A3-2. 1

CRef 12, Table for Dg, App B, p. 327. Tinkham gives labels for D

(proper rotations of D6h).

2. "Properties of the Thirty-Two Point Groups," G.F. Koster,
J.0. Dimmock, R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).

12. "Group Theory and Quantum Mechanics,'" M. Tinkham (McGraw-Hill,
1964) .

13. G.F. Koster, "Space Groups and Their Representations' in "Solid
State Physics, Vol. 5," ed. F. Seitz and D. Turnbull (Academic
Press, 1957).

14. '"Quantum Theory of Molecules and Solids, Vol. 2," J.C. Slater
(McGraw-Hill, 1965).

T A
' s . o L
f ' |}
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TABLE A-3. EQUIVALENT LABELS FOR THE TETRAGONAL GROUP (Dgp)

This work?® Koster et al.P Koster® slaterd  Tinkham®
T, M+ M, M+ A
P s+ M; Fst B
My r4+ M4 My+ B,
T4 o+ ", Py A
I's T+ Y s y
Py M- i Py-

Iy P My l.'4“
I3’ 4~ i PS’
M’ Ty~ Mz’ i
Ps/ P M. P+

a [} here is Xj(M;) of BSW, ref 1, Table V. This notation is also
used in ref 8 and 9.

D Ref 2, Table 40.
€ Ref 13, Table XIV.
d Ref 14, Table A3-74.

€ Ref 12, Table for D,» App B, p. 327. Tinkham gives labels for D

(proper rotations of D4h). s

1. L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. S0,
58 (1936).

2. "Properties of the Thirty-Two Point Groups,' G.F. Koster,
J.0. Dimmock, R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).

8. A.M. Gray, D.M. Gray, and E. Brown, Phys. Rev. B, 11, 1475 (1975).
9. D.M. Gray and A.M. Gray, Phys. Rev. B, 14, 669 (1976).

12. "Group Theory and Quantum Mechanics," M. Tinkham (McGraw-Hill,
1964) .

13. G.F. Koster, '"Space Groups and Their Representations'" in '"Solid
State Physics, Vol. 5," ed. F. Seitz and D. Turnbull (Academic
Press, 1957).

14. '"Quantum Theory of Molecules and Solids, Vol. 2," J.C. Slater
(McGraw-Hill, 1965).
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APPENDIX B

PROOF OF COROLLARIES TO THE "STAR-OF-k" THEOREM

Corollary 1: For cubic crystals AVolume=0 is the necessary (N)
and sufficient (S) condition for AEF (etc.)=0.

N: From the proof9 of the main theorem, the absence of a r'l
component in € is the N and S condition that AEF=0. The absence of
l"l implies that the sum of 21l the operations of the cubic group applied
to e'equals zero?. Since these different rotations must all produce the
same volume change, AVolume=0. Thus AEF=O = no l‘l => AVolume=0;
then AVolume=0 is necessary for AEF=O. qQ.E.D.

S: For a cubic crystal a rll strain (a strain which preserves the
cubic symmetry) must always have a volume change associated with it; thus

[ => AVolume 0. Therefore, AVolume=0 =$no r’l, and, as no

n= AEF=0’ AVolume=0 is sufficient for AEF=0. Q.E.D.

Corollary 2: For non-cubic crystals AVolume'=0 is N but not S for
AEF(etc.)=0.
N: Proof is exactly as in corollary 1.
S: For non-cubic crystals one can preserve the symmetry without
changing volume. Consider a tetragonal crystal txtxs, for example.
The distortion t>»t(l+a), s -»s(1-2a) preserves volume to first order.
The tetragonal symmetry is preserved; one has merely changed the s/t ratio.

Thus AVolume=0 is not sufficient for AEF=0. Q.E.D.

%).M. Gray and A.M. Gray, Phys. Rev. B, 14, 669 (1976).
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’ ‘ APPENDIX C

e

USE OF [['; yz] o TO GENERATE THE REPRESENTATIONS CONTAINED IN

5 Definition: Given two representations f’m and [1 of the same group
2 = 3
M with basis functions ¢1 e ’¢K and }“1 s+ +s¥y Tespectively, the

direct-product matrices D(R) = D™(R) xD™(R), with R any operator in

X , form a representation of)d with basis functions ¢i Vj‘ If the

two sets of functions ¢,}V belong to the same representation, I"n of

}.'f, then the "symmetrized-square' representation [f‘n] g Will be

| associated with functions of types ¢i 7/’i and ¢i V)j + ¢j f/i; the

‘)b 3 "antisymmetrized-square' representation [f'n]a will be associated with
, functions of type ¢i ?j - ¢j }"i.
Traces:
% Direct-product X™"XhR) = X"@®) x X™*R)
; | Symmetrized-square 2 X(nxn)s(k) = [(X*"®)J?% + X"Rr?
Antisymmetrized-square 2 x(nxn)a(R) = [Xn(R)]Z - XP(R?)

