AD=-AD31 806

UNCLASSIFIED

—

MITRE CORP BEDFORD MASS F/6 9/2

SPECIFICATIONS FOR SIMON: A SOFTWARE IMPLEMENTATION MONITOR.(U)

SEP 76 A E CORRIGANs R J FLEISCHER F19628=76=C=0001
RADC-TR=76~-288 NL

S b s -

>
)
v
b
4
{
>
L]
m

?

VOLINOW NOIAVANGUR New]T

e % St g i e

ol %

MISSION
of .
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced

development programs in command, control, and comsunications
(c) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas
are commmications, electromagnetic guidance and control,
surveillance of ground and asrospace objects, intalligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

'Jitﬂ‘m

G oY - —
UNCLASSIFIED
SECURITY \. SIFICATION OF THIS PAGE ‘When Data Entered) 4
READ INSTRUCTIONS
m REPORT o@m’eunﬂou PAGE R, L L
3 . GOVY ACCESSION NO.| 3. RECIPIENT’'S CATALOG NIUMBER
I TN
4. T\TLE ‘and Subtitle) vwrc
Final Xechnical Xepato
SPECIFICATIONS FOR SIMON, Q S"OFTWARE Juls 875 — Julg W76
IMPLEMENTATION MONITOR o x : ’ : R
N/A
2 CONTRACT OF GRANT NUMBEBFZ] |
A. E./Corrigan, \l/ R. pritlet /
R. J. [Fleischer, Joseph® E./Sullivan | . F19628-76-C-gf#1
= &
i E_§rD
9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 ::ggﬂ‘lcoE ‘E EDNTT.NPUaMOSJEEEST. TASK
MITRE Corporation
Bedford MA
5 801
11. CONTROLLING OFFICE NAME AND ADDRESS 12.
/ / SepEma— X976
Rome Air Development Center (ISIM) T~ NU AGES
Griffiss AFB NY 13441 139
T4 MONITORING AGENCY NAME & ADDRESS(if diffegaqt from Controlling Office) 1S. SECURITY CLASS. (of this repor?)
&3
Same UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entersd in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Roger Panara (ISIM)
ESD Task Monitor: Capt Samuel L. Ruple

19. KEY WORDS (Continue on reverae side if necessary and identily by block number)
Software Data Collection
Project Management

X
20. ABSTRACT rContinue on reverse side If necesaary identify by block number)
Specifications are given for a pHototype of Simon, a tool for technical and
managerial visibility during software development. Planned and possible
extensions of the prototype are also presented, and some uses of the system
are illustrated.

Do oo V473 Eoimion oF 1 MoV 8 1s oRsOLETE UNCLASSIFIED

+
|

e

__UNCLASSIFIED

SESURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

o

SECUNITY CLASSIFICATION OF THIS PAGE(When Data Entersd)

e R

o g P DR S, S

R

‘ FYALUATION :

The ohfective of this work was to develop the specification for a soft- 3

ware svstem to nrovide technical and manarerial visibilitv into the software

e S

develonment nrocess, and to provide for the svstematic and consistent col-

lection of data for research into factors affectinp software auality and cost.

The suhiect renort is the desipn specifications for such a svster and was
used to huild a nrototvne Svstem Implementation “onitor (STVNM),
STMOM operates within, and helps to maintain a develonment environment
L ;: that oroceeds in an orderly way fror specifications throupeh desien, implermen-
tation and test. 1t is recopnized that this process is not necessarily linear
and sinrle~thread, "ith the concept of top-down desirn and implementation,
it is normal for the desien nhase of one level of akstraction to penerate
snecifications for lower levels, thus snawnine further develonment cvcles that
2 mav or may not proceed in parallel, in nhase, with other develonment cycles.
STVOM males use of data as available in each nhase to track and nroject
nrorress towards the emergines svstem, the nuality of that svstem, and expen-
ditures of resources. The svstem is technicallv oriented, that is the em-
nhasis {s on svstem size, comnlexitv and reliahility, while also accountine
for traditional manacement factors such as costs, budrets and schedules.

"EAMTT, 1, “UPLT, Capt, USAF |
¥SP Task ‘‘onitor

0o M
e /D M e
"o P PAYAPA

PAN Project Tnrineer

i1

ACKNOWLEDGEMENTS

! This report presents the results of work done in FY75 under

' MITRE Project 5220, “Advanced Systems Technology," Task A, "Software
Quality." Sponsorship and technical direction of this task
originated in the Software Sciences Section (R. Nelson, Chief),
Information Processing Branch (F. Tomaini, Chief), within the
Information Sciences Division of the Rome Air Development Center
(RADC), United States Air Force. R. Robinson and D. White of

RADC served’as Project Engineers.

In addition to the authors of this report, L. Cheng and S. Morser
contributed to the building of Simon. J. Clapp provided early
! technical direction of the task, and although her responsibilities
have become broader she has continued to provide technical review at
critical junctures.

On a continuing basis, N. Anschuetz has provided research
| services to keep the Simon team aware of related developments
? while immersed in the building effort. Finally, amidst the
traditional crush of year-end business, M. Gallo typed the
manuscript.

P A RS R iy & a0t e

e B e

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

R I 1 0 ISR 0 ISR A koo 6. B

e T S
PRl

<€ ﬁiﬁ‘ o

INTRODUCTION

GENERAL GOALS

CONCEPT OF OPERATION

BACKGROUND OF THE PRESENT SYSTEM
SCOPE AND PLAN OF THIS REPORT

PROTOTYPE SPECIFICATIONS
INTRODUCTION ‘
PRECOMPILER SPECIFICATIONS
Functions
Inputs
Outputs
POSTCOMPILER SPECIFICATIONS
Functions
Inputs
Outputs
TRANSACTION PROCESSOR
Major Function
Checkpoint/Restart
Implementation Mote
SYSTEM STRUCTURE REPORT SPECIFICATIONS
Introduction
Program-Subsystem Dictionary
Subsystem Declared Interdependency Data
References by Subsystem~Program
References by COMPOOL Item
References by File
References by DEFINE Name
Subsystem Interactions
ESTIMATES VS. ACTUALS REPORT SPECIFICATIONS
Introduction
Subsystem Estimates Vs. Actuals
Project Estimates Vs. Actuals
PROJECT SCHEDULES REPORT SPECIFICATIONS
Introduction
Person Hours Schedules
Other Resource Schedules
Projected Resource Overruns
Projected Scheduling Inconsistencies
Projected Scheduling Conflicts
SUBSYSTEM AND PROGRAM STATUS REPORT
SPECIFICATIONS

Pa
vi

OO NNOANOO WOONNN~yNOTOVOVOITOYTOT YN WM e

gooagoigioran
NOCITNWMNON ~

o
o

e

SECTION III

SECTION IV

APPENDIX I
APPENDIX II
APPENDIX III
REFERENCES
DISTRIBUTION

llllIlIlIllllllllllIIIlIIlIlllI-!-Il'---.!’!--.—-.-.--1-7-fim~- .

bt + ol vttt

TABLE OF CONTENTS (Concl.)

Introduction
Subsystem Status
Program Status

ERRORS AND DISCREPANCIES REPORT SPECIFICATIONS

Introduction

Error and Discrepancy Summary
Summary of Discrepancy Information
Errors Reported Over Time

EXAMPLES OF USE

SIMON'S GENERAL ROLE

GLOBAL ITEM CHANGES

SYSTEM STRUCTURE CONSIDERATIONS
TROUBLE SPOTTING

RESCHEDUL ING

CHANGES IN SPECS

EXTENSIONS TO SIMON

COMPLEXITY MEASURE

TESTING-TOOL INTERFACE

SCHEDULING AUTOMATION

AUTOMATIC COLLECTION OF ACCOUNTING DATA
INTERACTIVE QUERY CAPABILITY

ON-LINE DATA INPUT

GRAPHIC OUTPUT

HUMAN ENGINEERING

SENSITIVITY ANALYSIS

DESIGN LANGUAGE/ANALYZER INTERFACE
INTEGRATION OF PRECOMPILER, COMPILER, AND
POSTCOMPILER

vi

RS

g
59
59
64
64
65
65
65

70
70
70 i
70
7 3
72
73

74
74
75
76 ;
77
78
78 Y
79
79
80
80

81
83
95
105
17
119

A RINTII Reiuiigtine s i pitn el RS St s Bl A e |
AR R S R R I R e A e R

Figure Number

1

2

3a
3b
3c
3d
3e
3f
3g
3h
3i
3j
3k
31
3m
3n
4

O O ~N O o

10
11
12
13
14
15
16

17

LIST OF ILLUSTRATIONS

Simon Organization Schematic

Formatting Function of the Precompiler

Error Report Form

Project Initialization Form

Subsystem Initialization Form

Discrepancy Report Form

Assignment Deletion Form

Module Deletion Form

Subsystem Deletion Form

Actuals Report Form

Estimates Report Form

Project Update Form

Discrepancy Update Form

Subsystem Update Form

Programmer Assignment Form

Interface Information Form
Program-Subsystem Dictionary Section of
System Structure Report

Subsystem Declared Interdependency Data Section
of System Structure Report

References by Subsystem-Program Section of
System Structure Report

References by COMPOOL Item Section of System
Structure Report

References by File Section of the System
Structure Report

References by DEFINE Name Section of System
Structure Report

Subsystam Interactions Section of System
Structure Report

Subsystem Estimates vs. Actuals

Estimates vs. Actuals for an Entire Project
Person Hours Section of Project Schedules
Report

Other Resource Schedules Section of Project
Schedules Report

Projected Resource Overruns Section of Project
Schedules Report

Projected Scheduling Inconsistencies Section
of Project Schedules Report

Projected Scheduling Conflicts Sections of
Project Schedules Report

vii

l‘

Figure Number
18

19
20
21
22

Table Number
I
I
I
Iv

12!
vII

VIII
IX

LIST OF ILLUSTRATIONS (Concl.)

Subsystem Status Section of Subsystem
and Program Status Report

Program Status Section of Subsystem
and Program Status Report

Error and Discrepancy Summary Section of
Errors and Discrepancies Report

Discrepancy Summary Section of Errors and
Discrepancies Report

Errors Reported Over Time Section of Errors
and Discrepancies Report

LIST OF TABLES

Indentation Algorithm for Formatting

JOVIAL Source Code

User-Suppiied Input Parameters to the
Precompiler

Syntax Error Messages Produced by the
Precompiler

Transactions for the Data Base

Transaction Processor Errors

Transaction Manipulation Commands

List of Abbreviations Used for File and
Data Item Types in Reports

Explanation of References by Subsystem-
Program Section of System Structure Report
Data Entries in the Subsystem Status Section
of the Subsystem and Program Status Report

viii

Page
62

64
66
69
69

CR S S P Y LT, e o RN (LN L PP » PR RO Ve TON

- —r——

SECTION I
INTRODUCTION

GENEPAL GOALS

Simon is intended to serve two principal purposes: (1) technical
and managerial visibility of the software development process, and
(2) systematic and consistent collection of data for research into
factors affecting software quality and cost. To these ends, Simon
extracts and records certain information during the course of software
design, implementation and test, providing status reports on request.
As much of this information as possible is gathered automatically,
because of the well-known difficulty of extracting timely, accurate
and complete data from human programmers already immersed in the
challenging task of producing correct programs.

The potential advantages of such a system, and the broad
outlines of the features it should incorporate, have been described
in several publications [Clapp and Sullivan, 1974; Clapp, 1974].

CONCEPT OF OPERATION

Simon operates within, and helps to maintain, a development
environment that proceeds in an orderly way from specifications through
design, implementation and test. It is recognized that this process
is not necessarily linear and single-thread; on the contrary, with
the concept of top-down design and implementation, it is normal for
the design phase of one level of abstraction to generate specifications
for lower levels, thus spawning further development cycles that may
or may not proceed in parallel, in phase or out of phase, with other
development cycles.

A level of abstraction, sometimes called a "module" or "function
cluster," is herein called a "subsystem," for want of a better term
that also avoids the unwanted connotations of those other terms. Thus
a subsystem is a basic unit for tracking purposes, though a subsystem
may comprise still more fundamental units, such as individual programs
or subroutines. The development cycle of any one such subsystem
proceeds through the following phases:

Phase Product(s)
Initiation Specifications

Estimates of Required Resources
Nesign Improved Specifications

Improved Estimates

Phase Product(s)

Subsystem Design
Test Design

Implementation Improved Estimates
Improved Design
Improved Test Design
Untested Subsystem
Test Final "Estimates" (equalling
the actuals)
Tested Subsystem

These distinctions among these phases are not always sharp unless
made so by arbitrary definition. (In fact, under one development
approach, the design and implementation phases are not distinguished
at all.) Nevertheless, those who produce software and those who
manage that production must monitor both the use of resources and
the quality of the emerging product throughout the cycie, and it is
generally useful to take account of the fact that each phase is
characterized by different kinds of activity and different items to
be examined.

During each phase, Simon makes use of data as available in
that phase to track and project progress towards the emerging
system, the quality of that system, and expenditures of resources.
The system is technically oriented, that is the emphasis is on
system size, complexity and reliability, while also accounting for
traditicnal management factors such as costs, budgets and schedules.

CACKGROUND OF THE PRESENT SYSTEM

During the past year, a prototype of Simon has been implemented.
The domain of this prototype is somewhat narrower than the full set
of possible applications of the Simon concept. First, Simon could
in principle be applied at any organizational level. For example,
there is no reason that a "subsystem" could not be a major software
item such as a compiler; a natural unit of management might then be
an entire group and the "manager" might be a contract monitor or
second-level manager. In fact, however, the prototype is specifically
geared to the needs of the first-level programming group and its
immediate manager. A subsystem is then a level of abstraction
appropriate for an individual or at most a few individuals to
implement. Second, Simon could in principle be applied to any
language and system, but in fact the prototype is specifically

2

~

————————— o s £

tailored to the GCOS/JOVIAL environment.

Also, even within this restricted domain, the present working
prototype of Simon is a modest subset of the capabilities originally
envisioned, although the flexibility to incorporate other facilities
is part of the design. The intent is to extend it gradually, vhile
obtaining direct experience in its use.

An overview of the organization of the prototype is afforded by
Fig. 1. The boxes denote major units (actually separate GCOS
activities), all of which (except for the compiler itself) make up
Simon. The connecting arrows denote informaticn flow, generally
by means of files or reports. Specifically: the user (programmer)
supplies source code to the precompiler, which generates
(reformatted) source code for the compiler and data to be entered
into a permanent data base via a transaction processor. After the
compiler runs, certain additional information is extracted by a
postcompiler for entry into the data base. The user (programmer
or manager) may also enter data into the data base "manually,"
i.e. through the transactor. Reports are prepared from the data
base for the user at his request. (Certain reports and listings
are also prepared for the user directly by the non-report modules.)

Most of the system is coded in COBOL using IDS (Integrated

Data Store), chosen because it affords a sophisticated file system
for the data base. The precompiler is coded in JOVIAL.

SCOPE AND PLAN OF THIS REPORT

This report is intended to serve as an external specification
of the system, both as already implemented in prototype form
(Section II) and in fuller form (Section Il plus the extensions
discussed in Section IV). In order to help clarify the intent and
meaning of the specifications, examples of the use of Simon in
context are discussed in Section III.

s BRI me——

T ——

Pre-
compiler

Compiler

Post-
compiler

User

Reports
(5)

Transactor —)3222 —
Figure 1

Simon Organization Schematic

SECTION II
PROTOTYPE SPECIFICATIONS

INTRODUCTION

This section details the specifications for the Simon prototype
as it is currently implemented. The specifications are given from
a user's point of view, so that a user may have an accurate and
comprehensive understanding of the Simon system and a general view
of how the system is to be used.

Each of the major subsystems is described separately. First
those subsystems which supply inputs to the Simon data base - the
Precompiler, Postcompiler, and Transactor subsystems - are specified.
Next the five Simon reports, which provide the output functions from
the data base, are described. These reports are: System Structure,
Estimates Vs. Actuals, Project Schedules, Subsystem and Program
Status, and Errors and Discrepancies. Within these specifications,
explanatory notes on the use of a particular subsystem are included
whenever such notes are felt to be necessary or helpful in
understanding the subsystem's functions. More extensive notes on
using Simon are given in Section III.

In addition to the subsystem specifications, and to provide the
user with a more complete understanding of the Simon prototype, a
description of the logical structure of the data base is included in
Appendix I.

PRECOMPILER SPECIFICATIONS
Functions

The Simon Precompiler analyzes JOVIAL source code prior to
compilation and prepares the code for compilation. The primary
functions performed by the Precompiler are the formatting of JOVIAL
source code, the calculation of various measures of source code
length and complexity, and the calculation of other data from the
source code.

The formatting function of the Precompiler is intended to
highlight the program's control flow and thereby to increase the
program's comprehensibility. The formatting is accomplished mainly
through a pattern of indentation which serves to isolate and emphasize
lines of code which are executed as one block. Each line of source

5

«

===

e g e

code is indented a number of columns which is equal to the current
level of indentation times the indentation amount, a parameter which
is supplied by the user. The level of indentation is initialized to
P; certain JOVIAL statements then cause the level of indentation to
be incremented or decremented before printing the next statement. A
list of the indentation rules can be found in Table I.

