5	AD-A031 773 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 8/8 COMPUTER-CALCULATED GEOMETRIC CHARACTERISTICS OF MIDDLE MISSISSETC(U) JUN 74 V E LAGARDE, S J WINFREY UNCLASSIFIED WES-TR-M-74-5-VOL-1 NL												
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- 10000		95892		
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					21						
												222	
					A Tableta Managar Man		internet						
	think a			Conditional Designation			Time Distant	Contraction of the second seco			Reading to		
		that the second		in dimensional distribution of the second se									
4										1, 16			1

SIT .	White Section
300	Buti Soction
MUONNAM	.8 0
N	
BISTAIBU DISTAIBU Dist.	TION/AVAILABILITY CODES AVAIL, and/or SPECIAL
BISTAIBU Dist.	TIOR/AVAILABILITY CODES AVAIL, and/or SPECIAL

TECHNICAL REPORT M-74-5

COMPUTER-CALCULATED GEOMETRIC CHARACTERISTICS OF MIDDLE-MISSISSIPPI RIVER SIDE CHANNELS

VOLUME I: PROCEDURES AND RESULTS

by V. E. LaGarde, S. J. Winfrey

Sponsored by U. S. Army Engineer District, St. Louis Office of Environmental Resources, St. Louis, Missouri

June 1974

Conducted by U. S. Army Engineer Waterways Experiment Station Mobility and Environmental Systems Laboratory Vicksburg, Mississippi

ARMY MRC VICKSBURG MISS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FOREWORD

This study was conducted for the U. S. Army Engineer District, St. Louis (SLD), from January to August 1973. It was performed under the general supervision of Messrs. W. G. Shockley, Chief, Mobility and Environmental Systems Laboratory, W. E. Grabau, Chief, Environmental Systems Division, and J. K. Stoll, Chief, Environmental Simulation Branch (ESB), and MAJ W. P. Emge, Office for Environmental Studies. Dr. V. E. LaGarde, Project Manager, ESB, was responsible for design of the project, development of calculational procedures, and development of a portion of the computer software. Mr. S. J. Winfrey, ESB, was responsible for the development of the remaining computer software and the operation of all stages of the calculational procedures. This report was prepared by Dr. LaGarde and Mr. Winfrey.

Directors of WES during the study and preparation of the report were BG E. D. Piexotto, CE, and COL G. H. Hilt, CE. Technical Director was Mr. F. R. Brown.

PRECEDING PAGE BLANK-NOT FILMED

CONTENTS

Page

FOREW	ORD	•			•			•			•	• •	•		•	•						•			iii
CONVE	RSION FA	CTO	RS,	BRI	FIS	SH	TO	MI	TR	IC	AN	DM	ET	RIC	2 3	0	BF	RIJ	TIS	SH					
OWT	TO OF ME	ASUI	TEME	1.1.	•	•	•	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	IX
SUMMA	RY	•	• •	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xi
PART	I: INTR	ODU	CTIO	N.	•	•	•	•		•	•	•	• •	•	•	•	•	•	•		•	•	•		1
	Backgro	und				•	•	•				• •	•	•	•					•	•		•		1
	Purpose	•	• •	• •	•	•	•	•		•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	2
	Scope .	•	• •		•	•	•	•		•	•	•	• •	•	•	•	•	•	•		•	•	•	•	2
	Approac	h.	•••	• •	•	•	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	2
PART	II: DAT	A PH	ROCE	SSI	NG	AN	D	TOI	POG	RAF	РНҮ	SI	MU	LAJ	IC	ON	•	•	•	•	•	•	•	•	6
	Process	ing	of .	Ava	ila	abl	e	Dat	ta.																6
	Topogra	phy	Sim	ula	tic	on						• •		•				•							17
PART	III: CA	LCUI	LATI	ons	AN	ID	RE	SUI	TS		•	• •				•		•	•		•				23
	Water E	leva	atio	n.																					23
	Pool Pa	rame	eter	s.																					26
	Calcula	tion	nal	Pro	ced	lur	es																		30
	Results																								39
PART	IV: CON	CLUS	SION	S AL	ND	RE	CO	MM	END	ATI	ION	S													43
	Conclus	ion	s .																						43
	Recomme	ndat	tion	s.																					43
TABLE	s																								
	a a.		-																						
1	Side Un	anne	els	inc.	Luc	lea	. 1	ni	Stu	ay															
2	Results	OI	Cal	cula	ati	lon	S	101		ide		har	ine		lei	ie	ers	sor	1 1	sar	re	icr	s		
5	Results	01	Cal	cul		Lon	S	101	. 0	ide		har	ine		a		:0								
4	Results	01	Cal	cul		lon	S	101		ide		har	ine	J L L	JSI	100	me	3							
6	Results	01	Cal	cura		lon	S	101	0	ide		har	ine		lai	-10	CL		.+.						
7	Results	of	Cal	aul		ion	5	for	C D	ide		har	ine		101		CI.	lai		es	>				
8	Regulta	of	Col	aul		lon	0	for		ide		hor	ne		101	le	-								
0	Regulte	of	Cal	ould		ion	c	for	D C	ide		har	ine		iai	one ir	15 P	TS	2						
10	Regulta	of	Cal	anl		ion	0	for	. 0	ide		hor	ine		12	TTI.	15	-							
10	nesurus	01	Car	cula	aul	LOU	D	TOI	D	Tue	- 0	nal	me	T	TI	Jer	UJ	/							

Results of Calculations for Side Channel Jones

v

11

PRECEDING PAGE BLANK_NOT FILMED

12 13 14 15 16 17 18 19	Results of Calculation Results of Calculation	ons for Side Channel Picayun ons for Side Channel Cape Be ons for Side Channel Santa F ons for Side Channel Billing ons for Side Channel Buffalo ons for Side Channel Browns ons for Side Channel Thompso ons for Side Channel Sister	e nd 'e s
PLATES	3		
1	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Jefferson Barr	iver Stage for acks
2	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Calico	iver Stage for
3	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Osborne	iver Stage for
4	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Harlow	iver Stage for
5	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Fort Chartres	iver Stage for
6	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Moro	iver Stage for
7	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Kaskaskia	iver Stage for
8	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Crains	iver Stage for
9	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Liberty	iver Stage for
10	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Jones	iver Stage for
11	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Picayune	iver Stage for
12	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Cape Bend	iver Stage for
13	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Santa Fe	iver Stage for
14	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Billings	iver Stage for
15	Parameter Values for Mississippi River,	St. Louis Gage Equivalent R Side Channel Buffalo	iver Stage for

16 Parameter Values for St. Louis Gage Equivalent River Stage for Mississippi River, Side Channel Browns 17 Parameter Values for St. Louis Gage Equivalent River Stage for Mississippi River, Side Channel Thompson

18 Parameter Values for St. Louis Gage Equivalent River Stage for Mississippi River, Side Channel Sister

CONVERSION FACTORS, BRITISH TO METRIC AND METRIC TO BRITISH UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multiply	By	To Obtain
	British to Metric	
feet	0.3048	meters
miles (U. S. statute)	1.6093	kilometers
acres	0.4047	hectares
acre-feet	1232.75	cubic meters
	<u>Metric to British</u>	
meters	3.2808	feet

DING PAGE BLANK-NOT FILMED

SUMMARY

Several geometric characteristics of water-basin regimes, including basin size and shape, area underwater at specific water depth, and cross-sectional area, are commonly associated with benthic, plankton, and fish community population structures, although little quantitative data are available to support the association. This two-volume report describes a general procedure that was developed to calculate values of selected parameters used to define the above-mentioned geometric characteristics of any water-basin regime. The procedure was successfully applied to yield quantitative information for those parameters for 18 side channels of the Middle Mississippi River. Which of the parameters selected as quantitative descriptors of the characteristics are best indicators of animal community population structures is expected to be determined as a result of other projects currently under way at the U. S. Army Engineer Waterways Experiment Station.

Volume I contains a description of the procedure and the results of implementing it. Volume II contains a set of computer-plotted contour maps for the 18 side channels.

G PAGE BLANK NOT FILMED

COMPUTER-CALCULATED GEOMETRIC CHARACTERISTICS OF MIDDLE MISSISSIPPI RIVER SIDE CHANNELS

VOLUME I: PROCEDURES AND RESULTS

PART I: INTRODUCTION

Background

1. The continued implementation of engineering structures, such as wing dams, is under study as an aid in maintaining the 9-ft*-deep by 300-ft-wide channel between St. Louis, Missouri, and Cairo, Illinois. Dams constrict the river flow to midchannel, so that the scouring action of the swifter midstream flow helps maintain the desired channel depth. The materials scoured from the main river channel and other solids already in suspension are transported downstream, and portions are deposited in slack-water areas. The deposit of those materials along the riverbanks has an effect upon the aquatic regimes along the river, particularly side channels that are open to the river and have flow through them at normal river stages. Since the side channels are important as fish and wildlife habitats, particularly as sport and commercial fish spawning areas, there is a need to examine the scouring action and transport within the main channel and the probable effects on geometric, chemical, and biological characteristics of the side channels. An analysis of the relation between those characteristics and animal populations can be used as a basis for predicting possible changes in animal populations caused by changes in side-channel characteristics and, indirectly, the changes in animal populations caused by maintaining the 9-ft-deep channel.

^{*} A table of factors for converting British units of measurement to metric units, and metric units to British units, is presented on page ix.

Purpose

2. The purpose of the research program under which this study was performed was to provide reference material to the U. S. Army Engineer District, St. Louis (SLD), for preparation of an Environmental Impact Statement relative to the development and maintenance of a 9-ft-deep navigation channel in the Middle Mississippi River.* The primary purpose of the study reported herein, which is one of several conducted by the U. S. Army Engineer Waterways Experiment Station (WES) in support of the program, was to provide a portion of the environmental inventory information needed to analyze relations between animal populations and the geometric, chemical, and biological elements of the project sidechannel areas. A secondary purpose was to establish a comprehensive computer-accessible data base containing Middle Mississippi River sidechannel data for use by analysts to calculate parameter values for additional side-channel geometric characteristics.

Scope

3. This study encompassed the definition, development, and use of a general procedure to quantify geometric characteristics of 18 Middle Mississippi River side channels from St. Louis, Missouri, to Cairo, Illinois.

Approach

4. Several geometric characteristics of water-basin regimes, including basin size and shape, area underwater at specific water depth, and cross-sectional area, have been associated with benthic, plankton,

^{*} The results of the program will be published by the Waterways Experiment Station in a report entitled "Environmental Analysis and Assessment of the Mississippi River 9-ft Channel Project Between St. Louis, Mo., and Cairo, Ill.," by W. P. Emge, and others.

and fish community population structures, * typically through the food chain. For example, penetration of sunlight to the basin bottom has a major influence on the type and mass of aquatic vegetation, which, in turn, provides hiding places for some fish species and a major link in the food chain of all fishes.

5. The following parameters were selected to describe quantitatively the geometric characteristics of side channels.

- a. Center-line length.
- b. Average width between high banks.
- c. Water volume as a function of water elevation.
- d. Shoreline length as a function of water elevation.
- e. Water surface area as a function of water elevation.
- f. Shoreline development as a function of water elevation.
- g. Rate of change of water surface area with respect to water elevation (derivative of water surface area with respect to water elevation) as a function of water elevation.
- <u>h</u>. Ratio of water surface area to volume as a function of water elevation.
- i. Ratio of shoreline length to water surface area as a function of water elevation.
- j. Bottom surface area underwater as a function of water elevation and water depth.
- <u>k</u>. Water cross-sectional area as a function of water elevation at selected sampling locations (stations).

Since values of side-channel characteristics change as a function of water elevation within the side channel (and therefore as a function of season), the appropriate parameters were calculated as a function of water elevation as indicated above. The calculation of parameters as a function of water elevation makes possible the analysis of the data during the major phases of animal life cycles; for example, fish

^{C. E. Warren and P. Doudoroff, <u>Biology and Water Pollution Control</u>,} Saunders, Philadelphia, Pa., 1971.
G. E. Hall, ed., "Reservoir Fisheries and Limnology," Special Publication No. 8, 1971, American Fisheries Society, Washington, D. C.
C. D. Sculthorpe, <u>The Biology of Aquatic Vascular Plants</u>, Edward Arnold, London, 1967.

spawning, juvenile, and mature phases, which occur during different seasons of the year and, thus, usually at different water levels.

6. The Middle Mississippi River side channels identified during the research program are indicated in fig. 1 and listed in table 1 in decreasing order of river mile location. (Side channels are identified and numbered identically with those described in the report to be published containing the research program results.) River mile locations of the extremities of each side channel and sampling locations (stations) within each also are noted in table 1. The parameters listed in paragraph 5 were calculated in this study for all side channels except side channels 5, 7, 13, 14, 15, 24, and 25.

PART II: DATA PROCESSING AND TOPOGRAPHY SIMULATION

7. It was necessary to know the topography of a side channel before parameter values could be calculated for it. Since a direct investigation of the topography of a water-filled side channel was impractical, a procedure was developed to simulate the side-channel topography mathematically using assorted available data. However, the data had to be processed prior to use in the topography simulation. The simulation procedure described below was used for the 18 side channels studied.

Processing of Available Data

8. The available data for the side channels consisted of complete aerial photography coverage, limited fathometer data, and sparse field survey data.

Preparation of data

9. <u>Aerial photographs</u>. Aerial photography coverage, made available by the SLD and used in this study, consisted of the following:

Туре	Date	Scale	Coverage
Black-and-white infrared	Jan 70	1:12,000	Main river channel and floodplain in immediate vicinity of main channel
False-color infrared	Aug 71	1:12,000	Main river channel and floodplain in immediate vicinity of main channel
Panchromatic (black and white)	Jun 69	1:24,000	Floodplain

The original intent of the SLD in having the black-and-white infrared photo coverage flown did not include specific coverage of river side channels. Since most side channels are adjacent to the main channel, however, the majority of side channels included in this study were contained in totality in those photos. Where they were not, the panchromatic photography was used to supplement the black-and-white infrared coverage. The supplementary panchromatic coverage was enlarged by a camera process to the scale of the black-and-white infrared coverage.

10. Only one of the 18 side channels was totally contained on a single black-and-white infrared aerial photo. A complete picture of the remaining side channels was produced by constructing photomosaics with the black-and-white infrared photos, supplemented by the panchromatic photos where necessary. According to SLD, the photos were rectified and were at a scale of 1:12,000, and these statements were taken as the basis for assuming nondistortion of the side channels' spatial configurations on the photos and for calculating the side channels' horizontal dimensions from the photos, respectively. No control points were available on the photos to validate these statements. Fig. 2 is a reproduction of that portion of the photomosaic containing side channel Osborne and a portion of the main channel. The photomosaic was made up of two black-and-white infrared photos, and is approximately nine-tenths the scale of the original. In fig. 2 the notations in the area of the side channel include locations where fathometer and survey data were taken (paragraphs 16-19) and water levels at the times of the aerial photo coverage and the fathometer runs.

11. The black-and-white infrared coverage was used as the basis for side-channel horizontal dimensions data for several reasons. It contained the most complete coverage, with a late flyover date, at the largest scale available. In addition, the coverage was flown during the time when deciduous tree foliage was at a minimum and the water stage was low. Also, the black-and-white infrared film energy response functions are such that the water-land interface is most easily interpreted on that type of film.

12. The false-color photography was examined in a limited number of situations to resolve ambiguities on the black-and-white photography. It was not found useful for supplementing the data to any extent because the foliage was in full bloom in that photography, making interpretation of high bank difficult, and the water level was higher than in the black-and-white coverage. In addition, false-color photography does not always show the land-water interface distinctly; it is frequently

difficult to determine whether a flat sand structure is above or immediately below the water surface.

13. The river stage in the immediate locale of each side channel was calculated jointly by SLD and WES for the time of photo coverage. Most side channels contained water at the same level as the main river channel, providing a ready source of elevation data within the side channels at the land-water interface locations. Procedures described in paragraph 28 were used to deduce the elevation of pools not connected to the main river channel.

14. The spatial extent of each side channel was delineated on transparent overlays from the aerial photos by photo interpreters. The high-bank position, as indicated by mature willow growth, was used to define the side-channel edges. The water entrance and egress locations (ends of the side channel) were defined at their junctures with the main river channel, or preferably at the location of water-flow control structures within the side channel close to that juncture. An example of such a transparent overlay is shown in fig. 3, which is a reproduction of the overlay for side-channel Osborne at the same scale as fig. 2. It shows the total outline of that side channel, the locations where fathometer data were obtained, the locations of dikes, the waterline within the side channel, and stations where the cross-sectional area of the side channel was to be calculated.

15. Since the data on the transparent overlays were at an inconveniently small scale for subsequent operations, the overlays were digitized and input to the WES computer, and expanded overlays were computerplotted at a much larger scale to yield working base maps. Digitizing was performed through the use of a manually operated device, which recorded the two-dimensional Cartesian coordinates of points and lines at positions dictated by the equipment user. Information other than Cartesian coordinates, e.g. the elevation of a specific point, was recorded through a keyboard. All recorded data were automatically placed on magnetic tape during the digitizing process, and were immediately available for input to computer software at completion of the digitizing process. A computer graphics rather than camera expansion procedure was

used because of the overall time and funds savings and the fact that perfect linearity and scale control were assured in the computerized expansion process.

16. Fathometer and survey data. During May 1972, personnel of the SLD operated the SLD's fathometer equipment to obtain bottom profiles within the side channels. Bottom profiles for any side channel consisted of both selected profiles across (cross profiles numbered 1-12 in fig. 3) and a single profile down the estimated position of the thalweg. Attempts were made to locate the cross profiles at the side channel ends (often at or near control structures), on both sides of any known underwater control structures, and at one position between control structures. Since the operation occurred during high water, the fathometer was carried over the maximum possible extent of the sidechannel width on cross profiles and over all dikes along the thalweg profile. Because of the high water, the boat carrying the fathometer was able to reach the high-bank positions and, in a few cases, to actually pass over the high banks on cross profiles. The distances of the starting and ending points for a cross profile from local reference points (e.g. willow line) were noted on the fathometer strip charts. The inability to measure cross profiles over the entire distance from high bank to high bank for most of the profiles was primarily due to trees protruding from the water over the high banks and, in a few cases, to bluffs forming the high banks.

17. A survey team, operating in August 1972 during a period of relatively low water, supplemented the data. The team located the fathometer-profile positions and took profile data over the ends of the profiles up to the high-bank position, and measured the horizontal distance from high bank to high bank along the profiles, the distances along the side channel between cross profiles, and dike elevations. All measurements were performed with rod and transit.

18. Figs. 4 and 5 are examples of the profile data available for this study after the fathometer and survey data were spliced. The figures consist of one of the cross profiles and the thalweg profile, respectively, for side channel Osborne. The location of the cross

Fig. 4. Profile 3 of side channel Osborne

profile in the side channel corresponds to the location of the line in fig. 2 where the notation 3-3 appears, and in fig. 3 where the line labeled 3 appears. The location of the thalweg is not shown in figs. 2 and 3; the procedure for locating it is described in paragraph 24. The orientation of fig. 5 is opposite to that of figs. 2 and 3 because the fathometer-survey team traveled downstream to obtain the thalweg profile.

19. Submerged vegetation and debris, bubbles, and equipment noise frequently cause high-frequency signals to be imposed on the true bottom signal. The portions of the profiles derived from the fathometer data (e.g. solid line in fig. 4 and all of fig. 5) were smoothed to remove these effects.

Integration of data

20. The data prepared as described in paragraphs 9-19, except fathometer-profile elevations, were integrated for each side channel in an identical fashion, resulting in a working base map of the side channel. This map, together with the fathometer-survey profile elevations was used to calculate the topography data for the side channel.

21. The base map was formed by superimposing all available data, except the fathometer-survey profile elevations, on the computer-plotted expanded overlay of the side channel (see paragraph 15). The locations and elevations of all dikes were noted, as well as the locations of all fathometer-survey profiles and land-water interfaces, particularly where the water within the side channel was connected to the main channel.

22. The positions of the dikes were checked by comparison with the dike structures visible in the aerial photography. The survey elevation data for the dikes were checked by comparing water elevations in the side channels with the dike elevations to determine whether dikes that should have been above water level actually were.

23. The positions of the cross profiles were checked by measuring the distances from high banks to high banks from the expanded computer plot and comparing those distances with the distances measured by the survey team for the cross profiles (see fig. 4). In addition, the height of one portion of the profile relative to another (the profile

shape) could be deduced by examining the positions of land and water along the profile on the aerial photo. Deduced features included the general position of the thalweg relative to the center of the side channel and the locations where the profile should be high (e.g. above water) or low (e.g. below water). The deduced shape of a profile from the base map was checked against the fathometer-survey profiles as a second check to ensure that the fathometer-survey profile was properly located and oriented. Various data errors were encountered in this data editing procedure. In several instances, the orientations of profiles were opposite to what they should have been; the confusion in alignment was easily detected and corrected. In a few instances, the surveymeasured bank-to-bank distance on a fathometer-survey profile did not agree with the scaled-off aerial photo distance. Since the boat crew performing the fathometer measurements attempted to keep the boat speed constant during a profile measurement and at the same speed from one profile to the next, the length of the profile in question was estimated roughly from the horizontal length of the fathometer chart of the profile relative to that of neighboring profiles for which the horizontal ground distance was known. In a few cases where errors were detected, the survey-measured distance was found to be in obvious error (e.g. factor of two incorrect). In all situations where data corrections were performed, the photo-interpreted distance was given preference, since the chance of gross error was less than for the field measurement.

24. The thalweg profile data (see fig. 5) contained notation as to where it passed over cross profiles. Locations in the profile where the fathometer had passed over dikes were obvious. The dike elevation survey data were checked against the profile depth data converted to elevation as one consistency check, and no problems were encountered. The water depth on the thalweg profile was checked against the water depth on the cross profile for each cross profile where they intersected. The position of the intersection of the two was chosen so that the thalweg profile was toward the center of the side channel, since the boat crew had attempted to keep to the center, and the water depth at the point of intersection of cross and thalweg profiles was the same. Where

possible, the structure of the side-channel bottom, as seen on the aerial photo, was correlated with the shape of the thalweg profile as a countercheck of the data (in particular, a check on the correct horizontal positioning of the thalweg profile). No extensive checking of this type could be performed, however, as the thalweg profile was typically measured along the deepest region of the side channel, and, therefore, the majority of the profile position was underwater even in the aerial photos taken during low water. No particular problems were encountered where correlations could be made.

25. There was a time lapse of 28 months between the aerial photography and the fathometer measurements. As a result of the data editing process, it was discovered that, insofar as it could be determined, the two data sources were in close agreement as to the sidechannel bottom structure. Any differences in shoaling patterns between the two measurements were not extensive. Channels did not move from one side to the other in the side channels, nor did the shoaling patterns appear to change extensively.

26. In addition to including on the base map the locations and elevations of all land-water interfaces where the water within the side channel was connected to the main channel, so that the water elevation was known, various elevation data were interpolated onto the map using a combination of the measured and interpreted data as a basis. This step was necessary to make the full informational content of the measured and interpreted data available to the computerized topography calculation. The interpolated data consisted of high-bank elevations and elevations of the land-water interface for pools within the side channel not connected to the main channel.

27. Measured data on the high banks consisted of field survey measurements on the cross profiles at the high-bank positions. Photo interpreters interpolated elevations along the high banks between those data points with the aerial photos as an aid. An attempt to use available contour maps was unsuccessful, since their data, when available, were much coarser than those which the photo interpreters could reasonably interpret. Most side channels exhibited a smooth change in

elevation along the high banks, typically changing a few feet per mile, thus making interpolation simple. Since the parameter values were calculated as a function of water elevation up to a maximum elevation equal to that at which 50 percent of the high banks were overtopped (see Part III), the results of this study are independent of elevations along a high-bank bluff.

28. The water elevations of standing pools were interpolated by studying the shapes of the pools and attempting to locate the intersection of the water surface with cross profiles. The distances of the land-water interfaces from the high banks, as well as the pool width, were measured from the aerial photography and scaled onto the cross profiles to provide the approximate intersection points. Locating a pool's elevation was not difficult in most cases, since the side-channel shapes did not change radically in the time between aerial photo coverage and measurement of profiles.

Topography Simulation

29. The production of topographic data that describe the geometry of each side channel required five operations and resulted in three products. The five operations were the manual digitizing of the data on the base maps and profile plots in a format suitable for computer operations, production of a set of (XYZ) data from the base map and profile data, computer calculation of an elevation grid array over the side channel, computer calculation of a contour map of the side channel, and the manual digitizing of that contour map to produce a file containing the (XYZ) coordinates of the contour lines.

