D-A031 782 ARMY MISSILE RESEARCH DEVELOPMENT AND ENGINEERING LAB==ETC F/G 9/2

MULTIPURPOSE DIGITAL MICROPROCESSOR EMULATOR.(U)
MAY 76 J R BROOKSHIRE
UNCLASSIFIED RG=76-62

NL

TECHNICAL REPORT RG-76-62

MULTIPURPOSE DIGITAL MICROPROCESSOR
EMULATOR

ADAG31782

Jerry R. Brookshire

Guidance and Control Directorate

US Army Missile Research, Development, and Engineering Laboratory
Redstone Arsenal, Alabama 35809

11 May 1976

Approved for public release; distribution unlimited.

U.S.ARMY MISSILE COMMAND | |

Redstone Arsenal, Alabama 35809

« nne 0oES KO
101 T0 006 DOES W
%%;ga’\ é\.’\’LL‘(LEGIBLE DRODUGTION

sMi FORM 1021, 1 MAR 66 REPLACES AMSMI 1021 WHICH MAY BE USED

AcsEIon e %
. Whlte Section (B
£ Wit Sectian)
UNA%:IOUNGED =
WSTIFICATION

............... avreienttvanneneans

OISTRIBUTION/AVAILABILITY GODES

Oist AVAIL asd/w SPEGIAL

A

»

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT
RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

b

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF
THE USE OF SUCH COMMERCIAL HARDWARE OR SOF TWARE.

A

LH R

o AR

—— e ———— A ————— R——

UNCLASSIFI
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE par AP ISTRUCTIONS
' 2. GOVT ACCESSION NO. CIPIENT'S CATALOG NUMBER |

RO p— P L.

e 2

((o 4. TITLE (and Subtitle)

: “\’(gULTIPURPOSE 'DIGITAL MICROPROCESSOR ,'?W'MTOR 5
L O Ly ftp

: R o » wasrd
3 i 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s) |
2 / w..——-'-“‘“"-——_-—?
i {'(‘I |Jerry R./Brookshire
:: o:;:;%-:;na ORGANIZATION NAME Au§ ADDRESS 0. PROGRAM ELEMENT. PROJECT . TASK

US Army Missile Command .~
Attn: DRSMI-RG

1

Redstone Arsenal, Alabama 35809 -
|cl. contgou.mc OFFICE NAME AND ADDRESS 77" '

ommander 11 Ma 6
US Army Missile Command (<‘ y_!7
Attn: DRSMI-R
|Redstone Arsenal, Alab 117

. MONITORING AGENCY NAME & ADDRW Office) | 185. SECURITY CLASS. (of thie report)
f
" o \ i

. ! i Unclassified

-

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If y and identify by block)
Emulator

Digital microprocessor

Guidance control computer

20, TRACT (Continue on oldw if y and Identify by block number)

x’l‘hil report describes an emulator designed and implemented to support the
initial software development effort for a multipurpose digital microprocessor,
and which also is to provide a vehicle for experimenting with hardware and soft-
ware architectural changes proposed for the microprocessor. The initial test-

bed application for the microprocessor is to be the guidance control computer
in the T-6 missile. The flight control software will be developed utilizing

this emulator. :
k 3
DD i W13 ¢ OF 1 MOV 8 IS OBSOLETE UNCLASSI FIED ?

| e o -2 G Y

SECURITY CLASSIFICATION OF THis PAGE(When Date Bntored)
f .
E
| :
4
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

: CONTENTS

3 Page
1. Introduction and Background. . « o o« o o ¢ o ¢ o o s o o o o 3
2. Microprocessor Hardware Organization . . . « « ¢ « ¢ & o o « &
3: mul.tor Control Structure e o o o o 6 o o 0 o 6 5 & » 0 o » 8
4., PEmulator Routine Descriptions. . « « « o o« « ¢« o o o ¢« o « o 10
5. Preliminary Results . . i . ¢ s ¢ ¢ s o o o 0 o« o e oo 19
6. conCIu".on‘nd Future Work © o o o o o & o o o ° o e o o o o 23

BIBuwRAm...'nooo'oooo....oo..o....o25

Appendix A, MULTIPURPOSE MICROPROCESSOR EMULATOR: DATA
nmm DEHNITIONS . L] L] L] L] 27

Appendix B, MULTIPURPOSE MICROPROCESSOR EMULATOR: FLOW
mcst. L] L] L] . . L] . . . L] L] L Ll . L] 31

Appendix C. MULTIPURPOSE MICROPROCESSOR EMULATOR. ¢« « « « « « o 56

1. Introduction and Background

This report describes an emulator designed and implemented to
support the initial software development effort for a multipurpose digi-
tal microprocessor, and which also is to provide a vehicle for experi-
menting with hardware and software architectural changes proposed for
the microprocessor. The initial test-bed application for the micropro-
cessor is to be the guidance control computer in the T-6 missile, The
flight control software will be developed utilizing this emulator.

The emulator is written in a variation of FORTRAN allowing the use
of '"structured" statements, including: IF.,.THEN,..ELSE...; DO UNTIL
(eee)ee.; DO WHILE (...)...; and IF,..THEN,,.OR IF..,.THEN...ELSE...
This program is first run through a preprocessor which translates the
statements into standard FORTRAN, providing the capability to run the
emulator on any host computer which has a standard FORTRAN compiler
available. The utilization of the emulator for the T-6 missile flight
control software development is to be on the Missile Computer Software
and Hardware Center's Raytheon R-520 and the MICOM CDC 6600 computers,

The design objectives of the emulator were to support the immediate
software development effort for the T-6 missile application of the micro-
processor, while retaining as much flexibility for proposed-change
evaluation as possible. To support the software development effort, it
was essential that the emulator perform exactly as though it were the
microprocessor hardware executing microinstructions. Both considerations,
fidelity of microinstruction execution and ease of change, supported the
position that the emulator should be highly modular. Additional con-
siderations which influenced the emulator design include: ease of set-~
up and operation; varying levels of detailed output available optionally
to support different types of runs; and maximum portability to allow the
emulator to run on other host computers. A single run control card was
designed to define the desired characteristics of each run, and pro-
vides the mechanisms for specifying simulated memory preset values,
output options, and run termination conditions (other than errors). For
portability, the host-computer-dependent portions of the program were
minimized and isolated for simplified conversion to other host computers,

The remainder of this report describes the specific requirements
and the specific programming techniques used to meet the requirements,
plus a description of some potential extensions to or generalizations
from the current design. Since early applications software design and
experimentation are often crucial during computer hardware definition
and design, it is believed that the concepts provided here can provide
an extremely useful tool in the continuing application of microprocessors
to weapons control systems,

" o s R G B TR o odatint e T
b SR e s e i e R 7 "

2. Microprocessor Hardware Organization

From the viewpoint of software, the microprocessor* consists
of a 16-bit (reconfigurable up or down in 4-bit increments) arithmetic
logic unit (ALU) with a 16-word random access memory (scratchpad),

a 32-operation instruction set, expandable to 58 operations by inter-

- pretation of a carry-control bit, and further expandable by a 3-bit

| instruction modifier (Figures 1 and 2). There are two associated mem-
I ories: 1024 - 16-bit words of main memory; and 1024 - 48-bit words of
§ control memory. Normal execution of a macroinstruction begins with the
| decoding of the main memory word pointed to by the first word in the
scratchpad (software program counter - PC) into two 8-bit addresses.
The leftmost eight bits are placed in the control memory address regis-
b ter (H-register), and the rightmost eight bits are placed in the main
memory address register (C-register). Both the H- and C-registers are
10 bits in length: The C-register is wired such that this decoding
operation causes the two high-order bits to be on, so that the refer-
ences to main memory following the decode will be offset by 1400 octal.
The top two bits of the H-register can be controlled from the execution
of a microinstruction,

The 48-bit control memory words (microinstructions) are broken into
25 distinct fields (Table 1). Six of the fields are encoded, and the
remaining 19 are considered as discrete control bits., Eighteen of these
control bits are now functionally assigned, but additional control func-
tions could be implemented if required by grouping some of the functions
under additional encoded fields; i.e., where three bits are now three
functions, three bits encoded could be used to control eight functions.
Current encoded fields consist of: the 5-bit operation code, a 3-bit
modifier code, two 4-bit operands (scratchpad addresses), a 10-bit next
control word (H-register) field, and a 3-bit analog/digital (A/D) multi-
plexer address field.