In addition to the control flow indentation, the following
formatting rules are obeyed:

1. Continuations of a statement to a new output line are
printed at a level of indentation which is one greater
than that of the first line of the statement;

2. Comments are printed on separate lines, at an
indentation level which is one greater than that of
the following statement;

3. A line is skipped before and after every internal
procedure;

4. Statement labels are highlighted by left-shifting
them a certain number of columns (again a user-supplied
parameter) from the current indentation level; the
rest of the statement then begins at the current
indentation level or immediately after the printed
label, whichever is greater.

Examples of most of the above formatting rules may be found in
Figure 2.

As has been noted, the user is given some control over the
formatting rules through a set of input parameters to the
Precompiler. The user is also given the option of specifying
whether or not the Precompiler is to expand JOVIAL "DEFINE" names in
the manner of a macro expansion, a function which is not provided
by the JOCIT compiler and which may be useful for debugging
purposes. The user need not specify any of the input parameters as
defaults are provided. A list of the possible input parameters and
their defaults is given in Table II. Figure 2 shows a program in
its unformatted, formatted, and formatted with expanded DEFINES
forms.

Along with its formatting functions, the SIMON Precompiler
detects some syntax errors and prints out appropriate error messages.
These error messages are interspersed among the source code which
is printed out for the user, with each error message applying to
the source statement following it. Table III 1ists the major error

6

Table I

Indentation Algorithm for Formatting JOVIAL Source Code

Type of
Statement

BEGIN*

CLOSE
END*

FOR

IF

IFEITH
ORIF

PROC
PROGRAM
START
START PROC

all other statement types

*BEGIN and END are considered as
purposes.

Change in Level
of Indentation

no change

add 1
add 1

no change

subtract 1
no change
add 1
add 1
add 1
add 1
add 1
no change
add 1

subtract 1

no change

Conditions
for Change

if BEGIN immediately follows
an IF, IFEITH, or ORIF

otherwise

if END corresponds to an
IFEITH-ORIF sequence

otherwise

if statement immediately
follows an IF, IFEITH, or
ORIF statement (without
intervening BEGIN)

otherwise

separate statements for formatting

Sample Program: Unformatted

START PROC R'TYPE'NEXT(TOKEN'PTR=TTYPE)$
" 'RECOGNIZE.R'TYPE REAL CHENG''
DEFINE BEGIN'CASE ''IFEITH''S
; DEFINE CASE ''ORIF''$
> DEFINE OTHERWISE ''ORIF 1''$
DEFINE END'CASE ''END''$
DEFINE LIST ''I 18 S''$
f DEFINE INT ''I 18 S''$
‘ DEFINE BOOL ''B''S$
DEFINE TRUE ''1''$
DEFINE FALSE ''p''$
DEFINE WHILE ''IF (''$
DEFINE BEGIN'LOOP '') $ BEGIN''$
\ DEFINE END OF ''GOTO''S$
) DEFINE LOOP ''$ END''$
ITEM C'PTR INTS
; ITEM TOKEN'PTR LISTS
ITEM C'TOKEN INT P 1$
! ITEM TTYPE INT §
ITEM TOKEN'TYPE INT P 2$
ITEM FOUND BOOL$
C'PTR=LRETI(TOKEN'PTR,C'TOKEN)$
IF C'PTR GQ P$ BEGIN :
C'PTR=C'FTR+1$
FOUND=FALSE$
GET'NEXT. WHILE(C'PTR LQ LLENG({TOKENS)) AND NOT FOUND BEGIN'LOOP
TTYPE=LRETI éLRETL(TOKENS.C 'PTR) ,TOKEN'TYPE)$
: BEGIN'CASE (TTYPE NQ XCOMMENT) AND (TTYPE NQ XCOMCONT) AND (TTYPE NQ
i . XEXPANDED' TERM) AND (TTYPE NQ XRECORD'END) AND (TTYPE NQ XD'CODE)$
iy FOUND=TRUE$
: OTHERWISES C'PTR=C'PTR+1$
: END'CASE
END'OF GET'NEXT LOOP
IF NOT FOUND$
TTYPE= @$
END
TERMS

pHp.

Figure 2. Formatting Function of the Precompiler

. Sample Program: Formatted

START PROC R'TYPE'NEXT(TOKEN'PTR=TTYPE)$
"'RECOGNIZE.R'TYPE REAL CHENG''
DEFINE BEGIN'CASE ''IFEITH''$
: DEFINE CASE ''ORIF''$
| DEFINE OTHERWISE ''ORIF 1''$
' : DEFINE END'CASE ''END''$
! ; DEFINE LIST ''I 18 S''$
s DEFINE INT ''I 18 S''$
DEFINE BOOL ''B''$
; : DEFINE TRUE ''1''$
| & DEFINE FALSE ''p''$
: DEFINE WHILE ''IF (''$
; ¥ DEFINE BEGIN'LOOP '') $ BEGIN''S$
¥ . DEFINE END'OF ''GOTO''$
; : DEFINE LOOP ''$ END''$
; 3 ITEM C'PTR INT$
| ; ITEM TOKEN'PTR LIST$
- : ITEM C'TOKEN INT P 1§
ITEM TTYPE INT$
ITEM TOKEN'TYPE INT P 2%
ITEM FOUND BOOLS$
C'PTR=LRETI(TOKEN'PTR,C'TOKEN)$
’ IF C'PTR GQ P$
BEGIN
C'PTR=C'PTR+1$
FOUND=FALSE$
GET'NEXT. WHILE(C'PTR LQ LLENG(TOKENS)) AND NOT FOUND BEGIN'!L.00P
: TTYPE=LRETI(LRETL(TOKENS,C'PTR),TOKEN'TYPE)$
-3 BEGIN'CASE (TTYPE NQ XCOMMENT) AND (TTYPE NQ XCOMCONT) AND (TTYPE NQ
XEXPANDED'TERM) AND (TTYPE NQ XRECORD'END) AND (TTYPE NQ XD'CODE)$
FOUND=TRUE$
OTHERWISES$
C'PTR=C'PTP+1$
END'CASE *
END'OF GET'NEXT LOOP
IF NOT FOUNDS$
TTYPE=P$
END
TERM$

2R

i

Figure 2. Formatting Function of the Precompiler (Cont.)

ORARTIESE
i BN

e o A it

Sample Program: Formatted With Expanded Defines

START PROC R'TYPE'NEXT (TOKEN'PTR=TTYPE)$

" 'RECOGNIZE.R'TYPE REAL CHENG''
DEFINE BEGIN'CASE ''IFEITH''$
DEFINE CASE ''ORIF''S$
DEFINE OTHERWISE ''ORIF 1''$
DEFINE END'CASE ''END''$
DEFINE LIST ''I 18 S''$
DEFINE INT ''I 18 S''$
DEFINE BOOL ''B''$
DEFINE TRUE ''1''$
DEFINE FALSE ''@''$
DEFINE WHILE ''IF (''$
DEFINE BEGIN'LOOP '') $ BEGIN''$
DEFINE END'OF ''GOTO''S$
DEFINE LOOP ''$ END''S$
ITEM C'PTR I 18 S$
ITEM TOKEN'PTR 1 18 S §
ITEM C'TOKEN I 18 S P 1 §

ITEM TTYPE 1 18 S §

ITEM TOKEN'TYPE 1 18 S P 2 §

ITEM FOUND B §
C'PTR=LRETI(TOKEN'PTR, C'TOKEN) $
IFC'PTRGQ P $

BEGIN

C'PTR=C'PTR+ 1§ :

FOUND = 9%

GETéNEXT. IF ((C'PTR LQ LLENG(TOKENS))AND NOT FOUND)$

BEGIN
TTYPE=LRETI(LRETL(TOKENS,C'PTR),TOKEN,TYPE)$

IFEITH (TTYPE NQ XCOMMENT) AND ZTTYPE NQ XCOMCONT) AND (TTYPE NQ
EXPANDED'TERM) AND (TTYPE NQ RECORD'END AND (TTYPE NQ XD'CODE)$

FOUND = 1§
ORIF 1%
C'PTR=C'PTR + 1 §
END
GOTO GET'NEXT $§
END
IF NOT FOUND $§
TTYPE=P$
END
TERMS

Figure 2. Formatting Function of the Precompiler (Concl.)

10

i St ni o P

Table II

User-Supplied Input Parameters to the Precompiler

Parameter Data Default
Names* Type Explanation Value
CMPLX,C boolean whether or not to true

compute the complexity
measure of the program

CMPTYPE,CT 2 character which complexity c2
code measure to use
EXPAND, X,EX,E boolean whether or not to false

expand JOVIAL DEFINE
§ names when formatting
, ; the source code

INDENT,I integer when formatting the 2
source code, the
number of columns to
indent for every level
of indentation

LABEL,L integer when formatting the ')
source code, the
number of columns to
left-shift labels in
order to highlight them
from the rest of the

% statement
LMARGIN,LMI integer left margin of the input 1
(source code) file
LMARGOUT ,LMO integer left margin of the 1
output (formatted source
code) file
PAGESIZE ,PAGE ,P integer number of lines per page @ (no automatic
of the formatted source page ejects are
code file caused by the
Precompiler)

1

$

Table II (Concl.)

Parameter Data Default
Names* Type Explanation Value
RMARGIN,RMI integer right margin of the 72
input (source code)
file
RMARGOUT ,RMO integer right margin of the 72

output (formatted
source code) file

*Several names are listed for each parameter. Any of these names
may be used when specifying a value for that parameter.

T O TR, e _,,.(_;:, o4 Ga R R

AN

r——

Table III

Syntax Error Messages Produced by the Precompiler

Error Message
CONTROL CARD TN SOURCE CODE

DOLLAR SIGN IN COMMENT

END OF FILE WITHIN COMMENT
END-FILE WITHIN STATEMENT
END-FILE WITHIN SYMBOL
ILLEGAL OCTAL CONSTANT
INCOMPLETE OCTAL CONSTANT
INCOMPLETE STATUS CONSTANT
10 FOR VARIABLE IN FOR STMT
NO LABEL FOLLOWING GOTO

NO PROCEDURE NAME GIVEN

NON-JOVIAL CHARACTER FOUND

Explanation

A dollar sign was found in the first
column of the source file; this will
signal a job control card to GCOS.

A dollar sign was found within a
comment other than in the forms

n($u or "5)"~

The end of the source file was
encountered within a comment.

The end of the source file was
encountered in the middle of a
JOVIAL statement.

The end of the source file was found
within a JOVIAL symbol (a “word" in
the language).

The symbol 0() was found.

Octal constant was not completed by
a close parenthesis.

Status constant was not completed
by a close parenthesis.

No FOR (loop) variable follows the
FOR keyword.

(Obvious)
A "START PROC," "PROC" or “CLOSE"

statement was found with no procedure
name following.

A character not allowed by the JOVIAL
language was found, outside of a
comment.

N AT o 0 0T TN RN T e

T I G AR AT

e

AR

Table III (Concl.)

Error Message

PRIME LEADING NON-PRIMITIVE

STMT NOT IN IFEITH SCOPE

TWO DEFINES IN STATEMENT

TOO FEW DOTS

TOO MANY CLOSE PARENTHESIS
TOO MANY DOTS

Explanation

An identifier was found which began
with a prime (') but which was not
a keyword.

An ORIF was found which did not
correspond to any IFEITH statement.

Two DEFINE keywords were found in
one statement.

A string of the form ".." or “. C"
(C any character) was found.

(Obvious)

A string of four dots was found.

-
-
{

messages and any necessary explanations.

The second major function of the Precompiler is that of
calculating measures of length and complexity of the JOVIAL source
code. These measures are:

1. number of JOVIAL statements,
2. number of lines printed,

3. Halstead length ~ a count of the operators and
operands in a program.

"Hooks," i.e. calls to stubs, have been left in the code for the
calculation of a psychological measure of complexity, the C2

measure developed at MITRE [Sullivan, 1973], although this capability
has not yet been implemented. These measures provide several
indicators of a program's complexity, which is believed to be
correlated with the program's compre*ensibility and incidence of ~
errors. The measures are ultimately stored in the data base and are
used in the Subsystem and Program Status Report.

In addition to these measures, other data is calculated to be
stored in the data base. The program's name, the name of the
subsystem to which it belongs, and its type - whether a real program,
a driver, a stub, or a COMPOOL - are obtained from a user-supplied
comment in the source code on the input record directly following
the START statement. This comment has the following format:

"<subsystem name>.<nrogram name> <type> <programmer>"

where <program name> is a maximum of 6 characters, <subsystem name> is
a maximum of 12 characters, <type> is either "REAL" or "R," "DRIVER" or
“D," "STUB" or "S," or "COMPOOL" or "C," and <programmer> is a
maximum of 30 characters. The date on which the precompilation is
being executed is also calculated. Finally, the list of JOVIAL
DEFINE names which was set up for formatting purposes is also kept,
to be stored in the data base.

Inputs

The inputs to the Precompiler consist of one file containing
the JOVIAL source code to be analyzed and one file containing the
user's input parameters. The format of the input parameter file
is that of a FORTRAN NAMELIST input, where the name of the NAMELIST
is PARMS (see the Honeywell FORTRAN manual [Honeywell BJ67]). The
list of possible input parameters is given in Table II; as was noted

15

above, the user need not specify any parameters as defaults are
provided.

Qutputs

The outputs from the Precompiler consist of one file containing
the formatted source code, ready for input to the compiler, one
file containing the computed data to be input by the Transactor
subsystem into the Simon data base, and one file for the user
containing a listing of the formatted source code and any syntax
errors which were detected.

POSTCOMPILER SPECIFICATIONS
Functions

& The Postcompiler accepts the output from the JOCIT compiler
and analyzes these listings to obtain cross-reference information
on the entire system under construction, to be retained in the
Simon data base. This data is assembled and printed in the System
Structure Report.

The following is a list of the data extracted by the Postcompiler
from the compiler listings:

1. date of compilation, .

2. name of the program and the name of the subsystem to
which it belongs, obtained from the user-supplied
comment within the JOVIAL source code (see PRECOMPILER
SPECIFICATIONS),

3. a list of the COMPOOL (external) data items referenced,
including for each item whether it is set, used, or
both,

4, a list of all external procedures called by the program,
5. a list of all files referenced, including for each file

its type (hollerith or binary, varying or rigid length
records).

58

In some exceptional cases, no analysis is performed nor is the
data base updated, and a message to this effect is printed. These
cases are: (1) if the user-supplied identifying comment states that

16

&

the "type" of the program is either "STUB" or "DRIVER"; (2) if
no identifying comment was found in the source code; and (3) if the
XREF option was not specified for the JOCIT compiler activity.

Inputs

The input to the Postcompiler is the JOCIT compiler output
(the P* file under the GCOS operating system).

Outputs

The outputs from the Postcompiler include one file for the
user containing a printout of the original compiler output, along
with any diagnostic messages printed by the Postcompiler, and one
file containing the extracted data to be put in the data base by the
Transactor subsystem.

TRANSACTION PROCESSOR

Major Function

The Transaction Processor is the only program in Simon that
directly updates the data base. A transaction is a single request
to add, delete or modify a single item or closely related small
group of items. A run of the Transaction Processor typically
processes a 1ist of such transactions, each one taken in turn, to
produce some larger net effect on the data base.

Table IV 1ists the various kinds of transactions provided. A
fuller functional description of these is given in Appendix II, and
input format details are set forth in Appendix III.

The source of a transaction may be either another processor
within Simon ("A" for "automatic" in Table IV) or the user directly
("M" for "manual” in Table IV). In the former case, a file containing
transactions in the required format is passed from the other
processor (Precompiler or Postcompiler) to the Transaction Processor.
In the latter case, input preparation is facilitated by forms that
prompt the user for the required information while informing the
keypuncher of the correct format. Samples of such forms are given
in Figure 3 (a-n).

Output from the Transaction Processor consists of a report
giving all header cards of processed transactions, any data cards
that were to be traced, and any diagnostics that the Processor

17

Table 1V
Transactions for the Data Base
Manual or
Automatic Abbrevi-
Input* ation Name Remarks
M (f) DMD Delete Module Delete a module (program)
from the data base.
M (e) DPA Delete Programmer Deletes assignments as
Assignment specified by programmer's
name, subsystem assigned,
test or design indicator,
and reporting period when
assigned.
M (g) DSB Delete a Deletes a subsystem from
Subsys tem the data base.
M (d) EDC Enter a Discrepancy
Report
M (a) EER Enter an Error
Report
A EPR Enter Takes the results of a
Preprocessor precompilation and puts
Results them into the data base
if the precompiled module
is "REAL" or a "COMPOOL."
A EPS Enter Post- Same as above, but for
processor Results the Postprocessor.
M (b) IPR Initialize the
Project's Data
Base
M (c) ISB Initialize a
Subsystem
M (h) IUA Initialize or Enters or corrects records

Update Actuals

of past expenditures.

*For manual inputs, letter in parentheses refers to appropriate form

in Figure 3.

