
A)—AO3I 806 MITRE CORP BEDFORD MASS

— .

P/G 9F2
SPECIFICATIONS FOR SIMON. A SOFTWARE IMPLEMENTATION MONITOR.(tJ)
SEP 76 * £ CORRI$*N. R J FLCISCHER F19626—76—C—0001

UNCLASS IFIED *A0C TR 76 268 P11.

_

~
I
~

_ __ a a
- it I: _ _ _

_I. It t I_II
II -- lit till ;
II a

-_

i~ ~~~

*

I ~~ --~~ RADC-TR-76-288
9 Ftnal Technical ReportC~ Sspta~~.r 1976

I ©
~~ SPECIFICAT~~IS F* SIMON, A SOFTI~ RE iMPLEMENTATION MONITOR

~ 1:, ~~?1Z Corpoiatio~

I
*Ør.ws~ tot public t.1ssss;

- di.trt ~~tLoI~ 1*1lait.d.2 - -
-

•

•

This report he. been reviewed by the *M)C luforwetlon Office (01) end
la releasable to the National Technical Information gervic. OlTIt’). At
NTIS ft will be releasabl e to the general public including fore ign nations.

This report h been reviewed and is approved for publicatios.

A~~~~~~ z

*. PAJ~ARA
Project !nt’ineer

APP*OVPD: miD.
~
;

~~~NNT D. kRUTZ, Coi, USAP
Chief , information Sciences Mvisioe

TO! TN? ~~P!(ASN?Ih
‘C, .

PCIIN P. NITSS
Mt~~g Chief , Plans Office

~i ~u$1ø* ~

~LL1
1~ not return thi s copy. Netsia er destroy.

_  

4

~‘



- .

~II ~
)

MISSION
of

Rome Air Development Center

lAX plai and conducts research, expl oratory and advanced
d.v lop aant p rogr a in o~~~~’id, control, and oo masiicetions
(C3)  act.iviti , and in the C3 areas of inf oxwat.ion sciences
and intelligence. TM pr incipal tscMical elision areas
are c~,—~’f caticna , .lwtrcengn.tic guidanc. and control,
survsLllanc,s of growd and a.rosp lc. ebj acts, intelligence
data collection and haMl lf lg, inf ormat ion sya t te~JaQ Zoqy ,

• ionospheric pzopagatict~, solid stat. sciences, mic~oweva
p hysics and elactrcrgie reliabillty, i*intaixambility and

• o~~ at-1biUty.

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~ _ _ _ _

I. UNCLASSIFIED
—r ~EC~~R ITY C 5I~~~~~ A ION TnIS PAGE IS~~on ?)ata Fn’~ ,.d)

~ R E A D INSTRUCTIONSRErORT uuyimENTATIOr~ rAu BEFORE COMPLETING FORM
3 I REP M SE R ~ GOVT ACCESSIO N NO. 3 REC IP IENTS C A T A L O G V4.JIIWER

—76—288 1 _____________________________

~~~~~~ raid S~btHl.) F 1 ~ TVD.i ~~ W ~~~~~~~~~~~~ ~~~~~~~~~~ C

~~~~~~~~~~~~~~~~~~~~~ 

— Final 7~chnica1 /ep~~ t.
J1’ECIFICATIONS FOR ~IMON , A S~ FTWARE

~
Ju1~~ 075 — Ju~~~ ~~~76~

4MPW~ENTATION MONITOR . 5~~~~~~W~~~ WIuINIj QR~i ~~~~ Qn~~~WI~MWtR

~1. £~iTM ‘-.“ CONTRACT OP GRANT N L M B E

~~~ ~~~~~~~ ~~~Lf4,* E:~ SU111Vaj~ ;~~ ~~~~~ ~~9628-76-C-Øø~~f
”

~
S D~~RFORMIPI G ORGANIZAT ION NAME AND ADDRESS 10 PROGRAM EL EMENT. PROJ ECT , TAS K

AREA & WORK UNIT P4 UM~~ERS
MITRE Corporation
Bedford MA 6322~~~ ....

____________________________________________________ 554d~O8Ol
CONTROLL ING OFFICE NAME AND ADDRESS /~~~

“ 1*. REP~~•?~~~~~~

Sep - a76j
Rome Air Development Center (ISIM) ‘3. NUM SER OF PAGES

Criffi sa AFB NY 13441 l3~
)

VA MONITO~~ NG A GENCY NAME I AODRESS(I( di VI. I Iron, Cont ,o IIn~ Off ic•) IS. SECURITY CLASS. (of thia r.pot~)

Same I ~ 
UNCLASSIFIED
IS.. DECLASSII ICAT ION DOWNGRADING

SCHEDULE
_____________________________________________ N/A
IS. DISTRISUTION STATEMENT (of ff1 . P.VOrII

Approved for public release; distribution unl imited .

‘1 DISTRISUT ION STATEMENT (of IA. 0ba1r c1 .1,10,04 Sn Black 20. Sf dill .r.n t Iron R.po,f)

‘:~~~~L l.pLrM EN y aRv NO TE S 4RADC Pro j ect Engineer : Roger Pan ara (ISTh)
ESD Task Monitor : Capt Samuel 1.. Ruple

IS . I(CV WO RD S (ConIMu. on ,.v.r.. .id. If n.c ....., aid I~~~IIII4’ by block rnaib. ,)

Softwa re Data Collection
Projec t Management

\I
‘

• ‘ 1 *0. AB St RACT (Cn,,Ifnu. ,.v.r.. ..d. SI n.c.u..v id.nItfv by bleck nuipb.r)

~~ 
~ • . Specifications are given for a p)(~totyp e of Simon , a tool for technical and

eana g.ria l visibility during aoftwar • development. Planned and possible
extensions of the prototype are also presented , and some uses of the system

I
; ar: illustrated 

~~~~~~~~~~~~ ~~ 
-a ii jr rujrs ii iii r i .Ini

DO I jA N ?) 1473 EDITION OF I NOV IS S OSSOL.E?t UNCLASSIFIED
SE CuRt ~~ ’ CLA$IIFICAYIO$ OP IsIs PSOS on Dbl.

* ~~~~~~~~~
-

~~~~~~~ iu~~t~~~ t -ii~~~~~~~~;~~ 
—w ~_ _ _ _ _ _ _  - 

~~~I *


0~~~~~ —~~
-

•
——~~~~~~

- -

IJNCL&~ STFTPn
IE~~.RITV CLA $SIPICATIQN OF T$fS PAGE(W~ ai Dab £nt.r.4)

a

‘A

if,

V

UNCLASSIFIED

SECURITY ~~~A SSIFICAtIO$ OP THIS PA@t(Wb.n bon. ~Ir.ond)

— ~~~ ___

‘
. r’ALt’ATTn~!

The objective of thin vorlf was to develop the snecification ~or a .of t—

ware svqteri to y’rovide technica l and r~anaeerial visibility into the software

develorn”ent process, and to orovide for the evstei,ntic and consistent ccl—

lection of ~ata f~ y research into ~actorg affectinp software nuality and cost.

‘he subj ect renort is the desi~n specifications for such a svster’ and “as

*i~~d to build a nrototvpe ~vnter Tmple~”entat ion Monitor (~ TMfl~1).

FT’W~!’ opera tes within, and helps to naintain a developm ent environm’ten t

that oroceed s in an orderly way fror specifications throu~h desien, impleiiien_

tation and test. It is recopoized that this process is not necessarily linear

and sin~’le—thread. “ith the concept of top—down desipn and isiplereneation,

it is nornal for the desj~n ohase of one leve l of abstrac tion to Peflerate

snecificattons for lover levels, thus snawnine further develonment cycles tha t

m’av or nay not proceed in oarallel, in nhase, with other develonment cycle..

C TS*(W r~&~es use of data as available in each ohase to trac1~ and oroject

ornc’rpss towards the ener~ in~’ svster, the nualitv of that system, and expen—

diturea of resources . ~ba svster is technically oriented , that is the em’—

nhasts is on svste’~ size, com”nlexitv and reliability , while also sccountfnr

6or traditional ~“nna”er’en t factors such as costs, huds’et, and schedules.

~A~!”T. T.. ~r15t~, Capt , USA!
!~P Tasi’ “onitor

I f ~~~4t~~~J
‘)fV~ ‘~ ~~~‘7t~’.’i

•‘..t ’wa ~~~~~~~ !nc’fneer

‘ii

4~ ’ _~~~~~~~~irr : -- 1IJ~~~~~~~~~~~~~T
- - - , . - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~

- -;;
~~~~

--
~
--

~
;--— -— -----

~~~~~~~
- 1 d~ 0 ~~~~~~~~~~~~~~~~~~~~~~~~ -- - - -

ACKNOWLEDGEMENTS
S

This report presents the results of work done in FY75 under
MITRE Project 5220, “Advanced Systems Technology,’1 Task A , “Softwa re
Quality.” Sponsorship and technical direction of this task
originated in the Software Sciences Section (R. Nelson, Chief),
Information Processing Branch (F. Tomalni , Chief), w ithin the
Information Sciences Division of the Rome Air Development Center
(RADC), United States Air Force. R. Robinson and 0. White of
RADC serveSl’as Project Engineers.

In a4dltion to the authors of this report, 1. Cheng and S. Morser
contributed\to the bui lding of Simon. J. Clapp provided early
technical dfreçtion of the task, and although her responsibiliti es
have become broader she has continued to provide technical review at
critical junctures.

•1 -

On a continuing basis , N. Anschuetz has provided research
services to keep the Simon team aware of related developments
while inmiersed in the building effort. Finally, amidst the
traditional crush of year—end business, M. Gallo typed the
manuscript.

I

0

iv

— I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-: - -

—
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~J~’



-— - — . - .- a 4 - - - -- - - - - - -

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS ~TU

SECTION I INTRODUCTION 1
GENERAL ( OALS 1
CONCEPT OF OPERATION 1
BACKGROUND OF THE PRESENT SYSTEr~ 2
SCOPE AND PLAN OF THIS REPORT 3

SECTION II PROTOTYPE SPECIFICATIONS 5
INTRODUCTION 5
PRECOMPILER SPECIFICATIONS 5

Functions 5
Inputs 15
Outputs 16

POSTCOMPILER SPECIFICATIONS 16
Functions 16
Inputs 17
Outputs 17

TRANSACTION PROCESSOR 17
Major Function 17

— Checkpoint/Restart 20
Implementation Note 20

SYSTEM STRUCTURE REPORT SPECIFICATIONS 39
Introduction 39
Program-Subsystem Dictionary 40
Subsystem Declared Interdependency Data 40
References by Subsystem-Program 42
References by COMPOOL Item 46
References by File 47
References by DEFINE Name 47
Subsystem InteractIons 48

ESTIMATES VS. ACTUALS REPORT SPECIFICATIONS 50
Introduction 50
Subsystem Estimates Vs. Actuals 50
Project Estimates Vs. Actuals 51

• PROVJECT SCHEDULES REPORT SPECIFICATIONS 52
IntroductIon 52
Person Hours Schedules 53
Other Resource Schedules 55

- 
- - Projected Resource Overruns 55

Projected Scheduling Inconsistencies 56
Projected Scheduling Conflicts 57

SUBSYSTEM AND PROGRAM STATUS REPORT
SPECIFICATIONS 59

_  

-

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~ 

_ _ _  

_ _ _



_~
.

TABLE OF CONTENTS (Conci.)

PageIntroduction 59
Subsystem Status 59
Program Status 59

ERRORS AND DISCREPANCIES REPORT SPECIFICATIONS 64
Introduction 64
Error and Discrepancy Surmnary 65
Suninary of Discrepancy InformatIon 65
Errors Reported Over Time 65

SECTION III EXAMPLES OF USE 70SIMON’S GENERAL ROLE 70
GLOBAL ITEM CHANGES 70
SYSTEM STRUCTURE CONSIDERATIONS 70
TROUBLE SPOTTING 71
RESCHEDULING 72
CHANGES IN SPECS 73

SECTION IV EXTENSIONS TO SIMON 74
COMPLEXITY MEASURE 74
TESTING-TOOL INTERFACE 75
SCHEDULING AUTOMATION 76
AUTOMATIC COLLECTION OF ACCOUNTING DATA 77
INTERACTIVE QUERY CAPABILITY 78 -

‘

ON-LINE DATA INPUT 78
GRAPHIC OUTPUT 79
HUMAN ENGINEERING 79
SENSITIVITY ANALYSIS 80
DESIGN LANGUAGE/ANALYZER INTERFACE 80
INTEGRATION OF PRECOIIPILER, COMPILER, AND
POSTCOMPILER 81

APPENDIX 1 83

APPENDIX II 95

APPENDIX III 105

REFERENCES 117
DISTRIBUTION 119

- -
- -4

vi

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- -

~
-

4
-

LIST OF ILLUSTRATIONS

Figure Nunther

1 Simon Organization Schematic 4
2 Formatting Function of the Precompller 8
3a Error Report Form 21
3b Project Initialization Form 22
3c Subsystem Initialization Form 23
3d Discrepancy Report Form 23
3e Assignment Deletion Form 24
3f Module Deletion Form 25
3g Subsystem Deletion Form 26
3h Actuals Report Form 27
31 Estimates Report Form 28
3j Project Update Form 29
3k Discrepancy Update Form 30
31 Subsystem Update Form 31
3m Progranmier Assignment Form 32
3n Interface Information Form 33
4 Program-Subsystem Dictionary Section of 40

System Structure Report
5 Subsystem Declared Interdependency Data Section 41

of System Structure Report
6 References by Subsystem—Program Section of 43

v System Structure Report
7 References by COMPOOL Item Section of System 46

Structure Report
8 References by File Section of the System 47

Structure Report
9 References by DEFINE Name Section of System 48

- Structure Report
10 Subsystam Interactions Section of System 49

Structure Report
11 Subsystem Estimates vs. Actuals 51
12 Estimates vs. Actuals for an Entire Project 52
13 Person Hours Section of Project Schedules 54

~~~ Report 
-14 Other Resource Schedules Secti on of Project 55

Schedules Report
15 Proje cted Resource Overruns Secti on of Project 56

Schedules Report
16 Projected Scheduling Inconsistencies Section 57

of Project Schedules Report
17 Projected Scheduling Conflicts Sections of 58

Project Schedules Report

VII

•
:1i~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r _ _



LIST OF ILLUSTRATIONS (Concl.)
Figure Number 

____

18 Subsystem Status Section of Subsystem 62
and Program Status Report

19 Program Status Section of Subsystem 64
and Program Status Report

20 Error and Discrepancy Suninary Section of 66
Errors and Discrepancies Report

21 Discrepancy Sunii~ary Section of Errors and 69
Discrepanci es Report

22 Errors Reported Over Time Section of Errors 69
and Discrepancies Report

LIST OF TABLES
Table Number 

____

I Indentation Al gorithm for Formatting 7
JOVIAL Source Code

II User—Supplied Input Parameters to the 11
• Precompiler

Ill Syntax Error Message s Produced by the 13
Precompiler

IV Transactions for the Data Base 18
V Transaction Processor Erro rs 34

VI Transaction Manipul ation Coninands 38
VII List of Abbreviations Used for File and 44

Data Item Types in Reports
VIII Explanation of References by Subsystem- 45

Progr~~ Section of System Structure ReportIX Data Entries tn the Subsystem Status Section 60
of the Subsystem and Program Status Report

__________ -

-— — - --- i--—— — —;~~~
•‘-

~~~~
—

-~
- --_- I£ — _ - -

.
- “- — - - -- - - - -

-

~~

±-
~
--- - -

SECTION I
INTRODUCTION

GENERAL GOALS

Simon is intended to serve two principal purposes : (1) technical
and managerial visibility of the software development process , and
(2) systematic and consistent collection of data for research into
factors affecting software quality and cost. To these ends , Simon
extracts and records certain information during the course of software
design , implementation and test, providing status reports on request.
As much of this information as possible is gathered automatically,
because of the well-known difficulty of extracting timely, accurate
and complete data from human programmers already immersed in the
challenging task of producing correct programs .

The potential advantages of such a system, and the broad
outlines of the features it should incorporate, have been described
in several publ i cations fClapp and Sullivan , 1974; Clapp, 1974].

CONCEPT OF OPERATI ON

Simon operates within , and helps to maintain , a development
environment that proceeds in an orderly way from specifi cations through
design , im~1ementation and test. It is recognized that this process
is not necessarily linear and single—thread ; on the contrary, with
the concept of top—down design and implementation , it is normal for

— the design phase of one level of abstraction to generate specifi cations
for l ower leve ls , thus spawning further development cycles that may

- or may not proceed in parallel , in phase or out of phase , with other
devel opment cycles.

A level of abstraction , sometimes called a “module ” or “function
clus ter,” Is herein calle d a “subsystem,” for want of a better term
that also avoids the unwanted connotations of those other terms. Thus
a subsystem is a basic unit for tracking purposes , though a subsystem
may comprise still more fundamental un i ts, such as Individual programs
or subroutines. The development cycle of any one such subsystem
proceeds through the following phases:

Phase Product(s)

Initiation Specifications
Es timates of Requi red Resources

Design Improved Specifications
Improved Estimates

1

N
...J “,

-

-

~~~~

—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

I- - - - -- - —— - -

Phase Product(s)

Subsystem Design
Test Design

Impl ementation Improved Estimates
Improved Design
Improved Test Design
Untested Subsystem

Test Final “Estimates” (equalling
the actuals)

Tested Subsystem

These distinctions among these phases are not always sharp unless
made so by arbitrary definition. (In fact, under one development
approach, the design and Implementation phases are not distinguished
at all.) Nevertheless, those who produce software and those who
manage that production must monitor both the use of resources and
the quality of the emerging product throughout the cycle, and it is
generally useful to take account of the fact that each phase Is
characterized by di fferent kinds of activity and different items to
be examined.

During each phase, Simon makes use of data as available in
that phase to track and project progress towards the emerging
system, the quality of that system, and expenditures of resources .
The system is technically oriented, that is the emphasis is on
system size, complexity and reliability , whi le also accounting for
traditional management factors such as costs, budgets and schedules.

BACKGROUND OF THE PRESENT SYSTEM

During the past year, a prototype of Simon has been implemented.
The domain of this prototype Is somewhat narrower than the ful l set
of possible applications of the Simon concept. Fi rst, Simon could
in principle be applied at any organizational level. For example,
there Is no reason that a “subsystem” could not be a major software
item such as a compiler; a natural unit of management might then be
an entire group and the “manager” might be a contract monitor or
second-leve l manager. In fact, however, the prototype is specifically
geared to the needs of the first-level programming group and its
immediate manager. A subsystem Is then a level of abstraction
appropriate for an Individual or at most a few individuals to
Implement. Second, Simon could in principle be applied to any
language and system, but in fact the prototype Is specifically

_ _ _ _ _ _

_ _ _ _~i_ T
_ _ _ _ -- - - --

-

tailored to the GCOS/JOVIAL envi ronment.

Also ,- even within this restricted domain, the present working
prototype of Simon is a modest subset of the capabilities originally
envisioned, although the flexibility to incorporate other facilities
is part of the design. The intent is to extend it gradually, while
obtaining direct experience In its use.

An overview of the organization of the prototype is afforded by
Fig. 1. The boxes denote major units (actually separate GCOS
activities), all of which (except for the compiler itself) make up
Simon . The connecting arrows denote information flow, generally
by means of files or reports . Specifically: the user (programmer)
supplies source code to the precompiler, which generates
(reformatted) source code for the compiler and data to be entered
into a permanent data base via a transaction processor. After the
compiler runs , certain additional information is extracted by a
postcompiler for entry into the data base. The user (programme r
or manager) may also enter data into the data base “manually,”
i.e. through the transactor. Reports are prepared from the data
base for the user at his request. (Certain reports and listings
are also prepared for the user directly by the non-report modules.)

Most of the system is coded in COBOL using lOS (Integrated
Data Store), chosen because it affords a sophisticated file system
for the data base. The precompiler is coded In JOVIAL .

SCOPE AND PLAN OF THIS REPORT

This report is intended to serve as an external specification
of the system, both as already implemented in prototype form
(Section II) and in fuller form (Section II pl us the extensions
discussed in Section IV). In order to help clarify the intent and
meaning of the specifications, examples of the use of Simon in
context are discussed in Section III.

4

3

- _ _

.- .
, -

User

Pre-
compiler

Compiler
Transactor Reports

____I____
Post—

compi ler

I

Figure 1

Simon Organization Schematic

:~
4

~ii ~: ~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘1i 

:~r -

.