Macroinstruction execution proceeds by decoding the control memory
word pointed to by the H-register after a main-memory decode. The
design of the hardware is such that some of the control functions speci-
fied by discrete bits are performed first.. Then the operation code is
executed, followed by the disposition of the result as directed by the
instruction modifer, and the functions of the remaining discrete con-
trol bits are performed. One of the control bits is used to enable the
loading of the H-register from the 10-bit next-H field. Thus, the micro-
instructions comprising a macrooperation are linked. The last micro- i
instruction of a macrosequence will contain the address of a microin- :
struction which initiates the next decode of a main memory word through :
the PC, and then increments the PC by one. Therefore, the main memory
control program will be sequential, unless modified by a reload of the PC. !

*Monolithic memories 5701/6701 microprocessor.

| I
MUX |
|
| ' '
| SHIFT | SHIFT l |
| RANDOM ACCESS Q-REGISTER | |
| MEMORY
| r*1 (16-WORD ! | |
I | | ScraTcHPAD) |
N |
| i DATA IN t 4 |
; I
| 1 MUX |
I : |
| | rom
CHIP e - —— - ALY I
| | controL
l A Fy '
I Tid I
| MUX |
L.l __ _| _ mcrorrocessoncue __ _oatajour |
BUSS I
|) I]]
MAR (H) MAR (C) ‘
L ¥ k)
A/Ds D/As %4
CONTROL MAIN ATUS
MEMORY MEMORY
1024 WORDS | £ @ | 1024 wORDS {
X 48 BITS @ 5| x16811s
2 © DISCRETES
: CROSSOVERS | | OTHER
TARGET 10
s ' | DETECTION
Figure 1. Multi-purpose digital microprocessor simplified

block diagram.

g

INSTRUCTIONS IN THE 32 x 9 ROM — POSITIVE LOGIC (1 = H ~ 3 VI INTERPRETATION

ALU INSTRUCTION
NO CARRY N WITH CARRY TYPICAL
Ll 's] ta| s | PECIMAL| OCTAL =1 (Cpy = I uses
Lje e e o 0 LLLL ¢ HHHH ¢ C, FORCE 1111 FORCE 0000 INITIALIZATION {FORCE 1's OR 0's!
Lt e|c]|wn 1 o AND A, &8, A8, A B, ANDA &8,
ROl ClR]E 7 02 AND D, &8, o, 8, D, 8, ANDO &8,
CjL|L]|nA]|R 3 03 ORA &8, A~ B, A B,
Il ®Te e 4 04 OR D, &8 O 8, D, 8,
C L]] LR 0 05 EXCLUSIVEORA &8 | A~ B8 A~ B, EXCLUSIVE ORA, &8,
C|LC|H[H][L 0 06 EXCLUSIVEORD, &8, | D, 8, D, 8, EXCLUSIVE OR D, §
TIC|[Rl AH 7 o7 A, ¥ AHAN + Cyy A 11 A, INVERT A,
S i S O 0] 10 D, + HHHH + Gy O, + 1111 D, INVERT D
[O B O ® " B, + HRHN + C)y "B, el 8, INVERT B
C|A|LC|R]|L 10 12 Q + HHHH + Cyy Qeninl Q INVERT Q
L A L|RA|RA 1" 13 A SLLLL+Cy A A, + 0001 Z's COMPLEMENT OF A
[T 12 1 D, +LLLL+Cy o, D, + 0001 2’5 COMPLEMENT OF D,
[S T T B) 3 15 B, +LLLL+Cy B, 8, + 0001 Z's COMPLEMENT OF 8)
L H H H L 1“4 16 Q+LLLL+Cy) Q + 0001 27's COMPLEMENT OF Q
LH [MM [N 15 17 A S LLLL+ Gy A A + 0001 TRANSFER OR INCREMENT A,
3 O O 16 20 D, +LLLL+Cy 0, O, +0001 TRANSFER OR INCREMENT D, |
HiLfefe([w 17 21 8,+LLLL+Cy 8, 8, + 0001 TRANSFER OR INCREMENT B, |
WL L] H]|L 18 22 Q+LLLL+Cy Q G +0001 TRANGFER OR INCREMENT T |
Wwlofo|w]e 19 23 A, + HHHH + Cyy A+ 1117 A, DECREMENT OR TRANSFER A
CREREE R 20 24 D, + HHHH + Cpy D, + 1111 D, DECREMENT OR TRANSFER D, |
W L[M| S |H 2 25 B, + HHHH + Gy B,+ 1111 8, DECREMENT OR TRANSFER 8,
W L|HA]|HW]|L 22 26 Q+HHAH + Cyy Q+1iny a DECREMENT OR TRANSFER Q
W L|H|H]|H F=] 27 A +B,+Cy A +8) A, + B+ 0001 ADD A &8
CRENEE 24 30 D, +8,+Cy 0, +8, D, + 8, +0001 ADD D &8,
CREREE N t 3 1) A, vQ+Cy A +Q A, +Q +0001 ADD A, & G
CRERNESESED] az D, +Q+Cy D, +0Q D, +Q + 0001 ADDD, &Q
H|AR|L|H]|H 27 £ A, vB,+Cy A, — B, 0001 A -8, SUBTRACT A &8
W AR | A]L|L F) B,+A +Cy 8, — A, 0001 B,- A, SUBTRACT 8 , & A
CRIEEERICE Fo) 35 D, +8,+Cy O, — 8, = 0001 D, - 8, SUBTRACT D& B
W] H] A] AL 20 3% 8,+D, +Cyy 8, - D, — 0001 8,- D, SUBTRACT B, & D,
L] H|H|W ¥ i D, +Q+Cy 6, -G = 0001 D, -a SUBTRACT D & Q
A: FIRST OPERAND; 8;: SECOND OPERAND; D;: DATA IN;Q: 16-8IT Q REGISTER
INSTRUCTION MODIFIERS IN THE 8 x 8 ROM —
POSITIVE LOGIC (1= H ~ 3 V) INTERPRETATION
PIN CONFIGURATION
ROM WORD | ROM WORD LOAD CONTROL SHMIFT CONTROL DATA OUT CONTROL
Agd t 49— CLOCR
L (M (P8 DECIMAL LOADRAM S, |LOAD Q | SHIFT | SHIFT | DONT | A [] ALY o ol o)
LEFT | RIGHT | SHIFT | LATCH | LATCH | OUTPUT F S —tu: SRSy
Wp—-00,
Lo 0 x x X : ::3::‘.-
3Gy * 4 ERLE CARRY QUTRUT)
LiLIH 1 x X X 9 32f=F = ALL LOWS (OPEN COLLECTOR)
il » ¥ = ALL MIOHE JOPEN COLLECTION)
LML 2 x x x ;; :—e-mmm
r 3 il -Ev-mmnn
(8 CIC] 3 X X x L e
'SP Byl
HiL L . x X 3 w w0, | CATAWAm
LT =
HiL|n 5 x X X X nf ¢, icanav meun)
p—
whelE r X X x “:“’}m
HiHin 7 x X
Figure 2., Multipurpose microprocessor instruction set.

it ittt e N sl e

TABLE 1

. MULTIPURPOSE MICROPROCESSOR INSTRUCTION FORMAT

Bit Positions

Field Length

Field Name/Control Function

Field | Decimal| Octal
1 0-4 0-4 5 Instruction Code
2 5-7 5-7 3 Instruction modifier
3 8-11 10-13 4 Operand A (scratchpad address)
4 12-15 | 14-17 4 Opernad B (scratchpad address)
5 16-25 | 20-31 10 Next H address
25 45-57 | 55-57 3 A/D multiplexor address
Discrete Control Bits: (Action if Bit = 1)
6 26 32 1 SR1 = 0
7 27 33 1 SR2 = SR1
8 28 34 1 H Reg = CM addr
9 29 35 1 Main (C) = Buss
10 30 36 1 Buss = Main (C)
11 31 37 1 Buss = ALU data out
12 32 40 1 Fetch enable
13 33 41 1 Data in = Input discretes or
micad (KAD)
14 34 42 1 SRl = 1 if 4 data out = All O's
15 35 43 1 LSB of buss = SR1
16 36 44 1 LSB of H = SR2
17 37 45 1 Carry (CN) =1
18 38 46 1 Telemetry = Buss
19 39 47 1 C = Buss
20 40 50 1 Select D/A 1 and clock
21 41 51 1 Select D/A 2 and clock
22 42 52 1 Select D/A 3 and clock
23 43 53 1 Clock A/D mux addr register
24 44 54 1 Clock A/D conversion start (per bit)

Control Memory
Word Format:

Bit:

Field
Number

0

5.8 .12 16

26

45

6 thru 24 | 25

=

3. Emulator Control Structure

The emulator, as now structured, consists of a main program and
25 subprograms which are used for initialization and run control; instruc-
tion and control-function simulation, diagnostic and statistical output,
and the provision of machine-dependent (Raytheon 520) direct code
support, It was also determined to be necessary to provide FORTRAN
masking and shifting operations for bit access and manipulation. An
exclusive OR function has also been added to the function library of
the R-520. These direct code and FORTRAN extensions tend to reduce the
portability of the system, but they were minimized and simplified so
that the effort raquired to duplicate these capabilities on another host
computer can be minimal.