! An arbitrary strain can be represented by six independent ene

4 as indicated in eq (14) of the main text, thus six linearly independent

2 } functions will be needed; these may be taken as x2, y2, z2, xy, xz, and
3

’ yz. Since basis functions for a direct-product representation are the

2 various products of the basis functions for the original representations,

the original nyz with basis functions x,y, and z will generate

xX,xY,xZ,yX,yY,yZ,zX,zY, and zZ. We desire the symmetric functions

: xX (xz), xY+yX (xy), etc. These six functions will be basis functions
2 ' “ for the representation comprising the symmetrized-square of r'xyz. %
%
& TP o
Y L

et =R T YRR TR, ARt
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(xY-yX, etc. will be associated with the antisymmetrized square.) The
6-dimensional [nyz]s will be reducible; the contained irreducible
representations will be just the irreducible representations required to
express the six strain functions and thus just the required set to
express an arbitrary strain. (See also ref 12, pp 43-47 and ref 15,

pp II-44 to II-48.)

TABLE C-1. IRREDUCIBLE REPRESENTATIONS? CONTAINED IN [r-xyz:] :

Point group? EEXA_ EET

Gt K0S Ms N+ N+ Ny
Hexagonal (D) N- + [t~ 2l e i e '},
Tetragonal (D, ) B ol 2P+ Bpe e
g 4 T e

Tq Is Gty e

Ty e by Mont ety
4 T R+ G+ B+ T

12"Group Theory and Quantum Mechanics," M. Tinkham (McGraw-Hill, 1964).
15 ecture notes on "Theory of the Properties of Ionic Complexes in
Crystals," Frank Ham, RPI, 1969 (unpublished).
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a
TABLE C-1. IRREDUCIBLE REPRESENTATIONS CONTAINED IN[[‘ xyz] s

Can Pir® Tes Bv - 2P 220, 0 B &
D4 P2+ PS 2['1+ I"3+f;+ PS
Cav h* 2Py« G+ e 1




a
TABLE €C-1. IRREDUCIBLE REPRESENTATIONS

C3v f& + fg

SR P P

CHRS LR
Focs iligr B,
R R

Fi =2y

2 r‘l + PZ

3 ]"1-
3 l"1

CONTAINED IN[T' v, ] s

9 ‘73

2P,+ 21
2 FZ + r3 + Tz

2 PZ + rg + T;
o
2["2

2 P,

dNotation is as indicated in the section thereon in the main text.




APPENDIX D

SUBGROUP DECOMPOSITION OF THE 32 POINT GROUPS

Figure 12. Subgroup decomposition of the 32 point groups. A heavy
line indicates that the subgroup is not invariant.

In Fig. 12, all of the 32 point groups are illustrated along with
the possible subgroups of each of these groups. Light lines indicate
invariant subgroups, heavy lines indicate non-invariant subgroups.
(Fig. 12 is taken directly from ref 2; compatibility tables connecting

these groups are given therein.)

2"Properties of the Thirty-Two Point Groups", G.F. Koster, J.0. Dimmock,

R.G. Wheeler, and H. Statz (M.I.T. Press, 1963).
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APPENDIX E

TRANSFORMATION PROPERTIES OF OPERATORS DETERMINED BY TRANSFORMATION
PROPERTIES OF BASIS FUNCTIONS

When the desired strain & decomposes into - c,  ei¥% it is
i, ik

not always apparent how the various FX transform. If one knows how
basis functions for various representations transform it may be easier
to first associate functions f;l‘ (¥) with the various TiX | We now show
that for
e .
fi ) = T, BXT, (E-1)

=. s - =
then the el® transform like the ff;‘ (r). Here T is the column vector
X
-
T= (y)
z

?T = (Xyyez).

- -
and rT is the row vector

Proof: The necessary and sufficient condition that a matrix i

transform like representation i is that

Pp (B1%) Pemt = ZDi () A (E-2)
for all operators R of the pertinent group. Multiply eq (E-2) by 'r‘T
from the left and by T from the right:

St L T Z\Dh o, ®) fi)‘ @), (E-3)

-3

using (E-1) and PR-\‘z" = ¥/. From the definition of f& (;) in (E-1),

the left side of (E-3) is just fi, (¥’); thus (E-3) becomes
£l () = £5 ®R7ID = 304 ®) £ ().