~~~~~~~ 1 

•~~_~~~~~
_

-

SECTION II

PROTOTYPE SPECIFICATIONS

INTRODUCTION

This section details the specifications for the Simon prototype
as it is currently implemented. The specifications are gi ven from
a user ’s point of view , so that a user may have an accurate and
comprehensive understanding of the Simon system and a general view
of how the system is to be used.

Each of the major subsystems is described separately. Fi rst
those subsystems which supply inputs to the Simon data base — the

~~

Precompiler , Postcompiler , and Transactor subsystems - are specified .
Next the fi ve Simon reports , which provide the output functions from
the data base , are described.- These reports are: System Structure,
Estimates Vs. Actuals , Project Schedules , Subsystem and Program• Status, and Errors and Discrepancies . Within these specifications ,
explanatory notes on the use of a par ticular subsystem are Includedwhenever such notes are fel t to be necessary or helpful in
understanding the subsystem ’s functions. More extensive notes on
using Simon are given in Section III.

In addition to the subsystem specifications, and to provide the
user with a more complete understanding of the Simon prototype, a
description of the logical structure of the data base is incl uded in
Appendix I.

PRECOMPILER SPECIFICATIONS
Functions

The Simon Precompiler analyzes JOVIAL source code prior to
compilation and prepares the code for compilation. The primary
functions performed by the Precompiler are the formatting of JOVIAL
source code, the calculation of various measures of source code
length and complexity, and the calculation of other data from the
source code.

- - The formatting function of the Precompiler is intended to
highlight the program’s control flow and thereby to increase the
program ’s comprehensibility. The formatting Is accomplished mainly
through a pattern of Indentation which serves to isolate and emphasize
lines of code which are executed as one block Each line of source

5

—

•
I

—

~~~~r ~~~~~~ ~~~ —



4

code is indented a number of columns which is equal to the current
level of indentation times the indentation amount, a parameter which
is supplied by the user. The level of indentation is initialized to
~; certain JOVIAL statements then cause the level of indentation to
be incremented or decremented before printing the next statement. A
l ist of the indentation rules can be found In Table 1.

In addi tion to the control flow indentation, the following
formatting rules are obeyed:

1. Continuations of a statement to a new output line are
printed at a level of indentation which is one greater
than that of the first line of the statement;

2. Comments are printed on separate lines, at an
indentation level which Is one greater than that of
the following statement;

3. A line is skipped before and after every internal• procedure;

4. Statement labels are highl ighted by left—shifting
them a certain number of col umns (again a user—suppl ied
parameter) from the current indentation level ; the
rest of the statement then begins at the current
Indentation level or immediately after the printed
label , whichever is greater.

Examples of most of the above formatting rules may be found in
Figure 2.

As has been noted , the user is given some control over the
-

~~ formatting rules through a set of input parameters to the
• Precompiler. The user is also given the option of specifying

whether or not the Precompiler Is to expand JOVIAL “DEFINE” names in
the manner of a macro expansion, a function which Is not provided
by the JOCIT compiler and which may be useful for debugging
purposes. The user need not specify any of the input parameters as
defaults are provided. A list of the possible Input parameters and
their defaults is given in Table II. Figure 2 shows a program In
its unformatted, formatted, and formatted with expanded DEFINES
forms.

Along with its formatting functions, the SIMON Precompiler
detects some syntax errors and prints out appropriate error messages.
These error messages are Interspersed among the source code which
is printed out for the user, with each error message applying to
the source statement following it. Table III lists the major error

6

- 1. 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- . - - ‘ -
-

-j •
~ ~~~~~~ i~’~

; ,
- r- ..~-

- •.
—

_
~•~:~ ~:‘ ___~_~~ __

- - v- -- -

- .
~~~~

- -

Table l

Indentation Algorithm for Formatting JOVIAL Source Code

Type of Change In Level Conditions
• Statement of Indentation for Change

BEGIN* no change if BEGIN immediately follows
an IF, IFEITH, or ORIF

add 1 otherwise

CLOSE add 1

END* no change If END corresponds to an
JFEITH-ORIF sequence

subtract 1 otherw ise

FOR no change

IF add i

IFEITH add 1
‘ ORIF add i

PROC add l  -

S PROGRAM add 1

START no change

START PROC add 1 - -

all other statement types subtract 1 if statement imeedlately
fol lows an IF, IFEITH, or
ORIF statement (without
Intervening BEGIN)

no change otherwise

*BEGIN and END are considered as separate statements for formatting
purposes.

7

~
----

~:~ ~~~: -
~~~~~~~~~~~ .• ~~~~ -j~ ;---~~ - — -.  - -


I,-

Sample Program: Unformatted

START PROC R’TYPE ’NEXT(TOKEN ’PTR’ TTYPE)$
‘‘RECOGNIZE R’TYPE REAL CHENG’’
DEFINE 8EGIN’CASE ‘‘IFEITH’’$
DEFINE CASE ‘‘ORIF’ ’$
DEFINE OTHERWISE ‘‘ORIF l’ ’$
DEFINE END CASE ‘‘END’’$
DEFINE LIST ‘‘1 18 S’’$
DEFINE 1NT ‘‘1 18 5 $
DEFINE BOOL ‘‘B ’’$
DEFINE TRUE ‘‘l’’$
DEFINE FALSE ‘ ‘O ’ ’ $
DEFINE WHILE ‘‘IF (‘‘S
DEFINE BEGIN’LOOP ‘ ‘) $ BEGIN’’$
DEFINE END OF ‘‘GOTO’’$
DEFINE LOOP ‘ ‘$ END’’$
ITEM C ’PTR INT$
ITEM TOKEN’PTR LiSTS
ITEM C ’TOKEN INT P 1$
ITEM TTYPE INT $
ITEM TOKEN ’TYPE INT P 2$
ITEM FOUND 8001$
C’ PTRzLRETI(TOKEN ’ PTR,C’TO KEN)$
IF C’PTR GQ $5 BEGIN
C ’PTR~C ’PTR+l$
FOUND FALSE $
GET’NEXT. W HILE(C’PTR LQ LLENG(TOKENS)) AND NOT FOUND BEGIN’LOOP
TTYPEi,LRETI(LRETL(TOKENS ,C ‘ PTR) ,TOKEN ‘TYPE)$
BEGIN ’CASE (TTYPE NQ XCOP1MENT) AND (ITYPE NQ XCOMCONT) AND (TTYPE NQ
XEXPA14DED ’TEI~I) AND (TTYPE NQ XRECORD’END) AND (TTYPE NQ XD’CODE)$
FOIJND”TRUE$
OThERWISE$ C’PTR1C’PTR+1$
END’ CASE
END’OF GET ’NEXT LOOP

j IF NOT FOUND$
J lTYPE~ 0$

END
TERMS

t

j
•

• Figure 2. Formatting Function of the Precompiler

8

j

-

~~~~~~~~~

. 

~~~~~

- ••—

• _ _ _ _ _

_ _

~~~~~

. 

~~~~~~~~~~ ~‘-;~~j-; —---
~
----. ~~- - —

—

—

—•-- —
——

tIsi • ‘Mft’ t~ --~~- p . _ _ ,,_~ _~~ —

fr

Sample Program: Formatted

START PROC R’TYPE’ NEXT(TOKEN ’ PTR=TTYPE)$• & ‘‘RECOGNIZE. R’TYPE REAL CHENG’’
DEFINE BEGIN’CASE ‘‘IFEITH’’$
DEFINE CASE ‘‘ORIF ’’$
DEFINE OTHERWISE ‘‘ORIF l’ ’$
DEFINE END’CASE ‘‘END’ ‘$
DEFINE LIST ‘‘1 18 S’ S
DEFINE INT ‘‘I 18 S’’$
DEFINE BOOL ‘‘B ’’$
DEFINE TRUE ‘‘ l’ ’ $

• DEFINE FALSE ‘‘O’’$
DEFINE WHILE ‘‘ IF (‘ s
DEFINE BEGIN ’LOOP ‘ ‘) $ BEGIN’’$
DEFINE END ’OF ‘‘GOTO ’’$
DEFINE LOOP ‘ ‘5 END’’$
ITEM C’PTR INT$
ITEM TOKEN’PTR LIST$
ITEM C ’TOXEN INT P 1$
ITEM TTYPE INTS
ITEM TOKEN ’TYPE INT P 2$
ITEM FOUND BOOL$
C’ PTR=LRETI(TOKEN ’PTR,C’TOKEN)$
IF C ’PTR GQ 0$

BEGIN
C’PTR=C ’PTR+l$
FOUND—FALSE$
GET’NEXT. WH ILE(C’PT R LQ LLENG(TOKENS)) AND NOT FOUND BEGIN’IOOP
TTYPE=LRETI(LRETL(TQKENS,C~pTR),Top~~~ryp~)$

- -

-

BEGIN’CASE (TTYPE NQ XCOMMENT) AND (TTYPE NQ XCOMCONT) AND (TTYPE NQ
XEXPANOED’TERM) AND (TTYPE NQ XRECORD ’END) AND (TTYPE NQ XD’CODE)$
FOUND~TRUE $

OTHERWI SE$
C’PTRzC ’PTfl+l$

END ’CASE
END’OF GET ’NEXT LOOP
IF NOT FOUNDS

TTYPE’$$

- ~
- TERMS

END

Figure 2 . Formatting Function of the Precoinpiler (Cont.)

‘

I

-. . - . . -- .
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~—

__________ ~~~~~~~~~~~~~~~~~ -
____ ~

—
~~~~~~~~~~~ ~~~~ — --— —

~~~~~~~~

— —

-

Sample Program: Formatted With Expanded Defines
4

START PROC R’TYPE’NEXT (TOKEN’PTR—TTYPE)$
‘‘RECOGNIZE.R’TYPE REAL CHENG’’

DEFINE BEGIN’CASE ‘‘IFEITH’’ $
DEFINE CASE ‘‘ORIF’’$ —

DEFINE OTHERWISE ‘‘ORIF 1 ‘ ‘S I
-

DEFINE END’CASE ‘‘END’’$
DEFINE LIST ‘‘I 18 S’’$
DEFINE INT ‘‘I 18 S’S
DEFINE BOOL ‘‘ B’’$
DEFINE TRUE ‘‘l’’$
DEFINE FALSE ‘‘O’’$
DEFINE WHILE ‘ ‘IF (‘‘$
DEFINE BEGIN’IOOP ‘ ‘) $ BEGIN’’$
DEFINE END ’OF ‘‘GOTO ’ ’$
DEFINE LOOP ‘ ‘$ END’’$
ITEM C ’PTR 118 S$
ITEM TOKEN ’PTR I 18 S $
ITEM C ’TOKEN 118 S P 1 $
ITEM TTYPE 118 S $.

ITEM TDKEN’TYPE 118 S P 2 $
ITEM FOUNDB $ •

C’PTR.LRETI(TOKEN ’PTR, C’TOKEN) $ -
-

-IF C ’PTR GQ 0 $.

~
. -

.

.
-

BEGIN •
-

C’PTR = C’PTR + 1 $ - -

FOUND .Ø$
GET’NEXT. IF ((C’PTR LQ LLENG(TOKENS))AND NOT FOUND)$

BEGIN
TTVPEZLRETI(LRETL(TOKENS ,C’PTR) TOKEN,TYPE)$
IFEITII (h YPE NQ XCO~?1ENT) AND ~TTYPE NQ XCOMCONT) AND (TTYPE NQ
EXPAHDED’TERM) AND (TTYPE NQ RECORD~END AND (TTYPE NQ XD’CODE)$
FOUND = 1$

ORIF 1$
C’PTR—C ’PTR + 1 $

END
GOTO GET ’NEXT $
END

IF NOT FOUND $
TTYPE t $$

END - •
TER!’S

Figure 2. FormattIng Function of the Precompiler (Concl.)

10

f , ’

- ~~~~~~~~~___ - —- — -~
-
~ —— -

~~
-

~ I ~~~~~~~~~~~~~~~~~~~

-

Table II

User—Supplied Input Parameters to the Precompiler

Parameter Data Default
Names* Ty_p~ Explanation Value

CMPLX ,C boolean whether or not to true
compute the complexity
measure of the program

CMPTYPE ,CT 2 character which complexity C2
code measure to use

EXPAND,X I EX ,E boolean whether or not to false
expand JOVIAL DEFINE
names when formatting
the source code

INDENT,! integer when formatting the 2
source code, the
number of columns to
Indent for every level
of indentation

LABEL,L Integer when formatting the 0
source code, the
number of columns to
left—shift labels in
order to highlight them
from the rest of the
statement

LMARGIN,LMI integer left margin of the input 1
(source code) file

LMARGOUT,LMO integer left margin of the 1
output (formatted source
code) ffle

PAGESIZE ,PAGE ,P integer number of lines per page 0 (no automatic
of the formatted source page ejects are
code file caused by the

Precompiler)

a

11

______________ ~~~~-iii -

~

— 4 . ~~

- - Table II (Conci.)

Parameter Data Defaul t
Names*

Explanation Val ue

RMARGIN ,RMI integer right margin of the 72
input (source code)
file

RMA RGOUT ,RMO integer right margin of the 72 4

output (formatted
source code) file

*Several names are listed for each parameter. Any of these names
may be used when specifying a value for that parameter.

I

12

*__ ___7
__ _ _ - —- - - - -1’ ~ ___ _ _ _ _ _ _ _ _ _ _ _

Table III

Syntax Error Messages Produced by the Precompiler

Error Message Explana tion

CONTROL CARD TM SOURCE CODE A dollar s ign was found in the first
col umn of the source fi le; thi s w ill
signal a job control card to GCOS.

DOLLAR SIGN IN CO*IENT A dollar sign was found within a
•

~ - comment other than in the fo rms
or

END OF FILE WITHIN COMMENT The end of the source fi le was
encountered within a comment.

ND-FIIE WITHIN STATEMENT The end of the source file was
encountered in the mi ddle of a
JOVIAL statement.

END-FILE WITHIN SYMBOL The end of the source file was found
within a JOVIAL symbol (a “word” in
the language).

ILLEGAL OCTAL CONSTANT The symbol O() was found.

INCOMPLETE OCTAL CONSTANT Octal constant was not completed by
a close parenthesis.

INCOMPLETE STATUS CONSTANT Status constant was not completed
by a close parenthesis.

~O FOR VARIABLE IN FOR STMT No FOR (loop) variable follows the
- -

~- FOR keyword.

NO LABEL FOLLOWING GOTO (Obvious)

NO PROCEDURE NAME GIVEN A “START PROC,” “PROC” or “CLOSE” —

-
-

• statement was found wi th no procedure
name following.

NON-JOVIAL CHARACTER FOUND A character not allowed by the JOVIAL
-• language was found, outside of a

comment.

13
• :~~~

-

—‘ ________ ~~~c~~~• - ~~~~~~~~,: ~~~~~~~~~~~ •~~~~~~~~~~

•

Table III (Concl.)

Error Message Explanati on

PRIME LEADING NON-PRIMITIVE An identifier was found which began
with a prime (‘) but which was not
a keyword.

STMT NOT IN IFEITH SCOPE An ORIF was found which did not
correspond to any IFEITH statement.

TWO DEFINES IN STATEMENT Two DEFINE keywords were found in
one statement.

TOO FEW DOTS A string of the form “ ..“ or “ . C”
(C any character) was found.

TOO MANY CLOSE PARENTHESIS (Obvious)

TOO MANY DOTS A string of four dots was found.

- •

- : ~~~~~~~

14

——-—— --- - --- --- - - _ • .•~~~~~~~~.~~~~~_ -
-

—

p..-

messages and any necessary explanations.

The second major functi on of the Precompiler is that of
calculating measures of length and compl exity of the JOVIAL source
code. These measures are:

1. number of JOVIAL statements ,

2. number of lines printed,

3. Haistead length - a count of the operators and
operands in a program.

“Hooks ,” i.e. calls to stubs , have been left in the code for the
calculation of a psychological measure of complexity , the C2
measure developed at MITRE [Sullivan , 1973), although this capability
has not yet been implemented. These measures prov ide several
indicators of a program’s complexity , which is believed to be
correlated with the program ’s compre~-ensibility and incidence oferrors . The measures are ultimately stored in the data base and are
used in the Subsystem and Program Status Report .

In addition to these measures , other data is calculated to be
stored in the data base. The program’s n ame , the name of the
subsystem to which it belongs , and its type - whether a real program,
a driver, a stub, or a COMPOOL - are obtained from a user—supplied
comment in the source code on the Input record directly following
the START statement. This comment has the following format:

“<subsystem name > .<~1rogram name> <type> <programmer>”

~‘here <program name> is a maximum of 6 characters , <subsystem name> is
a max imum of 12 charac ters , <type> is either “REAL ” or “R,” “DRIVER” or
“D,” “STUB” or “S,’ or “COMPOOL” or “C,” and <programmer> is a
maximum of 30 characters . The date on which the precompilation is
being executed is also calculated. Finally, the list of JOVIAL
DEFINE names which was set up for formatting purposes is also kept,
to be stored in the data base.

Inputs

The inputs to the Precompiler consist of one file containing
the JOVIAL source code to be analyzed and one file containing the
user ’s input parameters. The format of the input parameter file
is that of a FORTRAN NAMELIST input , where the name of the NAMELIST
Is PARf4S (see the Honeywell FORTRAN manual [Honeywell BJ67]). The
list of possible Input parameters is given in Table II; as was noted

- ~

•

- •
15

: -

~~~~~

- - - - 
~~~~~-~~~- iT~~~j~~~~~~


above , the user need not specify any parameters as defaults are
provided.

Outputs

The outputs from the Precompiler consist of one file containing
the formatted source code , ready for input to the compiler , one
fi le containing the computed data to be input by the Transactor
subsystem into the Simon data base , and one file for the user
containing a listing of the formatted source code and any syntax
errors which were detected.

~OSTCOMPILE~ SPEC iF ICAT IONS

Functions

The Postcompiler accepts the output from the JOCIT compi ler
and analyzes these listings to obtain cross—reference information
on the enti re system under construction , to be retained in the
Simon data base. This data is assembled and printed In the System
Structure Report.

The following is a list of the data extracted by the Postcompller •
from the compiler listings :

1. date of compilation ,

2. name of the program and the name of the subsystem to J
which it belongs , obtained from the user-supplied
comment w ithi n the JOVIAL source code (see PRECOMPILER
SPECIFICATIONS),

3. a list of the COMPOOL (external) data Items referenced,
Including for each item whether it is set, used, or
both ,

4. a list of all external procedures called by the program, : -
5. a list of all files referenced, including for each fi’e

its type (hollerith or binary, varying or rigid lenath
records).

In some exceptional cases , no analysis is performed nor is the
•

- data base updated, and a message to this effect is printed . These -
-

cases are: (1) if the user-supplied identifying comment states that

16

- 4 ____-- _ _ _ _ _ _ _ _ _ _
11 TTh*~~ .~~ —------- - - -- --

the “type” of the program is either “STUB” or “DRIVER” ; (2) if
no identifying comment was found in the source code; and (3) if the
XREF option was not specified for the JOCIT compiler activity .

Inputs

The input to the Postcompiler is the JOCIT compiler output
(the ~~* file under the GCOS operating system).

Outputs

The outputs from the Postcompi ler include one fi le for the
user containing a printout of the original compiler output, along
with any diagnostic messages printed by the Postcompiler, and one
file containing the extracted data to be put In the data base by the
Transactor subsystem.

• TRANSACTION PROCESSOR

Major Function

The Transaction Processor is the only program in Simon that
directly updates the data base. A transaction is a single request
to add, delete or modify a single Item or closely related small
group of items. A run of the Transaction Processor typically
processes a list of such transactions, each one taken in turn, to
produce some larger net effect on the data base.