All microprocessor memory, registers, and data paths are represented
by FORTRAN COMMON variable names in order to minimize parameter passing
in calling sequences. The organization of the R-520 computer is such
that REAL FORTRAN variables are represented internally by 48 bits, and
integers have 24-bit representation. Thus, a microprocessor control
memory word is represented by a real variable name (CNTMEN), and all
other microprocessor entities are represented by integer variables., The
implicit variable-type identifiers of standard FORTRAN are used exclu-
sively, while at the same time maintaining at least an abbreviation of
the name of the elements, preceeded where necessary by an integer-type
letter (I through N). For example, the two l-bit registers, SRl and
SR2, are identified in the emulation program as MSR1 and MSR2.

The main program reads the run control card (Table 2) and proceeds
to step through all the run-initiation subprograms. These are described
in detail later, but consist of initializing all simulated microprocessor
memory, registers and data paths, and reading microinstructions and
main memory sequence instructions and data values into the appropriate
locations of simulated microprocessor memory (Table 3). Execution is
then initiated by entering an outer loop (DO WHILE ,NOT, FINIS(hed).

AND, .NOT.ERROR) in which a main memory access and decode is accomplished.
An inner (macro) loop is then entered which is controlled by the con-
tents of the H~field of the microinstructions. The emulator simulates
the execution of all functions specified by the microinstructions, and
falls out of the inner loop when a next-H = zero is encountered, At
this point, the macrocount is incremented and the run termination con-
ditions are examined to determine if the run should go on. If the run
is to stop normally, the logical variable FINIS is set to .TRUE.; if

a fatal error has been encountered, the logical variable ERROR will
have been set to .TRUE. Either condition will cause the simulated run
to stop, and a final statistical output routine will be called.

e ey

TABLE 2, MULTIPURPOSE MICROPROCESSOR RUN CONTROL CARD
Card Octal
Columns Value Interpretation
1-4 1 Pre-clear control memory.
2 Pre-set control memory, NO-OP, next H = here.
5-8 1 Pre-clear main memory
2 Pre-set main memory, H = 0, C = here.
9-12 1 Minimum output during execution
2 Extensive diagnostic output during execution.
13-16 0 No initialization output,
1 Output simulated memory after load.
17-20 XXXX | Ten-bit initial value of PC.
(i.e., starting address of main memory)
21-24 XXXX | Output control-interval time-octal (sec)
25-28 XXXX | Output control-microinstruction count,
29-32 XXXX | Output control-selected macroaddress.
33-36 Run Termination criteria
1 H-address stop
2 C-address stop
3 Simulated elapsed time
4 Real elapsed time
5 Macroinstruction count
37-40 XXXX | Octal termination value associated with above
termination criteria.
41-44 1 Load memory cards are in contiguous octal
representation
2 Load control memory by 25 discrete octal
fields
Note: Run control card can be expanded to accommodate more

variable considerations - currently the card is read with
a (20 04) format.

o

TABLE 3. MULTIPURPOSE MICROPROCESSOR MEMORY LOAD CARD

N-RUN (11) = 1:
Card
Columns Contents
i Key: 1 = main memory load
2 = control memory load
9 = load completed
9-12 Address: 4 octal digits
15-20 Main memory contents: 6 octal digits
21-36 Control memory contents: 16 octal digits
N-RUN (11) = 2:
1 Key: 1 = Main memory load
2 = Control memory load
9 = Load completed
3-6 Address: 4 octal digits
8-10 Left 8 bits of main memory (octal)
11-13 Right 8 bits of main memory (octal)
15-33 Control memory instruction, by fields (octal)

Note: Memory load card could be extended to register loads or other
size memory word loads by adding keys to columns 1 through 8,
as desired,

4, Emulator Routine Descriptions

This section describes in detail the actions performed by the
individual subprograms of the microprocessor emulator. The sequence
of the descriptions follows generally the order in which the routines are
called, except that the more general purpose and widely used routines
are described last, Flowcharts, listings, and detailed data element
definitions are given on the appendices.

a. Subroutine INIT

This routine initializes all nonmemory elements of the
simulated hardware to zero, except for scratchpad word one (PC), which
is set to the value read from the run control card [NRUN(5)]. 1In addi-
tion, the emulator control variables FINIS and ERROR are set to ,FALSE.,
and operation count and time accumulation variables are set to zero.
This routine is called one time per emulator run,

10

b, Subroutine SETCM

This routine initializes all 1024 words of simulated con-
trol memory (CNTMEM), based on an initialization key read from the run
control card (NRUN(1)). If the key is 1, all of memory is cleared to
zero; if the key is 2, each word in memory is preset to a NO-OP in the
op code field, and the H-field is set to point to its own address. With
this setting, execution of a microprogram will hang in a one-word loop
if it inadvertently gets outside the area where the microprogram under
test is loaded. Any other value of the key on the run control card will
cause an error message and will abort the run by setting ERROR to .TRUE.
This routine is called once per emulator run.

C. Subroutine SETMN

This subroutine is the same as SETCM, except NRUN(2) is
the applicable key, and presets main memory (MAINM) rather than control
memory.

d. Subroutine LOADM

This subroutine reads data cards which contain the octal
address and octal contents of all words of simulated control memory and
main memory which are to be loaded for an emulation run. A key in column
1 is used to determine the type memory a given card applies to: key =1
loads main memory, key = 2 loads control memory, and key = 9 signifies
the load is completed; any other key causes an error message to be
printed, and the flag ERROR is set to .TRUE. The load cards may con-
tain the 16- or 48-bit contiguous octal value to be placed in memory,
or may contain separate fields for each field of the macroinstructions
and microinstruction, as preferred. This routine is called once per
emulator run.

e. Subroutine DCODM

This subroutine is called to initiate the execution of a
macroinstruction by accessing a word of main memory and decoding it., The
main memory word accessed is the one whose address is currently in the
Program Counter (PC - word one of the simulated scratchpad). Once the
address is retrieved, the PC is incremented by one. Then the main
memory word is broken into two 8-bit fields utilizing the subroutine
GETMM. If an error flag is returned from GETMM, an error message is
output and ERROR is set to .TRUE, Otherwise, the left-most 8 bits are
incremented by 1400 octal and placed in the simulated H-register, and the
righ-most 8 bits are incremented by 1400 octal and placed in the simu-
lated C-register. The original values of the two halves are stored in
MINSTR and MOPND respectively. This subroutine is called once for each
Macro executed,

11

i Sba s

f. Subroutine GETMM

This subroutine is generalized to extract any given field
from a 16-bit simulated word located in a 24-bit R-520 word. If there-
fore has five parameters in its calling sequence: (1) the address of the
word to be extracted from, (2) the starting bit, decimal 0 through 15, of
the field to be extracted, (3) the number of bits to be extracted,

(4) the address that the field, right adjusted and zero-filled, is to be
stored in, and (5) an error flag which is set to zero when no error is
encountered, or to an integer to identify the parameter which contained
a recognizable error, This subroutine is normally callled twice per
macro, or once for each desired field extraction,

g. Subroutine DCODC

This subroutine is called to break down a 48-bit micro-
instruction into its constituent fields (currently 25) to facilitate
interpretation and simulated execution of the specified operations and
control functions. The selected 48-bit word is that pointed to by the
index in the simulated H-register. The extraction of the fields is
accomplished by calling GETCM, and the fields are placed in a 25-word
vector in COMMON identified as MICRO(25). If an error flag is returned
from GETCM, an error message is output and ERROR is set to ,TRUE.