18

Table IV

Transactions for the Data Base (Concl.)

Manual or
Automatic Abbrevi-
Input ation Name Remarks
M (1) IVE Initialize or Enters or alters current
Update estimates of resources
Estimates needed to produce a
subsystem.
M (n) U1 Initialize or Used by the programmers
< Update Interface to keep the information
. Data on general subsystem
interactions current.
M (m) IUP Initialize or Used to change the number
Update Programmer of hours in an assignment
Assignments or to add extra assignments.
Any deletion of assignments
is performed by the DPA
function.
M (k) uoc Update a To delete an outstanding
Discrepancy discrepancy once it has
Report been resolved.
M) UPR Update the To update most information
Project entered by the IPR
Information transaction. Primarily
intended to be used when
changing some budgeted
resource for a project.
M (1) uss Update a For indicating which
Subsystem's milestones are passed while
; Status completing work on a
- subsystem. Milestones include
& completing documentation,
gi completing test plans,
i;g etc.
| &
19
2
.

D

produces. There are three levels of diagnostics: An "ERROR" usually
terminates processing at the current logical level and backs up to

a point where processing can continue. A "WARNING" indicates a
possible error and gives the default action that is being taken. And
a "JOTE" simply gives informative messages about the processing.
Table V lists all the diagnostics and their probable causes.

Checkpoint/Restart

The Transaction Processor is used in providing a checkpoint/
restart facility for Simon. As a normal part of the processing
of transactions, a program is run right after the Transaction
Processor to append the transactions onto the end of a save file on
disk. This file is periodically appended to a save tape. Thus at
any point in a project's history all transactions which have been run
against the data base are saved either on the tape or on the disk
fi]e.) (That is, the disk file is a logical extension of the
tape.

Periodically, checkpoints, i.e. dumps of the data base, are taken
by means of the system program QUTD. lhen this happens, a special
header card giving the date of the checkpoint is appended to the
gisk file. These checkpoints allow convenient restoration of the

ata base.

In restoring the data base, if transactions are to be rerun
against the data base, it is of course necessary to run the
transactions in exactly the same order as that in which they were
originally entered. Restoration of the data base then involves
several steps. The IDS file is first restored to a checkpointed
state. A transaction manipulator is then run against the saved
transactions to extract those needed to produce an up-to-date
corrected version of the data base. Table VI gives the commands of
the manipulation that can be used. Any editing of transactions is
performed at this point. Finally, the Transaction Processor
Processes these transactions to produce a current data base.

Implementation Note

Because the Transaction Processor is very large, it is actually
two processors, one for manual and one for automatic input, and only
the one appropriate for the kind of input being supplied is run
at any given time. Only in a restart operation, vhere manual and
automatic input may be mixed, is the large combined Processor used.

O i Tl s A s i

IR b |

~3

el S

*ISTTTAIRTTT TETEIR] (1-10)]
ERROR FORM
(2-7) : (e-11) (12-14) 2
ate 'ﬂme! “n?thls)
I. How Manifested (16) IV. Number of Occurrences (19)
Discrepancy Form # 1 1 1
Desk Checking 2 2 2
Compiler Diagnostics 3 ;_l 3 3
Other System Diagnostics 4 i 4 4
Test Results 5 5 5
Other 6 f‘J 6-10 6
11-15 7
II. How Diagnosed (17) 16-20 8
Obvious from Manifestation 1 [T over 20 9
L.} Logic Analysis 2
Instrumented Tests 3 V. When Occurred (20)
Other 4 In Original Code 1
, _In Making Change 2
ITII. Mental Level of Mistake (18) [’} In Adding Instrumentation 3
Not Programmer 1 [In Correctina an Error 4
Motor 2 [, Other 5
| Memory - 3 ;
Hemory + 4
Logic - 5
_} Logic + 6
Time Spent (if significant)
F}
Items Involved
iP: = Program)
S: = Subsystem) (Name of Item)
(8) (10-21)

111

Brief Description (if interesting):

Figure 3a.

Error Report Form

21

s ———

PROJECT INITIALIZATION

Project ID

Project Start Date |] l 1
Project Stop Date | 1 | 1]

Number of Days in a Reporting Period

Number of Terminal for the Project
File Space for Project (in LLinks)
Budgeted Computer Dollars

Budgeted Other Dollars

Budgeted Man Hours

s[TAIRIT] [1fPIR] (i-10) @

(2-13) @
(15-20) *
(22-27) I
(29-30)
(31-32)
(33-37) "
(38-47) ;g
(48-57) f
(58-65) ':«i

£

Figure 3b. Project Initialization Form

22

g

i

FER

=

ey

' FEFARETEERE] (-9 @

INITIALIZE SUBSYSTEM

SUBSYSTEM NAME (2-13)
. : DATE OF DEFINITION e e 2 (15-20)

=)

Figure 3c. Subsystem Initialization Form

=

j*IsirialRit] Jelofc} (1-10) @

DISCREPANCY REPORT
I. Discrepancy ID

LL (2-7) G :me| ; (8-11) 1 nl' tia' s,(lz-u)@

? II. How Found (18)
4;' (O Code Reading 1
[0 System Diagnostic
(J Test Results
[other

S W

II1. Description: (80 chrs)

(1-80) [

Figure 3d. Discrepancy Report Form

23

%

[*[sIT[ATR[7] [olp]a] (1-10) @

DELETE ASSIGNMENT

REPORTING PERIOD START DATE ,_, | ; | ,

REPORTING PERIOD STOP DATE it q] | it
can be an

ASSIGNED SUBSYSTEM

TEST OR DESIGN ASSIGNMENT ('T' or 'D')
PROGRAMMER'S NAME

REPORTING PERIOD START DATE |, , | 1 |

REPORTING PERIOD STOP DATE
can be an

ASSIGNED SUBSYSTEM
TEST OR DESIGN ASSIGNMENT ('T' or 'D')
PROGRAMMER'S NAME

REPORTING PERIOD START DATE 4 | (| ; @

REPORTING PERIOD STOP DATE L : v
can be an

ASSIGNED SUBSYSTEM

TEST OR DESIAN ASSIGNMENT ('T' or 'D')
PROGRAMMER'S NAME

REPORTING PERIOS START DATE . : | + | } ¢

REPORTING PERIOD STOP DATE ; ; g] , 1)
can be blan

ASSIGNED SUBSYSTEM
TEST OR DESIAN ASSICNMENT ('T' or 'D')
PROGRAMMER'S NAME

Figure 3e. Assignment Deletion Form
24

(2-7) @

(9-14)

(16-27)

(29)

(31-65)

(2-7) (@

(9-1u)

(16-27)

(29)

(31-65)

(2-7) @

(9-14)

(16-27)
(29)

(31-65)

(z-7)@

(9-14)

(16-27)
(29)

(31-865)

A Al s i 5 e 5

SR AG S Fal e

—

[*[s[t[a[r[7] Tolnlp] (-10) @

DELETE MODULE

i e G s s ' —

MODULE NAME (2-7) E3]
MODULE NAME (2-7) [z
2
MODULE NAME (2-7) 2]
MODULE NAME (2-7) !
MODULE NAME (2-7) 2
MODULE NAME (2-7) Pl
MODULE NAME (2-7) zl
L & MODULE NAME (2-7) &
| & MODULE NAME (-2 @
&
i
4 MODULE NAME (2-7) @
1
MODULE NAME (2-7) Py
MODULE NAME (2-7) z
Figure 3f. Module Deletion Form

25

B, Mg e TR o e
o T Bl Al ¢

g e

[Aslr{alrlt] [ofs{s} (1-10) o

DELETE SUBSYSTEM

SUBSYSTEM NAME (2-13) @
SUBSYSTEM NAME (2-13) @
SUBSYSTEM NAME (2-13) @
SUBSYSTEM NAME (2-13))
| SUBSYSTEM NAME (2-13) 2
SUBSYSTEM NAME (2-13) 2]
SUBSYSTEM NAME (2-13) @ ‘
SUBSYSTEM NAME (2-13) 2
: SUBSYSTEM NAME (2-13) @
) SUBSYSTEM NAME (213 @
! SUBSYSTEM NAME (2-13) 2] ;
| 3 SUBSYSTEi NAIE (2-13) @

Figure 3g. Subsystem Deletion Form

26

B SR PSN—

[*[s[T]ATR[TT T 1] 4] (1-10) o

EXPENDITURES PER SUBSYSTEM
(for a particular reporting period)

SUBSYSTEM (2-13) 2]
STARTING DATE (of the reporting period) (15-20)
MAXIMUM CORE SPACE (to run the subsystem) (21-28)

PROGRAMMER HOURS
FOR DESIGN (29-34)

FOR TESTING (35-u0)

TERMINAL HOURS
FOR DESIGN (41-46)

“IR TESTING (47-52)

COMPUTER EXPENSES

FOR DESIGN (53 62}
FOR TESTING (63-72)
k. OTHER EXPENSES (8-17) @
: FILE SPACE FOP DESIGNING
TEMPORARY (18-23)
| 5% PERMANENT (24-29) :
i g FILE SPACE FOR TESTING |
! ‘”a TEMPORARY (30-35) é
PERMANENT (36-41) |

,
3
]
!

k;
1
:
¥

Figure 3h. Actuals Report Form

27

T

TSI AR TTUTE?

ESTIMATED RESOURCES per subsystem

(or update)

SUBSYSTEMN

NUMBER OF MODULES

MAXIMUM CORE SPACE (to run the subsystem)

PROGRAMMER HOURS
FOR DESIGN

FOR TESTING

TERMINAL HOURS
FOR DESIAN

FOR TESTINA

COMPUTER EXPENSES
FOR DESIGN

FOR TESTING

OTHER EXPENSES

FILE SPACE FOR DESIGNING
TEMPORARY

PERMANENT

FILE SPACE FOR TESTING
TEMPORARY

PERMANENT

Figure 3i. Estimates Report Form

28

(1-10)

(2-13)

(15-20)

(21-28)

(29-134)

(35-u0)

(b1-16)

(u7-52)

(53-62)
(63-72)

(e-17)

(18-23)

(24~29)

(30-35)

(36-u41)

—A

e ———————————————r

UPDATES TO PROJECT INFORMATION
(no entry implies no update)

NEW PROJECT ID

(IsIr{AR[T TU[PTR] (1-20)

(2-13)

MEW PROJECT STOP DATE

TOTAL BUDGETED COMPUTER DOLLARS
TOTAL BUDGETED OTHER DOLLARS
TOTAL BUDGETED MAN HOURS
NUMBER OF TERMINALS

TOTAL BUDGETED LLINKS

(15~20)
(22-31)
(33-42)
(vo-51)
(53-~54)

(s56-60)

Figure 3j. Project Update Form
29

@

&

MR Gt i i

[(*[sTrTalrlTl Tulolc] (1-10) @

DISCREPANCY DISPOSITION

¥ Discrepancy ID:
(must correspond to a DISCREPANCY REPORT ID)

; =7 S (Bl 12-14) [2
e (2-7) e — j 1) iTﬁ%f?tTgs(2-14) 2]

II. Nature of Discrepancy: (18)

{7 Error Form(s) +# 1

[J Lapse in Communication

{77 Not a Discrepancy

2
3
4

Figure 3k. Discrepancy Update Form

[other

R RN T R

Sk s,

TR N

M

(I[AR [vfsls) 600 @

SUBSYSTEM MILESTONE STATUS UPDATE

SUBSYSTEM NAME
DATE
TEST PLAN DONE?

O ves 'y
3 NO 'N
] NO CHANRE ' '

DOCUMENTATION DONE?

7 ves 'y

0 NO N

] NO CHANGE ' '

PROGRAM NAME

INCLUDED PROGRAMS TEST STATUS:

TEST STATUS:
[J NOT DONE 'N'

PROGRAM NAME

[T} PARTIALLY COMPLETE 'P'

TEST STATUS:
[T NOT DONE 'N'

PROGRAM NAME

[J PARTIALLY COMPLETE 'P'

TEST STATUS:
[J NOT DONE 'N'

PROGRAM NAME

[PARTIALLY COMPLETE 'P'

TEST STATUS:
7] NOT DONE 'N'

[T PARTIALLY COMPLETE 'P'

(2-13) B8]
(15-20)

(22)

(24)

(8-13)]

(15)
] FINISHED 'T'

(8-13)]
(15)
(] FINISHED 'T'

(8-13) G
(1s)

) FINISHED 'T*
(813) Gl
(1)

] FINISHED 'T'

Figure 31. Subsystem Update Form

31

PROGRAMMER'S SCHEDULE

FIS[ale[u[e] (1-10)
ASOF g |yl (2-7)

(or update)

PROGRAMMER (9-u3)

REPORTING PERIOD START DATE |_j l] | | £8-15) THRU | 3 |) | 1 (15-20)

SUBSYSTEM ASSIGNED (22-33) TEST OR DESIFN (3v)
(nTn or nDn)

NUMBER OF HOURS ASSIGNED IN PERIOD (36-39)

REPCRTING PERIOD START DATE | ; | ; |) y(8-15) THRU | l] | L1 (15-20)

SUBSYSTEM ASSIGNED (22-33) TEST OR DESIGH (34)
NUMBER OF HOURS ASSIGNED IN PERIOD (36-39)

REPORTING PERIOD START DATE { , | ¢ | , ((e-15) THRU | | L1y (15-20)

SUBSYSTEM ASSIGNED, (22-33) TEST 0P DESIGN (3v)
NUMBER OF HOURS ASSIGNED IN PERIOD (36-39)

REPORTING PERIOD START DATE | | |] | | K8-15) THRU l \ | L (15-2¢0)

SUBSYSTEM ASSIGNED (22-33) TEST OR DESIAN (34)
NUMBER OF HOURS ASSIGNED IN PERIOD (36-39)

REPORTING PERIOD START DATE ; 4 |) | 4 (8-25) THRU , | 4 | 4 (15-20)

SUBSYSTEM ASSIGNED (22-33) TEST OP DESIGN (3u)
NUMBER OF HOURS ASSIGNED IN PERIOD (36-39)

Figure 3m. Programmer Assignment Form

32

Gl

[-

T T T {1l
*TsTTae 7 T Tifult!

INTERFACE INFORMATION
(or updates)

SUBSYSTEM NAME
(for which information is being specified)

CAN A DRIVER BE USED TO TEST LOWER LEVELS
(*Y', 'N', or blank)

RELATED SUBSYSTEM

IS THIS AN:
{7 ADDITION 'A' [] CHANGE 'C' [) DELETION ‘D'

RELATIONSHIP TO ABOVE SUBSYSTEM
] CALLED BY ABOVE 'CD' [0 CALLS ABOVE 'CG’
] SHARES DATA 'SD') NO CHANGE *

REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABOVE
[J MUST BE COMPLETED 'T‘ [C] CAN BE STUB 'S' [C] NO CHANGE ' '

RELATED SUBSYSTEM

IS THIS AN:
] ADDITION 'A' (] CHANGE 'C' [J DELETION ‘D'

RELATIONSHIP TO ABOVE SUBSYSTEM
(] CALLED BY ABOVE 'CD' [J CALLS ABOVE 'CR'
[J SHARES DATA 'SD' [] NO CHANGE *

REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABOVE
MUST BE COMPLETED ‘T (T CAN BE STUB 'S’ [JJ NO CHANGE ' '

RELATED SUBSYSTEM

IS THIS AN:
[0 ADDITION 'A* [C] CHANGE 'C' [) DELETION 'D'

RELATIONSHIP TO ABOVE SUBSYSTEM _
CALLED BY ABOVE 'CD’ {CJ CALLS ABOVE 'CG'
[} SHARES DATA 'SD' {7' NO CHANGE ' !

REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABOVE
[J MUST BE COMPLETED ‘T’ (O CAN BE STUB 'S' [J NO CHANGE ' '

RELATED SUBSYSTEM

IS THIS AN:
) ADDITION ‘A’ [J CHANGE ‘C' [J DELETION 'D'

RELATIONSHIP TO ABOVE SUBSYSTEM
CALLED BY ABOVE 'CD' 3 CALLS ABOVE 'Ch'
SHARES DATA ‘Sp' [J NO CHANGE ' '
REQUIRE STATUS OF THIS SUBSYSTEM TO THE ABOVE
[MUST BE COMPLETED 'T' [] CAN BE STUB 'S' [T NO CHANGE ' '

Finure 3n. Interface Information Form

33

(1-10) a
(2-17)
(15)

(8-19) G
(21)

(23-24)

(26)

(s-19) (3
(21)

(23-2y)

(26)

(8-19) @
(21)

(23-24)

(26)

(6-19) [
(21)

(23-2u)

(26)

S

R LA AT . AL NI Y

o e st il

ERROR ID
TP 01

TP 02

TP 03

P 04

TP 05

TP 06

TP 07

TP 08

LEVEL
ERROR

ERROR -

ERROR

ERROR

ERROR

ERROR

ERROR

NOTE

Table V

Transaction Processor Errors

TEXT

INVALID HEADER
CARD ON
TRANSACTION

INVALID FUNCTION
FIELD ON HEADER
CARD

UNSUCCESSFUL
ATTEMPT TO STORE
~ RECORD

INPUT DATE HAS
INVALID M/D/Y
VALUE

STOP PRECEDES
START DATE IN
TRANSACTION

ILLFORMED NUMBER
IN ALL NUMERIC
FIELD

TRANSACTION
CONTINUATION DATA
NOT FOUND

END OF
TRANSACTIONS

PROBABLE CAUSES

Number in function field or
letter in date field.