30. The three products resulting from this sequence of operations were the elevation grid array, the contour map, and the computer file of (XYZ) coordinates of the contours. The elevation grid array and the computer file of (XYZ) coordinates were produced to provide topographic data in a form necessary for calculation of the parameter values. The contour map was an intermediate product in producing the contour (XYZ) coordinates.

Data retrieval

31. The data on the base map and fathometer-survey plots were digitized using the same equipment described in paragraph 15. The information retrieved from the base map included the (XY) coordinates for the boundary of the side channel, the base map scale, the identification numbers and (XY) coordinates for the end points of each cross profile, the identification numbers and (XY) coordinates for each section of the thalweg profile where it intersected the cross profiles, and the (XYZ) coordinates of all elevation data, such as waterlines, high banks, and dikes. The information retrieved from each of the cross-profile plots included the elevation scale, the mean sea level elevation of the water surface, the identification number, the high-bank positions, the orientation of the profile relative to direction of water flow, and the (XY) coordinates of the profile in sufficient detail to describe the profile with straight lines between data points. The information retrieved from each thalweg profile included the elevation scale, the mean sea level elevation of the water surface, the (XY) coordinates of the profile in sufficient detail to describe the profile with straight lines between data points, and the location of each position on the profile where it intersected a cross profile.

32. Because of the differences in side-channel sizes and complexity of data, digitizing time varied from 2 to 6 hr/per side channel. Typically, a relatively unskilled equipment operator could digitize all the necessary data for one side channel in an average of about 4 hr. At the conclusion of the digitizing process, the digitized data were on magnetic tape and ready for use in the next operation. (XYZ) data preparation

33. The data for a side channel contained on a magnetic tape from the digitizer were used as input to a computer program that produced a second data file containing (XY) coordinates of the boundary (high banks and ends) of the side channel and (XYZ) coordinates of the elevations within the side channel.

34. The coordinates of the boundary and the (XYZ) coordinates of the elevation data derived from the base map were simply repeated in the output data file by that program. The program then "recognized" each profile by its identification number and superimposed it on the other base map data in the form of (XYZ) coordinates between the positions of the high-bank coordinates for that profile. Each profile was positioned properly across the side channel relative to the direction of water flow and scaled linearly so that the high-bank positions on the profile were made to coincide with the high-bank end positions for that profile on the base map. Finally, each digitized point along the profile was transformed into an (XYZ) coordinate on the base map.

35. The same operation was performed with the sections of the thalweg profile, except the sections were scaled linearly so that the end points of each section were made to coincide with the points of intersection between the thalweg and the cross profiles. Grid process

36. The set of (XY) points defining a side-channel boundary and the set of (XYZ) coordinates within that boundary were input to a computer program that calculated elevations on a grid across that side channel. "Calculated elevations on a grid" means that an elevation was calculated at each intersection of equally spaced horizontal and vertical lines (20-m spacing) superimposed over the side channel. The (XY) coordinates defining the side-channel boundary were used by the program to restrict its calculations to the region within the side-channel high banks and ends.

37. The elevation grid was calculated because data in that format make many analysis procedures straightforward, including calculations of values of some of the parameters of this study and the calculation of the contour maps. (The calculations of parameter values and the contour maps are discussed in Part III.) Also, the maximum amount of informational content can be compressed into the computer data file compared with the space required by other (than grid) formats, since only the uniform grid spacing and the elevations of the grid points are required to describe the geometry rather than a set of (XYZ) coordinates. The elevation at any (XY) position can be found by retrieving the elevation from the proper row and column position.

38. The procedure used for calculating the elevation at each grid position is one that has been successfully applied at the WES in many prior studies involving reconstruction of topographic surfaces from sparse data. The calculational procedure is as follows: A local coordinate system is first centered at the grid position for which an elevation is to be calculated, and the space about the grid position is divided into quadrants. The data point in each quadrant closest to the grid position (nearest neighbor) is selected out of the total available data set. The elevations and positions of those four data points are used to calculate the elevation at the grid position, using the inversedistance-square weighted elevations of the four data points. The algortihm used is

where

- Z = the elevation at the grid position
- i = the index over the four nearest neighbors
- Z, = the elevation of the ith nearest neighbor

R_i = the distance of the ith nearest neighbor from the grid position

If a nearest neighbor cannot be found in all quadrants, as frequently occurs when a grid position is close to the boundary of the site, as many nearest neighbors as are found are used. If a data point is located within the immediate vicinity of the grid position (within a radius less then one-tenth the space between grid positions), the elevation of that data point is used for the grid position elevation.

39. A topographic surface produced with the algorithm above has the qualities of being smoothly varying with no discontinuties and of providing an exact fit in the locale of all data points. Other advantages of the grid representation are that the interpolative procedures bring out surface details not immediately apparent and frequently overlooked when the data are handled by other procedures.

40. The informational content of a grid array representation of a topographic surface is a function of the grid spacing. Since the grid array representation is achieved by an interpolative procedure, it can contain no more information about the surface than the set of (XYZ) coordinates used as input. Based on past experience, a grid spacing of 20 m was chosen for the grid arrays of all side channels based on the estimated accuracy and distribution of the data, the resolution required for the calculation of parameter values, the desire to make any errors in the final results due to the grid spacing both systematic and in the same direction for results for all side channels, and computer time and memory space limitations.

Contour maps

⁴1. Computer-calculated and -plotted contour maps were produced for each of the 18 side channels. Reproductions of these maps are contained in Volume II. The contour maps were produced to yield a simple and rapid means of checking the contents of the grid array file for errors in the data input to the grid array calculation, and to provide the topographic data in a form needed for a subsequent operation. Some input data errors were discovered using this process and subsequently corrected.

^{42.} The computer procedure used for calculating the profiles was as follows: The topographic surface of a side channel was broken into a series of grid squares, where each grid square was defined by the elevations of the grid positions at its four corners. Each grid square was further subdivided by cutting it diagonally into two triangles, and then planes were uniquely fit to the two sets of triangularly arranged points in each grid square. A series of equally separated horizontal planes was constructed starting at mean sea level with a separation equal to the contour interval (5 ft). Whenever a "triangular" topographic surface plane intersected a horizontal plane, the coordinates of the line of intersection were calculated and computer plotted. Since the surface representation as a grid array was smoothly varying with no discontinuities, the total series of lines of intersection calculated and computer plotted formed closed contour lines on completion of the process over the entire grid array.

43. Since the contour lines were calculated as intersections of planes with planes, each contour line was a series of short, straightline segments as seen in the maps in Volume II. The contour maps were plotted with straight-line segments between calculated positions on the contour lines rather than with smoothed lines, because smoothing techniques ordinarily introduce errors into the contour map in the form of contour line dislocation.

44. A series of contour maps was plotted for selected side channels at several contour intervals to determine the smallest interval that was consistent with the data content of the grid array. It was originally intended to produce maps with 2-ft contour intervals; however, such maps showed distinctive effects of interpolating between larger intervals, i.e. there was a high occurrence of parallel contour lines over most substructures of a bottom surface. Therefore, 5-ft intervals were chosen, since maps plotted at that and larger intervals did not show the above-mentioned effect to any appreciable degree. Contour (XYZ) coordinates

45. Contour data calculated from the grid array were used to plot contour maps automatically. The maps (shown in Volume II) were then digitized manually with the same equipment previously described to provide the topographic data in a form suitable for calculating parameters \underline{d} and \underline{e} , paragraph 5. While manual digitizing was laborious and timeconsuming, the total project time and funds did not permit the development of a more versatile automated procedure.* The manual procedure for all maps was the same and consisted of digitizing each contour line as a closed loop, thereby providing the elevation and coordinates of each line in a computer file for use in calculating some of the parameters.

^{*} A new procedure for performing this step with increased accuracy and a drastic reduction in time and cost per side channel was developed shortly after project completion.

PART III: CALCULATIONS AND RESULTS

46. The parameters for which values were calculated are listed in paragraph 5, but are repeated below for convenience.

- a. Center-line length.
- b. Average width between high banks.
- c. Water volume as a function of water elevation.
- \underline{d} . Shoreline length as a function of water elevation.
- e. Water surface area as a function of water elevation.
- f. Shoreline development as a function of water elevation.
- <u>g</u>. Rate of change of water surface area with respect to water elevation (derivative of water surface area with respect to water elevation) as a function of water elevation.
- h. Ratio of water surface area to volume as a function of water elevation.
- i. Ratio of shorehine length to water surface area as a function of water elevation.
- j. Bottom surface area underwater as a function of water elevation and water depth.
- k. Water cross-sectional area as a function of water elevation at selected sampling locations (stations).

Water Elevation

47. "Water elevation" is defined as the elevation of the water within the side channel. It is important to recognize certain problems associated with specifying water elevation, the errors that can arise in the calculational results because of those problems, and the error correction procedures built into the procedures for evaluating the parameters.

48. Three conditions associated with water surface slope and impoundment affect the meaning and assignment of water elevation:

- a. There is a difference between the water elevation in the side channel and that in the main channel.
- <u>b</u>. There is a change in water elevation in the side channel relative to mean sea level due to the surface slope of moving water in the side channel.

c. Any impounded water within a side channel is typically not at the same elevation as that in the main channel or other parts of the side channel.

Each of these conditions is discussed below.

49. Since only the main channel water elevation was available at the time the fathometer profiles were measured and at the time of aerial photo coverage, and no data were available to specify the difference between main- and side-channel water elevations, the elevation of the latter was accepted as equal to the former when they were connected. In addition, the difference in water levels is not constant, but varies uniquely in each side channel with river stage, so that the difference at the time of photo coverage was not the same as that at the time of fathometer measurements, nor the same from one side channel to the next. This problem does not affect the shape of the parameters (how the values of the parameters, which are a function of water elevation, change with changes in water elevation), but rather introduces errors into the absolute values of those parameters. Since the difference in water elevation referred to is considered small (typically less than 1 ft for any side channel at any time), the introduced error is considered negligible compared with errors due to sparseness of data.

50. Because of the slope of the water surface in a side channel, the water elevation relative to a fixed datum varies along the side channel when water is flowing through it, but is almost constant when flow is stopped. The fathometer profiles were measured at a time of maximum flow--when the water surface slope within the side channel most closely approximated that within the main channel. The fathometer profiles contain the elevations affected by water surface slope at that time, since all elevations in those data are relative to the water surface. The values of the parameters are, therefore, already partially adjusted for that effect for the water elevations when water is flowing through the side channels. The end-to-end difference in water elevation is typically no more than 1.5 ft for any side channel, which is small compared with errors introduced in interpretation of the fathometer and aerial photo data. 51. All parameters in paragraph 46, except <u>a</u> and <u>b</u>, were calculated as a function of water elevation at a single location, recognizing the effects of water surface slope as noted above. That location was the approximate lengthwise center of the side channel. The water elevation in the main channel opposite that location was found (rounded off to the nearest foot) from interpolating between the mean sea level elevations available on the aerial photography and the elevation assigned to water in the side channel connected with the main channel. The results presented in this report as a function of water elevation are relative to that center point. The single exception is parameter <u>k</u>, for which values were referenced to the water elevation at the location of the cross-sectional calculation (see paragraphs 76 and 77).

52. As the water level drops in a side channel, various structures, particularly sandbars at the ends of the side channels and dikes within or at the side-channel ends, restrict water flow. As the water level continues to drop, pools are formed with different water elevations. The water level within a pool does not normally remain constant, however. The local climatic conditions, the hydraulic head, the composition of the dike or other control structures, and the composition of the base material affect the percolation, evaporation, and seepage rates in lowering the pool level. Local rainfall, runoff, and fluctuations of the main channel above the elevations of control structures work to raise the pool level. Finally, a time comes when the elevation of the main river rises above the elevation of one of the control structures, and the pool is again connected to the main channel. The locations and elevations of the major control structures are known, but there is no general theoretical relation developed that takes all environmental controlling conditions into account, nor are empirical data generally available to describe the elevations of the impounded water relative to the elevation of the main river channel.

53. If that information were available, each of the parameters evaluated in this study would be double-valued over the water elevation range, from that elevation at which water was impounded anywhere in the side channel down to the minimum water elevation in that side channel. Lacking those data, the parameters were calculated for the entire side channel, ignoring the impoundment effects. The values of the parameters calculated in this study for water elevations lower than an "impoundment elevation" for a side channel are between the double values. There is no assurance that a single-valued function is at the mean of the doublevalued function for any of the parameters.

54. The state-of-the-art incapability to provide a means of calculating the double- rather than single-valued functions over the range of impoundment is not particularly distressing, considering the purpose of this study. The purpose is to provide geometric characteristics (as one part of the physical characteristics) for correlation with wildlife population structures. The accuracy of such a correlation depends on the appropriateness of the parameters chosen to quantitatively describe the characteristics and the accuracy with which the values of those parameters are calculated. It is well known mathematically that the accuracy of the results of a correlation is a function of the accuracy of the parameters used in the correlation, and that the correlation accuracy cannot be greater than the worst accuracy of any of the set of parameters used in the correlation. The accuracy of the parameters calculated in this study is much greater than that of other than geometric parameters or of the biological data and is, therefore, more than sufficient for the intended purpose. The reason for the difference in accuracy is primarily one of sample size. Expressed simply, the geometric parameter values are typically based on several thousand "samples" per side channel, while such sample sizes are not normally obtainable, for example, for animal populations.

Pool Parameters

55. In addition to calculation of the parameters over the entire range of water elevations of all side channels, side channels Osborne, Fort Chartres, and Liberty were selected for more detailed calculations. The levels and locations of the water-control structures were identified, and all parameters were evaluated for each separate "pool" formed by the
control structures as the water elevation decreased. Pool 1 of all three side channels consisted of the entire side channel for the range of water elevations between the maximum (see paragraph 56) and the elevation at which any impoundment caused by a control structure first took place, forming pools 2 and 3. When a second control structure was located in pools 1 or 2, the parameters were calculated between the upper water elevation level at which the pool was formed and the lower elevation at which it separated into pools 4 and 5. When a pool did not contain any additional control structures as the water elevation decreased, the parameters were calculated between the upper water elevation level at which the pool was formed and the water elevation at which negligible water remained in the pool. The three selected side channels contained 5, 3, and 5 pools, respectively. The locations of the pools within the side channels are shown in fig. 6. Fig. 6 can be understood by viewing it in conjunction with the contour maps for the abovementioned side channels in Volume II. The dikes, which were the control structures for those side channels, are also shown on the contour maps in Volume II. A review of fig. 2 would also be helpful, since it shows Osborne at low water, revealing the dikes that formed the pools. Range of calculations

56. Calculations were performed at 2-ft water elevation intervals for those parameters that were functions of water elevation, starting at the water elevation at which the side channel was dry or nearly dry and continuing up to the elevation at which 50 percent of the high banks was overtopped.

57. Parameters <u>c</u>, <u>j</u>, and <u>k</u> (paragraph 46) were calculated directly from the grid array data at each 2-ft interval. Parameters <u>d</u> and <u>e</u> were calculated using the digitized contour data, which were at 5-ft intervals. The 2-ft-interval data for the parameters were interpolated from the 5-ft data. The total calculational procedure for all parameters is described in paragraphs 61-77.

58. The upper and lower water-level extremes used in the calculations for a specific side channel were chosen by inspection of the base map and the contour map, respectively. Since the side-channel high banks

27

SCALE IN FEET

b. Three pools of side channel Fort ChartresFig. 6. Locations of pools in selected side channels (sheet 1 of 2)

were typically smoothly varying, it was possible to choose the upper water-level extreme easily and unambiguously. Selection of the lower extreme was more subjective. The general rule was that the extreme be picked at that elevation at which separated standing pools of no significant size (compared with the total side-channel extent) remained.

59. When calculations were performed for those levels at which a portion of the high bank was overtopped, a vertical wall was assumed at the locations of the overflow, so that the parameters could be evaluated up to the elevation of 50 percent overtop.

Water-elevation reference

60. The water levels at which the parameter values were calculated were the mean sea levels of the water at the center of each side channel (see paragraph 51). For ease in interpretation, all water elevations reported in the results were also converted to the St. Louis (Market Street) equivalent gage.*

Calculational Procedures

61. The procedures for computer calculation of each parameter listed in paragraph 46 were identical for all side channels and are described below.

Parameter a: Center-line length

62. The center-line length was calculated from the base map. A center line midway between high banks of the side channel was placed on the photo-interpreted representation of the side channel on the base map.

^{*} The water elevation at any position along the Mississippi River is normally expressed relative to the scale of the gage closest to that position, or relative to mean sea level. It is difficult for a person to interpret the significance of a gage reading unless he has experience with that gage. A somewhat artificial gage system, the St. Louis (Market Street) equivalent gage, was devised and is used by the St. Louis District to help District personnel better relate to river stage readings at locations where they do not have experience. Using that system, the water elevation at any location on the river between St. Louis, Missouri, and Cairo, Illinois, is converted to the equivalent elevation that would be read on the St. Louis Market Street gage if the river was in a steady-state condition.

Length was measured by digitizing the center line as a series of very short, straight segments, and calculating the total center-line length as the sum of the segment lengths with the following equation:

$$L = \sum_{i=1}^{N} \sqrt{(x_{i+1} - x_{i})^{2} + (y_{i+1} - y_{i})^{2}}$$

where

L = the center-line length

N = the total number of segments

(N+1) = the number of digitized points defining the center line

The straight-line segments were made small enough so that the total digitized center line was essentially continuous.

63. When a side channel had branches (see contour map II-5 in Volume II) so that more than one center line could be defined, the length of the longest center line was calculated.

64. The "ends" of a side channel on the base map were not necessarily at the juncture of that side channel with the main channel, but were generally fixed at the first structure that controlled water flow within the side channel from that juncture.

Parameter b: Average width between high banks

65. The average width between high banks was calculated from the base map. On the average, 10 lines were constructed perpendicular to the center line, and the distances between high banks on those lines were calculated and averaged with the following equation:

$$\bar{w} = \frac{\sum_{i=1}^{N} \sqrt{(x_{2i} - x_{1i})^{2} + (y_{2i} - y_{1i})^{2}}}{N}$$

31

where

 \overline{W} = the average side-channel width

N = the total number of lines

 $(X_{2i}, Y_{2i}) =$ the coordinates of one high-bank position on the ith line $(X_{1i}, Y_{1i}) =$ the coordinates of the other high-bank position on the ith line

Parameter c: Water volume as a function of water elevation

66. The water volume as a function of water elevation was calculated using the elevation grid array as a data source. The volume for a specific water elevation was calculated by summing the volumes of water over all grid squares, where a grid square was that section of the sidechannel bottom surface determined by four adjacent grid elevations. The volume of water over any grid square was calculated in the following manner: The grid square was first cut into two triangles with a vertical plane passing through a grid square diagonally. The vertical plane also cut the rectangular column of water above that grid square into two triangular columns. The volumes of both triangular columns bounded by the plane of the water surface, the plane formed by the triangle on the bottom, and vertical planes passing through the three sets of vertices of the triangle were calculated and summed to yield the volume of water over that grid square. A mathematical expression for the entire operation is as follows:

$$\mathbf{V}_{\mathbf{k}} = \frac{1}{2} \sum_{R=1}^{2} \sum_{\mathbf{j}=1}^{M} \sum_{\mathbf{i}=1}^{N} \mathbf{D}^{2} \left(\mathbf{E}_{\mathbf{k}} - \overline{\mathbf{Z}}_{\mathbf{i},\mathbf{j}}^{R} \right), \text{ for } \mathbf{E}_{\mathbf{k}} > \overline{\mathbf{Z}}_{\mathbf{i},\mathbf{j}}^{R}$$

where

- V_k = the volume of water in the side channel when water elevation is at the kth level
 - M = the number of grid squares in the Y direction
 - N = the number of grid squares in the X direction
 - D = the horizontal distance between elevation grid points

$$\begin{split} & \mathbb{E}_{k} = \text{the elevation of water at the } k^{\text{th}} \text{ level} \\ & \overline{Z}_{ij}^{\text{R}} = \text{the average of the three grid elevations in the } \mathbb{R}^{\text{th}} \text{ triangle} \\ & \text{ of the } (i,j)^{\text{th}} \text{ grid square} = \sum_{p=1}^{3} \mathbb{Z}_{ijp}^{\text{R}}/3 \\ & \mathbb{Z}_{ijp}^{\text{R}} = \text{elevation of the } p^{\text{th}} \text{ grid point in the } \mathbb{R}^{\text{th}} \text{ triangle of} \\ & \text{ the } (i,j)^{\text{th}} \text{ grid square} \end{split}$$

and where the summation is completed only for those triangles of bottom surface within the grid squares where the water elevation is above the bottom surface $(E_k > \overline{Z}_{i,j}^R)$. Parameter d: Shoreline length as a function of water elevation

67. The shoreline length as a function of water elevation was calculated from the digitized contour-line data. The shoreline length at a specific water elevation was calculated by summing the lengths of all contour lines (as closed loops) at that elevation. Since the contour lines were at 5-ft intervals, a table was formed of shoreline length at 5-ft water-elevation intervals. The mathematical procedure used was as follows:

$$L_{k} = \sum_{j=1}^{M} \sum_{i=1}^{N} \sqrt{(x_{i+1,j}^{k} - x_{ij}^{k})^{2} + (y_{i+1,j}^{k} - y_{ij}^{k})}, \begin{cases} x_{N+1,j}^{k} = x_{1j}^{k} \\ y_{N+1,j}^{k} = x_{1j}^{k} \end{cases}$$

where

 $\begin{array}{l} L_k = \mbox{the shoreline length when water is at the k^{th} level} \\ M = \mbox{the number of contour lines with water at the k^{th} level} \\ N = \mbox{the number of digitized data points on the j^{th} contour line with an elevation at the k^{th} level} \\ \left(x_{ij}^k, x_{ij}^k \right) = \mbox{the coordinates of the i^{th} point on the j^{th} contour line that has an elevation at the k^{th} level} \end{array}$

and where the contour lines were "closed" in the calculation by connecting the coordinates of the first point in the string of numbers with the coordinates of the last point by specifying the condition

$$\left(\mathbf{x}_{N+1,j}^{k},\mathbf{y}_{N+1,j}^{k}\right) = \left(\mathbf{x}_{1j}^{k},\mathbf{y}_{1j}^{k}\right)$$

Parameter e: Water surface area as a function of water elevation

68. The water surface area as a function of water elevation was calculated from the digitized contour-line data. The surface area at any water elevation was calculated by summing the areas inclosed by all contour lines with that elevation which were covered with water. The area inclosed by a contour line was calculated using the trapezoidal rule on the set of coordinates defining that contour line as a closed loop. The mathematical procedure was as follows:

$$A_{k} = \frac{1}{2} \sum_{j=1}^{M} \sum_{i=1}^{N} (x_{i+1,j}^{k} - x_{ij}^{k}) (Y_{i+1,j}^{k} + Y_{ij}^{k}) , \begin{cases} x_{N+1,j}^{k} = x_{1j}^{k} \\ y_{N+1,j}^{k} = Y_{1j}^{k} \end{cases}$$

where

 A_k = the water surface area when water is at the kth level M = the number of contour lines at the kth level

N = the number of digitized data points on the jth contour line with an elevation at the kth level

 $\begin{pmatrix} x_{ij}^k, x_{ij}^k \end{pmatrix}$ = the coordinates of the *i*th point on the *j*th contour line that has an elevation at the kth level

and where the condition $(X_{N+1,j}^k, Y_{N+1,j}^k) = (X_{1j}^k, Y_{1j}^k)$ satisfies the condition of contour-line closure.

Parameter f: Shoreline development as a function of water elevation

69. Shoreline development is a parameter commonly used as a measure of a water body's circularity. It can be easily shown that the minimum extremum circumference of a two-dimensional geometric figure inclosing a region must have a circular shape. The value of shoreline development of a circular water body is unity, whereas that of all water

bodies with other geometric configurations is greater than unity. Thus, the departure of a water body's shoreline development value from unity is a measure of its "differentness" from a circle. The parameter values were calculated using the following equation:

$$D_{k} = \frac{L_{k}}{2(\pi A_{k})^{1/2}}$$

where

 D_k = the shoreline development when water is at the kth level L_k = the shoreline length when water is at the kth level A_k = the water surface area when water is at the kth level

Parameter g: Rate of change of water surface area with respect to water elevation

70. The rate of change (derivative) of water surface area with respect to water elevation was calculated using the previously calculated surface area data. A smooth curve, a third-order polynomial,* was analytically fit to the surface area as a function of water elevation data in the immediate locale of each water elevation for which a derivative would be calculated. First derivatives were then calculated at the 2-ft-interval water elevations from the analytic expressions for the data (one analytic expression per data point).