Table IV l ists the various kinds of transactions provided. A
fuller functional description of these is given in Appendix II, and
input format details are set forth in Appendix III.

The source of a transaction may be either another processor
within Simon (“A” for “automatic” in Table IV) or the user directly
(“M” for “manual” in Table lv). In the former case, a file containing
transactions In the required format is passed from the other
processor (Precompiler or Postcompiler) to the Transaction Processor.
In the latter case, input preparation Is facilitated by forms that
prompt the user for the required information while informing the
keypuncher of the correct format. Samples of such forms are given

-

- in Figure 3 (a—n).

Output from the Transaction Processor consists of a report
giving all header cards of processed transactions , any data cards
that were to be traced, and any diagnostics that the Processor

17

_ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~


_______ _________ - - .. • - - - - - - . - - - • -- -

Tabl e IV

Transac tions for the Data Base

Manual or
Automatic Abbrevi-
Input* ation Name Remarks

M (f) DM0 Delete Module Delete a module (program)
from the data base.

M (e) OPA Delete Programmer Deletes ass ignments as
Assignment specified by programmer’s

name, subsystem ass igned,
test or design indicator,
and reporting period when
assigned.

M (g) DSB Delete a Deletes a subsystem from
Subsystem the data base.

N (d) EDC Enter a Discrepancy
Report

M (a) EER Enter an Error
Report

A EPR Enter Takes the results of a
Preprocessor precompi l atlon and puts
Results them into the data base

if the precompiled module
is “REAL” or a “COMPOOL.”

A EPS Enter Post- Same as above, but for
processor Resul ts the Postprocessor.

~i (b) IPR Initialize the
Project’s Data
Base

M (c) ISB Initialize a
Subsystem

M (h) IUA Initialize or Enters or corrects records
Update Actuals of past expenditures.

*For manual inputs , letter in parentheses refers to appropriate form
In Figure 3.

18

-

4 ’ -, --- • •

- ~~~~~~~~~~~~~~~~~~~~~~~~~~
•

- ‘

•

- _.7~
;-

•
.

•

~~~~~•~~

-

~~~~~~~~
•

.

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-—
- —; -.-

~~~~
- ---

~~~
-
~~-

____________ —~~ -— - - - — • - •- -—--- - -.- —--— -- ~~~~~~~~~~~~~~~~~~~~~~ -.

Table IV

Transactions for the Data Base (Concl.)

Manual or
Automatic Abbrevi-
Input ation Name Remarks

M (i) IUE Initialize or Enters or alters current
Update estimates of resources
Estimates needed to produce a

subsystem.

M (n) 1(11 Initiali ze or Used by the programmers
Update Interface to keep the tnforination
Data on general subsystem

interactions current.

M (‘ii) IUP Initialize or Used to change the number
Update Programmer of hours in an assignment
Assignments or to add extra assignments.

Any deletion of assignments
is performed by the OPA
function.

M (k) UDC Update a To delete an outstanding
Discrepancy discrepancy once It has
Report been resolved.

M (j) UPR Update the To update most information
Project . entered by the IPR
Information transaction. Primarily

Intended to be used when
f changing some budgeted

resource for a project.

N (1) I.ISS Update a For indicating which
Subsystem’s milestones are passed while

•- subsystem. Milestones include• completing docimuentatlon,
completing test plans,
etc.

Status completing work on a

19

J_____
- __1-.~~ ~~~~

~~~~~~~~~~~~~ —~~~ —



_ _  • ~ •~-i -~~~~~~~~~~~~
. - • -

produces. There are three levels of diagnostics : An “ERROR ” usual ly
terminates processing at the current logical level and backs up to
a point where processing can continue. A “WARNING” Indicates a
possible error and gives the default action that is being taken. And
a “~OTE” simply gives informative messages about the processing.
Table V lists all the diagnosti cs and their probable causes.

Checkpoint /Res tart

The Transaction Processor is used in providing a checkpoint/
restart facility for Simon. As a normal part of the processingof transactions , a program is run right after the Transac tion
Processor to append the transactions onto the end of a save file on
disk. This file is periodically appended to a save tape. Thus at
any point in a project’s h~story all transactions which have been runagainst the data base are saved either on the tape or on the disk
file. (That is, the disk file is a logical extension of the
tape.)

• Periodically, checkpoints, i.e. dumps of the data base, are taken
by means of the system program QUID. When this happens, a special
header card giving the date of the checkpoint is appended to the
disk file. These checkpoints allow convenient restoration of the
data base.

In restoring the data base, if transactions are to be rerun
against the data base, It is of course necessary to run the
transactions in exactly the same order as that in which they were
originally entered. Restoration of the data base then involves
several steps. The IDS file is first restored to a checkpointed
state. A transaction manipulator is then run against the saved
transactions to extract those needed to produce an up-to-date
corrected version of the data base. Table VI gives the commands of
the manipulation that can be used. Any editing of transactions Is
performed at this point. Finally , the Transaction Processor
processes these transactions to produce a current data base.

Implementation Note

Because the Transaction Processor Is very large, it Is actually
two processors, one for manual and one for automatic input, and only
the one appropriate for the kind of input being supplied is run - —

at any given time. Only In a restart operation, t- ’here manual and
automatic input may be mixed, is the large combined Processor used. 

. -

20

I
‘4

~~~~~ ~~~~~~~~~~~~~~ — — -. — — -  
________ •_ — _ -—I

~~_~
__

_— - — — —--—a - — _____

~
-.
~

v-- - -. --

_ _ —. —

-a - -4 - - - - -

£

i s { ~~~T1 T E I E I R I (1 -1 0)

ERROR FORP~

i (~ —~~) :
~ ~

(a—u)
~~ i i i (i 2— i ~~~)(Date) (Time) (Initials)

I. How Manifested (16) IV. Nurter of Occurrences (19)

~ Discrepancy Form #

1 1 1
• Desk Checking 2 2 2

Con~ i1er Diagnostics 3 03 3
Other System Diagnostics 4 T 4Test Results 5 !J5 5
Other

________________ 6 06-10 6
fl 11-15 7

I I . How DIagnosed (17) ~ 16.20 8
~~ Obvi ous from ~‘an ifes tat ion 1 ~~ Over 20 9

Logic Analysis 2
InstrLanented Tests 3 ‘I . When Occurred (20)
Other

— 4 In Original Code 1
-•

In Making Change 2
III. Mental Level of Mistake (18) 0 in Addinq Instrumentation 3

- Not Progratiner 1 fl In Correctina an Error 4
Motor 2 flOther_________________ 5Memory - 3 -

• ‘~emory + 4
Logic - 5
Logic + 6

Time Spent (if s i g n i f i c a n t) —

Items Involved

(P: • Proqram)
(S: • Subsystem) (Name 0f Item)

(a)

(l o _ 2 1)

Brief Description (if interesting):

Figu re 3a. Error Report Form

21

-
_ _ -

~~~~~~~~~~ ____ _ __ _  
_

•. • - 

• 
- -

-
•~ - -. - • 

-
• 

- 
- -



———- - -— - - - - - - — — •— -~----——-- - - - - -

ii

frISIT IA IRIT I I IIPIPI ( i-io) Q

PROJECT INITIALIZATION

Project ID ___________________ 
(2— 13) (

~
}

Project Start Date i I ij jj (15—20)

Project Stop Date i i I i I (22— 27)

Number of Days in a Reporting PerIod __________ 
(29-30)

I - 

Number of Termi nal for the Project __________ 
(31— 32 )

File Space for Project (in LLinks) __________ 
(33-37)

Budgeted Computer Dollars _________ 
(38-4 .7)

Budgeted Other Dollars __________ 
(~e-s7)

Budgeted Man Hours __________ 
(58-65)

Figure 3b. Project Initialization Form

22

I
• - - •

— 
__________ 

~~~~~~~~ 
1t%’E~.4t(~-F- - ----~~i~~i~~ - i—-—- - - -

—
•
~~~~~~~~~~ • • : - -~ - i --



— 

— 

I 

— — 
— - —

- 

f*IS (TjAJR [T I ~~~~ (1_ b ) fU

INITIALIZE SUBSYSTEM

SUBSYSTEM NAME 
___________ 

(2_ 13)

DATE OF DEFINITION I • (15_2o)

Figure 3c. Subsystem Initialization Form

I*1S~T~A I R IT I  IEIDIC I (u—uo )

- 

DISCREPANCY REPORT

I. Discrepancy ID

i I i I • (2 — 7 ) : (s—it) , (t~ — u ’ .)f ~J(Date) (Time) Unitlill)

II. How Found 
(16)

—, 
U Code Reading

C System Diagnostic 2
o Test Results 3
O Other ___________________________________ 4

I

ll!. DescrIption : (80 chrs) _____________________________________

____________________________ ( 1 8 o) ~

Figure 3d. Discrepancy Report Form

23

_ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• - ~~ ~~ ~~“-• -

~ • •
~~~

•

~~ 

—

- — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



L~L1~JT IA 1RIT I IDIPIA I (1 —1 0)  fU

DELETE ASSIGN9ENT

REPORTIN G PERI OD START DATE I i I • • (2_ 7 )  fU
REPORTIN G PERIOD STOP DATE 

_____________ 
(9.11.)

[can be blank)

ASS IGNED SUBSYSTEM __________________________ (16—27)

TEST OR DESI GN ASSIGNMENT ( ‘T ’ or ‘D’) 
_____ 

(29)

• PROGRA Ii~ER’S NAME __________________________ (3 1.65)

REPO RTING PERIOD START DATE I i I (2_7) fU
REPORTING PERIOD STOP DATE I ‘ 

(9_ 14.)
(can be blank]

ASSIGNED SUBSYSTEt! 
_________________________ 

(16—27)

TEST OR DESIGN ASS iGNMENT ( ‘T ’ or ‘0 ’) 
_____ 

(29)

PP.OGRAMMER’S NAME __________________________ (31.65)

REPO RTING PERIOD START DATE 4 I i (2_7) fU
REPORTIN G PERIOD STOP DATE - I I (9.14.)

(can be blank)

ASSIGNED SUBSYSTE M 
_________________________ 

(16.27)

TEST OR DESIGN ASSIGNMENT (‘V or ‘0’) 
_____ 

(29)

PROGRAMftER’S NAME 
________________________ 

(3 1— as)

REPORTING PERIOS START DATE I I i (2 .7 ) ~
REPORTiNG PERIOD STOP DATE I I (9~~~~~~~)

(can be blank)

ASSIGNED SUBSYSTEM __________________________ (16—27)

TEST OR DESTf~N ASSIr .N’IENT (‘T’ or ‘0’) _____ 
(z~) -

•

• P~~GRA’?4ER’S !IA’-’t __________________________ (31.65)

Figure 3e. Assignment Deletion Form

24

- 

~~1•_ _ _ ! - ~~~~~4T1 • 
_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

- 

-•
~~~~~~ 

-

-

‘—V ~~~
-

- I*I SI T 1A 1R IT~ n1’~jpJ (1.10) ir
DELETE MODULE

MODULE NAME —
(2.7)

MODULE NAME ______________________________________ (2-7)

MODULE NAME ______________________________________ (2—7)

MODULE NAME __ (2-7)

MODULE NA ME _______________________________________ (2-7)

MODULE NAME _______________________________________ (2-7)

-
- MO DU LE NNI E __ (2.7)

MODULE NAME _______________________________________ (2 - 7)

MODUL E NAME _______________________________________ (2- 7)

MODULE NAME _____________________________________ (2—7)

MODULE NAME _____________________________________ (2-7)

MODULE MAPlE

(2.7) I2~
•

j Figure 3f. Module Deletion Form

— __~~
JL

~~
L

-

• I
- -

1 *!IS~T (AtR1T 1 IDISiBI (1.10) III
DELETE SUBSYSTEM

SUBSYSTEM NAME ______________________________ (2.13)

SUBSYSTEM NAME ______________________________ (2_la)

SUBSYSTEM NAME ______________________________ (2-13) ~l

SUBSYSTE M NAME ________________________________ (2_ 13) ~~~~

SUBSYSTEM NAME ________________________________ (2—13)

SUBSYSTE M NAME ________________________________ (2.13)

SUBSYSTEM NAME ________________________________ (2_la) f~J

SUBSYSTEM NAME ________________________________

(2.13)

SUBSYSTEM NAME ______________________________ (2.13)

SUBSYSTEM NAME ____________________________ — (2_ 13)

SUBSYSTEM NAME ________________________________ (2_ 13) Iii

SUBSYSTEII MAttE

(2.13) L~
]

Figure 3g. Subsystem Deletion Form

26

~~~~~~~~~ 

- - 
—

jrIjfj~~~~ ~~~~~~~~ -

- 
- 

• 
•
•-



EJSITEA IR TI hu t  A( (1~ 1o) 0

EXPENDITURES PER SUBSYSTEM
(for a particular reporting per iod)

SUBS YSTEM 
______________________ (2-13)

STA R TING DATE (of the report ing peri od ) 
__________________ 

(15-20)

MAXIMU M CORE SPACE (to run the subsystem ) 
___________________ 

(21 .28)

PROGRAMMER HOURS

FOR DESIGN 
______________  

(29~ 34.)

FOR TESTING 
___________________ 

(35 . t.o)
TERfIINAL HOURS

FOR DESI GN 
___________________ 

(4 1—1.E~

~ R TESTING 
___________________ 

(1.7—52)

COMPUTER EXPENSES

FOR DESIGN 
____________________ 

(5 3  62)

FOR TEST ING 
______________ ( 63 . 1 2)

OTHER EX PENSES 
___________________ ( B- l i )  ~

FILE SPACE FOP DESIGNING

TEMPO RARY 
______ __________ 

(18-23)

PE

~~

AN ENT 
__________________ 

(24._ 29)

FILE SPACE FOR TESTING

TEMPOR~A RY 
— 

( I~~ _~~~~

PERP’ANENT 
__________________ 

(3 6.1.1)

Figure 3h. Actuals Report Form

27

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

* S - T ~A~P~T frtJ~~E~ (i — i o) I

ESTIMATED RESOURCES per subsystei~(or update)

StJBSYSTE~ ________________________ (~~ -n)

NUMBER OF MODULES

(i s - : o)

MAXIMU M CORE SPAC E (to run the subsystem)

(21- 28)

PROGRA MMER HOURS

FOR DESIGN
_____________________ (29-34)

FOR TESTING

(3 5-40)

TERMINAL HOURS

FOR DES iGN

FOR TESTINf~ ____________________
(. 7 — 5 2)

COM PUTER EXPENSES

FOR DESIGN _____________________ (5 3 - 6 2)

FOR TESTINr~ —_________________ (6 3 - 7 2)

OTHER EXPENSES
____________________-

(8-17) ~
•
3~1

-

4 FILE SPACE FOR DESIGNING

TEMPORARY

(18-2 3)

PERMANENT

(2 4 — 2 9)

F I LE SPACE FOR TESTING

• TEMPORARY

(3o -3s)

PERMANENT

(3 6 — 1 . 1)

I
FIgure 31. Es:imates Report Form

-•

I , ~‘
_ _ _ _ _

_ _

b_H11

F[SIT1AIP~TH~JIP1R I (1 - 1 0) 0

UPDATES TO PROJECT INFORMATION
(no entry implies no update)

NEW PROJECT 10 _____________________________ (2 . 13) 0

NEW PROJECT STOP DATE

TOTAL BUDGETED COMPUTER DOLLARS _____________
(22-31)

TOTAL BUDGETED OTHER DOLLARS

(3 3 .4 2)

TOTA L BUDGETED MAN HOURS

(4 4 - 5 !)

NUMBER OF TER MINALS

(s3 . s~~)

TOTAL BUDGETED LL I NK S

(56 - Go)

—

Figure 3j. Project Update Form
29

_ _ _ • - - - - -

I A~~ —_

_ _ _ — .
~~

1~]jTf IA1RjTT lu lot c i (i _ z o) ~iJ

DISCREPANCY DISPOSITION

I. Discrepancy ID:

(must correspond to a DI SCREPANCY REPORT ID)

~~ I (~~-7) : (8_ li)

(1~ _ i~.) f~
]

(Date) (Time) (I n i t i a l s)

II. Nature of DIscrepancy : (16)

o Erro r Form(s) #
_______________ 1

0 Lapse in Comunication 2

O Not a Discrepancy 3

o Other 4

Figure 3k. Discrepancy Update Form

-
7~i~~~~~- ‘~~~ -

•
-~~~~~~~---- - -- -

t - -~~~~~~~ -----—--- -
• -t. -

I

~ JStT IA I RIT I luts is i (i - b) ~~

SUBSYSTEM MILESTONE STATUS UPDATE

SUBSYSTEM NAME __________________________________ (2—13) ~~

DATE ___________

(15—20)

TEST PLAN DONE? (2 2)

o YES

0 NO ‘N’

O NO CHANCE 1

DOCUMENTATION DONE? (21.)

o YES ‘V

ON O ’N’

ON O CHANGE ’

INCLUDED PROGRAMS TEST STATUS:

PROGRAM NAME ______________________________
(8-13)

TEST STATUS : (15)

o NOT DONE ‘N’ 0 PARTIALLY COMPLETE ‘P ’ 0 FINISHED ‘T’

PROGRAM NAME ____________________________________ (8- 1 3) ~
]

TEST STATUS: (is)

D NOT DONE ‘N’ 0 PARTIALLY COMPLETE ‘P’ 0 FINISHEfl ‘T’

PROGRA ’~ NP!IE ____________________________________

(a— 13) ~~

TEST STATUS: (is)

o NOT DONE ‘N’ 0 PARTIALLY COMPLETE ‘P’ 0 FINISHED ‘T ’

PROGRAM NAME ________________________________
(a- i 3)

TEST STATUS : (i s)

0 NOT DONE ‘N’ ~ PARTI A LLY COMPLETE ‘ P’ ~ FINISHED ‘T ’

Figure 31. Subsystem Update Form

31

_ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ -

~~ ~~~~ii E~~i~~~~~~~

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

~T~
—
~~~~~- ? ~ --a-:- - -


-
—

-

—

- - - -

~* IS IT 1A IR IT I IIIUIPI (i—io)

PROGRAMME R ’S SCHEDULE AS OF 1 I I I (2.7)
(or update)

PROGRNeIER (9-4 3)

REPORTING PERIOD START DATE I I ~ 8.15) THRU i I I 1 (15.20) ~J
SUBSYSTEM ASSZGNED (22-33) TEST OR DESIGN (31.)

or “0”)
NUMBER OF HOURS ASSIGNED IN PERIOD (36- 39)

REPORTING PERIOD START DATE LJJ i I i j(8 — i 5) TH RI ! i J i I i (15—20)
~~

SUBSYSTEM ASSIGNED (22.33) TEST OR DESIGN
—

(34)

NUMBER OF HOURS ASSIGNED IN PERIOD (36.39)

REPORTING PE R IO D START DATE ~ I i I ~(8_15) THRU i i I j (15.20) Q
SUBSYSTEM ASSIGNED (22_33) TEST OP DESIGN (34)

NU MBER OF HOURS ASS IGNED IN P ERIOD (36.39)

—
REPORTING PERIOD START DATE I I ~(8_15) THPU

~~1j ~
j (l s _ 2 c ’)

~~j

SUBSYSTEM ASSIGNED (22 .33) TEST OR DESI~N (31.)

NUMBER OF HOURS ASSIGNED IN PERIOD (36.39)

REPORTING PERIOD START DATE I i I ~ j~e_ is) THRU I (15—20) J~J
SUBSYSTEM ASSIGNED — (22-33) TEST OP DESIGN (34)

NItr’SER OF HOURS ASSIGNED IN PERIOD _________ (a

~

.39)

Figure sit. Prograniner Assignment Form

32

~~~~~~~~~~

-

~~~~

--

~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

UI

—------.- —--

-

- - -- - ____ - -
— —— -- - - - -

* S T T ~I !J~ I (I —~~~) UJ
L. ~~~~L •

INTERFACE INFORMATION
(or updates)

SUBSYSTEM NAME ______________________________________ (2.13) ~~

(for which information is being specified)

CAN A DRIVER BE USED TO TEST LOWER LEVELS _____________

(15)
(‘Y ’~ ‘N’ , Or blank)

RELATED SUBSYSTEM _____________

(8..19) ~~

IS THIS AN ;
o ADDITION ‘A ’ 0 CHANGE ‘C’ 0 DELETION ‘0’ (2!)