The subroutine is called once for each microinstruction to be executed,

h. Subroutine GETCM

This subroutine is generalized to extract any given field
from a 48-bit (60-bit in CDC version) real word, and return the result
right-justified, zero-filled, in a 24~bit integer word. It is therefore
currently limited to a 24-bit extraction, but the largest field currently
required from a microinstruction is the 10-bit next-H field. The calling
parameters are identical to those listed for GETMM, except that the
starting bit may be any decimal number from O through 47, This subrou-
tine is normally called 25 times per microinstruction, or once for each
desired field extraction.

i, Subroutine EXECM

This subroutine manages the complex execution of a micro-
instruction, It first calls PRBIN for the application of those control
functions which occur prior to instruction interpretation/execution., It
then determines if the register SR2 is to cause the operation code to be
modified, and does so if indicated, It then determines which of seven
functional areas of execution that the operation code falls in, and then
calls the appropriate routine to execute that operation. If the operation
code is outside the allowed range (0 - 31 decimal), then an emulator
error has occurred, a message is output, and ERROR is set to .TRUE,
Otherwise, the subroutine BINRY is called to interrupt and act upon the
binary control fields which apply in time afer instruction execution is
completed., This subroutine is called once per microinstruction,

12

s

je Subroutine PRBIN

The microprocessor hardware design is such that the follow-
ing control functions are performed, if enabled, prior to instruction
execution:

Field Octal
(Ref. Figure 2) Bit No. Action if Bit = 1 (On)
6 32 SR1 = 0 (MSR1 = 0)
10 36 Buss = Main(c) (MBUSS - MAINM(MEMC))
13 41 Buss = DATA IN = (Input Discretes) OR (A/D |
Output)
15 43 LSB or Buss = SR1 (MBUSS = OR (MBUSS, MSR1))
17 45 Carry (Cn) = 1 i
20 50 Select D/A 1 '
21 51 Select D/A 2
22 52 Select D/A 3
23 53 Clock A/D Mux Addr Register
24 54 Clock A/D conversion Start (per Bit.)

The subroutine checks each of these fields [micro(6) micro(10),... |
MICRO(23)] in turn: For each that is set (i.e., equal to 1), the indi- |
cated operation (or test and operation) is performed. Most of the
rquired actions are the setting of one variable equal to another (i.e.,
MSR1 = 0), MBUSS = MAINM(MEMC), etc.), but not always. For example, if

bit 43 octal = 1, MSR1l is ORed to the MBUSS, so that the only change
that if MSR1 = 1 and the LSB of MBUSS is 0, it is changed to 1. The
last four controls cause special keys (KDA for D/A, KAD for A/D) to be |
set at nonzero (1, 2, or 3) for the appropriate D/A register select, or {
equal to the MUX address [MICRO(25)] for A/D input, Timing for A/D

setting delays must be managed by the microprogram. This subroutine is

called once per microinstruction,

k. Subroutine BOLN (Boolean)

This is the first operation code execution subprogram,
and is called when the effective operation code is in the range 00 to 06
inclusive. The operation specified are all Boolean except that gener-
ated by OP code 0. In this and all subsequent OP code execution rou=-
tines, a temporary variable ITMP is first set to the value resulting
from the operation, and the final effect on the status of registers and
output lines is determined later, after analysis of the instruction
modifier field. The status of the carry in register ICN affects the
result of OP code 0. If ICN = 0, then ITMP = 177777, or all bits on,
If ICN = 1, then ITMP = 0 (all bits off). For the other OP codes in
this subroutine, ICN has no effect,

13

OP Code Result

00 ITMP = 177777 if ICN = 0; = 0 if ICN =1
01 ITMP = (A OPND) and (B OPND)

02 ITMP = (Data in) and (B OPND)

03 ITMP = (A OPND) or (B OPND) Inclusive
04 ITMP = (Data IN) or (B OPND) or

05 ITMP = (A OPND) XOR (B OPND) Exclusive
06 ITMP = (Data IN) XOR (B OPND) or

Note: The data IN lines are represented by the variable
IDIN.

k]

This subroutine then examines the instruction modifier field. If the
modifier value is seven, then the Q-register (MICQ) is set equal to the
resultant value of ITMP, and control is returned to the calling program,
If the modifier is not seven, then the scratchpad address pointed to by
the B-operand is set to ITMP, and the subprogram INMOD is called to com-
plete the effects of the modifier.

Y. Subroutine INVRT (Invert)

This subprogram is called when the effective operation
code is in the range 07 to 10 inclusive (07 to 12 octal). In the emu-
lator, the operations are performed first, and then the effects of the
carry (ICN) are applied.

OP Code

Decimal Octal Result
7 07 ITMP = Complement of (A OPND)
8 10 ITMP = Complement of (Data IN)
9 11 ITMP = Complement of (B OPND)
10 12 ITMP = Complement of (Q REG)

Then ICN is examined if = 0, 177777 (all ones) are added to ITMP, and
the bits to the left of the 16-bit simulated word length are masked
off, If ICN =1, ITMP is not changed., Then the modifier is examined,
and, if = 7, the Q-register is set equal to ITMP, and control is
returned. Otherwise, the B-operand word in the scratchpad is set equal
to ITMP, and INMOD is called.

14

m, Subroutine CMPLT (Two's Complement)

This subroutine is entered when the OP code is 11 to 14
and performs almost identical operations to those of INVRT:

OP Code
Decimal Octal Result

11 13 ITMP = Complement of (A OPND) + ICN
12 14 ITMP = Complement of (Data IN) + ICN
13 15 ITMP = Complement of (B OPND) + ICN
14 16 ITMP = Complement of (Q REG) + ICN

In this case, if ICN = 0, ITMP is not affected; and if ICN = 1, ITMP
is increased by 1, thereby performing a 2's complement on the selected
data. Then, if the modifier is 7, the Q-register is set to ITMP. If
the modifier is other than 7, the value of the B-operand is set to
ITMP and INMOD is called.

n, Subroutine TRINC (Transfer/Increment)

This subroutine is called when the OP code is 15 to 18,
with the following results:

OP Code
Decimal Octal Result

ITMP
ITMP
ITMP
ITMP

(A OPND) + ICN
(Data IN) + ICN
(B OPND) + ICN
(Q REG) + ICN

Here, when carry is 0, the effect is a simple transfer of the contents
of the designated operand to the designated B-operand or the Q-register,
depending on the modifier. Note that operation 17 (21 octal) will have
a no OP effect if the modiier is 0. The emulator still performs the
load ITMP from B and stores ITMP back in B, however., If carry =1,

the operation includes an increment, If the modifier is 7, the value
in ITMP is stored in the Q-register. Otherwise, the value is stored

in the designated B-operand and INMOD is called.

P. Subroutine DECTR (Decrement/Transfer)

This subprogram is called when the operation code is 19
to 22, with results similar to TRINC above:

OP Code

Decimal Octal Result
19 23 ITMP = (A OPND)
20 24 ITMP = (Data IN)
21 25 ITMP = (B OPND)
22 26 ITMP = (Q REG)

When the basic operation of loading ITMP is completed, the value of carry
is examined. If carry = 0, than all 1's (177777 octal) is added to

ITMP, and ITMP is then masked back to 16 bits, Thus the effect is to
decrement ITMP by 1, since the action constitutes addition of a minus
one. This technique is used in the emulator because that is the way

the operation is performed in the microprosessor hardware. If carry =1,
no further change is made yet to ITMP., Here again is a potential no-OP,
in OP code 21 (25 octal), when carry is on and the modifier is 0. Again,
ITMP is placed in Q-register if the modifier is 7; otherwise, it is
placed in the B-operand and INMOD is called.

q. Subroutine SUM (Addition)

This subroutine is entered when the OP code is 23 to 25,
and the following operations result:

OP Code
Decimal Octal Result
23 27 ITMP = (A OPND) + (B OPND) + ICN
24 30 ITMP = (Data IN) + (B OPND) + ICN
25 31 ITMP = (A OPND) + (Q REG) + ICN
26 32 ITMP = (Data IN) + (Q REG) + ICN

Here, the effect of carry is to increase the sum by one if on (ICN = 1),
or no effect if off (ICN = 0). If the instruction modifier value is 7,
Q-register is loaded with the value in ITMP, and control is returned

to the calling program., Otherwise, the B-operand is loaded from ITMP
and INMOD is called.

e Subroutine DIFF (Subtraction)

This s'ibroutine is called when the operation code is 27
to 31, and is the last of the operation analysis/execution subroutines.
The effects are:

16

OP Code

Decimal Octal Result
27 33 ITMP = (A OPND) - (B OPND)
28 34 ITMP = (B OPND) - (A OPND)
29 35 ITMP = (Data IN) - (B OPND)
30 36 ITMP = (B OPND) - (Data IN)
31 37 ITMP = (Data IN) - (Q REG)

The effect carry has on this operation is to reduce the result by one
when carry is off (ICN = 0), or no effect when on (ICN = 1). Again,
ITMP is stored in the Q-register if the instruction modifier is minus
7; otherwise, ITMP is stored in the B-operand and INMOD is called.