Parameter h: Ratio of water surface area to volume as a function of water elevation

71. The ratio of water surface area to volume as a function of water elevation was calculated using the previously calculated shorelinelength and water-surface-area data. Ratios were taken at each water elevation as expressed by the following relation:

^{*} A second-order polynomial was used for data points close to the lowwater and high-water ends of the data.

where

 R_{AV}^{k} = the ratio of water surface area to water volume when water is at the kth level

 $R_{AV}^{k} = \frac{A^{k}}{v^{k}}$

 A^{k} = the water surface area when the water is at the kth level v^{k} = the water volume when water is at the kth level

Parameter i: Ratio of shoreline length to water surface area as a function of water elevation

72. The ratio of shoreline length to water surface area as a function of water elevation was calculated using the previously calculated shoreline-length and water-surface-area data. Ratios were taken at each water elevation as expressed by the following equation:

$$R_{LA}^{k} = \frac{L^{k}}{A^{k}}$$

F

where

 R_{LA}^{k} = the ratio of water surface area to water volume when the water is at the kth level

 L^{k} = the shoreline length when the water is at the kth level A^{k} = the water surface area when the water is at the kth level

Parameter j: Bottom surface area underwater as a function of water elevation and water depth

73. The relation between water depth and wildlife populations is not completely understood. There is information (mostly qualitative), however, regarding the "typical" water depths acceptable to different waterfowl and fish species, and acceptable to fish species during the major phases of their life cycles. Using that information, seven depth class ranges were defined as follows.

a. Surface to 2 ft.

b. From 2 to 4 ft.

- c. From 4 to 6 ft.
- d. From 6 to 10 ft.
- e. From 10 to 15 ft.
- f. From 15 to 20 ft.
- g. In excess of 20 ft.

An attempt was made to class the depths such that conditions that influence wildlife population densities (for this parameter) are uniform in each depth class range, but differ from one class to another.

74. The data for the bottom surface area under water as a function of water elevation and water depth were calculated from the grid array data. The parameter results were calculated for a specific water elevation by calculating the area of the bottom surface within each range class for that water elevation. The computer calculation procedure used for each water elevation was follows. A series of six horizontal planes were constructed at 2, 4, 6, 10, 15, and 20 ft below the water surface. Each grid square within the side channel was broken into two triangles by placing a diagonal on the square, thus forming two triangular planes. Each triangle was then further broken into 10 parallelograms and each parallelogram was assigned an average elevation. The average elevation of each parallelogram was then examined to determine whether it was above water level, and therefore ignored, or below water level. If it was below water level, it was examined to determine which depth-class range it belonged to, and the area of that parallelogram was added to the accumulated total area for that class range. The operation is expressed mathematically by the following equation:

$$B_{j}^{k} = \frac{1}{2} \sum_{i=1}^{N} d^{2}A_{ij}$$

where

 B_j^k = the bottom area in range class j when the water elevation is at the kth level

N = the number of triangles in the grid array

d = the grid spacing

 A_{ij} = the fraction of the ith triangle in the jth class range

75. The volume of information produced by performing this calculation is large, and the parameter value trends are not immediately apparent when viewing a table of values. To partially remedy that situation, the data were also expressed in a normalized form in which the data for each water elevation were normalized to the total bottom surface area underwater. The mathematical procudure followed is shown below, and both the absolute and normalized forms of the data are presented in the results.

where

 P_j^k = the percentage of the total bottom area underwater in the class range j when the water is at the kth level

Parameter k: Water cross-sectional area as a function of water elevation at selected sampling locations

76. The water cross-sectional area as a function of water elevation was calculated from the elevation grid array data. Calculations were performed only at specific locations (stations). The river miles of the locations are listed in table 1 and the stations are shown in the contour maps in Volume II.

77. The calculational procedure was the same for all stations. A vertical plane was placed perpendicular to the side-channel center line at the station, and the profile formed by the intersection of that plane and the side-channel bottom was calculated. Horizontal planes were then placed at 2-ft intervals through that profile and the area bounded by each plane and the bottom of the profile was calculated. The trapezoidal

rule was used for the area calculation. The mathematical equation is as follows:

$$C_{k} = \frac{1}{2} \sum_{i=N}^{M} (X_{i+1} - X_{i})(2E_{k} - Z_{i+1} - Z_{i}), \begin{cases} X_{M+1} - X_{N} \\ Z_{M+1} = Z_{N} \\ and \\ Z_{i} \leq E_{k} \\ Z_{i+1} \leq E_{k} \end{cases}$$

where

- C_k = the cross-sectional area of the water in the side channel when the water is at the kth level
- M = the first point in the string of coordinates defining the profile that is above water as the profile advances upward toward the high bank from the side-channel bottom
- N = the last point in the string of coordinates defining the profile that is above water as the profile advances down toward the water from the high bank

(X₁,Z₁) = the coordinates of profile in a plane that cuts the side channel perpendicular to the center line

Closure of the curve during the areal calculation was satisfied by the condition $(X_{M+1}, Z_{M+1}) = (X_N, Z_N)$. The calculation of the water cross section over only the water-covered region of the profile was satisfied by applying the conditions $Z_i \leq E_k$ or $Z_{i+1} \leq E_k$ during calculation.

Results

78. The results of all calculations are presented in tables 2-19 and plates 1-18. Each table contains the total results for a side channel. Each plate is a graphic presentation of a portion of the tabular data for a side channel. The tabular data not represented in plates 1-18 are the length along thalweg, the average width between high banks, and the side-channel bottom-surface area underwater as a function of water elevation and water depth. The former two parameters are onedimensional and cannot be represented graphically. The lattermost parameter is three-dimensional and could have been represented graphically, but was not, since no advantage could be gained because of the difficulty in interpreting such a graphic.

79. The tabular and graphic results are arranged by side channels as shown below:

Side Channel	No.	No.
Jefferson Barracks	2	1
Calico	3	2
Osborne Osborne, Pool 1 Osborne, Pool 2 Osborne, Pool 3 Osborne, Pool 4 Osborne, Pool 5	4A 4B 4C 4D 4E 4F	3A 3B 3C 3D 3D 3E
Harlow	5	4
Fort Chartres Fort Chartres, Pool 1 Fort Chartres, Pool 2 Fort Chartres, Pool 3	6A 6B 6C 6D	5A 5B 5B 5C
Moro	7	6
Kaskaskia	8	7
Crains	9	8
Liberty Liberty, Pool 1 Liberty, Pool 2 Liberty, Pool 3 Liberty, Pool 4 Liberty, Pool 5	10A 10B 10C 10D 10E 10F	9A 9B 9B 9C 9C 9D
Jones	11	10
Picayune	12	11
Cape Bend	13	12
Sante Fe	14	13
Billings	15	14
Buffalo	16	15
Browns	17	16
Thompson	18	17
Sister	19	18

80. Values for all parameters are given in the tables for both the

total side channel and also for the pools (except parameter \underline{k}) of three selected (Osborne, Fort Chartres, and Liberty) side channels. The parameters that are functions of water elevation are tabulated both according to mean sea level and according to St. Louis gage equivalent water elevations at the side channel. Each table is formatted in an identical manner. Results for parameters <u>a</u> and <u>b</u> (center-line length and average width between high banks) appear at the top of the table, those for parameters <u>c</u> through <u>i</u> (volume, shoreline length, water surface area, shoreline development, rate of change of water surface area with respect to water elevation, ratio of water surface area to volume, and ratio of shoreline length to water surface area underwater as a function of water elevation and water depth) in the lower box, and those for parameter <u>k</u> (water cross-sectional area as a function of water elevation at selected sampling locations) in the boxes to the right in each table.

81. The graphic representations of the data, as seen in plates 1-18, were produced to provide data for those parameters in a form immediately useful in the first step required to correlate geometric characteristics with wildlife populations, and to present them in a particularly simple and readily interpretable form. The intention was to provide the data so that trends in parameters as a function of water elevation could be easily seen, and the trends for one side channel could be compared with those of any other. Since each side channel had a different size and shape, the absolute values of the parameters were different for each. To provide a uniform means of displaying the selected data that is consistent with the purpose, all selected data are displayed with a normalized format. Normalization of data for each parameter of each side channel was performed relative to the maximum value for that parameter for that side channel. The mathematical procedure was as follows:

$$M_{k} = 100 \frac{N_{k}}{N_{k}(MAX)}$$

where

 M_k = any of the parameters expressed in a normalized form for the water elevation at the kth level

 N_k = the value of that parameter when the water level is at the $k^{\mbox{th}}$ level

 $N_{k(MAX)}$ = the maximum value of N_{k}

The vertical scales in plates 1-18 are, therefore, expressed as percent of maximum.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

82. A procedure for quantifying geometric characteristics of water bodies was successfully developed and used in the study of 18 Middle Mississippi River side channels. Values for those parameters selected to describe the geometric characteristics quantitatively were calculated using assorted available data. Since the statistical sample size used to calculate the value of any of the parameters ranged from 3,000 to 10,000, the calculated values of the parameters can be considered more accurate than the values of parameters calculated for chemical or biological characteristics (the sample sizes available for those characteristics are simply much smaller). The primary purpose of this study was to provide data for comparing the geometric, chemical, and biological elements of a side channel. The accuracy of the data calculated in this study is sufficient for that purpose.

Recommendations

83. No further calculations, either of the same parameters in additional side channels or more parameters for the 18 side channels, should be undertaken until the results of this study are used for the intended purpose. The correlation of the calculated parameter data with wildlife populations should be performed and studied to determine which of the parameters are best indicators of, for example, total fish populations and densities. The first and most basic step in that correlation should be the grouping of side channels according to similarity of parameter function shapes using plates 1-18. Since more advanced classical correlation coefficient calculations are neither straightforward nor easily understood for two- and three-dimensional parameters, attempts should be made to show correlations on gross features (e.g. total fish population density irrespective of species against shoreline development) to aid in understanding the data and possibly to uncover simple, strong relations, if there are any.

84. The data can also be rearranged to yield new insights. The monthly river-stage records in the immediate locale of each side channel can be used in conjunction with the elevations of controlling structures to produce estimates for the parameters as a function of month rather than water level. Parameter values at approximate fish spawning, juvenile, and mature stages, and duck migration times could be used to classify the side channels according to similarity.

85. Portions of the data could be used for other purposes. New fathometer and aerial photo data could be used to perform calculations for selected side channels to study the change in shape, particularly changes possibly due to the 1972-73 flood. Contour maps for different times could synthesize the changes for ease of interpretation. Even significant changes in a side-channel contour map would not necessarily imply significant changes in the parameter values.

CTI	1. 7	-	3
10	nI	6	- 1
10	111		-

		River Mile	River Mi	le Station I	Locations
Name	No.	Extremes*	1	_2	_3
Jefferson Barracks	1	168.8-166.5L	166.6	167.5	168.6
Calico	2	148.3-147.4L	147.5	147.9	148.1
Osborne	3	146.3-144.3L	144.6	145.3	145.8
Harlow	4	143.0-141.7R	142.0	142.3	142.7
Salt Lake	5	141.5-136.8L	137.8	138.8	139.9
Fort Chartres	6	134.3-132.3L	132.8	133.1	134.1
Establishment	7	132.5-130.1R	130.9	131.5	132.3
Moro	8	122.6-120.1L	120.0	121.7	122.3
Kaskaskia	9	118.0-115.8R	116.5	117.2	117.4
Crains	10	105.6-104.4R	104.5	105.1	105.4
Liberty	11	102.8-99.9L	100.4	101.3	102.0
Jones	12	98.3-95.0R	95.6	96.4	98.2
Grand Tower	13	78.5-77.8R			
Crawford	14	73.7-71.6L	72.2	72.6	73.6
Schenimann	15	62.5-57.1R	57.7	59.1	61.7
Picayune	16	60.6-54.8L	54.9	58.0	60.1
Cape Bend	17	51.4-47.6L	48.0	48.8	50.7
Santa Fe	18	40.4-35.4L	35.6		37.3
Billings	19	34.0-32.7R	33.0	33.5	33.9
Buffalo	20	26.8-24.7R	25.0	25.5	26.0
Browns	21	24.7-21.7L	22.1	22.8	24.2
Thompson	22	18.7-15.3R	15.9	17.7	18.6
Sister	23	14.4-11.9R	12.5	13.0	14.0
Boston	24	10.4-7.7L	8.3	8.8	10.1
Angelo	25	5.0-1.2L	2.6	4.0	4.8

Side	Channels	Included	in	Study
	and the second s	and the second s		the second se

* R and L indicate that the side channel is on the right or left of the river, respectively, when facing downstream.

No. of Concession, Name

Results of Calculations for

Side Channel Jefferson Barracks

SIDE CMANNEL LENGTH . 2.45 MILES = 3.95 KILOMETERS

13
6.2
39
•
TERS
LONE
X
0.1
•
HILES
0,08
HIDTH
CHANNEL
AVERAGE

		A/V L/A V=WATER VOL	559 36 La SHORELIZE LE	608 41 A MAILM JUNTAL	685 47 DAS = DERIVATIVE OF 1	792 53 REAFERI IUMIY	948 61 0 SHORELINE DEVE	1281 70 A'V = RATIO OF WATER	1495 68 MALEN VULUME, L	2150 120 L/A = RATIO OF SHOREL	3528 150 SUNFACE AKEA, 1	3551 155	4174 262
. BC	and a second sec	٩	4.2	4.5	4.8	5.2	5.5	5.9	6.9	7.8	7.1	4.9	2.7
PARANETE		DAS	•.•	5.3	5.4	4.1	4.8	5.5	6.2	6.9	9.9	5.2	3.9
SIDE CHANNEL		•	108.4	96.7	85.1	74.7	65.5	56.3	43.6	30.9	19.8	10.3	0.0
		د	6.1	6.1	6.2	6.2	6.2	6.2	0.0	5.8	4.6	2.5	•.0
		>	1023	839	656	498	365	232	154	76	30	15	1
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	23.5	21.0	19.0	17.5	15.5	13.5	11.5	0.6	7.0	4.5	2.5
RIVER	MEAN	LEVEL	398	396	394	392	390	388	386	384	382	180	378

-	STAGE, FT.					DE	HLO	CLAS	SR	ANGE	5				
1	GAGE READING	0-2 6	-	>2-4	11	>+-6	11	>6-10	5	>10-15	t	>15-20	t s	>20 F	-
	EQUIVALENT	ACRES	*	ACRES	×	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	×
	23.5	9.6	0	12.3	12	9.2	•	17.9	17	29.6	59	23.2	53	1.3	-1
	21.0	0.0	10	11.0	12	9.1	10	20.0	23	27.0	29	14.5	16	0.8	-1
	19.0		11	6.7	12	0.6	11	23.7	50	24.5	30	5.7	2	0.3	0
	17.5	8.8	12	9.6	13	10.7	51	22.9	32	18.8	26	1.0		0.0	0
	15.5	0.6		10.6	17	14.2	23	18.5	50	10.1	16	0.5	-1	0.0	0
	13.5	5.9	17	11.7	22	17.8	33	14.1	26	1.3	~	1.0	0	0.0	0
	11.5	11.8	28	4.6	22	11.5	27	8.7	21	0.8	~	0.0	•	0.0	0
	0.6	14.4	47	7.2	24	5.3	18	3.3	11	0.3	-	0.0	0	0.0	0
	7.0	12.7	+9		25	1.8	•	•.0	~	0.0	0	0.0	0	0.0	0
	4.5	0.0	59	2.6	•2	1.0	•	0.2	2	0.0	0	0.0	0	0.0	•
	5.2	1.0	+1	0.2	17	0.1	•	0.0	-	0.0	0	0.0	0	0.0	0

IVER S		
	1 AGE, F1.	AREA
N V II	GAGE READING ST. LOUIS EQUIVALENT	SQUARE FEET
	24.0	2113
•	22.0	4324
4	19.5	3533
CV.	17.5	2746
0	16.0	1996
80	14.0	1381
•	12.0	714
4	5.6	351
2	2.5	120
0	2.0	80

	STATION 2	
AN AN	GAGE READING ST. LOUIS EQUIVALENT	SQUARE FEET
0	23.5	6661
0 4	21.0	1197
~	17.5	867
0 4	13.5	343
	11.5	148
4	0.6	27
~	7.0	8

EAN SEA EVEL	GAGE READING ST. LOUIS EQUIVALENT	SQUARE
80	23.0	2676
00	20.5	2152
94	18.5	1669
20	17.0	1250
06	15.0	892
88	13.0	596
86	11.0	359
84	8.5	181
82	6.5	63
80	4.0	9
7.8	2.2	0

CALCULATIONS OF PROFILE CROSS SECTION

Results of Calculations for

Side Channel Calico

SIDE CHANNEL LENGTH = 0.90 MILES = 1.45 KILOMETERS

		DEFINITIONS	- WATER VOLUME ACRESET	CUDDETINE FRATU ALLES	- SHURELINE LENGIN, MILES	I = MAILEN SURFAUL ANEA, AUNES	. = DERIVATIVE OF WATER SURFACE AREA WITH	HESPECT TO RIVEH STAGE, ACHES/FT	= SHORELINE DEVELOPMENT, D = L/[2(#A) ¹²]	= RATIO OF WATER SURFACE AREA TO	WATER VOLUME, L'MILE	= RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, 1/MILE					
		L/A	43	47	52	59	67 DAS	78	93 59	114 AV	136	158 L/A	201	194	179	164	171	
		A/V	475	506	551	009	650	734	794	901	1005	1038	1111	1022	866	732	728	
200	543	٩	2.9	3.1	3.2	3.4	3.6	3.8	4.3	4.7	4.9	5.1	5.2	4.0	2.9	2.2	2.1	
DADAUCTO	L LARAMEIC	DAS	1.9	1.9	1.9	1.9	1.8	1.7	1.6	1.5	1.4	1.2	1.0	0.8	0.6	4.0	0.3	
CIDE CUANNE	SIDE UTANNE	a	37.5	33.8	30.1	26.5	22.9	19.4	16.3	13.2	10.4	7.9	5.3	3.8	2.4	1.5	1.2	
		L	2.5	2.5	2.5	2.4	2.4	2.4	2.4	2.4	2.2	1.9	1.7	1.2	0.7	4.0	0.3	
		v	417	353	289	233	186	139	109	78	55	40	52	20	14	11	6	
t STAGE, FT.	GAGE READING	EQUIVALENT	25.0	55.5	50.0	18.0	16.0	14.0	11.5	6.5	7.5	5.5	3.0	0.5	-1.5	-3.5	<-3.5	
RIVER	NEAN	LEVEL	388	386	304	382	380	3/8	376	3/4	312	370	368	366	364	362	360	

						DEP	-	CLAS	*	ANGE	•				
EAN G	AGE READING	0-2 F	+	>2-4	11	>4-6	11	>6-10	11	>10-15	11	>15-20	11	>20	1
NET	EQUIVALENT	ACRES	*	ACRES	*	ACRES	×	ACRES	×	ACRES	*	ACRES	*	ACRES	*
88	25.0	3.7	10	3.2	6	4.5	•	7.0	19	7.6	21	5.9	16	5.7	15
99	22.5	3.5	11	3.6	11	3.1	6	6.7	20	6.9	21	5.2	16	4.0	12
94	20.0	3.3	11	4.1	14	8.8	•	4.0	22	6.3	21	4.4	15	2.4	8
82	18.0	3.1	12	4.1	16	2.7	10	5.9	23	5.6	21	3.4	13	1.4	•
0.0	16.0	3.0	13	3.6	16	2.7	12	5.2	23	4.8	21	2.0	•	1.2	5
8	14.0	5.5	15	3.2	17	2.8	15	4.6	24	4.1	21	1.0		6.0	5
16	11.5	2.8	11	5.9	18	2.5	15	4.0	25	2.7	17	0.5	•	0.8	5
14	5.5	2.7	20	2.5	10	2.1	16	·· · ·	26	1.4	10		•	0.7	5
12	2.5	2.5	24	2.2	21	1.7	16	2.6	25	9.0	•	0.3	•	0.0	9
01	5.0	2.2	27	2.1	56	1.1	13	1.6	19	•.0	5	0.2	-	0.5	0
98	3.0	1.8	33	1.9	*5	0.5	•0	0.5	•	0.3	5	0.2		• .0	-
99	5.0	1.2	31	2.3	31	0.3	•	•.0	10	0.3	•	0.2	•	0.3	~
	5.1.	0.6	27	0.6	52	0.2	•	0.3	11	0.2	10	0.2	10	0.2	80
29	5· P-	0.3	20	0.2	16	1.0	10	0.2	14	0.2	16	0.2	15	0.1	e
00	5.1.2	0.2	18	0.2	1.	1.0	10	0.2	16	0.2	20	0.2	16	0.1	•
89		0.1	14	0.1	11	0.1	10	0.2	21	0.2	27	1.0	10	0.0	-

	AREA	COLLADE	FEET		1688	7671	2000	5237	4731	4250	3793	3361	02520	2211	1878	1567	1212	526	222	358	185	35			SQUARE FEET	1	1754	1000	217	439	213	64			SQUARE	FEET	658	069	530	377	533	211	000
STATION 1	STAGE, FT.	GAGE READING	EQUIVALENT		55.0	63.0	4 4	0.4.	14.0	12.0	10.01	5.2		5.0	5.1-	-3.5	<-3.5 					z	STATION 2	GAGE READING	ST. LOUIS EQUIVALENT		25.0	20.02	18.0	16.0	14.0	11.5	STATION 3	GAGE READING	ST. LOUIS	EQUIVALENT	25.0	22.5	20.0	18.0	10.01		
	RIVER	WEAN	LEVEL	1	368	300		280	378	376	3/4	3/2		366	364	362	300	355	354	352	350	348		MEAN	SEA		885		380	380	3/8	3/6		WEAN	SEA	LEVEL	388	386	204	385	040		174

CALCULATED PARAMETERS

CALCULATIONS OF PROFILE CROSS SECTION

Results of Calculations for Side Channel Osborne

A. Side Channel Osborne

CALCULATIONS OF PROFILE CROSS SECTION SQUIARE FEET FEET FEET 11692 9344 9344 9344 9344 9344 9344 9367 1659 1659 1659 1659 1659 352 363 363 AREA STA 10N 1 GAGE READING ST. LOUIS EQUIVALENT STATION 2 GAGE READING ST. LOUIS EQUIVALENT STATION GAGE READING ST. LOUIS EQUIVALENT RIVER STAGE, FT. 100410000004400 100410000004400 V. MATER VOLUNEL ACCENT: L. SPORTER LENCY, MILLS A. WITER SUBFACE AREA. ACRES A. SERVER TO WARE STACE, AREA. ATT DAS. OREVING CAN BE STACE, AREA. ATT DAY. BATTOR WATER STACE, AREA. TO A.V. BATTOR STACE, AREA. TO A.V. BATTOR STACE, AREA. TO LA. MILLS OCTORESTICAL REAL TO LA. SATTOR STACE, AREA. TO MILLS N4000 49 NNNN99 45 55 4944000 >20 FT ACRES DEFINITIONS >15-20 FT ACRES X >10-15 FT * 11 ANGES ACRES AVERAGE CHANNEL WIDTH = 0.14 MILES = 0.23 KILOMETERS = 752.06 FRET - 1.72 MILES = 2.76 KILOMETERS 74 01-94 CLASS CALCULATED DEPTH CLASS RANGES ACRES CALCULATED PARAMETERS 0 SIDE CHANNEL PARAMETERS DEPTH DAS ACRES \$ 79-06 -ACRES X >2-4 57 SIDE CHANNEL LENGTH > 11 2-0 ACRES GAGE READING ST. LOUIS EQUIVALENT 100440000011100 100440000011100 GAGE READING ST. LOUIS EQUIVALENT RIVER STAGE, FT. RIVER STAGE, FT

(Sheet 1

6

of

B. Side Channel Osborne, Pool 1

SIDE CHANNEL LENGTH = 1.72 MILES = 2.76 KILOMETERS

	3
-	5
-	
•	
•	
2	
2	
ä	
ш	
L.	
Ŧ	
5	
-	
×	
3	
~	
0	
s	
ш	
1	
I	
-	
-1	
-	
Ξ	
a	
-	
-	
-	
ž	
z	
ī	
U	
w	
0	
2	
u	
2	