RELATIONSHIP TO ABOVE SUBSYSTEM
o CALLED BY ABOVE ‘CD’ CALLS ABOVE ‘CG’ (23..2t+)

o SHARES DATA ‘SD’ NO CHANGE ‘

REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABOVE
o MUST BE COMPLETED ‘T’ 0 CAN BE STUB ‘5 ’ ~~

NO CHANGE ‘ ‘ (2 6)

RELATED SUBSYSTEM _____________

(8..19) IIiJ

IS THIS AN:
0 ADDITION ‘A’ 0 CHANGE ‘C ’ 0 DELETION ‘0’ (21)

RELAT I ONSHIP TO ABOVE SUBSYST EM
O CALLED BY ABOVE ‘CD ’ 0 CALLS ABOVE ‘CG ’ (23.21.)

o SHARES DATA ‘SD’ 0 NO CHANGE

REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABO VE
O MUST BE COMPLETED ‘1’ 0 CAN BE STUB ‘S’ 0 NO CHANGE ‘ ‘ (26)

RELATED SUBSYSTEM ______________

(8_i9) ~

IS THIS AN:o ADDITION ‘A ’ 0 CHANGE ‘C’ 0 DELETION ‘0’ (21)

RELATIONSHIP TO ABOVE SUBSYSTEM

H

CALLED BY ABOVE ‘CD’ 0 CALLS ABOVE ‘CG’ (2 3 . 2 I.~
SHARES DATA ‘SD’

~
NO CHANGE ‘ ‘

REQUIRE STATUS OF THIS SUBSYSTE M TO THE ABOVE
o MUST BE COMPLETED ‘1’ f CAN BE STUB ‘S 0 Nt) CHANGE ‘ ‘ (26)

RELATED SUBSYSTEM

(8.19) ~J
IS THIS AN:
0 ADDITION ‘A ’ 0 CHANGE ‘C’ 0 DELETION ‘0’ (21)

RELATIONSHIP TO A BOVE SUBSYSTEM
CA LLED BY ABOVE ‘CD’ 0 CALLS ABOVE ‘CG ’ (23.21.)
SHARES DATA ‘SD’ 0 NO CHANGE

RE QUIRE STATUS OF THIS SUBSYS TEM TO THE ABOVE
o MUST BE COMPLETED ‘T ’ ~

CAN BE STUB IS ’ 0 NO CHANGE ‘ ‘ (
~~)

Ehure 3n. Interf~ce inforriation For,’~

Table V

Transac tion Processor Errors

ERROR ID LEVEL TEXT PROBABLE CAUSES

TP 01 ERROR INVALID HEADER Number In function field or
CARD ON letter in date field.
TRANSACTION

TP 02 ERROR ’ INVALID FUNCTION Function specifi ed is not
FIELD ON HEADER a legal one.
CARD

TP 03 ERRO R UNSUCCESSFUL Information In terms of
ATTEMPT TO STORE an IDS record was not able
RECORD to be stored -In the data

- base. This could be a
result of duplicate
information, no more room
or any severe type of IDS
mal function.

TP 04 ERROR INPUT DATE HAS A date on a card in the
INVALID M/D/V transact ion has an inval id
VALUE month, day, or year value .

TP 05 ERROR STOP PRECEDES For two dates expressing a
START DATE IN range in a transaction, the
TRANSACTION stop date Is before the

start date.
TP 06 ERROR ILLFORMED NUMBER In a field that must be all

IN ALL, NUMERIC numbers there is a non numeric
FIELD character.

TP 07 ERROR TRANSACTION While processing a transaction,
CONTINUATION DATA a logical termination point
NOT FOUND for the transaction was not

reached before the next
transaction was read.

TP 08 NOTE END OF EOF encounter at a proper —

TRANSACTIONS time .

-H

_
_ _ _ _

_

_ _ _ _

_ _

_

-

~~~ 
_ _  - 

-

~~~~~-

~~~~~~~ 

‘ 

~~~~~~~~~


I-

Table V (Cont.)

ERROR ID LEVEL TEXT PROB ABLE CAUSES

TP 09 ERROR UNABLE TO Project has not been
RETRIEVE PROJECT initial i zed or some serious
RECORD malfunction of IDS.

TP 10 ERROR LO OKING FOR In the IUP transact ion, the
ASSIGNMENT NAME AS-OF-DATE and the PROGRAMMER’ s
CARD name are improperly entered. -

TP 11 ERROR INVALID For fields hav ing only
CHA RA CTER (S) IN certa in allowa bl e alphabetic
ALPHABETIC FIELD entries, the transact ion has

- a wrong character entry.

TP 12 ERROR UNABLE TO Subsystem has not been
RETRIEVE initialized, name is inva l id ,
SUBSYSTEM or IDS system malfunction .

TP 13 ERROR DATE DOES NOT An input date used to
CORRESPOND TO A specify a certain reporting
REPORT PERIOD period , i.e., the first day

of a reporting period, does
not match a period computed
from the starting date of the
project and the length of a
reporting period.

TP 14 ERROR AS OF DATE IS In IUA the date of an actual
AFTER TRANSACTION expenditure of resources is
DATE after the date of the

transaction on the header
card. This violates the
concept of a past expenditure.

TP 15 ERROR UNABLE TO General message used when data
RETRIEVE FROM or record to be updated or
DATA BASE changed or in anyway accessed

has not yet been entered into
-Y the data base. It Is possible

that an lOS system mal function
could cause it.

TP 16 ERROR DATA BASE Should not occur; indicates
INCONSISTENCY Simon or IDS malfunction .

35

li t .,

~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~ ~
- -
~~~

-
-

~~
~-

- ..._~
_ - __ _ - ——

Table V (Cont.)

ERRO R ID LEVEL TEXT PROBABLE CAUSES
TP 17 NOTE NOT REAL FLAG, Precompiled or postcompiled

DATA BASE IS program hasn ’t been declared
UNCHANGED “REAL ” or “COMPOOL ” and

consequently hasn ’t caused
a data base update.

TP 18 ERROR PREMATURE END OF EOF was encountered before
FILE it was logically expected.

TP 19 WARNING SEARCHING FOR Transaction Processor is
VALID I *STARTI scann ing for a header cardCARD but encountered other cards

instead.

TP 20 ERROR DATA BASE PROBLEM Whil e trying to initi al ize
EXCLUDES the data base , IDS s ignal led
INITIALIZATION an error condition which

impl ies that either IDS
space has not been allocated,
or it has not been initialized
by the lOS program QUTI, or
there is an IDS malfunction.

TP 21 ERROR PROJECT HAS (Self—explanatory).
ALREADY BEEN
INITIAL I ZED

TP 22 NOTE MODULE UPDATED IN Postcompiler or precompiler
DATA BASE results have been entered in

the data base.

TP 23 ERROR BLANK FIELD WHER E A bl ank field occurs where
ENTRY REQUIRED it shouldn ’t.

TP 24 ERROR UNABLE TO DELETE Either the information that
RECORD is being deleted does not

exist or else there is some
system malfunction.

- TP 25 ERROR MODULE NOT YET In an attempt to update the -

COMPILED status Information, the
program was not able to access

36

—
__________ ~~~~~~~~~~~~~~~~~~~~~~~~~ -- - .~~~ —

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -



-- - - --—- -.-- ---c .‘ - - 4 -

w

Table V (Conci.)

ERROR ID LEVEL TEXT PROBABLE CAUSES

module informat ion in the
data base implying that the
module hasn ’t yet been compi l ed.

TP 26 ERROR NO SUCH ENTRY IN No such program or subsystem
— DATA BASE In the data base.

TP 27 NOTE MODULE ADDED TO The module has been either
DATA BASE precompiled or postcompiled

for the first time.

TP 28 ERROR GIVEN DATE Date on error or discrepancy
PRECEDES PROJECT ID precedes the start of the
START DATE project.

TP 29 ERROR NUMBER FOUND IS For those characteristics
OUT OF RANGE of errors and discrepancies

listed on the forms , there
Is a legal range; some entry
is out of its range.

TP 30 ERROR NO SUCH When performing the UDC
DISCREPANCY function, the discrepancy
RECORD ID does not correspond to an

outstanding discrepancy ID.

TP 31 NOTE SKIPPING The Transaction Processor
TRANSACTION w ill not process this

— transaction.

TP 32 ERROR UNABLE TO FIND While deleting a prograniner’s
ASSIGNMENT assignment (OPA), an
RECORD assignment can ’t be found.

For the messages that imply difficulty in retrieving storing or
deleting IDS records, additional IDS information Is printed out on
the output. For documentation , see the IDS Manual (Honeywel l
BR 69, Appendix B].

37

- 

-i

, ,

_ _  _ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Table V I

Transaction Manipulation Commands

Parentheses imply that the phrase can be omitted.

The commands can be batched in a run.
I. COPY ((FROM (CHECKPOINT) date) (TO (CHECKPOINT) date))

1. COPY alone copies the entire file.

2. FROM, if present, sets up the starting position for the
copy. IF not present, then the starting point is the
present position of the pointer in the file.

3. TO, If present, sets up the terminating position for the
copy; otherwise it is the end of the file.

-

II. DELETE (number)

1. Starting at the present position , DELETE skips over records .

2. If “number” is present then that number of records are
skipped. If absent then one record is skipped.

III. INSERT (number)

1. INSERT inserts cards Into the new file. The cards
directly follow the INSERT card.

2. If “number” is present then that number of cards are
inserted. If absent then one card is inserted.

38

_ _ _ _ -- iii _ _

- -

SYSTEPI STRUCTURE REPORT SPECIFICATIONS

Introduction

The first Simon report supplies management and programmers wi th
a comprehensive view of the structure of the developing system. It
provides cross-reference information such as calling hierarchies and
data and file references in a variety of forms so that the user can
easily determine the relationships of one subsystem or program with
another sub3y~tem o,’ program for purposes of data or control flowanalysis and as an aid to detecting and correcting interface errors.

The data for this report comes indirectly (via the data base)
from the analyses performed by the Precoinpiler and Postcompiler on
JOVIAL source code. The Preconipi ler supplies program names and the
names of the subsystems to which they belong, and a list of JOVIAL
DEFINE names referenced by each program. The Postcompiler also
provides program names and the names of their associated subsystems,
and in addition supplies the program calling hierarchy information
and a l ist of external data items (COMPOO L Items) and files
referenced by each program. Some data is manually collected. This
is the “Subsystem Declared Interdependency Data,” which notes for
each subsystem whether a driver is feasible for that subsystem, and
supplies for each subsystem a list of all subsystems which are
needed for testing the former subsystem, their relationship (called,
call ing or shares data) to the former subsystem, and whether stubs
for these subsystems may be used. This information is collected via
the Interface Information data form (see TRANSACTOR SPECIFICATIONS).

The System Structure Report consists of seven sections, which
are

1. Program-Subsyst em Dictionary ,

2. Subsystem Declared Interdependency Data,

3. References by Subsystem—Program,

:~
- 4. References by COMPOOL Item,

5. References by File ,

6. References by DEFINE Name,

7. Subsystem Interaction.

39
~~~

-

—I;- -_,;
~~~

__ ‘
~~~~~~~ 

~~~~~~~~~~~~~~~~~~ 1± ~~~~~~~~~~~ — -~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

Most of the sections are in table form, and in most cases the
-

-
-

entries within a column , whether subsystems , programs, data items,
files, or DEFINE names, are arranged In a lphabetical order, starting
with the left—mos t column.

Program-Subsystem Dictionary

The fi rst section, Program-Subsystem Dictionary, lists for
every program in the data base the subsystem to which it belongs.
The subsystem name is flagged if it is not currently in the data
base. Figure 4 below shows a sample Program-Subsystem Dictionary .

PROGRAM_SUBSYSTEM DICTIONARY

PROGRAM SUBSYSTEM

AA

AA2 AA

BBC BB

BDXW AA

CC1 CC

CC2 CC

DZQR BB

* - NAME NOT PRESENTLY IN VALID SUBSYSTEM NAME LIST

Figure 4. Program-Subsystem Dicti onary Section
of System Structure Report

Subsystem Declared Interdependency Data

The second sect ion of the System Structure Report is the
Subsystem Declared Interdependency Data section described above. A
l ist of the subsystems in the data base is printed , giving for each
subsystem:

40

.

-

-

-
-

~~~~~~~~~

- -

~~~~~~~~~ E 
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~
-
~ ~~~~~~~~~~~~~~~~~ 

- .

d~.m. ~~~~~~~~~~~~~~~~



1. whether or not a dri ver is feasible (“Y” if yes, “N ”
if no, “0” if this field is absent In the data base);

2. a l ist of all those other subsystems which have been
declared to be needed for testing the subject
subsystem including:

a. the relationship of the needed subsystem to the
subject subsystem (“CD” if the needed subsystem
is called by the subject subsystem, “CG” if the
needed subsystem calls the subject subsystem, and
“SD” If the needed subsystem sets any external
data items used by the subject subsystem),

b. whether or not a stub for the needed subsystem
is feasible (“5” if stub is feasible, “1” if
the total needed subsystem must be used).

Figure 5 gives dn example of the Subsystem Declared
Interdependency Data Section.

SUBSYSTEM DECLARED INTERDEPENDENCY DATA

REL - RELATIONSHIP OF NEEDED SUBSYSTEM

REQ - REQUIRED STATUS FOR TESTING

- SUBSYSTEM DRVR OK SUBSYSTEM N EEDED REL REQ

ABAD Y

ACLO N

ACCA CD S
-r AXYA CG T

BADO V BAMS SD T
CI CD 0

Figure 5. Subsystem Declared Interdependency Data Section
- 

-

‘ 

of System Structure Report

________________________________ _________________________ 
— — ~~—-~

- - d~~~. - ~~~~~~~~~
‘
~~~~‘ ‘ -  -


References by Subsys tem-Program

The th i rd section , References by Subsystem-Program, is a
comprehensive list, for every program in the data base, of all
programs , COMPOOL data Items , files , and DEFINE names which have
any relationship to that program. The format of this section is
as follows (see Figure 6). (It should be remembered that all
col umns of items are arran ged al phabeti call y .)

1. The left-hand column lists one of the subsystems
in the data base.

2. The second column lists one of the programs contained
in the subsystem in column 1.

3. The third column , “RE LATIONSHIP ,” states the relationship
of the program in column 2 to the item in column 4,
“OBJECT ”, which may be a program, a COP4POOL (COMMON)
I tem, a file, or a DEFINE name (MACRO).

4. The fifth col umn , “ WITHIN ,” gives :

a. if the item in col umn 4 -is a program, the
subsystem to which it belongs (if the subsystem
i s not known “**“ is printed);

b. if the i tem I n column 4 is a COMPOO L item,
the COM!ION to which it belongs ;

c. if the item in column 4 is a file or a DEFINE
name , this column is blank.

4. The last column, “TYPE ,” gives the type of the item in
column 4, if the Item is a COMPOOL item or a file. The
abbreviations used for the item types are those used
in the JOCIT compiler cross-reference listings ; a list
of these abbreviations is given in Table VII.

Ta ble VI ! ! below g ives a l i st of al l possible relationships between
the program I n cclumn 2 an d the item in column 4. The program
in column 2 I s denoted as “X” . Figure 6 shows an example of a
References by Subsystem-Program Section.

42

REFERENCES BY SUBSYSTEM-PROGRAM

TO OR BY
SUBSYSTEM PROGM REFERENCE (OBJECT iTEM) WITHIN TYPE

CHARLIE STOOP CALL TO STOKE DADA

KREPE **
CALL BY PREAK SUPRA

S/U COMMON FORMIT COMMPI1 IS

DADA STOKE CALL BY STOOP CHARLIE

USE COHMN FORMIT COMMN 1 IS

CHAR1 COMMN2 H

R/W FILE FILE6 HV

USE MACRO DO ’LOOP

CASE

SUPRA PREAK CALL TO STOOP CHARLIE

SET COMMN FORMIT COMMN1 IS

CHAR 1 COMMN2 H

R/W FiLE FILE7 BR

FILE8 BR

USE MA C RO DO ’LOOP

COMPOL1 REF COMMN FORMIT COMMN1 IS

CHAR1 COMMN2 H

Figure 6. References by Subsystem—Program Section
of System Structure Report

- + - - - ~~~
__ _ •

~
_ i

~~~~~~~~~~~~~~~~~~~~ -

d .  -



Table V II

List of Abbreviations Used for File and Data Item Types in Reports

Abbreviati ons for File Types

Abbreviation Expansion

BR binary code , rigid (fixed) length
records

BV binary code, varying length records

HR hollerith code, rigid length records

HV hollerith code , varying length
records

Abbreviations for Data I tems

A f ixed , signed

AU f ixed , unsigned

B boolean

F floating point

H ho’,lerith code

is integer , signed

Iii integer , unsigned

S status variable

T transmission code

44

_ _ _ _ _ _

-_ _ _ _ _ _ _ _ _  — — - —
‘ 

4~T



- - -  - 
- . 

- - -

Table V I I I

Explanation of References by Subsystem—Program Section
of System Structure Report

REFERENCE OBJECT ITEM WITHIN

CALL TO program called by X* subsystem

CALL BY program which calls X subsystem

SET COMt-IN COMPOOL data item COMMO N

whose value is set by X ,

where X is a procedural

program

USE COMMN COMPOOL data item whose value COMMON

is used by X , where X is a

procedural program

S/U COI+IN C~MPOOL data item whose value COMMO N

is both set and used by X, where

X Is a procedural program

REF COMMN COMPOOL data item defi ned by X , COMMON

where X is a COMPOOL rather

than a procedural program

R/W FILE file referenced by X -

USE MACRO JOVIAL DEFINE name referenced -

~
y X

*)~ is the program listed in column 2 of the References by
Subsystem-Program Section .

45

‘
I

, ~~~~~~~~~~~~~ 
_ _  

-. - - 
-
~~~~~~~~~~~~~~~~~~~!~

-
~~

: - . ‘

— ---~w———-- —-—-————--- — ~~~

-a --
- :

S

References by COMPOOL Item

The remaining sections of the System Structure Report are based
on the same information as the References by Subsystem- Program
Section , but are keyed on different i tems. Section 4, References by
COMPOOL Item, is keyed on external (COMPOOL) data items . It lists all
COMPOOL items in alphabetical order and gives for each COMPOOL item:

1. the COMMON in which it is found,

2. the type of the COMMON data item (see Table VI I for
list of abbreviations),

3. all subsystems which refe rence that COMMON item and
all programs in each subsystem which reference the
i tem, noting whether each program sets (“ S ”), uses
(“U”), or both sets and uses (“B”) the COMMON item
(if the “USE” col umn is blank this indicates that
the referencing program is the COMPOOL in which the
COMMON item is declared).

Figure 7 below gives a sample of a References by COMPOOL Item
Section .