If this is repeated for & = 1,2...,d where d is the dimensionality of




B representation i, then
£ R-1¥) £1(1)
. g [ 4
4 . = | DR || ¢ (E-4)
& . _' ‘:
£ @) £5(F)
Since eq (E-4) is true for all R, this is just the condition that the :
fi (T) transform like representation i, i.e., that the f(}( (T) defined :
1 by eq (E-1) are basis functions for representation i. Thus, the
& 1 transformation properties of the 2iX are the same as those of the ?
L £l defined by eq (E-1), Q.E.D. §
‘ )
;
%
|
g E
3 £
: §
B - i
L]
. ‘ 4
A
o
w5 N 38
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APPENDIX F
HEXAGONAL CASE: GEOMETRIC DETAILS

1. f& strains.

(a) For a strain associated with x2+y2 (e11 = ey, = e, all other
eij = 0) every vector in the xy plane will simply be extended by a
factor (1+e). Thus, the hexagonal symmetry is maintained; one merely
decreases the c/a ratio (for positive e).

(b) For a strain associated with z2 (ez3 = e, all other ej; = 0)
the hexagonal symmetry is clearly maintained; one merely increases the

c/a ratio (for positive e).

2. The r% strain xy.
For a strain associated with xy, €12 = €, = e, all other eij = 0.
Referring to Fig. 7 in the main text
A = A a
Eio =ai, 3, = (a/2)i + (V3a/2)7.
Using eq (12) of the main text these become
= -~ N
a; = ai + eaj
el L)
3, = a(1/2 +V3e/2)T + a({3/2 + e/2)5.
To first order a,=a, a,=a (1+‘3E/2), and the angle between E& and Z}

is 60°-3e/2. The detailed geometry of this distortion is indicated

in Fig. 13.

39

e 3 o




Figure 13b. Geometry at point 2 of Figure 7.
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Figure 13c. Geometry at point 3 of Figure 7.
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3. The PS strain xz.

In Fig. 6 of the main text take the origin at point 2, x-axis

toward point 1, y-axis toward point 3, and z-axis vertically up from

the plane of the figure. Before distortion the points 1,2,3,4 form the

base of an orthorhombic C solid. Under xz distortion a non-90° angle
is produced in the vertical side with bottom edge 2,1. Define 510 as
the undistorted vector from the origin to point 1, 530 as the vector
from the origin to point 3, and E; as the pertinent vertical vector.

Under xz distortion

- A = 2
a) = aji ea
a =2, = (3a 6
3 30 oJ
- n a
= +
c ec i o

so that, to first order, aj=a, a3=‘3ho, c=c,, and the angle /3 between

51 and T is 90°-2e. A perspective drawing is shown in Fig. 14, In

this figure, the A2

Figure 14. Perspective drawing for the hexagonal T‘S strain xz.

|
|

|

|

|
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monoclinic C cell is outlined by points 1-4, 7-10; & =Y =90°, /B =90°-2e.
The primitive cell is outlined by points 4,6,3,11, etc, side 4,6 = a,,

side 6,3 = a_, side 3,9 = ¢, angle 6,3,11 = 120°, angle 6,3,9 = 90°-e.

4. The r's strain yz.

In Figure 6 of the main text take the origin at point 2, x-axis
toward point 1, y-axis toward point 3, and z-axis vertically up from the

plane of the figure (exactly as in the xz case). Before distortion

the points 1,2,3,4 form the base of an orthorhombic C solid. Under yz

distortion a non-90° angle is produced in the vertical side with bottom 4

edge 2,3. Define a . Buns and T as in the previous section. Under §
10’ %30 o P

yz distortion

- - A
o Bl Pt
Y " A
a; = G‘aoJ + Geaok
- A A
e.» ] * cok

so that, to first order, aj=a_, a3=@a0, c=C,, and the angle /3 between

5‘3 and T is 90°-2e. A perspective drawing is shown in Fig. 15.

In this figure, the W, E/\\\
\

i

‘5’9 ao \3.

-l
kI a
Figure 15. Perspective drawing for the Fs strain yz.

42




monoclinic C cell is outlined by points 1-4, 7-10; o= = 90°,
A =90°-2e. The primitive cell is outlined by points 4,6,1,11 etc;

{ i
‘ side 1,6 = a_, side 1,11 = a, side 1,7 = c,, angle 4,6,1 = 120°,

S TV YT A
'

angle 6,1,7 = 90°-V3e.
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