		A/V L/A A/W	346 22 MAS - ULAN	376 23 D = SHOREL	416 24 A/V = RATIO	469 26 WATER	540 27 L/A = RATIO	650 29 WATER
SS	STATUTE AND A STATE AND AND AND AND	۵	2.9	3.0	3.0	3.1	3.2	3.4
- PARAMETER		DAS	3.8	3.6	4.5	3.2	3.0	2.8
SIDE CHANNEL		4	140.6	133.7	126.0	120.0	113.9	107.8
		_	4.4		4.8	4.8		4.9
		>	2149	1878	1606	1351	1114	877
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	21.0	18.5	16.5	14.5	12.0	10.0
RIVER	MEAN	SEA LEVEL	181	361	379	377	3/5	3/3

N G	AGE READING	0-2 FT	>2-4	FT	>4-6 FT		>6-10 F	-	>10-15		>15-20	51	>20 F	-
	ST. LOUIS EQUIVALENT	ACRES X	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	*	ACRES	*
-	21.1	7.0 5	7.6	5	6.1	+	12.5	•	34.6	24	45.1	31	31.2	22
	5.81	5 9 9	7.0		0.0	-	19.7 1		38.8	28	36.0	92	22.3	16
	16.5	5 0.9	6.9		7.1		27.0 2	-	43.0	33	26.9	21	13.4	10
-	14.5	5 4 5	0.8		9.5		31.6	9	40.6	33	18.8	15	7.9	0
. u	10.01	1 0 1	1.01		13.5	~			31.4	27	11.9	10	5.9	5
M.	10.0	9.2 8	16.0		17.6		36.9	23	22.3	20	5.0	5	3.9	4

(Sheet 2 of 6)

C. Side Channel Osborne, Pool 2

SIDE CHANNEL LENGTH . 0.31 MILES . 0.50 KILONETERS

DEICI	1C, FI.			SIDE CUANN	T PAPANET				
GAG	SE READING			SINE CITAIN		243			
EQ	UIVALENT	>	-		DAS	٥	N/N	1/1	
	10.01	261	1.0	23.6	•.0	1.5	479	27	-
	8.0	216	1.1	22.0	6.0	1.7	537	32	
	5.5	172	1.2	20.3	1.4	1.9	624	38	DEFINITIONS
	3.5	134	1.2	17.9	1.7	2.0	706	54	
	1.1	102	1.1	14.7	1.7	2.1	760	48	V = WATER VOLUME, ACRE-FT
	-1.5	70	1.0	11.4	1.7	2.1	865	56	L = SHORELINE LENGTH, MILES
	-3.0	55	8.0	8.6	1.4	1.9	827	58	A = WATER SURFACE AREA, ACRES
~	-3.5	39	0.5	5.7	1.1	1.0	760	62	DAS = DERIVATIVE OF WATER SURFACE ARE
		53	+.0	3.8	8.0	1.5	694	69	RESPECT TO RIVER STAGE, ACRES/F1
		23	0.3	2.9	5.0	1.4	672	75	D = SHORELINE DEVELOPMENT D = 1/12/
		17	0.3	2.0	0.2	1.4	633	89	A/V - PATIO OF WATED CUDEACE ADEA TO
		•1	0.2	1.7	0.2	1.3	642	56	WATER VOLUME. L'MILE
		11	0.2	1.3	1.0	1.3	657	100	I /A - RATIO OF CHOREI INF I FNOTH TO
			0.2	1.1	0.1	1.2	687	106	WATER SURFACE AREA, 1/MILE
	:	•	0.2	0.9	1.0	1.2	741	111	
	:	5	1.0	0.7	1.0	1.1	837	117	
			1.0	0.6	1.0	1.1	946	127	
		2	1.0	0.5	0.0	1.1	1165	1+1	
		-	1.0	• • 0	0.0	1.1	1502	160	
		1	1.0	0.3	0.0	1.2	1996	187	
		0	1.0	0.2	0.0	1.2	1615	241	

EAN	GAGE READING	0-2 FT		>2-4 5	-	9-94	1.	>6-10	11	>10-15	13	>15-20	1.1	>20 F	-
EVEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	-
2/3	10.0	1.0		1.6	1	3.0	12	6.6	27	7.3	30	2.5	01	2.1	
11	8.0	1.7		2.2	10	3.6	10	9.5	56	5.4		8.1			
60	5.5	2.4 1	2	2.7	13	5.4	51	5.3	52	3.5	11				
101	3.5	3.0 1	•	8.5	13	1.4	23	P. 4	53	2.2	12	8.0	-	1.1	-
50	1.0	3.4 2	5	2.5	17	3.1	21	2.9	19	1.5	10	0.0	•	1.0	-
203	-1.5	3.9 3	5	2.2	19	2.1	18	1.6	13	6.0		•.0		0.8	
10	0.5-	2.9 3	N	1.6	10	1.5	17	N.1	11	0.7		• .0		0.7	
50	<-3.5	1.9 3.	N	1.0	17	6.0	15	0.0	51	0.5	•	+.0	•	0.5	-
27		1.2 31	0	0.6	16	0.5	13	0.0	•1	•.0	10	0.3		•.0	-
52		0.9 20	8	0.5	13	4.0	12	5.0	15	+.0	12	0.3	•	F. 0	. ~
23		0.5 2	5	0.3		0.2	10	5.0	16	0.3	16	0.3		0.0	
		0.4 2	-	0.2		0.2	11	0.3		0.3	17	0.2	51	1.0	
40		0.2 1	1	0.2	• •	0.2	12	0.3	20	0.3	20	0.2	51	1.0	1
47		0.2 1	5	0.2	13	1.0	13	5.0	22	0.2	22	1.0	12	0.0	
45		0.2 14	•	0.2	16	0.1	11	2.0	24	0.2	22	1.0		0.0	
5.4		1 1.0	1	1.0	17	1.0	16	2.0	56	0.2	51	0.0		0.0	
4		0.1 20	0	1.0	1.0	1.0	17	0.2	12	1.0	11	0.0		0.0	
39		0.1 2		0.1	21		1.0	0.1	28	0.0	•	0.0	-	0.0	
37		0.1 21		1.0	54	1.0			34	0.0		0.0			
35		0.1 3		1.0	28	0.1				0.0	~	0.0			
53		• 1.0		0.1	37	0.0	1.0	0.0	-	0.0	. 0	0.0		0.0	

(Sheet 3 of 6)

D. Side Channel Osborne, Pool 3

SIDE CHANNEL LENGTH * 1.41 MILES * 2.26 KILOMBTERS

	V = WATER L = SHOREI	A = WATER SUF	DAS = DEKIVATIVE OF RESPECT TO R D = SHORELINE DEV	A/V = RATIO OF WATER	II /A = RATIO OF SHORE	WATER SURFA	
ET			1/1	30	32	:	
04.00 FE			N/N	724	859		
· · · ·	y a		•	3.1	1.1		TERC
(ILOMETER	I PAPAWETE		DAS	•••	••		TCD DA PAME
0.21	IDE CHANNE		A	64.0	76.0		V III UVI
WILES =			-	•.0	8.6		
41DTH . 0.13			>	612	467	390	
RAGE CHANNEL N	STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	10.6	9.9		
AVER	RIVER	MEAN	SEA	3/3	1/2		

											Contraction of the local division of the loc			The second	l
MEAN	GAGE READING	0-2 5	L.	>2-4	1.	>4-6 F	F	>6-10	1	>10-15	t	>15-20	FT	>20 F	+
LEVEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	×	ACRES	×	ACRES	×
3/3	10.0	8.1	6	14.3	17	1.6	17	30.0	35	15.0	17	2.5	5	1.8	~
371	8.0	10.9	15	15.1	20	12.7	17	22.2	30	10.0	13	2.1	•	1.1	~
369	5.5	13.6	22	15.8	25	10.9	17	14.5	23	5.0	•0	1.8	£	0.5	-1

(Continued)

(Sheet 4 of 6)

E. Side Channel Osborne, Pool 4

SIDE CHANNEL LENGTH = 0.38 MILES = 0.61 KILOMETERS Average channel width = 0.13 Miles = 0.20 Kilometers = 671.00 Feet

		SIDE CHANN	EL PARAMET	ERS		
>	L		DAS	•	A/V	LIA
117	1.1	19.4	2.2	1.8	874	36
87	1.0	15.6	2.1	1.9	944	
22	6.0	11.7	2.0	2.0	1087	51
36	0.0	•.•	1.0	1.9	1224	59
25	9.0	5.6	1.5	1.7	1178	63
•1	0.3	2.8	1.1	1.4	1060	76
10	E.0	2.2	0.0	1.3	1168	81
•	0.2	1.6	0.5	1.3	1415	88

3.	GAGE READING	0-2 FT	>2-4	1	9-+<	E.	>6-10	FT	>10-15	1	>15-20	11	>20 F	-
- #1	EQUIVALENT	ACRES X	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×
	4.0	3.0 15	£.4	22	+.+	23	4.9	25	1.5	8	1.2		0.2	-
		3.5 22	3.5	22	3.0		•	21	1.4	•	8.0	5	0.1	-
		•.0 33	2.7	23	1.7	-	1.9	16	1.3	11	•.0	•	0.0	0
		3.5 41	2.0	23	6.0	10	1.1	13	1.0	12	0.2	2	0.0	0
	····	2.2 37	1.3	22	9.0	11	1.1	18	0.6	11	0.1	-	0.0	0
		0.8 27	0.5	18	•.0	13	1.0	35	0.2	~	0.0	0	0.0	0
		0.6 27	0.5	22	0.5	10	0.0	26	0.1	5	0.0	0	0.0	0
-		0.5 28	0.5	58	0.5	30	0.2	12	0.0	~	0.0	0	0.0	0

(Sheet 5 of 6)

(Continued)

(Shee

Table 4 (Concluded)

and the second se

F. Side Channel Osborne, Pool 5

SIDE CHANNEL LENGTH = 1.03 MILES = 1.65 KILOMETERS

	I
	I
5	ļ
w	I
-	ł
0	I
٩.	I
4	ſ
3	1
	I
	I
	1
S	I
æ	1
-	ł
÷	1
õ	1
1	1
¥	1
N	1
e.	ł
0	J
	1
	1
	1
3	I
5	í
=	1
-	1
4	i
7	1
0	1
	1
•	1
Ξ	1
6	1
-	1
1	ł
L.	1
Z	I
-	
I	1
-	1
5	ł
-	1
	1
>	1
-	
	- 4

EADING			SIDE CHANNE	L PAKAMEI	2		
OUIS	>	-		DAS	0	N/N	LIA
5	131	2.7	35.0	7.1	3.2	1407	4
5	68	2.0	24.5	5.1	2.9	1456	52
5.	47	1.3	14.1	3.2	2.5	1594	09
5.	21	8.0	7.3	2.0	2.3	1835	74
5.	12	9.0	4.2	1.4	2.2	1631	87
	•	0.3	1.1	0.0	2.0	1801	173
	2	0.2	0.0	9.0	1.7	2012	175
	1	0.1	0.5	0.3	1.4	2713	180

RIVE	R STAGE, FT.					DEP	ΗL	CLAS	S R	ANGES					
MEAN	GAGE READING	2-0	11	>2-4	1	>4-6	t	>6-10	11	>10-15		>15-20	11	>20 F	-
LEVEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	*	ACRES	*	ACRES	×
368	4.5	11.6	32	11:8	33	5.5	15	5.8	16	1.0	•	0.3		0.0	0
366	2.5	8.7	• 5	8.3	33	3.7	13	3.7	15	0.7	m	0.2	-	0.0	0
364	-0.5	9.6	39	4.7	32	2.0	14	1.6	11	0.5	•	0.1	0	0.0	0
362	-2.5	3.6	47	2.4	11	6.0	12	5.0	-	0.3	•	0.0	•	0.0	0
360	<.3.5	2.1	47	1.3	59	0.5	12	•.0	•	0.1	•	0.0	0	0.0	0
358		0.0	49	0.2	19	0.2	13	5.0	20	0.0	0	0.0	•	0.0	0
356		0.5	4	0.2	23	0.1	11	0.2	17	0.0	0	0.0	0	0.0	0
354		0.3	20	0.2	34	0.0	•	0.1	10	0.0	•	0.0	•	0.0	0
					CALC	CULATED C	DEPTH (CLASS RANG	ES]

(Sheet 6 cf 6)

Results of Calculations for

Side Channel Harlow

SIDE CHANNEL LENGTH . 0.75 MILES = 1.21 KILOMETERS

	1
	1
	Ĺ
-	•
-	į,
	ć
0	v
	ſ
•	
	ú
	1
	٦
-	
	í
	1
	٦
-	1
a	
	1
-	•
•	÷
	1
- 25	2
- 1	
ē	ŝ
-	e
-	٤
	1
-	1
	۲
	1
	2
-	1
	٠
	ú
-	1
	5
-	
50	
u	,
u	
4	
TLF	
TILE	
HILF	-
HILF	-
HILF	-
. HILF	
TH HILE	
1. HILF	
ATTA MILE	
D.1. HILF	
D.1. HILF	
D.1. HILF	
D. 1. MILE	
D.1. HILF	
- D.1. MILE	
= 0.1. HILF	
4 = 0.1. HILF	
H = 0.1. HILF	
TH = 0.1. MILE	
TH = 0.1. HILE	
DTH = 0.11 HILE	
10TH = 0.11 HILE	
10TH = 0.11 HILE	
HIDTH = 0.11 HILE	
WIDTH = 0.1. HILE	
WIDTH = 0.11 MILE	
L HIDTH = 0.11 MILE	
SL WIDTH = 0.11 MILE	
FL WIDTH = 0.1+ MILE	
NEL WIDTH = 0.11 MILE	
WEL WIDTH = 0.1+ MILE	
NNEL WIDTH = 0.11 MILE	
ANNEL WIDTH = 0.11 MILE	
AANNEL WIDTH = 0.11 MILE	
HANNEL WIDTH = 0.1. MILE	
CHANNEL WIDTH = 0.1+ MILE	
CHANNEL WIDTH = 0.11 MILE	
CHANNEL WIDTH = 0.1+ MILE	
E CHANNEL WIDTH = 0.11 MILE	
E CHANNEL WIDTH = 0.11 MILE	
GE CHANNEL WIDTH = 0.11 MILE	
ACE CHANNEL HIDTH = 0.1. MILE	
AGE CHANNEL WIDTH = 0.11 MILE	
RACE CHANNEL WIDTH = 0.1+ MILE	
PAGE CHANNEL WIDTH = 0.11 MILE	
FRACE CHANNEL WIDTH = 0.1+ MILE	
VERAGE CHANNEL WIDTH = 0.1+ MILE	
AVERAGE CHANNEL WIDTH = 0.1+ MILE	
AVERAGE CHANNEL WIDTH = 0.11 MILE	
AVERAGE CHANNEL WIDTH = 0.11 MILE	

GAGE	E READING			SIDE CHANNE	EL PARAMET	ERS			
EQU	I. LOUIS	>	-		DAS	0	A/V	1/1	
~	2.5	535	2.2	55.2	1.4	2.1	544	25	DEFINITIONS
S	5.0	432	2.3	\$0.4	2.9	2.3	616	29	
-	8.5	330	2.4	45.6	5.4	2.5	731	33	V = WATER VOLUME, ACRE-FT
-	6.0	247	2.3	38.9		2.7	632	39	L = SHORELINE LENGTH MILES
-	0.4	184	2.2	30.2	+.+	2.9	867	46	A WATED SUPPACE ADEA ACDES
-	1.5	121	2.0	21.5	•••	3.1	938	09	
	5.6	97	1.5	15.7	3.1	2.6	858	61	UAS = UEKIVALIVE UF WALEN SUNFACE AND
	7.5	73	1.0	6.9	2.1	2.2	716	+9	near contract of the states of the
	5.5	55	0.7	•.•	1.4	1.8	606	99	D = SHOKELINE DEVELOPMENT, D = L/12
	3.0	45	0.5	5.2	0.8	1.6	609	63	A/V = RATIO OF WATER SURFACE AREA TO
	0.0	35	+.0	4.1	0.2	1.3	613	59	TATEN VOLUME, L'MILE
•	2.0	28	+.0	3.6	0.2	1.4	674	67	L/A = RATIO OF SHORELINE LENGTH TO
->	3.5	21	+.0	3.0	0.2	1.5	778	78	HAICH SURFAUE AKEA, LANLE
		15	0.3	2.5	0.2	1.5	902	87	
		11	0.3	2.1	0.2	1.5	1029	16	
		•	0.2	1.6	0.2	1.4	1332	66	
		•	0.2	1.2	0.2	1.7	1605	130	
		2	0.3	0.0	0.2	2.0	2571	187	

												-			
EQUIVAL	LENT	ACRES	×	ACRES	*	ACRES	*	ACRES	*	ACRE	* 5	ACRES	*	ACRES	×
22.	-	3.6	•	3.9	1	12.4	20	15.8	28	14.2	55	3.1	5	4.1	~
.02	5	6.2	12	5.3	10	10.6	21	13.1	26	9.7	19	2.3	5	3.6	2
18.	5	8.8	19	6.6	14	6.6	22	10.5	23	5.3	12	1.6	2	3.1	1
10.		6.6	25	6.6	17	6.2	21	7.7	20	2.7	1	1.2	3	2.7	-
14.	0	9.4	31	5.1	17	5.6	10	4.7	16	2.0	2	1.2	4	2.2	1
.11	5	8.9	42	3.5	17	5.0	14	1.8		1.2	.0	1.2	•	1.7	8
	-	6.1	39	2.5	16	2.1	13	4.1	•	1.2	8	1.1	1	1.3	
	5	5.2	32	1.4	14	1.2	12	1.1	11	1.2	12	1.1	11	6.0	•
	5	1.6	24	0.8	12	0.7	10	0.0	14	1.2	18	1.0	15	0.5	80
	2 1	1.1	20	0.6	11	0.6	11	6.0	18	1.1	21	0.8	15	0.3	5
	2	0.6	14	4.0	11	0.5	12	1.0	23	1.0	25	9.0	16	0.0	•
.2.		0.5	15	0.5	13	0.4	12	0.9	25	0.0	24	4.0	11	0.0	0
<-3.	2	0.5	11	0.5	16	4.0	12	6.0	28	0.7	23	0.1	4	0.0	0
		0.5	91	0.5	18	4.0	14	0.8	29	0.5	19	0.0	0	0.0	0
		4.0	20	0.5	21	4.0	19	9.0	28	0.3	12	0.0	0	0.0	0
	-	4.0	22	4.0	26	4.0	26	4.0	26	0.0	0	0.0	0	0.0	0
	-	4.0	29	0.4	28	0.3	22	0.3	21	0.0	0	0.0	0	0.0	0
		0.4	42	0.3	32	0.1	15	0.1	10	0.0	0	0.0	0	0.0	0

	AREA	SQUARE FEET	5803	4493	3202	2103	1204	460	Ø 1			SQUARE	FEET	13595	12163	10801	9500	8259	62.02	5967	4926	3954	3853	2256	1608	1093	695	416	224	88	15
STATION 1	STAGE, FT.	GAGE READING ST. LOUIS EQUIVALENT	23.0	21.0	18.5	16.0	0.41	0.24	5.2	STATION 2	GAGE READING	ST. LOUIS	EQUIVALENT	22.5	20.5	18.5	16.0	14.0	11.5	6.5	7.5	5.5	3.0	0.0	-2.0	-3.5	<-3.5				
	RIVER	NEAN SEA LEVEL	583	381	379	377	375	3/3	3/1		WEAN	SEA	LEVEL	383	381	379	377	375	373	371	369	367	365	363	361	359	357	355	353	351	349

CALCULATIONS OF PROFILE CROSS SECTION

Results of Calculations for Side Channel Fort Chartres

A. Side Channel Fort Chartres

SIDE CHANNEL LENGTH * 1.91 HILES * 3.07 KILOHETERS

SIVER	R STAGE, FT.			ALLE CUANT	TTU DADAUT	- no			
1	GAGE READING			SIVE LUMM	ILL LARAME	CH3			
- 11	ST. LOUIS EQUIVALENT		-	•	DAS	•	*/*	1/1	
-	28.0	2816	5.3	165.2	3.1	3.0	310	21	
	26.	2524	5.5	159.4	2.8	3.1	334	22	OFFICIENCE
	24.0	2231	5.7	153.7	2.6	3.3	364	54	DEFINITIONS
2	\$2.0	1953	5.8	148.3	2.4	4.5	10+	25	
5	19.	1687	5.9	143.3	2.4	3.5	448	26	V - MAIEN VULUME, AUNE-FI
-	17.8	1422	6.1	138.3	4.5	3.7	514	28	L = SHORELINE LENGTH, MILES
	15.0	1189	0.0	133.1	4.5	3.7	165	29	A = WATER SURFACE AREA, ACRES
	11.0	156	0.0	127.8	2.3	3.8	705	30	DAS = DERIVATIVE OF WATER SURFACE AREA WIT
	10.5	747	0.0	121.4	3.9	3.9	650	32	RESPECT TO RIVER STAGE, ACRES/FT
5	8.5	555	5.1	223.9	7.2	4.1	1076	34	D = SHORELINE DEVELOPMENT, D = L/[2(mA) ¹²
-	6.5	371	1.0	106.4	10.5	4.2	1514	37	A/V = RATIO OF WATER SURFACE AREA TO
	4.0	264	4.9	75,8	10.8	4.2	1513	42	WATER VOLUME, I/WILE
	1.5	158	3.7	45.2	11.0	4.1	1510	53	L/A = RATIO OF SHORELINE LENGTH TO
*	0.1.	06	2.7	25.5	9.2	3.8	1501	99	WATER SURFACE AREA, 1/MILE
5	-3.4	60	1.8	16.8	5.5	3.1	1484	70	
143	<-3.5	30	6.0	8.1	1.7	2.4	1432	75	
	*	21	0.9	6.3	1.4	2.5	1560	99	
0		13	0.8	4.5	1.0	2.6	1863	108	
2		1	0.0	2.9	1.0	2.5	2229	130	
5			•.0	1.6	0.0	2.1	2158	241	
10		1	1.0	0.3	5.0	1.7	1654	272	

SQUARE <u>ffE7</u> 12296 12296 12296 5736 5736 5736 5736 5736 5736 5736 12388 12388 12388 12388 12388 12388

AREA

RIVER STAGE, FT.

STATION 1

STATION 2

NIA.	SIAGE, FI.					D E	H	CLAS	S	ANGE	s				
NA	GAGE READING	5-0	1.1	>2-4	11	9-•<	1.5	>6-10		>10-1	1.1	>15-20	FT	>20	5
=	EQUIVALENT	ACRES		ACRES	*	ACRES	-	ACRES	*	ACRE	*	ACRES	*	ACRES	*
-	28.0	5.7		4.4		5.3	•	12.1	•	16.8	11	26.6	17	81.3	53
	26.4	5.7	•	5.4	•	5.6	•	12.8	•	20.7	• 1	37.2	52	60.1	4
	24.0	5.2	*	5.8		0.0	•	13.4	•	24.6	17	47.8	*.	39.9	5
	21.15	5.8		6.2	•	0.0	•	15.5	11	31.9	23	46.8		23.9	17
5	19.0	0.0	5	6.5	*	5.2	•	18.9	+1	42.5	33	34.4	56	15.1	12
-	17.0	0.2	~	6.7	•	8.1	•	22.4		53.1		21.9	18	4.0	5
	15.	5.3	•		-	10.7	•	31.5	27	40.6	34	14.6	12	4.0	4
	13.0	• . 0		10.1	•	13.3	12	+0.7	37	28.1	25	7.3	~	3.4	2
-	10.5	11.0	11	13.5	13	15.0	13	39.3	38	18.2	18	3.3	•	2.3	2
	8.5	15.2	17	18.6	20	15.6	17	27.4	30	10.9	12	2.6	•	1.6	~
	6.5	10.4	54	23.7	50	16.3	50	15.5	19	3.6		1.9	~	0.8	f.
	4.1	15.9	56	17.7	59	11.2		10.4	11	3.0	5	1.5	~	0.5	-
	1.5	12.4	32	11.6	30	0.1	1.6	5.3		2.3	•	1.0	•	0.2	0
2	0.1-	8.8		7.1	30	3.1	13	2.4	10	1.7	-	0.6	•	0.0	0
	.3.0	5.2	-		28	2.2	15	1.9	13	1.2		0.3	~	0.0	0
	<-3.5	1.6	- 56	1.3	21	1.3	20	1.4	21	0.0	12	0.0	0	0.0	0
		1.4	58	1.0	21	0.1	20	1.0	21	0.5	•	0.0	0	0.0	0
		1.2	33	0.8	22	1.0	20	0.7	20	0.2	5	0.0	0	0.0	0
		6.0		0.5	23	• .0	10	•.0	10	0.0	0	0.0	0	0.0	0
		1.0		•.0	54	0.2	51	0.2	13	0.0	•	0.0	0	0.0	0
															•

(Sheet 1 of 4)

CALCULATIONS OF PROFILE CROSS SECTION

SQUARE FEET 6883 6883 6883 6883 4649 4649 4649 4649 2376 23776 23776 23776 23776 336 336 336 336 331

GACE READING SACE READING EQUIVALENT 221.0 221.0 221.0 100.0

STATION 3

(S

(Continued)

Side Channel Fort Chartres, Pool 1 в.