REFERENCES BY COMPOOL ITEM

ITE M COMMON TYPE SUBSYSTEM PROGM USE

— . ALPHA CHRCLS IS AA ABAD U

BOX BYLL B

ALLY PERCLS H ALKA ALSOM

BOX BYLL S

Figure 7. Refe rences by COMPOOL Item Section
of System Structure Report

46

~~~~~~~~~~~~~~~~~~~~ 
s

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I ~~~~ - - -r • -
-- - —

~~
-

- -

References by File

The fifth section of the System Structure Report is the
References by File Section . it lists all files in the system in
alphabetical order , giving for each file:

1. the file ’s type (see Table VII for list of
abbreviations),

2. all subsystems wh i ch reference the file and all
programs in each subsystem which reference the
file.

Figure 8 below is an example of the Refe rences by File Section .

REFERENCES BY FILE

FILE TYPE SUBSYSTEM PROGN

FILE7 HR SLJB’A PROG’AA

PROG ‘AB

SUB’B PROG’B

SUB’C PROG’CG

FILE9 BV SUB’S PPOG’B

PROG ’BB

Figure 8. References by File Section of
the System Structure Report

References by DEFINE Name

The sixth section of the System Structure Report is called
References by DEFINE Name , and lists for each DEFINE name in the data
base all subsystems which refe rence it and all programs in each
subsystem which reference the DEFINE name . A sample Refe rence by
DEFINE Name Section is given below in Figure 9.

47

a ~~~~~~~~It _ _

- - -

-
-

REFERENCES BY DEFINE NAME

DEFINE-NAME SUBSYSTEM PROGP~

DEF1 SUB’A PROG ’AA

SIJB’B PROG ’AZ

PROG ‘B

SUB’Z PROG ’ ZZ

DEF2Z SUB’Z PROG ’ZZ

Figure 9. References by DEFINE Name Section
-

— of System Structure Report

Subsy~tem Interactions

The last section , Subsystem Interactions , is a sumary of all
relationships between subsystems in the system. It consists of a
matrix wi th the names of all subsystems listed in a column on the
left—hand side label ling the rows , and also across the top of the
matrix , read top-to-bottom and l abelling columns. The symbol at
the intersection of the row for a given subsystem (subsystem “A”) and
the col um n for some , possibly other, subsystem (subsystem “B”) denotes
their interactions as follows:

1. a “- “ indicates no relationship;

2. an “X” denotes that (some program in) Subsystem A
cal ls (some program in) Subsystem B;

3. a “+“ denotes that Subsystem A sets a data item
which Subsystem B uses;

4. a “a” indicates that both “X” and “+ “ apply.

This matrix may thus be read across a row to see whom a subsystem
calls and who uses items that subsystem sets, and read down a col umn
to see who calls a subsystem and who sets items which are used by
that subsystem. Figure 10 below is an example of a Subsystem
Interactions Section.

48

~i~i ~~ ~~

- _ _ _ - -
- - -I-

SUBSYSTE M INTERA CTIONS

SUBSYSTEM A SUBSYSTEM B

s S S S
U U U U
B B B B

• B X Z

SUB’A
SUB ’ BB X~~~X —
SUB ’ZX + — + X
SUB’ZZ - - * +

Figure 10. Subsystem Interactions Section
of System Structure Report

49

______ ______ _____________ ___________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-~~~i~

’
~~~~~~~~~ -

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— ~~

-

-
- - -

ESTIMATES VS. ACTUALS REPORT SPECIFICATIONS

IntroductIon

The second Simon report is a comparison between projected
resource expenditures (estimates) and actual resource expenditures
(actuals) for each subsystem and for the entire system. The data
is taken from the estimates and actuals forms used in the
Transactor subsystem.

The following resources are used in the comparison: person
hours , terminal hours , main memory, computer dollars , other (non-
computer) dollars and file space. These resources are identical
to those listed on the estimates and actuals forms. Expenditures
are divided into those incurred during the design phase and those
incurred during testing, again as in the estima tes and actuals forms .

The estimates used in the comparison are a prograniner ’s current
estimates for a subsystem. The actuals are current actual
expenditures. A series of Estimates Vs. Actuals Reports will thus
show the progression of current estimates and actuals over time. Since
the estimates for each subsystem are continually revised and refined
throughout the subsystem’s development, the series of estimates-actuals
comparisons should keep converging until: (1) the current design
estimates equal the current design actuals when the design phase has
been completed , (or , more accurately, is estimated to have been
completed), and (2) the test estimates and actuals are equal , when
the subsystem has been tested.

Subsystem Estimates Vs. Actuals

First a comparison between current estimates and actuals is
printed for each subsystem In the system. A comparison for a sub-
system is printed even if there have been no estimates or actuals
entered into the data base for that subsystem; in this case all
counts wi ll be zero. Figure 11 below gives an example of the
estima tes-actuals comparison for the subsystem named “SUBSYSTEM-A.”
As can be seen, this subsystem has had its design completed but is
still being tested.

50

I

~~~~~~~ 

—- - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —-



- - —-—~~~~

SIMON REPORT *2 -- ESIMATES VS. ACTIJALS AS OF 04/22/75 PAGE 1

SUBSYSTEM-A SUBSYSTEM ESTIMATES VS. ACTUALS

RESOURCE ESTIMATES ACTUALS
DESIGN TEST DESIGN TEST

PERSON-HOURS 120 65 120 30
TERMINAL-HOURS 45 30 45 11

MAIN MEMORY 26 26

COMPUT ER $ $105 $75 $105 $35
- - 

OTHER $ $60 $51

FILE SPACE - TEMP 22 6 22 8
- PERM 14 18 14 14

Figure 11. Subsystem Estimates vs. Actuals

Project Estimates vs. A ctuals

Finally, the current estimates-actuals compari son is printed
for the entire system. This is a sum of the counts for all subsystems
for the resources person hours , terminal hours , computer dollars,
other dollars and file space. The main memory usage for the entire
system is the maximum of the main memory usages for all subsystems .
A third column, giving the total project budget for person hours ,
main memory, computer dollars , other dollars , and file space, is
included, so that a comparison may be made between the estimates and

• - actuals for the entire system and the project budget. In this way
it can easily be seen if the budget has been overrun (actuals
compared with budget), or if It is predicted that the budget will be
overrun (estimates compared with budget).

Figure 12 shows a sample system comparison for the project
“PROJECT-A .” In the example , the budget for computer dollars hasalready been overrun; the budgets for main memory and file space
have not yet been overrun, but are predicted to be overrun.

51

a

,

-
I 

-

~~ 

________



Terminal-hours are not shown as having a “budget” because this type
of resource is more usefully regarded as limi ted on a per-unit-time
basis (e.g. maximum of 16 hrs in any one day ) rather than overall.
See the paragraph entitled “Projected Resource Overruns ,” below.

PROJECT-A PROJECT ESTIMATES VS. ACTIJALS , COMPARED WITH BUDGET.

RESOURCE ESTIMATES ACTUALS BUDGET
DESIGN TEST DESIGN TEST

PERSON-HOURS 600 400 375 300 1000

TERMINAL-HOURS 270 250 200 121

MAIN MEMORY 36 22 30

COMPUTER $ 850 650 800 645 1300

OTHER $ 700 300 1000

FILE SPACE - TEMP 80 40 43 32

- PERM 83 67 43 40

- TOTAL 163 107 86 72 200

Figure 12. Estimates vs. Actuals for an Entire Project

PROJECT SCHEDULES REPORT SPECIFICATIONS

Introduction

The third Simon report , Project Schedules , deals wi th schedules
of resource usage , includIng progranmier hours, computer dollars,
other (non-computer) dollars , terminal hours and file space . The
report shows both past (actual) and projected (estima ted) resource

• usage , predicts budget overruns, and checks the programe rs ’
schedules for any inconsistencies and conflicts .

All data used in this report is manually collected and
includes the following:

52

—i-S--S 
~

__
_

~

sS — ___

~
__ _  —



-5- 
— 

— -

• -~~~~~~~~~~~~~~~~~ --~~~--  -

1. prograniner schedules ,

2. subsystem estimates and actuals ,

3. project budgets ,

4. subsystem interdependency (interface ) data .

The Project Schedules Report consists of five sections: Person
Hours Schedules , Other Resource Schedules, Projected Resource
Overruns , Projected Scheduling Inconsistencies , and Projected
Scheduling Conflicts .

Person Hours Schedules

The fi rst section , Person Hours Schedules , uses the prograniner
schedules put in the data base by a project manager to print
prograniner-subsystem schedules for the entire system. A sample
Person Hours Schedule Section is gi ven below in Figur e 13. This
example shows prograniner schedules for the period from 3/ 11/75 to
5/20/75. The line of dates gives the start dates of the periods
of time for which assignments have been made . The progranine rs are
listed at the left ; under each date in each prograniner’s rows are
given the names of the subsystems On which that programmer will
be working, noting the number of hours to be worked and whether
design or test will be performed (“0” or

_  
_  

53

—- ~~~~~~~~~~~~~ ~~~~~~~~~ ~~ 
-

~~ 

— -—

-
~~

-
~~~~~~ ~~

-

~~~~~~
—-— --—-— - • 



SIMON REPORT Ill PAGE 2

PROJECT SCHEDULES AS OF 042175

PROJECTED RESOURCE USE

LENGTH OF REPORTING PERIOD - 14 DAYS

PROJECT STOP L~ TE - 063175

PERSON HOURS

PROG RA ?~lER 031175 032575 040875 042275 050675

CAPLAN ABAD ABAD ABAD ABAD ABAD

40 HOURS-fl 40 HOURS-fl 40 HOURS-fl 40 HOIJRS-T 40 HOURS-T

ZENO ZENO ZENO ZENO ZENO

20 HOURS-D 20 HOURS-fl 20 HOURS-T 20 HOURS-T 20 HOURS-T

MARDRID CONO CONO CONO CONO CONO

30 HOURS-D 30 HOURS-fl 30 HOURS-D 30 HOURS-I 30 HOURS-I

NOSER KAPLA - KAPLA KAPLA

40 HOURS-fl 40 HOURS-fl 40 HOURS-D
5—

Figure 13. Person Hours Section of Project Schedules Report

54

-S 
I _____  

___________  
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~r- - 5 -~~ ~~~ ~~~

--— -5SS~-SS--S~-S-__

I _ _ lI~_,. -S — ~~~~~~~~~~~~~~~~~~~~~~~~~ — - -
- -

Other Resource Schedules

The second part of the Project Schedules Report shows past and
projected schedules for resources other than person hours , using the
subsystem estimates and actuals input by the programmers and the
subsystem schedules produced in the fi rst section of this report .
The resources which are covered in this section are computer dollars ,
file space (number o-f file blocks), other dol lars , and terminal hours.
Figure 14 below shows a sample of this section .

SIMON REPORT III PAGE 2

PROJECT SCHEDULES AS OF 020275

OTHER RESOURCES

RESOURCE 123174 011475 012875 021175 022575

COMPUTER DOLLARS 62 165 145 98 148

FILE SPACE 77 344 385 308 423

OTHER DOLLARS 71 63 73 75 82

TERMINAL HOURS 40 30 74 95 51

Figure 14. Other Resource Schedules
Section of Project Schedules Report

Projected Resource Overruns

The resource usage schedules set up In the second section of
the Project Schedules Report are used In the third section, Projected
Resource Overruns. This section notes any overruns which may be
predicted for computer dollars , file space, other dollars , or
terminal hours . Computer dollars and other dol lars are each summed
up over time ; the fi rst period of time (if any) in which the budget
is exceeded is noted for each of these resource types. For file
space and terminal hours , the budget may be exceeded in any period
of time ; for these resources , all periods of time in which overruns
occur are noted. For terminal hours , the “budget” for a period of
time is calculated to be the number of terminals available times the
n~’mber of hours in a period of time.

55

- . - -
.
~~~ 

-



For example , if the budget for file space for a project is 400
blocks , there is one terminal avai l able , and the budget for other
dollars is $300, and if Figure 14 shows the resource schedules for
this project, then Figure 15 below would be the Projected Resource
Overruns Section .

SIMON REPORT III PAGE 3

PROJECT SCHEDULES AS OF 020275

PROJECTED PROBLEM AREAS

OVERRUNS OF RESOURCES -

FILE SPACE EXCEEDS BUDGET IN PERIODS STARTING 022575

OTHER DOLLARS EXCEED BUDGET IN PERIOD STARTING 022575

TERMINAL HOURS EXCEED BUDGET IN PERIODS STARTING 021175

Figure 15. Projected Resource Overruns
Section of Project Schedules Report

Projected Scheduling Inconsistencies

The programmer schedules in Section 1 of this report were
entered into the Simon data base by project managers. Programmers
put in their estimates of the number of person hours which will be
needed for each subsys tem they are working on. Therefore , there
exists for each subsystem in the data base two estimates of the
number of person hours which will be needed for that subsystem , one
estimate implied by the schedule and one entered directly by the
programmers. These two estimates may not coincide ; the fourth
section of the Project Schedules Report notes all such scheduling
inconsistencies .

For example, consider the project represented in Figure 13. If
the total schedules for subsystems ABAD and CONO are given here, and
if programmer CAPLAN estimated 250 hours for ABAD , and programmer
MARDRID estimated 130 hours for subsystem CONO then the Scheduling
Inconsistencies Section would be as In Figure 16.

56

• ~~~~ -S_S - - 
__• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .:~ • - -

- _  --S _



SUAON REPORT III PAGE 5

PROJECT SCHEDULES AS OF 042 175

SCHEDULING INCONSISTENCIES

SUBSYSTEM - ABAD

SCHEDULED PERSON-HOURS NEEDED - 200

ESTIMATED PERSON—HOURS NEEDED - 250

SUBSYSTEM - CONO

SCHEDULED PERSON-HOURS NEEDED - 150

ESTIMATED PERSON-HOURS NEEDED - 130

Figure 16. Projecte d Scheduling Inconsistencies
Section of Project Schedules Report

Projected Scheduling Conflicts

Programmer and subsystem schedules depend not only on
programmer availability and estimates for the number of person hours
needed to complete a subsystem, they also depend on the callin g and
data shari ng relationships between subsystems , that is , on the
“Subsystem Interface Data.” For example , if Subsystem A needs
Subsystem B for testing, and a stub for B cannot be used , then
Subsystem B must be completed before testing may begin on Subsystem A.
If Subsystem A has been scheduled to have testing begun before
Subsystem B is complete , a scheduling confl ict results.

Part 5 of the Project Schedules Report is called Projected
Scheduling Conflicts . It uses the schedules set up in Section 1

• and the programmer-input Subsystem Interface (Interdependency) Data
(see TRANSACTOR SPECIFICATIONS ) to check for any conflicts such as

~•• • the one described above.

J 

For example, assume again that in Figure 13 the total schedules
• for subsystems ABAD and CONO are presented. If ABAD is declared to

be needed for testing CONO , and a stub cannot be used, there is a
scheduling confl i ct. Figure 17 below shows the Scheduling Confl i cts
Section noting this conflict (and others).

- . 4 57

‘4 , - — --—-
~~~ ~~~

-
--

~
- - -

— 11 ~~~~~~~~~~~~~~~

—_ —- -_-- -- -—- — —-- .•- •— - S : - ~~~~~ -~-~
-

-
- •~-

—;•;~ ;:~-——— - - - - - —-- • - • - •

SIMON REPORT I I I PAGE 7

PROJECT SCHEDULES AS OF 042175

SCHEDULING CONFLICTS

SUBSYSTEM - CONO

SUBSYSTEM NEEDED FOR TESTING - ABA !)

WHEN NEEDED - 040875

WHEN SCHEDULED TO BE COMPLETE - 052075

SUBSYSTEM - KAPLA

SUBSYSTEM NEEDED FOR TESTING - DENOL

WHEN NEEDED - 052075

WHEN SCHEDULED TO BE COMPLETE - 061175

SUBSYSTEM NEEDED FOR TESTING - CARRA

WHEN NEEDED - 052075

WHEN SCHEDULED TO BE COMPLETE - 066375

Figure 17. Projected Scheduling Confl icts
Section of Project Schedules Report

58

—
_ _

f-S -

~~~~~~

-- --S -, - -

SUBSYSTEM AND P: GRA~1 STATUS REPORT SPECIFICATIONS

Introduction

The fourth Simon report shows the current status of all
subsystems in the system and of every program in each subsystem.
It uses several types and sources of informati on to provide
programmers and managers wi th a rounded view of a subsystem ’s
or program ’ s status. The report contains two sections; the first
deals with subsystem status and the second with program status .

Subsystem Status

The Subsystem Status Section lists for each subsystem in the
system a number of data entries which provide status information
about the subsystem. The information is of several types and comes
from various sources , as follows :

1 . stat i~s information which illustrates how far along the
subsyst-~m is in its development; this data is either

a. maiua lly input by programmers or managers , or

b. ~utomaticaliy collected by the Simon functions;

2. error information , manually collected , ;hic h
prr iides the user with information concerning the
subsystem ’s reliability and the nature of its
errors ;

3. complexity and length measures calculated by the
Precompiler , measures which are believed to be
correlated with subsystem reliability (incidence
of errors) and comprehensibil ity .

Table IX shows for each data entry in the Subsystem Status
section which of the above sources of information supplies its
data . Figure 18 shows an example of this section of the Subsystem
and Program Status Report for the project “PROJECT-A” and the
subsys tem “SUBSYSTEM-A” which has had design completed but is still
bein g tested.

Program Status

The Program Status Section uses information collected during
precotnpilati ons and postcompilat ions to provide a view of the
status of all programs in the system. As only information collected
by the Pre- and Postcompiler is used , only information on a program’s

- I  

59

~~~~~~~~~~~~~~~~~~~~~~~~~ 
-S

~~~~~~~
-5_

~~~~~~~~~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-5 - - -

Table IX

Data Entries in the Subsystem Status Section of the
Subsystem and Program Status Report

Entry Source of Data

Programmers manual input

Date of Definition manual input

Design - 1st assignment manual input

Design — last assignment manual input

Estimated Number of Programs manual input

Current Number of Programs automatically collected when programs
are entered into data base after a
precompilation or postcompilation

Current % c leanly compiled automatically col l ected after post-
compilation

Testing - 1st assignment manual input

Testi ng - last assignment manual input

Current % tested manual input

Estimates specified manual input

Actuals specified manual input

Design /Test Interface manual input
Specified

Test Plan done manual input

Documentation done manual input

Errors charged manual input

60

____- T~~~~t~~

—---5— - - -

Table IX (Concl.)

Entry Source of Data

Lines of Code

Number of Statements
automatically collected upon

Haistead Length precompilat ion

Complexi ty*

Number of Compilations automatically col lected upon post-
compilation

*The complexity measure has not yet been implemented .

61

i~~________
~~~~~~~~~~~~~~~~~~

- I ~~~~ 
•
~~~

.
•
. ~.e-

——---5-

‘--5 — --5

‘I

SIMON REPORT #4 - - PROJECT-A SUBSYSTEM STATUS ON 04/25/75 PAGE 1A

SUBSYSTEM - SUBSYSTEM-A

PROGRAMMERS — DESIGN/TEST
MARLOWE D T

DATE OF DEFIN ITION - 03/ 16/75

DESIGN PHASE —

FIRST ASSIGNMENT PERIOD - 03/20/75
LAST ASSIGNMENT PERIOD - 04/08/75
ESTIMATED NUMBER OF PROGRAMS -3
CURRENT NUMBER OF PROGRAMS - 3
CURRENT % CLEANLY COMPILED - 100%

TEST PHASE -

FIRST ASSIGNMENT PERIOD - 04/22/75
LAST ASSIGNMENT PERIOD - 06/03/75
CURRENT % TESTED - 0%

ESTIMATES - SPECIFIED
ACTUALS - SPECIFIED
DESIGN/TEST INTERFACE - NOT SPECIFIED
TEST PLAN - NOT DONE
DOCUMENTATION - DONE

ERRORS CHARGED TO TI IS SUBSYSTE~4 -

COMPILER-DETECTED ERRORS - 17
NON-COMPILER-DETECTED ERRORS -

MEMORY - 2 LOGIC - 4
MEMORY + 6 LOGIC + 0

TOTAL LINES OF CODE - 63
TOTAL NUMBER OF STATEMENTS - 55
TOTAL HAISTEAD LENGTH - 342
TOTAL COMPLEXITY - 0
TOTAL NUMBER OF COMPILATIONS - 14

Figure 18. Subsystem Status Section of Subsystem
and Program Status Report

62

- I~-

-5:__,..

—

-—

04

design status (as opposed to test status) is given . This information
includes:

1. dates of first and last precompilations ,

2. dates of first and last compilations.

3. number of compilations ,

4. data measures calculated by the Precompiler , to wit:

a. number of statements,

b. lines of code,

c. Halstead length ,

d. complexity .

For each subsystem in the system, the above information is
presented for each of its programs which have been entered into the
data base. A summary for that subsystem is then printed, giving the
fi rst and last precompilation and compilation dates for any program
in the subsystem, the total number of compilations for the subsystem,
and the total number of statements, lines of code, Haistead length
and complexity for the subsystem. If no programs for this subsystem
have been entered into the data base, i.e., no programs have been
precompiled or compiled, a message is printed to that effect. This
forma t is repeated for every subsystem in the data base .

Figure 19 below shows the Program Status for two subsystems .
“SUBSYSTE M-A” has had programs entered into the data base, while
“SUBSYSTEM-B ” has had no programs entered.

63

I-

-~~~~.~~l~~~ -- - —-:
~~

-- — -—-— --- -— -- - - 5— - - - - --—-------_ _ _ _ _ _ _ _

— 1 J~~~~~~ - ~~~•
- - - -~~-5 • - --

WI

~IMON REPORT #4 -- PROJECT-A PROGRAM STATUS ON 04/06/75 PAGE lB

PROGRAM PRECOMPILATION COMPILATION STMT LINE HAL-
NAME FIRST LAST FIRST LAST COUNT COUNT COUNT STEAD

SUBSYSTEM - SUBSYSTEM-A

AA 032175 032675 032175 032675 6 16 23 180

BB 032275 032175 032575 032875 10 48 69 215

ZZ 040175 040475 1 27 38 101

SUMMARY FOR SUBSYSTEM-A

032175 040175 032175 040475 17 91 130 496

SUBSYSTEM - SUBSYSTEM-B

*******NO PROGRAMS HAVE BEEN COMPILED FOR THIS SUBSYSTEM*****

Figure 19. Program Status Section of Subsystem
and Program Status Report

ERRORS AND DISCREPANCIES REPORT SPECIFI CATIONS

Introduction

The fifth Simon report deals with errors and discrepancies . An
error Is any single mistake (however often repeated) which causes a

• program to behave in a manner contradictory to its specifications. A
discrepancy is any inconsistency found in the source code , operating
system or compiler diagnosti cs , or test results which is not
inmiedlately diagnosed. It may or may not be found to be due to an
error.

64

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

a ~~~~~~~~~~~~~~~ ----- ---—--~~~- 
- • •~~~~~~~~~~_

_i 
•• -.-- - _ i~-~

._ 
-

~~~~~

--• • ---
-

There are three parts to the Error and Discrepancy Report: Error
and Discrepancy Summary , Discrepancy Summary , and Errors Reported
Over Time.