Function specified is not
a legal one.

Information in terms of

an IDS record was not able
to be stored in the data
base. This could be a
result of duplicate
information, no more room
or any severe type of IDS
malfunction.

A date on a card in the
transaction has an invalid
month, day, or year value.

For two dates expressing a
range in a transaction, the
stop date is before the
start date.

In a field that must be all
numbers there is a non numeric
character.

While processing a transaction,
a logical termination point
for the transaction was not
reached before the next
transaction was read.

EOF encounter at a proper
time.

I o S
S R P

<

ERROR ID LEVEL

TP 09

TP 10

TP 11

w2

TP 13

™ 14

TP 15

TP 16

o ETTIDRR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

Table V (Cont.)

TEXT

UNABLE TO
RETRIEVE PROJECT
RECORD

LOOKING FOR
ASSIGNMENT NAME
CARD

INVALID
CHARACTER(S) IN
ALPHABETIC FIELD

UNABLE TO
RETRIEVE
SUBSYSTEM

DATE DOES NOT
CORRESPOND TO A
REPORT PERIOD

AS OF DATE IS
AFTER TRANSACTION
DATE

UNABLE TO
RETRIEVE FROM
DATA BASE

DATA BASE
INCONSISTENCY

35

PROBABLE CAUSES

Project has not been

initialized or some serious
malfunction of IDS.

In the IUP transaction, the
AS-CF-DATE and the PROGRAMMER's
name are improperly entered.

For fields having only

certain allowable alphabetic
entries, the transaction has

a wrong character entry.

Subsystem has not been

initialized, name is invalid,

or IDS system malfunction.

An input date used to

specify a certain reporting
period, i.e., the first day
of a reporting period, does
not match a period computed
from the starting date of the
project and the length of a
reporting period.

In IUA the date of an actual
expenditure of resources is

after the date of the
transaction on the header
card. This violates the

concept of a past expenditure.

General message used when data

or record to be updated or

changed or in anyway accessed
has not yet been entered intec
It is possible
that an IDS system malfunction

the data base.

could cause it.

Should not occur; indicates
Simon or IDS malfunction.

WG i

ERROR ID
TP 17

TP 18

TP 19

TP 20

TP 21

TP 22

TP 23

TP 24

TP 25

LEVEL
NOTE

ERROR

WARNING

ERROR

ERROR

NOTE

ERROR

ERROR

ERROR

Table V (Cont.)

TEXT

NOT REAL FLAG,
DATA BASE IS
UNCHANGED

PREMATURE END OF
FILE

SEARCHING FOR
VALID '*START'
CARD

DATA BASE PROBLEM
EXCLUDES
INITIALIZATION

PROJECT HAS
ALREADY BEEN
INITIALIZED

MODULE UPDATED IN
DATA BASE

BLANK FIELD WHERE
ENTRY REQUIRED

UNABLE TO DELETE
RECORD

MODULE NOT YET
COMPILED

PROBABLE CAUSES

Precompiled or postcompiled
program hasn't been declared
"REAL" or "COMPOOL" and
consequently hasn't caused

a data base update.

EOF was encountered before
it was logically expected.

Transaction Processor is
scanning for a header card
but encountered other cards
instead.

While trying to initialize

the data base, IDS signalled
an error condition which
implies that either IDS

space has not been allocated,
or it has not been initialized
by the IDS program QUTI, or
there is an IDS malfunction.

(Self-explanatory).

Postcompiler or precompiler
results have been entered in
the data base.

A blank field occurs where
it shouldn't.

Either the information that
is being deleted does not
exist or else there is some
system malfunction.

In an attempt to update the
status information, the
program was not able to access

ERROR ID

TP 26

TP 27

TP 28

TP 29

TP 30

TP 31

TP 32

LEVEL

ERROR

NOTE

ERROR

ERROR

ERROR

NOTE

ERROR

Table V (Concl.)

TEXT

NO SUCH ENTRY IN
DATA BASE

MODULE ADDED TO
DATA BASE

GIVEN DATE
PRECEDES PROJECT
START DATE

NUMBER FOUND IS
OUT OF RANGE

NO SUCH
DISCREPANCY
RECORD

SKIPPING

TRANSACTION

UNABLE TO FIND
ASSTGNMENT
RECORD

PROBABLE CAUSES

module information in the
data base implying that the
module hasn't yet been compiled.

No such program or subsystem
in the data base.

The module has been either
precompiled or postcompiled
for the first time.

Date on error or discrepancy
ID precedes the start of the
project.

For those characteristics

of errors and discrepancies
listed on the forms, there
is a legal range; some entry
is out of its range.

When performing the UDC
function, the discrepancy

ID does not correspond to an
outstanding discrepancy ID.

The Transaction Processor
will not process this
transaction.

While deleting a programmer's
assignment (DPA), an
assignment can't be found.

For the messages that imply difficulty in retrieving storing or
deleting IDS records, additional IDS information is printed out on
For documentation, see the IDS Manual [Honeywell

the output.
BR 69, Appendix B].

y g O TR
2 8 100 "%,.;.. 3
, § 1

37

1

ITI.

Table VI

Transaction Manipulation Commands

Parentheses imply that the phrase can be omitted.

The commands can be batched in a run.

COPY ((FROM (CHECKPOINT) date) (TO (CHECKPOINT) date))

1. COPY alone copies the entire file.

2. FROM, if present, sets up the starting position for the
copy. IF not present, then the starting point is the
present position of the pointer in the file.

3. T0, if present, sets up the terminating position for the
copy; otherwise it is the end of the file.

DELETE (number)

1. Starting at the present position, DELETE skips over records.

2. If "number" is present then that number of records are
skipped. If absent then one record is skipped.

INSERT (number)

1. INSERT inserts cards into the new file. The cards
directly follow the INSERT card.

2. If "number" is present then that number of cards are
inserted. If absent then one card is inserted.

R R o DB

i
4

SYSTEM STRUCTURE REPORT SPECIFICATIONS

Introduction

The first Simon report supplies management and programmers with
a comprehensive view of the structure of the developing system. It
provides cross-reference information such as calling hierarchies and
data and file references in a variety of forms so that the user can
easily determine the relationships of one subsystem or program with
another subsystem or program for purposes of data or control flow
analysis and as an aid to detecting and correcting interface errors.

The data for this report comes indirectly (via the data base)
from the analyses performed by the Precompiler and Postcompiler on
JOVIAL source code. The Precompiler supplies program names and the
names of the subsystems to which they belong, and a 1ist of JOVIAL
DEFINE names referenced by each program. The Postcompiler also
provides program names and the names of their associated subsystems,
and in addition supplies the program calling hierarchy information
and a list of external data items (COMPOOL items) and files
referenced by each program. Some data is manually collected. This
is the "Subsystem Declared Interdependency Data,” which notes for
each subsystem whether a driver is feasible for that subsystem, and
supplies for each subsystem a list of all subsystems which are
needed for testing the former subsystem, their relationship (called,
calling or shares data) to the former subsystem, and whether stubs
for these subsystems may be used. This information is collected via
the interface information data form (see TRANSACTOR SPECIFICATIONS).

The System Structure Report consists of seven sections, which
are:

1. Program-Subsystem Dictionary,

Subsystem Declared Interdependency Data,
References by Subsystem-Program,
References by COMPOOL Item,

References by File,

References by DEFINE Name,

N o0 W N

Subsystem Interaction.

———_ < e e e

Most of the sections are in table form, and in most cases the
entries within a column, whether subsystems, programs, data items,
files, or DEFINE names, are arranged in alphabetical order, starting
with the left-most column.

Program-Subsystem Dictionary

The first section, Program-Subsystem Dictionary, lists for
every program in the data base the subsystem to which it belongs.
The subsystem name is flagged if it is not currently in the data
base. Figure 4 below shows a sample Program-Subsystem Dictionary.

PROGRAM-SUBSYSTEM DICTIONARY

PROGRAM SUBSYSTEM
M AA
AA2 AA
BBC BB
BDXW AA
ccl cc
cc2 ccC
DZQR BB

* - NAME NOT PRESENTLY IN VALID SUBSYSTEM NAME LIST

Figure 4. Program-Subsystem Dictionary Section
of System Structure Report

Subsystem Declared Interdependency Data

The second section of the System Structure Report is the
Subsystem Declared Interdependency Data section described above. A
list of the subsystems in the data base is printed, giving for each
subsystem:

40

G i

e T—

1. whether or not a driver is feasible ("Y" if yes, "N"
if no, "P" if this field is absent in the data base);

2. a list of all those other subsystems which have been
declared to be needed for testing the subject
subsystem including:

a. the relationship of the needed subsystem to the
subject subsystem ("CD" if the needed subsystem
is called by the subject subsystem, "CG" if the
needed subsystem calls the subject subsystem, and
"SD" if the needed subsystem sets any external
data items used by the subject subsystem),

b. whether or not a stub for the needed subsystem
o is feasible ("S" if stub is feasible, "T" if
‘ the total needed subsystem must be used).

Figure 5 gives an example of the Subsystem Declared
Interdependency Data Section.

SUBSYSTEM DECLARED INTERDEPENDENCY DATA

REL - RELATIONSHIP OF NEEDED SUBSYSTEM
REQ - REQUIRED STATUS FOR TESTING
- SUBSYSTEM DRVR 0K SUBSYSTEM NEEDED REL REQ

ABAD Y
ACLO N
ACCA cD S
AXYA cG T
j BADO Y BAMS SD T

cICD ?

Figure 5. Subsystem Declared Interdependency Data Section
of System Structure Report

References by Subsystem-Program

The third section, References by Subsystem-Program, is a
comprehensive list, for every program in the data base, of all
programs, COMPOOL data items, files, and DEFINE names which have
any relationship to that program. The format of this section is
as follows (see Figure 6). ?It should be remembered that all
columns of items are arranged alphabetically.)

1. The left-hand column lists one of the subsystems
in the data base.

2. The second column lists one of the programs contained
in the subsystem in column 1.

3. The third column, "RELATIONSHIP," states the relationship
of the program in column 2 to the item in column 4,
"OBJECT", which may be a program, a COMPOOL (COMMON)
item, a file, or a DEFINE name (MACRO).

4. The fifth column, "WITHIN," gives:

a. if the item in column 4 is a program, the
subsystem to which it belongs (if the subsystem
is not known "**" is printed);

b. if the item in column 4 is a COMPOOL item,
the COMMON to which it belong;;

c. if the item in column 4 is a file or a DEFINE
name, this column is blank.

4. The last column, "TYPE," gives the type of the item in
column 4, if the item is a COMPOOL item or a file. The
abbreviations used for the item types are those used
in the JOCIT compiler cross-reference listings; a list
of these abbreviations is given in Table VII.

Table VIII below gives a list of all possible relationships between
the program in cclumn 2 and the item in column 4. The program

in column 2 is denoted as "X". Figure 6 shows an example of a
References by Subsystem-Program Section.

42

REFERENCES BY SUBSYSTEM-PROGRAM

SUBSYSTEM PROGM REFERENCE }gsggcgvmn) WITHIN TYPE
CHARLIE STOOP CALL TO STOKE DADA
KREPE ax
CALL BY PREAK SUPRA
S/U COMMON FORMIT coMMNl IS
DADA STOKE CALL BY STOOP CHARLIE
USE COMMN FORMIT COMMNT IS
e CHARI COMMN2 H
R/W FILE FILE6 HY
h USE MACRO DO'LOOP
CASE
SUPRA PREAK CALL TO STOOP CHARLIE
SET COMMN FORMIT COMMNT IS
CHART COMMN2 M
R/W FILE FILE? BR
FILES BR

USE MACRO DO ‘LOOP
COMPOLT REF COMMN FORMIT COMMN1 IS
CHAR] COMMN2 H

Figure 6. References by Subsystem-Program Section
of System Structure Report.

43

Table VII

List of Abbreviations Used for File and Data Item Types 1n Reports

Abbreviation

BR

BV
HR
HV

AU

IS
IU

- —— o i——— - DS

B, 700

Abbreviations for File Types

Expansion

binary code, rigid (fixed) length
records

binary code, varying length records
hollerith code, rigid length records
hollerith code, varying length

records

Abbreviations for Data Items

fixed, signed
fixed, unsigned
boolean

floating point
hollerith code
integer, signed
integer, unsigned
status variable

transmission code

44

Table VIII

Explanation of References by Subsystem-Program Section
of System Structure Report

REFERENCE OBJECT ITEM WITHIN
CALL TO program called by X* subsystem
CALL BY program which calls X subsystem
SET COMMN COMPOOL data item COMMON

whose value is set by X,
where X is a procedural
program

USE COMMN COMPOOL data item whose value COMMON
is used by X, where X is a
procedural program

S/U COMMN COMPOOL data item whose value COMMON
is both set and used by X, where
X is a procedural program

REF COMMN COMPOOL data item defined by X, COMMON
where X is a COMPOOL rather

than a procedural program

R/W FILE file referenced by X -
USE MACRO JOVIAL DEFINE name referenced -
hy X

1 *X is the program listed in column 2 of the References by
! Subsystem-Program Section.

45

References by COMPOOL Item

The remaining sections of the System Structure Report are based
on the same information as the References by Subsystem-Program
Section, but are keyed on different items. Section 4, References by
COMPOOL Item, is keyed on external (COMPOOL) data items. It Tists all
COMPOOL items in alphabetical order and gives for each COMPOOL item:

1. the COMMON in which it is found,

2. the type of the COMMON data item (see Table VII for
list of abbreviations),

3. all subsystems which reference that COMMON item and
all programs in each subsystem which reference the
& item, noting whether each program sets ("S"), uses
' ("U"), or both sets and uses ("B") the COMMON item
(if the "USE" column is blank this indicates that
the referencing program is the COMPOOL in which the
COMMON item is declared).

Figure 7 below gives a sample of a References by COMPOOL Item

Section.
REFERENCES BY COMPOOL ITEM
ITEM COMMON TYPE SUBSYSTEM PROGM USE
ALPHA CHRCLS IS AA ABAD U
AXYL S
BOX BYLL B
ALLY PERCLS H ALKA ALSOM
BOX BYLL S

Figure 7. References by COMPOOL Item Section
of System Structure Report

46

References by File

The fifth section of the System Structure Report is the
References by File Section. It lists all files in the system in
alphabetical order, giving for each file:

1. the file's type (see Table VII for list of
abbreviations),

2. ail subsystems which reference the file and all
programs in each subsystem which reference the
file.

Figure 8 below is an example of the References by File Section.

REFERENCES BY FILE

FILE TYPE SUBSYSTEM PROGM
FILE7 HR SUB'A PROG ‘AA
PROG'AB

SuB‘s PROG'B
Sug'C PROG'CG

FILES BV Sus's PROG'B
PROG'EB

Figure 8. References by File Section of
the System Structure Report

References by DEFINE Name

The sixth section of the System Structure Report is called
References by DEFINE Name, and 1ists for each DEFINE name in the data
base all subsystems which reference it and all programs in each
subsystem which reference the DEFINE name. A sample Reference by
DEFINE Name Section is given below in Figure 9.

47

REFERENCES BY DEFINE NAME

DEFINE-NAME SUBSYSTEM PROGM
DEF1 SUB'A PROG'AA
SUB'B PROG'AZ

PROG'B
SuB'Z PROG'ZZ
DEF2Z SuB'z PROG'ZZ

Figure 9. References by DEFINE Name Section
of System Structure Report

Subsystem Interactions

The last section, Subsystem Interactions, is a summary of all
relationships between subsystems in the system. It consists of a
matrix with the names of all subsystems listed in a column on the
left-hand side labelling the rows, and also across the top of the
matrix, read top-to-bottom and labelling columns. The symbol at
the intersection of the row for a given subsystem (subsystem "A") and
the column for some, possibly other, subsystem (subsystem "B") denotes
their interactions as follows:

1. a "-" indicates no relationship;

2. an "X" denotes that (some program in) Subsystem A
calls (some program in) Subsystem B;

3. a "+" denotes that Subsystem A sets a data item
which Subsystem B uses;

4. a "*" indicates that both “X" and "+" apply.

This matrix may thus be read across a row to see whom a subsystem
calls and who uses items that subsystem sets, and read down a column
to see who calls a subsystem and who sets items which are used by
that subsystem. Figure 10 below is an example of a Subsystem
Interactions Section.