S. Subroutine INMOD (Instruction Modification)

This subprogram is called from the applicable instruction
interpretation/execution routine when the instruction modifier is not 7,
but 0 to 6. At this point, the value produced by execution of the oper=-
ation has been placed in the scratchpad word pointed to by the B operand
of the microinstruction. The following actions are now taken based on
the value of the modifier:

Modifier Action

0 (Data OUT) = (B OPND)

1 (Data OUT) = (A OPND) ('A' Latch).

2 (Data OUT) =old (B OPND), before execution of operation
changed its value ('B' Latch).

3 Shift (B OPND) left one bit - zero enters (B OPND) from the
right, and the bit shifted off is inverted and ORed to
SR1 (MSR1).
Result is also placed in (Data OUT).
4 Shift (B OPND) right one bit - a one bit enters (B OPND)

from left, and the bit shifted off is lost., Result is
placed in Data Out,

5 Shift (Q-REG and (B OPND) together left one bit - a one bit
enters q from right - MSB of (B OPND) - SR1, Data OUT is
then set to the resultant (B OPND) value.

6 Shift (Q-REG) and (B OPND) together right one bit - a one bit
enters the MSB of (B OPND), and the bit shifted off of the
Q-REG is inverted and ORed to SR1 (MSRl). Data OUT is then
set to the new value of (B OPND).

Note: Data OUT is represented by the variable IDOUT., Control is
then returned to the calling routine,

17

t. Subroutine BINRY

The binary control bits which were not examined for
required action prior to operation code execution are now evaluated,
They are:

Field Octal
(Ref. Figure 2) Bit No, Action if BIT = 1 (on)
7 33 SR2 = SR1 (MSR2 = MSR1)
8 34 H - REG = CM (addr) (MEMH = MICRO(5))
9 35 MEM (C) = Buss (MAINM (MEMC) = MBUSS)
11 37 Buss = ALU Data OUT (MBUSS = IDOUT)
12 40 Fetch (Confirm that H REG = 0; if not,
ERROR = ,TRUE.)
14 42 SR1 = 1 if Data OUT = 0
16 44 H - REG = SR1 ORed to LSB of H - REG
18 46 Telemetry = Buss (ITELM = MBUSS)*
19 47 C - REG = Buss (MEMC - MBUSS)
*Note: Telemetry bit effect is inverted, i.e., telemetry = buss
when bit 468 = 0.

This routine is called once per microinstruction.

u. Subroutine FINAL

This subroutine is entered following the completion of a
complete macrooperation, and evaluates the run-termination criter.a which
were setup by the run control card. If the termination criteria are
satisfied, then the logical variable FINIS is set to .TRUE., otherwise
no action is taken, and control is returned to the calling routine (MAIN).
This subroutine is called once per macro-operation.

V. Subroutine STATS

This subroutine is entered after the simulated micropro-
cessor run has been terminated or aborted. The routine prints out the
contents of all registers, data paths, and the 16-word scratchpad, plus
the simulated run time, number of microinstructions, and the number of
macros executed, Additional output can be added as desired. When con-
trol is returned to the main program, the program stops.

18

" Subroutine REPT1

This subroutine is called when the level of diagnostic
output required is high as indicated on the run control card. Currently,
outputs result in the execution of individual microinstruction., It is
anticipated that this subroutine will be expanded as more experience is
gained in the development of microprograms.

X. Subroutine REPT2
Stub only - not yet implemented.
Ye Subroutine XOR
Not used for CDC 6000 version: CDC function XOR.

This subroutine was developed prior to the availability of exclu-
sive OR in the R-520 function library. It performs an exclusive OR on
the second or third parameters, and returns the results in the first
parameter. It uses the following algorithm:

CALL XOR (IANS, J, K)
TANS = ((J)AND(K))OR((J)AND(K)).

Z. Subroutine FLEX
Not used for CDC 6000 version,

This subroutine contains all the required direct code (R-520
FLEXTRAN) for the emulator., Two functions are currently performed,
based on the key in parameter one: If key = 1, the subroutine converts
a right-adjusted real (double-word) variable to an integer variable.

If K = 2, the subroutine increments the H-field (bit 31 octal) of a
48-bit microinstruction by 1, used in presetting control memory.,

5. Preliminary Results

The basic design goal of providing a software development and
test capability for the digital control computer application of the
microprocessor has been met, and the emulator is now serving this
capacity., It has been determined that the ability to vary the inter-
mediate output over a very wide range has been difficult to implement,
but further work is planned in this area. The current version allows
essentially three options of output: (a) a full printout of simulated
control and main memory after loading (Table 4), (b) a very detailed
printout of the intermediate and final results of each instruction
execution (Table 5), and (c) a final status of all registers and data
paths after termination (Table 6). The last of these three is currently
not under run card control, but the other two are., It is not yet known

19

NO-OP, NEXT H = HERE

GENERAL PURPOSE
MULTIPLY TRy
MACRO INSTRUCTION

’- P ai
TABLE 4, MICROPROCESSOR SIMULATED MEMORY CONTENTS
LOCATION CONTENTS
BBCIW CTAL AN MEMORY ~— . CONTROL MEM HORY
Uuvdo oo(mormu A2y .Aldzuuunu
39 vuaz 0000nN4? 4200001162000000
40 LOSU 00000050 42000012020000G0
41 VOS) ooonnNNGSe 42n0001222000000
42 v052 00000052 4200001242006000
43 v0s3 00000053 4200001262000000
44 v054 oooooN54 4200001302000000
© 45 Q055 00000055 4200001322000000
46 0056 00000056 4200001342000000
47 V057 000000527 4200001362000000
48 o060 00000060 4200001402000000
49 U061 00000061 4200001422000000
50 0062 00000062 4200001442000000
51 V063 00000063 4200001462000000
52 V064 00000064 4200001502000000
53 U065 00000065 4200001522000000
54 0066 00000066 4200001542000000
55 Qu67 00000067 4200001562000000
56 0070 00000070 A200001602000000
57 VU7t 00000071 4200001622000000
58 QU772 0oono072 4200001642000000
59 w073 00000073 4200001662000000
60 uv074 00000074 4200001702000000
61 0075 00000075 4200001722000000
62 U076 00000076 42006001742000000
63 0077 00000077 4200001762000000
64 0Viov 00067000 42000020020000C0
65 vivt 000001C1 3676742052004000
66 0ViV2 00000102 4360702102000000
67 01L3 00000103 4200002632000000
68 01u4 00000104 0140702136002000
69 9105 00000305 4355702156000000
70 01u6 00000106 4355702176000000
71 uiu?7 00000107 4355702216000000
72 0110 00000110 4355702236000000
73 Uit 00000111 4355702256000000
74 U112 00000112 4355702276000000
75 Uil 000n0113 4355702316000000
76 ul14 00000114 4355702336000000
77 0115 00000115 43%5702356000000
78 U116 00000116 4355702376000000
79 0117 00000117 4355702416000000
80 01i2v 00000120 43%5702436000000
81 wvi21 00000121 4355702456000000
82 U122 00000122 4355702476000000
83 wvi23 00000123 4355702516000000
84 U124 00000124 4215702%22000000 .
85 U125 00000125 3664202542004000
86 0126 00000126 4200000002000000
87 wut127 00000127 3200040002002000
88 013y 00000130 4200000002000000
89 wu131 00000131 3360702642000000
90 w0132 00000132 0000202102002000
91 0133 00000133 A200002662000000
92 134 00000134 A200002702000000
93 0135 00000135 4200002722000000
94 0136 00000136 4200002742000000
95 wv137 00000137 4200002762000000
0A N1AN nnnnAafdn 47200003002000000
20
| e - - ; -

N

‘0 = 2¥S_°0 = T¥S ‘) = A¥NVD_

60000000 = ©34=0 'G0091000 = SsN8 ‘0102000 = 1ND VLIVU ‘»0021000 = NI Vivd

* 000000 SNIVANOD (Z1)uvd HOIVHIS
® LLLLLO SNIVAINOD (91)Qvd WOLVHIS
® 010420 SNIVLINOD (SI)uvd HOLVHIS
* TO0E00 SNIVINOD (P1)UVd WIIVHIS _

* PL/000 SNIVINOD (F))uvd HOIVHIS
* 200000 SNIVINUD (Z21)0Vd HIIVHIS .
® GUUYI0 SNIVINOD (IT)UVd HIIVHIS
* fuuv00 SNIVInNOD (0F)uvd WIIVHIS
00uUD0 SNIVINOD (ZU)Uvd AHIIVHIS
O0UVUUOD SNIVINOD (90U)GVd HIIVHIS

000000 SNIVINDOD (P0)QVd HILVHIS

OuUOUo SNIVINGD (FU)QVd HIL1VHIE
® UULUUO SNIVINUD (20)uvd HIL1VHIS
® VULLUO SNIVINGD (lu)uvd HILIVHIS
. § * GOVIUO SNIVINGD (O0)uvd WIOLVHIS _

.
® 0uu000 SNIVAINOD (S0)UVd HILIVHIS
.