Error and Discrepancy Summary

The first part of the report , Error and Discrepancy Summary, is
based directly on the error and discrepancy forms used in the
Transactor subsystem and is a summary of all such forms entered into
the data base. First , a summa ry of the error forms is given , w hich
gives for each entry on the error form a summation of its counts
over all error forms entered into the data base. A similar summary
of discrepancy information follows , based on all discrepancy forms
entered into the data base. Finally, the fi rst part of this report
contains a printout of the descri ptions of all outstanding
discrepancies , i.e. all discrepancies which have not yet been
diagnosed. These descriptions are also taken from the discrepancy
forms that have been entered in the data base. A sample of the
first part of the Error and Discrepancy Report is found in Figure 20.

Summary of Discrepancy Information

The second part of this report, Summary of Discrepancy
Information , gives a projection of the project completion date ,
based on the error and discrepancy forms entered into the data base.
The algori thm used is a least squares regression producing two lines ,
one plotting all discrepancies found against time and one plotting
resolved discrepancies against time . The intersecti on of these
two lines is then projected as the date on which there wi l l be no
outstanding discrepancies ; this is an approximation of the project
completion date . Two approximations are made, one using only
discrepancies and one using both discrepancies and errors ,
consi dering errors as resolved discrepancies . Figure 21 shows an
example of this section of the Error and Discrepancy Report.

Errors Reported Over Time
The final part of the Error and Discrepancy Report is called

Errors Reported Over Time. This section gives a breakout of errors
by subsystem over time . A row entitled “iNTERFACE ” is also included -

and shows Interface errors over time . A sample of this section
is gi ven below in Figure 22.

65

-

-
~~~~~~~~

— - -5 ------~ ---
_ z

~~~~ :- ~~~~~~~~~~~~~~~~~~~~~~ 

-. - - i ,

- 5 - _ _ - • - -

ri~
SIMON REPORT V 042275

ERROR AND DISCREPANCY SUMMARY

ERRORS

SU?44ARY OF ERROR INFORMATION -

HOW MANIFESTED -

DISCREPANCY FORMS 13

DESK CHECKING 9

CODE READING 13

COMPILER DIAGNOSTICS 58

OTHER SYSTEM DIAGNOSTICS 0

TEST RESULTS 16

OTHER 7

HOW DIAGNOSED -

OBViOUS 69
-

LOGIC ANALYSIS 32

INSTRUMENTATION 6

OTHER 9

MENTAL LEVEL -

•IOT PROGRA?’~IER 11

MOTOR 14

MEMORY - 50

Figure 20. Error and Discrepancy Summary
Section of Errors and Disc repancies Report

66

IL ~~~~~~~~~~~~~~~~~

• . ~~ - -~-~--—
_
~~~.‘—‘~~~~~~~-

ME!’ORY + 1 7

LOGIC - 19

LOGIC + 5

NUMBER OF OCCURRENCES -

1 -  74

2 - 10

3 -  8

4- 5

5- 2

6 - 1 0  11

11 - 15 2

16-20 2

OVER 2O - 2

WHEN OCCURRED -

ORIGINA L CODE 95

MAKING CHANGE 7

ADDING INSTRUMENTATION 4

CORRECTING ERROR 7

OTHER 3

Figure 20. Error and Discrepancy Summary
Section of Errors and Discrepancies Report (Cont.)

67

— 

-5- — 

-

~~~~~ —— —-5

• - .

—— ~~~~~~~
-_

~~

SIMON REPORT V 042275

ERROR AND DISCREPANCY SUMMARY

DISCREPANCIES

SUMMARY OF DISCREPANCY INFORMATION -

HOW FOUND -

CODE READING 2

SYSTEM DIAGNOSTIC 6

TEST RESULTS 14

OTHER 2

DISPOSITION -

ERRORS 9

LAPSE IN COMMUNICATION 8

NOT DISCREPANCY 3

OTHER 1

SIMON REPORT V 042275

ERROR AND DISCREPANCY SUMMARY

DESCRIPTIONS OF OUTSTANDING DISCREPANCIES

021975 TRUNCATED ZEROS COMING OUT OF REPORT-2

030375 PRINTS RESOURCES HEADING WHEN SHOULDN’T

041175 DISAGREE MENT OVER NAMES OF TOKEN TYPES

Figure 20. Error and Discrepancy Summary
Section of Errors and Discrepancies Report (Concl.)

68

-

~~
I-_

— - —

~~

-- --

-

~~~

_-——- ~~~~~~1~~z’~~~



SIMON REPORT V 042375

DISCREPANCY SUMMARY

NUMBER OF OUTSTANDING DISCRE PANCIES 13

NUMBER OF RESOLVED DISCRE PANCIES 21

TOTAL NUMBER OF DISCREPANCIES 34

PROJECTED CATCH-UP DATE

1 . USING DISCREPANCIES ONLY 03-21-77

2. USING DISCREPANCIES AND ERRORS 03-10-77

(CONSIDERING ERRORS AS RESOLVED

DISCREPANCIES)

Figure 21. Discrepancy Summary Section of
Errors and Discrepancies Report

SIMON REPORT V 042275

ERRORS REPORTED OVER TIME

ATTRIBUTED TO 011475 012875 021175

AA 3 31 23

RB 2 5 23

CC 15

INTERFACE 1 11 2

ZZ 6 10

Figure 22. Errors Peported Over Time
Section of Errors and Discrepancies Report

69



--5

SECTION III
EXAMPLES OF USE*

SIMON’S GENERAL ROLE

An important aspect of any system is the human interface, i.e.
how people interact with and use a system to accomplish goals. In
order to illustrate this aspect, this section presents a few
scenarios of possible uses of Simon by managers and programmers
engaged in the everyday business of producing software. It must be
borne in mind that Simon in no sense automates management or
programming as such , but rather is a tool that collects information
and presents it to the user in reports . The exact impl ications of
the reported information are still very much left up to the users
themselves , who must bri ng to the reports their own subjective
knowledge of how a project is running. Thus, even though the cases
presented below are typical of th~ smaller problems faced by

• programmers and managers in a project, their solutions will undoubtedly
vary greatly from person to person and circumstance to circumstance.

GLOBAL ITEM CHANGES

The first example of a use of Simon deals with the relativel y
frequent task of changing a shared variable in a common. Suppose
there is such a vari able XYZ referenced by severa l programs that
needs to be changed from a half word to a ful l word declaration . It
is likely that the programmer responsible for the XYZ change
will rot know of all instances of its use and could therefore over-
look the recompilation of some programs. However, by simpl y
looking up the variable in the common items section of the System
Structure Report , he would have an exhaustive listing of all affected
programs and so be able to carry out the task ~nore auicklv and
thoroughly, and moreover be able to gauge in advance the required
amount of effort for a proposed change. The cross-reference listings
for macros and files can obviously be used in a similar way .

SYSTEM STRUCTURE CONSIDERATIONS

Another feature of the System Structure report is the Subsystem
Interaction matri x , of which Figure 10 is an example. This matrix
affords an overview of the structure of a developing system.
*A more detailed paper on th is topic by two of the authors (Fleischer anc’
Spitler) is being prepared for separate publication .

70

• 
• - 

- -T~F - • -
~

- . •  
- • ~~~~~~~~~~~~~~~~~~~ “~~~~~~



--5 -  ______

Since i t is produced automatically from the compiler output, i t
can be used to check the structure of the built system with that of
its design. It can also guide in making up overlays or in planning
changes to the system or major components . It can also be used to
enforce system design disciplines; for example , If a subsystem is
defined to correspond to a “level of abstraction ,” this matrix can
be used to see where data sharing or unwarranted calls take place.

TROUBLE SPOTTING

To facilitate the understanding of this and the next case, we
firs t present a scenario of an operating environment of a project
using Simon : To initialize the project , the manager sets up the
data base and puts into it the initial budget and data describin c’
the pro gra mme rs ’ schedules and subsystems. The programmers enter
their initial estimates for their assigned subsystems . P,s the project
progresses , actual expenditures (actuals) are put into the da ta base by

• the programmers on a regular basis , presumably at the end of a
reporting period. Yhenever necessary , each programmer also updates
his estimates of resource expenditures required to complete his
assi gned subsystem . Also , error reports , interface summaries ,
discre pancy reports etc. are entered as they occur. The manager
receives back the five reports at least once every reporting
period. As needed , ‘le makes updates to programmer assignments
throu ghou t the project.

Simon ’ s reports can give several indications of potential
problems that might be developing in a software project. As stated
above , a programmer that realizes a subsystem will requi re more

— work than previously anticipated should make chan ges as needed to
his previous estimates in the data base. Assuming that a manager
w i l l  schedule as many programme r hours on a subsystem as was most
recently estimated by the programmer, the updating of an estimate
by a programmer will manifest itself as an exception in the Project
Schedules report for the manager the next time the report is run .
Figure 16 gives such an exception report. Of course , huma n
failings, e.g. not to bother updatin q, and perennial optimi sm combire
to make this source of potential warning data much less than
adequate all by i tself.

Othe r indications of problems can be found by comparing a
programmer ’s schedule with the Program and Subsystem Status report.
For example , if a subsystem should shortly be completed according to
a programme r ’s schedule and yet only 20% of the modules have even
had clean compilations as indicated on the Subsystem Status report,
then the mana ger is alerted to do some investigatinq on the exact

71

- — -~~~~~~~~~~~~“

~~1 ~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -



_ _ _

status of the subsystem. In looking for other problems a manager
coul d check :

the actual present expenditures on a subsystem versus
the programmer ’s estimated expenditures ;

the total project expenditures versus the project’s
budgeted expenditures ;

the outstand ing discrepancies (problems or unexpected
results for which the cause hasn ’t yet been determ ined)
that still exist;

projected completion dates that are computed automatically
from discrepancy data ;

complexity or length vs . that of comparable programs or
subsystems or the manager ’s estimate of a reasonable
va lue ;

fre quency of com pi la t i on;

errors ~nd their distributi on over time ;

and many other similar indicators that , in conjunction
wi th a certain amount of management expertise , should
give a fairly accurate picture of the present status of
a subsyster’ or project.

RESCHEDUL ING

If from this information , the manager decides to reschedule a
su bsystem , Simon performs consistency and completeness checks on
the new schedule . The process of produc ing a consistent schedule
is iterative . The manager prepares and enters updates to the
schedule after wh i ch he runs the Project Schedules report . From the
report , he receives exception reports on problems in the new
;—:~ edu1 e. Figures 15-17 give examples of the three exception
reports. Accordingly he makes whatever necessary corrections to
t~e schedule and again runs the report , etc. In a reasonable
situation , th i’ process should converge toward a complete , consis tent ,
revised schedule for the project. In the process o~ working out
~~~~~ sc he dule, the manager has been able to see fi rst hand and cope
.~~ ‘P’ the problems of coordinati ng a highl y interdependent group

~‘‘-‘~t . 5i-- r~r provides at a id by handling much of the comp lex detail.