48

SUBSYSTEM A

SUB'A

SuB'BB
SUB'ZX
suB'zz

SUBSYSTEM INTERACTIONS

SUBSYSTEM B

S

-Cw
-oC

¥ 1 o o o o o s O™

!-+><><'o.-cn><N

A
+
X
+

Figure 10. Subsystem Interactions Section
of System Structure Report

-oCcCcwm
-ocw

+ 33X 1 e e e e e e NN

-

ESTIMATES VS. ACTUALS REPORT SPECIFICATIONS
Introduction

The second Simon report is a comparison between projected
resource expenditures (estimates) and actual resource expenditures
(actuals) for each subsystem and for the entire system. The data
is taken from the estimates and actuals forms used in the
Transactor subsystem.

The following resources are used in the comparison: person
hours, terminal hours, main memory, computer dollars, other (non-
computer) dollars and file space. These resources are identical
to those listed on the estimates and actuals forms. Expenditures
are divided into those incurred during the design phase and those
incurred during testing, again as in the estimates and actuals forms.

The estimates used in the comparison are a programmer's current
estimates for a subsystem. The actuals are current actual
expenditures. A series of Estimates Vs. Actuals Reports will thus
show the progression of current estimates and actuals over time. Since
the estimates for each subsystem are continually revised and refined
throughout the subsystem's development, the series of estimates-actuals
comparisons should keep converging until: (1) the current design
estimates equal the current design actuals when the design phase has
been completed, (or, more accurately, is estimated to have been
completed), and (2) the test estimates and actuals are equal, when
the subsystem has been tested.

Subsystem Estimates Vs. Actuals

First a comparison between current estimates and actuals is
printed for each subsystem in the system. A comparison for a sub-
system is printed even if there have been no estimates or actuals
entered into the data base for that subsystem; in this case all
counts will be zero. Figure 11 below gives an example of the
estimates-actuals comparison for the subsystem named "SUBSYSTEM-A."
As can be seen, this subsystem has had its design completed but is
still being tested.

50

SIMON REPORT #2 -- CSIMATES VS. ACTUALS AS OF 04/22/75 PAGE 1

SUBSYSTEM-A SUBSYSTEM ESTIMATES VS. ACTUALS

RESOURCE ESTIMATES ACTUALS
DESIGN TEST DESIGN TEST
PERSON~HOURS 120 65 120 30
TERMINAL -HOURS 45 30 45 N
MAIN MEMORY 26 26
COMPUTER $ $105 $75 $105 $35
OTHER § $60 $51
FILE SPACE - TEMP 22 6 22 8
- PERM 14 18 14 14

Figure 11. Subsystem Estimates vs. Actuals

Project Estimates vs. Actuals

Finally, the current estimates-actuals comparison is printed
for the entire system. This is a sum of the counts for all subsystems
for the resources person hours, terminal hours, computer dollars,
other dollars and file space. The main memory usage for the entire
system is the maximum of the main memory usages for all subsystems.
A third column, giving the total project budget for person hours,
main memory, computer dollars, other dollars, and file space, is
included, so that a comparison may be made between the estimates and
actuals for the entire system and the project budget. In this way
it can easily be seen if the budget has been overrun (actuals
compared with budget), or if it is predicted that the budget will be
overrun (estimates compared with budget).

Figure 12 shows a sample system comparison for the project t
"PROJECT-A." In the example, the budget for computer dollars has
already been overrun; the budgets for main memory and file space
have not yet been overrun, but are predicted to be overrun.

51

|
T —— o ——— 5 O et ao—

F—_“I—r

Terminal-hours are not shown as having a "budget”" because this type
of resource is more usefully regarded as limited on a per-unit-time
basis (e.g. maximum of 16 hrs in any one day) rather than overall.
See the paragraph entitled "Projected Resource Overruns," below.

PROJECT-A PROJECT ESTIMATES VS. ACTUALS, COMPARED WITH BUNGET.

RESOURCE ESTIMATES ACTUALS BUDGET
DESIGN TEST DESIGN TEST

PERSON-HOURS 600 400 375 300 1000

TERMINAL -HOURS 270 250 200 121 ‘

MAIN MEMORY 36 22 30

COMPUTER $ 850 650 800 645 1300

OTHER $ 700 300 1000
FILE SPACE - TEMP 80 40 43 32
- PERM 83 67 43 40

- TOTAL 163 107 86 72 200

Figure 12. Estimates vs. Actuals for an Entire Project

PROJECT SCHEDULES REPORT SPECIFICATIONS
Introduction

The third Simon report, Project Schedules, deals with schedules
of resource usage, including programmer hours, computer dollars,
other (non-computer) dollars, terminal hours and file space. The
report shows both past (actual) and projected (estimated) resource
usage, predicts budget overruns, and checks the programmers'
schedules for any inconsistencies and conflicts.

A11 data used in this report is manually collected and
includes the following:

iy

&
5
s
,_';.J
g
:

i

¥

1. programmer schedules,

2. subsystem estimates and actuals,

3. project budgets,

4. subsystem interdependency (interface) data.

The Project Schedules Report consists of five sections: Person

Hours Schedules, Other Resource Schedules, Projected Resource
Overruns, Projected Scheduling Inconsistencies, and Projected

Scheduling Conflicts.

Person Hours Schedules

The first section, Person Hours Schedules, uses the programmer
schedules put in the data base by a project manager to print
programmer-subsystem schedules for the entire system. A sample
Person Hours Schedule Section is given below in Figure 13. This
example shows programmer schedules for the period from 3/11/75 to
5/20/75. The line of dates gives the start dates of the periods
of time for which assignments have been made. The programmers are
listed at the left; under each date in each programmer's rows are
given the names of the subsystems oa which that programmer will
be working, noting the number of hours to be worked and whether
design or test will be performed ("D" or "T").

SIMON REPORT II1 PAGE 2
PROJECT SCHEDULES AS OF 042175
PROJECTED RESOURCE USE

LENGTH OF REPORTING PERIOD - 14 DAYS
PROJECT STOP DATE - 063175

PERSON HOURS

PROGRAMMER 031175 032575 040875 042275 050675
CAPLAN ABAD ABAD ABAD ABAD ABAD

40 HOURS-D 40 HOURS-D 40 HOURS-D 40 HOURS-T 40 HOURS-T

ZENO ZENO ZENO ZENO ZENO

20 HOURS-D 20 HOURS-D 20 HOURS-T 20 HOURS-T 20 HOURS-T
MARDRID CONO CONO CONO CONO CONO

30 HOURS-D 30 HOURS-D 30 HOURS-D 30 HOURS-T 30 HOURS-T
NOSER KAPLA . KAPLA KAPLA

40 HOURS-D 40 HOURS-D 40 HOURS-D

Figure 13. Person Hours Section of Project Schedules Report

54

:\

shi

Other Resource Schedules

The second part of the Project Schedules Report shows past and
projected schedules for resources other than person hours, using the
subsystem estimates and actuals input by the programmers and the
subsystem schedules produced in the first section of this report.

The resources which are covered in this section are computer dollars,
file space (number of file blocks), other dollars, and terminal hours.
Figure 14 below shows a sample of this section.

SIMON REPORT III PAGE 2
PROJECT SCHEDULES AS OF 020275
OTHER RESOURCES

RESOURCE 123174 011475 012875 021175 022575
COMPUTER DOLLARS 62 165 145 98 148
FILE SPACE 77 344 385 308 423
OTHER DOLLARS 7 63 78 75 82
TERMINAL HOURS 40 30 74 95 51

Figure 14. Other Resource Schedules
Section of Project Schedules Report

Projected Resource Overruns

The resource usage schedules set up in the second section of
the Project Schedules Report are used in the third section, Projected
Resource Overruns. This section notes any overruns which may be
predicted for computer dollars, file space, other dollars, or
terminal hours. Computer dollars and other dollars are each summed
up over time; the first period of time (if any) in which the budget
is exceeded is noted for each of these resource types. For file
space and terminal hours, the budget may be exceeded in any period
of time; for these resources, all periods of time in which overruns
occur are noted. For terminal hours, the "budget" for a period of
time is calculated to be the number of terminals available times the
number of hours in a period of time.

55

For example, if the budget for file space for a project is 400
blocks, there is one terminal available, and the budget for other
dollars is $300, and if Figure 14 shows the resource schedules for
this project, then Figure 15 below would be the Projected Resource
Overruns Section.

SIMON REPORT III PAGE 3
PROJECT SCHEDULES AS OF 020275

PROJECTED PROBLEM AREAS

OVERRUNS OF RESOURCES -
FILE SPACE EXCEEDS BUDGET IN PERIODS STARTING 022575
OTHER DOLLARS EXCEED BUDGET IN PERIOD STARTING 022575
TERMINAL HOURS EXCEED BUDGET IN PERIODS STARTING 021175

Figure 15. Projected Resource Overruns
Section of Project Schedules Report

Projected Scheduling Inconsistencies

The programmer schedules in Section 1 of this report were
entered into the Simon data base by project managers. Programmers
put in their estimates of the number of person hours which will be
needed for each subsystem they are working on. Therefore, there
exists for each subsystem in the data base two estimates of the
number of person hours which will be needed for that subsystem, one
estimate implied by the schedule and one entered directly by the
programmers. These two estimates may not coincide; the fourth
section of the Project Schedules Report notes all such scheduling
inconsistencies.

For example, consider the project represented in Figure 13. If
the total schedules for subsystems ABAD and CONO are given here, and
if programmer CAPLAN estimated 250 hours for ABAD, and programmer
MARDRID estimated 130 hours for subsystem CONO then the Scheduling
Inconsistencies Section would be as in Figure 16.

56

SIMON REPORT III PAGE 5
PROJECT SCHEDULES AS OF 042175
SCHEDULING INCONSISTENCIES

SUBSYSTEM - ABAD

SCHEDULED PERSON-HOURS NEEDED - 200

ESTIMATED PERSON-HOURS NEEDED - 250
SUBSYSTEM - CONO

SCHEDULED PERSON-HOURS NEEDED - 150

ESTIMATED PERSON-HOURS NEEDED - 130

Figure 16. Projected Scheduling Inconsistencies
Section of Project Schedules Report

Projected Scheduling Conflicts

Programmer and subsystem schedules depend not only on
programmer availability and estimates for the number of person hours
needed to complete a subsystem, they also depend on the calling and
data sharing relationships between subsystems, that is, on the
"Subsystem Interface Data." For example, if Subsystem A needs
Subsystem B for testing, and a stub for B cannot be used, then
Subsystem B must be completed before testing may begin on Subsystem A.
If Subsystem A has been scheduled to have testing begun before
Subsystem B is complete, a scheduling conflict results.

Part 5 of the Project Schedules Report is called Projected
Scheduling Conflicts. It uses the schedules set up in Section 1
and the programmer-input Subsystem Interface (Interdependency) Data
(see TRANSACTOR SPECIFICATIONS) to check for any conflicts such as
the one described above.

For example, assume again that in Figure 13 the total schedules
for subsystems ABAD and CONO are presented. If ABAD is declared to
be needed for testing CONO, and a stub cannot be used, there is a
scheduling conflict. Figure 17 below shows the Scheduling Conflicts
Section noting this conflict (and others).

57

i

R 0 LB g
S

—— - - % " T ¢

SRy Vi

-

SIMON REPORT III
PROJECT SCHEDULES AS OF 042175
SCHEDULING CONFLICTS

SUBSYSTEM - CONO
SUBSYSTEM NEEDED FOR TESTING - ABAD
WHEN NEEDEC - 040875
WHEN SCHEDULED TO BE COMPLETE - 052075

SUBSYSTEM ~ KAPLA
SUBSYSTEM NEEDED FOR TESTING - DENOL
WHEN NEEDED - 052075
WHEN SCHEDULED TO BE COMPLETE - 061175
SUBSYSTEM NEEDED FOR TESTING - CARRA
WHEN NEEDED - 052075
WHEN SCHEDULED TO BE COMPLETE - 060375

Figure 17. Projected Scheduling Conflicts
Section of Project Schedules Report

58

PAGE 7

&
.

puE

SUBSYSTEM AND P!)GRAM STATUS REPORT SPECIFICATIONS
Introduction

The fourth Simon report shows the current status of all
subsystems in the system and of every program in each subsystem.
It uses several types and sources of information to provide
programmers and managers with a rounded view of a subsystem's
or program's status. The report contains two sections; the first
deals with subsystem status and the second with program status.

Subsystem Status

The Subsystem Status Section lists for each subsystem in the
system a number of data entries which provide status information
about the subsystem. The information is of several types and comes
from various sources, as follows:

1. status information which illustrates how far along the
subsystem is in its development; this data is either

a. mawally input by programmers or managers, or
b. zutomatically collected by the Simon functions;

¢. error information, manually collected, :thich
provides the user with information concerning the
subsystem's reliability and the nature of its
errors;

1. complexity and length measures calculated by the
Precompiler, measures which are believed to be
correlated with subsystem reliability (incidence
of errors) and comprehensibility.

Table IX shows for each data entry in the Subsystem Status
Section which of the above sources of information supplies its
data. Figure 18 shows an example of this section of the Subsystem
and Program Status Report for the project "PROJECT-A" and the
subsystem "SUBSYSTEM-A" which has had design completed but is still
being tested.

Program Status

The Program Status Section uses information collected during
precompilations and postcompilations to provide a view of the
status of all programs in the system. As only information collected
by the Pre~ and Postcompiler is used, only information on a program's

59

-

Table IX

Data Entries in the Subsystem Status Section of the
Subsystem and Program Status Report

Entry

Programmers

Date of Definition

Design - 1st assignment
Design - last assignment
Estimated Number of Programs

Current Number of Programs

Current % cleanly compiled

Testing

1st assignment
Testing - last assignment
Current % tested
Estimates specified
Actuals specified

Design/Test Interface
Specified

Test Plan done
Documentation done

Errors charged

Source

of Data

manual
manual
manual
manual

manual

input
input
input
input

input

automatically collected when programs
are entered into data base after a
precompilation or postcompilation

automatically collected after post-
compilation

manual
manual
manual
manual
manual

manual

manual
manual

manual

60

input
input
input
input
input

input

input
input

input

TR

Table IX (Concl.)

Entry Source of Data

Lines of Code

Number of Statements
) automatically collected upon

Halstead Length precompilation

Complexity*)

Number of Compilations automatically collected upon post-
compilation

-

*The complexity measure has not yet been implemented.

61

SIMON REPORT #4 -~ PROJECT-A SUBSYSTEM STATUS ON 04/25/75 PAGE 1A

SUBSYSTEM - SUBSYSTEM-A

PROGRAMMERS - DESIGN/TEST
MARLONWE D T

DATE OF DEFINITION - 03/16/75

DESIGN PHASE -
FIRST ASSIGNMENT PERIOD - 03/20/75
LAST ASSIGNMENT PERIOD - 04/08/75
ESTIMATED NUMBER OF PROGRAMS -3
CURRENT NUMBER OF PROGRAMS - 3
CURRENT % CLEANLY COMPILED - 100%

o~ TEST PHASE -
FIRST ASSIGNMENT PERIOD - 04/22/75
LAST ASSIGNMENT PERIOD - 06/03/75
| CURRENT % TESTED - 0%

ESTIMATES - SPECIFIED

ACTUALS ~ SPECIFIED

DESIGN/TEST INTERFACE - NOT SPECIFIED
| TEST PLAN - NOT DONE

DOCUMENTATION - DONE

ERRORS CHARGED TO THIS SUBSYSTEM -
COMPILER-DETECTED ERRORS - 17
NON-COMPILER-DETECTED ERRORS -

MEMORY - 2 LOGIC - 4
MEMORY + 6 LOGIC + O

TOTAL LINES OF CODE - 63
TOTAL NUMBER OF STATEMENTS - 55
| TOTAL HALSTEAD LENGTH - 342
TOTAL COMPLEXITY - 0
TOTAL NUMBER OF COMPILATIONS - 14

Figure 18. Subsystem Status Section of Subsystem
and Program Status Report

62

«

design status (as opposed to test status) is given. This information
includes:

1. dates of first and last precompilations,

2. dates of first and last compilations.

3. number of compilations,

4, data measures calculated by the Precompiler, to wit:

a. number of statements,
b. lines of code,

c. Halstead length,

d. complexity.

For each subsystem in the system, the above information is
presented for each of its programs which have been entered into the
data base. A summary for that subsystem is then printed, giving the
first and last precompilation and compilation dates for any program
in the subsystem, the total number of compilations for the subsystem,
and the total number of statements, lines of code, Halstead length
and complexity for the subsystem. If no programs for this subsystem
have been entered into the data base, i.e., no programs have been
precompiled or compiled, a message is printed to that effect. This
format is repeated for every subsystem in the data base.

Figure 19 below shows the Program Status for two subsystems.

"SUBSYSTEM-A" has had programs entered into the data base, while
"SUBSYSTEM-B" has had no programs entered.