SIDE CHANNEL LENGTH = 1.91 MILES = 3.07 KILOMETERS

			SIDE CHANN	TEL PAPANET	L DC		
EADING					2		
LOUIS	>	-	-	DAS	•	*/*	11
n.e	2816	5.5	165.2	3.0	3.0	310	21
	2231		153.3	00.0	1.5	333	22

						DEPI	H	CLASS	æ	ANGES					
MEAN	GAGE READING	0-2 FT		>2-4 FT		>4-6 FT		>6-10	-	>10-15	11	>15-20	11	>20 F	-
EVEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	×
383	28.0	5.7		4.9	n	5.3	E	12.1		16.8	11	26.6	17	81.3	53
191	26.0	5.7	•	• • •		9.6	+	12.8	•	20.7	14	37.2	52	60.1	4
\$16	24.0	5.7	•	5.8		0.0	•	13.4	•	24.6	17	47.8		38.9	27

CALCULATED DEPTH CLASS RANGES

(Sheet 2 of 4)

5 8 A

. 1

C. Side Channel Fort Chartres, Pool 2

SIDE CHANNEL LENGTH # 0.63 MILES = 1.00 KILOMETERS

AVERAGE CHANNEL WIDTH = 0.06 MILES = 0.10 KILOMETERS = 327.50 FEET

	DEFINITIONS	WATER VOLUME, ACRE-FT	SHORELINE LENGTH, MILES	WATEP SURFACE AREA, ACRES	DERIVATIVE OF WATER SURFACE AREA WITH	RESPECT TO RIVER STAGE, ACHENTI	= SHORELINE DEVELOPMENT, D = L/[2(# A) ¹⁹]	RATIO OF WATER SURFACE AREA TO	WATER VOLUME, 1/MILE	RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, 1/MILE			
		L'A V	36 4	39 A	42 DAS	46	48 0	52 A/V	09	73 L/A	82	85	158]
		ALV	405	1++	190	552	633	768	893	1156	1443	1454	1731	
ya.		٥	2.3	2.4	2.5	2.6	2.7	2.7	3.0	3.3	3.0	2.1	1.3	AFTERS
PARAMETE		DAS	1.0	1.0	6.0	1.0	1.1	1.3	1.5	1.7	2.1	2.7	3.3	ATED PARAN
SIDE CHANNEL		-	33.2	31.1	29.0	26.8	24.5	22.2	19.0	15.7	11.4	6.0	6.5	CALCIN
		-	1.8	1.9	1.9	1.9	1.8	1.8	1.8	1.8	1.5	9.0	1.0	
		>	433	373	312	256	204	152	112	72	42	22	2	
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	23.0	21.0	18.0	16.0	14.0	11.5	6.5	7.5	5.0	2.5	0.0	
RIVER	MEAN	LEVEL	378	376	374	312	370	368	366	364	362	360	358	

INER	COLAGE, FT.												Contraction of the local distance	and the second se	
-	GAGE READING	0-2 F	-	>2-4	1.1	>+-6	11	>6-10	FT	>10-15	11	>15-20	51	>20 F	+
	51. LUUIS EQUIVALENT	ACRES	*	ACRES	*	ACRES	×	ACRES	*	ACRES	*	ACRES	*	ACRES	~
.0	23.0	1.8	0	1.7	5	1.7		3.4	10	7.0	22	14.0	57	2.8	o
	21.0	1.8	9	1.7	•	1.7	•	***	14	9.8	32	9.5	1:	1.7	5
4	18.0	1.7	9	1.7	•	1.8	•	5.5	19	12.6	44	2.0	17	0.6	2
2	16.0	1.7	\$	1.9	1	2.3		7.2	26	11.8	54	2.2	80	0.0	0
0	14.0	1.9	80	2.4		5.3	13	9.5	37	7.3	50	1.1	•	0.0	0
	11.5	2.1	•	2.8	12	P.4	18	11.8	64	2.8	12	0.0	•	0.0	0
•	5.9	3.0	14	4.0	61	1.4	54	7.3	35	1.7	80	0.0	0	0.0	0
4	7.5	3.0	21	5.1	28	5.8	32	2.9	16	0.0	2	0.0	0	0.0	0
2	2.0	3.9	28	4.6	33	4.9	35	9.0	*	0.0	0	0.0	0	0.0	0
0	5.5	3.2	38	2.5	30	2.5	59	0.3	2	0.0	0	0.0	0	0.0	0
8	0.0	2.4	86	•.0	13	0.0	-	0.0	0	0.0	0	0.0	0	0.0	0

(Sheet 3 of 4)

Table 6 (Concluded)

D. Side Channel Fort Chartres, Pool 3

SIDE CHANNEL LENGTH = 1.27 MILES = 2.05 KILOMETERS

AVERAGE CHANNEL WIDTH = 0.13 MILES = 0.20 KILOMETERS = 666.00 FEET

**** × 5 ACRES >20 t × ACRES >15-20 * HUNMMNHH HH t >10-15 ACRES RANGE 11 × 0000400040004000000 CLASS >6-10 ACRES x * DEPT t. ACRES 9- 4 < ************************ × -ACRES >2-4 444020004200002000000 × 14 ACRES 2-0 GAGE READING ST. LOUIS EQUIVALENT RIVER STAGE, FT. Sheet 4 of 4)

STATE STATE AND ADDRESS

Results of Calculations for

Side Channel Moro

SIDE CHANNEL LENGTH = 2.35 MILES = 3.78 KILOMETERS

quarter quarter <t< th=""><th>Gate second Gate second Equivation 25.0</th><th></th><th>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</th><th>0.000 000 000 000 000 000 000 000 000 0</th><th></th><th>A/V 348 348 3487 501 574 574 5687 5687 5618 1061 1314 1314 1314 1314 1314 1314 1314 13</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th></t<>	Gate second Gate second Equivation 25.0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000 000 000 000 000 000 000 000 000 0		A/V 348 348 3487 501 574 574 5687 5687 5618 1061 1314 1314 1314 1314 1314 1314 1314 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Equivalent V L A DAS D A/V L/A 25:0 95:0 7:3 372.7 2.0 2.7 3.6 1.2 25:0 95:0 7:3 372.7 2.0 2.7 3.6 1.2 25:0 95:0 9.4 372.7 2.0 2.7 3.6 1.2 35:0 9.4 337.7 2.0 2.7 3.6 1.2 1.2 35:0 9.4 337.7 2.0 2.7 3.6 1.2	Rest of the second seco	, 2, 2,004040000000000000000000000000000	A 332,0 332,0 332,0 332,0 232,0 2249,0 2249,0 43,0 43,0 43,0 43,0 43,0 43,0	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		A/V 3488 3640 3640 4600 4600 4440 5011 4444 5037 1001 10011 41001 10011 10011	20080000000000000000000000000000000000
25.6 7.3 372.7 2.6 2.7 3.6 25.7 3.6 7.4 372.7 2.6 2.7 3.6 26.7 7.8 372.7 2.6 2.7 3.6 3.7 3.6 26.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 36.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7<	2.2.2.2 2.2.2.2.	У № 8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6	00400000000000000000000000000000000000	0.010000000000000000000000000000000000	348 367 367 571 571 571 571 618 618 13778 13618 13618 13618 137778 137778 13778 13778 13778 13778 13778 1377	11111100000000000000000000000000000000
27.5 946 7.6 5.0 7.9 3.7 <td>2010 2010 2010 2010 2010 2010 2010 2010</td> <td>240400000000 040400404040404040404040404</td> <td>00000000000000000000000000000000000000</td> <td>10000 1000 1000 1000 1000 1000 1000 10</td> <td>0.000 40 4 4 40 0 40 0 0 0 00 40 0 0 0 0 0</td> <td>287 501 501 501 501 501 668 668 668 710 1061 1061 1061 1061 1061 10710 1710</td> <td>4 6 C 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	2010 2010 2010 2010 2010 2010 2010 2010	240400000000 040400404040404040404040404	00000000000000000000000000000000000000	10000 1000 1000 1000 1000 1000 1000 10	0.000 40 4 4 40 0 40 0 0 0 00 40 0 0 0 0 0	287 501 501 501 501 501 668 668 668 710 1061 1061 1061 1061 1061 10710 1710	4 6 C 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q00 Q00 <td>2010 2010 2010 2010 2010 2010 2010 2010</td> <td>969604646464 464604646464</td> <td>6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>20000000000000000000000000000000000000</td> <td>NNN 44440040 000 400 00 00 00</td> <td>501 501 501 502 502 502 502 5037 2037 2037 2037 210</td> <td>0.0.0000000000000000000000000000000000</td>	2010 2010 2010 2010 2010 2010 2010 2010	969604646464 464604646464	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000000000000000000000000000	NNN 44440040 000 400 00 00 00	501 501 501 502 502 502 502 5037 2037 2037 2037 210	0.0.0000000000000000000000000000000000
14.5 1956 9.1 319.7 9.8 3.6 5.01 1.7 14.5 25264 9.4 318.0 9.3 3.6 5.01 1.7 14.5 25292 9.6 318.0 9.3 3.6 5.01 1.7 14.6 2292 9.6 238.5 9.7 4.1 6.87 2.1 9.4 17 16.1 1760 15.0 15.4 4.5 10.61 2.5 1.5 2.6 2.6 1.5 4.5 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6 1.6 1.5 2.6 1.5 2.6 1.5 2.6 2.6	14.5 14.5 14.5 14.5 14.5 14.5 17.5 1	040048464 040048464	222 248 248 248 249 249 269 249 269 249 269 249 269 249 299 299 299 2999 29	8 8 6 6 6 7 7 7 8 8 7 8 8 8 8 8 8 8 8 8	999494499940 96949999797	501 574 687 687 687 818 1314 1314 1314 1314 1314 1310 1710	11000000000000000000000000000000000000
14.5 2024 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 318.0 0.4 319.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 213.0 214.0 213.0 214.0 213.0 214.0 213.0 214.0 213.0 214.0 213.0 214.0 213.0 214.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0 213.0 216.0	1000 1000	4 0 0 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	818 898.9 898.9 80.9 80.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	8.12 251.19 251.19 251.19 251.14 251.	8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	574 687 687 818 1314 1314 1314 1314 1314 1314 1310	00000000000000000000000000000000000000
14.5 2292 9.8 293.3 9.7 4.1 6.87 21 y. wrt 10.0 273.0 19.0 273.0 19.1 273.0 19.1 273.0 21 y. wrt 10.0 273.0 19.1 273.0 19.2 23.1 19.4 21 y. wrt 10.0 273.0 19.1 273.0 27.9 4.0 10.1 23 y. wrt 11.0 123.0 10.1 273.0 27.9 4.0 10.1 26 y. wrt 10.1 273.1 25.1 5.1 131.4 26 14.4 30 04.1 11.0 136.0 25.1 5.5 1.4.1 30 04.6 04.8 11.1 136.0 25.1 5.1 1.1 137.0 02 04.8 11.0 13 1.9 1.7 1.10 02 04.8 11.1 13 1.9 1.9 1.10 02 04.8 11.1 13 1.9 1.9 1.7 1.00 02 11.1 13 1.9 1.9 1.0 02 04.8 12.1 1.9 1.9 1.7 1.0 02	14:00 12:00 10	0000000 0000000	298.3 273.6 273.6 203.1 135.9 135.9 135.9 135.9 14.6 24.9 24.9 25.9	251.19 251.9 251.19 251.19 251.1	44440040 400000000	687 618 618 1061 1314 1443 2037 2037	80000000 00000000000000000000000000000
10.0 273.6 5.3 5.5<	1000 1000	045466	273.6 249.0 203.1 135.9 68.6 63.9	211.0 221.0 255.10	4440040 00000000	618 1061 1314 1443 2037 2037	55 8 6 6 6 6 6 6 9 9 5 5 5
10.0 12.59 10.1 249.0 21.9 4.0 10.1 20 9.5 9.5 203.1 25.1 9.5 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 26 4.0 10.1 10.0	1010 1000 1000	19.10.1	249.0 203.1 135.9 68.6 43.9	251.9	440040 999701	1061 1314 143 2037 1710	55 88 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9
7.5 810 9.5 210.1 25.1 4.0 13.4 3.0 4.841 3.11 130.5 25.1 4.0 23.4 3.0 4.841 3.0 4.841 3.11 130.5 25.7 5.3 14.4 3.0 6.8411 3.11 130.5 25.7 5.3 14.4 3.0 6.8411 3.11 130.5 25.7 5.3 14.4 3.0 6.8411 3.11 130.5 25.7 5.3 14.8 3.0 63.6783 3.11 130.5 25.7 5.3 14.3 3.0 63.6783 3.11 130.2 130.3 130.3 130.3 130.3 130.3 130.3 3.13 14.3 1.5 1.6 1.6 1.7 101.8 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 103.3 <th< td=""><td>200 200 200 200 200 200 200 200</td><td>0 0 0 0 1</td><td>203.1</td><td>25.1</td><td>40040</td><td>1314 1443 2037 1710</td><td>38 95 95 95</td></th<>	200 200 200 200 200 200 200 200	0 0 0 0 1	203.1	25.1	40040	1314 1443 2037 1710	38 95 95 95
9.5 997 9.1 155.9 25.4 5.3 1.443 38 045.0183 3.11 1.78 0.3 185.0 25.7 5.7 3.1 045.0183	200 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	e 0 4	135.9	25.4	5.5.4	2037	38 62 62
1.0 1.78 0.7 0.64.0 2.5.7 5.7.7 2.0.7 0.67 0.68.0 2.5.7 5.7.7 2.0.7 2.0.7 0.61.0 <th0< td=""><td>2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0</td><td>6.2</td><td>68.6 43.9</td><td>25.7</td><td>r. 01</td><td>2037.</td><td>62</td></th0<>	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	6.2	68.6 43.9	25.7	r. 01	2037.	62
1.0 1.3 4.3 4.3 1.7.3 4.2 17.10 0.2 10.306 -1.1 93 1.9 19.4 19.4 19.4 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2 10.306 0.2	1119 1119 1119 1119 1119 1119 1119 111	2. 4	43.9	17.3	4.0	1710	62
1.1 93 1.2 9.4 2.7 1088 0.4 A/V BRT -1.5 -1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1088 0.4 1.7 101 0.4 1.6 1.	1000 1000 1000 1000 1000 1000 1000 100				5 5		
-3.5 67 0.2 6.4 3.6 1.6 902 66 mm1 **.3 56 0.5 5.4 1.5 1.6 902 66 mm1 **. 40 0.5 5.4 1.5 1.6 903 63 Janaka ** 40 0.4 4.4 6 1.3 903 58 MM1	• • • • • • • • • • • • • • • • • • •	1.9	19.2	8.9		1088	49
(*3.5) 56 0.5 5.4 1.5 1.6 503 63 [LA.gar] * <td>50 50 50 50 50 50 50 50 50 50</td> <td>0.7</td> <td>4.0</td> <td>3.6</td> <td>1.8</td> <td>502</td> <td>99</td>	50 50 50 50 50 50 50 50 50 50	0.7	4.0	3.6	1.8	502	99
* 46 0.4 4.46 1.3 503 58 #AT	31 8 9 31 8 9	0.5	5.4	5.1	1.6	503	63
	31	0.4	4.4	9	1.3	503	58
a 38 0.4 3.83 1.4 529 64		0.4	3.8	£.1	1.4	529	64
* 31 0.4 3.3 0.0 1.5 566 72		0.4	3.3	0.0	1.5	566	72
* 25 0.4 2.9 0.2 1.5 613 81		0.4	2.9	0.2	1.5	613	81
* 19 0.4 2.5 0.2 1.6 671 92	. 19	4.0	2.5	0.2	1.6	671	56
* 14 0.3 2.1 0.2 1.7 771 106	. 14	0.3	2.1	0.2	1.7	171	100
- 11 0.3 1.8 0.2 1.8 851 118		0.3	1.8	0.2	1.8	851	118
- 8 0.3 1.4 0.1 1.6 1002 135		0.3	1.4	1.0	1.6	1002	135
* 5 0.3 1.2 0.1 1.9 1175 153	•	0.3	1.2	0.1	1.9	1175	153
- 4 0.2 0.9 0.1 1.9 1286 173		0.2	0.9	1.0	1.9	1288	173
2 0.2 0.6 0.1 1.9 1562 209			0.6	1.0	1.9	1562	000

PADE DEARING	0-2 51	1 1-61		14-1 ET	12 01-14	1 21-011		15-30 C	
ST. 1,0015									
EQUIVALENT	ACRES	ACRES		AURES X	ACRES X	ACRES		ACRES	ACRES
25.0	4.9 1	5.6	3	23.3 6	35.9 10	60.1 1	0	63.1 4	69.0
22.5	11.6 3	12.6	4	22.0 6	41.3 12	101.3 2		122.7 3	44.2
20.0	18.3 5	15.6	5	20.8 6	46.6 13	142.5 4		82.3 2	19.3
18.5	21.9 7	18.4		22.6 7	68.4 21	142.9 4	P	50.1 1	
16.5	22.3 7	20.8	7	27.4 9	106.7 34	102.5 3	5	26.3	5.4
14.5	22.8 8	23.2		32.2 11	145.1 50	62.1 2		2.5	
12.0	30.2 11	49.4	18	44.8 17	99.7 37	38.2 1	4	2.0	3.9
10.0	37.5 15	75.6	31	57.4 23	54.3 22	14.4	•	1.5	3.4
2.5	42.9 22	73.0	37	51.4 26	25.6 13	2.3		1.2	5.0
5.5	46.3 35	41.8	31	27.0 20	13.6 10	1.8		1.1	2.6
3.0	49.8 72	10.6	15	2.6 4	1.6 2	1.3	2	1.0	2.2
1.0	30.4 69	0.0	15	1.8 4	1.4 3	1.2	5	6.0	1.8
-1.0	11.1 57	2.7	1.4	1.0 5	1.1 6	1.0	5	0.0	1.5
5.1.	1.3 19	0.7	11	0.5 8	1.0 15	1.0 1	5	0.8	1.2
5-1-6	0.9 17	0.6	11	0.5 9	0.9 16	0.0	7	0.7 1	6.0
	0.5 12	0.5	12	0.4 10	0.8 17	0.8		0.7 1	9.0 8
	0.5 12	0.5	12	0.4 11	0.7 19	0.8 2	0	0.6 1	0.5
	0.4 13	4.0	12	0.4 11	0.7 20	0.7 2		0.4 1	0.3
	0.4 13	0.4	23	0.4 12	0.6 22	0.6 2		0.4 1	0.2
	0.4 15	0		0.3 13	0.6 23	0.5 2	0	0.3 1	0.1
	0.4 17	0.3	15	0.3 13	0.5 25	0	8	0.2 1	0.0
	0.3 18	0.3	17	11 2.0	0.4 24	0.3 1	8	1.0	0.0 8
	0.3 20	0.3	01	0.2 15	0.3 23	0.3 1	8	1.0	0.0
	0.3 22	0.3	21	0.2 16	0.3 22	0.2 1	•	0.0	0.0
	0.2 24	0.2	22	0.2 17	0.2 24	0.1	2	0.0	0.0
1	AC C D	+ 0	22	· · · ·	***				

AREA	SQUARE	FEET	16497	13334	115511	8998	50.96	4845	3889	1 796	6.5A D	-			SQUARE FEET		14167	10346	14444	6/551	21.15	21.84	556	170				SDIARF	FEET		524.0	10.7.09	1.1561	1.0539	9494	SANG STREET	1009	
STAGE FT.	GAGE READING ST. LOUIS	FUOINALENT	20.0	21.0	18.5	5.91	12.5	10.0	0.9	5.5			STATION 2	GAGE READING	ST. LOUIS EQUIVALENT		8.02	20.0	18.0	14.0	12.0	5.2	2.0		5.12	CTATION 2	CANTERIO	GAGE READING ST LOUIS	EQUIVALENT	52.0	6.22	×0.4	15.5	13.5	51.2	0.6	4.5	2.5
RIVER	NE AN SE A	EVEL	573	900	367	305		956	357	325	351			WEAN	SEA	1	5/3	360	367	202	1961	357	525	351	340		-	MEAN SEA	LEVEL	3/3	140	102	305	203	100	357	355	353

Results of Calculations for

Side Channel Kaskaskia

4.00 KILOMETERS SIDE CHANNEL LENGTH = 2.48 MILES =

		DEFINITIONS	V WATER VOLUME. ACRE-FT	I CUDDELINE LENGTH MILES	· PREASE CONTINUES - PRESS	A = WAIEK SURFACE AKEA, AUNE	DAS = DERIVATIVE OF WATER SURFA	RESPECT TO RIVER STAGE, AL	D = SHORELINE DEVELOPMENT, D	A/V = RATIO OF WATER SURFACE AF	WATER VOLUME, I/MILE	A = RATIO OF SHORELINE LENGTH	WATER SURFACE AREA, 1/MIL					
		L/A	30	32	34	38	43	50	55	62	67	69	29	84	16	120	149	254
		AIV	403	451	518	592	675	819	944	1192	1432	1411	1333	1384	1512	1751	2002	4184
2 BC		G	4.0	4.2	4.3	4.6	5.0	5.4	5.6	5.8	5.3	4.3	3.2	2.9	2.6	2.6	2.7	2.8
I PARAMETI		DAS	1.5	3.3	5.1	6.0	6.1	6.1	7.2	8.3	8.4	7.4	4.9	5.4	2.2	1.0	0.5	0.0
CIDE CHANNE		A	140.5	134.4	128.4	119.2	107.1	95.0	82.4	69.8	53.4	33.2	13.0	9.4	5.9	3.4	2.2	6.0
		-	6.7	6.7	6.8	7.0	7.2	7.4	7.1	6.7	5.6	3.6	1.6	1.2	6.0	0.6	0.5	4.0
		N	1839	1574	1308	1063	838	612	461	309	197	124	52	36	20	10	9	1
TAGE, FT.	GAGE READING	EQUIVALENT	27.5	26.0	23.0	21.0	19.0	17.0	15.0	13.0	10.5	8.5	0.9	3.5	1.5	-1.0	-3.0	<-3.5
RIVER S	MEAN	LEVEL	373	371	369	367	365	363	361	359	357	355	353	351	345	347	345	343

AREA

STATION 1

SQUARE

GAGE READING ST. LOUIS EQUIVALENT RIVER STAGE, FT.

MEAN SEA LEVEL

	11	* 5	5 10	2 2	5	5 3	~		1 1	0	0	0	0	0	0 0	0 0	0 0	0
	>2(ACRE	13.5	0.0	.0		5.	1.1	.0	0	0.0	.0	0.0	.0	.0	0.1	0.	0.0
	11	*	5	52	13	2	5	m	m	~	2	-	0	•	0	0	0	•
	>15-20	ACRES	48.2	32.6	17.0	8.0	5.6	3.2	2.3	1.5	6.0	0.5	0.1	0.0	0.0	0.0	0.0	0.0
S	11	×	24	29	36	34	23	10	80	•	5	•	80	1	4	-		0
ANGE	>10-15	ACRES	32.9	39.0	45.1	40.4	24.8	9.2	6.9	4.4	2.8	1.9	1.1	0.7	0.3	0.0	0.0	0.0
S R	11	*	17	18	19	23	31	42	32	18	10	11	15	15	16	17	13	~
CLAS	>6-10	ACRES	24.3	24.0	23.8	26.8	33.2	39.6	26.0	12.5	5.0	3.5	2.0	1.5	1.0	0.6	0.3	0.0
H	+	×	1	10	13	15	16	17	18	20	21	21	21	20	18	15	15	14
DEP	>4-6 F	ACRES	9.3	12.7	16.1	11.5	16.8	16.2	14.8	15.4	10.7	6.9	2.8	1.9	1.1	0.6	4.0	0.2
	+	×	4	•	2	•	•	10	18	59	36	32	19	19	20	22	52	35
	>2-4 5	ACRES	5.5	7.4	6.3	10.2	6.6	6.7	14.9	20.1	18.7	10.6	2.6	1.9	1.2	0.9	0.6	0.4
	+	*	4	•	8	10	13	17	19	54	27	50	37	39	42	45	46	05
	0-2 F	ACRES	5.2	7.4	9.7	11.8	13.7	15.7	15.9	16.1	14.0	9.5	5.1	3.8	2.6	1.7	1.1	0.6
STAGE, FT.	GAGE READING	51. LUUIS EQUIVALENT	27.5	26.0	23.0	21.0	19.0	17.0	15.0	12.5	10.5	8.0	6.0	3.5	1.5	0.1-	-3.0	<-3.5
RIVER	MEAN	LEVEL	373	371	369	367	365	363	361	359	357	355	353	146	349	347	345	343

SQUARE

MEAN SEA LEVEL

STATION 2 GAGE READING ST. LOUIS EQUIVALENT CALCULATIONS OF PROFILE CROSS SECTION

Results of Calculations for

Side Channel Crains

SIDE CHANNEL LENGTH = 1.72 MILES = 2.76 KILOMETERS

.....