72

—~~~~~~
- -

~~~
~—



_ -

CHANGES IN SPECS

Another problem that SIMON helps solve is that of changing
part of the specifi cation of a system. A major part of the
difficulty is often in eva l uating the impact of the suggested
change , as may be needed to judge the relative merits of the change
vs. the status quo as well as to understand any other trade offs that
might be made .

The evaluation often requires intimate knowledge of the system.
In some cases , the information cuts across several people ’s work
and wouldn ’t ordinarily be available from a single source. Under
those circumstances , the global view of a project that Simon affords
the manager can obviously be helpful .

If the change requires modifying existing subsystems and
structures, the manager may profitably refer to the Project Structure
information , such as the Subsystem Interaction Matri x in the System
Structure Report to see what subsystem interactions will be affected,
or the individua l program interactions including cafling and cafled
programs , and global data and files references.

Depending upon whether the manager needs to add assignments or
just change some old ones , Simon can help determine , as previously
discussed , the scheduling ramifications of the proposed changes. Then ,
depending on how he evaluates the impact such a schedule will have
on the project , he can decide whether or not the proposed change is
acceptable .

- k - -- - • --. •.- - • - -—.—--— — - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - ~~ ~~~~~~~~~~~ 

-

- ----~~

r

SECTION IV

EXTENSIONS TO SIMON

COMPLEXITY MEASURE

One motivation for the design of Simon is the provision to the
manager of early warnings of potential trouble in the system design
and implementation process. Although Simon cannot check program
code for correctness, it can report to the manager several kinds of
statistics generated from the source code itself. The degree to
which these statistics deviate from their expected values can give
an indication of unusually complex or inefficient coding or of

• inadequate progress in coding.

Several statistics are generated from program source code by the
prototype Simon : number of program lines , number of program
statements , and a modified token count (the “Ha l stead” count
[Haistead , 1972]). These measures are fairly simple and do not
completely agree wi th intuitive notions of what attributes of a
program affect its complexity or com prehensibility . Thus a new
measure of psychol ugical complexity was developed at MITRE
[Sullivan , 1973, Bell and Sullivan , 1974]. This measure is deri ved
from path counts after a partitioning of the program graph (logical
flowchart) into minima l 1—in , 1—out subgraphs; i t tends to be at a
minimum for programs that are “structured” in the classical sense
of having been generated by composition of the three “Di jkstra ”
control forms. Such a measure should gi ve h~th the programme and
the manager a quick and more relevant indicat ion of how complex , and
thus how difficult to test and how prone to errors , a module is likel y
to be.

An experimental program to impl ement the complexity-measuring
algorithm has already been written and tested in PL/l. The prototype
Simon has been coded to facilitate the quick incorporation of a
JOVIAL coded versi on of the algorithm. The JOVIAL preprocessor calls
a stub (dumy) module that needs only to be replaced by the actual
measurement algor ithm. The data base maintenance program , the data
base itself , and the Subsystem and Program Status report already
provide and maintain a field for the complexity value . Thus the
implementation of this complexity measure for Simon is essentially

~‘e re-coding of the measurement algorithm in JOVIAL .

74

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



TESTING-TOOL INTERFACE

The prototype Simon system is des igned to monitor the enti re
program production process, but the prototype only provides truly
automatic monitoring of the coding phase. This monitoring is done
through the JOVIAL pre-processor and post-processor tools. A
worthwhile extension to Simon would be the inclusion of a tool for
automatic monitoring of the testing phase.

Such a testing tool has been developed for JOVIAL programs. The
JOVIAL Automatic Verifi cation System, or JAYS , provides code analysis ,
code instrumentation , testcase coverage analysis , and testcase
generation guidance.* J~VS could be integrated with Simon in the
sense that Simon could automatically record some of the outputs of
JAVS and incorporate those outputs or deri ved measures into Simon ’s
reports .

Simon ’s “Subsystem and Program Status ” report coul d be augmented
with fields that express the degree to which JAVS has been applied
and the results of its applications. Simon could indicate whether
a module had been entered into the JAVS data base, and whether the
anal ysis step had been run for that module. An aggregate percentage
of the modules so processed could be reported for the subsystem.
Similarly, status information on other major mi l estones of JAYS use,
such as whether the instrumented code has been generated , executed,
or analyzed , could also be provi ded in that report.

Some of the most important statistics generated by JAYS could
also be reported as part of the “Subsystem and Pro g ram Status . ”
These might include : the percentage of decision-to-decision (D-D)
paths covered , the number of instrumented tests, and the number of
executions. The “complexity ” computed by JAyS could also be reported,
to supplement and compare with the abovementioned other measures of
that same elus ive quality .

Simon coul d also do other things with the information produced
by JAyS. If histori cal values of such variables as “percentage of
D-D path coverage ” are kept, projections of t i me to completion could
be made . It might also be possible to use JAYS-deri ved “reach
sequence ” information in conjunction with Simon ’s global data

*Due to a lack of documentation on JAyS at present, planning for
integration with Simon is based on the available documentation for
RXVP. the similar Fortran-based automatic verification system.
JAVS and RXVP were developed by General Research Corporation .

75



reference information to produce information on data item
interdependencies. Simon ’s error and discrepancy records could
be automatically updated to reflect errors and warnings detected
by JAYS ’ module static analysis step.

Simon could be interfaced with JAVS using the same method in
which it interfaces to the JOV IAL (JOCIT) compiler. A JAYS “post-
processor” program could scan the JAVS report output to extract
the desi red data. This program could be required to be run after
certain JAVS activities. An alternate method of interfacing would
be for Simon to directly access the JAYS data base , if all the
required information is available there. Such an approach , howeve r,
would be very sensitive to internal changes in JAyS.

SCHEDULING AUTOMATION

The prototype Simon maintains comprehensive schedule information
in its data base. The primary use made of this information is its
display in the “Project Schedules ” report and the proj ections of
confl icts or overruns. The schedules themselves , however , could be
deri ved automatically by an extension to Simon . The program estimates ,
testing dependencies , budget, and other resource-limiting data
(e.g., number of terminals, specific personnel strengths or
responsibilities) could be mechani cally combined , using a PERT—chartin g
algorithm , into a consistent development schedule. This schedule
could then be displ ayed in a variety of ways, such as in tabular
form (for printed output) or graphical form (using a plotter or
CRT).

An automatic scheduling system could give further assistance to
a manager in a number of ways. Several alternate schedules could be
produced,for example , and the user could choose the “optimal” (by any
criteria) one. The system coul d i dentify the “critical path” and
describe the scheduling factors to wh ich the schedule is most
sensitive . Also , the automatic scheduler coul d assist the manager in
an ongoing project in the task of revising schedules due to
unexpected difficul ties , budget changes , or personnel changes .

An automati c scheduling extension to Simon might be fa i r l y
easy to provide. Standarr~ PERT packages are already available for
use in major computer languages and systems. Simon coul d interface
to such a package with the addition of a module to transfer
information kept in the Simon data base to the format required by the
PERT package.

l 

- -  

- 

- 

- 
-



AUTOMATIC COLLECTION OF ACCO UNTING DATA

The prototype Simon requires that a considerable volume of data
on actua l expenditures of resour ces (com puter and personnel ) be
entered manually. This data is used in the “Estimates vs. Actuals ”
and “Project Schedules ” report.~, and forms part of the essential coreof data needed for clear and current project visibility . Some of
this data on “actuals ” is directly deri vable from information
produced or maintained on the development computer facility , and
thus it could be collected automatically in a basically straightforward
manner. The data available in this fashion are program execution
resources (and thus computer charges ) and current file space
requirements . Such automatic collection would not only reduce the
level of cleri cal effort needed, but a l so ensure more accura te and
timely data.

The Honeywel l GCOS accounti ng statistics file [Honeywel l 71] is
the source of program execution data . The data stored on this file
do not include the actual doll ar costs , but rather the system
resource usage from which the costs can be computed . One or more
records is produced for each GCOS activity execution .

One diffi cul ty in using this file is that GCOS activities are
identified only by job number (SNUMB ) and activity number. Thus a
method is needed to establish the correspondence between subsystems
and project phase (i.e., design/test) and the SNUMB and activity . One
solution is to provide an extra activity to be executed immediately
prior to all activities to be recorded by Simou . This extra activity
could record both tne subsystem and phase (provided by the user as an
input) and the SNUMB and activity (obtained from GCOS) in a file to be
used later by Simon . When Simon processes the accounting file , it
will then be able to identify the relevant data records . Probably
the only statistics Simon would produce from a scan of the accounting
data would be the computer dollar charges (computed using the
facility ’s charging algori thm) broken down by subsystem and phase.

Current file storage requirements can be obtained from the
File System ’s CLIST function . This produces , among other data , the
storage space occupied by each file. If an appropriate naming
convention Is devi sed and used , or separate subcatalogs are
established , the correspondence between file names and subsystem,
phase (i.e., design /test), and duration (i.e., permanent/temporary )
could be determined by Simon .

77

• — ‘ — •-—~ -—~~~————— - - -  — - 
~

_
•- _ ‘ _  -- -J~~~ rL~• • - ---



_ 

- -

INTERACTIVE QUERY CAPABILITY

The addition of an interactive query capability to the
prototype Simon would allow the user to produce custom-designed
reports derived from the most recent contents of the data base. For
example, although Simon already produces two reports that list
programmers within subsystem assigned to them, there is no report
giving programmers followed by their subsystem assignments. Such a
report could be added by the user of Simon if a sui table query
system were available. An interactive query system could also be
used to obtain current information from the data base between
reporting periods. For example, a programmer mi ght want to check
the list of external references f rom a module to determine the
effects of a recent change. Or a manager might want a most up-to-date
list of outstanding errors (discrepancies).

An interactive query sys tem for Simon could take one of two
forms . One form woul d be a completely general query capability , abl e
to produce a wi de var iety of reports and access any data in the data
base in any fashion . Such a capability would allow the user great
flexibility, but would probably be harder to learn and more
cumbersome to use than a more specialized query system. The more
speciali zed form of query capability would be one in which the user
can only select from a limi ted set of preprogrammed reports or
questions. 5 uch a system coul d be customized highly to the Simon
environment and woul d be essentially a fast—response extension to
the current line of reports.

A generalized query system would be costly to build , but the
lOS data management system used to imp lement the prototype -3tem
already provides an interactive query program. This program is
quite general ; it allows pre-progranined queries to be recalled for
execu tion, and can even do simple accounting for reports. Thus an
interactive query system for Simon could be developed quite readily
using the IDS query system.

ON-LINE DATA INPUT

A User ’s rel iance on S imon ’s reports requi res the timely and
correct input of changes and additions to manually-collected data.
Assignments and estimates in the data base should reflect all
recent changes , or S imon ’s listings and projections will not be
dependable. Actual resource usage and error incidents should be
recorded when they occur. Thus Simon ’s manual input functions should
be as easy and foolproof as possible to use.

78



-5——— - — - —  - -

Curren tly, these functions are performed by the filling of forms
tha t are later keypunched. One way to facilitate manual input is to
provide an on— line data input capability . A programmer should be able
to walk up to a terminal and be guided through the process of entering
actuals and estimates. Likewise , a manager shoul d be able to make
changes to schedules or assignments interactively. In both cases,
Simon should prompt the user for all required input. The user should
not be forced to remember fixed input formats , and shoul d be able to
omit specifying i tems that are not required.

An interacti ve input feature can be added to Simon rather
easily. For each transacti on type, a time—sharing program can be
written to prompt the user , accept information from the terminal ,
and format the data into a batch transaction . That transaction
could then be either saved for subsequent background processing or
i mmediately processed by Simon ’s transactor. A pre-prototype version
of such an input program was written and used during the development
of Simon to enter test data into the data base.

On-line , interactive data input would be most convenient if
integrated with the query system discussed above. This would allow
the user to examine the data base before updates are made , and thus
coul d furt her contribute to convenience and accuracy .

GRAPHIC OUTP UT

Reports can often be made more effective through the graphical
presentation of data. ‘luch of the information presented in tabular
form by the prototype Simon , such as schedules , testinq interdependencies ,
and ass i gnments , mi ght be better presented through the use of bar
graph ; or network charts. The resul ts of analyses done by Simon such
as the extrapolation of error histories or the projections of overruns ,
could be augmented by line graphs which would give a better feel for the
trends and the magnitudes of the projections.

Graphic al output can be added to the prototype Simon by
inserting calls to plotter (or CR1 driver) subroutines into the
reporting programs. In most cases the data required is already
processed in producing the current reports.

w~M E MGI 9E E RI N G 
- 

- 
-

‘nde r the term “huma n engineering, ” as used here i n , is
~ncl uded the adjusting of system interfaces and procedures to fit-

~e~ter the actual e,nvironment of the users . This migh t invo l ve , - as

79 
- 

- - 

-

V ~

—  — — —-- 
-— —5—-- ..

I ~~~~~~ - 

- 

-



• _: _ _

an example , the substitution of “weeks of full-time effort” for
“person—hours ” as the input form for estimates. Another example
woul d be the reporting of original estimates alongside of current
estimates in the “Estimates vs. Actuals ” report.

It is really not possible at this point to detail the smal l
changes that might be needed to make Simon into a completely
comfortable tool for a given programming and project envi ronment.
Differences in terminology , conflicts of procedure, and
difficulties in interpreting or correlating reports can only be
determined through an examination 0-f the actual use of Simon in a
realistic envi ronment. It should be assumed that, as with most
other man-machine computer systems, some such problems will surely
appear.

SENSITIVITY ANALY SIS
The prototype Simon is capable of making projections and

recognizing certain conflicts based on the content of its data base.
When the manager (or programmer) is contempl ating changes to the
data base, for example in assignments, schedules, or estimates , the
Simon system should , on request, present the effects of those
changes on system projections before those changes are made
permanent. At present, if a subsequent report shows an entered
change to be undesirable , the change must be undone by entering
an inverse change . A procedure for making temporary or tentative
data base updates would help ease the process of “experimenting ”
wi th Simon .

DESIGN LANGUAGE/ANALYZER INTERFACE

Simon is designed to monitor both the designing and testing of
computer programs, and yet Simon ’s automati c invol vement wi th design
now begins at the fairly late stage of code compilation .
Traditi onally, program design has been an unstructured , ad hoc
process. In recent years , however, specification and design
languages have been developed to formalize the process of detailed
software des ign. Language analyzers have also been des igned to
perform various kinds of verification , checking, and statistics
gathering on the design expressed In the language .

- An example of one such design language and analyzer is the
User Requiremen ts Language/User Requirements Analyzer (URL/URA )

- developed at the University of Michigan [Hershey, Telchroew et al ,
1974). This system allows a high-level system design to be expressed

• 80

11 ~t
--- —-

~ - 

.±-- - -
:~~~~~~~~~~~r

- -
~~~~~~~ 

- • -

4-

in terms of inputs , outputs , and processing steps. The l anguage
analyzer checks the specification for consistency and completeness ,
and produces various reports concerning the system design . This
design statement can then be used to guide the actual coding of the
programs for the system.

Simon could be integrated with a system such as URL/URA . Such
a coupling would allow earlier tracking of the design process, and
would force an increase in the discipline of design over current ad
hoc methods . Simon could keep track of the number of modules , files ,
inputs , and outputs that are defined. Simon could also collect and
report on errors and inconsistencies observed by URL/URA. Later on
in the project, Simon could compare the system—as—designed with the
systeni-as-~ui l t , and report any discrepancies .

It is perhaps premature to specify just how such a system
would be physically interfaced to Simon , hut the discussion under
TESTING-TOOL INTERFACE , above , suggests some likely approaches.

INTEGRATION OF PRECOMPILER , COMPILER , AND POSTCOMP ILER

The prototype Simon uses both a pre-compilation pass and a post-
compilation pass over the source coding to gather the information
needed for its reports . All this data could be more efficiently
gathered by the compiler (JOCIT) itself if suitable modifications
were made to the compiler. This would eliminate the extra syntax
scan required by the precompiler , and allow direct access to the
symbol table created by the compiler. Not only would this reduce
the cost of using Simon , but -it would ease problems of coordinating
changes among the tools , whether due to language specifi cation
changes or relatively minor improvement such as in output formats.

l iP-
31/ 82

5* • - ~~~~~~~~~~~~~~~~~~~ -.~~~ — — —
- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

- - - -
~~~

- - -

_ _  _ _ _  - 5*— -  _ _

- .p— ,



- -

APPEN flI~ I

DATA BASE DESIGN

INT R ODUCTION

The log ica l design of the current data base is presented here
as a sup plement to the specifications and as an aid to understandinq
the mechan ization of the specified functions.

The Simon data base i s a hierarchical data base. The major
divisions are called records ; there are five records:

1. the Project record , which contains data relevan t to
the project as a whole;

2. the Person record , ~th i ch consists of programmer
ass i gnments; there is one Person record for every
programmer (managers are not explicitly
represented in the Simon data base);

3. the Subsystem record , one for each subsystem in
the system ;

4. the lodule record , one for each module (i .e., single
p rogram , or un it of compilation) in the system;

5. the Error-disc-inf record, which contains all
information relating to errors and discepancies .

Each of these records contains several data fields , each of
which may or may not be divided further into fields , and so on . Any
field which contains severa l other fields is called a “group item”;
all other fields are “elementary items ” or simply “items .” A group
i tem and all its sub-fields may be repeated several times wi thin a
record ; such a group item is called a “repeating group. ” For
example , each programmer will in general have several assignments ;
therefore, under the Person record the “assignments ” field is a
repeating group.

The logical data base design follows. Group i tems are easily
noted as having severa l (indented) i tems listed beneath them.
Repeating groups are noted as such. The data type of each elementary
i tem is listed. Finally, such explanatory notes as are deemed
necessary or helpful are included at the end of each record
description . 

-

83

— ~~~~~~~~~~~~ 
-i~~T1 ~~~~~~~~~ 

—

___-5~~~~~~~~~~~~~~~
• 

-



4- —- ----5——-—- - - -  - - - -  
- 

- - -

PROJECT RECORD

A. project_name (character string)

B. start_date_gregorian (character string)

C. start date jul i an (number)

0. stop_date (character string)

E. per i od_of_time_len gth (number)

F. resource_al locati on

1. number_of_terminals (number)

2. filespace (number)

G. funding_allocation

1. total_allocated

a. dollars

i . computer_dollars (number)

ii. other_dollars (number)

b. person hours (number)

2. used_to_date

a. date (character string)

b. dollars

i. computer_doll ars (number)

ii. other_dollars (number)

c. person_hours (number)

Notes:

i. stop_date = time the project must stop or, if no stop
date , then Dec . 31, 1999 .

84

• - -
~i~

- - ~~~~~~~~~~~~~~~~~~
? - ‘

~~~~~~~~~~~~~~~~~~~~~~~~~


I- - - • - -
-
~~

ii . units of i tems :

a . dollars for: compute r_dol la rs

other dol l ars

b. days for period of t ime lengt h

c. blocks for files pace

_

_
_

_ _

85

_ _ _

PERSON RECORD

A . as_of_date (number)

B . person_name (character string)

C. assignments (repeating group)

1. subsystem_name (character :tring)

2. test_design_indicator (one character code)

3. period_of_time_designator (number)

4. total_hours_worked (number)

Notes:

i. period assignments cover past and projected ; past are
actuals , projected are estimates ; whether a period is
past or projected is determined using the as_of_da te.

ii. peri od of_time_ck~si gnator contains the start date for
the period of time of the assignment.

86

- - v - _________ -
—-—-5------— — -- —- — -5. -%.~~~~ % ~—~~- -- --- -

¼ • ~~~~
AD—4031 806 MITRE CORP SEOFORD MASS F~ G 9/2-‘ SPECIFICATIONS FOR SIMON. A SOFTWARE IMPLEMENTATION MONITOR.(U)
UNCLASSIFIED

SEP 76 A £ CORRISAN. R .1 FLEISCHER

2 L 2
AD __________

A03J806 ___________

_ _

flhj~~~
_ _

END

R L M E D

r
_ _ _ _ _ _ _ _

— - . ~~~~~~~~~~~~~~~~~~~~~~~~~~

/

SUBSYSTEM RECORD

A. subsystem name (character string)

B. date_of_subsystem definition (character string)

C. estimates

1. number_of_programs_inclu ded (number)
2. core_space (number)

3. person_hours_desIgn (number)

4. person_hours_test (number)
5. terminai jiours_design (number)
6. termInal_hours_test (number)
7. computer_dollars_desIgn (number)
8. computer_dollars_test (number)
9. other_dollars (number)

10. file_space_desIgn
a. temporary (number)
b. permanent (number)

11. file space test

a. temporary (number)
b. permanent (number)

0. actuals (repeating group)
1. period_of_tIme_start date (character string)

* 2. sane as C.2
3. same as C.3

87

— ~~~~

-

~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.--—- --— —- -“.‘-- .-.- -.-. - .- —

4. same as C.4

t

12. same as C.12
E. subsystems_ne ded_to_cocnpIete testing (repeating group)

1. subsystem_name (character strlnq)

2. relationshIp (one character code)

3. requIred status (one character code)
F. driver_feasible flag (boolean)
6. design_done_flag (one character code)

H. test_done flag (one character code)

I. test_plan_done_flag (one character code)
J. docianentatlon done flag (one character code)
K. number_of_programs included (number)
1. rnJnber_of_programs_compi led_with_no_errors (nLanbe r)
M. number_of_programs finished wi th testing (number)
N. programs_Included (repeating group)

1. program_id (pointer)
0. total_errors_charged

1. compI1er_detected_.rv.~rs (number)
2. non_compiler_detected erro”s (number)

1. memory_+ (number)
2. inemory_- (number)

88
-

- — I

A

- . ~~~~~~~~~~~~~
— :L_____

~. - . .-

-

— T~~~~~~~ ~~~~~~~~~~ _ _ _ _ _ _ _

*


~~~~~~~~.*.___

- - , - •~~~•. - • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -..

3. Ioglc_+ (number)

4. logic_- (number)

Notes:

i. core_space : measured in units of 1024 words .

11. relationship: 1 — called flag Is ‘CD’
2 - calling flag is ‘CG ’
3 - shares data flag is ‘SD ’

ill, requIred_status : 1 - totally complete flag is 1T’
2 - all stubs can be used flag is ‘S’

lv. test_plan_done_flag: 1 - not present flag Is ‘N’
2 - complete flag Is ‘Y’

v. documentatlon_done_clag: 1 - not done flag is ‘N’
2 - complete flag Is ‘V

89

—
-

_ _ _

_ _ _ _ _ _

MODUL E RECORD

A. module_name (character string)

B. real_or_coinpo~J flag (character)

C. subsystem_name (character string)

D. first_precompilatlon_date (number)
E. last_precompilatlon_date (number)
F. first_compllation_date (number) -r

46. last_compilatlon_date (number)
H. number_of_compilations (number)
I. Hai stead length (number)
J C2_Jength (number)

K. lines_of_code (number)

L. number_of_statements (number)
H. modules_called (repeating group)

1. program_name (character string)

N. coninons_variables (repeating group) :~~

1. common_name (character string)
2. variable_name (character string)
3. type (one character code)
4. set_used (one character code)

0. files (repeating group)
.

-

-

1. file_name (character string)
2. type (one character code)

90

-~~~
-

~~~~~~~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~
. -~~-.-—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I 
-

,

P. defines_referenced (repeating group)

1. define_strIng_name (character string)
- Q. fIrst_clean_compile_date (number)

R. error_count_tn_test_complle (number)
• S. status_of_testing (one character code)

1. testing_complete_date (number)
U. errors_charged (number)

Notes:

1. status_of_testIng: 1 - not_started flag is ‘N’
2 - partially_complete flag Is ‘P’

I 3 - complete flag is ‘T’

91

~~~ __


- *~~~~~~~~~~~~~ .- -- , ,*~~~- _ _

ERROR-DISC-INF RECORD
A. errors_sys tem (number)
B. errors_operating_system (number)
C. how_manifested

1. classes 1 through 7 (number)
0. how_diagnosed

1. classes 1 through 4 (number)
E. mental_level

1. classes 1 through 6 (number)
F. number_of_occurrences

1. classes 1 through 9 (number)
G. when_occurred

1. classes 1 through 5 (number)
H. discrepancies how found

• 1. classes 1 through 4 (number)
I. dlsposltion_of_discrepancjes

—
1. classes 1 through 4 (number)

J. outstandlng_dlscrepencjes (repeating group)
1. discrepancy_ID (character string)
2. descriptIon (character string)

K. errors_and_dIscrepancies by_period of time (repeating group)
1. pot_Id (mater)
2. errors_not_relsted_to~~1screpanc f es (mater)

92

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. ,.. . — —  ~~~~~~~~~~~~~~~~~~ 

.
i~ - 

.

.~~

— 

— -* I ~~I* ~ fi .~ •U9i 

~~~~~ ~J-_ — .—-— --—-- -


- -
—

.• -
-.— C•--.•

~

•

~

—~~~~-- - -—- .-—.-—---~: -L__ . - - — — . — —

3. discrepancies reported (number)

4. discrepancIes_resolved (number)

5. errors_by_subsystem_by_period_of_time (repeating group)

a. subsystem_name_in_which_error_occurred (number)

b. number_of_errors_found (number)

- 4j ~:

- ‘ — •

A~~~~~~~ - •~.. —_ __~_ . -

APPENDIX II
TRANSACTION DESCRIPTIONS

GENERAL NOTES

Any number of s imi lar or dissimi lar transact ions may be
included In the single Input file to the Transaction Processor. In
all cases, the listed inputs are those that are required for asingle transaction . The output file from any run contains a jobsummary and any error messages relating to the input data.

DELETE MODULE

Input

1. the name of the module to be deleted

Function

1. deletes a module from the data base

2. updates module information in the containing
subsystem

DELETE PROGRAMMER ASS IGNMENT
Input

1. name of the programmer whose assignment is being
deleted

• ~• 2. the assigned subsystem
3. ~hether or not the assignment is a design or test

assignment

j 4. the start and stop dates that bound the range of
the assignments

Function

1. deletes a range of assignments 1 all the same, from
the data base

95

I~
l

-
,•.i ~~~ .