63

i v > e ———, S

o b e e

SIMON REPORT #4 -- PROJECT-A PROGRAM STATUS ON 04/06/75 PAGE 1B

PROGRAM PRECOMPILATION COMPILATION STMT LINE HAL-
NAME FIRST LAST FIRST LAST COUNT COUNT COUNT STEAD

SUBSYSTEM - SUBSYSTEM-A

AA 032175 032675 032175 032675 6 16 23 180
BB 032275 032175 032575 032875 10 48 69 215
4 4 040175 040475 1 27 38 101

SUMMARY FOR SUBSYSTEM-A
032175 040175 032175 040475 17 91 130 496

SUBSYSTEM ~ SUBSYSTEM-B

*xxxx**NO PROGRAMS HAVE BEEN COMPILED FOR THIS SUBSYSTEMX**#x

Figure 19. Program Status Section of Subsystem
and Program Status Report

ERRORS AND DISCREPANCIES REPORT SPECIFICATIONS

Introduction

The fifth Simon report deals with errors and discrepancies. An
error is any single mistake (however often repeated) which causes a
program to behave in a manner contradictory to its specifications. A
discrepancy is any inconsistency found in the source code, operating
system or compiler diagnostics, or test results which is not
immediately diagnosed. It may or may not be found to be due to an
error.

64

R e 2 5
AR s e e R

&

There are three parts to the Error and Discrepancy Report: Error
and Discrepancy Summary, Discrepancy Summary, and Errors Reported
Over Time.

Error and Discrepancy Summary

The first part of the report, Error and Discrepancy Summary, is
based directly on the error and discrepancy forws used in the
Transactor subsystem and is a summary of all such forms entered into
the data base. First, a summary of the error forms is given, which
gives for each entry on the error form a summation of its counts
over all error forms entered into the data base. A similar summary
of discrepancy information follows, based on all discrepancy forms
entered into the data base. Finally, the first part of this report
contains a printout of the descriptions of all outstanding
discrepancies, i.e. all discrepancies which have not yet been
diagnosed. These descriptions are also taken from the discrepancy
forms that have been entered in the data base. A sample of the
first part of the Error and Discrepancy Report is found in Figure 20.

Summary of Discrepancy Information

The second part of this report, Summary of Discrepancy
Information, gives a projection of the project completion date,
based on the error and discrepancy forms entered into the data base.
The algorithm used is a least squares regression producing two lines,
one plotting all discrepancies found against time and one plotting
resolved discrepancies against time. The intersection of these
two lines is then projected as the date on which there will be no
outstanding discrepancies; this is an approximation of the project
completion date. Two approximations are made, one using only
discrepancies and one using both discrepancies and errors,
considering errors as resolved discrepancies. Figure 21 shows an
example of this section of the Error and Discrepancy Report.

Errors Reported Over Time

The final part of the Error and Discirepancy Report is called
Errors Reported Over Time. This section gives a breakout of errors
by subsystem over time. A row entitled "INTERFACE" is also included
and shows interface errors over time. A sample of this section
is given below in Figure 22.

65

SIMON REPORT V 042275
ERROR AND DISCREPANCY SUMMARY

ERRORS
SUMMARY OF ERROR INFORMATION -
HOW MANIFESTED -

DISCREPANCY FORMS 13
DESK CHECKING 9
CODE READING 13

-
[

COMPILER DIAGNOSTICS 58
OTHER SYSTEM DIAGNOSTICS 0

TEST RESULTS 16

OTHER 7
HOW DIAGNOSED -

0BVIOUS 69

LOGIC ANALYSIS 32

INSTRUMENTATION 6

OTHER 9

MENTAL LEVEL -

0T PROGRAMMER n
MOTOR 14
MEMORY - 50

Figure 20. Error and Discrepancy Summary
Section of Errors and Discrepancies Report

66

MEMORY + 17
LOGIC - 19
LOGIC + 5

NUMBER OF OCCURRENCES -

1 - 74
2 = 10
3 - 8
4 - 5
5 - 2
<
6 - 10 1
1n-1s 2
16 - 20 2
OVER 20 - 2

WHEN OCCURRED -
ORIGINAL CODE 95
MAKING CHANGE
ADDING INSTRUMENTATION
CORRECTING ERROR

w N e N

OTHER

Figure 20. .Error and Discrepancy Summary
Section of Errors and Discrepancies Report (Cont.)

SIMON REPORT V 042275
ERROR AND DISCREPANCY SUMMARY
DISCREPANCIES
SUMMARY OF DISCREPANCY INFORMATION -

HOW FOUND -
CODE READING 2
SYSTEM DIAGNOSTIC 6
TEST RESULTS 14
OTHER

DISPOSITION -
ERRORS 9
LAPSE IN COMMUNICATION 8
NOT DISCREPANCY 3
OTHER 1

SIMON REPORT V 042275

ERROR AND DISCREPANCY SUMMARY

DESCRIPTIONS OF QUTSTANDING DISCREPANCIES
021975 TRUNCATED ZEROS COMING OUT OF REPORT-2
030375 PRINTS RESOURCES HEADING WHEN SHOULDN'T
041175 DISAGREEMENT OVER NAMES OF TOKEN TYPES

Figure 20. Error and Discrepancy Summary
Section of Errors and Discrepancies Report (Concl.)

68

SIMON REPORT V
DISCREPANCY SUMMARY

NUMBER OF OUTSTANDING DISCREPANCIES
NUMBER OF RESOLVED DISCREPANCIES
TOTAL NUMBER OF DISCREPANCIES
PROJECTED CATCH-UP DATE
1. USING DISCREPANCIES ONLY
2. USING DISCREPANCIES AND ERRORS
(CONSIDERING ERRORS AS RESOLVED
DISCREPANCIES)

Figure 21. Discrepancy Summary Secti
Errors and Discrepancies Report

SIMON REPORT V
ERRORS REPORTED OVER TIME

ATTRIBUTED TO 011475 012875
AA 3 3]
BB 2 5
cc

INTERFACE 1 11
44 6

Figure 22. Errors Peported Over Time
Section of Errors and Discrepancies Re

69

042375
13
21
34
03-21-77
03-10-77
on of
042275
021175
23
23
15
2
10
port

SECTION III
EXAMPLES OF USE*

SIMON'S GENERAL ROLE

An important aspect of any system is the human interface, i.e.
how people interact with and use a system to accomplish goals. In
order to illustrate this aspect, this section presents a few
scenarios of possible uses of Simon by managers and programmers
engaged in the everyday business of producing software. It must be
borne in mind that Simon in no sense automates management or
programming as such, but rather is a tool that collects information
and presents it to the user in reports. The exact implications of
the reported information are still very much left up to the users
themselves, who must bring to the reports their own subjective
knowledge of how a project is running. Thus, even though the cases
presented below are typical of th. smaller problems faced by
programmers and managers in a project, their solutions will undoubtedly
vary greatly from person to person and circumstance to circumstance.

GLOBAL ITEM CHANGES

The first example of a use of Simon deals with the relatively
frequent task of changing a shared variable in a common. Suppose
there is such a variable XYZ referenced by several programs that
needs to be changed from a half word to a full word declaration. It
js likely that the programmer responsible for the XYZ change
will not know of all instances of its use and could therefore over-
look the recompilation of some programs. However, by simply
looking up the variable in the common items section of the System
Structure Report, he would have an exhaustive listing of all affected
programs and so be able to carry out the task .nore auickly and
thoroughly, and moreover be able to 9auge in advance the required
amount of effort for a proposed change. The cross-reference listings
for macros and files can obviously be used in a similar way.

SYSTEM STRUCTURE CONSIDERATIONS

Another feature of the System Structure report is the Subsystem
Interaction matrix, of which Figure 10 is an example. This matrix
affords an overview of the structure of a developing system.

*K more detailed paper on this topic by two of the authors (Fleischer and
Spitler) is being prepared for separate publication.

70

w

-

Since it is produced automatically from the compiler output, it
can be used to check the structure of the built system with that of
its design. It can also guide in making up overlays or in planning
changes to the system or major ccmponents. It can also be used to
enforce system design disciplines; for example, if a subsystem is
defined to correspond to a "level of abstraction," this matrix can
be used to see where data sharing or unwarranted calls take place.

TROUBLE SPOTTING

To facilitate the understanding of this and the next case, we
first present a scenario of an operating environment of a project
using Simon: To initialize the project, the manager sets up the
data base and puts into it the initial budget and data describinc
the programmers' schedules and subsystems. The programmers enter
their initial estimates for their assigned subsystems. As the project
progresses, actual expenditures (actuals) are put into the data base by
the programmers on a regular basis, presumably at the end of a
reporting period. \/henever necessary, each programmer also updates
his estimates of resource expenditures required to complete his
assigned subsystem. Also, error reports, interface summaries,
discrepancy reports etc. are entered as they occur. The manager
receives back the five reports at least once every reporting
period. As needed, 'ie makes updates to programmer assignments
throughout the project.

Simon's reports can give several indications of potential
problems that might be developing in a software project. As stated
above, a programmer that realizes a subsystem will require more
work than previously anticipated should make changes as needed to
his previous estimates in the data base. Assuming that a manager
will schedule as many programmer hours on a subsystem as was most
recently estimated by the programmer, the updating of an estimate
by a programmer will manifest itself as an exception in the Project
Schedules report for the manager the next time the report is run.
Figure 16 gives such an exception report. Of course, human
failings, e.g. not to bother updating, and perennial optimism combire
to make this source of potential warning data much less than
adequate all by itself.

Other indications of problems can be found by comparing a
programmer's schedule with the Program and Subsystem Status report.
For example, if a subsystem should shortly be completed according to
a programmer's schedule and yet only 20% of the modules have even
had clean compilations as indicated on the Subsystem Status report,
then the manager is alerted to do some investigating on the exact

A

status of the subsystem. In looking for other problems a manager
could check:

the actual present expenditures on a subsystem versus
the programmer's estimated expenditures;

the total project expenditures versus the project's
budgeted expenditures;

the outstanding discrepancies (problems or unexpected
results for which the cause hasn't yet been determined)
that still exist;

projected completion dates that are computed automatically
from discrepancy data;

complexity or length vs. that of comparable programs or
subsystems or the manager's estimate of a reasonable
value;

frequency of compilation;
errors and their distribution over time;

and many other similar indicators that, in conjunction
with a certain amount of management expertise, should
give a fairly accurate picture of the present status of
a subsystem or project.

RESCHEDULING

If from this information, the manager decides to reschedule a
subsystem, Simon performs consistency and completeness checks on
the new schedule. The process of producing a consistent schedule
is iterative. The manager prepares and enters updates to the
schedule after which he runs the Project Schedules report. From the
report, he receives exception reports on problems in the new
scnedule. Figures 15-17 give examples of the three exception
reports. Accordingly he makes whatever necessary corrections to
the schedule and again runs the report, etc. In a reasonable :
ituation, thi« process should converge toward a comp1ete3 consistent,
revised schedule for the project. In the process of working out
schedule, the manager has been able to see first hand and cope
the problems of coordinating a highly interdependent group :
Simon provides an aid by handling much of the complex detail.

72

CHANGES IN SPECS

Another problem that SIMON helps solve is that of changing
part of the specification of a system. A major part of the
difficulty is often in evaluating the impact of the suggested
change, as may be needed to judge the relative merits of the change
vs. the status quo as well as to understand any other trade offs that
might be made.

The evaluation often requires intimate knowledge of the system.
In some cases, the information cuts across several people's work
and wouldn't ordinarily be available from a single source. Under
those circumstances, the global view of a project that Simon affords
the manager can obviously be helpful.

If the change requires modifying existing subsystems and
structures, the manager may profitably refer to the Project Structure
information, such as the Subsystem Interaction Matrix in the System
Structure Report to see what subsystem interactions will be affected,
or the individual program interactions including calling and called
programs, and global data and files references.

Depending upon whether the manager needs to add assignments aor
Just change some old ones, Simon can help determine, as previously
discussed, the scheduling ramifications of the proposed changes. Then,
depending on how he evaluates the impact such a schedule will have
on the project, he can decide whether or not the proposed change is
acceptable.

o cna

SECTION IV
EXTENSIONS TO SIMON

COMPLEXITY MEASURE

One motivation for the design of Simon is the provision to the
manager of early warnings of potential trouble in the system design
and implementation process. Although Simon cannot check program
code for correctness, it can report tc the manager several kinds of
statistics generated from the source code itself. The degree to
which these statistics deviate from their expected values can give
an indication of unusually complex or inefficient coding or of
inadequate progress in coding.

Several statistics are generated from program source code by the
prototype Simon: number of program lines, number of program
statements, and a modified token count (the "Halstead" count
[Halstead, 1972]). These measures are fairly simple and do not
completely agree with intuitive notions of what attributes of a
program affect its complexity or comprehensibility. Thus a new
measure of psychological complexity was developed at MITRE
[Sullivan, 1973, Bell and Sullivan, 1974]. This measure is derived
from path counts after a partitioning of the program graph (logical
flowchart) into minimal 1-in, 1-out subgraphs; it tends to be at a
minimum for programs that are "structured" in the classical sense
of having been generated by composition of the three “Dijkstra"
control forms. Such a measure should give hsth the programme and
the manager a quick and more relevant indication of how complex, and
thus how difficult to test and how prone to errors, a module is likely
to be.

An experimental program to implement the complexity-measuring
algorithm has already been written and tested in PL/1. The prototype
Simon has been ccded to facilitate the quick incorporation of a
JOVIAL coded version of the algorithm. The JOVIAL preprocessor calls
a stub (dummy) module that needs only to be replaced by the actual
measurement algorithm. The data base maintenance program, the data
base itself, and the Subsystem and Program Status report already
provide and maintain a field for the complexity value. Thus the
implementation of this complexity measure for Simon is essentially
the re-coding of the measurement algorithm in JOVIAL.

74

R DAY 1 e <4

-
&

TESTING-TOOL INTERFACE

The prototype Simon system is designed to monitor the entire
program production process, but the prototype only provides truly
automatic monitoring of the coding phase. This monitoring is done
through the JOVIAL pre-processor and post-processor tools. A
worthwhile extension to Simon would be the inclusion of a tool for
automatic monitoring of the tésting phase.

Such a testing tool has been developed for JOVIAL programs. The
JOVIAL Automatic Verification System, or JAVS, provides code analysis,
code instrumentation, testcase coverage analysis, and testcase
generation guidance.* JAVS could be integrated with Simon in the
sense that Simon could automatically record some of the outputs of
JAVS and incorporate those outputs or derived measures into Simon's
reports.

Simon's "Subsystem and Program Status" report could be augmented
with fields that express the degree to which JAVS has been applied
and the results of its applications. Simon could indicate whether
a module had been entered into the JAYS data base, and whether the
analysis step had been run for that module. An aggregate percentage
of the modules so processed could be reported for the subsystem.
Similarly, status information on other major milestones of JAVS use,
such as whether the instrumented code has been generated, executed,
or analyzed, could also be provided in that report.

Some of the most important statistics generated by JAVS could
also be reported as part of the "Subsystem and Program Status."
These might include: the percentage of decision-to-decision (D-D)
paths covered, the number of instrumented tests, and the number of
executions. The "complexity" computed by JAVS could also be reported,
to supplement and compare with the abovementioned other measures of
that same elusive quality.

Simon could also do other things with the information produced
by JAVS. If historical values of such variables as “percentage of
D-D path coverage" are kept, nrojections of time to completion could
be made. It might also be possible to use JAVS-derived "reach
sequence" information in conjunction with Simon's global data

*Due to a lack of documentation on JAVS at present, planning for
integration with Simon is based on the available documentation for
RXVP, the similar Fortran-based automatic verification system,
JAVS and RXVP were developed by General Research Corporation.

75

S e e PR PR MY 151 O

reference information to produce information on data item
interdependencies. Simon's error and discrepancy records could
be automatically updated to reflect errors and warnings detected
by JAVS' module static analysis step.

Simon could be interfaced with JAVS using the same method in
which it interfaces to the JOVIAL (JOCIT) compiler. A JAVS "post-
processor" program could scan the JAVS report output to extract
the desired data. This program could be required to be run after
certain JAVS activities. An alternate method of interfacing would
be for Simon to directly access the JAVS data base, if all the
required information is available there. Such an approach, however,
would be very sensitive to internal changes in JAVS.

SCHEDULING AUTOMATION

The prototype Simon maintains comprehensive schedule information
in its data base. The primary use made of this information is its
display in the "Project Schedules" report and the projections of
conflicts or overruns. The schedules themselves, however, could be
derived automatically by an extension to Simon. The program estimates,
testing dependencies, budget, and other resource-limiting data
(e.g., number of terminals, specific personnel strengths or
responsibilities) could be mechanically combined, using a PERT-charting
algorithm, into a consistent development schedule. This schedule
could then be displayed in a variety of ways, such as in tabular
for? (for printed output) or graphical form (using a plotter or
CRT).

An automatic scheduling system could give further assistance to
a manager in a number of ways. Several alternate schedules could be
produced, for example, and the user could chcose the "optimal" (by any
criteria) one. The system could identify the "critical path" and
describe the scheduling factors to which the schedule is most
sensitive. Also, the automatic scheduler could assist the manager in
an ongoing project in the task of revising schedules due to
unexpected difficulties, budget changes, or personnel changes.

An automatic scheduling extension to Simon might be fairly
easy to provide. Standar®d PERT packages are already available for
use in major computer languages and systems. Simon could interface
to such a package with the addition of a module to transfer
information kept in the Simon data base to the format required by the
PERT package.