00000O0TTTYTITOO000O0OTO0OU)Y OO 90 TsH GI vi L0 vu OUpFuUEers0L9p L0l scvl

__%031n33x3 N33G ISNC _SV4 NOILONYISNI WI ONTMOII04 3ML

GOUQTO = MON ‘00pT100 s ATIVILINI SINIINOD W3IT3i

LLLLLO ® MON “£L£££0 s ATIVILINI SINILINOD 93y¥=0_

010420 = MON ‘009100 = AVIVILINI SINIINDD G1 O3¥=Q
T00F00 = SINIINOD ¥1 O3U=V

*t g3141U0W HLIM PO 3000 &0 U3LNJ3X3

~*010£2000 = LNO=YiVQ 138 ISNI € = Q0w HIENI
“vOpEl0 = 3INTVA dw3l ‘031NJ3x3 vN YULENT

“U3NAINI N0 3INILNQuENS

* 92Zrl = QI314-H "Gepitiv UISNI FIML.

INdLNO0 NOILNDAXY QHTIVIAQ °S IATIVL

21

|
|
|
1

ackiake llasieiy

0 = 2HSW ‘0 = INOCW

1 . R et T 00000000 = §$313408IQ LNaNI ‘0 = AMNVD

00000000 00000000 00000000 = § v/U ‘00000000 00000000 00000000 000U0000 00000000 = S a/sv

LLLLLY = 938=0 ‘U000 = 93IM=H “ZLL1 = =0 “LLLLL000 = SgNY *¢LL42000 ® 1IN0 VAIVQ ‘24210000 = NI YiVQ

9££5€000
LLLLLnol
vycennoon .
LLLeLvon
94444100
gisninon
21219100
ZpG1£100
00nNNONQ0
GNYoY/NON
909y 100
£NELL100
onnnanoo
sannnnol
oonnanon

Zeriangn

$ISNIVLINOD QVd4HIIVHIS

% 3WIL_ 1V O3LVNTW¥3L NNY

*031N03x3 SO¥OVW PE ¥0 SONOIW 9pF u3LdV SONDDIS 0S601°

INdINO TVYNId *9 IATEVL

22

if the ability to vary more widely the intermediate detail will be worth
the additional parameter testing that will be required to implement it,
but further analysis is planned.

The structure of the control mechanisms of the emulator was of
some concern, and it was not readily obvious what criteria should be
used to manage a given emulation run, It was finally decided to use
two logical (Boolean) variables, ERROR and FINIS, to control the runs,
Both are initialized to .FALSE., and both are tested at the beginning
of each simulated Macroinstruction execution. Any error condition in
any subroutine causes an error message to be output at that point, and
then causes the error variable to be set to .TRUE,, which then causes
the run to be terminated at the next macro-FETCH stage of execution.
Upon completion of a macroinstruction, the normal run-termination con-
ditions defined by the run control card are examined, and if the con-
ditions are met, causes FINIS to be set .TRUE., with the same result,
This technique allows the program termination to be controlled, and
meets the structured programming criteria of one-entrance, one-exit for
the main program, All subroutines have this same characteristic of one-
in, out-out. In general, it is felt that valuable additional experience
with the use of structured FORTRAN forms has been gained.

6. Conclusion and Future Work

The emulator described in this report is currently operational
on the Raytheon R-520 and CDC 6600 computers, and is currently support-
ing the applications software development process for the first multi-
purpose microprocessor feasibility application, that of guidance control
computer on the T-6 missile, It is anticipated that extensions to the
emulator will be made during the flight software development. Some of
the planned extensions are:

a) Experimentation with various forms and frequencies of emulator
output, and with interactive control of emulator runs.

b) Experimentation with different microprocessor software struc=-
tures, such as the development of meaningful operation codes at the main
memory level, as opposed to simply pointing to macros and data.

c¢) Experimentation with variations in the word size of main and
control memory,

d) Efforts to implement the emulator on other host computers,
including the HP 2100.

In addition to the above, but probably later in time, it is antici-
pated that studies will be made of the potential of generalizing from
the current emulator form to allow external definition of instruction/con-
trol fields and their meanings, This will involve attempts to support
microprogramming for other microprocessors, the accumulation of infor-
mation on similarities and differences, and the analysis of this data

23

against the original structure of this emulation effort, Another planned
extension will provide an interactive capability for testtng and modifying
microprograms.

One outstanding characteristic of this work that should be emphasised
is the comparative ease of making necessary or experimental changes to
the emulator. In a new-processor environment, where both unforeseen
and planned hardware changes are frequent, the simplicity of making fast
changes to the emulator program has been invaluable., The modular design
coupled with the strict adherence to the principals of structured pro-
gramming are primarily responsible for this capability. More specifically,
when a hardware function was initially misunderstood, or later required
modification, the exact location of the emulator representation of that
function was immediately known, easily isolated, and readily changed,
This feature is also expected to play a vital role in future experimen-
tation with proposed hardware design variations, in that the effects as
seen by software can be thoroughly evaluated very easily prior to making
any actual hardware changes.

24

BIBLIOGRAPHY

Aitken, J. D., Sliz, C. J., and Leonard, J. P., T-6 Missile Description,
US Army Missile Command, Redstone Arsenal, Ala., Technical Report

RG-73-18, 10 August 1973.

Asquith, C. Frank, T-6 Digital Autopilot Data Processing Analysis and
Specification, US Army Missile Command, Redstone Arsenal, Ala.,

Technical Report RG-75-36, 5 March 1973,

Copeland, E., Computer Evaluation Technigues, US Army Missile Command,
Redstone Arsenal, Ala., Technical Report RG-72-3, Jamuary 1972.

Copeland, D. E., Jones, M. C., and Strickland, M. R., Improved HAWK
Software Simulation, US Army Missile Command, Redstone Arsenal, Ala.,
Technical Report RG-75-1, 15 July 1974,

25

;
|
]
%

Appendix A. MULTIPURPOSE MICROPROCESSOR EMULATOR:

Common
CNTMEM (1024
ICN

ICOUNT

IDIN

IDOUT
IDSCAR
ITELM

MAINM (1024)
MBUSS

MEMC

MEMH

MICAD (5)
MICDA (3)

MICQ
MSCPAD (16)

MSR1
MSR2
NRUN (20)