-—

~~~~~~~~~

- 

_ _  _ _  -~~



DELETE SUBSYSTEM

Input

1. the name of the subsystem to be deleted

Function
1. deletes a subsystem and all subordinate information

ENTER DISCREPANCY REPORT

Inputs

1. the date, time and submitter of this report

2. how this discrepancy was found (a number code)

3. brief description (text)

Function
1. enters the input data Into the data base error summary

records

ENTER ERROR REPORT

Inputs

1. the date , time and submitter o~ this report

2. ‘ow the error was manifested (a number code)

3. how the error was diagnosed (number code)

4. the mental level of the error (numbe r code)

5. number of occurrences of the error (mater code)

6. when the error occurred (number code)

7. ~,hen the error was manifested (number code)
- . • 8. the subsystem(s) and program(s) this error was

- • - H charged to -

$ ~~*• 

~~~~~~~~~~~ _______

- — — ~I1~~~~~~~~
_ _ _ _ _ _ _ _

- ____- — -
~~~~-~~~~~

--
~~~~~


*

Functions

1. enters the input data into the data base error sumaries

2. increments the number and type of errors charged to
the named subsystem(s) and the number of errors
charged to the named program(s), and updates the
data base accordingly

ENTER PREPROCESSOR RESULTS
Inputs

1. Drogram and subsystem name for identification

2. real or compool flag for the program

3. number of severe errors , errors , and warnings from
the precompiler

4. number of statements in the program
5. number of lines of code

6. Halstead length of the code

7. names of all DEFiNE ’s

Functions

1. creates a modul e record in the data base if one doesnot already exist
2. updates all the quantities of the preconipilation

including first and last precompilation dates
3. Increments the numb~er of precompilations

ENTER POSTPROCESSOR RESULTS
Inputs

1. the program and subsystem names for Identifi cation
2. real or compool flag for the program

97

—~~~~~~~~ ~

-

-
~~~~~~ 

_ _ _  

~~~~~~~~~~~~
--—- —-— -

________ -

3. number of errors in the compilation

4. called programs

5. referenced files

6. referenced compool (common) variables

Functions
1. creates a module record In the data base if one doesn ’t

exist

2. updates all quantities of a postcompilation Incl uding
• fi rst and last postcompilation dates

3. increments the number of postcompi lat lons

INITIALIZE PROJECT

Inputs

1. proJect name

2. start date of the project

3. stop date of the project

4. total allocated computer dollars

5. total allocated non—computer dollars

6. total allocated person hours

7. number of available terminals

8. total allocated f i le space

9. length of a period of time (POT),
where period of time is the lenoth of time
which a Simon report wil l cover, e.g. 2 weeks

98

L11
_ _ _ _ _____

_ _
_

-
-

. $4

___ —-.

Functions

• 1. perform all necessary functions for initializing the
- : data base in terms of file and record allocation and

initialization

2. enter the data submi tted by the user into the data
base

3. zeros the foll owing items and enters them into the
data base:

a. person hours used to date

b. computer dollars used to date

c. other dollars used to date

INITIALIZE SUBSYSTE~1

Inputs

1 . subsystem name

2. date of definition of the subsystem, i.e. when the
specifi cations for that subsystem were first defined

Functions

1. sets up the data area for this subsystem

2. enters the input date into the data base

3. zeroes all items in the data base relating to
this subsystem, other than the two input
items

INITIALIZE /UPDATE ACTUALS

Inputs

1. subsystem name

• 2. start date for the period of time (POT) to which
the data applies

99

- ~

_ _ _ _ _ _

~~~~~~~~~~ •~~ r~~- -
~
----— ---— --- —

I ~~~. 
~ I• 

- _____



I- ..- -

____ • - —__- •. - -- • • •

3. actual resource usage for this subsystem for the
stated POT, including the following:

a. core space

b. person hours for design

c. person hours for testing

d. terminal hours for design

e. terminal hours for testing

f. computer dollars for design

g. computer dollars for testing

h. any other dollars used

1. file space used for design separated
into temporary and permanent file space

j. file space used for testing, separated
into temporary and permanent rile space

Functions

1. enters the input data into the data base

I;HTIALIZE/ItPDATE EST~ 1ATES
Inputs

1. subsystem name

2. the following estimates for this subsystem:

a. number of programs included

b. core space

c. person hours needed for design

d. person hours needed for testing

e. terminal hours needed for desIgn • •

100

_ _ _ _ _ _ _

_ _ _  _ _  

: -
~~

—• — _____



f. terminal hours needed for testing

g. computer dollars needed for design

h. computer dollars needed for testing

I. any other dollars needed

j. file space needed for the design phase,
separated into temporary and permanent file
space

k. file space needed for testing, separated
into temporary and permanent file space

Function

1. updates the data base with the input data

INITIALIZE/UPDATE INTERFACE INFORMATION

Inputs
• 1. name of the su’~system which needs to be tested

• 2. driver feasibility

3. list of the subsystems which are needed for testing
the above subsystem, giving:

1. subsystem name

2. whether this subsystem is to be added to the
current list of needed subsystems, whether
It Is to be deleted from that list , or
whether information Is to be chanqed for that
subsystem

3. relationships to above subsystem (called,
calling, or shares data )

• 4. required status for testing (fully complete,• partially complete, or stub can be used)

Function

1. updates the data base with the input data .

101

‘~~~~

_ _ _ _



- ~~~~~~ :,, .. -

Note

If a needed subsystem In the input list Is to be deleted from •

the current data base list, only the name of that subsystem and the
• ‘ delete” indication need be specified.

INITIALIZE/UPDATE PROGRAMMER ASSIGNMENTS
Inputs

1. date as of which this information is current

2. programmer’s name

3. any number of lists containing the following• information:

a. the start date and stop date for a
consecutive group of periods of time (POTs).

~ . any number of lists containing the following
information :

1. name of a subsystem which the given
programmer will work on or did work on
during the given POT.

2. :hether the programmer will be doing or
did do design or test on this subsystem
during this POT.

3. the total number of person hours worked
or to be worked by this proorameer on
this subsystem on this phase (design or
test) per POT represented by the start/
stop dates.

Function

1. enters the Input data into the data base. ~~~~~~~~~~ 

.

.

Notes 
. 

•

~~~ 

•

1. This procedure allows a user to enter programmer work
schedules . This includes both past and future
schedules . !f the user-supplied POT start date is a

102

_ _ _ _

-~~~~~~~~~~T~~~ •~~~~~~~;
_ _ _ _ _ - - -V p~~~

_ _
- —-~~~~~~~~~~~~~~~

_
~ i_~

_1__
~~

_ _
•

• ~~~~ 4—-,-, -. • —-- .— — —•-- • •

past date, the information is assumed to be actual
past schedules. Otherwise, the information V s
considered projected work schedules.

2. If the assignments for one programmer are the sameover several POTs , then the user may enter one setof start/stop dates covering all these POTs and• need only enter the assignments once. If only astart date Is given for item 3a, It is ass umed thatonly one POT is covered.
• 3. If a programmer is to work on both desian and

testing of one subsystem during one POT, these are• considered 2 separate assignments and will be listedas such.

• UPDATE DISCREPANCY REPORT

Inputs

1. disposItion of the discrepancy, Including
*

a. date of disposition

b. nature of disposition

Function ~.
.•

1. enters the data into the data base

UP~~TE PROJECT INFORMATION

Inputs

• • ~•: 1. project name

• 2. stop date of the project
•

•
3. total alloca ted computer dol lars
4. total allocated non-computer dollars

103
U

• ‘p .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~___ -- - — - •

~~~

•

~~~



5. total allocated person hours

6. number of avai lable terminals

7. total allocated file space

Function

1. updates the data base with the input data

UPDATE SUBSYSTEM STATUS

Input

• 1. subsystem name and date as of which this information

J Is current

2. status of the test plans for this subsystem (non-
ex istent, or complete)

3. status of the documentation for this subsystem
(non-existent, or complete)

4. lIst of the programs in this subsystem whose
testing status has been changed, Including:

a. program name

b. status of testing (not started, or complete)

Functions

1. updates the data base with the input data

2. cal culates the fol lowing items and updates the data
base accordingly:

a. number of programs in this subsystem which have
• been completely tested.

b. the “testing_complete date” for all programs• whose testing status l~as been declared
changed.

C. whether or not this subsystem Vs complete,
i.e., all programs are tested.

104

• 
~~~~~~~~~~~~

— ~~•—•

I I
______ - - — —••,

~
.- -- -

•
,_ —•--•—---— —--•—.--_----.•- --—•---- . • -—• • - •~~~~- •- -—-- • -• • --

.
•—- • ••--- • •

•
~~~~~~ I * •~~~~~•~~~~~~-•• • • -.--- • ——-.•--• •- -- • • • • • • • •

APPENDIX III

TRANSACTION FORMATS

GENERAL RULES

The order and general format of the cards (or card images ) for
a transaction is as follows: The fi rst card is the Transaction

• Header card. Following the header card is one or more data cards
supplying the Information necessary to complete the transaction. The
data for each transaction has its own separate format, as wil l be
described below. The format on the header card, however, is
standard. Every such card has a “*START,” a function field, and
three optional fields. The first optional field Is the date field

• which defaults to today’s date If left blank; the second is the
name field for identifying the author of the transaction; and the
third is the “TRACE” “NOTRACE” field which determines whether the
fol lowing data cards will be printed on the output report. If any-
thing but “~OTRACE” Is specified, this last field defaults to IRACE”
implying that the data cards are to be printed.

SPECIAL FORVViTS

(*~~ans that those fields can be omitted, in which case the fields
default to zero, blank , or “no update” depending on context.)

Card Coluam Field
Abrev. Tjpe Number Length Va lue

Header
Card

1 6 U*STARTN

8 3 transactIon function (listed
in Table IV)

12 6 date of transaction (MP1DPYY);
can be blank

• 19* 35 Name of person responsible for
transaction

55* 7 “TRACE” or “NOTRACE” ; default
• Is “TRACE”

105
—

• ‘I

• • - • — --- -•• • - - --- —-— 
— 

1.. ~~~~~~~ 
- 

• •

~~~
• •

~
•

,‘, si~
—

— ~~~l”~ ________
— —

~~~~~~
- •—•— —• — —



r
• - - •  —•~~~ • • • • •

• Card Column Field
Abrev. 

____ 
Number Length Value

DM0 Delete Module
Record ’ 2 6 Name of module to be deleted

(card can be repeated)

DPA Delete Programmer
Assignments

• 2 6 Reporting period start date
of the assignment

9* 6 Reporting period stop date of
the assignment (blank implies
on ly one period)

16 12 Assigned subsystem

29 1 Whether assignment Is a test (1)
or design (0) assIgnment

31 35 Person ’s name

DSB Delete Subsystem
Record 2 12 Name of subsystem to be

deleted (can be repeated)

EDC Enter Discrepancy
Record- 1

2 13 Discrepancy IdentifIcation

16 1 How discrepancy found

Enter Discrepancy
Record-2

1 80 80 character description of
• the discrepancy

• EER Enter Error Report
Record-l

2 13 Error identification

16 1 Now manifested

‘Il 1 How diagnosed

18 1 ~‘ental Level

106

.•~ 

••

~~ ~~~~ ~~~~~~~~~ J~
j
~~’ ’- •



Card Column Field
Abrev. ]~p~ Number LenSth Value

19 1 Number of occurrences

20 1 When manifested
Enter Error Report
Record - 2

8 1 P or S according to whether
the next field is a ~irogram
or subsystem

10 ~ or 12 Program or Subsystem name
EPR Enter Pre—

processor Results
Record—i

• 2 6 “~O0tJLE”
10 6 Program name

20 12 Subsystem to which it belongs

35 1 peal or compool flag (“R” or

• Enter Preprocessor
Resul ts ~ecord-2

2 4 “DAT~”
‘tO 3 Number of severe errors from

• the Precompi icr

14 3 Number of errors
18 3 Number of warnings
24 6 NtØer of statements In the

program
33 6 ~4umber of lines of code
42 6 Halstud length of the code

107

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—

Card Col umn Field
Abrev. i~p!~ Number Length value

Enter Preprocessor
Resul ts Record-3

2 6 “OEFINE”
10 30 Name of a define

(This card is used as many times as there are defines
In the precompiled program.)

EPS Enter Postprocessor
Results Record-l

2 6 “IODULE”
10 6 Program name

• 20 12 Subcystem name
35 3 Number of errors in the

compilation

41 1 Real or Coinpool Flag (“DI’

or “C’~) • •

(The following three cards can occur as often and• in whatever order is needed.)
Enter Postprocessor
Results Record-2

2 • 5 “CALLS”
10 6 Called program’s name

Enter Postprocessor •

Resul ts Record- 3

2 6 “COMMON”
10 6 Common variable ’s name
45 6 Name of coninon

108

‘ I ~~~~~
•

_
~
____ _ 1__

-

~4~• - •

~~~~~~~~~~~~~

• — - -‘•

~~~~~~~~~~ 
_ _

• - •
‘ _ ..L_._ • •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,• — -

Card Coliarn Field
A rev. Type Number Len9~~ Value

52 2 Type of variable

56 1 Set, used or both flaa (“S ,’
“U,” or “B”)

Enter Postprocessor
Results Record-4

2 4 “FILE”
• 10 6 Name of file

45 2 Type of file
IPR Initialize Project

Record

2 12 project name
15 6 project start date (MMDDYY )
22* 6 project stop date; default ‘Is

last assignment

29* 2 POT-length in days
• I 31* 2 Number of terminals

33* 5 File space in ilinks

38* 10 Computer dollars
48* 10 Other dollars

58* 8 person-hours
LSB Initialize Subsystem

Record

2 12 Subsystem name
15 6 Date of subsystem definition

_ _ _  

~~~~~~~~~~~ i09 

_ _ _

- :.• .-—

- - ~~~~~~~~~

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- : -



-I---——— - •- —• — — — •-
~~~~~~~~

-- • — - - -

Card Column Field
Abrev . Type Number Length Value
IUA Initialize or Update

Actuals Record 1

2 13 Subsystem name

15 6 POT for which this is actual

21* 8 Core space

29* 6 Person hours design

35* 6 Person hours test

41* 6 Terminal hours design

47* 6 Terminal hours test

53* 10 Computer dollars design

63* 10 Computer dollars test

(If the POT is past then this is an update and
functions as in updating estimates . Otherwise,
it resul ts in creation of a new actuals record.)

Initialize or Update
Actuals Record 2

8* 10 Other dollars

18* 6 Temporary design file space

24* 6 Permanent design file space

30* 6 Temporary test file space

• 36* 6 Permanent test ‘lie space

(As in Initialize or Update Estimates, this card
can be omitted or any of the fields can be blanks.)

‘lb

I
_ _ _ _ _ _ _

_~~_L~~~ -
~~~~

‘

~~~ ‘~~~~~~~~~~~~~ ;~~~~~~

jig. ~~~~

-‘---—-- —— — — —

~~~~
— - -

~~~ ——~~~~


Card Column F ield
Abrev. Type Number Length Value

IUE Initialize or ‘Jpdate
• Estimates

2 12 Subsystem name

15* 6 lumber of modules

21* 8 Core space

29* 6 Design hours

• 35* 6 Test hours

41* 6 Terminal hours design

47* 6 Terminal hours test
I 53* 10 Computer dollars des ign

63* 10 Computer dollars test

(Blank field means that the field remains unchanged.)

- Initialize or Update
Estimates - “ecord 2

8 10 Other dollars

18* 6 Temporary design file space

24* 6 Permanent design file space•
30* 6 Temporary test file space

36* 66 Permanent file space

(This record can be omitted when no file space updating
•

• Is necessary. Again , blank fields mean no updating
is to be performed.)

• i’ll

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _  

•



_________ I • —  
• 

-

Card Col umn Field
Abrev. )

~~ Number Le~gth Value
IUI Initialize or Update

Interface Information Record 1

2 12 Subsystem name
15* 1 Driver Feasibility Flag

Initialize or Update
• Interface Information Record 2

8 12 Subsystem related to record 1
subsystem

21 1 Action to be performed for
this relationship:

“A” add this relationship

delete this relationship

“C” change this relationship
(if action is “C” or “A0)

23* 2 Relationship of this subsystem• to the above one:

• “CD” = called by above subsystem,

“CG” calls above subsystem,

“SD” shares data wi th above
subsystem; default Is no change

(if action Is “C” or “A ’)
26* 1 RequIred status of this subsystem

for testing of the above
subsystem:

- • • “T” • must be totally finished
for testing,

112

• ‘1:i± ~~~~~~
- 

• • ~~~~~~~~~~~~~~~~~~ • • .



~ 

• I-

Card Column Field
Abrev . Number Length Va l ue

can use total or partial
stub for testing; default is
no change .

(Record 2 can be repeated as often as needed for
each occurrence of Record 1 .)

IUP Initialize or Update
Assignments Record 1

2 6 As-of date for this set of
assignments

9 35 Person being given assignment

(There can be as many assignments for the above
• progranmier as is needed, i.e. as many Record 2’s

as needed. If an assignment duplicates any in
the data base - in name, subsystem, and designated

• flag - it is assumed that the number of hours in
the assignment is being updated. The only update
allowed is a change in the number of hours in an
assignment. Deletion of an assignment is accor~plishedby the DPA function.)

Initialize or Update
Ass ignments Record 2

8 6 POT-date for this assignment

15* 6 Stop POT—date for a set of
assignments . If blank then
there Is only one assignment

22 12 Subsystem name
34 1 Test-design flag (“1” or

36 4 Number of hours on this
subsystem for this POT

113

1pit~ 
— - 

— — -————- — — — -
~~ 

— -
~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~
-‘ -

JigjI IIL

— _ _ _ _ _ _ _ - ____ _____
—

• -

_ _

~~~~~

- - - -  • •_

~~~~~~~~

-_ • •

~~~~
“
- - -

~

Card Column Field
Abrev. ~ype Number Length Value

UDC Update Discrepancy Record

2 13 Discrepancy to be updated
• identifi cation

16 1 Disposition of discrepancy

UPR Update Project
Record (b lanks imply no update)

2* 12 New project name

15* 6 Project Stop date

22* 10 Al located computer dollars

33* 10 Al located other dollars 
•

44* 8 Al located person hours

53* 2 Al located number of terminals

56* 5 Allocated file space

USS Update Subsystem Status Record 1

2 12 Subsystem name to be updated

15 6 Date for which this info is
current

22* 1 Test-plan-done flag
(“V ,’1 “N,” “ “); default is
no update.

24* 1 Documentation done flag
(“V ,” “N,” “ “); defaul t Is
no update

Update Subsystem Status Record 2 •.

8 6 Program within the above
subsystem “

114 • .

1 ’  
_ _ _ _   

_

_

_ _

•- -—  - •_ ~v  -  
_ _ _

- 

—
j

v~~~~ - -~~~~--- - _ _ _



- ___ • L ~~~~~

• ‘.~*r~ V t ~,S~ ~~~~ ‘

Card Column Field
Abrev. ]

~~ Number Length Value
15 1 Status of Testing for this

program:

“N” = none performed,
“P” partially complete,

= totally complete
(There can be from 0 to as many Record 2’ s as areneeded to specify the status of program testingwithin a subsystem.)

*

IH’
•1

115/11 C



r -

-- ~~~~- -  - I

• • •• • • •~~~~~~~~~ ‘~~~ •

REFERENCES
• C

David E. [~e1l and Joseph ~,jji11i&~an, “Further Investigations into 1
’

the Complexity of SUftW~re,” The MITRE Corporation Technical Report
MTR—2874 , Vol . 2, June 1974.

Judith A. Clapp , “Monitoring Software Development for Reliabil ity
Indicators,” Proc. EASCON Conference, 1974.

Judith A. Clapp and Joseph E. Sullivan , “SIMON : Finding the Answers
to Software Development Problems,” The MITRE Corporation, Tec hnical
Paper MTP-l52, Bedford, Massachusetts, May 1974.

Maurice H. Haistead, “Natural Laws Controlling Algori thm Structure?”
ACM SIGPLAN Notices 7, 2 (February 1972), 19-26.

E. A. Hershey, D. Teichroew et al., URL Language Reference Manual,
U. of Michigan, Ann A rbor, July l974~~
Honeywell Corp. , FORTRAN, Document No. 8J67 , June 1971.

Honeywell Corp., Integrated Data Store, Document No. BR69, Rev. 1 ,
December 1971.

Joseph E. Sull i van, “Measuring the Complexity of Computer Software,”
The MITRE Corporation Technical Report MTR-2648 Vol . 5, June 1973
(Reissued as RAOC-TR-74-325, Vol. V , Jan. 1975 and as DOC document
AD/A007770).

3 117

_ __  

_  

J
_ _ _ _ _  II: 

-

_ _