76

-

AUTOMATIC COLLECTION OF ACCOUNTING DATA

The prototype Simon requires that a considerable volume of data
on actual expenditures of resources (computer and personnel) be
entered manually. This data is used in the "Estimates vs. Actuals"
and "Project Schedules" reports, and forms part of the essential core
of data needed for clear and current project visibility. Some of
this data on "actuals" is directly derivable from information
produced or maintained on the development computer facility, and
thus it could be collected automatically in a basically straightforward
manner. The data available in this fashion are program execution
resources (and thus computer charges) and current file space
requirements. Such automatic collection would not only reduce the
level of clerical effort needed, but also ensure more accurate and
timely data.

The Honeywell GCOS accounting statistics file [Honeywell 71] is
the source of program execution data. The data stored on this file
do not include the actual dollar costs, but rather the system
resource usage from which the costs can be computed. One or more
records is produced for each GCOS activity execution.

One difficulty in using this file is that GCOS activities are
identified only by job number (SNUMB) and activity number. Thus a
method is needed to establish the correspondence between subsystems
and project phase (i.e., design/test) and the SNUMB and activity. One
solution is to provide an extra activity to be executed immediately
prior to all activities to be recorded by Simon. This extra activity
could record both the subsystem and phase (provided by the user as an
input) and the SNUMB and activity (obtained from GCOS) in a file to be
used later by Simon. When Simon processes the accounting file, it
will then be able to identify the relevant data records. Probably
the only statistics Simon would produce from a scan of the accounting
data would be the computer dollar charges (computed using the
facility's charging algorithm) broken down by subsystem and phase.

Current file storage requirements can be obtained from the
File System's CLIST function. This produces, among other data, the
storage space occupied by each file. If an appropriate naming
convention is devised and used, or separate subcatalogs are
established, the correspondence between file names and subsystem,
phase (i.e., design/test), and duration (i.e., permanent/temporary)
could be determined by Simon.

77

INTERACTIVE QUERY CAPABILITY

The addition of an interactive query capability to the
prototype Simon would allow the user to produce custom-designed
reports derived from the most recent contents of the data base. For
example, although Simon already produces two reports that list
programmers within subsystem assigned to them, there is no report
giving programmers followed by their subsystem assignments. Such a
report could be added by the user of Simon if a suitable query
system were available. An interactive query system could also be
used to obtain current information from the data base between
reporting periods. For example, a programmer might want to check
the list of external references from a module to determine the
effects of a recent change. Or a manager might want a most up-to-date
list of outstanding errors (discrepancies).

An interactive query system for Simon could take one of two
forms. Cne form would be a completely general query capability, able
to produce a wide variety of reports and access any data in the data
base in any fashion. Such a capability would allow the user great
flexibility, tut would probably be harder to learn and more
cumbersome to use than a more specialized query system. The more
specialized form of query capability would be one in which the user
can only select from a limited set of preprogrammed reports or
questions. Such a system could be customized highly to the Simon
environment and would be essentially a fast-response extension to
the current line of reports.

A generalized query system would be costly to build, but the
IDS data management system used to implement the prototype : .stem
already provides an interactive query program. This program is
quite general; it allows pre-programmed queries to be recalled for
execution, and can even do simple accounting for reports. Thus an
interactive query system for Simon could be developed quite readily
using the IDS query system.

ON-LINE DATA INPUT

A User's reliance on Simon's reports requires the timely and
correct input of changes and additions to manually-collected data.
Assignments and estimates in the data base should reflect all
recent changes, or Simon's listings and projections will not be
dependable. Actual resource usage and error incidents should be
recorded when they occur. Thus Simon's manual input functions should
be as easy and foolproof as possible to use.

78

Currently, these functions are performed by the filling of forms
that are later keypunched. One way to facilitate manual input is to
provide an on-line data input capability. A programmer should be able
to walk up to a terminal and be guided through the process of entering
actuals and estimates. Likewise, a manager should be able to make
changes to schedules or assignments interactively. In both cases,
Simon should prompt the user for all required input. The user should
not be forced to remember fixed input formats, and should be able to
omit specifying items that are not required.

An interactive input feature can be added to Simon rather
easily. For each transaction type, a time-sharing program can be
written to prompt the user, accept information from the terminal,
and format the data into a batch transaction. That transaction
could then be either saved for subsequent background processing or
- immediately processed by Simon's transactor. A pre-prototype version
Fgl of such an input program was written and used during the development
of Simon to enter test data into the data base.

On-1ine, interactive data input would be most convenient if
integrated with the query system discussed above. This would allow
the user to examine the data base before updates are made, and thus
could further contribute to convenience and accuracy.

GRAPHIC OUTPUT

Reports can often be made more effective through the graphical
presentation of data. Much of the information presented in tabular
form by the prototype Simon, such as schedules, testing interdependencies,
and assignments, might be better presented through the use of bar
graphs or network charts. The results of analyses done by Simon such
as the extrapolation of error histories or the projections of overruns,
could be augmented by line graphs which would give a better feel for the
trends and the magnitudes of the projections.

Graphical output can be added to the prototype Simon by
inserting calls to plotter (or CRT driver) subroutines into the
reporting programs. In most cases the data required is already
processed in producing the current reports. 3

HUMAN ENGINEERING

Under the term “human engineering," as used herein, is -
included the adjusting of system interfaces and procedurgs to fit -
better the actual environment of the users. This might involve, as

79

bl ',*"-ﬂ;‘r,", T
1‘3&@*:!@&*‘"‘ s

k: ki

an example, the substitution of "weeks of full-time effort" for
"person~hours" as the input form for estimates. Another example
would be the reporting of original estimates alongside of current
estimates in the "Estimates vs. Actuals" report.

It is really not possible at this point to detail the small
changes that might be needed to make Simon into a completely
comfortable tool for a given programming and project environment.
Differences in terminology, conflicts of procedure, and
difficulties in interpreting or correlating reports can only be
determined through an examination of the actual use of Simon in a
realistic environment. It should be assumed that, as with most
other man-machine computer systems, some such problems will surely
appear.

SENSITIVITY ANALYSIS

The prototype Simon is capable of making projections and
recognizing certain conflicts based on the content of its data base.
When the manager (or programmer) is contemplating changes to the
data base, for example in assignments, schedules, or estimates, the
Simon system should, on request, present the effects of those
changes on system projections before those changes are made
permanent. At present, if a subsequent report shows an entered
change to be undesirable, the change must be undone by entering
an inverse change. A procedure for making temporary or tentative
data base updates would help ease the process of "experimenting"
with Simon.

DESIGN LANGUAGE/ANALYZER INTERFACE

Simon is designed to monitor both the designing and testing of
computer programs, and yet Simon's automatic involvement with design
now begins at the fairly late stage of code compilation.
Traditionally, program design has been an unstructured, ad hoc
process. In recent years, however, specification and design
languages have been developed to formalize the process of detailed
software design. Language analyzers have also been designed to
perform various kinds of verification, checking, and statistics
gathering on the design expressed in the language.

An example of one such design language and analyzer is the
User Requirements Language/User Requirements Analyzer (URL/URA)

-developed at the University of Michigan [Hershey, Teichroew et al,

1974]). ‘This system allows a high-level system design to be expressed

80

A

in terms of inputs, outputs, and processing steps. The language
analyzer checks the specification for consistency and completeness,
and produces various reports concerning the system design. This
design statement can then be used to guide the actual coding of the
programs for the system.

Simon could be integrated with a system such as URL/URA. Such
a coupling would allow earlier tracking of the design process, and
would force an increase in the discipline of design over current ad
hoc methods. Simon could keep track of the number of modules, files,
inputs, and outputs that are defined. Simon could also collect and
report on errors and inconsistencies observed by URL/URA. Later on
in the project, Simon could compare the system-as-designed with the
system-as-built, and report any discrepancies.

It is perhaps premature to specify just how such a system
would be physically interfaced to Simon, but the discussion under
TESTING-TOOL INTERFACE, above, suggests some likely approaches.

INTEGRATION OF PRECOMPILER, COMPILER, AND POSTCOMPILER

The prototype Simon uses both a pre-compilation pass and a post-
compilation pass over the source coding to gather the information
needed for its reports. A1l this data could be more efficiently
gathered by the compiler (JOCIT) itself if suitable modifications
were made to the compiler. This would eliminate the extra syntax
scan required by the precompiler, and allow direct access to the
symbol table created by the compiler. Not only would this reduce
the cost of using Simon, but it would ease prcblems eof coordinating
changes among the tools, whether due to language specification
changes or relatively minor improvement such as in output formats.

81/82

APPENDIX I

DATA BASE DESIGN

INTRODUCTION

The logical design of the current data base is presented here
as a supplement to the specifications and as an aid to understanding
the mechanization of the specified functions.

The Simon data base is a hierarchical data base. The major
divisions are called records; there are five records:

il the Project record, which contains data relevant to
the project as a whole;

2. the Person record, which consists of programmer
assignments; there is one Person record for every
programmer (managers are not explicitly
represented in the Simon data base);

3 the Subsystem record, one for each subsystem in
the system;

4 the Module record, one for each module (i.e., single
program, or unit of compilation) in the system;

5. the Error-disc-inf record, which contains all
information relating to errors and discepancies.

Each of these records contains several data fields, each of
which may or may not be divided further into fields, and so on. Any
field which contains several other fields is called a "group item";
all other fields are "elementary items" or simply "items." A group
item and all its sub-fields may be repeated several times within a
record; such a group item is called a "repeating group." For
example, each programmer will in general have several assignments;
therefore, under the Person record the "assignments" field is a
repeating group.

The logical data base design follows. Group items are easily
noted as having several (indented) items listed beneath them.
Repeating groups are noted as such. The data type of each elementary
item is listed. Finally, such explanatory notes as are deemed
necessary or helpful are included at the end of each record
description.

83

-

PROJECT RECORD

A.

B
€.
D

Notes:

i.

project name (character string)
start_date_gregorian (character string)
start_date julian (number)
stop_date (character string)
period_of_time_length (number)
resource_allocation
1. number_of terminals (number)
2. filespace (number)
funding_allocation
1. total_allocated
a. dollars
i. computer _dollars (number)
ii. other_dollars (number)
b. person_hours (number)
2. used_to_date
a. date (character string)
b. dollars
i. computer_dollars (number)
ii. other_dollars (number)

R person_hours (number)

stop_date = time the project must stop or, if no stop
date, then Dec. 31, 1999.

84

o

ii. units of items:
a. dollars for: computer dollars
other_dollars
b. days for period_of_time length

C blocks for filespace

85

PERSON RECORD
A. as_of date (number)
B. person_name (character string)
(0 assignments (repeating group)
1. subsystem name (character string)
2. test _design_indicator (one character code)
3. period_of_time_designator (number)

4. total_hours_worked (number)

Notes:
B period assignments cover past and projected; past are
actuals, projected are estimates; whether a period is
past or projected is determined using the as_of_date.

ii. period_of time_designator contains the start date for
the period of time of the assignment.

86

AD-A031 806

MITRE CORP BEDFORD MASS

SPECIFICATIONS FOR SIMON:, A

SEP 76 A E CORRIGAN:

R J FLEISCHER
RADC=TR=76-288

F/6 9/2

SOFTWARE IMPLEMENTATION MONITOR. (U)

F19628-76=C=0001
NL

/
=
|
' SUBSYSTEM RECORD
f A. subsystem_name (character string)
B. date_of_subsystem definition (character string)
C. estimates 4
!i 1. number_of programs_included (number)
: 2. core_space (number)
3. person_hours_design (number)
4. person_hours_test (number)
*“: 5. terminal_hours_design (number)
g 6. terminal_hours_test (number)
é I 7. computer_dollars_design (number)
‘ 8. computer_dollars_test (number)
‘ 9. other_dollars (number)
} 10. file_space_design
a. temporary (number)
b. permanent (number)
11. file space test
| a. temporary (number) ?
{ 4 b. permanent (number) 3
‘ D. actuals (repeating group) |
g 1. period of time_start date (character string)

2. same as C.2 ‘

3. same as C.3 f
{ : f

LpEraey

ot

e e TR

SHESOTm R Yo

A

P s e S LT 8]

A S = il it

1"‘"‘“‘*"‘"Mmm—s\»._w.._.,.. -

4., same as C.4

12. same as C.12

m

subsystems_needed_to__compl ete_testing (repeating group)
1. subsystem name (character string)

2. relationship (one character code)

3. required status (one character code)
driver_feasible_flag (boolean)

design_done_flag (one character code)

o e

test_done_flag (one character code)

—
.

test_plan_done_flag (one character code)
docmentation_done_f'lag (one character code)
number_of_programs_included (number)
number_of_programs_compiled wi th_no_errors (number)
number_of_programs_finished_with_testing (number)
programs_included (repeating group)

.z:t!-xc-

1. program_id (pointer)
0. total_errors_charged
1. compiler_detected_errors (number)
2. non_compiler_detected erro~s (number)
1. memory_+ (number)
2. memory_- (number)

F}. - Sl e s e e S ek
e i g L R A T o T A i oA e O AR
| 8
i
£
} 3. logic_+ (number)
o 4. logic_~ (number)
Notes:
B i. core_space: measured in units of 1024 words.
i : ii. relationship: 1 - called flag is 'CD'
‘ 2 - calling flag is 'CG'
3 - shares data flag is 'SD'
iii. required_status: 1 - totally complete flag is 'T'
: 2 - all stubs can be used flag is 'S’
~
“‘1 ; iv. test_plan_done_flag: 1 - not present flag is 'N'
" ; 2 - complete flag is 'Y'
i v. documentation_done_flag: 1 - not done flag is 'N'
;: ? 2 - complete flag is 'Y'

o PR, RN SRR

...

MODULE RECORD
A. module_name (character string)
B. real_or compoui_flag (character)
C. subsystem name (character string)
D. first_precompilation_date (number)
E. last_precompilation_date (number)
F. first_compilation_date (number)
G. Tlast_compilation_date (number)
H. number_of_compilations (number)
I. Halstead length (number)
J. €2 length (number)
K. Tlines_of code (number)
L. number_of_statements (number)
M. modules_called (repeating group)

1. orogram_name (character string)
commons_variables (repeating group)
1. common_name (character string)
2. variable_name (character string)
3. type (one character code)

4. set_used (one character code)
files (repeating group)

1. file_name (character string)
2. type (one character code)

%0

P. defines_referenced (repeating group) L

1. define_string_name (character string)

Q. first_clean_compile_date (number)
R. error_count_in_test_compile (number)
S. status_of_testing (one character code)
T. testing_complete_date (number)
| * U. errors_charged (number)
L Notes:

status_of_testing: 1 - not_started flag is 'N'

. %

2 - partially_complete flag is 'P'

3 - complete flag is 'T'

o O B O

S T S R gy 8

T

eI o B 2

ERROR-DISC-INF RECORD
' A.
B.
£

errors_system (number)
errors_operating_system (number)

how_mani fested

1. classes 1 through 7 (number)
how_diagnosed

1. classes 1 through 4 (number)
mental_level

1. classes 1 throuch 6 (number)
number_of_occurrences

1. classes 1 through‘ S (number)
when_occurred

1. classes 1 through 5 (number)
discrepancies_how_found

1. classes 1 through 4 (number)
disposition_of discrepancies

1. classes 1 through 4 (number)
outstanding_discrepancies (repeating group)
1. discrepancy_ID (character string)

2. description (character string)
errors_and_discrepancies_by_period_of_time (repeating group)
1. pot_id (number)
2. errors_not_related_to_discrepancies (number)

.

Gy
R

2RI e

SR R

g T R p T

ISR

S L e amtgtames

discrepancies_reported (number)

discrepancies_resolved (number)

errors_by subsystem_by period_of time (repeating group)
a. subsystem_name_in_which_error_occurred (number)

b. number_of errors_found (number)

93/9k

B T R R LR

ST

AN e

NSRS e

R R

APPENDIX 11
TRANSACTION DESCRIPTIONS

GENERAL NOTES

Any number of similar or dissimilar transactions may be
included in the single input file to the Transaction Processor. In
all cases, the listed inputs are those that are required for a
single transaction. The output file from any run contains a Jjob
summary and any error messages relating to the input data.

DELETE MODULE
Input

1. the name of the module to be deleted
Function
1. deletes a module from the data base

2. updates module information in the containing
subsystem

DELETE PROGRAMMER ASSIGNMENT
Input

1. name of the programmer whose assignment is being
deleted

2. the assigned subsystem

3. vhether or not the assignment is a design or test
assignment

4. the start and stop dates that bound the range of
the assignments ;

1. deletes a range of assignments, all the same, from
the data base e

95

—ascsomr.

—— et s s b

DELETE SUBSYSTEM
Input

1. the name of the subsystem to be deleted
Function

1. deletes a subsystem and all subordinate information

ENTER DISCREPANCY REPORT
Inputs
1. the date, time and submitter of this report
2. how this discrepancy was found (a number code)
3. brief description (text)
Function
1. enters the input data into the data base error summary

records

ENTER ERROR REPORT
Inputs

1. the date, time and submitter of this report
tow the error was manifested (a number code)
now the error was diagnosed (number code)
. the mental level of the error (number code)
number of occurrences of the error (number code)
when the error occurred (number code)

vihen the error was manifested (number code)

o] ~ o0 o & w N
. L . - .