FINIS
ERROR

DATA ELEMENT DEFINITIONS

SIMULATED CONTROL MEMORY, 48 BITS/WORD
SIMULATED CARRY IN - 1 BIT (ACTUAL 24)
INSTRUCTION COUNT REGISTER, INITIALIZED
AT 0, INCREMENTED BY 1 IN EXECM (MICRO)
SIMULATED DATA IN LINES - 16 BITS (ACTUAL 24)
SIMULATED DATA OUT LINES - 16 BITS (ACTUAL 24)
SIMULATED INPUT DISCRETE REGISTER -
4 BITS (ACTUAL 24)
SIMULATED TELEMETRY REGISTER - 16 BITS
(ACTUAL 24)
SIMULATED MAIN MEMORY, 16 BITS/WORD (ACTUAL 24)
SIMULATED DATA BUSS, 16 BITS (ACTUAL 24)
SIMULATED MAIN MEMORY ADDRESS (C) REGISTER
10 BITS (ACTUAL 24)
SIMULATED CONTROL MEMORY ADDRESS (H) REGISTER
10 BITS (ACTUAL 24)
SIMULATED A/D INPUT REGISTERS, 12 BITS
EACH (ACTUAL 24)
SIMULATED D/A OUTPUT REGISTERS, 12 BITS
EACH (ACTUAL 24)
SIMULATED Q REGISTER - 16 BITS (ACTUAL 24)
SIMULATED MICROPROCESSOR SCRATCHPAD
MEMORY - 16 BITS EACH (ACTUAL 24)
MSCPAD (1) = PROGRAM COUNTER
MSCPAD (2) THRU (4) = RETURN ADDRESSES
MSCPAD (5) THRU (8) = X REGISTERS
MSCPAD (9) THRU (12) = A REGISTERS
MSCPAD (13) THRU (16) = B REGISTERS
SIMULATED SR1
SIMULATED SR2
RUN CONTROL PARAMETERS:
NRUN (1) - PRESET VALUE FOR CONTROL MEMORY
NRUN (2) - PRESET VALUE FOR MAIN MEMORY
NRUN (3) - OUTPUT LEVEL
NRUN (4) - INITIALIZATION OUTPUT LEVEL
NRUN (5) -~ INITIAL PC VALUE (START)
NRUN (6) = OUTPUT CONTROL INTERNAL - TIME
NRUN (7) =~ OUTPJUT CONTROL INTERVAL - INSTR, COUNT
NRUN (8) =~ OUTPUT CONTROL - ADDRESS IN H
NRUN (9) ~ TERMINATION CRITERIA
NRUN (10) - TERMINATION VALUE
NRUN (11) - FORMAT OF MEMORY LOAD USE
REMAINING NRUN OPTIONS RESERVED FOR FUTURE USE -
LOGICAL: NORMAL RUN TERMINATION FLAG
LOGICAL: ERROR TERMINATION FLAG

2

SN

MINSTR
MOPND
MICRO (25)

MCNT
STIME
ITIME
IETIM
KAD
KDA

Noncommon

Subgrogram
in EMUL (MAIN)

in SETCM

SETMM
LOADM

DCODC

DCODM

MAIN MEMORY INSTRUCTION - 8 BITS (ACTUAL 24)
MAIN MEMORY OPERAND - 8 BITS (ACTUAL 24)
MICROINSTRUCTION FIELDS: (ALL ACTUAL 24 BITS)
MICRO (1) - OPERATION CODE - 5 BITS

MICRO (2) - INSTRUCTION MODIFIER - 3 BITS
MICRO (3) - OPERAND 1 ADDRESS - 4 BITS
MICRO (4) - OPERAND 2 ADDRESS - 4 BITS
MICRO (5) =~ NEXT MICRO (H) ADDRESS - 10 BITS

MICRO (6) THU (24) - BINARY CONTROL FIELDS - 1
BIT EACH

MICRO (25) - A/D MUX ADDRESS - 3 BITS

MACRO COUNT ~ INCREMENTED IN MAIN

SIMULATED ELAPSED TIME - 750 NSEC/MICRO EXECUTION

INTEGER VALUE OF STIME IN SECONDS

ELAPEED EMULATION RUN TIME

KEY THAT D/A MUX HAS BEEN CLOCKED

KEY TO SELECTED A/D REGISTER

Parameter

LFTMS 8-BIT MASK (377 OCTAL)

TINCR TIME INCREMENT (0.00000075 SEC = 75
NSEC)

MICS MICROINSTRUCTION COUNT

REPL /00/ TO PRESET CONTROL MEMORY TO CLEAR

REPL 2 TO PRESET CM TO NOP TO HERE

INDX INDEX THRU MEMORY, 1 - 1024

ADDR INCREMENT H FIELD BY ONE (CDC
VERSION ONLY)

MSK 8-BIT MASK

INDX INDEX THRU MEMORY, 1 - 1024

MSK 1 MASK FOR INVERSION OF BITS 2, 3 OF
OP CODE

KEY MAIN OR CONTROL MEMORY, OR END LOAD

MADR OCTAL ADDRESS

MAIN VALUE FOR MAIN MEMORY

CNTRL VALUE FOR CONTROL MEMORY

K MAIN MEMORY WORD COUNTER

L CONTROL MEMORY WORD COUNTER

IERR CUMULATIVE ERROR FLAG

IPTIR CALLING PARAMETER FOR MEMH

MOP CALLING PARAMETER FOR MICRO(N)

INDX MICRO INDEX

NCOL FIELD (COLUMN) INDEX

IFLAG ERROR RETURN FLAG

MSK 1 MASK FOR INVERSION OF BITS 2 s 3
OF OP CODE

I0FF/01400 OFFSET FOR 1st INSTR OF EACH MACRO

MIN CALLING PARAMETER FOR MINSTR

MOP CALLING PARAMETER FOR MOPND

28

- ‘vvr:ﬂv"

GETCM

GETMM

INMOD

XOR
(R-520 ONLY

EXECM
OPERATIONS
BOLN

INVRT
CMPLT
TRINC
DECTR
SUM
DIFF

PRBIN

BINRY

FLEX

IADR

IBITL
IBITN
IBYTE
IFLAG

IDR
OPMSK/IMSK
BYTE

NMBR
ISTBIT

IADR
IBITL
IBITN
IBYTE
IFLAG
IDR
IBIT

IMASK
NMBR
MOD

IA

IB
KMASK
IHIBIT
IANS

J

K

I0P
I0P
LHIGH

MOD
IAR
IBR

ITMP

ILOW
KOUNT

MSK 10

ADDRESS OF SOURCE WORD

LEFT (START) BIT OF DESIRED FIELD

NUMBER OF BITS IN FIELD

ADDRESS OF TARGET (FIELD) WORD

ERROK FLAG

IADR + 1 TO OFFSET O BASE FOR INDEX

MASK FOR EXTRACTING FIELD

48 - BIT ANSWER FIELD (R-520 VERSION
ONLY)

FINAL SHIFT FOR RIGHT ADJUST

START BIT OFFSET FOR 60~BIT WORD
(CDC VERSION ONLY)

SAME AS GETCM

MACHINE-WORD ADJUSTMENT FOR START
BIT

MASK FOR EXTRACTING FIELD

FINAL SHIFT FOR RIGHT ADJUST

INSTRUCTION MODIFIER (MICRO(2)) -
USED TO SPECIFY DESTINATION OF
OUTPUT AND TO CONTROL SHIFT
OPERATIONS.

INDEX OF A OPERAND

INDEX OF B OPERAND

RIGHTMOST 16-BIT MASK

LEFTMOST 1-BIT MASK (HIGH BIT)

ARGUMENT 1, RESULT OF EXCLUSIVE OR

ARGUMENT 2, VALUES TO BE EXLUSIVE

ARGUMENT 3, OR ED

OPERATION CODE (MICRO (1))

OP CODE (MICRO (1))

OCTAL 177777 (FORCE ALL 1s),
16-BIT MASK

INSTRUCTION MODIFIER (MICRO(2))

A OPERAND INDEX (MICRO(3))

B OPERAND INDEX (MICRO(4))

TEMPORARY HOLD FOR RESULTS OF
EXECUTION UNTIL FINAL FORM /DESTI-
NATIONS IS DETERMINED

4 LSBs OF DATA IN (IDIN) OR DATA
OUT (IDOUT)

ELAPSED TIME (OPERATIONS) COUNTER
FOR D/A OUTPUT REGISTER SELECTION

10-BIT MASK FOR ADDRESSES

KEY TO SELECTED DIRECT CODE OPTION

(R-520 ONLY) FLTB REAL (48-BIT) PARAMETER 1IN OR

RETURN
INTEGR INTEGER (24-BIT) PARAMETER OR BOTH
FINAL NEND TERMINATION CRITERIA (NRUN(9))
NVAL TERMINATION VALUE (NRUN(10))
REPT1 ITEL2 PREVIOUS VALUE OF TELEMETRY REGISTER
MICQ2 PREVIOUS VALUE OF Q-REGISTER

i i b b

Appendix B. MULTIPURPOSE MICROPROCESSOR EMULATOR:

FLOWCHARTS

e |

START

READ RUN
CONTROL CARD

!