DEFINITIONS	W WATED VOUNNE ACDE.ET	L = SHORELINE LENGTH, MILES A = WATER SURFACE AREA ACRES	DAS = DERIVATIVE OF WATER SURFACE A	RESPECT TO RIVER STAGE, ACRES	D = SHORELINE DEVELOPMENT, D = L/	A/V = RATIO OF WATER SURFACE AREA T	WATER VOLUME, I/MILE	L/A = RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, 1/MILE	
		L/A	44	54	73	56	116	165	186	267
		A/V	913	982	1131	1365	1636	3132	3239	3744
RS		٥	3.5	4.1	4.6	0.5	5.2	5.5	5.5	5.5
L PARAMETE		DAS	6.9	5.7	4.5	4.5	2.6	1.8	1.5	1.1
SIDE CHANNE		¥	52.7	41.4	30.1	21.3	15.1	8.8	5.5	2.2
		L	3.6	3.5	3.4	3.2	2.7	2.3	1.6	6.0
		>	305	222	140	82	49	15	0	ß
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	19.5	17.0	15.0	13.0	10.5	8.5	6.0	3.5
RIVER	WEAN	SEA	128	462	324	205	320	848	146	344

SQUARE FEET 3279 3279 3279 1710 1068 175 155 155 0 0

GAGE READING ST. LOUIS ST. LOUIS EQUIVALENT 19.5 13.0 11.0 8.5 6.5 6.5

AREA

RIVER STAGE, FT.

STATION 1

	DE	P T H C	LASS	RA	NGES					
>2-4 FT	- 4 -	6 FT	>6-10	1	>10-15	11	>15-20 F1		>20 FT	
ACRES X	ACR	ES X	ACRES	*	ACRES	*	ACRES 1	-	ACRES	×
10.1 18	. 90	0 14	13.9	25	8.2	14	8.0	-	0.0	0
8.7 20	1	3 16	10.4	23	5,2	12	0.5	_	0.0	0
7.4 23	.0	6 20	7.0	21	2.3	~	0.2		0.0	0
5.8 25	5.	3 23	5.4	18	0.6	2	0.0	0	0.0	0
4.1.25	3.	2 20	2.3	14	0.3	2	0.0		0.0	0
2.3 26	1.	14	0.3	5	0.0	D	0.0	0	0.0	0
1.4 25	.0	7 13	0.2	r	0.0	0	0.0	0	0.0	0
0.5 21	.0	2 10	0.1	2	0.0	0	0.0	0	0.0	0

CALCULATED DEPTH CLASS RANGES

CALCULATIONS OF PROFILE CROSS SECTION

19.0 17.0 15.0 MEAN SEA SEA JEVEL 358 356 356 356 356

SQUARE FEET 591 320 107

STATION 3 GAGE READING ST. LOUIS EQUIVALENT

SQUARE FEET 1519 1051 695 410 196 58 58

GAGE READING 31. LOUIS 51. LOUIS 19.5 17.0 17.0 17.0 15.0 15.0 15.0 15.0 15.0 15.0 15.5 10.5 8 6.0

STATION 2

MEAN SEA LEVEL

Results of Calculations for Side Channel Liberty

A. Side Channel: Liberty

SIDE CHANNEL LENGTH . 2.81 MILES = 4.52 KILOMETERS

		DEFINITIONS	U - WATER VOLUME ADRE-FT		L = SHURELINE LENGIN, MILES	A = WATER SURFACE AREA, ACRES	DAS = DERIVATIVE OF WATER SURFACE AREA WITH	RESPECT TU RIVER STAGE, AURESPET	D = SHORELINE DEVELOPMENT, D = L/[2(mA) ¹²]	A/V = RATIO OF WATER SURFACE AREA TO	WATER VOLUME, I/MILE	L/A = RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, I/MILE					
		1/1	27	30	33	35	38		:	47	15	58	67	72	87	116	133	.0.
		A/4	342	361	385	417	+50	520	290	701	932	066	1362	1386	1459	1650	1846	TIRD
ERC		a	4.2			4.8	5.0	5.1	5.4	*.*	5.6	¢.\$	6.2	5.4	• . 8	4.4	1	4 4
FI PARAWET		DAS	7.6	9.9	5.6	4.9	4.6	£.4	4.8		6.5	E.B.	10.0	10.9	11.9	10.3	1.9	
CIDE CHANN		A	184.0	170.6	157.2	145.6	135.8	126.0	117.0	108.0	1.96	81.3	60.5	45.1	23.7	11.0	7.1	+ 1
		Ţ	7.9	0.0	0.0	1.0	8.1	8.1	8.0	7.9	7.7	7.3	4.9	1.5	3.2	2.0	1.5	0 0
		1	2838	2497	2156	1845	1561	1278	1046	814	610	434	258	172	86	35	20	v
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	26.0	24.0	22.0	21.0	1.4.	14.0	14.0	12.0	5.0	7.0	5.0	2.5	0.0	-2.0	<-3.5	
RIVER	WEAN	SEA. LEVEL	363	361	909	357	355	353	351	349	347	345	343	341	339	337	335	2.7.2

CALCULATED PARAMETERS

AREA

RIVER STAGE, FT.

STATION 1

R STAGE	E.					DEPT	C H	LASS	RA	NGES					
GAGE	READING	2-0	1.5	>2-+	1.5	>4-6	1.1	>6-10	11	>10-13	11	>15-20	1.1	>20	1
EQUI	VALENT	ACRES	*	ACRE	*	ACRES	*	ACRES	*	ACRES	×	ACRES	*	ACRES	*
2		8.9	5	15.6	•	11.4	•	19.4	11	22.2	12	35.4	41	70.7	39
2	0.10	* . 6	5	13.3	•	10.5	•	18.7	11	27.5	16	43.1	52	48.8	28
2	0.2	6.6	•	10.9	~	9.5	•	1.8.1	11	32.7	21	50.9	25	26.9	
2	0.15	9.6	2	9.5	•	9.2	•	20.3	• 1	39.2	27	£.0.	12	13.4	•
-	0.8	P. 0	1	9.1	-	5.6	1	25.3	18	47.0	34	29.4	21	8.4	0
-	0.9	8.8	1	8.7	~	6.7		30.3		54.8	54	12.5	10	3.4	P
1	4.0	5.9	80	11.0	•	13.9	12	36.2	30	37.9	32	9.9	~	2.2	~
-	.2.0	10.1		13.3	12	18.1	16	42.1	38	21.0	61	5.0	•	0.9	-4
	5.6	12.0	12	16.5	11	19.4	20	37.6	80	10.0	11	2.5	~	0.2	0
	7.0	15.2	18	20.6	5.	1.81	21	22.6	27	6.9		1.4	~	0.1	0
	5.0	18.4	26	24.6	33	10.7	24	2.6	11	3.1	•	0.3	0	0.0	0
	5.5	14.1	59	16.2	33	11.0	22		11	2.0		0.2		0.0	0
	0.0	6.6	37	7.7	58	5.2		3.2	12	0,8		1.0		0.0	0
'	-2.0	6.6	6.*	3.0	22	2.0	13	1.7	12	0.2	~	0.0	•	0.0	0
.>	3.5	4.2	20	2.0	54	1.2	• .	6.0	10	0.1		0.0	-	0.0	0
		1.8	52	1.0	30	•.0	13	1.0	-	0.0	0	0.0	0	0.0	0

SQUARE FEET FEET 9212 9212 9212 5255 4625 4625 4625 4625 1239 1212 12135 135 536 135 536 135 536 135 536 135 536

STATION 2 CAGE READING ENT.LOUIS ENT

(Sheet 1 of 6)

CALCULATIONS OF PROFILE CROSS SECTION

CARE READING CARE READING 817. LOUS 817. LOUS

STATION 3
B. Side Channel: Liberty, Pool 1

SIDE CHANNEL LENGTH . 3.11 MILES = 5.00 KILOMETERS

	DEFINITIONS	V = WATER VOLUME, ACRE-FT 1 = SHOBELINE (ENGTH WHEES	A = WATER SURFACE AREA, ACRES	UAS = DEKIVALIVE UP MALER SURFACE AREA WIGH RESPECT TO RIVER STAGE, ACRES/FT	D = SHORELINE DEVELOPMENT, D = L/[2(a A)14]	A/V = RATIO OF WATER SURFACE AREA TO	WATER VOLUME, I/MILE	L/A = RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, I/MILE
-			LIA	27	30	33	35	38	1.
77.00 FEE			A/V	342	361	385	417	459	520
	SS		0	4.2	4.4	4.6	4.8	0.5	1.5
KILOMETERS	L PARAMETE		DAS	7.6	6.9	6.2	5.4	4.7	•.0
• 0.18	SIDE CHANNE		A	184.0	170.6	157.2	145.6	135.8	126.0
HILES			ы	7.9	9.0	0.0	8.1	8.1	8.1
UTH = 0.11			٨	2838	2497	2156	1845	1561	1278
RAGE CHANNEL	STAGE, FT.	GAGE READING	EQUIVALENT	26.0	24.0	22.0	21.0	18.0	16.0
AVE	RIVER	MEAN	LEVEL	363	361	329	357	355	353

	200	210	
ŝ	1	4	
*	-	JUN	
	0000	2 LIN	
-	5	5	
-		-	
		3	
-	-	2	
1	2	S	

MEAN	GAGE READING	0-2 6	-	>2-4 FT		>4-6 FT	×	9-10	1.	>10-15	1	>15-20	11	>20 F	-
EVEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES .	AC	CRES	*	ACRES	*	ACRES	*	ACRES	×
363	26.0	8.9	5	15.6		11.4 6	15		11	22.2	12	35.4	61	70.7	61
361	24.0	4.9	5	13.3	•	10.5 6	1	2.7	11	27.5	16	43.1	52	48.8	28
359	22.0	6.6	•	10.9	1	9.5 6	16	1.1	11	32.7	21	50.9	32	26.9	11
357	81.0	6.6	2	9.5	•	9.2 6	20	5.0		39.2	27	46.3	11	13.4	•
325	18.0	6.9	2	9.1	~	9.5 7	2	£ . 5	18	47.0	*2	29.4	12	8.4	0
353	16.0	8.8	1	8.7		9.7 8	30	5.0	54	54.8	54	12.5	10	3.4	m

(Continued)

(Sheet 2 of 6)

C. Side Channel: Liberty, Pool 2

SIDE CHANNEL LENGTH = 0.45 MILES = 0.72 KILOMETERS

AVERAGE CHANNEL WIDTH = 0.06 MILES = 0.10 KILOMETERS = 319.00 FEET

DEFINITIONS	V - WATER VOLINE ACRESET	L = SHORELINE LENGTH, MILES	DAS = DERIVATIVE OF WATER SURFACE AREA WITH	RESPECT TO RIVER STAGE, ACRES/FT	D = SHORELINE DEVELOPMENT, D = L/(2(+A))	A/V - DATIO OF WATER SURFACE AREA TO	WATER VOLUME. 1/MILE	1 /A = RATIO OF SHORFI INF I FNGTH TO	WATER SURFACE AREA. I/MILE	
		1/1	90	86	56	103	106	116	124	1+1
		A/V	833	930	1119	1306	1317	1356	1400	1507
RS		•	3.0	3.0	3.0	2.7	2.2	1.7	1.6	1.4
L PARAMETE		DAS	0.8	1.0	1.3	1.3	1.2	1.1	0.7	•.0
SIDE CHANNEL		A	11.2	+ 6	7.7	5.8	3.8	1.7	1.3	0.8
		ч	1.4	1.3	1.1	6.0	0.6	0.3	0.2	2.0
		٨	71	54	36	23	15	1	5	m
T STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	14.0		0.01		0.1			0.0
RIVER	MEAN	SEA LEVEL	161	.91	141	147	44	2.92	141	339

CALCULATED PARAMETERS

RIVER	STAGE, FT.				DEP	H	CLAS	8	ANGES					
MEAN	GAGE READING	0-2 FT	>2-4 F	-	>4-6	11	>6-10	11	>10-15	L	>15-20	57	>20 F	-
SEA	ST. LOUIS EQUIVALENT	ACRES &	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	-
		1 4 15	1.5	+1	1.6	15	3.9	37	1.5	14	0.5		0.1	-
323	0.01				5.1		2.8	30	1.1	12	0.3	•	0.1	
ter	14.0		10				1.6	21	0.7	•	0.2	~	0.0	-
349	12.0	AC 24			1.0	20	0.0	15	• • 0	•	1.0	~	0.0	-
1+5	5.6	00 00 1				20	9.0	15	0.3	-	0.1	-	0.0	
C+5	0					18	5.0	15	0.1	5	0.0	-	0.0	-
2.2				10	E.0	17	0.2	15	1.0	5	0.0	-	0.0	-
1+5		4 43	2.0	42	1.0	15	1.0	41	0.0	4	0.0	0	0.0	

(Continued)

CALCULATED DEPTH CLASS RANGES

(Sheet 3 of 6)

D. Side Channel: Liberty, Pool 3

SIDE CHANNEL LENGTH = 2.66 MILES = 4.28 KILOMETERS

DEFINITIONS	V = WATER VOLUME, ACRE-FT
ßS	20.00 FEET
= 4.28 KILOMETE	KILOMETERS =
MILES	0.19
= 2.66	HILES =
ENGTH	= 0.12
SIDE CHANNEL I	CHANNEL WIDTH
	AVERAGE

	S	IDE CHANNEL LAN	AMELERS	
11		A DA	a 5	A/V
		14.7 3.	4.4	502 573
			4.8	682

x

5
œ
LLI.
+
LLI
2
A
5
2
-
0
m
-
4
3
-

RIVE	R STAGE, FT.						1							
MEAN	GAGE READING	0-2 F	-	>2-4 F	-	>4-6 FT	>6-10	FT	>10-15	11	>15-20	11	>20 F	+
SEA	ST. LOUIS EQUIVALENT	ACRES	*	ACRES	*	ACRES X	ACRES	×	ACRES	*	ACRES	*	ACRES	×
141	16.0	5.7	•	5.7		8.1 7	26.3	22	53.1	45	12.1	10	3.2	3
145	14.0	7.8	1	9.2		12.3 11	33.4	30	36.7	33	8.4		2.0	N.
349	12.0	4.6	8	11.3	11	16.6 16	40.4	39	20.3	50	8.4	-	0.0	-1

CALCULATED DEPTH CLASS RANGES

(Continued)

(Sheet 4 of 6)

E. Side Channel: Liberty, Pool 4

SIDE CHANNEL LENGTH = 0.92 MILES = 1.49 KILOMETERS

AVERAGE CHANNEL WIDTH = 0.12 MILES = 0.20 KILOMETERS = 656.00 FEET

	01114 N	L/A L=SHORELIN	62 DAS - DERIVATIVE D	71 RESPECT TO RIV	87 D SHORELINE DEVEL	99 . W. BATIO OF WATED	104 MATER VOLUME	118 1 /A - BATIO OF SUDDE	130 WATER SURFACE	155	
		A/V	1170	1348	1760	2365	2773	5720	6261	1795	
Sa Sa		٩	3.4	3.7	0.4	3.8	3.2	2.7	2.6	2.5	
PARAMETE		DAS	2.3	2.5	2.7	2.6	2.3	1.9	1.4	8.0	
UDE CHANNEL		A	25.3	20.8	16.4	12.2	8.1	4.1	3.0	2.0	
Ĵ		г	2.4	2.3	2.2	1.9	1.3	8.0	0.6	0.5	
		٨	114	82	49	27	15	*	n	1	
TAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	10.5	6.8	0.9	4.0	1.5	-1.0	-3.0	<-3.5	
RIVER S	MEAN	SEA	348	346	344	342	340	358	356	354	

NON!	21 HUE, 11.					2			2		2				
AN	GAGE READING	0-2 F	-	>2-4	-	>4-6	L	>6-10	1	>10-15	11	>15-20	51	>20 F	-
KEL	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×	ACRES	×	ACRES	×
8	10.5	2.4	12	3.9	19	5.2	25	7.0	34	1.9	0	0.2	-1	0.1	0
9	5.8	3.0	18	3.8	22	¥.3	25	4.6	27	1.2	2	0.2	-	0.0	0
4 4	0.9	3.6	27	3.6	27	3.3	25	2.1	16	0.6	4	0.1	-	0.0	0
42	4.0	3.4	35	2.9	30	2.3	24	0.7	80	0.2	2	0.0	0	0.0	0
40	1.5	2.4	41	1.6	27	1.2	21	• • •	80	0.1	2	0.0	0	0.0	0
38		1.5	68	0.3	15	0.1	2	0.2	80	0.1	2	0.0	0	0.0	0
35	0.5-	6.0	66	0.2	16	1.0	8	0.1	0	0.0	5	0.0	0	0.0	0
34	5-3-5	4.0	58	1.0	19	0.1	14	0.0	2	0.0	2	0.0	0	0.0	0

(Sheet 5 of 6)

(Continued)

Table 10 (Concluded)

F. Side Channel: Liberty, Pool 5

SIDE CHANNEL LENGTH = 1.74 MILES = 2.79 KILOMETERS

(21.00 FEET
KILOMETERS =
0.19
0.12 MILES =
#101H =
CHANNEL
AVERAGE

DEFINITIONS	WATER VOLUME ACRE.ET	WATER VOLUME, ACHER I SHORELINE LENGTH, MILES WATER SURFACE AREA ACRES	DERIVATIVE OF WATER SURFACE AREA WITH	RESPECT TO RIVER STAGE, ACRES/FT	SHORELINE DEVELOPMENT, D = L/[2(#A) ^{h2}]	RATIO OF WATER SURFACE AREA TO	WATER VOLUME, 1/MILE	RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, 1/MILE		
		LIA	39 DAS	45	52 0	58 AV	99	105 L/A	117	149	-
	And and a second se	A/V	704	624	1062	1298	1312	1388	1469	1755	
RS		a	3.7	4.0	¥.3	4.3	3.8	3.4	3.2	3.0	TERE
L PARAMETE		DAS	2.1	6.0	10.0	11.7	11.1	10.5	6.9	3.2	ATED PAPAN
SIDE CHANNE		A	71.5	63.1	54.7	42.1	25.3	8.4	5.7	3.0	TIN IN
		ы	4.3	4.4	4.4	3.8	2.6	1.4	1.0	0.7	
		٨	536	404	272	171	102	32	21	6	
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	10.5	5.8	1.9	0.4	1.5		.3.0	<-3.5	
RIVER	MEAN	SEA	348	346	344	342	141	451	336	334	

	+	*	0	0	0	0	0	0	0	0
	>20 F	ACRES	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0
	51	*	S	2	-1	0	0	0	0	0
	>15-20	ACRES	2.3	1.4	0.6	0.1	0.1	0.0	0.0	0.0
	51	×	13	10	•	4	2	-	-	-
GES	>10-15	ACRES	9.6	0.0	3.7	1.8	1.0	0.2	0.1	0.0
RAN	11	×	48	36	20	11	11	12	11	80
LASS	>6-10	ACRES	36.8	24.4	12.1	5.0	3.2	1.5	6.0	5.0
н	F	*	18	20	22	23	22	15	15	13
DEPT	>4-6 5	ACRES	15.4	13.4	13.3	11.0	6.4	1.8	1.2	9.0
	-	×	1:	19	30	90	33	23	23	26
	>2-4 5	ACRES	8.0	13.0	18.0	16.9 -	9.8	2.7	1.9	1.1
	-	*	8	13	20	26	30	49	50	52
	0-2 5	ACRES	6.1		12.1	121		5.8	4.0	2.3
STAGE, FT.	GAGE READING	EQUIVALENT	10.5							5-5-4
RIVER	MEAN	LEVEL	148	146	144	C 4 2	140	338	336	334

CALCULATED DEPTH CLASS RANGES

(Sheet 6 of 6)

Results of Calculations for

Side Channel Jones

4.77 KILOMETERS * 2.97 MILES = SIDE CHANNEL LENGTH

-	
-	
ш	
-	
L.	
-	
4	
m	
•	
0	
-	
~	
9	
-	
ŝ	
~	
ш	
-	
L L L	
T	
-	
0	
-	
-	
×	
-	
· ·	
-	
-	
0	
10	
L L L	
-	
-	
r	
~	
0	
-	
T	
-	
0	
-	
-	
-	
u	
Z	
-	
•	
T	
-	
0	
-	
200	
LLU.	
(3	
-	
~	
u.	
ü	
VER	

WETERS		D A/V L/A	3.8 408 24 V. WATED V	3.9 453 25 VENTER VI	4.0 518 26 L=SHUHELIN	4.1 595 27 A # WATER SUR	4.2 692 29 DAS = DERIVATIVE	4.3 858 32 RESPECT T	4,8 953 38 D = SHORELINE	5.3 1153 48 A/V = RATIO OF W	5.4 1395 58 WATER VOL	5.1 1492 66 L/A = RATIO OF S	4.9 1858 89 WATER SUR	3.7 1769 87	2.5 1576 81	1.8 1448 74	1.7 1811 78	1.5 3726 87
SIDE CHANNEL PAR		A DAS	210.3 4.	199.9	189.5 4.	176.9 5.0	162.1 8.	147.4 10.1	120.5 11.	93.5 12.	68.9 12.	46.5 9.	24.1 7.	16.7 5.	9.4 3.1	5.0 1.	3.7 1.	2.5 0.
		د ۲	2725 7.8	2329 7.7	1933 7.6	1569 7.5	1238 7.4	906 7.3	667 7.1	428 7.0	261 6.2	165 4.8	68 3.4	50 2.3	31 1.2	18 0.6	11 0.5	3 0.3
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	24.0	0.02	0.00	17.5		5.11	5.11	5.0	0.6	5.0	5.0			5.2.5		
RIVER	MEAN	LEVEL	358	356	354	352	350	348	346	344	342	340	358	336	354	332	330	328

	-	×	10	8	5	m	2	-	-	0	0	0	0	0	0	0	0
	>20 F	ACRES	21.6	15.1	8.7	4.8	3.4	2.0	1.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	11	*	28	21	13	•	5	~	2	2	~	~	0	•	•	•	0
	>15-20	ACRES	1.92	41.9	24.7	13.6	8.5	3.5	2.9	2.3	1.6	0.8	0.1	0.0	0.0	0.0	0.0
	1	×	32	32	32	29	21	11	•	•	5	•	•	80	5	-	-
ANGE	>10-15	ACRES	66.2	4.29	60.5	50.5	33.3	16.1	11.0	6.0	3.2	2.6	2.0	1.2	•.0	0.0	0.0
S R	11	×	-1	20	28	31	31	30	24	15		10	13	14	16	17	12
CLAS	>6-10	ACRES	28.9	40.7	52.5	\$. 55	40.4	43.4	28.7	13.9	. 5.8	4.3	2.8	2.1	1.4	0.8	4.0
H	t	*	0	~	8	11	17	24	25	26	26	22	1	11	21	33	27
DEP	>+-6	ACRES	13.5	14.2	15.0	19.3	27.3	35.2	30.0	24.8	18.1	9.8	1.5	1.7	1.9	1.6	6.0
	F	*	5	•	-	10	15	20	21	22	22	20	13	14	17	22	23
	>2-4	ACRES	10.3	11.7	13.1	17.1	23.6	30.0	25.4	20.8	15.4	9.1	2.9	2.2	1.5	1.0	0.8
	L.	*	2	•	1	•	10	11	18	27	36	41	15	52	40	27	37
	0-2	ACRES	10.3	12.2	14.0	15.3	16.0	16.7	21.2	25.6	24.8	18.6	12.4	7.9	3.5	1.3	1.3
STAGE, FT.	GAGE READING	EQUIVALENT	24.0	22.0	20.0	17.5	15.5	13.5	11.5	9.5	7.0	5.0	5.2	0.0	-3.0	6-3-5	
RIVER	MEAN	LEVEL	358	356	354	352	350	348	346	344	342	340	3.58	336	334	332	350