. the subsystem(s) and program(s) this error was
charged to

G

Functions

| 1.
' 2.

enters the input data into the data base error summaries

increments the number and type of errors charged to
the named subsystem(s) and the number of errors
charged to the named program(s), and updates the
data base accordingly

ok ENTER PREPROCESSOR RESULTS

Inputs
i : 1.
2‘

w

o (3,] o
. . .

70

1.

:
¢
&
&
&
“".

3‘

Inputs
1.

2.

Functions

program and subsystem name for identification
real or compool flag for the program

number of severe errors, errors, and warnings from
the precompiler

number of statements in the program
number of lines of code

Halstead length of the code

names of all DEFINE's

creates a module record in the data base if one does
not already exist

updates all the quantities of the precompilation
including first and last precompilation dates

increments the number of precompilations

ENTER POSTPROCESSOR RESULTS

the program and subsystem names for identification

real or compool flag for the program

97

-

DTS

:.naw

Functions

¥

number of errors in the compilation
called programs
referenced files

referenced compool (common) variables

creates a module record in the data base if one doesn't

exist

updates all quantities of a postcompilation including
first and last postcompilation dates

increments the number of postcompilations

INITIALIZE PROJECT

Inputs
1.

mmngmawm

project name

start date of the project

stop date of the project

total allocated computer dollars
total allocated non-computer dcllars
total allocated person hours

number of available terminals

total allocated file space

length of a period of time (POT),
where period of time is the lenath of time
which a Simon report will cover, e.g. 2 weeks

% ot el % N ',-Aeu“‘w'l' > e
PR A A e -

AN

epkin:

S S

S

R o AT AN

R TR YT T B S ARG TR S AN YU ER

Functions

{

perform all necessary functions for initializing the
data base in terms of file and record allocation and
initialization

enter the data submitted by the user into the data
base

zeros the following items and enters them into the
data base:

a. person hours used to date
b. computer dollars used to date

c. other dollars used to date

INITIALIZE SUBSYSTEM

Inputs
:

2

Functions

L
2.
3.

subsystem name

date of definition of the subsystem, i.e. when the
specifications for that subsystem were first defined

sets up the data area for this subsystem
enters the input date into the data base
zeroes all items in the data base relating to

this subsystem, other than the two input
items

INITIALIZE/UPDATE ACTUALS

Inputs
¥

2.

subsystem name

start date for the period of time (POT) to which
the data applies

99

3. actual resource usage for this subsystem for the
stated POT, including the following:

a. core space

b. person hours for design

c. person hours for testing

d. terminal hours for desian

e. terminal hours for testing
f. computer dollars for design
g. computer dollars for testing
h. any other dollars used

o i. file space used for design separated
into temporary and permanent file space

| 3 file space used for testing, separated
into temporary and permanent file space

Functions

1. enters the input data into the data base

IHITIALIZE/UPDATE ESTIMATES
Inputs

1. subsystem name

2. the following estimates for this subsystem:
a. number of programs included
b. core space

| c. person hours needed for design

ﬁ , d. person hours needed for testing

e. terminal hours needed for desian

100

MRS R 00

N sE——

Function

f. terminal hours needed for testing

g. computer dolTars‘needed for design

h. computer dollars needed for testing

i. any other dollars needed

j. file space needed for the design phase,
separated into temporary and permanent file
space

k. file space needed for testing, separated
into temporary and permanent file space

updates the data base with the input data

INITIALIZE/UPDATE INTERFACE INFORMATION

Inputs
1.

2.
3.

Function
1.

name of the subsystem which needs to be tested
driver feasibility

list of the subsystems which are needed for testing
the above subsystem, giving:

1. subsystem name

2. whether this subsystem is to be added to the
current list of needed subsystems, whether
it is to be deleted from that 1ist, or
whether information is to be changed for that
subsys tem

3. relationships to above subsystem (called,
calling, or shares data)

4. required status for testing (fully complete,
partially complete, or stub can be used)

updates the data base with the input data.
101

i SR S s P S R S s

'*'r
o
s Se SRRUNSIEURIRI

Note

If a needed subsystem in the input 1ist is to be deleted from

the current data base 1ist, only the name of that subsystem and the
"delete" indication need be specified.

INITIALIZE /UPDATE PROGRAMMER ASSIGNMENTS
g Inputs
; 1. date as of which this information is current

programmer's name

2
3. any number of 1ists containing the following

information:
< a. the start date and stop date for a

consecutive group of periods of time (POTs).

= P Ay SR

% . any number of lists containing the following
i | information:

1. name of a subsystem which the given X
programmer will work on or did work on
during the given POT.

2. vhether the programmer will be doing or

did do design or test on this subsystem
during this POT.

3. the total number of person hours worked
- or to be worked by this proorammer on
, this subsystem on this phase (design or
| test) per POT represented by the start/
g stop dates. :

Function

1. enters the input data into the data base.

Notes : v
1. This procedure allows a user to enter programmer work

schedules. This includes both past and future
schedules. If the user-supplied POT start date is a

102

past date, the information is assumed to be actual
past schedules. Otherwise, the information is
considered projected work schedules.

2. If the assignments for one programmer are the same
over several POTs, then the user may enter one set
of start/stop dates covering all these POTs and
need only enter the assignments once. If only a
start date is given for item 3a, it is assumed that
only one POT is covered.

3. If a programmer is to work on both desian and

testing of one subsystem during one POT, these are

considered 2 separate assignments and will be listed
as such.

UPDATE DISCREPANCY REPORT

Inputs |
1. disposition of the discrepancy, including
a. date of disposition
b. nature of disposition

Function

1. enters the data into the data base f

UPDATE PROJECT INFORMATION |
Inputs

1. project name

2. stop date of the project :

3. total allocated computer dollars

4. total allocated non-computer dolliars

103

5. total allocated person hours

6. number of available terminals

R R

7. total allocated file space

Niemds TN

Function

Eaty

FERE TH

1. updates the data base with the input data

UPDATE SUBSYSTEM STATUS
Input

1. subsystem name and date as of which this information
is current

2. status of the test plans for this subsystem (non-
existent, or complete)

VA S YR RS SR SR PN P T S e

3. status of the documentation for this subsystem
(non-existent, or complete)

4. 1list of the programs in this subsystem whose 4
testing status has been changed, including: ;

a. program name
b. status of testing (not started, or complete)
Functions
1. updates the data base with the input data

2. calculates the following items and updates the data
base accordingly:

a. number of programs in this subsystem which have
been completely tested.

b. the "testing_complete date" for all programs
whose testing status has been declared ’
changed. Sta R

! c. whether or not this subsystem is complete,
i.e., all programs are tested.

104

. T RIS

M APESOARE

APPENDIX III
TRANSACTION FORMATS

GENERAL RULES

The order and general format of the cards (or card images) for
a transaction is as follows: The first card is the Transaction
Header card. Following the header card is one or more data cards
supplying the information necessary to complete the transaction. The
data for each transaction has its own separate format, as will be
described below. The format on the header card, however, is
standard. Every such card has a "*START," a function field, and
three optional fields. The first optional field is the date field
which defaults to today's date if left blank; the second is the
name field for identifying the author of the transaction; and the
third is the "TRACE" "NOTRACE" field which determines whether the
following data cards will be printed on the output report. If any-
thing but ".IOTRACE" is specified, this last field defaults to "TRACE"
implying that the data cards are to be printed.

SPECIAL FORMATS

(*Means that those fields can be omitted, in which case the fields
default to zero, blank, or "no update" depending on context.)

Card Colum Field

Abrev. Type Number Length Value
Header
Card
1 6 “*START"
8 3 transaction function (listed i
in Table IV) |
12 6 date of transaction (“MDDYY);
can be blank
W 35 Name of person responsible for
transaction
55+ 7 "TRACE" or "NOTRACE"; default
is "TRACE"

Card Column Field

Abrev. Type Number Length Value

i DMD Delete Module i

| Record: 2 6 Name of module to be deleted 3
(card can be repeated)]

i DPA Delete Programmer

i Assignments

E 2 6 Reporting period start date

(of the assignment]

| g* & Reporting period stop date of i
the assignment (blank implies :

i only one period)

16 12 Assigned subsystem
-
“", 29] Whether assignment is a test (T)
i or design (D) assignment
)| 3 35 Person's name

‘ DSB Delete Subsystem

; Record 2 12 Name of subsystem ic be -

; deleted (can be repeated)

| EDC Enter Discrepancy

; Record-1

| : 2 13 Discrepancy identification

| | 16 1 How discrepancy found

Enter Discrepancy

Record-2
1 80 80 character description of
: the discrepancy
EER Enter Error Report
Record-1 :

13 Error identification
16 1 How manifested .
17 1 How diagnosed

i B 1 "ental Level

et &

BT Oy BN PR s

Abrey.

EPR

Card Column Field
Type Number Length

19 1
20 1
Enter Error Report
Record - 2
8 1
10 6 or 12
Enter Pre-
processor Results
Record-1
£ 6
10 6
20 12
35 1

Enter Preprocessor
Results Record-2

2 4

10 3
4 3
18 3
24 6
% 42 3 6

Value

Number of occurrences

When manifested

P or S according to whether
the next field is a program

~ or subsystem

Program or Subsystem name

llmmlLEll
Program name
Subsy;tem to which it belongs

:.ea; or compool flag ("R" or
gl o

"oATR"
‘Number of severe errors from

the Precompiler
Number of errors
Number of warnings

~ Number of Vines of code
Halstead Tength of the code.

o B3

S e

| Card Column
| Abrev. Type Number

Enter Preprocessor
Results Record-3

2
10

Field
Length

6

30

(This card is used as many times as there are defines
in the precompiled program.)

EPS Enter Postprocessor
Results Record-1
% 2 6
b
10 6
20 12
35 3
4] 1

2
.10

¥ g‘m Postp
sults hcm!-

45

W

b

(The followina three cards can occur as often and
in whatever order is needed.)

Enter Postprocessor
Results Record-2

Name of common

Value

"NEFINE"

Name of a define

"ODULE"
Program name
Subsystem name

Number of errors in the
compilation .

Real or Compool Flag ("e"
or ”c'l) :

!ICALL‘S;"
Called program's name

"CW'
Common variable's name

N

Enter Postprocessor
Results Record-4

Card Column Field

Abrev. Type Number Length
52 2
56 1

2 4
10 6
45 2
IPR Initialize Project
Record
2 12
15 6
22* 6
29+ 2
31* 2
33 5
38 10
48+ 10
IS8 Inftialize Subsystem
Record =
i bl
15 6

Value
Type of variable

Set, used or both flag ("S,"
"U," or llBll)

lIFILEN
Name of file
Type of file

project name
project start date (MMDDYY)

_ project stop date; default is

last assignment
POT-1ength in days
Number of terminals
File space in 1links
Compuier dollars
Other dollars
person-hours

Subsystem name
Date of subsystem definition

R RS A

SPIPTp—

SO—

S ——

Abrev.

IUA

Card Column Field
Type Number Length

Initialize or Update
Actuals Record 1

<
A
®

2 13 Subsystem name

15 6 POT for which this is actual
21* 8 Core space

29* 6 Person hours design

36* 6 Person hours test

a* 6 Terminal hours design

47* 6 Terminal hours test

53* 10 Computer dollars design

63* 10 Computer dollars test

(If the POT is past then this is an update and
functions as in updating estimates. Otherwise,

it results in creation of a new actuals record.)

Initialize or Update
Actuals Record 2

8* 10 Other dollars

1 18* 6 Temporary design file space
24* 6 Permanent design file space
30* 6 Temporary test file space
36* 6 Permanent test file space

(As in Initialize or Update Estimates, this card
can be omitted or any of the fields can be blanks.)

R AR R e

S PSR ST T R

A A

b
Card Column Field
Abrev. Type Number Length Value
IUE Initialize or 'lpdate
: Estimates
i 2 12 Subsystem name
i 15* 6 Number of modules
| 21* 8 Core space
‘ 29* 6 Design hours
| ; 35* 6 Test hours
% : 41* 6 Terminal hours design
E i 47* 6 Terminal hours test
! : 53* 10 Computer dollars design
63* 10 Computer dollars test

(Blank field means that the field remains unchanged.)

AR s S e i s

Initialize or Update
Estimates - Record 2

57 8 10 Other dollars

: 18* 6 Temporary design file space
24* 6 Permanent design file space
30* 6 Temporary test file space
36* 66 Permanent file space

(This record can be omitted when no file space updating
is necessary. Again, blank fields mean no updating
is to be performed.)

m

RS R AT

SRR

“

Abrev.

{1}

Card Column Field
Type Number Length Value

Initialize or Update
Interface Information Record 1

2 12 Subsystem name

15* 1 Driver Feasibility Flag

Initialize or Update
Interface Information Record 2

g 12 Subsystem related to record 1
subsystem
21 1 Action to be performed for

this relationship:

“A" = add this relationship

"D" = delete this relationship

“C" = change this relationship
(1f action is “C" or "A")

23* 2 Relationship of this subsystem
: to the above one:

“CD" = called by above subsystem,
"CG" = calls above subsystem,

“SD" = shares data with above
subsystem; default is no change

(1f action is “C" or "A")

26* 1 Required status of this subsystem
for testing of the above
subsystem:

"T" = must be totally finished
for testing,

nz

f‘ S —— ——
!
|

Card Column Field
Abrev. Type Number Length Value

"S" = can use total or partial
stub for testing; default is
no change.

(Record 2 can be repeated as often as needed for
each occurrence of Record 1.)

IuP Initialize or Update
: Assignments Record 1
| 2 6 As-of date for this set of
’ ’ assignments
'5J ;4 9 35 Person being given assignment
i >
! (There can be as many assignments for the above
‘ - programmer as is needed, i.e. as many Record 2's
! as needed. If an assignment duplicates any in
the data base - in name, subsystem, and designated
flag - it is assumed that the number of hours in
the assignment is being updated. The only update
i allowed is a change in the number of hcurs in an
assignment. Deletion of an assignment is accomplished
by the DPA function.)
Initialize or Update
' : Assignments Record 2
| 8 6 POT-date for this assignment
| 15% 6 Stop POT-date for a set of
j assignments. If blank then
} & there is only one assignment
| & 22 12 Subsystem name
' 34 1 Test-design flag ("T" or "D")
36 4 Number of hours on this
» subsystem for this POT

13

Card Column Field

Abrev. Type Number Length Value
unc Update Discrepancy Record
2 13 Discrepancy to be updated
jdentification
16 1 Disposition of discrepancy
UPR Update Project
Record (blanks imply no update)
g 12 New project name
| 15*% 6 Project Stop date
~ e 10 Allocated computer dollars
33* 10 Allocated other dollars
i 44* 8 Allocated person hours
53* 2 Allocated number of terminals
56* 5 Allocated file space
Uss Update Subsystem Status Record 1
2 12 Subsystem name to be updated
15 6 Date for which this infc is
current
22% 1 Test-plan-done flag
(“Y," "N." " n); default 15
.0 74 no update.
24* 1 Documentation done flag
(llY’ll llN’ll " IO); defaU]t 1s
no update
Update Subsystem Status Record 2 .
8 6 Program within the above
, subsystem
{
!
| 114

o T TYRT il s "
V'v"-:f‘f"‘.""ht“hi_,%" e L

g

Card Column Field

Type Number Length Value
15 1 Status of Testing for this
program:

“N" = none performed,
“P" = partially complete,
“T" = totally complete

(There can be from 0 to as many Record 2's as are
needed to specify the status of program testing
within a subsystem.)

115/711¢

SR

TS bR it

&

REFERENCES

David E. Dell and Joseph E. S » "Further Investigations into
the Complexity o re," The MITRE Corporation Technical Report
MTR-2874, Vol. 2, June 1974,

Judith A. Clapp, "Monitoring Software Development for Reliability
Indicators," Proc. EASCON Conference, 1974.

Judith A. Clapp and Joseph E. Sullivan, "SIMON: Finding the Answers
to Software Development Problems," The MITRE Corporation, Technical
Paper MTP-152, Bedford, Massachusetts, May 1974.

Maurice H. Halstead, "Natural Laws Controlling Algorithm Structure?"
ACM SIGPLAN Notices 7, 2 (February 1972), 19-26.

E. A. Hershey, D. Teichroew et al., URL Language Reference Manual,
U. of Michigan, Ann Arbor, July 1974.

Honeywell Corp., FORTRAN, Document No. BJ67, June 1971.

Honeywell Corp., Integrated Data Store, Document No. BR69, Rev. 1,
December 1971.

Joseph E. Sullivan, "Measuring the Complexity of Computer Software,"
The MITRE Corporation Technical Report MTR-2648 Vol. 5, June 1973
{keissued as RADC-TR-74-325, Vol. V, Jan. 1975 and as DDC document

AD/A007770).

17

AR i S e e e

] Wkl S i

L S N1 AN LS Bl i i e 5

O PSP T——