INIT

SETCM

INITIALIZE DATA
PATHS, REGISTERS

INITIALIZE CONTROL
MEMORY

K

LOADM

SETMM

LOAD PROGRAMS
AND DATA

INITIALIZE MAIN
MEMORY

STATS
OUTPUT FINAL sTOP
STATISTICS

DCODM

GET NEXT
MACRO

F

DCODC

GET NEXT
MICROINSTER

¥

EXECM

EXECUTE
MICROINSTR

INCREMENT
MACRO
COUNT

-

T

INCREMENT
TIME, MICOUNT

FINAL

EXAMINE FINISH
CONDITIONS

&

MULTIPURPOSE DIGITAL MICROPROCESSOR EMULATION MAIN PROGRAM

H=0
FINIS=T

32

ki

SUBROUTINE INITIALIZE (REGISTERS AND DATA PATHS)

{

CLEAR ICN, ICOUNT,
IDIN, IDOUT, IDSCR,
ITELM, MBUSS, MEMC,
: MICQ, MSR1, MSR2,

! MSCPAD (t)

MSCPAD (2) THRU (16),
MICAD (1) THRU (5)
MICDA (1) THRU (3),
MEMH

FINAL = .FALSE.
ERROR = .FALSE.
NRUN (5) -+ PC
(MSCPAD (1))

/

33 | ﬁ

SUBROUTINE SET CONTROL MEMORY

< SETCM ’

}

INDX =1

RETURN

NRUN (1)

}

{ 1 2 ELSE
FLEX (2) WRITE INVALID
CNTMEM (INDX)= 0 INCREMENT H OPTION NRUN (1) =
FIELD NRUN (1)

CNTMEM (INDX) =
NO-OP TO INDX
-1

ERROR=T

INDX = INDX +1

L

34

SUBROUTINE SET MAIN MEMORY

Y

INDX = 1

RETURN

NRUN (2)

2

ELSE

MAINM (INDX) = 0

MAINM (INDX) =
INDX -1

WRITE INVALID
OPTION NRUN (2) =
NRUN (2)

i

ERROR =T

rT\f

INDX = INDX +1

35

SUBROUTINE LOAD PROGRAMS, DATA

LOADM

INITIALIZE
K=0,L=0
KEY=0

F
RETURN

i

READ
KEY, ADDRESS,
CONTENTS

1 2 9 ELSE
i i *
MAINM (ADDR + 1} = CNTMEM (ADDR +1) = WRITE LOAD WRITE INVALID
CONTENTS CONTENTS COMPLETED KEY = KEY
K=K+1 L=L+1 K L
ERROR =T
KEY =9

36

i .

SUBROUTINE DECODE MAIN MEMORY WORD

DCODM

DATA IOFF /01400
MEMC = MSCPAD (1)
MSCPAD (1) = MEMC +1

!

GETMM
GET8LEFTMOST | _ --{GETMM COMPENSATES

FOR BASE ADDRESS
e BEING ZERO

F T
} FIRST INSTR OF EACH
WRITE MEMH = MINSTR : MACRO IS IN THE
PROBLEM WITH +10FF 1400-1777 QUARTER
MAIN LEFT CALL OF CONTROL MEMORY
IFLAG = IFLAG
GETMM
GET 8 RIGHTMOST
ERROR = .TRUE. BITS
F T
WRITE
PROBLEM WITH y
MAIN RIGHT CALL
IFLAG = IFLAG MEMC = MOPND
' +10FF
ERROR = .TRUE.
R 2,
| e ¥

RETURN

SUBROUTINE GET MAIN MEMORY FIELD

PARAMETERS

1~ IADR — MEMORY LOCATION

2 - IBITL — START BIT OF FIELD

3 - IBITN — NUMBER OF BITS IN FIELD
4 - IBYTE — RETURN OF FIELD

5 — IFLAG — ERROR CONDITIONS

PARAMETERS

(1) (2) (3)
.LT.0.0R. .LT.0.0R. .LT. 0.0R. (2) PLUS (3)
.GT. 1023 .GT. 15 GT. 16 .GT. 16 ELSE
\ y Y y 4
IFLAG =1 IFLAG=2 IFLAG =3 IFLAG =5 IFLAG=0

EXTRACT FIELD,
- IBYTE

IBYTE=0

L O

RETURN

SUBROUTINE DECODE CONTROL MEMORY WORD

LOADS VECTOR MICRO (25)
1=0P CODE

2 = MODIFIER DECODC ﬁ JERR = I0R
3=A OPERAND FLAG)
4 = B OPERAND sl
E 2;35312: BINARY L
§ = GETCM
CONTROLS SEoM
25 = A/D MUX ADDR GZzi oP CODE GETA/D
E MICRO (1) MUX ADDR (25)
IERR = IFLAG IERR = 10R
L A (IERR, IFLAG)
GETCM i
IFLAG = IERR
GET MODIFIER INDX = 6
L (2) NCOL = 26
IERR = IOR A
(IERR, IFLAG)
IFLAG =0
= .AND. INDX.LE;
GET ‘A’ GETCM
i FIELD (INDX)
IERR = IOR ‘
(IERR, IFLAG) / INDX = INDX +1
} NCOL = NCOL +1
GETCM T L—"’
GET ‘B’
OPERAND (4)
WRITE ‘ERROR
i IN GETCM CALL
IERR = IOR e
(IERR, IFLAG)
’ ERROR=T
GETCM } g y
GET NEXT H
(5)

RETURN

PARAMETERS:

1 - 1ADR — MEMORY LOCATION

2 — IBITL — START BIT OF FIELD

3 — (BITN — NUMBER OF BITS IN FIELD
4 — IBYTE — RETURN OF FIELD

5 — IFLAG — ERROR CONDITIONS

PARAMETERS

SUBROUTINE GET CONTROL MEMORY FIELD

(1) (2) (3)
.LT.0.OR. .LT.0.0R .LT.0.0R. (2) PLUS (3)
GT.1023 GT.47 GT.48 GT.48 ELSE
y r }
IFLAG =1 IFLAG = 2 IFLAG = 3 IFLAG =5 IFLAG =0
|
EXTRACT FIELD,
>BYTE
FLEX (1)
BYTE - IBYTE
L] | o ,{L\ » |)
IBYTE =0
y

RETURN

O

SUBROUTINE EXECUTE MICROISTRUCTION

EXECM

/
PRBIN

EARLY CONTROL
FUNCTIONS

GET OP CODE,
MODIFY BY SR2

06 7-10_ 11-14__ 15-18 § 19-22 23-26 27-31 _ ELSE
/ y /
BOLN cvMPLT DECTR DIFF
BOOLEM s COMPLEMENT [| | DECREMENT/ SUBTRACTION
{ 4 r
INVRT TRINC SUM —
TRANSFER/ ERROR IN OP
bl INCREMENT L CODE = 10P
r
ERROR = T
Y 1 Y ?L | i i
BINRY
LATE CONTROL
FUNCTIONS
(return)
41

; ; - " " . T—T—T -
!A 5 ‘ alidoan |

SUBROUTINE PRE—BINARY EARLY CONTROL FUNCTIONS
(BIT NUMBERS IN BINARY)

< PRBIN > §
,

=1
BIT 458

CARRY =0
ILOW =0
CARRY = 1
o\ ‘
SR1=0

BIT

o i
.

52,=1

g
2
.

KDA =1 KDA = 2 KDA = 3

BUSS = MAIN (C)

| e i

T4l =1 | : 8
|
DATA IN = IDSCR KAD = MICRO (25)

OR MICAD KAD
BUSS = DATA IN {

i o~ i

RETURN

BIT 438 =1

{

42

SUBROUTINE BOOLEAN
PARAMETER: IOP: OPERATION CODE

BOLN
| GET INDICES,
OLDB
i
0 1 2 3 4 5 6
, ¥
ITMP = (A)L.AND.(B) ITMP = (A).OR.(B) ITMP = (A).XOR.(B)
|]
1T™P = 1DIN.ANDIB)| | | 1TMP = 1DIN.OR.(B) | | [ITMP = 1DIN.XOR.(B)
0 1 ELSE
’ y & i TP |
b
ITMP = HIGH m‘f,',{fm
i CARRY
F T
ITMP = LOW |
& (B) = ITMP MICQ = ITMP
ERROR = T
' INMOD
I EXECUTE
i it MODIFIER
— hw—f }
i
’ 43

: SUBROUTINE INVERT

3
, INVRT

GET INDICES,
oLDB

PARAMETER: :
I0OP — OPERATION CODE
7 8 9 10 ;

Y ' | ki

ITMP = (A) ITMP = IDIN ITMP = (B) ITMP=Q
| Y

o
<§
0 1 ELSE

ITMP = ITMP + HIGH WRITE E
INVALID CARRY i

l 4 ERROR =T

B

)

(B) = ITMP MICQ = ITMP
INMOD

EXECUTE
MODIFIER

{ F S Y

44

S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>