CALCULATIONS OF PROFILE CROSS SECTION

CALCULATED DEPTH CLASS RANGES

SQUARE FEET 55779 40734 4034 4034 4034 4034 10539 11657 751 751 1167 751 1167 751 1167 751 1167 751 STATION 2

STATION 3

T

GAGE READING ST. LOUIS EQUIVALENT 22.5 21.0 19.0 19.0 12.5 12.5 10.5

Т

	STATION 1	
RIVE	R STAGE, FT.	AREA
MEAN SEA EVEL	GAGE READING ST. LOUIS EQUIVALENT	SQUARE
	24.0	8666
	22.5	7636
	21.0	6635
100	18.0	5665
120	16.0	4725
	14.0	3816
40	12.0	2954
344	10.0	2148
342	8.0	1397
340	5.5	785
338	3.5	112
336	1.0	0

Results of Calculations for

Side Channel Picayune

			STATION 1	RIVER STAGE, FT. AREA	WEAK Calify Relations WEAK Calify Relations LIPEL Cloudent March Theodoin	STATION 2	NEAN GAGEREADING SEA ST LOUIS SOUARE	LEVEL EQUIVALENT FEET	343 31.0 5974	359 560 400 359 560 400 359 560 400 359 560 400 359 560 400 359 560 400 350 560 400 350 560 400 350 560 400 350 560 400 350 560 400 350 560 400 350 560 400 350 560 300 350 560 300 350 560 300 350 560 300 350 560 300 350 560 300 350 560 300 360 300 300 360 560 300 360 560 300 360 560 300 360 560 300	STATION 3	RFA Date: RFACM65 State: RFACM65 RFA Date: RFACM65 State: RFACM65 RFA State: RFACM65 State: RFACM65 RFA State: RFACM65 State: RFACM65 State: RFACM65 State: RFACM65 State: RFACM65 <td< th=""></td<>
SIDE CHANNEL LENGTH = 7.83 HI AVERAGE CHANNEL HIDTH = 0.00 HILES =				SNOTINIZA	CONTINUES CONTRACTOR 1 STATE AND A THE AND A THE A STATE AND A THE AND A THE A A STATE AND A THE AND A THE A A STATE AND A THE AND A THE A A STATE A THE ADDA A THE A A STATE A THE ADDA A THE A THE A A STATE A THE ADDA A THE A THE A A STATE A THE A THE ADDA A THE A THE A A STATE A THE A THE A THE A THE A A STATE A THE A THE A THE A THE A A STATE A THE A THE A THE A THE A THE A A STATE A THE A THE A THE A THE A THE A A STATE A THE A THE A THE A THE A THE A A STATE A THE A THE A THE A THE A THE A THE A A STATE A THE A A STATE A THE			11 020 11 02-014	ACRES X ACRES X	42.3 42.4 2.47.0 5.4 42.3 42.4 2.47.0 5.4 49.7 12 2.44.5 6.4 49.4 12 2.44.5 6.4 10.4 2.3 127.5 5.4 10.4 2.3 127.5 5.2 10.4 2.3 127.5 5.2 10.4 2.3 2.45.5 2.6 10.4 2.3 2.45.5 2.6 10.4 2.3 2.45.5 2.6 10.4 2.3 2.45.5 2.6 10.4 2.3 2.45.2 2.6 11.4 2.4 2.7 2.4 11.4 2.4 2.7 2.4 11.4 3.7 2.6 1.4 11.4 3.7 2.4 5.4 11.4 3.7 2.6 1.4 12.5 5 1.4 5.4 12.6 5 5.4 5.4 12.6	NN 000	
	A/V L/A	273 28	317 317 330 330	373			S RANGES	14 61-010 14	X ACRES X		10.01	
IEL PARAMETERS	a s va	5.0				LATED PARAMETERS	EPTH CLAS	-0 -10	RES X ACRES		21.12 20 21.1	
SIDE CHANN	1	19.3 430.4	10.10 201.0	16.5 316.2		CALCU	0	>2-4 51 >2	ACRES & AC	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	27.4 21 29	
_	>	8560	26224	5064				1. 2-0	ACRES &	1 - L B L B B B B B B B B B B B B B B B B	34.8 27	20000000000000000000000000000000000000
GAGE READING	EQUIVALENT	0.15	0.45	17.5	ດ ວ.ສ. ສ.ສ. ສ.ສ. ດ້າງຊີ 6 ທີ່ Mo ດ້າງ ກ ບັນ		LTAGE, FT.	GAGE READING	EQUIVALENT	20000000000000000000000000000000000000	11	°
WEAN	SEA LEVEL	343	555	155	999 999 999 999 999 999 999 999 999 99		RIVER S	NEAN	LEVEL	84999999999999999999999999999999999999	315	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	AREA	2014/96 FEET FEET FEET FEET FEET FEET FEET FEE		2004AE FEET 5627 5151 5151 5151 5153 5153 5153 5153 515		SQUARE	4337	19110 19110	1341	212	252	141	4
* unity in	STAGE, FT.	att. Bit.2000 51. Const.2001 52. Con	STATION 2	GAGE READING FOUNDER EQUIVALENT K 1.0015 K 6 1 0 K 6 0	STATION 3	GAGE READING ST. LOUIS EQUIVALENT	28.0	1.52	0.0	14.0	0.0	6.5	1.5
	RIVER	MEAN MEAN 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4		MEAR SEA SEA JEVEL J43 345 345 345 345 345 345 345 345 345 3		MEAN SEA LEVEL	343	357	353	349	325	323	319

Results of Calculations for

Side Channel Cape Bend

SIDE CHANNEL LENGTH = 3.67 MILES = 5.91 KILONETERS

4	J
-	1
	ł
~	1
	1
-	
~	1
~	1
	1
-	1
	1
5	1
a.	1
-	1
	1
-	1
	1
· ·	1
~	1
×	1
2	1
0	3
•	1
-	1
-	1
	J
	1
	í
-	1
	1
-	1
-	1
×	1
1	1
2	1
	1
0	1
	1
100	1
•	
	ł
-	1
0	1
-	J
	ł
	ł
in	1
z	
z	I
-	1
T.	1
-	1
112	1
	1
	1
α	1
w	1
	1
-	1

RIVER	STAGE, FT.			CIDE CHANN	T PADANET	FRC			
1EAN	GAGE READING			אותב השאות					
SEA	ST. LOUIS EQUIVALENT	*	1		DAS	0	A/V	1/1	
133	24.0	12513	12.8	972.2	50.5	2.9	410	8	DEFINITIONS
331	22.5	10801	1.51	879.8	47.1	3.2	430	10	
329	20.0	9006	13.4	787.3	43.6	4.5	457	11	V - WATER VOI IMP ACRE-FT
327	18.0	7567	13.3	703.5	39.9	3.6	491	12	I CUDELINE I PACTU MILES
125	16.5	6238	12.8	626.4	36.0	3.7	332	13	
323	14.5	4908	12.3	553.3	32.1	3.7	566	14	A = WAIEN SURFACE AREA, AUNES
121	12.0	3958	11.8	495.2	31.6	3.8	661	15	DAS = DERIVATIVE OF WATER SURFACE ARE
319	6.9	3007	11.3	437.2	31.2	3.9	768	17	RESPECT TO RIVER STAGE, ACKES/F
317	6.5	2196	11.0	373.6	32.4	1.4	868	19	D = SHORELINE DEVELOPMENT, D = L/(2)
315	4.0	1524	10.8	304.4	35.3	4.5	1054	23	A'V = RATIO OF WATER SURFACE AREA TO
313	5.1	853	10.6	235.2	30.3	4.9	1456	29	WATER VOLUME, L'MILE
115	5.0-	583		162.3	32.4	4.8	1469	33	L/A = RATIO OF SHORELINE LENGTH TO
309		314	5.9	\$. 68	26.4	4.7	1504	24	WATER SURFACE AREA, L'MILE
307	(-3.5	148	•••	44.0	19.0	£	1567	50	
305		87	2.5	26.3	12.4	3.4	1587	62	
303		26	1.1	8.9	5.1	2.6	1702		
101		11	8.0	0.9	3.6	4.5	1620	87	
662				1.6	0.0	2.0	2205	106	

STATION 2

AREA

RIVER STAGE, FT.

STATION 1

VER	STAGE, FT.					DE	H	CLAS	æ	ANGE	5				
-	GAGE READING	0-5	1.	>5-4	-	9-+4	E	>6-10	:	>10-15	11	\$15-20	1.	>20 F	-
	EQUIVALENT	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×
-	24.0	84.2	•	105.8	11	63.0	1	157.8	16	146.1	15	167.3	17	242.3	25
	22.5	72.1	•	6.46	11	74.1	•	138.2	16	154.6	18	170.6	• 1	172.0	20
0	20.0	5.9.9	•	84.0	11	65.2	11	118.6	15	163.0	21	174.0	22	101.8	13
1	18.1	57.0		73.4	10	82.6	12	115.3	16	169.0	*2	151.8	22	\$. 4	80
5	16.5	63.4	10	65.9	10	66.3	11	128.2	20	172.3	27	104.1	17	32.8	5
-	14.5	6.96	13	52.5	•	50.0	•	141.0	52	175.7	32	56.4	10	10.3	2
	12.0	64.1	13	57.9	12	10.4	+1	132.9	27	128.0	26	37.0	-	7.0	-1
0	5.6	58.3	13	63.2	+1	1.06	21	124.8	28	80.2	18	17.7	•	3.8	-
2	5.5	64.2	17	63.7	17	88.6	54	104.3	28	46.7	12	6.9	~	1.8	0
5	4.0	81.8	50	59.2	61	64.1	21	71.3	23	27.4	•	4.5	-	6.0	0
	5.1	5.99	14	54.7	23	39.7	16	38.4	16	8.0	5	2.2	-1	0.1	0
	5.01	72.8	42	\$0.3	23	26.9	16	25.0	15	5.7	•	1.3	-	0.0	0
•	11.5.	49.4	44	25.8	25	14.2	+1	11.6	11	3.3	5	0.5	•	0.0	0
~	6-1-2	27.6	20	15.3	28	0.5	12	4.2	80	1.7	•	0.0	•	0.0	0
15		16.3	05	0.0	27	5.9	12	2.9	•	6.0	m	0.0	•	0.0	0
5		5.1	49	2.2	22	1.4	13	1.5	15	1.0	-	0.0	•	0.0	0
		3.5	20	1.7	23	0.0	13	0.9	13	0.0	0	0.0	0	0.0	0
•		2.0	52	1.1	2.	0.5	12	0.3		0.0	0	0.0	•	0.0	0

STATION 3

CALCULATED PARAMETERS

SEA LEVEL	GAGE READING ST. LOUIS EQUIVALENT	SQUARE
333	23.0	9556
331	22.0	6156
329	19.0	3527
327	17.5	1699
325	15.5	417
323	13.5	617
321	10.5	0

Results of Calculations for

Side Channel Santa Fe

SIDE CHANNEL LENDTH = 4.87 MILES = 7.84 KILOMETERS AVERAGE CHANNEL KIDTH = 0.22 MILES = 0.36 KILOMETERS = 1183.23 FEET

KU.	214GE, FT.			SIDE CHANN	IFI PARAMET	FRC			
	GAGE READING								
	ST. LOUIS EQUIVALENT	>	-	4	DAS	D	A/V	1/1	
	55.0	15.578	12.8	737.8	6.0	3.4	253	11	
	30.0	14616	12.9	729.1	5.4	3.4	263	11	DEFINITIONS
	27.5	13655	1.51	720.5	6.9	3.5	275	12	
	52.0	12812	13.2	705.0	11.8	3.6	290	12	V = WATER VOLUME ACRE-FT
	22.5	11503	13.4	682.7	11.3	3.7	313	13	I - CHORPLINE ENCTH MILES
	21.0	10189	13.5	660.5	10.7	8.5	342	13	L - STURLING LENGTH, MILLS
	19.0	8978	4.5.4	642.3	7.6	3.8	378	13	A = WATER SURFACE ANEA, ACKES
	17.5	7766	13.1	624.0	8.8	3.8	424	14	I DAS = DERIVATIVE OF WATER SURFACE AREA
	15.5	6600	4.5.4	605.8	8.4	3.9	485	14	HESPECT TO RIVER STAUE, AURENT I
	13.5	5479	13.6	587.6	8.5	4.0	566	15	C = SHORELINE DEVELOPMENT, D = L/[2/mA
	21.0	4358	8.5.	559.4	6.7	4.4	069	16	A/V = RATIO OF WATER SURFACE AREA TO
	8.5	3567	19.0	535.3	24.3	4.7	839	18	WATER VOLUME, I/MILE
	6.5	2375	2.91	1.106	39.9	5.2	1114	21	L/A = RATIO OF SHORELINE LENGTH TO
	4.0	1578	15.3	414.2	49.1	5.5	1386	24	WATER SURFACE AREA, L'MILE
	1.5	974	12.2	274.5	61.9	5.5	1488	28	
	-1.0	570	0.1	134.0	54.7	5.6	1921	43	
	-3.5	226	5.6	81.8	34.8	3.9	1910	44	
	<-3.5	82	2.1	28.9	14.8	5.3	1858	46	
		9	0.3	2.2	3.9	1.6	1354	56	
		5	0.3	1.7	2.1	1.7	1650	114	
		2	0.3	1.1	0.3	1.9	2858	157	

N CH	STADE, TI-					-									
	GAGE READING	1-2 6		>2-4	11	> 1-6	1.	>6-10	1.3	>10-15	11	>15-20	1.1	>20 F	-
1	EQUIVALENT	ACRES)e	ACRES	*	ACRES	2.	ACRES	×	ACRES	*	ACRES	*	ACRES	×
10	35.0	2.2	-	:5.4	2	14.1	2	45.7	0	45.4	0	43.5	•	538.2	76
	50.0	11.1		19.4	-	15.3	~	42.0	9	44.7	•	61.5	•	502.8	72
0	27.5	15.0		23.4	5	13.6	m	38.4	\$	43.9	•	79.5	12	467.4	68
-	25.0	17.1	5	24.0	4	14.2	2	36.4	5	52.5	8	135.1	02	385.4	58
15	22.5	17.8	5	21.3	2	1.01	*	36.1	•	70.5	11	228.3	51	256.8	
K	21.0	11.6	5	18.5	2	11.0	10	35.8	9	88.5	41	321.4	-	128.3	20
	19.0	10.7	5	6.21	-	20.1	1	51.5	60	181.7	30	239.2	6.	82.0	51
	17.5	19.4	~)	17.3	-	23.1	4	67.2	11	274.8	47	156.9	27	35.7	0
6	19.5	14.0	5	8.02	4	33.4	5	118.4	21	280.3	49	94.9	17	10.2	2
10	13.5	25.5		28.5	in	41.8	8	205.1	37	198.0	36	53.2	10	5.6	-1
-	11.0	29.5	0	36.2	1	55.3	10	291.9	54	115.7	22	11.5	N	1.0	0
	a	54.5	11	93.5	61	54.9	12	212.9	42	74.0	15	7.3	-	9.0	0
		5.1.8	11	150.7	52	65.5	14	133.9	53	32.4	2	3.1	-1	0.2	0
1	0.9	82.8	10	153.3	40	65.3	16	75.8	20	9.4	~	0.8	0	0.0	0
-	1.5	51.00	42	101.1	39	50.3	20	38.6	15	5.2	~	4.0	0	0.0	0
-	-1.0	1.18	11	49.0	38	37.2	53	1.4		1.0	-	0.0	0	0.0	0
-	-3.5	24.1	34	29.62	36	22.5	27	1.2	-	0.0	-	0.0	0	0.0	0
	5.1-2	15.5	40	10.3	53	1.8	22	6.0	~	0.2	-	0.0	0	0.0	0
~		3.5	94	9.0	•	4.0	*	0.0		0.0	0	0.0	0	0.0	0
-		4.5	08	N. 0	•	0.3	5	0.3	•	0.0	0	0.0	0	0.0	0
-		4.4	40	0.4	41	0.2	61	0.0	•	0.0	0	0.0	0	0.0	0

-		
	GAGE READING	
EA	ST. LOUIS	SQUARE
VEL	EQUIVALENT	HEET
23	37.5	26203
	32.5	24218
. 62	28.8	22237
51	26.0	20266
52	24.0	18310
23	22.1	16369
53	21.0	14448
0	18.5	12530
17	17.0	10633
15	15.5	8752
13	13.0	6169
	10.5	5138
60	8.5	3681
10	0.0	2494
5	3.5	1551
1.0	1.5	910
		402
0.5	-3.0	44
	5.2.1	C
-		
-	SIALIUNS	
W	GAGE READING	
3	ST. LOUIS	SQUARE
KE	EQUIVALENT	LEEL
53	35.5	24583
	30.0	22426
. 0	27.5	20476
r.	25.0	18655
u.	23.0	16937
M	21.0	15267
	19.5	13631
10	17.5	12031
1	16.0	10466
5	14.0	8936
	11.5	3672
-	0.6	6186
0	2.0	4984
11	4.5	3847
5	2.5	2777
M	0.0	1783
11	-3.0	890
	5-2-2	143

and the second states

Results of Calculations for Side Channel Billings

SIDE CHANNEL LENGTH . 1.34 MILES = 2.16 KILOMETERS

AVERAGE CHANNEL WIDTH = 0.21 MILES = 0.34 KILOMETERS = 1109.27 FEET

		D A/V L/A DEFINITIONS	2.3 539 16	2.8 589 2.0 VENTER VOLUME, ACHE-FI	3.2 669 25 L SHORELINE LENGTH, MILES	3.6 760 31 A = WATER SURFACE AREA, ACRE	4.0 048 37 DAS = DERIVATIVE OF WATER SURF	4.4 1024 46 RESPECT TO RIVER STAGE, A	4.6 1048 52 D = SHORELINE DEVELOPMENT, I	4.7 1096 64 AV = RATIO OF WATER SURFACE A	4.6 1188 77 WATER VOLUME, I'WILE	4.5 1353 87 L/A = RATIO OF SHORELINE LENGT	4.3 1943 107 WATER SURFACE AREA, 1/MIL	3.4 1925 109	2.5 1874 114	2.1 1874 132	2.1 2275 160	2.2 5231 233
I PARAMETER		DAS	8.9	8.9	0.6	1.6	9.1	9.1	8.0	6.9	5.6	4.2	2.8	2.2	1.6	1.1	0.7	0.3
SIDE CHANNE		4	163.9	146.1	128.4	110.6	92.9	75.1	58.1	41.0	28.6	20.8	13.1	8.7	4.4	1.9	1.3	0.7
		-	4.2	4.6	5.1	5.3	5.4	5.4	4.8	4.1	3.5	2.8	2.2	1.5	0.8	4.0	0.3	0.3
		>	1606	1310	1013	769	578	387	292	198	127	81	36	24	12	5	2	-1
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	23.0	21.5	20.0	18.0	16.5	14.5	12.0	10.0	0.0	5.5	3.5	1.0	-1.5	-3.5	<-3.5	
RIVER	MEAN	SEA	323	321	319	317	315	313	311	309	307	305	303	301	565	297	295	543

AREA

RIVER STAGE, FT.

STATION 2

STAGE, FT.					DE	HLd	CLAS	SR	ANGE	s				
GAGE READING	0-5	11	>2-4	11	>4-6	11	>6-10	11	>10-15	5	>15-20	F.	>20 1	+
ST. LOUIS EQUIVALENT	ACRES	×	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×
23.0	11.4	2	6.6		35.2	22	34.7	21	40.8	25	19.7	12	13.4	8
21.5	19.1	13	10.2	-	27.3	18	34.0	23	32.4	22	16.3	11	8.9	•
20.0	26.9	20	13.9	10	19.4	• 1	33.3	25	23.9	18	12.9	10	*.*	3
18.0	29.1	25	15.7	13	13.5	12	29.7	25	18.0	15	6.3	•	1.8	2
16.5	25.8	27	15.6	16	9.6	10	23.3	54	14.6	15	5.3	•	1.3	-
14.5	22.5	30	15.6	21	5.6	•	16.8	23	11.3	15	1.4	2	0.7	
12.0	15.9	28	12.8	22	6.7	12	13.2	23	7.3	13	1.1	~	4.0	-
10.0	5.6	23	10.1	25	7.8	19	9.6	23	3.4	8	0.8	2	0.1	0
8.0	6.1	21	7,8	27	6.9	54	6.5	22	1.3	4	0.6	~	0.0	0
5.5	6.4	30	5.8	27	4.0	19	3.8	18	1.0	5	0.3	-	0.0	0
3.5	6.6	49	3.8	28	1.2	•	1.1		0.7	5	0.0	0	0.0	0
1.0	4.2	48	2.5	28	6.0	10	0.0	•	0.4	5	0.0	•	0.0	0
-1.5	1.8	42	1.2	27	0.6	14	0.0	14	0.1	8	0.0	•	0.0	0
-3.5	0.6	33	0.5	25	4.0	20	4.0	21	0.0	0	0.0	0	0.0	0
<-3.5	0.6	45	0.3	26	0.2	14	0.2	15	0.0	0	0.0	0	0.0	0
		23	0 0	10	0 0	•		•	0 0	•				

CALCULATED DEPTH CLASS RANGES

-	EQUIVALENT	HEL
523	23.0	5598
321	21.5	4378
319	20.0	3362
317	18.0	6678
315	16.5	1724
313	14.5	1069
311	12.0	609
309	10.0	375
307	7.5	181
305	5.5	34
303	3.5	0
	STATION 3	
IEAN	GAGE READING	
SEA	ST. LOUIS	SQUARE
EVEL	EQUIVALENT	FEET
323	22.5	56.08
321	21.0	3604
319	19.5	2105
317	18.0	1138
315	16.0	616
313	14.0	410
311	12.0	247
309	9.5	124
307	7.5	44
305	5.5	17
303	3.0	0

1.4

Results of Calculations for Side Channel Buffalo

SIDE CHANNEL LENGTH = 2.02 MILES = 3.24 KILOMETERS

		DEFINITIONS	- WATER VOLINME ACRE-ET		- STURELINE LENGIN, MILES	. = WATER SURFACE AREA, ACRES	= DERIVATIVE OF WATER SURFACE AREA #	HESPECT TO RIVEN STAGE, ACRES/FT	= SHORELINE DEVELOPMENT, D = L/[2(mA)	= RATIO OF WATER SURFACE AREA TO	WATER VOLUME, L'MILE	= RATIG OF SHORELINE LENGTH TO	WATER SURFACE AREA, I/MILE					
		L/A	21	24	26	29 4	32 DAS	35	40	45 A/V	50	56 L/A	81	81	82	88	107	
		A/V	411	441	483	537	609	727	846	1069	1269	1247	1171	1230	1369	1651	1784	
r bc	C M	a	2.9	3.1	4.5	3.5	3.7	3.9	4.1	4.4	4.3	4.0	3.6	3.1	2.5	2.3	2.3	
PADAWCT	LIANAME	DAS	6.8	0.9	5.1	4.7	4.6	4.5	6.2	8.0	8.5	7.8	7.1	4.8	2.6	1.3	8.0	
CIDE CHANNE	SIDE CRANKE	Y	152.5	140.2	127.8	116.7	106.9	97.2	86.7	76.3	60.1	38.2	16.2	12.1	8.0	5.1	3.2	
		L	5.1	5.2	5.3	5.4	5.4	5.4	5.4	5.3	4.7	3.4	2.0	1.5	1.0	0.7	0.5	
		N	1958	1678	1398	1147	927	705	541	577	250	162	73	52	31	17	10	
STAGE, FT.	GAGE READING	ST. LOUIS EQUIVALENT	22.5	21.0	19.5	18.0	16.0	14.0	11.5	9.5	7.5	0.9	3.5	1.0	-1.5	-3.5	<-3.5	
RIVER	WEAN	LEVEL	318	316	314	312	310	308	306	304	302	300	548	246	544	262	240	

VER	STAGE, FT.					5	2	CEAD	2	U D M M M	2				
NN	GAGE READING	U-2 F	-	>2-4	1	>4-6	11	>6-10	-	>10-15	14	>15-20	F F	>20 F	1
E.	EQUIVALENT	ACRES	×	ACRES	×	ACRES	×	ACRES	*	ACRES	×	ACRES	×	ACRES	×
	22.5	3.1	~	20.8	14	10.2	1	19.6	13	26.2	17	53.8	92	16.8	1
	21.0	5.0	4	16.1	12	11.2	80	19.7	14	37.3	27	36.5	92	12.6	0
4	19.5	6.9	5	11.4		12.2	10	10.9	16	48.3	38	19.2	15	8.4	*
21	18.1	8.4	1	9.2	80	12.6	11	25.4	22	45.2	39	9.4	æ	5.3	5
0	1.91	1.6	•	5.6	•	12.5	12	36.2	34	27,8	26	7.1	1	3.4	10
8	14.1	10.9	11	9.6	10	12.4	13	47.0	4 9	10.5	11	4.8	5	1.5	CV.
90	11.5	12.9	13	17.2	50	1.21	15	31.0	36	8.2	10	3.4	4	6.0	-1
4	9.5	15.0	20	24.6	32	12.9	17	15.0	20	5.9	0	2.0	m	4.0	-1
N	7.5	13.8	53	23.3	39	11.0	8.	6.3	11	4.1	2	1.1	~	0.1	0
0	9.1	9.6	52	13.4	35	1.5	18	5.0	13	2.7	2	0.6	2	0.1	0
-	3.5	5.3	31	3.5	21	6.2	17	3.7	22	1.3	8	1.0	-1	0.0	0
	1.0	5.9	31	2.8	23	2.4	61	2.5	20	6.0	2	0.1	1	0.0	0
4	-1.5	2.6	31	2.2	26	1.9	23	1.3	15	0.4	4	0.0	0	0.0	0
N	-3.5	1.7	33	1.5	29	2.4	26	0.0	11	0.1	2	0.0	•	0.0	0
0	6-3-5	1.3	4.0	6.0	27	0.8	22	0.3	10	1.0	~	0.0	0	0.0	0
8		1.0	6.9	0.3	19	0.1	10	1.0	•	0.0	0	0.0	0	0.0	0

AREA	SQUARE FEET	11012	8328	6966	6043	5154	3513	8156		1355	347	
R STAGE, FT.	GAGE READING ST. LOUIS EQUIVALENT	22.5	20.0		2.4	5.01	8.0	9.9	4.0	s	-3.0	<-3.5
RIVE	MEAN SEA LEVEL	31.6	314	310	308	909 909	302	300	298	000	282	290

CALCULATED PARAMETERS

197		SQUARE FEET	135.29 135.29 3592 3592 3821 2721 916 2721 918 2721 918 2721 918 2721 918
1 - 2 · 2	STATION 3	GAGE READING ST. LOUIS EQUIVALENT	00000000000000000000000000000000000000
288		MEAN SEA LEVEL	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

248 3.5 248 3.5 CALCULATIONS OF PROFILE CROSS SECTION

CALCULATIONS

Table 17 Results of Calculations for

Side Channel Browns

SIDE CHANNEL LENGTH = 1.09 MILES = 1.75 KILOMETERS

-	
1.0	
P	
-	
1.00	
- eo	
100	
100	
144	
-	
142	
0	
1.1	
100	
×.	
- 10	
- 64	
122	
- 14	
100	
.3	
3	
2	
714	
714	
714	
724	
2 414	
13 H L1	
12 414	
11 K 21-	
11 K 22.	
0.12 HILI	
0.12 MIL	
0.12 HILI	
0.12 HILI	
0.12 MIL	
. 0.12 MIL	
* 0.12 MIL	
* 0.12 MIL	
* * 0.12 HILI	
H + 0.12 HILI	
TH & 0.12 MIL	
TH & 0.12 MIL	
074 × 0.12 MIL	
DTH & 0.12 MIL	
10TH & 0.12 MIL	
410TH = 0.12 MIL	
HIDTH & 0.12 MIL	
MIDTH # 0.12 MIL	
MIDTH & 0.12 MIL	
- MIDTH & 0.12 MIL	
L MIDTH & 0.12 MIL	
EL MIDTH # 0.12 MIL	
EL MIDTH # 0.12 MIL	
NEL MIDTH # 0.12 MIL	
WEL MIDTH # 0.12 MIL	
NNEL MIDTH # 0.12 MIL	
ANNEL MIDTH & 0.12 MIL	
ANNEL MIDTH # 0.12 MIL	
HANNEL MIDTH + 0.12 MIL	
HANNEL MIDTH & 0.12 MIL	
CHANNEL MIDTH # 0.12 MIL	
CHANNEL MIDTH + 0.12 MIL	
CHANNEL MIDTH # 0.12 MIL	
E CHANNEL MIDTH + 0.12 MIL	
E CHANNEL MIDTH + 0.12 MIL	
SE CHANNEL MIDTH # 0.12 MIL	
GE CHANNEL MIDTH # 0.12 MIL	
AGE CHANNEL MIDTH # 0.12 MIL	
HAGE CHANNEL MIDTH # 0.12 MIL	
RAGE CHANNEL MIDTH # 0.12 MIL	
RAGE CHANNEL MIDTH # 0.12 MIL	
ERAGE CHANNEL MIDTH + 0.12 MIL	
FERAGE CHANNEL MIDTH + 0.12 MIL	
VERAGE CHANNEL MIDTH & 0.12 MIL	
AVERAGE CHANNEL MIDTH # 0.12 MIL	
AVERAGE CHANNEL MIDTH + 0.12 MIL	
AVERAGE CHANNEL MIDTH + 0.12 MIL	
AVERAGE CHANNEL MIDTH # 0.12 MIL	
AVERAGE CHANNEL MIDTH + 0.12 MIL	
AVERAGE CHANNEL MIDTH # 0.12 MIL	

							DECWITIONS	000110100	FB WINI INE APRE-ET	DELINE FNOTH MILES	TRUETE LERVIN, THER	PUISTON THE MARKY PLANE.	PECT TO RIVER STAGE, ACRES/FT	RELINE DEVELOPMENT D = L (2) a A (2)	TO OF WATER SURFACE AREA TO	ER VOLUME L'MILE	TID OF SHORELINE LENGTH TO	TER SURFACE AREA, I/WLE												5-20 PT >20 FT		CHEO & ACHEO &	6,8 22 165,5 48	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.2 33 40.0 15	8.5 24 30.1 11	5 1.11 5 6.6		6.3 3 6.4 3	4.7 2 5.1 3	2 6 6 6 7 1 6	1.9 2 2.6 3	1.5 3 2.1 5		1.1 0 0 1.1	1.0 11 0.4 5	0.8 12 0.2	0.1 0 01 0.1		0.0 0.0	0.0 0.0	0.00	
									U. 22	I - CHI	100 - V		121 - 74	THS - D	N RAT	11.8	A-RA'	1.8												~ 1	-		10	0.	1	•	20																
	1	LIA	13	12	0+	1.1	2.0	-	20	23	27	53	100	0.0	4 0.4	4.	42 L	45	20	8	07	0.0	20.4	13.	174	220	342		NGES	10-15 51		ALMES &	29.7 9	CC 4 64	83.8 28	97.6 34	11.5 41	25 0 25	33.3 15	20.2 10		10.0	2,8 6	2.2 7	11 11	1.2 15	1.1 18	02 01	0. × 0.0		0.2 9		
		A/V	274	290	010	002	414	400	598	720	882	1244	1213	1411	1001	204	610	657	644	000	069	101	42.41	0001	2294	2639	4368		S S R A	< 13 C		*				8	26 2			23	0.1.	**	11	12	0 4	1.1	81	0.0	200		58	21	
TERS		a	2.5			1.1	1.1	1.1	3, 4	3.7	4.2	4	4			1.7	1.5	1.4	P . 1	1.4	4.1			8.4	3.0	2.3	2.7	AMETERS	CLAS	>6-10	De	ACHES	19.4	F	34.6	52.6	2.02	0.40	4.00	45.7	100	10.8	5.1	0.0			1.1				0.0		
EL PARAMET		DAS	10.8			40.4	0.1	8.8	1.7	10.2	14.9	29.4	4 · · · ·	1.1.1	6 4	0.5	2.0	1.0	0.5	0.4	0.3			10.50	2.0	1.0	1.0	ULATED PAR	DEPTH	13 9-9	Pote v	CHES A	e				4 1.2		1.5 50	5.8 22	1.1	0.2 8	2.7 0	5.5	01 2'3	1.0 12	0.7 21	0.6 12			0.4 1.8	12 5.0	
SIDE CHANN		4	327.9	300.5	1.001	0	10 Che	241.6	E.1ES	213.8	189.3	104.8	118.5	2.21		4.1.4	5.01	7.6	5.0	4.5	4.5			4	0.1	0.7	0.4	CALC		C 1.		*	-			4			200	15	21	22	26	25	23	100	15	1	0 1	8.	20	24	10
		2	6.0	9.9		9.4	20.1	1.1	7.2	2.6	8.1	6.5	4.0		0 a	0.0	6.9	0.5	0.4	4.0	4.0	-	50	24	1.0	0.2	5.0			>2-4 F		ACRES	æ (10.7	12.0	13.4	4.61	1 1 1 1 1 1	28.6	28.7	0.95	11.8	1.5	2.0		1.0	0.8	0.0		4.0	***	500
			1219	3475	0704	1000	0413	2445	1202	1567	1133		010	132	100	120	100	19	46	36	26	202			-					13 5-0		ACRES &	13.7 4		17.1 0	13.7 5	10.4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24. 4. 10	48.1 25	71.6 43	11.8 44	20.0 44	11.3 35	01 9.2	1.9 23	1.5 24	1.1 21	0.7 10	10 V U	0.5 24	0.4 27	2. 4 . C
TAGE FT	GAGE READING	EQUIVALENT	25.0	42.01	10	19.64	19.6	11.4				5-1	3.5	5*0		K-3-5		*							4	*			TAGE, FT.	GAGE READING	ST. COULS	EQUIVALENT			0.64	17.5	19:52	0.04		7.		2.0	0.24	4=3=5			1				5		
RIVER S	WE AN	LEVEL	318	3.0	21.6	110	10.0	AUA.	304	512	320	1989	298	244	247	284	196	284	282	250	210	918	214	110	268	266	264		RIVER S	NEAN	SEA		318	979	310	200	0.10	306	302	306	298	284	242	040	284	284	282	200	218	10	212	270	50.9

AREA			1000000		A SHITS												SALLARF.	FEET							CANT .						SQUARE FLET										
R STAGE, FT.	a state and a state of the	GAGE READING	China LUNA	Trinourtai	21.5	12.5	61.12		16.	14.	12.	9.5	11.0	5.5		 STATION Z	GAGE READING ST 1 DUIS	EQUIVALENT	23.0	6840	5101	13.5	10.1	12.5	6.5 1	5.5			6-9-5-	STATION 3	GAGE READING 57 LOUIS 57 LOUIS	20.6	21.5	20.5	5.8.		1310	10.5	10°		2.0
RIVE	1000	MEAN	Sta	TEACT	31.6	316	514	210	30.8	306	30.4	305	000	246	244		MEAN	LEVEL	318	328	310	310	308	304	302	842	962	244	546		WEAN SEA LEVEL	110	316	32.4	312	0.10	30.6	3.04	205	300	NA C

Jack in

Results of Calculations for

Side Channel Thompson

SIDE CHANNEL LENGTH = 2.63 MILES = 4.23 KILOMETERS

	A/V L/A	494 48	506 53 53	528 60 -	563 67 0AS -01	619 73 41	707 80 D=SH	785 89 A/V = RA	916 100 1	1056 112 L/A=RA	1170 129	1416 155	1438 166	1484 187
2 D C	0	4.9	5.2	5.4	5.6	5.8	0.9	6.3	6.6	6.9	7.2	7.4	6.9	6.4
CI DADAMCT	DAS	6.2	4.9	3.6	2.9	2.6	2.4	2.6	2.7	2.8	5.9	3.0	2.6	2.3
SIDE CUANN	*	84.9	74.7	64.6	56.7	51.0	45.4	40.4	35.4	30.0	24.2	18.5	13.9	9.2
	-	6.4	6.2	0.9	5.9	5.8	5.7	5.6	5.5	5.3	4.9	4.5	3.6	2.7
	A	205	176	645	531	435	339	272	204	150	109	69	51	33

ER S	TAGE, FT.					DE	HId	CLAS	S	ANGE	S				
	GAGE READING ST. LOUIS	0-2	5.1	>2-4	51	>4-6	5.5	>6-10	11	>10-15	11	>15-20	11	>20	1
	EQUIVALENT	ACRES	×	ACRES	×	ACRES	*	ACRES	*	ACRES	*	ACRES	*	ACRES	×
	24.0	12.4	16	8.4	11	5.8	7	10.5	13	11.7	15	12.5	16	17.0	22
	23.0	9.6	14	7.2	10	5.5	80	10.0	15	12.0	17	11.7	17	12.8	61
	22.5	6.8	12	5.9	10	5.1	•	9.5	16	12.3	21	10.8	18	8.7	15
	21.5	5.3	10	5.1	10	•. •	•	5.6	18	12.1	23	9.3	18	5.6	11
	20.5	2.0	11	4.9	10	4.8	10	9.6	21	11.2	24	7.2	15	3.6	ø
	19.0	4.8	12	4.6	11	4.7	11	10.1	25	10.4	25	5.0	12	1.6	4
	17.5	4.7	13	4.9	13	4.7	13	5.9	26	8.2	23	3.3	•	1.3	4
	15.5	4.7	15	5.1	16	4.8	15	8.5	27	6.1	19	1.5	5	1.1	m
	13.5	4.7	17	4.9	18		18	7.0	26	4.1	15	0.6	2	0.8	2
	11.0	4.0	21	4.4	20	4.6	21	4.8	22	2.4	11	9.0	•	0.6	P
	0.6	4.5	56	3.9	23	4.4	26	2.6	15	0.7		0.5	2	4.0	м
	7.0	4.3	33	2.7	21	2.8	22	1.8	4 1	0.0	5	4.0	•	0.3	~
	2.0	4.0	46	1.4	17	1.2	14	6.0	10	0.5	•	0.3	*	0.2	~

ADEA	AKEA	SQUARE FEET	2882	3479	3386	2746	1984	1649	1323	1.01.51	718	100	049				SQUARE	2015	1616	1256	653	415	211	46			SQUARE	FEET	3252	2545	6115	1197	885	624	489	239	35.4	
D CTACE ET	A DIMUE, FI.	GAGE READING ST. LOUIS EQUIVALENT	24.0	23.0	22.5	C. 14	19.5	18.0	16.0	14.0			5.2	3.0	STATION 2	GAGE READING	51. LOUIS FOUIVALENT	 22.0	22.0	21.0	18.5	17.0	15.0	12.5	STATION 3	CACE READING	ST. LOUIS	EQUIVALENT	23.5	22.5	22.0	0.14	18.0	16.5	14.5	12.0		
BIVE	RIVE	MEAN SEA LEVEL	318	316	415	210	308	306	304	302	000	295	294	292		MEAN	SEA FUEI	 316	314	312	308	306	304	205		NEAN	SEA	EVEL	318	316	314	210	308	306	304	302	000	760

Results of Calculations for

Side Channel Sister

SIDE CHANNEL LENGTH & 2.25 MILES = 3.61 KILONETERS

-
P1.
100
-
- 14
600
CT.
· • • •
141
-
100
-
100
-
×
- e
*4
- 15
100
140
-
100
94.2
100
476
- 10
10
1.00
100
100
1.8
- 10
- 2
- 14
3
1
1.0
CHAD
Cwa
Cwa
E Cwa
CHARLE CHARL
GE Cwal
AGE CHAI
IAGE CWA
TAGE CHAI
CAGE CHAI
ERAGE CHA!
VERNOR CHA!
WERNER CHAI
AVERAGE CHAI
AVERAGE Cwal
AVERAGE CHA!
AVERAGE CHAP

				DEFINITIONS	ALL 1111 1411	WATER VOLUME ACRE.FT	CURPETING I ENCTIN MILES		WATEN SURFACE ANEA, AUNES	DERIVATIVE OF WATER SURFACE AREA WI	REPTEUT TURIVER STAVE, AURENTI	SHORELINE DEVELOPMENT, D = L/12/m A/P	RATIO OF WATER SURFACE AREA TO	WATER VOLUME, L'MILE	RATIO OF SHORELINE LENGTH TO	WATER SURFACE AREA, L'MILE						
		-	29	30	31	33 V.	34	35	37 A	+0 DAS-	42	45 0.	48 AV.	54	63 L/A	71	29	203	114	135	166	
		1/1	261	279	301	328	359	400	436	485	552	542	191	\$04	1130	1359	1357	1352	1469	1803	2475	1111
F.R.C		0	3.0	3.7	3.7	3,8	6.5	3.9		1.1	4.2		4.4	4.7	5.0		4.4	3.9	3.8	3.7	3.3	
I PARAMETS		DAS	1.9	1.8	8.1	4.1	2.4	2.9	2.9	6.0	3.1	3.4	3.7	4.8	5.8	5.5	5.1	4.2	3.6	1.7	6.0	
CIDE CHANNE		*	121.2	117.2	113.1	108.8	104.3	8.90	1.70	86.4	80.3	74.8	69.3	59.2	40.1	37.6	24.7	11.7	8.6	5.5	1.3	1000
		,	5.5	5.5	5.6	5.5	5.5	5.5		5.5	5.3	2 5	1	5.0	8.4	4.2	3.0	0.1	5.1	1.2	0.0	
			2454	2218	1081	1754	1535	1317	1128	020	768	615	462	140	229	140	90	49	31	16		
STADE FT.	TADE NO ADDRC	10 (1001 L	28.0	24.0	23.0	22	21.5		10.6	12.5	18.8	13.3	11.5	0.1	2.1	9.1		-0.5	- 5°C+	6-1.6		
81.18	NLAN.	No.	11.4	11.4	114			N. A.	1	104		1	100			100	1.00	19.0		181	181	

SQUARE FEET 4996.8 336.11 332.96 332.96 332.96 332.96 332.96 14335 14335 14335 10380 31.4 92 31.4 92 31.4 92

AREA

RIVER STAGE, FT.

STATION 1

SQUARE FEET FEET 77355 55685 566855 56685 56685 56685 56685 56685 56685 56685 56685 566856

CALCULATED PARAMETERS

STATION 2

STAGE, FT.	-					Q	HId	CLA	S S R	ANGE	5				
GAGE READIN	0 0W	11 2-0		>2-4		- + <	1.1 5	>6-1(11 0	>10-15	t	>15-20		>20	
EQUIVALEN	TA T	RES	*	ACRES	*	ADA	x 5	ACRE	*	ACRES	*	ACRES	*	ACRES	*
25.0		F	5	3.0	2	*	*	9.9	80	17.3	* 1	24.4	12	70.7	58
24.1	-	*	5	3.7		. 6		11.3	10	10.1	14	19.1	91	60.2	20
21.0	-	5.7	-		4		*	13.0	11	15.0	13	23.9	-1.2	49.7	
0.00	4				5	•	•	13.3	12	16.8	51	27.2	* 2	38.2	¥ M
14. 12 14. 12	a,		5	0.9	•	0		12.3	25	21.5	20	29.3	27	25.7	42
1.12	0	1.1	2	9.9		0	5 7	11.3	11	26,2	26	31.3	11	13.1	21
4.01	•		×	5.9	2	.0	5 7	16.0	12	28.3	30	22.4	**	9.5	0.1
1.1.1	•		1	8.9	2			20.7	23	30.3	34	13.6	51	5.8	~
			2	6.9	0		1 11	22.8	28	26.9	33	7.9	01	3.4	4
	-		2	8.9	11	1	81	22.2	53	18.0	24	5.6	4	2.1	n
1	*)	5.5	0	10.1	41	. 6.1	3 27	21.6	31	1.0	13	3.3	~	0.7	**
	24	1 1	8	1.01	12	. 4.1	5 24	15.4	26	6.8	11	2.3	*	* 0	**
		0.0	0	10.01	20		7 20	9.2	6.	4.4	•	1.2	•	1.0	0
		5.5	- 00	* · · ·	22	0	4 27	5.3		2,8	~	0.6	24	0.0	0
		5 × 5		5.3	25	4	5 17	3.3	15	1.0	2	0.3		0.0	0
	-	4.7 3		2.9	22	2.	6 20	2.2	16	0.7	•	0.0	0	0.0	0
10.0	-	5 5 5	2	2.2	23		02 6	1.4	15		*	0.0	0	0.0	0
		4 4	0	4.1	24	-	3 22	0.7	12	1.0	~	0.0	0	0.0	0
C-9-3		4 5		0.8	24	0.	7 22	0.3		0.0	0	0.0	•	0.0	0
		5	*	* 0	22	.0	4 18	1.0	•	0.0	0	0.0	•	0.0	0
		8		0.1	11	.0	• •	0.0	c	0.0	0	0.0	0	0.0	0

SQUARE FEET FEET 113976 13376 5515 5515 5515 5556 4108 33365 4108 33365 545 117 117

514110N 3 6465 READING 5000 LUDIS 52.55

CALCULATIONS OF PROFILE CROSS SECTION

,

C

PLATE 1

1

.

the state of the s

particular and

PLATE 3A

PLATE 3C

.

è

PLATE 3D

I LATE OF

PLATE 3E

PLATE 4

PLATE 6

PLATE 9B

Non-

PLATE 9C

PLATE 14

PLATE 17

a second s

D	OCUMENT CONTROL DATA -	R & D
(Security classification of title, body of a ORIGINATING ACTIVITY (Corporate author)	betrect and indexing annotation must be	e entered when the overall report is classified; 20. REPORT SECURITY CLASSIFICATION
U. S. Army Engineer Waterway: Vicksburg, Mississippi	s Experiment Station	Unclassified 26. GROUP
COMPUTER-CALCULATED GEOMETRIC SIDE CHANNELS, Volume I. PRO DESCRIPTIVE NOTES (Type of report and inclu Volume 1 of 2 volumes	C CHARACTERISTICS OF MID CEDURES AND RESULTS	cal rept. Jan-Arg
Victor E. LaGarde Samuel J. Winfrey	•)	
June 1974 . CONTRACT OR GRANT NO.	76. TOTAL NO. 110 56. ORIGINATO	76. NO. OF REFS
5. PROJECT NO.	Technica	l Report M-74-5, Volume 1
c. d. 0. distribution statement	14 WESTR	2-M-74-5-Vol-1
Approved for public release;	distribution unlimited	
1. SUPPLEMENTARY NOTES	12 SPONSORING U. S. Ar Office o St. Loui	mulitary activity my Engineer District, St. Louis of Environmental Resources s. Missouri
Several geometric characteris shape, area underwater at spe commonly associated with bent although little quantitative two-volume report describes a values of selected parameters teristics of any water-basin yield quantitative informatic Middle Mississippi River. Wh descriptors of the characters ulation structures is expected currently under way at the U Volume I contains a descripts	stics of water-basin reg celfic water depth, and thic, plankton, and fish data are available to s a general procedure that s used to define the abo regime. The procedure on for those parameters nich of the parameters s istics are best indicato ed to be determined as a . S. Army Engineer Water ion of the procedure and computer-plotted contour	times, including basin size and cross-sectional area, are community population structures support the association. This was developed to calculate ove-mentioned geometric charac- was successfully applied to for 18 side channels of the selected as quantitative ors of animal community pop- tresult of other projects ways Experiment Station. The results of implementing it; maps for the 18 side channels.
D	RM 1473, 1 JAN 64, WHICH 18 RMY UBE.	Unclassified Security Classification

Computer analysis Computerized simulation Ecology Mydraulic geometry Mississispip River Basin River basins River channels					
Computerized simulation Ecology Hydraulic geometry Mississippi River Basin River basins River channels					
Ecology Hydraulic geometry Mississippi River Basin River basins River channels					
Aydraulic geometry Mississippi River Basin River basins River channels					
Mississippi River Basin River basins River channels					
River basins River channels					
River channels					
			in chu		
		1000	1.2	1	
	1				
	1				
			-		
		Unala	actfi	ed	
		onera	Classifi	cation	

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

LaGarde, Victor E

Computer-calculated geometric characteristics of Middle Mississippi River side channels; v. 1: Procedures and results, by V. E. LaGarde cand, S. J. Winfrey. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1974. 1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Technical report M-74-5, vol. 1) Sponsored by U. S. Army Engineer District, St. Louis, Office of Environmental Resources, St. Louis, Missouri.

1. Computer analysis. 2. Computerized simulation. 3. Ecology. 4. Hydraulic geometry. 5. Mississippi River Basin. 6. River basins. 7. River channels. I. Winfrey, Samuel J., joint author. II. U. S. Army Engineer District, St. Louis. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Technical report M-74-5, vol. 1) TA7.W34 no.M-74-5 vol. 1